WO2005073410A2 - Nucleic acid amplification with continuous flow emulsion - Google Patents
Nucleic acid amplification with continuous flow emulsion Download PDFInfo
- Publication number
- WO2005073410A2 WO2005073410A2 PCT/US2005/003488 US2005003488W WO2005073410A2 WO 2005073410 A2 WO2005073410 A2 WO 2005073410A2 US 2005003488 W US2005003488 W US 2005003488W WO 2005073410 A2 WO2005073410 A2 WO 2005073410A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- syringe
- nucleic acid
- emulsion
- plunger
- conduit
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
- B01L7/525—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/314—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1095—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/312—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00495—Means for heating or cooling the reaction vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/005—Beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00664—Three-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0673—Handling of plugs of fluid surrounded by immiscible fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1805—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
- B01L2300/1827—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1838—Means for temperature control using fluid heat transfer medium
- B01L2300/1844—Means for temperature control using fluid heat transfer medium using fans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0433—Moving fluids with specific forces or mechanical means specific forces vibrational forces
- B01L2400/0439—Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/06—Libraries containing nucleotides or polynucleotides, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B60/00—Apparatus specially adapted for use in combinatorial chemistry or with libraries
- C40B60/14—Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
Definitions
- Embodiments of the present invention relate to methods and systems for clonally amplifying nucleic acid templates from a single copy number to quantities amenable for sequencing, as well as methods and systems for continuous flow PCR using emulsion and solid support for immobilizing amplified nucleic acids.
- BACKGROUND The ability to amplify a plurality of nucleic acid sequences, such as a genomic library or a cDNA library, is critical given the current methods of sequencing. Current sequencing technologies require millions of copies of nucleic acid per sequencing reaction, therefore, amplification of the initial DNA is necessary before genomic sequencing.. Furthermore, the sequencing of a human genome would require tens of millions of different sequencing reactions.
- the present invention provides for methods and systems for amplifying a plurality of nucleic acids (e.g., each sequence of a DNA library, transcriptome, or genome) in a rapid and economical manner using, for example, a means for encapsulating a plurality of DNA samples effectively individually in a microcapsule of an emulsion (i.e., a "microreactor"), performing amplification of the plurality of encapsulated nucleic acid samples simultaneously, and releasing the amplified plurality of DNA from the microcapsules for subsequent reactions.
- a plurality of such microreactors include at least one capture bead (and preferably a single bead).
- Each capture bead is preferably designed to have a plurality of oligonucleotides that recognize (i.e., are complementary to) a portion of a nucleic acid template, and the amplification copies of this template. It is preferred that any one capture bead contain only one unique nucleic acid species.
- Embodiments of the present invention provide methods and systems for performing continuous flow amplification, specifically, encapsulated continuous flow amplification. Such embodiments may be used with thermal or isothermal amplification reactions, for example, PCR, rolling circle amplification, whole genome amplification, nucleic acid sequence-based amplification, and single strand displacement amplification.
- a method for amplifying genetic material includes providing a water-in-oil emulsion in a continuous flow wherein the emulsion comprises a plurality of water-based droplets comprising microreactors.
- the plurality of the microreactors may each include one or more species of nucleic acid templates, and sufficient reagents to amplify the copy number of one of the nucleic acid templates.
- the method may also include thermally processing the emulsion by flowing it across stationary controlled temperature zones to amplify nucleic acid templates by polymerase chain reaction.
- an apparatus for amplifying genetic material includes at least one fluid delivery device, at least one first temperature zone to cycle a plurality of microreactors each including one or more species nucleic acid templates to a first temperature, at least one second temperature zone to cycle the plurality of microreactors to second temperature lower than the first temperature, a first conduit for flowing at least a stream of oil therein from a first reservoir and a second conduit for flowing at least a water based PCR solution from a second reservoir out of an orifice and into the first conduit creating a water-in-oil emulsion.
- the PCR solution upon entering the first conduit comprises a plurality of droplets comprising the microreactors for performing polymerase chain reactions.
- a plurality of the microreactors each include one or more species of nucleic acid template.
- a cross-flow emulsification apparatus includes a first inlet for receiving an oil flow from a first conduit, an outlet for directing a water-in-oil emulsion out of the apparatus, a second inlet for receiving a water based PCR amplification reaction mixture from a second conduit and an orifice for delivering PCR reaction mixture from the second conduit into the first conduit, to form a plurality of water- in-oil droplets comprising microreactors.
- a plurality of the microreactors each include one or more nucleic acid templates and sufficient PCR amplification reaction mixture to produce a plurality of copies of nucleic acid template.
- an apparatus for amplifying genetic material in another embodiment, includes a water-in-oil emulsion in a continuous flow wherein the emulsion comprises a plurality of water droplets comprising microreactors.
- a plurality of the microreactors may include a single bead capable of capturing one or more nucleic acid templates, and sufficient reagents to amplify the copy number of the one or more nucleic acid templates.
- the apparatus may also include thermal processing means for thermally processing the emulsion to amplify nucleic acid templates by polymerase chain reaction.
- an emulsion generator including an emulsion oil supply, at least one syringe including a body and a plunger for dispensing a mixture for emulsifying into the emulsion oil, a cross-flow emulsification device for emulsifying the mixture, the device including an input attached to the output of the syringe, a syringe pump including an actuator capable of oscillating the plunger of the at least one syringe micrometer distances at a predetermined frequency along a length of travel of the plunger within the syringe body of the at least one syringe.
- a method for substantially reducing clogging of a nozzle in syringe pump includes providing a syringe pump having at least one syringe including a body, a plunger having a plunger axis and an exit nozzle, the body for dispensing a mixture of micron or less sized particles suspended in a medium, and oscillating the plunger of the syringe along the axis of the plunger for micrometer distances at a predetermined frequency along a length of travel of the plunger within the syringe body.
- an emulsion generator in another embodiment, includes an emulsion oil supply, at least one syringe including a body and a plunger for dispensing a mixture for emulsifying into the emulsion oil, a magnetically-attractive mixing element disposed in the body of the syringe, a cross-flow emulsification device for emulsifying the mixture, the device including an input attached to the output of the syringe and a device capable of moving an external magnetic force axially along body of the syringe while in close proximity to the syringe body.
- an emulsion generator in another embodiment, includes an emulsion oil supply, at least one syringe including a body and a plunger for dispensing a mixture for emulsifying into the emulsion oil, a magnetically-attractive mixing element disposed in the body of the syringe, a cross-flow emulsification device for emulsifying the mixture, the device including an input attached to the output of the syringe and a rotating drum having a magnet helically wound along the surface of the drum. The surface of the drum is positioned adjacent the body of the syringe.
- a syringe pump in another embodiment, includes an area for receiving at least one syringe, where the syringe includes a body and a plunger having a plunger axis.
- the syringe may be used for dispensing a mixture for emulsification into an emulsion oil.
- the syringe pump may also include an actuator capable of oscillating the plunger of the at least one syringe along the plunger axis micrometer distances at a predetermined frequency along a length of travel of the plunger within body of the at least one syringe.
- a syringe pump in another embodiment, includes an area for receiving at least one syringe, where the syringe includes a body and a plunger having a plunger axis.
- the syringe may be used for dispensing a mixture for emulsification into, emulsion oil.
- the syringe pump may also include a magnetically attractive mixing element disposed in the body of the syringe and a rotating drum having a magnet helically wound along the surface of the drum, wherein the surface of the drum is positioned adjacent the body of the syringe.
- Fig. 1 is a system block diagram of a system for a PCR amplification system according to one of the embodiments of the present invention.
- Fig. 2 is a schematic of a linear emulsification system according to an embodiment of the present invention for creating an emulsion flow.
- Fig. 3 illustrates a depiction of beads (see arrows) suspended in individual microreactors according to some embodiments of the invention.
- Fig. 4 is a schematic of a linear emulsifier apparatus according to an embodiment of the present invention.
- Fig. 5 A is front view of a mixing Tee for a linear emulsification apparatus according to an embodiment of the present invention.
- Fig. 1 is a system block diagram of a system for a PCR amplification system according to one of the embodiments of the present invention.
- Fig. 2 is a schematic of a linear emulsification system according to an embodiment of the present invention for creating an emulsion flow.
- Fig. 3 illustrates
- FIG. 5B is a side view of the mixing Tee of Fig. 5 A.
- Fig. 5C is a cross-sectional view of the mixing Tee of Fig. 5A.
- Fig. 5D is an enlarged cross-section of the detail of the nozzle area of the mixing Tee of Fig. 5A.
- Fig. 5E is a close-up, perspective view of mixing area of the mixing Tee of Fig. 5 A.
- Fig. 5F is a close-up, perspective view of an alternative design of the mixing area of the Tee of Fig. 5 A.
- Fig. 6A is a first, side-perspective view of a syringe pump assembly according to one embodiment of the present invention.
- Fig. 6A is a first, side-perspective view of a syringe pump assembly according to one embodiment of the present invention.
- Fig. 6A is a first, side-perspective view of a syringe pump assembly according to one embodiment of the present invention.
- FIG. 6B is bottom-perspective view of the syringe pump assembly of Fig. 6 A.
- Fig. 6C is a backside-perspective view of the syringe pump assembly of Fig. 6A.
- Fig. 6D is a second, side-perspective view of the syringe pump assembly of Fig. 6 A.
- Fig. 6E is third, side-perspective view of the syringe pump assembly of Fig. 6A.
- Fig. 8A is a schematic of another example of a continuous flow thermal processing/cycling system according to another embodiment of the invention.
- Fig. 8B is an exploded-perspective view of the thermal processing system of Fig. 7A.
- Fig. 8C is an assembled, perspective view of the thermal processing system of Fig. 7B.
- Fig. 7A is a schematic of a circular thermal processing system.
- Fig. 7B is a perspective view of the circular thermal processing system of Fig. 8
- Bead Emulsion Amplification may be performed by attaching a template (e.g., DNA template) to be amplified, to a solid support, preferably in the form of a generally spherical bead.
- a template e.g., DNA template
- the bead is linked to a large number of a single primer species that is complementary to a region of the template DNA and the amplification copies of this template.
- the bead is linked to chemical groups (e.g., biotin) that can bind to chemical groups (e.g., streptavidin) included on the template DNA and amplification copies of this template. See WO2004069849, herein incorporated by reference.
- the beads are suspended in aqueous reaction mixture and then encapsulated in a water-in-oil emulsion.
- the template DNA may be bound to the bead prior to emulsification, or the template DNA is included in solution in the amplification reaction mixture.
- the emulsion may be composed of discrete aqueous phase microdroplets (i.e., microreactors, see above), e.g., averaging approximately 60 to 200 ⁇ m in diameter, enclosed by a thermostable oil phase.
- Each microreactor contains, preferably, sufficient amplification reaction solution (i.e., the reagents necessary for nucleic acid amplification).
- An example of an amplification reaction solution would be a PCR reaction mixture (polymerase, salts, dNTPs; and may also preferably include a pair of PCR primers (primer A and primer B).
- the template DNA is included in the reaction mixture.
- a subset of the microreactor population preferably includes microreactors having a single DNA bead preferably with an attached nucleic acid template. This subset of microreactors is the basis for the amplification in some of the preferred embodiments of the present application. In one embodiment, the remaining microreactors which do not contain template DNA will not participate in amplification.
- PCR amplification and PCR primers may be present in an asymmetric ratio such as 8:1 or 16:1 (i.e., 8 or 16 of one primer to 1 of the second primer) to perform asymmetric PCR.
- the primer species that may be used in the lower concentration level is the same primer species that may be immobilized on the bead. This will increase the probability that an amplified copy of the template DNA will anneal to the bead.
- the ratio of PCR primers may also be substantially equal for normal PCR.
- the amplification reaction, such as PCR may be performed using any suitable method. After PCR, the beads containing the immobilized amplified DNA may be recovered. The emulsion may be broken to recover the beads.
- the immobilized product may be rendered single stranded by denaturing (by heat, pH etc.) which removes the complimentary A strand.
- the A primers are annealed to the A' region of immobilized strand, and the beads containing the immobilized strands are loaded with sequencing enzymes, and any necessary accessory proteins.
- the beads are then sequenced using recognized pyrophosphate techniques (described, e.g., in US patent 6,274,320, 6258,568 and 6,210,891, incorporated in toto herein by reference) .
- the nucleic acid template to be amplified by bead emulsion amplification is a population of DNA such as, for example, a genomic DNA library or a cDNA library. It is preferred that each member of the DNA population have a common nucleic acid sequence at the first end and a common nucleic acid sequence at a second end. This can be accomplished, for example, by ligating a first adaptor DNA sequence to one end and a second adaptor DNA sequence to a second end of each member of the DNA population.
- the nucleic acid template may be of any size amenable to in vitro amplification (including the preferred amplification techniques of PCR and asymmetric PCR).
- the template is about 150 to 750 bp in size, such as, for example about 250 bp in size.
- Binding Nucleic Acid Template to Capture Beads A single stranded nucleic acid template to be amplified may be attached to a capture bead. The amplification copies of the nucleic acid template may also be attached to a capture bead. As non-limiting examples, these attachments may be mediated by chemical groups or oligonucleotides that are bound to the surface of the bead.
- the nucleic acid may be attached to the solid support (e.g., a capture bead) in any manner known in the art.
- a capture bead e.g., covalent chemical attachment of a nucleic acid to the bead can be accomplished by using standard coupling agents.
