WO2005073370A1 - Enzyme composite - Google Patents

Enzyme composite Download PDF

Info

Publication number
WO2005073370A1
WO2005073370A1 PCT/JP2005/000446 JP2005000446W WO2005073370A1 WO 2005073370 A1 WO2005073370 A1 WO 2005073370A1 JP 2005000446 W JP2005000446 W JP 2005000446W WO 2005073370 A1 WO2005073370 A1 WO 2005073370A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
group
enzyme
chain
polymer
Prior art date
Application number
PCT/JP2005/000446
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Nagasaki
Akiko Watanabe
Michihiro Iijima
Kazunori Kataoka
Kenji Yoshinaga
Original Assignee
Transparent Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transparent Inc. filed Critical Transparent Inc.
Priority to JP2005517409A priority Critical patent/JPWO2005073370A1/en
Publication of WO2005073370A1 publication Critical patent/WO2005073370A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates

Definitions

  • the present invention relates to a complex of an enzyme and a water-soluble high molecule, which may optionally contain microparticles.
  • Enzymes that cause extremely selective chemical reactions under mild conditions have been widely used industrially as catalysts for selective synthesis reactions and the like.
  • the enzyme which is a protein
  • immobilized enzymes Some enzymes have been industrialized (for example, “immobilized enzymes”). , Ichiro Chibatake, Kodansha).
  • the enzyme when the enzyme is immobilized on a water-insoluble carrier or substrate, it is generally unavoidable that the enzyme activity is significantly reduced, and it may be possible to impart a certain degree of heat resistance to the enzyme. It does not achieve excellent heat resistance.
  • an enzyme such as endoglucanase
  • the immobilized enzyme retains its activity and is free in aqueous solution. It has been reported to show improved thermostability compared to enzymes (S. Phadtare et al, Biotechnol. Prog. 2004, Vol. 20, 1840-1846). It has been suggested that these enzymes immobilized on the gold surface exist in the enzyme reaction system in almost a free state in almost half.
  • the enzyme's Km value can be increased by chemically covalently binding the enzyme to poly (ethylene oxide) or poly (ethylene oxide) -block-poly (propylene oxide) (IN Topohieva, Polyethyrene glycol, 1997, 193-206).
  • non-covalent binding of an enzyme to a polyamine or colloidal gold particle or a carrier carrying colloidal gold can stabilize the enzyme while maintaining a certain level of enzyme activity. Achieved.
  • further stabilization especially for obtaining enzyme conjugates or conjugates with improved thermostability while retaining the original enzyme activity. Improvement of thermal stability is important from the viewpoint that the reaction rate can be increased when performing industrial enzymatic conversion of a substrate compound.
  • the present inventors have conducted intensive studies, and found that a certain type of water-soluble polymer, specifically, in some cases in the presence of microparticles, a charged group or hydrophobic group is added to the end of one hydrophilic polymer chain.
  • a polymer having one or many groups It has been found that an enzyme complex or conjugate which can meet the above-mentioned needs can be obtained by non-covalently treating an enzyme with the enzyme.
  • the present invention provides an enzyme complex in which a polymer having one or many chargeable groups or hydrophobic groups at the ends of a hydrophilic polymer chain and an enzyme are non-covalently bound.
  • a polymer and an enzyme having one or many charged groups or hydrophobic groups at the ends of a hydrophilic polymer chain are non-covalently bound to the surface of water-insoluble microparticles. Provide an enzyme complex.
  • polyamines having a large molecular weight such as spermidine and agmethine are known.
  • the degree of the activity decrease is larger than that of the enzyme treated with low-molecular bis- or diamine
  • a polyamine having a poly (ethylene dalicol) chain having a considerably large molecular weight was used. Even in such a case, the enzyme activity of the obtained enzyme complex is substantially the same as that of the original enzyme, and particularly, the heat stability is significantly increased.
  • the enzyme complex according to the present invention is formed non-covalently from an enzyme and a certain polymer in the presence of microparticles in some cases, and at least depending on the treatment such as stirring or centrifugation in an aqueous medium.
  • a structure in which components are retained without separation including what is commonly referred to as a complex, conjugate, or bioconjugate. Any enzyme constituting the complex may be used as long as it meets the purpose of the present invention. Enzymes may be used, but preferred ones that are currently used industrially are preferred.
  • enzymes include, but are not limited to, proteases such as pepsin, trypsin, chymotribsine, collagenase, keratinase, elastase, subtilisin, papain, aminopeptidase, carboxypeptidase, etc. , Gastric lipase, puncture lipase, plant lipase, phospholipase, etc. Can be mentioned.
  • Polymers that can be used in the present invention that bind non-covalently to such enzymes or microparticles include aqueous media (pH buffered aqueous solutions under physiological or non-physiological conditions, water-miscible An organic solvent, for example, an aqueous solution containing a mixture of methanol, ethanol, acetone, dimethinolehonoremamide, dimethyl sulfoxide, and acetonitrile, etc.). It is a polymer having one or many charged groups or hydrophobic groups at its terminals.
  • the hydrophilic polymer chains are composed of poly (ethylene glycol), poly (2-hydroxyhexyl methacrylate), poly (2-hydroxyacrylic acid), poly (vinyl alcohol), Poly (acrylamide), poly (methacrylamide), poly (N, N-dimethylaminoacrylamide), poly (N, N-dimethylmethacrylamide), poly (vinylpyrrolidone), Selected from the group consisting of agarose and dextran, and wherein the chargeable group is derived from a low-molecular-weight amine compound containing one or two primary, secondary or tertiary amines in the molecule, or primary or secondary.
  • polymer chain containing one or two tertiary amines in the side chain or main chain of the repeating unit or has a hydrophobic group of poly (lactic acid), poly (glycolic acid), or poly (petitic acid).
  • ) Is a polymer derived from polyester.
  • Particularly preferred polymers are those in which the hydrophilic polymer chains are derived from poly (ethylene glycol) or poly (ethylene oxide). Specific examples include a polymer represented by the following formula (I).
  • R 3 -L! - in X (I) above formula R a is hydrogen, a methyl group, aldehyde group, amino group, carboxyl group, maleimidyl de group, p - - (CH 2 CH 2 O) n - L 2 toluenesulfonyl Group or vinylsulfonyl group,
  • L 2 independently represent a valence bond or a linker; n is an integer from 2 to 20;
  • X is, N- or N, N- mono- or di-one C i-C 3 alkyl substituted amino C i-C! 2 alkyl, to repeat units of 2 to 2 0 0 0 0 oligo or poly (N- or N, N-mono- or di one C -! C 3 alkyl-substituted aminoethyl meth Ata Li rate) chain, the main chain
  • the main chain For example, it is a group derived from a polyamine having a secondary or tertiary amine group, a group selected from the group consisting of a polyethyleneimine chain, a sperdimine chain and a cadaverine chain, or an oligo or polymer chain segment.
  • polymers include those represented by the following formula.
  • R is a C 1 -C 3 alkyl group.
  • m, n and x are each independently an integer of 2 to 20, 000, R 1 is hydrogen or a methyl group, R 2 is a C_C 3 alkyl group R 3 is hydrogen or a C—C 5 alkyl group.
  • C i - the term C i 2 alkyl means 1 to 1 2 straight-chain or branched alkyl carbon atoms.
  • polymers included in the above-mentioned polymers include polyethylene glycol (PEG) -block-poly (2-N, N-dimethylaminoethyl methacrylate) (hereinafter, PEG- PMAMA), PEG-block-poly (2-N, N-methylethylamino methacrylate) (hereinafter abbreviated as PEG-PEAMA), PEG-block-poly (isopropylacrylamide) ) (hereinafter, PEG-abbreviated as PNIPAM), PEG-polyacrylamide Riruami de, PMAMA-PNIPAM, PEAMA-PNIPAM , PVA-PMAMA, PVA - PEAMA Hitoshiryoku S 0 encompassed
  • the molecular weight of these polymers is not theoretically limited, but is preferably from 500 to 1,000,000, more preferably from 2,000 to 500,000, and from the viewpoint of ease of synthesis, from 300,000 to 100,000. Force is particularly preferred.