- water-soluble carbodiimide can be used to link the 5 '-phosphate of a DNA sequence to amine-coated capture beads through a phosphoamidate bond.
- oligonucleotides can be coupled to the bead using similar chemistry, and then DNA ligase can be used to ligate the DNA template to the oligonucleotide on the bead.
- Other linkage chemistries to join the oligonucleotide to the beads include the use of N-hydroxysuccinamide (NHS) and its derivatives, for example.
- NHS N-hydroxysuccinamide
- one end of a linker may contain a reactive group (such as an amide group) which forms a covalent bond with the solid support, while the other end of the linker contains a second reactive group that can bond with the oligonucleotide to be immobilized.
- the oligonucleotide is bound to the DNA capture bead by covalent linkage.
- non-covalent linkages such as chelation or antigen- antibody complexes, may also be used to join the oligonucleotide to the bead.
- oligonucleotides can be employed which specifically hybridize to unique sequences at the end of the DNA fragment, such as the overlapping end from a restriction enzyme site or the "sticky ends" of cloning vectors, but blunt-end linkers can also be used. These methods are described in detail in US 5,674,743. It is preferred that the beads will continue to bind the immobilized oligonucleotide throughout the steps in the methods of the invention.
- Each capture bead is preferably designed to have a plurality of oligonucleotides that recognize (i.e., are complementary to) a portion of the nucleic template, and the amplification copies of this template. It is preferred that any one capture bead contain only one unique nucleic acid species.
- the beads used herein may be of any convenient size and fabricated from any number of known materials. Example of such materials include: inorganics, natural polymers, and synthetic polymers.
- the capture beads are beads approximately 2 to 100 ⁇ m in diameter, or 10 to 80 ⁇ m in diameter, most preferably 20 to 40 ⁇ m in diameter. In a preferred embodiment, the capture beads are Sepharose beads.
- Emulsification Capture beads with or without attached nucleic acid template may be suspended in a heat stable water-in-oil emulsion.
- the size of the microreactors may be adjusted by varying the flow rate and speed of the components. Additionally droplet size can also be varied by changing the viscosity of the emulsion oil, and also by the using different orifice sizes in the cross-flow emulsion generating part.
- Various emulsions that are suitable for biologic reactions are referred to in Griffiths and Tawfik, EMBO, 22, pp. 24-35 (2003); Ghadessy et al., Proc. Natl. Acad. Sci. USA 98, pp. 4552-4557 (2001); United States Patent No.
- the emulsion is preferably generated by adding beads to an amplification solution.
- amplification solution means the sufficient mixture of reagents that is necessary to perform amplification of template DNA.
- a PCR amplification solution is provided in the examples below. It will be appreciated that various modifications may be made to the amplification solution based on the type of amplification being performed and whether the template DNA is attached to the beads or provided in solution.
- the oil used may be supplemented with one or more biocompatible emulsion stabilizers including Agrimer AL22 and other recognized and commercially available suitable stabilizers.
- the emulsion is heat stable to allow thermal processing/cycling, e.g., to at least 94°C, at least 95°C, or at least 96°C.
- the droplets formed range in size from about 5 microns to 500 microns, more preferably, from about 50 to 300 microns, and most preferably, from about 100 to 150 microns.
- cross-flow emulsion generation allows for control of the droplet formation, and uniformity of droplet size.
- the microreactors should be sufficiently large to encompass sufficient amplification reagents for the degree of amplification required.
- microreactors should be sufficiently small so that a sufficient number of microreactors, up to about 20,000,000 or more, each containing effectively a single member of a DNA library, can be supplied from a small number of conventionally available syringes that can fit together on a syringe pump.
- the use of microreactors allows amplification of complex mixtures of templates (e.g., genomic DNA samples or whole cell RNA) without intermixing of sequences, or domination by one or more templates (e.g., PCR selection bias; see, Wagner et al., 1994, Suzuki and Giovannoni, 1996; Chandler et al., 1997, Polz and Cavanaugh, 1998).
- the optimal size of a microreactor may be on average 100 to 200 microns in diameter. Microreactors of this size would allow amplification of a DNA library comprising about 18,000,000 members supplied to the emulsion generator in a volume of 9mls contained in three 3ml syringes. Amplification After encapsulation of the bead and PCR solution and template DNA in the microreactor, the template nucleic acid may be amplified, while attached (preferably) or unattached to beads, by any suitable method of amplification including transcription-based amplification systems (Kwoh D. et al., Proc. Natl. Acad Sci. (U.S.A.) 86:1173 (1989); Gingeras T.
- NASBA Nucleic Acid Sequence Based Amplification
- whole-genome amplification see, e.g., Hawkins TL et al., 2002, Curr Opin Biotechnol. 13(l):65-7
- strand-displacement amplification see, e.g., Andras SC, 2001, Mol Biotechnol. 19(l):29-44
- rolling circle amplification Reviewed in U.S. Pat. No.
- DNA amplification is performed by PCR.
- PCR according to the present invention may be performed by encapsulating the target nucleic acid with a PCR solution comprising all the necessary reagents for PCR. Then, PCR may be accomplished by exposing the emulsion to any suitable thermal processing regimen known in the art. In a preferred embodiment, 30 to 60 cycles, and preferably about 60 cycles, of amplification are performed. It may be desirable, but not necessary, that following the amplification procedure, there may be one or more hybridization and extension cycles, which comprise a similar melting time but a longer extension time, following the cycles of amplification.
- the template DNA is amplified until typically at least two million to fifty million copies, preferably about ten million to thirty million copies of the template DNA are immobilized on each bead.
- the method of the invention employs continuous flow PCR to amplify the nucleic acid template.
- continuous flow PCR Various methods of continuous flow PCR have been reported in, e.g., Park et al., 2003, Anal. Chem. 75:6029-6033; Curcio and Roeraade, 2003, Anal. Chem. 75:1-7; Chiou et al., 2001, Anal. Chem. 73:2018-2021; U.S. Pat. No. 6,207,031; U.S. App. Pub.
- continuous flow PCR greatly reduces sample handling and reaction times, while it increases amplification specificity.
- previous flow systems utilized serial slugs, i.e., slugs of reagent that completely fill the diameter of the flow tube, that are separated by similar full slugs of air and oil.
- embodiments of the present invention are directed to the a water-in-oil emulsion used in conjunction with a continuous flow PCR.
- the water-in-oil emulsion comprises microreactors, allowing clonal amplification of a large population of nucleic acids.
- the microreactors are about 10 to 50 times smaller than the diameter of the flow tube so that a very large number of them are present in the flow stream.
- a 2mm diameter flow tube can carry 2,000 microreactors per cm of length.
- the continuous flow PCR methods of the invention can be used to amplify the sequences of an entire genome or transcriptome on a single instrument in less than half the time required for traditional thermal processing.
- Continuous flow of the emulsion across a solid state heat transfer element permits efficient and rapid (e.g., 60 second) reaction cycle.
- a 60 cycle amplification for example, would take 1 hour.
- the nucleic acid template can be diluted to obtain effectively one copy of delivered template per microreactor, and a final yield of 1,000,000 to 10,000,000 template copies per bead.
- the continuous flow methods of the invention can be used with thermal amplification reactions (e.g., PCR) or isothermal reactions (e.g., rolling circle amplification, whole genome amplification, NASBA, strand displacement amplification, and the like).
- thermal amplification reactions e.g., PCR
- isothermal reactions e.g., rolling circle amplification, whole genome amplification, NASBA, strand displacement amplification, and the like.
- Amplification Systems the method of the invention is performed using a system for continuous flow amplification, e.g., continuous flow PCR amplification.
- This system includes a means for forming an emulsion of an amplification reaction mixture in a stabilized biocompatible oil.
- Fig. 1 illustrates a general block diagram of an emulsification system 200, as well as a thermal processor 112 and bead filtering device 114, according to one embodiment of the present invention.
- an emulsion oil 102 is pumped via pump 104 into a cross-flow emulsifier 106.
- the emulsifier emulsifies a PCR reaction mixture (having a plurality of beads) 108, which is supplied to the emulsifier via a pump 110, creating a plurality of microreactors in the emulsion oil flow.
- Each microreactor preferably includes on average a single bead and an effective single species nucleic acid template.
- the plurality of microreactors may then be thermally processed via a thermal processor 112 to amplify the DNA template.
- Fig. 2 illustrates a schematic diagram of an exemplary emulsification system 200.
- the system may be controlled by a microprocessor based controller (not shown), which may be a personal computer (PC), or other controller (e.g., analog) controller device.
- PC personal computer
- the controller may monitor the pressure of the emulsion oil flow via pressure sensor 212, so that the flow rate of the oil may be regulated, and the general status of the system determined (e.g., pump failures, leaks).
- the pump is preferably precisely controlled (e.g., electronically) to maintain an exact and consistent speed (e.g., from 1-10 mls/min, and preferably about 3 mls/min).
- a pressure dampening tube 214 may be used to attenuate pressure fluctuations in the oil caused by the pump, prior to the first cross-flow emulsifier.
- the emulsion oil is supplied to the cross-flow emulsifier 210 (see also 106, Fig. 1).
- the emulsion oil is flowed through multiple (in this case, three) injection/mixing tees 216 (although a single injection tee or any other number may also be used).
- Each tee receives a PCR/bead mixture from a corresponding syringe 218.
- a syringe pump 220 may be used to drive the plunger of each syringe at a controlled rate to force the PCR mixture from the syringe into the respective tee.
- a tee enables a respective syringe to create a plurality of microreactors (each preferably containing a single bead on average and an effective single nucleic acid template) in the emulsion oil.
- Fig. 3 illustrates an example of beads (see arrows) suspended in individual microreactors.
- Fig. 4 illustrates a general schematic of an injection tee emulsifier 400 that may be used with some of the embodiments of the present invention, which allow, for example, droplet generation rates on the order of 500 to 1000 per second or more, and Figs. 5A-5F illustrate various views of particular injection tee emulsifiers according to some embodiments of the invention. As shown in Fig.
- the emulsifier may include a first inlet 402 of a first conduit 404 for receiving an emulsion oil, a narrowed diameter area 406 provided along the first conduit and an outlet 408 of the first conduit.
- the first conduit is provided in a horizontal position thereby establishing a cross-flow of emulsion oil through the narrowed area.
- a diameter of the narrowed area is preferably between 100 ⁇ m and 600 ⁇ m, more preferably between 200 ⁇ m and 400 ⁇ m, and most preferably approximately 300 ⁇ m.
- the emulsifier 400 also includes a second inlet 410 of a second conduit 412 for directing amplification reaction/bead mixture into the apparatus.
- a tubular orifice 414 is provided at a terminus of the second conduit, and is open to the narrowed area 406 of the first conduit.
- the orifice preferably includes a diameter of between about 10 um to about 200 ⁇ m, and more preferably between 75 ⁇ m and 150 ⁇ m, and most preferably about 120 ⁇ m.
- the second inlet, conduit and orifice are provided in a vertical arrangement relative to the preferred horizontal arrangement of the first conduit (i.e., the first conduit and second conduit/orifice may be orthagonal to one another), although any orientation can work.
- the orifice enables a plurality of amplification reaction mixture droplets (i.e., microreactors), to be created as the reaction mixture enters the oil flow.
- a plurality of such microreactors each preferably include on average a single bead and an effective single nucleic acid template.
- a particular injection tee includes a syringe exit area 502d, an aqueous phase (PCR solution) inlet area 504d, a tapered area of injection port 506d, a straight area of injection port 508d, an emulsion exit 510d, an emulsion oil inlet 512d, a tapered oil acceleration area 514d (i.e., nozzle), a constant speed, high velocity (narrowed) area 516d, a partial diffusion area 518d and a diffuser step 520d.
- PCR solution aqueous phase
- the emulsion oil when it enters a respective injection tee, it enters a progressively narrower region, and is thus accelerated to a higher velocity (e.g., 30 times its initial velocity).
- the PCR/bead solution i.e., an aqueous phase material
- the PCR/bead solution is then injected at preferably a constant and controlled rate, preferably between about 5 ⁇ l-100 ⁇ l per minute, and preferably about 20 ⁇ l/minute.
- a constant and controlled rate preferably between about 5 ⁇ l-100 ⁇ l per minute, and preferably about 20 ⁇ l/minute.
- the shearing force of the high velocity oil breaks off the PCR/bead stream into individual droplets as it is being injected, each preferably including a single bead.
- the velocity of the flow may be gradually reduced in a diffuser area (see partial diffuser area 522, Fig. 5D).
- the flow encounters an abrupt step (520, Fig. 5D), which causes the droplets to break away from the wall and enter the central area of the flow stream.
- the flow then exits the injection tee with the droplets evenly distributed throughout the flow.
- the examples of injection tees illustrated in Figs. 5A-5D may be made to fit a disposable syringe, and may be manufactured via plastic injection molding.
- the selection of an appropriate plastic material is critical to impart the desired function of the mixing tee. Specifically, the surface of the material must preferentially wet with oil rather than water. If this is not the case, the incoming stream of aqueous material will flow along the inside wall of the high-velocity area of the tee in a continuous stream, rather than be sheared into the desired sized droplets.
- Polypropylene for example, is a plastic material that has meets these requirements.
- An additional requirement for the tee is that the internal geometry must cause the newly formed emulsion droplets to leave the wall of the oil conduit (where they are formed) and migrate to the central area of the flow stream.
- injection tees include internal geometry features which induce the emulsion droplets to separate from walls and flow into the central area of the conduit.
- the PCR/bead mixture is provided to the injection tee using a syringe pump, an example of which is illustrated in Figs. 6A-6E. As illustrated generally in Figs.
- the syringe pump 600 generally includes one or more syringes 602, a syringe holder block 604, guide rods 606, a drive screw 608, a motor 610, a base 612, a slider assembly 614 and a pivoting door assembly (which may be spring-loaded) 616.
- the slider assembly is driven by the drive screw, which in turn simultaneously drives each plunger of each syringe into the syringe body to drive out the contents of the syringe.
- the motor which may be a stepper motor, turns a drive pulley 618, which drives a main drive pulley 620 via belt 622, which rotates the drive screw to move the slider assembly (to move the syringe plungers).
- a mixing mechanism may also be included with the syringe pump.
- a rotating element 624 drum
- a rotating element 624 may be included (in this case, positioned in the pivoting door assembly) which includes a helical line of magnets 626 along a portion of the drum surface positioned adjacent each syringe body.
- the rotating element rotates so that the helical line of magnets come into close proximity to the bodies of the syringes as they pass by.
- An electric motor (not shown) with a gear reduction unit may be used to power the rotating element and may be mounted inside the rotating element (being secured to the door frame).
- the plurality of magnets may also be represented by a single, helically wound magnet-strip (or other formed magnet, which is helically arranged around the rotating element), but a plurality of individual magnets is preferred.
- the magnets 626 in the rotating element are preferably oriented so that the fields are directed out radially from the rotating element. Preferably, a majority (and most preferably, all) of the magnets have the same polarity orientation.
- a magnetic ball 632a, 632b, 632c, included inside each syringe body is moved from its lowest position adjacent the plunger 634 toward a higher position, which may be adjacent the nozzle area 636, successively, higher and higher by each magnet.
- the ball is released once the highest magnet in the helical series moves away from the syringe body and then drops to the bottom (i.e., adjacent the plunger) of the syringe. This motion of the mixing ball will occur regardless of where the syringe plunger is located.
- the frequency and velocity of the mixing ball may be controlled by the rotational speed of the rotating element.
- More than one helical pattern of magnets may be used to allow different mixing rates and displacements as the plunger moves through different areas of the syringe.
- a sonic (vibratory), anti-clogging mechanism for reliably feeding solid particles at high concentrations through the nozzle of the mixing tee.
- each plunger 632a, 632b, 632c may be fitted with a piezo-electric actuator 638 (i.e., sonic actuator), which is provided in the slider assembly of the syringe pump.
- the piezo-electric actuator(s) are driven electronically at a desired frequency (between about 50 Hz and 1000 Hz, and preferably about 300 Hz) and displacement (between about l ⁇ -lOO ⁇ , and preferably about 15 ⁇ ) to effectively keep the particles in the nozzle in constant motion to prevent clumping & clogging of the beads in the nozzle area.
- Electromagnetic actuators can also be used to create & impart the energy to the syringes. Without the use of the sonic actuators according to the present invention, large amounts of viscosity enhancers and surfactants would be required to prevent particles from clogging the nozzles, and such a system would still only be marginally reliable.
- the flow exiting from the emulsifier, via a conduit may be then run through a thermal processing device, which exposes the continuous flow to alternate zones of a higher temperature and lower temperature (e.g., a heating zone and a cooling zone) for PCR amplification. Examples of such thermal processing devices are illustrated in Figs.
- thermal processors allow for rapid, simultaneous and separate PCR amplification of millions of DNA fragments, resulting in clonal solid phase products. Over 12 million (for example) separate DNA fragments can be separately amplified in one batch.
- a stainless steel conduit including an inlet 702 and an outlet 704, containing the emulsified flow (e.g., 400 as shown in Fig. 4) may be helically wound around a mandrel type thermal processing device 700 (Fig. 7A-7B).
- first temperature zone 706 which may include a heater or heat transfer element 708, surrounded by an insulation material 709 (for example) and a second side or portion of the mandrel comprises a second temperature zone 710 which includes a temperature lower than the temperature of the first temperature zone.
- the second temperature zone may include a cooling element (e.g.., water jacket, air circulation fan, and the like) to cool the continuous flow, but may also include a resistance heater 711 (for example) to maintain a certain predetermined temperature.
- a preheating zone 712 may also be included, prior to the flow reaching the first temperature zone.
- the second temperature zone may also include a heating element, since the zone typically, for PCR amplification, maintains a temperature of between approximately 60-70 degrees C, which is considerable higher than room temperature of 23 degrees C.
- a heating element such as a thermoelectric device
- the thermal processing device 800 allows alternating sections of a conduit 802 to be positioned adjacent opposed (for example) linear first temperature 804 and second temperature 806 zones.
- thermoelectric heat transfer elements 808 of the thermal processing device may provide heat to the continuous flow along portions of the conduit.
- Resistance heaters 810 may be positioned adjacent the second temperature zone 806, so that the conduit sections positioned adjacent the second temperature zone is maintained at, for example, between a temperature of, for example, 60-70 degrees C.
- the second temperature may maintained by both adding heat from the heating elements when required, and also by removing heat in the second zone, using (for example) a fan to move air across the second zone.
- Another feature that may be included is an exposed area of conduit between the first and second temperature zone, which allows the conduit to be directly cooled by the fan, rather than via the second temperature zone block.
- the resistance heaters may also provide thermal energy for the first temperature zone.
- Blocks 812 may be used as thermal conductors to conduct heat to and from the various zones and to and from the conduit, and may be fabricated from any material useful for heating, e.g., metal such as aluminum, copper, and the like.
- the blocks may be designed to be a precise fit around the conduit so that thermal energy may be efficiently transferred between the blocks and the conduit.
- a thermal grease may be added between these two elements to further improve the thermal conductivity of the interface.
- Insulation 814 may also be used to help maintain temperature of the high temperature zone, or any other area of the thermal processing device.
- the conduit may extend 46 cm for each amplification cycle, for a total of 35 cycles, hi another example, the conduit is 67 cm for each cycle, and a total of 60 cycles are used.
- the conduit is made in groups of five cycles, so that sufficient fasteners may be used to ensure that the blocks are tightly clamped around the conduit.
- an additional length of conduit may be added in the beginning that is exposed only to the high temperature zone. This may be included for the purpose of activating an enzyme required for PCR amplification.
- a distal end of the conduit may be adapted to allow for sample collection, e.g., into a bead filtering device or a collection container.
- the temperature in the first temperature zone of between 90 and 100 degrees C may be used to melt duplex nucleic acid (e.g., 94°C), while the 60-70 degrees C temperature of the second temperature zone is chosen for primer annealing and extension (e.g., 65°C), for example.
- delivery of the emulsion components can be accomplished by any manual or automatic delivery means, preferably a pump system is used. As illustrative examples, delivery can be obtained by various pumps, including syringe pumps and mechanical pumps, e.g., HPLC pumps (see, e.g., Gilson, Inc., Middleton, WI; ESA, Inc., Chelmsford, MA; Jasco Inc, Easton, MD).
- the preferred means is a rotary annular gear pump.
- Exemplary heating devices for the apparatus include, but are not limited to, cartridge heaters (see, e.g., Omega Engineering, Inc., Stanford, CT; Delta-t Max, Greenland NH), resistive heaters (see, e.g., Minco Products, Inc., Minneapolis, MN), and thermoelectric heaters, including Peltier devices (see, e.g., Ferrotec, Nashua NH).
- the heating devices for the apparatus can be embedded in the heating blocks or mounted on the surface of the blocks.
- Temperature monitors may also be used with the apparatus, including real-time proportional temperature controllers, PID (proportional, integral, and derivative) digital controllers, in combination with temperature sensing elements such as thermocouples, thermistors, or any other suitable device (see, e.g., Watlow Electric Mfg. Co., St. Louis, MO).
- the conduit material may be fabricated out of any compatible tubing material for amplification (in particular, thermal amplification), such as stainless steel, Polytetrafluoroethylene (PTFE; e.g., Teflon), and fused silica.
- PTFE Polytetrafluoroethylene
- Teflon Teflon
- stainless steel tubing is used for its thermal conductivity and corrosion resistance.
- fluid's can be circulated from constant temperature reservoirs, in particular, hot oil baths (see, e.g., Nakano et al., 1994, Biosci. Biotech. Biochem. 58:349-
- a silicon or glass chip can be modified to include thin film transducers to . heat different sections of the chip to different temperatures.
- a chip can be placed across a row of heating blocks, where each block is heated to a different temperature.
- the heated sections of the chips can allow for denaturation (e.g., 95°C), primer annealing
- fluid channels may be added to the chip (e.g., by etching, molding, imprinting, or adhesives) to allow for buffer and sample input, temperature cycling, and product output.
- the buffers and samples can be delivered, for example, by precision syringe pumps, and the amplification products can be collected into microfuge tubes, microwells, or other reservoirs.
- the beads must be recovered. If a filter element is at the exit of the first conduit, the filter may be removed from the system, and beads may be back- flushed out of the filter using reverse flow. The beads may alternatively be washed & processed while they are still in the filter, by attaching the filter to a syringe with the bead side exposed to the syringe chamber, and pulling and pushing various wash reagents through the filter and in and out of the syringe.
- the emulsion exiting the flow system may be collected in a vessel, and subsequently spun in a centrifuge, which will leave the beads at the bottom provided they are denser than the oil. The oil may then be removed from above the beads, and the beads my be recovered from the bottom of the vessel. This procedure may also be used without the centrifuge, if sufficient time is allowed for the beads to settle by gravity.
- the beads may be isolated from the microreactors and used for sequencing.
- the sequencing steps are preferably performed on each individual bead.
- this method while commercially viable and technically feasible, may not be most effective because a portion of the beads will be "negative" beads (i.e., beads without amplified nucleic acid attached). This is because the DNA template material is delivered to the PCR solution or the beads by dilution, and it is inevitable that at least some of the beads do not get a starting copy for amplification.
- an optional process outlined below may be used to remove negative beads prior to distribution onto multiwell (e.g., picotiter) plates.
- Binding Nucleic Acid Template to Capture Beads This example describes preparation of a population of beads that preferably have only one unique nucleic acid template attached thereto. Successful clonal amplification depends on the delivery of a controlled number of template species to each bead. Delivery of excess species can result in PCR amplification of a mixed template population, preventing generation of meaningful sequence data while a deficiency of species will result in fewer wells containing template for sequencing. This can reduce the extent of genome coverage provided by the sequencing phase. As a result, it is preferred that the template concentration be accurately determined through replicated quantitation.
- the template library should pass two quality control steps before it is used in Emulsion PCR. Its concentration and the distribution of products it contains should be determined. Ideally, the library should appear as a heterogeneous population of fragments with little or no visible adapter dimers (e.g., ⁇ 90 bases).
- amplification with PCR primers should result in a product smear ranging, for example, from 300 to 500 bp. Absence of amplification product may reflect failure to properly ligate the adaptors to the template, while the presence of a single band of any size may reflect contamination of the template.
- a linear emulsifier included an internal diameter of 300 ⁇ m for an oil passage and an internal diameter of 120 ⁇ m for the bead/PCR solution outlet (see Fig. 4).
- the emulsion oil flow rate was set at 2 ml/min, while the PCR solution flow rate was set at 5 ⁇ l/min .
- the droplet (microreactor) size range was 80 ⁇ m to 120 ⁇ m (270 pi to 900 pi). Droplets were generated at a rate of 55/sec to 180/sec. Bead size was 25 ⁇ m to 30 ⁇ m, while bead density was 1 bead/nl.
- the flow tube internal diameter was 2.4 mm. The length of tube for one cycle was 46 cm.
- Each PCR cycle was timed at 64 sec, which included 35 cycles plus a pre-heat step taking 2 min. The total time for the PCR reaction was 39 minutes.
- the PCR amplification mixture used contained lx High Fidelity Buffer (60mM Tris-SO4 pH 8.9, 18mM Ammonium Sulfate, (hivitrogen)), ImM dNTPs (Pierce), 0.625mM forward primer, 0.078mM reverse primer (JDT), 0.25% agrimer ALIO-LC (ISP Technologies), 5% PEG-8000 (Acros), 0.02% BSA (Sigma), 0.003 U/ul inorganic pyrophosphotase (NEB), 0.15 U/ul Platinum High Fidelity Taq (hivitrogen).
- lx High Fidelity Buffer 60mM Tris-SO4 pH 8.9, 18mM Ammonium Sulfate, (hivitrogen)
- ImM dNTPs PurM dNTPs
- JDT 0.625mM forward primer
- JDT 0.078mM reverse primer
- JDT 0.25% agrimer ALIO-LC
- the library of interest E. coli
- E. coli was added in three replicates to 1.8 million capture beads in a minimal volume and resuspended by vortexing. This mixture was then added to 900 ⁇ l of the PCR mixture. This solution was then loaded into a 1 ml syringe that contained an 4.1mm plastic coated magnetic mixing ball. Three identical syringes were then loaded in series onto the "Flow PCR Unit".
- the emulsion flow PCR system included an internal diameter of 300 ⁇ m for an oil passage and an internal diameter of 120 ⁇ m for the bead/PCR solution outlet (see Fig. 4).
- the emulsion oil flow rate was set at 2.4 ml/min, while the PCR solution flow rate was set at 15 ⁇ l/min per syringe.