  • These polymers are It is known per se or can be easily obtained by a method according to a known one. For example, PEG-PMAMA, PEG-PEAMA, etc. are described in Y. Nagasaki et al., Macromol. Chem. Rapid Commun. 1997, 18, 927, when introducing various functional groups into the ⁇ -terminal of polyethylene glycol chain.
  • microparticles which can be used as a component of the enzyme complex of the present invention are characterized in that the polymer and the enzyme as described above are non-covalently bonded (except for covalent bonds such as electrostatic bond, hydrophobic bond, hydrogen bond, etc.). (Including any bonding mode), and can be used irrespective of the material, origin, etc. as long as the object of the present invention is met.
  • micro means that the size is sub or several nm to several mm, preferably, 111 to 100, and more preferably, 5 nm to 100 nm. Intended for something.
  • an enzyme bound or immobilized on colloidal gold has a certain degree of dispersion stability in an aqueous medium, but according to the present invention, particles having a size exceeding the colloidal shape are also used as enzymes.
  • particles having a size exceeding the colloidal shape are also used as enzymes.
  • due to the binding of the polymer extremely good dispersion stability in an aqueous medium can be exhibited.
  • microparticles include, but are not limited to, colloidal gold, colloidal silver, colloidal aluminum oxide, colloidal silica, colloidal titanium oxide, and fine magnetic particles.
  • examples include steel particles and colloidal semiconductors. All such particles are commercially available. It can be used as is or after purification.
  • semiconductor microparticles include, for example, chlorides (eg, chlorides) of elements of group IIB or IIIB of the periodic table and salts of metal salts of the same group VIB (eg, sodium sulfide). May be reacted in an aqueous medium.
  • Representative examples of the semiconductor fine particles that can be adjusted in this way include 0.30 micro particles (13.6 fine particles).
  • These enzyme complexes can be prepared by simply mixing and stirring the enzyme and the polymer in the above-mentioned aqueous medium at room temperature, if necessary, for example, under cooling (a few ° C). Since it can be easily prepared in this way, it is one of the advantages of the present invention that the mixed solution can be concentrated or diluted as needed and supplied to a target enzyme reaction system.
  • the mixing ratio varies depending on the type of the enzyme and the polymer to be used, particularly the type of the polymer. Therefore, it is usually better to determine the mixing ratio by performing a small experiment.
  • 0001: 1000 to 100: 1 can be used, and 1: 1000 to 10: 1 is more preferable.
  • the tertiary amine group is at least 1, preferably 5 or more, and more specifically, 1 mole per enzyme. ,:! -500 (for example, lysozyme), or 30-3000 (for example, lipase).
  • microparticles coexist in these systems, first, the enzyme and the particles are mixed in an aqueous medium to adsorb the enzyme to the particle surface, and thereafter, a charged group or hydrophobic group is added to the end of one hydrophilic polymer chain. Add a polymer with one or many functional groups and add, if necessary, at room temperature, for example, cooling (by number) By mixing and stirring below, the surface of the microparticles bound by the enzyme can be further coated with the polymer.
  • a method in which a mercapto group is introduced into the enzyme by a general method, if necessary, and binding to a metal surface, for example, can be selected.
  • the ratio of particles to enzyme is also usually determined by conducting small experiments, but the ratio of enzyme to microparticles (by weight) can be used at a ratio of 0.0001: 10000 to 10000: 0.0001, and 1: 10000 to 10000: 1 is more preferable
  • the ratio be about 1: 1000 to 1000: 1. More specifically, the ratio of enzyme (molecule) to colloidal gold (number) is 0.01: 1 to 100: 1 and, particularly, 20: 1 to: 100: 1. be able to.
  • the thus obtained enzyme complex comprising the enzyme and the specific polymer, or the enzyme complex in which the enzyme and the specific polymer are bound to the surface is, as specifically described in the following Examples, for example, Strong thermal stability, maintaining the enzyme activity at least 50% even after repeating the cycle of raising the temperature to 70 ° C, holding for 10 minutes, cooling, and raising the temperature again several times. Is shown. Brief Description of Drawings
  • Figure 1 is a graph showing the transition of enzyme activity after PEG-PMAMA block copolymer and lysozyme were mixed at various mixing ratios and the temperature was repeatedly increased. Symbols in the figure: Squares indicate systems containing no polymer (control), circles indicate systems containing polymers equal in weight to enzyme, and triangles indicate systems containing polymer twice as much as enzyme. , And the inverted triangle indicates the results for a system containing 10 times the weight of the polymer relative to the enzyme.
  • Figure 2 shows various mixing ratios of PEG-PEAMA block copolymer and lysozyme.
  • 5 is a graph showing the transition of the enzyme activity after mixing and heating. Symbols in the figure: Squares indicate systems containing no polymer (control), diamonds indicate systems containing 1 / 10th the weight of the polymer relative to the enzyme, and white circles indicate an equal weight relative to the enzyme. The solid circles show the results for the system containing twice the weight of the polymer with respect to the enzyme, and the triangles show the results for the system containing 10 times the weight of the polymer with respect to the enzyme.
  • FIG. 3 is a graph showing changes in enzyme activity after PNIPAM and lysozyme were mixed at various mixing ratios and the temperature was repeatedly increased. Symbols in the figure: Squares indicate systems containing no polymer (control), diamonds indicate systems containing 1 / 10th the weight of the polymer relative to the enzyme, and white circles indicate the same for the enzyme. The system containing the polymer by weight, the closed circles show the results of the system containing 2 times the weight of the polymer relative to the enzyme, and the triangles show the results of the system containing the polymer 10 times the weight of the enzyme.
  • Squares indicate systems containing no polymer (control)
  • diamonds indicate systems containing 1 / 10th the weight of the polymer relative to the enzyme
  • white circles indicate the same for the enzyme.
  • FIG. 4 is a graph showing the transition of the enzyme activity after mixing the PEG-PNIPAM graft copolymer and lysozyme at various mixing ratios and repeatedly raising the temperature.
  • Squares indicate systems without polymer (control)
  • solid diamonds indicate systems containing 1 / 10th the weight of polymer to enzyme
  • open circles indicate system for enzyme.
  • a system containing an equal weight of polymer a black circle represents a system containing a polymer twice as much as the enzyme
  • a white diamond represents a system containing a polymer three times the weight of the enzyme
  • a black reverse The triangles show the results for the system containing 5 times the weight of the polymer with respect to the enzyme
  • the open triangles show the results for the system containing 10 times the weight of the polymer with respect to the enzyme.
  • Figure 5 is a graph showing the change in enzyme activity after repeated heating of a system containing colloidal gold, PEG-PMAMA block copolymer and lysozyme.
  • the polymer (PEG-PMAMA)
  • Figure 1 shows the relationship between the enzyme activity obtained from the results of the absorbance measurement and the number of times of temperature rise.
  • Example 2 The procedure described in Example 1 was repeated, except that PEG-PEAMA (PEG segment molecular weight 5, OOOi PEAMA segment molecular weight 5,000, synthesized with reference to the above-mentioned paper) was used instead of PEG-PAMA.
  • Figure 2 shows the relationship between the enzyme activity obtained from the absorbance measurement results and the number of heating. When PEG-PEAMA was mixed twice or more, the activity did not decrease at all even when the temperature was raised to 70 ° C, indicating that high enzyme activity was maintained.
  • Example 4 The procedure described in Example 1 was repeated except that PNIPAM (molecular weight: 20,000, synthesized by radical polymerization) was used instead of PEG-PAMA.
  • Figure 3 shows the relationship between the enzyme activity determined from the results of the absorbance measurement and the number of times of temperature rise. When PNIPAM was mixed in an equivalent amount or a double amount, the effect of improving heat resistance was shown.
  • PNIPAM molecular weight: 20,000, synthesized by radical polymerization
  • Example 2 The procedure described in Example 1 was repeated except that PNIPAM-PEG graft polymer (molecular weight 60,000, PEG chain 2,000, synthesized by radical polymerization) was used instead of PEG-PAMA.
  • Fig. 4 shows the relationship between the enzyme activity obtained from the results of the absorbance measurement and the number of heating cycles. When PNIPAM-PEG was mixed in an equivalent amount or more, the effect of improving heat resistance was shown.
  • colloidal gold gold colloid
  • PEG-PMAMA polymethacrylic acid (2-N, N-dimethylaminoethyl)
  • Mn 4, 00
  • O mg (0.1 l mo 1) was placed in a volumetric flask and adjusted to 100 mL with a phosphate buffer (pH 7.0, 50 mM). Each lmL was collected, 5mL of gold colloid solution (BBI, 10nm) was added, and the mixture was allowed to stand at 4 ° C for 10 minutes. Next, 28.6 mg (4 symbol) of the polymer was dissolved in each, and a solution was added.
  • the enzyme complex that can be provided according to the present invention exhibits remarkably high thermal stability, and thus can be used in the manufacturing industry of industrially applicable enzyme catalysts and in the processing of various compounds and materials using the enzyme catalysts.

Abstract

A composite of an enzyme with a specific polymer. It optionally has fine particles coexistent therewith. The polymer especially suitably is poly(ethylene glycol)-block-poly(aminoethylmethacrylic acid), which can significantly heighten the thermal stability of the enzyme.

Description

明 細 書  Specification
酵素複合体 技術分野  Enzyme complex technology
本発明は、 場合により微小粒子が共存してもよい、 酵素と、 水溶性高 分子との複合体に関する。  The present invention relates to a complex of an enzyme and a water-soluble high molecule, which may optionally contain microparticles.
背景技術 Background art
穏和な条件下で極めて選択的な化学反応を進行させる酵素は従来から 選択的合成反応等の触媒として工業的に広範に利用されてきた。 ところ で、 タンパク質である酵素は、 ある範囲を超える温度や pH等によって容 易に失活することや、 反応後、 生成物との分離が極めて困難であった。 そこで、酵素を水不溶性の担体に固定して再利用しうるように修飾する、 固定化酵素の概念が見いだされ、 一部の酵素については工業化されてい るものもある (たとえば 「固定化酵素」、 千畑一郎、 講談社)。  Enzymes that cause extremely selective chemical reactions under mild conditions have been widely used industrially as catalysts for selective synthesis reactions and the like. However, the enzyme, which is a protein, was easily deactivated by a temperature, pH, or the like exceeding a certain range, and it was extremely difficult to separate it from the product after the reaction. Thus, the concept of immobilized enzymes was discovered, in which enzymes are immobilized on a water-insoluble carrier and modified so that they can be reused. Some enzymes have been industrialized (for example, “immobilized enzymes”). , Ichiro Chibatake, Kodansha).
しかし、 酵素を水不溶性担体または基材に固定した場合、 一般的に、 酵素活性が著しく低下してしまうことが避けられず、 またある程度の耐 熱性を酵素に付与できる場合があるものの、 必ずしも満足のいく耐熱性 が達成されるものでもない。  However, when the enzyme is immobilized on a water-insoluble carrier or substrate, it is generally unavoidable that the enzyme activity is significantly reduced, and it may be possible to impart a certain degree of heat resistance to the enzyme. It does not achieve excellent heat resistance.
近年、 担体と して、 コロイ ド状金 (co lo i dal goul d) 粒子を用い酵素 を元の状態をなるベく維持したままで安定化できることを示唆する酵素 コロイ ド状金のバイオコンジユゲー 卜が提案されている(A. Go l e et a l , Langmu ir 2001 , Vo l . 17, 1674- 1679)。 また、 ァミンで機能化したゼオラ ィ ト上に金ナノ粒子が集成された担体にペプシンを固定化したバイオコ ンジュゲートは、 優れた酵素活性を示すとともに、 高い P Hおよび温度 で良好な安定性を示すことも報告されている (K. Mukhopadhyay et al, Langmuir 2003, Vol.19, 3858-3863)。 さ らに、 ポリ ウレタンマイク ロス フェア——金ナノ粒子のコア一シェル構造体に酵素、 例えば、 エンドグ ルカナーゼを固定化すると、 固定化された酵素はその活性を保持すると ともに、 水溶液において、 遊離の酵素に比べて向上した熱安定性を示す こ と が報告 さ れて い る ( S. Phadtare et al, Biotechnol. Prog. 2004, Vol.20, 1840-1846)。 金表面に固定化されたこれらの酵素はほぼ半 分は遊離の状態で酵素反応系に存在することが示唆されている。 In recent years, colloidal gold (colloidal gould) particles have been used as carriers, suggesting that the enzyme can be stabilized while maintaining its original state. Gates have been proposed (A. Gole et al, Langmuir 2001, Vol. 17, 1674-1679). In addition, a bio-copper in which pepsin is immobilized on a carrier in which gold nanoparticles are assembled on zeolite functionalized with amine Njugeto, together exhibit excellent enzyme activity has also been reported to exhibit good stability at high P H and temperature (K. Mukhopadhyay et al, Langmuir 2003 , Vol.19, 3858-3863). Furthermore, when an enzyme, such as endoglucanase, is immobilized on a polyurethane-microsphere core-shell structure of gold nanoparticles, the immobilized enzyme retains its activity and is free in aqueous solution. It has been reported to show improved thermostability compared to enzymes (S. Phadtare et al, Biotechnol. Prog. 2004, Vol. 20, 1840-1846). It has been suggested that these enzymes immobilized on the gold surface exist in the enzyme reaction system in almost a free state in almost half.
水不溶性担体を用いることなく、 水溶性高分子を酵素にバインディン グさせての酵素の安定化等を目的に開発された酵素複合体 (complex) ま たはコンジユゲー ト(conjugate)も提案されている。代表的なものと して、 例えば,以下のものを挙げることができる。 ctーァミラーゼをポリアミン、 スペルミジン (spermidine) または カダベリ ン(cadaver ine)で処理する ことにより酵素活性を向上させると同時に安定性を高める得ることが報 告されている (R. D. Due et al, J. Molecular Catalysis, 1980, Vol.7, 443-456)。 リパーゼをポリァミ ン、ジメチルスベリ ミィデート (dimethyl suberimidate)で処理すると全体的に酵素活性が向上し、例えば、 5 0 °C での耐熱性も高かまるこが知られている (M. Kawase et al, Agrio. Bio. Chem. 1990, Vol.54, 2605-2609)。 高圧化で酵素にポリ (エチレンォキ シド) を非共有結合的にバインディングすることで元の (native) 酵素 に比べて活性が相当低下するものの、 熱安定性を若干増大できることが 報告されてレヽる ( I. N. Topohieva et al, Bioconjugate Chem. , 2000, Vol.11, 22 - 29)。 また、 数種のポリアミン(例えば、 ビス(ェチルァミノ) オクタン、 1 , 8 —オクタンジァミ ン、 1, 5 —ビス(ェチルァミ ノ)ぺ ンタン、 1 , 8 —ビス(ェチルァミ ノ)一 4—ァザオクタン、 スペルミジ ン、 ァグメチン等)を用いて酵素 T7 RNA ポリメラーゼを修飾すると、 酵 素活性は維持されるものの、 活性が記載順に低下することも知られてい る (M. Iwata et al, Bioorganic and Medical Chemistry, 2000, Vol.8, 2185-2194)。 An enzyme complex or conjugate developed to stabilize the enzyme by binding a water-soluble polymer to the enzyme without using a water-insoluble carrier has also been proposed. . Representative examples include the following. It has been reported that treatment of ct-amylase with polyamine, spermidine or cadaverine can enhance enzyme activity and increase stability (RD Due et al, J. Molecular Catalysis). , 1980, Vol. 7, 443-456). It is known that treatment of lipase with polyamine and dimethyl suberimidate generally improves the enzyme activity and, for example, increases the heat resistance at 50 ° C (M. Kawase et al, Agrio. Bio. Chem. 1990, Vol. 54, 2605-2609). It has been reported that the non-covalent binding of poly (ethylene oxide) to an enzyme under high pressure reduces the activity considerably as compared to the native enzyme, but can slightly increase the thermal stability. IN Topohieva et al, Bioconjugate Chem., 2000, Vol.11, 22-29). Also, some polyamines (eg, bis (ethylamino) octane, 1,8-octanediamine, 1,5-bis (ethylamino) pentane, 1,8-bis (ethylamino) 14-azaoctane, spermidine It is also known that modification of the enzyme T7 RNA polymerase with Agmethine, etc.) maintains the enzyme activity but decreases the activity in the order described (M. Iwata et al, Bioorganic and Medical Chemistry, 2000, Vol. 8, 2185-2194).