- Three syringes were used.
- the droplet (microreactor) size range was 80 ⁇ m to 120 ⁇ m (270 pi to 900 pi). Droplets were generated at a rate of 280/sec to 920/sec per syringe.
- Bead size was 25 ⁇ m to 30 ⁇ m, while bead density was 2 beads/nl.
- the flow tube internal diameter was 2.4 mm.
- the length of tube for one cycle was 67 cm.
- Each PCR cycle was timed at 60 sec, and there were 60 cycles plus a pre-heat step taking 2 min.
- the total time for the PCR reaction was 62 minutes.
- a 15um mesh, 25mm diameter filter was used to capture the beads as they exited the thermal processor.
- An enrichment primer (containing both the amplification and sequencing primer regions) is annealed to the beads.
- the beads are then washed in buffer containing 2M NaCl and Tris pH 7.5 and then mixed with 1 micron biotinylated Seramag beads. This mixture is incubated at RT for three minutes on a rotator and then pelleted at 2,000 rpm in a microcentrifuge. The beads are resuspended by hand vortexing and then incubated on ice for 5 minutes. The mixture is washed on a Dynal-MPC magnet to remove unannealed material and then NaOH is added to remove the annealed oligo. "Enriched" beads are then recovered by washing in IX annealing buffer. 2.07 million beads were recovered from the enrichment process.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Clinical Laboratory Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05712801.9A EP1735458B1 (en) | 2004-01-28 | 2005-01-28 | Nucleic acid amplification with continuous flow emulsion |
ES05712801T ES2432040T3 (en) | 2004-01-28 | 2005-01-28 | Nucleic acid amplification with continuous flow emulsion |
CA2553833A CA2553833C (en) | 2004-01-28 | 2005-01-28 | Nucleic acid amplification with continuous flow emulsion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US54001604P | 2004-01-28 | 2004-01-28 | |
US60/540,016 | 2004-01-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005073410A2 true WO2005073410A2 (en) | 2005-08-11 |
WO2005073410A3 WO2005073410A3 (en) | 2006-04-20 |
Family
ID=34826167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/003488 WO2005073410A2 (en) | 2004-01-28 | 2005-01-28 | Nucleic acid amplification with continuous flow emulsion |
Country Status (5)
Country | Link |
---|---|
US (2) | US7927797B2 (en) |
EP (1) | EP1735458B1 (en) |
CA (1) | CA2553833C (en) |
ES (1) | ES2432040T3 (en) |
WO (1) | WO2005073410A2 (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007053358A2 (en) | 2005-10-28 | 2007-05-10 | Praecis Pharmaceuticals, Inc. | Methods for identifying compounds of interest using encoded libraries |
WO2007145612A1 (en) | 2005-06-06 | 2007-12-21 | 454 Life Sciences Corporation | Paired end sequencing |
JP2008245612A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Ltd | Method and device for preparing sample |
EP2029781A2 (en) * | 2006-05-26 | 2009-03-04 | Althea Technologies, Inc. | Biochemical analysis of partitioned cells |
DE102009024048B3 (en) * | 2009-05-08 | 2010-08-19 | Institut für Bioprozess- und Analysenmesstechnik e.V. | Mountable and demountable microfluidic system used for producing, cultivating, manipulating, analyzing and preserving single-phase and multiphase fluids, comprises stack of plates |
WO2010108638A1 (en) | 2009-03-23 | 2010-09-30 | Erasmus University Medical Center Rotterdam | Tumour gene profile |
WO2010118865A1 (en) * | 2009-04-15 | 2010-10-21 | Roche Diagnostics Gmbh | System and method for detection of hla variants |
US7883265B2 (en) | 2007-06-01 | 2011-02-08 | Applied Biosystems, Llc | Devices, systems, and methods for preparing emulsions |
EP2341151A1 (en) | 2005-04-12 | 2011-07-06 | 454 Life Sciences Corporation | Methods for determining sequence variants using ultra-deep sequencing |
WO2011127933A1 (en) | 2010-04-16 | 2011-10-20 | Nuevolution A/S | Bi-functional complexes and methods for making and using such complexes |
WO2012139125A2 (en) | 2011-04-07 | 2012-10-11 | Life Technologies Corporation | System and methods for making and processing emulsions |
WO2013079215A1 (en) | 2011-12-01 | 2013-06-06 | Erasmus University Medical Center Rotterdam | Method for classifying tumour cells |
US8530158B2 (en) | 2010-05-10 | 2013-09-10 | Life Technologies Corporation | System and method for processing a biological sample |
EP2657869A2 (en) | 2007-08-29 | 2013-10-30 | Applied Biosystems, LLC | Alternative nucleic acid sequencing methods |
WO2014089579A1 (en) * | 2012-12-07 | 2014-06-12 | Cypho, Inc. | Common port emulsion generation system |
WO2014068407A3 (en) * | 2012-10-26 | 2014-06-26 | Sysmex Corporation | Emulsion systems and emulsion-based amplification of nucleic acid |
EP2848698A1 (en) * | 2013-08-26 | 2015-03-18 | F. Hoffmann-La Roche AG | System and method for automated nucleic acid amplification |
US9089844B2 (en) | 2010-11-01 | 2015-07-28 | Bio-Rad Laboratories, Inc. | System for forming emulsions |
US9121047B2 (en) | 2011-04-07 | 2015-09-01 | Life Technologies Corporation | System and methods for making and processing emulsions |
WO2015141649A1 (en) * | 2014-03-20 | 2015-09-24 | ユニバーサル・バイオ・リサーチ株式会社 | Device for automating nucleic acid amplification, and device for automating nucleic acid amplification analysis |
US9492797B2 (en) | 2008-09-23 | 2016-11-15 | Bio-Rad Laboratories, Inc. | System for detection of spaced droplets |
US9623384B2 (en) | 2008-09-23 | 2017-04-18 | Bio-Rad Laboratories, Inc. | System for transporting emulsions from an array to a detector |
US9650629B2 (en) | 2010-07-07 | 2017-05-16 | Roche Molecular Systems, Inc. | Clonal pre-amplification in emulsion |
EP3170903A1 (en) | 2015-11-20 | 2017-05-24 | Qiagen GmbH | Method for processing a water-in-oil emulsion |
US9764322B2 (en) | 2008-09-23 | 2017-09-19 | Bio-Rad Laboratories, Inc. | System for generating droplets with pressure monitoring |
US9885034B2 (en) | 2011-04-25 | 2018-02-06 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
WO2018033490A1 (en) * | 2016-08-17 | 2018-02-22 | B. Braun Melsungen Ag | Method for controlling a syringe pump |
US10041113B2 (en) | 2005-08-22 | 2018-08-07 | Applied Biosystems, Llc | Apparatus, system, and method using immiscible-fluid-discrete-volumes |
US10099219B2 (en) | 2010-03-25 | 2018-10-16 | Bio-Rad Laboratories, Inc. | Device for generating droplets |
US10166522B2 (en) | 2009-09-02 | 2019-01-01 | Bio-Rad Laboratories, Inc. | System for mixing fluids by coalescence of multiple emulsions |
US10378048B2 (en) | 2010-03-02 | 2019-08-13 | Bio-Rad Laboratories, Inc. | Emulsion chemistry for encapsulated droplets |
US10512910B2 (en) | 2008-09-23 | 2019-12-24 | Bio-Rad Laboratories, Inc. | Droplet-based analysis method |
WO2020141144A1 (en) | 2018-12-31 | 2020-07-09 | Qiagen Gmbh | Enrichment method for sequencing |
WO2020193368A1 (en) | 2019-03-22 | 2020-10-01 | Qiagen Gmbh | Method for improving the amplification efficiency of bead-based emulsion pcr (empcr) |
US11118218B2 (en) | 2012-09-12 | 2021-09-14 | Cypho, Inc. | Common port emulsion generation system |
US11130128B2 (en) | 2008-09-23 | 2021-09-28 | Bio-Rad Laboratories, Inc. | Detection method for a target nucleic acid |
CN114689488A (en) * | 2022-04-21 | 2022-07-01 | 伊尔瑞生物科技(江苏)有限公司 | Lymphocyte counting and detecting micro-fluidic device for cell analysis and method thereof |
US12023637B2 (en) | 2020-03-23 | 2024-07-02 | Mark A. Gray | Capillary tube droplet generation systems and methods |
US12090480B2 (en) | 2008-09-23 | 2024-09-17 | Bio-Rad Laboratories, Inc. | Partition-based method of analysis |
US12097495B2 (en) | 2011-02-18 | 2024-09-24 | Bio-Rad Laboratories, Inc. | Methods and compositions for detecting genetic material |
Families Citing this family (218)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6911132B2 (en) | 2002-09-24 | 2005-06-28 | Duke University | Apparatus for manipulating droplets by electrowetting-based techniques |
US7329545B2 (en) | 2002-09-24 | 2008-02-12 | Duke University | Methods for sampling a liquid flow |
EP2159285B1 (en) | 2003-01-29 | 2012-09-26 | 454 Life Sciences Corporation | Methods of amplifying and sequencing nucleic acids |
CN1791682B (en) | 2003-02-26 | 2013-05-22 | 凯利达基因组股份有限公司 | Random array DNA analysis by hybridization |
US7041481B2 (en) | 2003-03-14 | 2006-05-09 | The Regents Of The University Of California | Chemical amplification based on fluid partitioning |
GB0307428D0 (en) | 2003-03-31 | 2003-05-07 | Medical Res Council | Compartmentalised combinatorial chemistry |
GB0307403D0 (en) | 2003-03-31 | 2003-05-07 | Medical Res Council | Selection by compartmentalised screening |
US20060078893A1 (en) | 2004-10-12 | 2006-04-13 | Medical Research Council | Compartmentalised combinatorial chemistry by microfluidic control |
EP1735458B1 (en) * | 2004-01-28 | 2013-07-24 | 454 Life Sciences Corporation | Nucleic acid amplification with continuous flow emulsion |
US20050221339A1 (en) | 2004-03-31 | 2005-10-06 | Medical Research Council Harvard University | Compartmentalised screening by microfluidic control |
US7692219B1 (en) | 2004-06-25 | 2010-04-06 | University Of Hawaii | Ultrasensitive biosensors |
JP5885901B2 (en) | 2004-09-09 | 2016-03-16 | アンスティテュート キュリー | Device for manipulating packets in microchannels or other microcontainers |
US7968287B2 (en) | 2004-10-08 | 2011-06-28 | Medical Research Council Harvard University | In vitro evolution in microfluidic systems |
US7785785B2 (en) | 2004-11-12 | 2010-08-31 | The Board Of Trustees Of The Leland Stanford Junior University | Charge perturbation detection system for DNA and other molecules |
WO2006081558A2 (en) | 2005-01-28 | 2006-08-03 | Duke University | Apparatuses and methods for manipulating droplets on a printed circuit board |
US7709197B2 (en) | 2005-06-15 | 2010-05-04 | Callida Genomics, Inc. | Nucleic acid analysis by random mixtures of non-overlapping fragments |
EP2546360A1 (en) | 2005-10-07 | 2013-01-16 | Callida Genomics, Inc. | Self-assembled single molecule arrays and uses thereof |
US9360526B2 (en) * | 2005-10-24 | 2016-06-07 | The Johns Hopkins University | Methods for beaming |
EP1984738A2 (en) * | 2006-01-11 | 2008-10-29 | Raindance Technologies, Inc. | Microfluidic devices and methods of use in the formation and control of nanoreactors |
SG10201405158QA (en) | 2006-02-24 | 2014-10-30 | Callida Genomics Inc | High throughput genome sequencing on dna arrays |
JP5180845B2 (en) | 2006-02-24 | 2013-04-10 | カリダ・ジェノミックス・インコーポレイテッド | High-throughput genomic sequencing on DNA arrays |
US20140193807A1 (en) | 2006-04-18 | 2014-07-10 | Advanced Liquid Logic, Inc. | Bead manipulation techniques |
US8637317B2 (en) * | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Method of washing beads |
US8492168B2 (en) | 2006-04-18 | 2013-07-23 | Advanced Liquid Logic Inc. | Droplet-based affinity assays |
US9476856B2 (en) | 2006-04-13 | 2016-10-25 | Advanced Liquid Logic, Inc. | Droplet-based affinity assays |
US8613889B2 (en) * | 2006-04-13 | 2013-12-24 | Advanced Liquid Logic, Inc. | Droplet-based washing |
US7763471B2 (en) | 2006-04-18 | 2010-07-27 | Advanced Liquid Logic, Inc. | Method of electrowetting droplet operations for protein crystallization |
US7901947B2 (en) | 2006-04-18 | 2011-03-08 | Advanced Liquid Logic, Inc. | Droplet-based particle sorting |
US10078078B2 (en) | 2006-04-18 | 2018-09-18 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US8470606B2 (en) * | 2006-04-18 | 2013-06-25 | Duke University | Manipulation of beads in droplets and methods for splitting droplets |
US7851184B2 (en) | 2006-04-18 | 2010-12-14 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification method and apparatus |
US8716015B2 (en) | 2006-04-18 | 2014-05-06 | Advanced Liquid Logic, Inc. | Manipulation of cells on a droplet actuator |
US7439014B2 (en) | 2006-04-18 | 2008-10-21 | Advanced Liquid Logic, Inc. | Droplet-based surface modification and washing |
US8658111B2 (en) | 2006-04-18 | 2014-02-25 | Advanced Liquid Logic, Inc. | Droplet actuators, modified fluids and methods |