その他、 ポリ (エチレンォキシ ド)またはポリ (エチレンォキシ ド)一 block—ポリ (プロピレンのキシド)に酵素を化学的に共有結合すること により酵素の Km値等を増加できることも知られている(I.N. Topohieva, Polyethyrene glycol, 1997, 193-206)。  In addition, it is known that the enzyme's Km value can be increased by chemically covalently binding the enzyme to poly (ethylene oxide) or poly (ethylene oxide) -block-poly (propylene oxide) (IN Topohieva, Polyethyrene glycol, 1997, 193-206).
発明の開示 Disclosure of the invention
以上に述べたとおり、 ポリアミ ンまたはコロイ ド状金粒子もしくはコ ロイ ド状金を担持した担体に酵素を非共有結合的にバインディングする ことで、 ある程度の酵素活性を保持したまま酵素の安定化が達成されて いる。 しかし、 元の酵素活性を保持したまま、 さらなる安定化、 特に、 熱安定性の向上した酵素複合体またはコンジユゲートを入手することに 対するニーズは依然と して存在する。 熱安定性の向上は、 基質化合物の 工業的な酵素変換を実施する際には、 反応速度を高め得るとの観点から も重要である。  As described above, non-covalent binding of an enzyme to a polyamine or colloidal gold particle or a carrier carrying colloidal gold can stabilize the enzyme while maintaining a certain level of enzyme activity. Achieved. However, there remains a need for further stabilization, especially for obtaining enzyme conjugates or conjugates with improved thermostability while retaining the original enzyme activity. Improvement of thermal stability is important from the viewpoint that the reaction rate can be increased when performing industrial enzymatic conversion of a substrate compound.
そこで本発明者らは鋭意検討を積み重ねてきたところ、 ある種の水溶 性高分子、 具体的には、 場合により微小粒子の共存下で、 親水性ポリマ 一鎖の末端に荷電性基もしくは疎水性基を 1ないし多数有するポリマー、 を用いて酵素を非共有結合的に処理すると上記のニーズに応え得る酵素 複合体またはコンジユゲートが得られることを見出した。 Thus, the present inventors have conducted intensive studies, and found that a certain type of water-soluble polymer, specifically, in some cases in the presence of microparticles, a charged group or hydrophobic group is added to the end of one hydrophilic polymer chain. A polymer having one or many groups, It has been found that an enzyme complex or conjugate which can meet the above-mentioned needs can be obtained by non-covalently treating an enzyme with the enzyme.
したがって、 本発明と して、 親水性ポリマー鎖の末端に荷電性基もし くは疎水性基を 1ないし多数有するポリマーと酵素とが非共有結合的に バインディングした酵素複合体を提供する。  Accordingly, the present invention provides an enzyme complex in which a polymer having one or many chargeable groups or hydrophobic groups at the ends of a hydrophilic polymer chain and an enzyme are non-covalently bound.
また、 もう一つの態様の本発明として、 水不溶性微小粒子の表面に、 親水性ポリマー鎖の末端に荷電性基もしくは疎水性基を 1ないし多数有 するポリマーおよび酵素が非共有結合的にバインディングした酵素複合 体を提供する。  In another aspect of the present invention, a polymer and an enzyme having one or many charged groups or hydrophobic groups at the ends of a hydrophilic polymer chain are non-covalently bound to the surface of water-insoluble microparticles. Provide an enzyme complex.
従来技術の、例えば、 I . N. Topoh i eva et a l, B i oconjugate Chem. , 2000, Vo l . 1 1 , 22-29) によれば、 スペルミジン、 ァグメチン等の分子量の大き いポリアミ ンの方が、 低分子ビス一、 もしくはジァミ ンで処理された酵 素より も活性の低下する程度が大きいが、 本発明によれば、 相当大きな 分子量のポリ (エチレンダリ コール)鎖を有するポリァミンを用いた場合 でも、 得られる酵素複合体の酵素活性はほぼ元の酵素の活性を維持した まま、 特に、 熱安定性が著しく高くなる。  According to the prior art, for example, I. N. Topoh ieva et al, Bioconjugate Chem., 2000, Vol. 11, 22-29), polyamines having a large molecular weight such as spermidine and agmethine are known. Although the degree of the activity decrease is larger than that of the enzyme treated with low-molecular bis- or diamine, according to the present invention, a polyamine having a poly (ethylene dalicol) chain having a considerably large molecular weight was used. Even in such a case, the enzyme activity of the obtained enzyme complex is substantially the same as that of the original enzyme, and particularly, the heat stability is significantly increased.
以下、 本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明にいう酵素複合体は、 場合によって微小粒子の共存下で、 酵素 と一定のポリマーとから非共有結合的に形成され、 少なく とも、 水性媒 体における攪拌または遠心等の処理によっては、 各構成成分が分離する ことなく保持される構造物を意味し、 通常、 コンプレックス、 コンジュ ゲート、 またはバイオコンジユゲートと称されているものを包含する。 複合体を構成する酵素は、 本発明の目的に沿うものであれば如何なる 酵素であってもよいが、 現在工業的に用いられている酵素を好ましいも のと して挙げることができる。 このような酵素の例と しては、 限定され るものでないが、 ペプシン、 トリプシン、 キモ ト リブシン、 コラゲナー ゼ、 ケラチナ一ゼ、 エラスターゼ、 ズブチリシン、 パパイン、 アミノぺ プチダーゼ、 カルボキシぺプチダーゼ、 等のプロテアーゼ、 ガス トリ ッ ク リパーゼ、 パンク レアチック リパ一ゼ、 植物リパーゼ、 ホスホリパー ゼ、 等のエステラーゼ、 セノレラーゼ、 マノレターゼ、 サッカラーゼ、 アミ ラーゼ等のカルボヒ ドラーゼ、 リゾチーム、 キチナ一ゼ、 チトクローム C , ラクターゼ、 デキス トラナーゼを挙げることができる。 The enzyme complex according to the present invention is formed non-covalently from an enzyme and a certain polymer in the presence of microparticles in some cases, and at least depending on the treatment such as stirring or centrifugation in an aqueous medium. A structure in which components are retained without separation, including what is commonly referred to as a complex, conjugate, or bioconjugate. Any enzyme constituting the complex may be used as long as it meets the purpose of the present invention. Enzymes may be used, but preferred ones that are currently used industrially are preferred. Examples of such enzymes include, but are not limited to, proteases such as pepsin, trypsin, chymotribsine, collagenase, keratinase, elastase, subtilisin, papain, aminopeptidase, carboxypeptidase, etc. , Gastric lipase, puncture lipase, plant lipase, phospholipase, etc. Can be mentioned.
このよ うな酵素または微小粒子と非共有結合的にバインディングする本 発明で用いることのできるポリマーは、水性媒体(生理的条件もしくは非 生理的条件下の p Hに緩衝かされた水溶液、水混和性有機溶媒、例えば、 メ タノーノレ、 エタノール、 アセ トン、 ジメチノレホノレムアミ ド、 ジメチル スルホキシド、ァセ トニ トリル等の混在する水溶液等)中で酵素と複合体 を形成し得る、 親水性ポリマー鎖の末端に荷電性基もしくは疎水性基を 1ないし多数有するポリマーである。具体的には、親水性ポリマー鎖が、 ポリ (ェチレングリ コール)、ポリ (メタク リル酸 2—ヒ ドロキシェチル)、 ポリ (ァク リ ノレ酸 2—ヒ ドロキシェチノレ)、 ポリ (ビニルァノレコーノレ)、 ポ リ (ァク リ ルアミ ド)、 ポリ (メタク リ ルアミ ド)、 ポリ (N , N—ジメチ ノレァク リルァミ ド)、ポリ (N , N—ジメチルメ タク リルァミ ド)、ポリ (ビ ニルピロ リ ドン)、ァガロースおよびデキス トランからなる群より選ばれ る、 また、 荷電性基が、 一級、 二級もしくは三級アミンを分子内に一種 もしくは二種含む低分子アミン化合物に由来するか、 または一級、 二級 もしくは三級ァミンを反復単位の側鎖もしくは主鎖内に一種もしくは二 種含むポリマー鎖に由来し、 または疎水性基がポリ(乳酸)、 ポリ(グリ コ ール酸)、 ポリ(プチリ ックァシッ ド)等のポリエステルに由来するポリマ 一である。 特に好ましいポリマーは、 親水性ポリマー鎖が、 ポリ (ェチレ ングリ コール)またはポリ (エチレンォキシド)に由来するものである。具 体的には、 下記式 ( I ) で表されるポリマーを挙げることができる。 Polymers that can be used in the present invention that bind non-covalently to such enzymes or microparticles include aqueous media (pH buffered aqueous solutions under physiological or non-physiological conditions, water-miscible An organic solvent, for example, an aqueous solution containing a mixture of methanol, ethanol, acetone, dimethinolehonoremamide, dimethyl sulfoxide, and acetonitrile, etc.). It is a polymer having one or many charged groups or hydrophobic groups at its terminals. Specifically, the hydrophilic polymer chains are composed of poly (ethylene glycol), poly (2-hydroxyhexyl methacrylate), poly (2-hydroxyacrylic acid), poly (vinyl alcohol), Poly (acrylamide), poly (methacrylamide), poly (N, N-dimethylaminoacrylamide), poly (N, N-dimethylmethacrylamide), poly (vinylpyrrolidone), Selected from the group consisting of agarose and dextran, and wherein the chargeable group is derived from a low-molecular-weight amine compound containing one or two primary, secondary or tertiary amines in the molecule, or primary or secondary. Alternatively, it is derived from a polymer chain containing one or two tertiary amines in the side chain or main chain of the repeating unit, or has a hydrophobic group of poly (lactic acid), poly (glycolic acid), or poly (petitic acid). ) Is a polymer derived from polyester. Particularly preferred polymers are those in which the hydrophilic polymer chains are derived from poly (ethylene glycol) or poly (ethylene oxide). Specific examples include a polymer represented by the following formula (I).
R 3 - L! - ( C H 2 C H 2 O ) n - L 2 - X ( I ) 上式中、 R aは、 水素、 メチル基、 アルデヒ ド基、 アミノ基、 カルボ キシル基、 マレイ ミ ド基、 p — トルエンスルホニル基またはビニルスル ホニル基であり、 R 3 -L! - in X (I) above formula, R a is hydrogen, a methyl group, aldehyde group, amino group, carboxyl group, maleimidyl de group, p - - (CH 2 CH 2 O) n - L 2 toluenesulfonyl Group or vinylsulfonyl group,
および L 2は、 独立して、 原子価結合またはリンカ一を表し、 nは、 2〜 2 0, 0 0 0の整数であり、 そして And L 2 independently represent a valence bond or a linker; n is an integer from 2 to 20;
Xは、 N—もしくは N , N—モノもしくはジ一 C i— C 3アルキル置換 アミ ノ C i— C! 2アルキル、 反復単位が 2ないし 2 0 , 0 0 0のオリ ゴ もしくはポリ (N—もしくは N, N—モノもしくはジ一 C !— C 3アルキ ル置換アミノエチルメタアタ リ レート) 鎖、 主鎖に二級もしくは三級ァ ミン基を有するポリアミンに由来する、例えば、ポリエチレンィ ミン鎖、 スペルジミン鎖およびカダベリン鎖からなる群より選ばれる基またはォ リ ゴもしくはポリマー鎖セグメントである。 X is, N- or N, N- mono- or di-one C i-C 3 alkyl substituted amino C i-C! 2 alkyl, to repeat units of 2 to 2 0 0 0 0 oligo or poly (N- or N, N-mono- or di one C -! C 3 alkyl-substituted aminoethyl meth Ata Li rate) chain, the main chain For example, it is a group derived from a polyamine having a secondary or tertiary amine group, a group selected from the group consisting of a polyethyleneimine chain, a sperdimine chain and a cadaverine chain, or an oligo or polymer chain segment.
また、 より具体的なポリマ一には、 次式であらわされるものが含まれ る。  Further, more specific polymers include those represented by the following formula.
CH3OCH2CH2CH20-(CH2CH20) -
Figure imgf000007_0001
上式中、 mおよび nは、 独立して、
CH 3 OCH 2 CH 2 CH 2 0- (CH 2 CH 2 0) -
Figure imgf000007_0001
In the above formula, m and n are independently
Rは C 一 C 3アルキル基である。 R is a C 1 -C 3 alkyl group.
- (CH2C(CH3))m-…… ((CHg CR1))- COOCH。CH2N(R2)2 -(CH 2 C (CH 3 )) m -... ((CHg CR 1 ))-COOCH. CH 2 N (R 2 ) 2
COOCH2CH20— (CH2CH O) - R' COOCH 2 CH 2 0— (CH 2 CH O)-R '
上式中、 m, nおよび xは、 独立して、 2〜 2 0 , 0 0 0の整数であ り、 R 1は水素またはメチル基であり、 R 2は C _ C 3アルキル基であり、 R 3は水素または C — C 5アルキル基である。 In the above formula, m, n and x are each independently an integer of 2 to 20, 000, R 1 is hydrogen or a methyl group, R 2 is a C_C 3 alkyl group R 3 is hydrogen or a C—C 5 alkyl group.
本発明に関し、 C i — C i 2アルキルという ときは、 炭素原子数が 1〜 1 2個の直鎖または分岐アルキルを意味する。 The present invention relates, C i - the term C i 2 alkyl means 1 to 1 2 straight-chain or branched alkyl carbon atoms.