US8809068B2 (en) | 2006-04-18 | 2014-08-19 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US8980198B2 (en) | 2006-04-18 | 2015-03-17 | Advanced Liquid Logic, Inc. | Filler fluids for droplet operations |
DE602006018794D1 (en) * | 2006-04-18 | 2011-01-20 | Advanced Liquid Logic Inc | BIOCHEMISTRY ON THE DREAM BASE |
US7816121B2 (en) | 2006-04-18 | 2010-10-19 | Advanced Liquid Logic, Inc. | Droplet actuation system and method |
US7815871B2 (en) | 2006-04-18 | 2010-10-19 | Advanced Liquid Logic, Inc. | Droplet microactuator system |
US8637324B2 (en) | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
WO2007123908A2 (en) * | 2006-04-18 | 2007-11-01 | Advanced Liquid Logic, Inc. | Droplet-based multiwell operations |
US8041463B2 (en) * | 2006-05-09 | 2011-10-18 | Advanced Liquid Logic, Inc. | Modular droplet actuator drive |
US7822510B2 (en) | 2006-05-09 | 2010-10-26 | Advanced Liquid Logic, Inc. | Systems, methods, and products for graphically illustrating and controlling a droplet actuator |
US7939021B2 (en) | 2007-05-09 | 2011-05-10 | Advanced Liquid Logic, Inc. | Droplet actuator analyzer with cartridge |
US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
EP2481815B1 (en) * | 2006-05-11 | 2016-01-27 | Raindance Technologies, Inc. | Microfluidic devices |
CA2656022C (en) | 2006-06-19 | 2017-10-17 | The Johns Hopkins University | Single-molecule pcr on microparticles in water-in-oil emulsions |
EP3536396B1 (en) | 2006-08-07 | 2022-03-30 | The President and Fellows of Harvard College | Fluorocarbon emulsion stabilizing surfactants |
US7910302B2 (en) | 2006-10-27 | 2011-03-22 | Complete Genomics, Inc. | Efficient arrays of amplified polynucleotides |
US20090111705A1 (en) | 2006-11-09 | 2009-04-30 | Complete Genomics, Inc. | Selection of dna adaptor orientation by hybrid capture |
EP2639578B1 (en) | 2006-12-14 | 2016-09-14 | Life Technologies Corporation | Apparatus for measuring analytes using large scale fet arrays |
US11339430B2 (en) | 2007-07-10 | 2022-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8349167B2 (en) | 2006-12-14 | 2013-01-08 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8262900B2 (en) | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8772046B2 (en) | 2007-02-06 | 2014-07-08 | Brandeis University | Manipulation of fluids and reactions in microfluidic systems |
US8592221B2 (en) | 2007-04-19 | 2013-11-26 | Brandeis University | Manipulation of fluids, fluid components and reactions in microfluidic systems |
US20090023189A1 (en) * | 2007-05-18 | 2009-01-22 | Applera Corporation | Apparatus and methods for preparation of subtantially uniform emulsions containing a particle |
JP2010528608A (en) * | 2007-06-01 | 2010-08-26 | 454 ライフ サイエンシーズ コーポレイション | System and method for identifying individual samples from complex mixtures |
WO2009002920A1 (en) * | 2007-06-22 | 2008-12-31 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification in a temperature gradient |
CA2689389A1 (en) * | 2007-06-28 | 2009-01-08 | 454 Life Sciences Corporation | System and method for adaptive reagent control in nucleic acid sequencing |
WO2009021233A2 (en) | 2007-08-09 | 2009-02-12 | Advanced Liquid Logic, Inc. | Pcb droplet actuator fabrication |
US8592150B2 (en) | 2007-12-05 | 2013-11-26 | Complete Genomics, Inc. | Methods and compositions for long fragment read sequencing |
US20090203086A1 (en) * | 2008-02-06 | 2009-08-13 | 454 Life Sciences Corporation | System and method for improved signal detection in nucleic acid sequencing |
US20110097763A1 (en) * | 2008-05-13 | 2011-04-28 | Advanced Liquid Logic, Inc. | Thermal Cycling Method |
ES2438989T3 (en) * | 2008-05-13 | 2014-01-21 | Advanced Liquid Logic, Inc. | Devices, systems and droplet actuator methods |
JP5667049B2 (en) | 2008-06-25 | 2015-02-12 | ライフ テクノロジーズ コーポレーション | Method and apparatus for measuring analytes using large-scale FET arrays |
US7888034B2 (en) | 2008-07-01 | 2011-02-15 | 454 Life Sciences Corporation | System and method for detection of HIV tropism variants |
US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
EP4047367A1 (en) | 2008-07-18 | 2022-08-24 | Bio-Rad Laboratories, Inc. | Method for detecting target analytes with droplet libraries |
US9132394B2 (en) | 2008-09-23 | 2015-09-15 | Bio-Rad Laboratories, Inc. | System for detection of spaced droplets |
US8709762B2 (en) | 2010-03-02 | 2014-04-29 | Bio-Rad Laboratories, Inc. | System for hot-start amplification via a multiple emulsion |
US8951939B2 (en) | 2011-07-12 | 2015-02-10 | Bio-Rad Laboratories, Inc. | Digital assays with multiplexed detection of two or more targets in the same optical channel |
US8633015B2 (en) | 2008-09-23 | 2014-01-21 | Bio-Rad Laboratories, Inc. | Flow-based thermocycling system with thermoelectric cooler |
US9417190B2 (en) | 2008-09-23 | 2016-08-16 | Bio-Rad Laboratories, Inc. | Calibrations and controls for droplet-based assays |
US9399215B2 (en) | 2012-04-13 | 2016-07-26 | Bio-Rad Laboratories, Inc. | Sample holder with a well having a wicking promoter |
WO2011120020A1 (en) | 2010-03-25 | 2011-09-29 | Quantalife, Inc. | Droplet transport system for detection |
US20100301398A1 (en) | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US20100137143A1 (en) * | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US8528589B2 (en) | 2009-03-23 | 2013-09-10 | Raindance Technologies, Inc. | Manipulation of microfluidic droplets |
US20100261229A1 (en) * | 2009-04-08 | 2010-10-14 | Applied Biosystems, Llc | System and method for preparing and using bulk emulsion |
US8776573B2 (en) | 2009-05-29 | 2014-07-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US8574835B2 (en) | 2009-05-29 | 2013-11-05 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
US8673627B2 (en) | 2009-05-29 | 2014-03-18 | Life Technologies Corporation | Apparatus and methods for performing electrochemical reactions |
GB0910291D0 (en) * | 2009-06-16 | 2009-07-29 | Biochip Devises Pte Ltd | Method for conducting multiple reactions in a single reaction tube |
WO2011042564A1 (en) | 2009-10-09 | 2011-04-14 | Universite De Strasbourg | Labelled silica-based nanomaterial with enhanced properties and uses thereof |
US8609339B2 (en) | 2009-10-09 | 2013-12-17 | 454 Life Sciences Corporation | System and method for emulsion breaking and recovery of biological elements |
WO2011079176A2 (en) | 2009-12-23 | 2011-06-30 | Raindance Technologies, Inc. | Microfluidic systems and methods for reducing the exchange of molecules between droplets |
US9399797B2 (en) | 2010-02-12 | 2016-07-26 | Raindance Technologies, Inc. | Digital analyte analysis |
US9366632B2 (en) | 2010-02-12 | 2016-06-14 | Raindance Technologies, Inc. | Digital analyte analysis |
US10351905B2 (en) | 2010-02-12 | 2019-07-16 | Bio-Rad Laboratories, Inc. | Digital analyte analysis |
WO2011100604A2 (en) | 2010-02-12 | 2011-08-18 | Raindance Technologies, Inc. | Digital analyte analysis |
EP2550351A4 (en) | 2010-03-25 | 2014-07-09 | Quantalife Inc | Detection system for droplet-based assays |
JP2013529896A (en) | 2010-04-30 | 2013-07-25 | エフ.ホフマン−ラ ロシュ アーゲー | System and method for purification and use of inorganic pyrophosphatase from Aquifex aeolicus |
US20110287432A1 (en) | 2010-05-21 | 2011-11-24 | 454 Life Science Corporation | System and method for tailoring nucleotide concentration to enzymatic efficiencies in dna sequencing technologies |
EP2589084B1 (en) | 2010-06-30 | 2016-11-16 | Life Technologies Corporation | Transistor circuits for detection and measurement of chemical reactions and compounds |
US20120001646A1 (en) | 2010-06-30 | 2012-01-05 | Life Technologies Corporation | Methods and apparatus for testing isfet arrays |
US8858782B2 (en) | 2010-06-30 | 2014-10-14 | Life Technologies Corporation | Ion-sensing charge-accumulation circuits and methods |
EP2589065B1 (en) | 2010-07-03 | 2015-08-19 | Life Technologies Corporation | Chemically sensitive sensor with lightly doped drains |
EP2617061B1 (en) | 2010-09-15 | 2021-06-30 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
CN103299182A (en) | 2010-09-24 | 2013-09-11 | 生命科技公司 | Matched pair transistor circuits |
US20120077716A1 (en) | 2010-09-29 | 2012-03-29 | 454 Life Sciences Corporation | System and method for producing functionally distinct nucleic acid library ends through use of deoxyinosine |
WO2012045012A2 (en) | 2010-09-30 | 2012-04-05 | Raindance Technologies, Inc. | Sandwich assays in droplets |
US20120322665A1 (en) | 2010-10-08 | 2012-12-20 | 454 Life Sciences Corporation | System and method for detection of hiv-1 clades and recombinants of the reverse transcriptase and protease regions |
WO2012072705A1 (en) | 2010-12-01 | 2012-06-07 | Morphosys Ag | Simultaneous detection of biomolecules in single cells |
WO2012109600A2 (en) | 2011-02-11 | 2012-08-16 | Raindance Technologies, Inc. | Methods for forming mixed droplets |
WO2012112804A1 (en) | 2011-02-18 | 2012-08-23 | Raindance Technoligies, Inc. | Compositions and methods for molecular labeling |
WO2012129187A1 (en) | 2011-03-18 | 2012-09-27 | Bio-Rad Laboratories, Inc. | Multiplexed digital assays with combinatorial use of signals |
US20120244523A1 (en) | 2011-03-25 | 2012-09-27 | 454 Life Sciences Corporation | System and Method for Detection of HIV Integrase Variants |
CN102179077B (en) * | 2011-03-28 | 2013-03-13 | 山东省油区环境污染治理工程技术研究中心 | Device for separating oil-containing silt through high-frequency oscillation |
EP3709018A1 (en) | 2011-06-02 | 2020-09-16 | Bio-Rad Laboratories, Inc. | Microfluidic apparatus for identifying components of a chemical reaction |
US8841071B2 (en) | 2011-06-02 | 2014-09-23 | Raindance Technologies, Inc. | Sample multiplexing |
US9513253B2 (en) | 2011-07-11 | 2016-12-06 | Advanced Liquid Logic, Inc. | Droplet actuators and techniques for droplet-based enzymatic assays |
US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
WO2013019751A1 (en) | 2011-07-29 | 2013-02-07 | Bio-Rad Laboratories, Inc., | Library characterization by digital assay |
US9970984B2 (en) | 2011-12-01 | 2018-05-15 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
KR101830778B1 (en) | 2011-12-09 | 2018-02-22 | 삼성전자주식회사 | Device and method for amplifying nucleic acid using oil layer comprising heating particles |
US9855559B2 (en) | 2011-12-30 | 2018-01-02 | Abbott Molecular Inc. | Microorganism nucleic acid purification from host samples |
US8821798B2 (en) | 2012-01-19 | 2014-09-02 | Life Technologies Corporation | Titanium nitride as sensing layer for microwell structure |
US8747748B2 (en) | 2012-01-19 | 2014-06-10 | Life Technologies Corporation | Chemical sensor with conductive cup-shaped sensor surface |
US20130217023A1 (en) | 2012-02-22 | 2013-08-22 | 454 Life Sciences Corporation | System And Method For Generation And Use Of Compact Clonally Amplified Products |
US10192024B2 (en) | 2012-05-18 | 2019-01-29 | 454 Life Sciences Corporation | System and method for generation and use of optimal nucleotide flow orders |
US8786331B2 (en) | 2012-05-29 | 2014-07-22 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US20150376609A1 (en) | 2014-06-26 | 2015-12-31 | 10X Genomics, Inc. | Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations |
US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
US20140155295A1 (en) | 2012-08-14 | 2014-06-05 | 10X Technologies, Inc. | Capsule array devices and methods of use |
US10400280B2 (en) | 2012-08-14 | 2019-09-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
EP2703497B1 (en) * | 2012-08-31 | 2016-06-22 | Roche Diagniostics GmbH | Microfluidic chip, device and system for the generation of aqueous droplets in emulsion oil for nucleic acid amplification |
US9790546B2 (en) | 2012-08-31 | 2017-10-17 | Roche Molecular Systems, Inc. | Microfluidic chip, device and system for the generation of aqueous droplets in emulsion oil for nucleic acid amplification |