以下、 上記のポリマ一に包含されるポリマ一のさらに具体的なものに は、 ポリエチレングリ コール (PEG) - block-ポリ (メタク リル酸 2-N, N - ジメチルアミノエチル)(以下、 PEG - PMAMAと略記する)、 PEG - block-ポリ (メタク リル酸 2 - N, N-ジェチルァミノエチル)(以下、 PEG-PEAMA と略記す る)、 PEG— block-ポリ (イソプロピルァク リルァミ ド)(以下、 PEG- PNIPAM と略記する)、 PEG-ポリアク リルアミ ド、 PMAMA-PNIPAM、 PEAMA-PNIPAM, PVA-PMAMA, PVA - PEAMA等力 S包含される 0 Hereinafter, more specific examples of the polymers included in the above-mentioned polymers include polyethylene glycol (PEG) -block-poly (2-N, N-dimethylaminoethyl methacrylate) (hereinafter, PEG- PMAMA), PEG-block-poly (2-N, N-methylethylamino methacrylate) (hereinafter abbreviated as PEG-PEAMA), PEG-block-poly (isopropylacrylamide) ) (hereinafter, PEG-abbreviated as PNIPAM), PEG-polyacrylamide Riruami de, PMAMA-PNIPAM, PEAMA-PNIPAM , PVA-PMAMA, PVA - PEAMA Hitoshiryoku S 0 encompassed
これらのポリマーの分子量については理論的に制限はないが、 500〜 1, 000, 000が好ましく、 2, 000〜500, 000がより好ましく、 合成の容易さ から考えると 3, 000〜100, 000力 特に好ましい。 以上のポリマーは、 そ れ自体公知であるか、 または公知のものに準ずる方法により容易に得る ことができる。例えば、 PEG-PMAMA、 PEG-PEAMA等については、 Y. Nagasaki et al. , Macromol. Chem. Rapid Commun. 1997, 18, 927、 ポリエチレング リ コール鎖の α—末端に各種官能基を導入する場合、 分子量を調整する 場合、また、疎水性ポリマー鎖を有するポリマーを入手する場合は、 W096 /32434(USP 5, 973, 069に対応)、 W096/33233 (USP 6, 090, 317に対応)、 097/06202(USP 5, 929, 177に対応)を参照することができる。 The molecular weight of these polymers is not theoretically limited, but is preferably from 500 to 1,000,000, more preferably from 2,000 to 500,000, and from the viewpoint of ease of synthesis, from 300,000 to 100,000. Force is particularly preferred. These polymers are It is known per se or can be easily obtained by a method according to a known one. For example, PEG-PMAMA, PEG-PEAMA, etc. are described in Y. Nagasaki et al., Macromol. Chem. Rapid Commun. 1997, 18, 927, when introducing various functional groups into the α -terminal of polyethylene glycol chain. W096 / 32434 (corresponding to USP 5,973,069), W096 / 33233 (corresponding to USP 6,090,317) when adjusting the molecular weight or obtaining a polymer having a hydrophobic polymer chain. 097/06202 (corresponding to USP 5,929,177).
また、本発明の酵素複合体の構成成分とすることができる微小粒子は、 上記のごときポリマーと酵素が非共有結合的(静電結合的、 疎水結合的、 水素結合的等の共有結合以外のあらゆる結合様式を包含する)にバイン デイングでき、 本発明の目的に沿うものであれば材質、 起源、 等を問う ことなく使用できる。 また、 微小と称しているのは、 サイズが、 サブも しくは数 nm〜数 mm、 好ましくは、 1 111〜数 1 0 0 111、 さらに好 ましくは、 5 n m〜 1 0 0 0 nmであるものを意図している。 従来技術 では、 コロイ ド状金に酵素をバインディングないし固定したものは、 水 性媒体中である程度の分散安定性を有するが、 本発明によれば、 コロイ ド状を超えたサイズの粒子も、 酵素以外に、 ポリマーがバインディング していることにより、 極めて良好な水性媒体中での分散安定性を示すこ とができる。  In addition, the microparticles which can be used as a component of the enzyme complex of the present invention are characterized in that the polymer and the enzyme as described above are non-covalently bonded (except for covalent bonds such as electrostatic bond, hydrophobic bond, hydrogen bond, etc.). (Including any bonding mode), and can be used irrespective of the material, origin, etc. as long as the object of the present invention is met. Also, the term “micro” means that the size is sub or several nm to several mm, preferably, 111 to 100, and more preferably, 5 nm to 100 nm. Intended for something. In the prior art, an enzyme bound or immobilized on colloidal gold has a certain degree of dispersion stability in an aqueous medium, but according to the present invention, particles having a size exceeding the colloidal shape are also used as enzymes. In addition, due to the binding of the polymer, extremely good dispersion stability in an aqueous medium can be exhibited.
限定されるものでないが、これらの微小粒子の代表的なものと しては、 コロイ ド状金、 コロイ ド状銀、 コロイ ド状酸化アルミニウム、 コロイ ド 状シリカ、 コロイ ド状酸化チタン、 微小磁鉄鋼粒子、 およびコロイ ド状 半導体を挙げることができる。 このよ うな粒子はいずれも市販品をその まま、または精製して使用することができる。また、半導体微小粒子は、 例えば、 周期律表の I I B族もしくは I I I B族元素の塩化物(例えば、 塩化力 ドミ ゥム)と同 V I B族元素のアル力リ金属塩(例えば、 硫化ナト リ ウム)とを水性媒体中で反応させて調製することもできる。こ う して調 整できる半導体微小粒子の代表的なものには、 0 3ぉょびじ(1 3 6微 小粒子が包含される。 Representative examples of these microparticles include, but are not limited to, colloidal gold, colloidal silver, colloidal aluminum oxide, colloidal silica, colloidal titanium oxide, and fine magnetic particles. Examples include steel particles and colloidal semiconductors. All such particles are commercially available. It can be used as is or after purification. In addition, semiconductor microparticles include, for example, chlorides (eg, chlorides) of elements of group IIB or IIIB of the periodic table and salts of metal salts of the same group VIB (eg, sodium sulfide). May be reacted in an aqueous medium. Representative examples of the semiconductor fine particles that can be adjusted in this way include 0.30 micro particles (13.6 fine particles).
これらの酵素複合体は、 酵素とポリマーを前記の水性媒体中で、 室温 下、 必要があれば、 例えば冷却 (数 °C ) 下に混合攪拌するだけで作製す ることができる。 こう して簡単に調製できるので、 混合液をそのまま、 必要により、 濃縮しまたは希釈して、 目的とする酵素反応系に供するこ とができることも本発明の利点の一^ 3である。  These enzyme complexes can be prepared by simply mixing and stirring the enzyme and the polymer in the above-mentioned aqueous medium at room temperature, if necessary, for example, under cooling (a few ° C). Since it can be easily prepared in this way, it is one of the advantages of the present invention that the mixed solution can be concentrated or diluted as needed and supplied to a target enzyme reaction system.
この場合、 混合する割合は、 使用する酵素およびポリマー、 特にポリ マーの種類により最適値が変動するので、 通常、 小実験を行って決定す るのがよいが、 酵素対ポリマーの重量比が 0. 0001 : 10000〜100: 1で利用 が可能であり、 1 : 10000〜10 : 1 がさらに好ましい。 また、 たとえば、 側 鎖に三級ァミンを担持する PEG-PMAMA等を用いる場合には、 三級了ミン 基が、 酵素 1モルに対して少なく とも 1、 好ましくは 5以上、 より具体 的には、 :!〜 5 0 0 0 (例えば、 リ ゾチーム)、 または 3 0〜 3 0 0 0 (例 えば、 リパーゼ)当量となるように混合する。  In this case, the mixing ratio varies depending on the type of the enzyme and the polymer to be used, particularly the type of the polymer. Therefore, it is usually better to determine the mixing ratio by performing a small experiment. 0001: 1000 to 100: 1 can be used, and 1: 1000 to 10: 1 is more preferable. Further, for example, when PEG-PMAMA or the like having a tertiary amine in the side chain is used, the tertiary amine group is at least 1, preferably 5 or more, and more specifically, 1 mole per enzyme. ,:! -500 (for example, lysozyme), or 30-3000 (for example, lipase).
これらの系に微小粒子を共存させる場合、 まず、 酵素と粒子を水性媒 体において混合して粒子表面に酵素を吸着させるとともに、 またその後 に、 親水性ポリマ一鎖の末端に荷電性基もしくは疎水性基を 1ないし多 数有するポリマーを加えて、 室温下、 必要があれば、 例えば冷却 (数で) 下に混合攪拌することにより、 酵素がバインディングした微小粒子表面 をさらに該ポリマーで被覆することができる。 酵素を粒子に担持させる 場合には、 例えばそのまま、 必要により、 酵素に一般的な方法でメルカ プト基を導入し、 たとえば金属表面へバインディングさせる方法を選ぶ こともできる。 酵素に対する粒子の割合も、 通常、 小実験を行って決定 するのがよいが、 酵素対微小粒子の比(重量基準)が 0.0001:10000〜 10000:0.0001で利用が可能であり、1:10000〜 10000:1がさらに好ましい 効率的な利用では 1:1000〜1000:1程度がもつとも好ましい。より具体的 には、 酵素 (分子) 対コロイ ド状金 (個数) は、 0. 0 1 : 1〜 1 0 0 0 : 1、 特に、 2 0 : 1〜: 1 0 0 0 : 1であることができる。 When microparticles coexist in these systems, first, the enzyme and the particles are mixed in an aqueous medium to adsorb the enzyme to the particle surface, and thereafter, a charged group or hydrophobic group is added to the end of one hydrophilic polymer chain. Add a polymer with one or many functional groups and add, if necessary, at room temperature, for example, cooling (by number) By mixing and stirring below, the surface of the microparticles bound by the enzyme can be further coated with the polymer. When the enzyme is to be carried on the particles, for example, a method in which a mercapto group is introduced into the enzyme by a general method, if necessary, and binding to a metal surface, for example, can be selected. The ratio of particles to enzyme is also usually determined by conducting small experiments, but the ratio of enzyme to microparticles (by weight) can be used at a ratio of 0.0001: 10000 to 10000: 0.0001, and 1: 10000 to 10000: 1 is more preferable For efficient use, it is also preferable that the ratio be about 1: 1000 to 1000: 1. More specifically, the ratio of enzyme (molecule) to colloidal gold (number) is 0.01: 1 to 100: 1 and, particularly, 20: 1 to: 100: 1. be able to.
こ う して得られる、 酵素と特定のポリマーを含んでなるか、 また、 酵 素と特定のポリマーが表面にバインディングした酵素複合体は、 下記の 実施例で具体的に説明するとおり、 例えば、 7 0°Cの高温に昇温し、 1 0分間保持した後冷却し、 再度同昇温を行うサイクルを数回繰り返して も酵素活性を少なく とも 5 0 %は保持する、 強力な熱安定性を示す。 図面の簡単な説明  The thus obtained enzyme complex comprising the enzyme and the specific polymer, or the enzyme complex in which the enzyme and the specific polymer are bound to the surface is, as specifically described in the following Examples, for example, Strong thermal stability, maintaining the enzyme activity at least 50% even after repeating the cycle of raising the temperature to 70 ° C, holding for 10 minutes, cooling, and raising the temperature again several times. Is shown. Brief Description of Drawings
図 1 は、 PEG - PMAMAブロック共重合体と リ ゾチームを様々な混合比 で混ぜて昇温を繰り返した後の酵素活性の推移を示すグラフである。 図 中の記号 : 四角印はポリマーを含まない系(対照)であり、 丸印は酵素に 対して等重量のポリマーを含む系、 三角印は酵素に対して 2倍重量のポ リマーを含む系、 そして逆三角印は酵素に対して 1 0倍重量のポリマー を含む系の結果を示す。  Figure 1 is a graph showing the transition of enzyme activity after PEG-PMAMA block copolymer and lysozyme were mixed at various mixing ratios and the temperature was repeatedly increased. Symbols in the figure: Squares indicate systems containing no polymer (control), circles indicate systems containing polymers equal in weight to enzyme, and triangles indicate systems containing polymer twice as much as enzyme. , And the inverted triangle indicates the results for a system containing 10 times the weight of the polymer relative to the enzyme.
図 2 は、 PEG- PEAMAブロック共重合体と リゾチームを様々な混合比 で混ぜて昇温を繰り返した後の酵素活性の推移を示すグラフである。 図 中の記号 : 四角印はポリマーを含まない系(対照)であり、 菱型印は酵素 に対して 1 0分の 1重量のポリマーを含む系、 白抜き丸印は酵素に対し て等重量のポリマーを含む系、 黒塗り丸印は酵素に対して 2倍重量のポ リマーを含む系、 そして三角印は酵素に対して 1 0倍重量のポリマーを 含む系の結果を示す。 Figure 2 shows various mixing ratios of PEG-PEAMA block copolymer and lysozyme. 5 is a graph showing the transition of the enzyme activity after mixing and heating. Symbols in the figure: Squares indicate systems containing no polymer (control), diamonds indicate systems containing 1 / 10th the weight of the polymer relative to the enzyme, and white circles indicate an equal weight relative to the enzyme. The solid circles show the results for the system containing twice the weight of the polymer with respect to the enzyme, and the triangles show the results for the system containing 10 times the weight of the polymer with respect to the enzyme.
図 3は、 PNIPAMと リ ゾチームを様々な混合比で混ぜて昇温を繰り返し た後の酵素活性の推移を示すグラフである。 図中の記号 : 四角印はポリ マーを含まない系(対照)であり、 菱型印は酵素に対して 1 0分の 1重量 のポリマーを含む系、 白抜き丸印は酵素に対して等重量のポリマーを含 む系、 黒塗り丸印は酵素に対して 2倍重量のポリマーを含む系、 そして 三角印は酵素に対して 1 0倍重量のポリマーを含む系の結果を示す。 図 4は、 PEG-PNIPAMグラフ ト共重合体と リゾチームを様々な混合比 で混ぜて昇温を繰り返した後の酵素活性の推移を示すグラフである。 図 中の記号 : 四角印はポリマーを含まない系(対照)であり、 黒塗り菱型印 は酵素に対して 1 0分の 1重量のポリマーを含む系、 白抜き丸印は酵素 に対して等重量のポリマーを含む系、 黒塗り丸印は酵素に対して 2倍重 量のポリマ一を含む系、 白抜きひし形印は酵素に対して 3倍重量のポリ マーを含む系、 黒塗り逆三角印は酵素に対して 5倍重量のポリマーを含 む系、 そして白抜き三角印は酵素に対して 1 0倍重量のポリマーを含む 系の結果を示す。  FIG. 3 is a graph showing changes in enzyme activity after PNIPAM and lysozyme were mixed at various mixing ratios and the temperature was repeatedly increased. Symbols in the figure: Squares indicate systems containing no polymer (control), diamonds indicate systems containing 1 / 10th the weight of the polymer relative to the enzyme, and white circles indicate the same for the enzyme. The system containing the polymer by weight, the closed circles show the results of the system containing 2 times the weight of the polymer relative to the enzyme, and the triangles show the results of the system containing the polymer 10 times the weight of the enzyme. FIG. 4 is a graph showing the transition of the enzyme activity after mixing the PEG-PNIPAM graft copolymer and lysozyme at various mixing ratios and repeatedly raising the temperature. Symbols in the figure: Squares indicate systems without polymer (control), solid diamonds indicate systems containing 1 / 10th the weight of polymer to enzyme, and open circles indicate system for enzyme. A system containing an equal weight of polymer, a black circle represents a system containing a polymer twice as much as the enzyme, a white diamond represents a system containing a polymer three times the weight of the enzyme, and a black reverse. The triangles show the results for the system containing 5 times the weight of the polymer with respect to the enzyme, and the open triangles show the results for the system containing 10 times the weight of the polymer with respect to the enzyme.