US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9080968B2 (en) | 2013-01-04 | 2015-07-14 | Life Technologies Corporation | Methods and systems for point of use removal of sacrificial material |
US9841398B2 (en) | 2013-01-08 | 2017-12-12 | Life Technologies Corporation | Methods for manufacturing well structures for low-noise chemical sensors |
WO2014113663A1 (en) * | 2013-01-18 | 2014-07-24 | Hill David A | In-line polymerase chain reaction |
US8962366B2 (en) | 2013-01-28 | 2015-02-24 | Life Technologies Corporation | Self-aligned well structures for low-noise chemical sensors |
CN108753766A (en) | 2013-02-08 | 2018-11-06 | 10X基因组学有限公司 | Polynucleotides bar code generating at |
US8963216B2 (en) | 2013-03-13 | 2015-02-24 | Life Technologies Corporation | Chemical sensor with sidewall spacer sensor surface |
US8841217B1 (en) | 2013-03-13 | 2014-09-23 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
EP2972279B1 (en) | 2013-03-15 | 2021-10-06 | Life Technologies Corporation | Chemical sensors with consistent sensor surface areas |
US9116117B2 (en) | 2013-03-15 | 2015-08-25 | Life Technologies Corporation | Chemical sensor with sidewall sensor surface |
JP2016510895A (en) | 2013-03-15 | 2016-04-11 | ライフ テクノロジーズ コーポレーション | Chemical sensor with consistent sensor surface area |
US10458942B2 (en) | 2013-06-10 | 2019-10-29 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
KR102160389B1 (en) | 2013-08-05 | 2020-09-28 | 트위스트 바이오사이언스 코포레이션 | De novo synthesized gene libraries |
EP2840148B1 (en) | 2013-08-23 | 2019-04-03 | F. Hoffmann-La Roche AG | Methods for nucleic acid amplification |
US11901041B2 (en) | 2013-10-04 | 2024-02-13 | Bio-Rad Laboratories, Inc. | Digital analysis of nucleic acid modification |
WO2015074898A1 (en) * | 2013-11-19 | 2015-05-28 | Qiagen Gmbh | Method for generating emulsions |
US9944977B2 (en) | 2013-12-12 | 2018-04-17 | Raindance Technologies, Inc. | Distinguishing rare variations in a nucleic acid sequence from a sample |
US9824068B2 (en) | 2013-12-16 | 2017-11-21 | 10X Genomics, Inc. | Methods and apparatus for sorting data |
EP3090063B1 (en) | 2013-12-31 | 2019-11-06 | Bio-Rad Laboratories, Inc. | Method for detection of latent retrovirus |
JP6664381B2 (en) | 2014-08-11 | 2020-03-13 | ルミネックス コーポレーション | Probes for improved melting discrimination and multiplexing in nucleic acid assays |
US10077472B2 (en) | 2014-12-18 | 2018-09-18 | Life Technologies Corporation | High data rate integrated circuit with power management |
SG11201705615UA (en) | 2015-01-12 | 2017-08-30 | 10X Genomics Inc | Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same |
WO2016126987A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Compositions and methods for synthetic gene assembly |
WO2016126882A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
WO2017004250A1 (en) | 2015-06-29 | 2017-01-05 | Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University | Systems and methods for continuous flow digital droplet polymerase chain reaction bioanalysis |
JP6612539B2 (en) | 2015-06-30 | 2019-11-27 | シスメックス株式会社 | Sample processing equipment for genetic testing |
US10647981B1 (en) | 2015-09-08 | 2020-05-12 | Bio-Rad Laboratories, Inc. | Nucleic acid library generation methods and compositions |
EP3350314A4 (en) | 2015-09-18 | 2019-02-06 | Twist Bioscience Corporation | Oligonucleic acid variant libraries and synthesis thereof |
KR20180058772A (en) | 2015-09-22 | 2018-06-01 | 트위스트 바이오사이언스 코포레이션 | Flexible substrate for nucleic acid synthesis |
US11371094B2 (en) | 2015-11-19 | 2022-06-28 | 10X Genomics, Inc. | Systems and methods for nucleic acid processing using degenerate nucleotides |
CN115920796A (en) | 2015-12-01 | 2023-04-07 | 特韦斯特生物科学公司 | Functionalized surfaces and preparation thereof |
WO2017138984A1 (en) | 2016-02-11 | 2017-08-17 | 10X Genomics, Inc. | Systems, methods, and media for de novo assembly of whole genome sequence data |
CN106194685B (en) * | 2016-07-29 | 2017-06-27 | 厦门金龙旅行车有限公司 | A kind of automobile control method for having the anti-lubricating oil emulsion of oily electric compressor |
CA3034769A1 (en) | 2016-08-22 | 2018-03-01 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
US10417457B2 (en) | 2016-09-21 | 2019-09-17 | Twist Bioscience Corporation | Nucleic acid based data storage |
WO2018098438A1 (en) | 2016-11-28 | 2018-05-31 | Arizona Board Of Regents On Behalf Of Arizona State University | Systems and methods related to continuous flow droplet reaction |
GB2573069A (en) | 2016-12-16 | 2019-10-23 | Twist Bioscience Corp | Variant libraries of the immunological synapse and synthesis thereof |
US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
WO2018140966A1 (en) | 2017-01-30 | 2018-08-02 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
US10995333B2 (en) | 2017-02-06 | 2021-05-04 | 10X Genomics, Inc. | Systems and methods for nucleic acid preparation |
CA3054303A1 (en) | 2017-02-22 | 2018-08-30 | Twist Bioscience Corporation | Nucleic acid based data storage |
US10894959B2 (en) | 2017-03-15 | 2021-01-19 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
US10544413B2 (en) | 2017-05-18 | 2020-01-28 | 10X Genomics, Inc. | Methods and systems for sorting droplets and beads |
CN110945139B (en) | 2017-05-18 | 2023-09-05 | 10X基因组学有限公司 | Method and system for sorting droplets and beads |
AU2018284227B2 (en) | 2017-06-12 | 2024-05-02 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US20190064173A1 (en) | 2017-08-22 | 2019-02-28 | 10X Genomics, Inc. | Methods of producing droplets including a particle and an analyte |
CN111566125A (en) | 2017-09-11 | 2020-08-21 | 特韦斯特生物科学公司 | GPCR binding proteins and synthesis thereof |
US10561620B2 (en) * | 2017-09-15 | 2020-02-18 | Rezolute, Inc. | Coiled tube emulsification systems |
US10837047B2 (en) | 2017-10-04 | 2020-11-17 | 10X Genomics, Inc. | Compositions, methods, and systems for bead formation using improved polymers |
GB2583590A (en) | 2017-10-20 | 2020-11-04 | Twist Bioscience Corp | Heated nanowells for polynucleotide synthesis |
WO2019083852A1 (en) | 2017-10-26 | 2019-05-02 | 10X Genomics, Inc. | Microfluidic channel networks for partitioning |
WO2019084043A1 (en) | 2017-10-26 | 2019-05-02 | 10X Genomics, Inc. | Methods and systems for nuclecic acid preparation and chromatin analysis |
EP3700672B1 (en) | 2017-10-27 | 2022-12-28 | 10X Genomics, Inc. | Methods for sample preparation and analysis |
CN111051523B (en) | 2017-11-15 | 2024-03-19 | 10X基因组学有限公司 | Functionalized gel beads |
WO2019108851A1 (en) | 2017-11-30 | 2019-06-06 | 10X Genomics, Inc. | Systems and methods for nucleic acid preparation and analysis |
WO2019126789A1 (en) | 2017-12-22 | 2019-06-27 | 10X Genomics, Inc. | Systems and methods for processing nucleic acid molecules from one or more cells |
AU2019205269A1 (en) | 2018-01-04 | 2020-07-30 | Twist Bioscience Corporation | DNA-based digital information storage |
EP3752832A1 (en) | 2018-02-12 | 2020-12-23 | 10X Genomics, Inc. | Methods characterizing multiple analytes from individual cells or cell populations |
US11639928B2 (en) | 2018-02-22 | 2023-05-02 | 10X Genomics, Inc. | Methods and systems for characterizing analytes from individual cells or cell populations |
WO2019169028A1 (en) | 2018-02-28 | 2019-09-06 | 10X Genomics, Inc. | Transcriptome sequencing through random ligation |
CN114713056A (en) | 2018-04-02 | 2022-07-08 | 滴管公司 | System and method for continuous flow emulsion processing |
SG11202009889VA (en) | 2018-04-06 | 2020-11-27 | 10X Genomics Inc | Systems and methods for quality control in single cell processing |
WO2019217758A1 (en) | 2018-05-10 | 2019-11-14 | 10X Genomics, Inc. | Methods and systems for molecular library generation |
CN112639130B (en) | 2018-05-18 | 2024-08-09 | 特韦斯特生物科学公司 | Polynucleotides, reagents and methods for nucleic acid hybridization |
US11932899B2 (en) | 2018-06-07 | 2024-03-19 | 10X Genomics, Inc. | Methods and systems for characterizing nucleic acid molecules |
US11703427B2 (en) | 2018-06-25 | 2023-07-18 | 10X Genomics, Inc. | Methods and systems for cell and bead processing |
US20200032335A1 (en) | 2018-07-27 | 2020-01-30 | 10X Genomics, Inc. | Systems and methods for metabolome analysis |
US12065688B2 (en) | 2018-08-20 | 2024-08-20 | 10X Genomics, Inc. | Compositions and methods for cellular processing |
US10731012B2 (en) | 2018-11-06 | 2020-08-04 | President And Fellows Of Harvard College | Anti-clogging microfluidic multichannel device |
US11459607B1 (en) | 2018-12-10 | 2022-10-04 | 10X Genomics, Inc. | Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes |
US11845983B1 (en) | 2019-01-09 | 2023-12-19 | 10X Genomics, Inc. | Methods and systems for multiplexing of droplet based assays |
WO2020168013A1 (en) | 2019-02-12 | 2020-08-20 | 10X Genomics, Inc. | Methods for processing nucleic acid molecules |
US11851683B1 (en) | 2019-02-12 | 2023-12-26 | 10X Genomics, Inc. | Methods and systems for selective analysis of cellular samples |
US11467153B2 (en) | 2019-02-12 | 2022-10-11 | 10X Genomics, Inc. | Methods for processing nucleic acid molecules |
US11655499B1 (en) | 2019-02-25 | 2023-05-23 | 10X Genomics, Inc. | Detection of sequence elements in nucleic acid molecules |
JP2022522668A (en) | 2019-02-26 | 2022-04-20 | ツイスト バイオサイエンス コーポレーション | Mutant nucleic acid library for antibody optimization |
WO2020176678A1 (en) | 2019-02-26 | 2020-09-03 | Twist Bioscience Corporation | Variant nucleic acid libraries for glp1 receptor |
EP3938537A1 (en) | 2019-03-11 | 2022-01-19 | 10X Genomics, Inc. | Systems and methods for processing optically tagged beads |
CA3144644A1 (en) | 2019-06-21 | 2020-12-24 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
AU2020356471A1 (en) | 2019-09-23 | 2022-04-21 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
WO2021195302A1 (en) * | 2020-03-24 | 2021-09-30 | Bio-Rad Laboratories, Inc. | Method and system for thermally controlling a chemical reaction in droplets |
US11851700B1 (en) | 2020-05-13 | 2023-12-26 | 10X Genomics, Inc. | Methods, kits, and compositions for processing extracellular molecules |
US12084715B1 (en) | 2020-11-05 | 2024-09-10 | 10X Genomics, Inc. | Methods and systems for reducing artifactual antisense products |
CN114602368B (en) * | 2020-12-03 | 2022-12-09 | 上海远赞智造医药科技有限公司 | Droplet generating device and method |
AU2022227563A1 (en) | 2021-02-23 | 2023-08-24 | 10X Genomics, Inc. | Probe-based analysis of nucleic acids and proteins |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5176203A (en) | 1989-08-05 | 1993-01-05 | Societe De Conseils De Recherches Et D'applications Scientifiques | Apparatus for repeated automatic execution of a thermal cycle for treatment of samples |
WO1999002671A1 (en) | 1997-07-07 | 1999-01-21 | Medical Research Council | In vitro sorting method |
US5939312A (en) | 1995-05-24 | 1999-08-17 | Biometra Biomedizinische Analytik Gmbh | Miniaturized multi-chamber thermocycler |
US6045676A (en) | 1996-08-26 | 2000-04-04 | The Board Of Regents Of The University Of California | Electrochemical detector integrated on microfabricated capilliary electrophoresis chips |
US6132580A (en) | 1995-09-28 | 2000-10-17 | The Regents Of The University Of California | Miniature reaction chamber and devices incorporating same |
US6143152A (en) | 1997-11-07 | 2000-11-07 | The Regents Of The University Of California | Microfabricated capillary array electrophoresis device and method |
US6207031B1 (en) | 1997-09-15 | 2001-03-27 | Whitehead Institute For Biomedical Research | Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device |
US6210891B1 (en) | 1996-09-27 | 2001-04-03 | Pyrosequencing Ab | Method of sequencing DNA |
US6258568B1 (en) | 1996-12-23 | 2001-07-10 | Pyrosequencing Ab | Method of sequencing DNA based on the detection of the release of pyrophosphate and enzymatic nucleotide degradation |
US6261431B1 (en) | 1998-12-28 | 2001-07-17 | Affymetrix, Inc. | Process for microfabrication of an integrated PCR-CE device and products produced by the same |
US6274320B1 (en) | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
WO2002022869A2 (en) | 2000-09-13 | 2002-03-21 | Medical Research Council | Directed evolution method |
US6361671B1 (en) | 1999-01-11 | 2002-03-26 | The Regents Of The University Of California | Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels |
US20020068357A1 (en) | 1995-09-28 | 2002-06-06 | Mathies Richard A. | Miniaturized integrated nucleic acid processing and analysis device and method |
WO2004069849A2 (en) | 2003-01-29 | 2004-08-19 | 454 Corporation | Bead emulsion nucleic acid amplification |
WO2004083443A1 (en) | 2002-12-20 | 2004-09-30 | Caliper Life Sciences, Inc. | Single molecule amplification and detection of dna |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4801529A (en) * | 1985-06-18 | 1989-01-31 | Brandeis University | Methods for isolating mutant microoganisms using microcapsules coated with indicator material |
JPS6347665A (en) * | 1986-08-14 | 1988-02-29 | コントロン インスツルメンツ ホールディング エヌ.ブイ. | Method and device for operating pipet |
SE8801070D0 (en) * | 1988-03-23 | 1988-03-23 | Pharmacia Ab | METHOD FOR IMMOBILIZING A DNA SEQUENCE ON A SOLID SUPPORT |
US5225332A (en) * | 1988-04-22 | 1993-07-06 | Massachusetts Institute Of Technology | Process for manipulation of non-aqueous surrounded microdroplets |
DE68920319D1 (en) * | 1988-04-22 | 1995-02-09 | Massachusetts Inst Technology | METHOD FOR SHAPING AND USING MICRO TROPLES. |
US5270183A (en) * | 1991-02-08 | 1993-12-14 | Beckman Research Institute Of The City Of Hope | Device and method for the automated cycling of solutions between two or more temperatures |
US5587128A (en) * | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
US5637469A (en) * | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US6953676B1 (en) * | 1992-05-01 | 2005-10-11 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5726026A (en) * | 1992-05-01 | 1998-03-10 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5498392A (en) * | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
DE4223169C1 (en) * | 1992-07-10 | 1993-11-25 | Ferring Arzneimittel Gmbh | Process for the microencapsulation of water-soluble active substances |
IL108497A0 (en) * | 1993-02-01 | 1994-05-30 | Seq Ltd | Methods and apparatus for dna sequencing |
US5714320A (en) * | 1993-04-15 | 1998-02-03 | University Of Rochester | Rolling circle synthesis of oligonucleotides and amplification of select randomized circular oligonucleotides |
EP0636413B1 (en) * | 1993-07-28 | 2001-11-14 | PE Corporation (NY) | Nucleic acid amplification reaction apparatus and method |
EP0804249A2 (en) * | 1994-03-15 | 1997-11-05 | Brown University Research Foundation | Polymeric gene delivery system |
US6613560B1 (en) * | 1994-10-19 | 2003-09-02 | Agilent Technologies, Inc. | PCR microreactor for amplifying DNA using microquantities of sample fluid |
US6635226B1 (en) * | 1994-10-19 | 2003-10-21 | Agilent Technologies, Inc. | Microanalytical device and use thereof for conducting chemical processes |
DE69614768T2 (en) * | 1995-06-14 | 2002-06-20 | Tonen Corp., Tokio/Tokyo | Emulsion splitting by microorganisms |
US6524532B1 (en) * | 1995-06-20 | 2003-02-25 | The Regents Of The University Of California | Microfabricated sleeve devices for chemical reactions |
US5744099A (en) * | 1995-09-15 | 1998-04-28 | Cytek Development Inc. | Apparatus for transfer of biological fluids |
GB9608540D0 (en) * | 1996-04-25 | 1996-07-03 | Medical Res Council | Isolation of enzymes |
US6022688A (en) * | 1996-05-13 | 2000-02-08 | Sequenom, Inc. | Method for dissociating biotin complexes |
US5916524A (en) * | 1997-07-23 | 1999-06-29 | Bio-Dot, Inc. | Dispensing apparatus having improved dynamic range |
US6310354B1 (en) * | 1996-12-03 | 2001-10-30 | Erkki Soini | Method and a device for monitoring nucleic acid amplification reactions |
GB9716052D0 (en) * | 1996-12-06 | 1997-10-01 | Secr Defence | Reaction vessels |
US20020172965A1 (en) * | 1996-12-13 | 2002-11-21 | Arcaris, Inc. | Methods for measuring relative amounts of nucleic acids in a complex mixture and retrieval of specific sequences therefrom |
US6023540A (en) * | 1997-03-14 | 2000-02-08 | Trustees Of Tufts College | Fiber optic sensor with encoded microspheres |
US5891477A (en) * | 1997-03-28 | 1999-04-06 | Biohybrid Technologies, Inc. | Non-steroidal anti-inflammatory agents inhibition of fibrotic response to an implanted device |
US6174675B1 (en) * | 1997-11-25 | 2001-01-16 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US5860594A (en) * | 1997-12-19 | 1999-01-19 | Carrier Corporation | Method and apparatus for changing operational modes of a transport refrigeration system |
JP2981547B1 (en) * | 1998-07-02 | 1999-11-22 | 農林水産省食品総合研究所長 | Cross-flow type microchannel device and method for producing or separating emulsion using the device |
GB9900298D0 (en) * | 1999-01-07 | 1999-02-24 | Medical Res Council | Optical sorting method |
US6303343B1 (en) * | 1999-04-06 | 2001-10-16 | Caliper Technologies Corp. | Inefficient fast PCR |
GB9921155D0 (en) | 1999-09-08 | 1999-11-10 | Medical Res Council | Selection system |
EP1255860A2 (en) * | 1999-12-29 | 2002-11-13 | Mergen Ltd. | Methods for amplifying and detecting multiple polynucleotides on a solid phase support |
CN1189159C (en) * | 2000-05-05 | 2005-02-16 | 欧莱雅 | Micro-capsule contg. water soluble beauty-care activity component water nuclear, and composition contg. same |
US6887664B2 (en) * | 2000-06-06 | 2005-05-03 | Applera Corporation | Asynchronous primed PCR |
JP2001076059A (en) * | 2000-09-07 | 2001-03-23 | Mall Service:Kk | Settlement system |
US20020172980A1 (en) * | 2000-11-27 | 2002-11-21 | Phan Brigitte Chau | Methods for decreasing non-specific binding of beads in dual bead assays including related optical biodiscs and disc drive systems |
JP2002257070A (en) * | 2001-02-28 | 2002-09-11 | Toyota Industries Corp | Shaft sealing structure of vacuum pump |
US6936264B2 (en) * | 2001-03-05 | 2005-08-30 | The Procter & Gamble Company | Delivery of reactive agents via multiple emulsions for use in shelf stable products |
US6586233B2 (en) * | 2001-03-09 | 2003-07-01 | The Regents Of The University Of California | Convectively driven PCR thermal-cycling |
US20020168297A1 (en) * | 2001-05-11 | 2002-11-14 | Igor Shvets | Method and device for dispensing of droplets |
GB0114854D0 (en) | 2001-06-18 | 2001-08-08 | Medical Res Council | Selective gene amplification |
GB0114856D0 (en) | 2001-06-18 | 2001-08-08 | Medical Res Council | Selection by avidity capture |
US20030068357A1 (en) * | 2001-10-10 | 2003-04-10 | Vala Lisa A. | Food product for lowering cholesterol levels |
GB0127564D0 (en) | 2001-11-16 | 2002-01-09 | Medical Res Council | Emulsion compositions |
US7198897B2 (en) * | 2001-12-19 | 2007-04-03 | Brandeis University | Late-PCR |
EP2282214B1 (en) * | 2002-05-09 | 2022-10-05 | The University of Chicago | Device and method for pressure-driven plug transport and reaction |
DE10221763A1 (en) * | 2002-05-15 | 2003-12-04 | Eppendorf Ag | Thermal cycler with temperature control block controlled in cycles |
EP3616781A1 (en) * | 2003-04-10 | 2020-03-04 | President and Fellows of Harvard College | Formation and control of fluidic species |
EP2662136A3 (en) * | 2003-08-27 | 2013-12-25 | President and Fellows of Harvard College | Method for handling and mixing droplets |
EP1735458B1 (en) * | 2004-01-28 | 2013-07-24 | 454 Life Sciences Corporation | Nucleic acid amplification with continuous flow emulsion |
KR100552706B1 (en) | 2004-03-12 | 2006-02-20 | 삼성전자주식회사 | Method and apparatus for nucleic acid amplification |
-
2005
- 2005-01-28 EP EP05712801.9A patent/EP1735458B1/en not_active Not-in-force
- 2005-01-28 ES ES05712801T patent/ES2432040T3/en active Active
- 2005-01-28 CA CA2553833A patent/CA2553833C/en not_active Expired - Fee Related
- 2005-01-28 WO PCT/US2005/003488 patent/WO2005073410A2/en active Application Filing
- 2005-01-28 US US11/045,678 patent/US7927797B2/en not_active Expired - Fee Related
-
2011
- 2011-03-10 US US13/045,210 patent/US20110177587A1/en not_active Abandoned
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5176203A (en) | 1989-08-05 | 1993-01-05 | Societe De Conseils De Recherches Et D'applications Scientifiques | Apparatus for repeated automatic execution of a thermal cycle for treatment of samples |
US5939312A (en) | 1995-05-24 | 1999-08-17 | Biometra Biomedizinische Analytik Gmbh | Miniaturized multi-chamber thermocycler |
US20020068357A1 (en) | 1995-09-28 | 2002-06-06 | Mathies Richard A. | Miniaturized integrated nucleic acid processing and analysis device and method |
US6132580A (en) | 1995-09-28 | 2000-10-17 | The Regents Of The University Of California | Miniature reaction chamber and devices incorporating same |
US6284525B1 (en) | 1995-09-28 | 2001-09-04 | Affymetrix, Inc. | Miniature reaction chamber and devices incorporating same |
US6045676A (en) | 1996-08-26 | 2000-04-04 | The Board Of Regents Of The University Of California | Electrochemical detector integrated on microfabricated capilliary electrophoresis chips |
US6210891B1 (en) | 1996-09-27 | 2001-04-03 | Pyrosequencing Ab | Method of sequencing DNA |
US6258568B1 (en) | 1996-12-23 | 2001-07-10 | Pyrosequencing Ab | Method of sequencing DNA based on the detection of the release of pyrophosphate and enzymatic nucleotide degradation |
WO1999002671A1 (en) | 1997-07-07 | 1999-01-21 | Medical Research Council | In vitro sorting method |
US6489103B1 (en) | 1997-07-07 | 2002-12-03 | Medical Research Council | In vitro sorting method |
US6207031B1 (en) | 1997-09-15 | 2001-03-27 | Whitehead Institute For Biomedical Research | Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device |
US20010020588A1 (en) | 1997-09-15 | 2001-09-13 | Whitehead Institute For Biomedical Research | Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device |
US6143152A (en) | 1997-11-07 | 2000-11-07 | The Regents Of The University Of California | Microfabricated capillary array electrophoresis device and method |
US6261431B1 (en) | 1998-12-28 | 2001-07-17 | Affymetrix, Inc. | Process for microfabrication of an integrated PCR-CE device and products produced by the same |
US6361671B1 (en) | 1999-01-11 | 2002-03-26 | The Regents Of The University Of California | Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels |
US6274320B1 (en) | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
WO2002022869A2 (en) | 2000-09-13 | 2002-03-21 | Medical Research Council | Directed evolution method |
WO2004083443A1 (en) | 2002-12-20 | 2004-09-30 | Caliper Life Sciences, Inc. | Single molecule amplification and detection of dna |
WO2004069849A2 (en) | 2003-01-29 | 2004-08-19 | 454 Corporation | Bead emulsion nucleic acid amplification |
Non-Patent Citations (14)
Title |
---|
CHIOU ET AL., ANAL. CHEM., vol. 73, 2001, pages 2018 - 2021 |
CHIOU ET AL., ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, vol. 73, no. 9, 1 May 2001 (2001-05-01), pages 2018 - 2021 |
CHIOU ET AL.: "ANALYTICAL CHEMISTRY", vol. 73, 1 May 2001, AMERICAN CHEMICAL SOCIETY, pages: 2018 - 2021 |
CURCIO; ROERAADE, ANAL. CHEM., vol. 75, 2003, pages 1 - 7 |
DRESSMAN ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 100, no. 15, 22 July 2003 (2003-07-22), pages 8817 - 8822 |
GHADESSY ET AL., PROC. NATL. ACAD. SCI. USA, vol. 98, 2001, pages 4552 - 4557 |
GRIFFITHS; TAWFIK, EMBO, vol. 22, 2003, pages 24 - 35 |
KOPP ET AL., SCIENCE, vol. 280, 1998, pages 1046 - 1049 |
LAGALLY ET AL., ANAL. CHEM., vol. 73, 2001, pages 565 - 570 |
MERRIFIELD, BIOCHEMISTRY, vol. 3, 1964, pages 1385 - 1390 |
NAKANO ET AL., BIOSCI. BIOTECH. BIOCHEM., vol. 58, 1994, pages 349 - 352 |
PARK ET AL., ANAL. CHEM., vol. 75, 2003, pages 6029 - 6033 |
SCHNEEGAS ET AL., LAB ON A CHIP, vol. 1, 2001, pages 42 - 49 |
SCHNEEGASS ET AL., LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, vol. 1, no. 1, September 2001 (2001-09-01) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2341151A1 (en) | 2005-04-12 | 2011-07-06 | 454 Life Sciences Corporation | Methods for determining sequence variants using ultra-deep sequencing |
WO2007145612A1 (en) | 2005-06-06 | 2007-12-21 | 454 Life Sciences Corporation | Paired end sequencing |
EP2660482B1 (en) * | 2005-08-22 | 2019-08-07 | Life Technologies Corporation | Vorrichtung, System und Verfahren unter Verwendung von nichtmischbaren Flüssigkeiten mit unterschiedlichen Volumen |
US11319585B2 (en) | 2005-08-22 | 2022-05-03 | Applied Biosystems, Llc | Device and method for making discrete volumes of a first fluid in contact with a second fluid, which are immiscible with each other |
US10041113B2 (en) | 2005-08-22 | 2018-08-07 | Applied Biosystems, Llc | Apparatus, system, and method using immiscible-fluid-discrete-volumes |
US11162137B2 (en) | 2005-08-22 | 2021-11-02 | Applied Biosystems Llc | Apparatus, system, and method using immiscible-fluid-discrete-volumes |
EP2368868A1 (en) | 2005-10-28 | 2011-09-28 | Praecis Pharmaceuticals Inc. | Methods for identifying compounds of interest using encoded libraries |
WO2007053358A2 (en) | 2005-10-28 | 2007-05-10 | Praecis Pharmaceuticals, Inc. | Methods for identifying compounds of interest using encoded libraries |
EP2029781A2 (en) * | 2006-05-26 | 2009-03-04 | Althea Technologies, Inc. | Biochemical analysis of partitioned cells |
EP2029781A4 (en) * | 2006-05-26 | 2010-06-30 | Althea Technologies Inc | Biochemical analysis of partitioned cells |
EP2636755A1 (en) * | 2006-05-26 | 2013-09-11 | AltheaDx Incorporated | Biochemical analysis of partitioned cells |
JP2008245612A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Ltd | Method and device for preparing sample |
US7883265B2 (en) | 2007-06-01 | 2011-02-08 | Applied Biosystems, Llc | Devices, systems, and methods for preparing emulsions |
US9404155B2 (en) | 2007-08-29 | 2016-08-02 | Applied Biosystems, Llc | Alternative nucleic acid sequencing methods |
EP2657869A2 (en) | 2007-08-29 | 2013-10-30 | Applied Biosystems, LLC | Alternative nucleic acid sequencing methods |
US12090480B2 (en) | 2008-09-23 | 2024-09-17 | Bio-Rad Laboratories, Inc. | Partition-based method of analysis |
US10279350B2 (en) | 2008-09-23 | 2019-05-07 | Bio-Rad Laboratories, Inc. | Method of generating droplets |
US11130128B2 (en) | 2008-09-23 | 2021-09-28 | Bio-Rad Laboratories, Inc. | Detection method for a target nucleic acid |
US11130134B2 (en) | 2008-09-23 | 2021-09-28 | Bio-Rad Laboratories, Inc. | Method of performing droplet-based assays |
US10258989B2 (en) | 2008-09-23 | 2019-04-16 | Bio-Rad Laboratories, Inc. | Method of making a device for generating droplets |
US10258988B2 (en) | 2008-09-23 | 2019-04-16 | Bio-Rad Laboratories, Inc. | Device for generating droplets |
US9764322B2 (en) | 2008-09-23 | 2017-09-19 | Bio-Rad Laboratories, Inc. | System for generating droplets with pressure monitoring |
US10512910B2 (en) | 2008-09-23 | 2019-12-24 | Bio-Rad Laboratories, Inc. | Droplet-based analysis method |
US11612892B2 (en) | 2008-09-23 | 2023-03-28 | Bio-Rad Laboratories, Inc. | Method of performing droplet-based assays |
US9649635B2 (en) | 2008-09-23 | 2017-05-16 | Bio-Rad Laboratories, Inc. | System for generating droplets with push-back to remove oil |
US11633739B2 (en) | 2008-09-23 | 2023-04-25 | Bio-Rad Laboratories, Inc. | Droplet-based assay system |
US9492797B2 (en) | 2008-09-23 | 2016-11-15 | Bio-Rad Laboratories, Inc. | System for detection of spaced droplets |
US9623384B2 (en) | 2008-09-23 | 2017-04-18 | Bio-Rad Laboratories, Inc. | System for transporting emulsions from an array to a detector |
US9636682B2 (en) | 2008-09-23 | 2017-05-02 | Bio-Rad Laboratories, Inc. | System for generating droplets—instruments and cassette |
WO2010108638A1 (en) | 2009-03-23 | 2010-09-30 | Erasmus University Medical Center Rotterdam | Tumour gene profile |
WO2010118865A1 (en) * | 2009-04-15 | 2010-10-21 | Roche Diagnostics Gmbh | System and method for detection of hla variants |
DE102009024048B3 (en) * | 2009-05-08 | 2010-08-19 | Institut für Bioprozess- und Analysenmesstechnik e.V. | Mountable and demountable microfluidic system used for producing, cultivating, manipulating, analyzing and preserving single-phase and multiphase fluids, comprises stack of plates |
US10677693B2 (en) | 2009-09-02 | 2020-06-09 | Bio-Rad Laboratories, Inc. | System for mixing fluids by coalescence of multiple emulsions |
US10166522B2 (en) | 2009-09-02 | 2019-01-01 | Bio-Rad Laboratories, Inc. | System for mixing fluids by coalescence of multiple emulsions |
US10378048B2 (en) | 2010-03-02 | 2019-08-13 | Bio-Rad Laboratories, Inc. | Emulsion chemistry for encapsulated droplets |
US11060136B2 (en) | 2010-03-02 | 2021-07-13 | Bio-Rad Laboratories, Inc. | Emulsion chemistry for encapsulated droplets |
US11866771B2 (en) | 2010-03-02 | 2024-01-09 | Bio-Rad Laboratories, Inc. | Emulsion chemistry for encapsulated droplets |
US10744506B2 (en) | 2010-03-25 | 2020-08-18 | Bio-Rad Laboratories, Inc. | Device for generating droplets |
US10272432B2 (en) | 2010-03-25 | 2019-04-30 | Bio-Rad Laboratories, Inc. | Device for generating droplets |
US12103005B2 (en) | 2010-03-25 | 2024-10-01 | Bio-Rad Laboratories, Inc. | Method of emulsion formation and modification |
US10099219B2 (en) | 2010-03-25 | 2018-10-16 | Bio-Rad Laboratories, Inc. | Device for generating droplets |
EP3540059A1 (en) | 2010-04-16 | 2019-09-18 | Nuevolution A/S | Bi-functional complexes and methods for making and using such complexes |
WO2011127933A1 (en) | 2010-04-16 | 2011-10-20 | Nuevolution A/S | Bi-functional complexes and methods for making and using such complexes |
US8530158B2 (en) | 2010-05-10 | 2013-09-10 | Life Technologies Corporation | System and method for processing a biological sample |
US9650629B2 (en) | 2010-07-07 | 2017-05-16 | Roche Molecular Systems, Inc. | Clonal pre-amplification in emulsion |
US9089844B2 (en) | 2010-11-01 | 2015-07-28 | Bio-Rad Laboratories, Inc. | System for forming emulsions |
US12097495B2 (en) | 2011-02-18 | 2024-09-24 | Bio-Rad Laboratories, Inc. | Methods and compositions for detecting genetic material |
US9121047B2 (en) | 2011-04-07 | 2015-09-01 | Life Technologies Corporation | System and methods for making and processing emulsions |
US9017993B2 (en) | 2011-04-07 | 2015-04-28 | Life Technologies Corporation | System and methods for making and processing emulsions |
US9776146B2 (en) | 2011-04-07 | 2017-10-03 | Life Technologies Corporation | System and methods for making and processing emulsions |
US9901887B2 (en) | 2011-04-07 | 2018-02-27 | Life Technologies Corporation | Systems and methods for making and processing emulsions |
US9458485B2 (en) | 2011-04-07 | 2016-10-04 | Life Technologies Corporation | System and methods for making and processing emulsions |
WO2012139125A2 (en) | 2011-04-07 | 2012-10-11 | Life Technologies Corporation | System and methods for making and processing emulsions |
US9885034B2 (en) | 2011-04-25 | 2018-02-06 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
US10190115B2 (en) | 2011-04-25 | 2019-01-29 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
US10760073B2 (en) | 2011-04-25 | 2020-09-01 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
US11939573B2 (en) | 2011-04-25 | 2024-03-26 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
WO2013079215A1 (en) | 2011-12-01 | 2013-06-06 | Erasmus University Medical Center Rotterdam | Method for classifying tumour cells |
US11118218B2 (en) | 2012-09-12 | 2021-09-14 | Cypho, Inc. | Common port emulsion generation system |
US9803226B2 (en) | 2012-10-26 | 2017-10-31 | Sysmex Corporation | Emulsion systems and emulsion-based amplification of nucleic acid |
WO2014068407A3 (en) * | 2012-10-26 | 2014-06-26 | Sysmex Corporation | Emulsion systems and emulsion-based amplification of nucleic acid |
WO2014089579A1 (en) * | 2012-12-07 | 2014-06-12 | Cypho, Inc. | Common port emulsion generation system |
US9808806B2 (en) | 2013-08-26 | 2017-11-07 | 454 Life Sciences Corporation | System and method for automated nucleic acid amplification |
EP2848698A1 (en) * | 2013-08-26 | 2015-03-18 | F. Hoffmann-La Roche AG | System and method for automated nucleic acid amplification |
WO2015141649A1 (en) * | 2014-03-20 | 2015-09-24 | ユニバーサル・バイオ・リサーチ株式会社 | Device for automating nucleic acid amplification, and device for automating nucleic acid amplification analysis |
EP3611274A1 (en) | 2015-11-20 | 2020-02-19 | QIAGEN GmbH | Method for processing a water-in-oil emulsion |
EP3170903A1 (en) | 2015-11-20 | 2017-05-24 | Qiagen GmbH | Method for processing a water-in-oil emulsion |
WO2018033490A1 (en) * | 2016-08-17 | 2018-02-22 | B. Braun Melsungen Ag | Method for controlling a syringe pump |
WO2020141144A1 (en) | 2018-12-31 | 2020-07-09 | Qiagen Gmbh | Enrichment method for sequencing |
WO2020193368A1 (en) | 2019-03-22 | 2020-10-01 | Qiagen Gmbh | Method for improving the amplification efficiency of bead-based emulsion pcr (empcr) |
US12023637B2 (en) | 2020-03-23 | 2024-07-02 | Mark A. Gray | Capillary tube droplet generation systems and methods |
CN114689488A (en) * | 2022-04-21 | 2022-07-01 | 伊尔瑞生物科技(江苏)有限公司 | Lymphocyte counting and detecting micro-fluidic device for cell analysis and method thereof |
Also Published As
Publication number | Publication date |
---|---|
CA2553833A1 (en) | 2005-08-11 |
ES2432040T3 (en) | 2013-11-29 |
US20110177587A1 (en) | 2011-07-21 |
US7927797B2 (en) | 2011-04-19 |
WO2005073410A3 (en) | 2006-04-20 |
US20050227264A1 (en) | 2005-10-13 |
CA2553833C (en) | 2012-10-02 |
EP1735458B1 (en) | 2013-07-24 |
EP1735458A2 (en) | 2006-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2553833C (en) | Nucleic acid amplification with continuous flow emulsion | |
US11674170B2 (en) | Droplet generating method | |
JP4571650B2 (en) | Continuous flow high performance reactor | |
JP3558294B2 (en) | Polynucleotide amplification analysis using microfabrication equipment | |
US9719134B2 (en) | Microdroplet-manipulation systems and methods for automated execution of molecular biological protocols | |
JP3759970B2 (en) | Apparatus for performing nucleic acid amplification reaction, apparatus for performing chemical chain reaction, apparatus for simultaneously performing nucleic acid amplification reaction including denaturation, annealing and extension process, and method for performing nucleic acid amplification reaction | |
US7915013B2 (en) | Method and apparatus for amplifying nucleic acids | |
JP3623479B2 (en) | Apparatus and method for performing miniaturized in vitro amplification assays | |
JP2008012490A (en) | Method and apparatus for performing microchemical reaction | |
WO2004073863A2 (en) | Chemical reactions apparatus | |
US20140206562A1 (en) | Fabrication and use of a microfluidics multitemperature flexible reaction device | |
CA2472649A1 (en) | Pcr and hybridization methods utilizing electrostatic transportation and devices therefor | |
JP2008500836A (en) | Microfabricated integrated DNA analysis system | |
CA2301309A1 (en) | Microstructures for the manipulation of fluid samples | |
US20200009571A1 (en) | Droplet generating apparatus, system | |
US20220168745A1 (en) | Methods and systems for nucleic acid analysis | |
US20230008992A1 (en) | Devices for generating pre-templated instant partitions | |
EP2353716A1 (en) | Method and apparatus for amplifying nucleic acid sequences | |
Sayers et al. | A Novel Contamination Free Two Temperature Continuous Flow Polymerase Chain Reactor | |
Muddu et al. | Rapid PCR Thermocycling using Microscale Thermal Convection. JoVE. 49 | |
Ozdemir et al. | DNA Analysis in Droplet‐Based Microfluidic Devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2553833 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005712801 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005712801 Country of ref document: EP |