図 5は、 コロイ ド状金と PEG- PMAMAブロ ック共重合体と リ ゾチームを 含む系に対して昇温を繰り返した後の酵素活性の推移を示すグラフであ る。 図中の記号:四角印はポリマーおよびコロイ ド状金を含まない系(対 照)、 白抜き丸印は酵素およびポリマーを含む系(比較)、 そして黒塗り丸 印は酵素、 ポリマーおよびコロイ ド状金を含む系の結果を示す。 発明を実施するための最良の形態 実施例 1 : Figure 5 is a graph showing the change in enzyme activity after repeated heating of a system containing colloidal gold, PEG-PMAMA block copolymer and lysozyme. The Symbols in the figure: squares indicate systems without polymer and colloidal gold (control), open circles indicate systems containing enzymes and polymers (comparison), and solid circles indicate enzymes, polymers and colloids The result of the system containing metal mold is shown. BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1
この実施例は、 ポリマー(PEG-PMAMA)  In this example, the polymer (PEG-PMAMA)
CH3OC¾CH2CH2O— (CH2CH2O)n— (CH2C(CH3))m— H CH 3 OC¾CH 2 CH 2 O— (CH 2 CH 2 O) n — (CH 2 C (CH 3 )) m — H
COOCH2CH2N(CH3)2 (Y. Nagasaki et al . , Macromol . Chem. Rapi d Commun. 1997, 18, 927 に 記載の方法に従って得られた。 PEG Mn=4, 000 g/mol , PMAMA (ポリメタ ク リル酸(2 - N, N-ジメチルァミノエチル)) Mn=4, 000)を使用した例であ る。 COOCH 2 CH 2 N (CH3) 2 (obtained according to the method described in Y. Nagasaki et al., Macromol. Chem. Rapid Commun. 1997, 18, 927. PEG Mn = 4,000 g / mol, PMAMA This is an example using (polymethacrylic acid (2-N, N-dimethylaminoethyl)) Mn = 4,000).
リン酸緩衝液(pH7. 0, 50mM) 50 mLにリ ゾチーム 28. 6 mg、 上記で合成し たポリマー 28. 6 mgをそれぞれ溶解させ、 40倍に希釈し、 1. 5 mLずつ混 ぜたものを酵素溶液と した。 また、バッファー 100 mLにミクロコッカス · ノレテウス(Mi crococcus luteus,シグマ、 ATCC No. 4698) 16. lmg を溶角?さ せ、 基質溶液の調製を行った。 Dissolve 28.6 mg of lysozyme and 28.6 mg of the polymer synthesized above in 50 mL of phosphate buffer (pH 7.0, 50 mM), dilute 40-fold, and mix in 1.5 mL portions. This was used as an enzyme solution. In addition, melted 16. lmg of Micrococcus luteus (Sigma, ATCC No. 4698) in 100 mL of buffer? Then, a substrate solution was prepared.
まず、 石英セルに基質溶液 2. 8 mL を加え、 温度設定を 37°Cにしたセ ルホルダーに保持した。そこへ、 70°Cで 10分間保持した酵素溶液を 37°C に冷却し、 0. 2 mL加え、 吸光度の変化を 10分間測定した。 吸光度測定結果より求めた酵素活性と昇温回数の関係を図 1 に示す。 PEG-PMAMAを等倍以上混合した場合、 70° Cに昇温しても全く活性が落 ちることがなく、 高い酵素活性を維持することが示された。 First, 2.8 mL of the substrate solution was added to the quartz cell and held in a cell holder with the temperature set at 37 ° C. There, the enzyme solution kept at 70 ° C for 10 minutes was cooled to 37 ° C, 0.2 mL was added, and the change in absorbance was measured for 10 minutes. Figure 1 shows the relationship between the enzyme activity obtained from the results of the absorbance measurement and the number of times of temperature rise. When PEG-PMAMA is mixed more than 1x, the activity is completely reduced even when the temperature is increased to 70 ° C. And maintained high enzyme activity.
実施例 2 : Example 2:
PEG-PAMAの代わりに PEG- PEAMA (PEGセグメント分子量 5 , OOO i PEAMAセ グメント分子量 5, 000、 上述の論文を参考に合成)を使用する以外は実施 例 1に記載の操作を繰り返した。 吸光度測定結果より求めた酵素活性と 昇温回数の関係を図 2に示す。 PEG- PEAMAを 2倍以上混合した場合、 70° C に昇温しても全く活性が落ちることがなく、 高い酵素活性を維持するこ とが示された。  The procedure described in Example 1 was repeated, except that PEG-PEAMA (PEG segment molecular weight 5, OOOi PEAMA segment molecular weight 5,000, synthesized with reference to the above-mentioned paper) was used instead of PEG-PAMA. Figure 2 shows the relationship between the enzyme activity obtained from the absorbance measurement results and the number of heating. When PEG-PEAMA was mixed twice or more, the activity did not decrease at all even when the temperature was raised to 70 ° C, indicating that high enzyme activity was maintained.
実施例 3: Example 3:
PEG- PAMAの代わりに PNIPAM (分子量 20, 000、 ラジカル重合によって合 成)を使用する以外は実施例 1に記載の操作を繰り返した。吸光度測定結 果より求めた酵素活性と昇温回数の関係を図 3に示す。 PNIPAMを当量あ るいは 2倍量混合した場合、 耐熱性が向上している効果が示された。 実施例 4:  The procedure described in Example 1 was repeated except that PNIPAM (molecular weight: 20,000, synthesized by radical polymerization) was used instead of PEG-PAMA. Figure 3 shows the relationship between the enzyme activity determined from the results of the absorbance measurement and the number of times of temperature rise. When PNIPAM was mixed in an equivalent amount or a double amount, the effect of improving heat resistance was shown. Example 4:
PEG-PAMAの代わりに PNIPAM— PEGグラフ トポリマー(分子量 60, 000、 PEG鎖 2, 000、 ラジカル重合によって合成)を使用する以外は実施例 1 に 記載の操作を繰り返した。 吸光度測定結果より求めた酵素活性と昇温回 数の関係を図 4に示す。 PNIPAM- PEGを当量以上混合した場合、 耐熱性が 向上している効果が示された。  The procedure described in Example 1 was repeated except that PNIPAM-PEG graft polymer (molecular weight 60,000, PEG chain 2,000, synthesized by radical polymerization) was used instead of PEG-PAMA. Fig. 4 shows the relationship between the enzyme activity obtained from the results of the absorbance measurement and the number of heating cycles. When PNIPAM-PEG was mixed in an equivalent amount or more, the effect of improving heat resistance was shown.
実施例 5 : Example 5:
この実施例は、 酵素溶液にコロイ ド状金(金コロイ ド)を加えた後、 さ らにポリマー(PEG- PMAMA :ポリメタク リル酸(2- N, N-ジメチルァミノェチ ル)) Mn=4, 00)を加えて処理した例を示す。 リノヽ0—ゼ 6. O m g (0. 1リ m o 1 ) をメスフラスコに採り、 リ ン酸 緩衝液(pH7.0, 50mM)で 1 0 0 mLに調整した。 それぞれ、 l mLずつ分 取し、 金コロイ ド溶液 (B B I社、 1 0 n m) 5 mLを加え、 4°Cで 1 0分間静置した。 次にポリマー 28.6 mg ( 4 ym o 1 ) をそれぞれ溶解さ せ溶液を加えた。 こして得られた溶液を酵素溶液と した。 また、 0. 5 mMの p— N P Pを基質と して有する緩衝液 2.0 mL を混合し、 10分間 5 8°Cに加熱、 5 分間 2 5°Cに冷却し、 保温する工程を繰り返した。 各 工程毎に 吸光度を測定した結果を図 5 に示す。 コ ロイ ド状金と PEG-PMAMA ブロック共重合体と リ ゾチームを含む系に対して昇温を繰り 返した後も酵素活性は、 ほとんど低下しなかった。 In this example, colloidal gold (gold colloid) was added to the enzyme solution, and then a polymer (PEG-PMAMA: polymethacrylic acid (2-N, N-dimethylaminoethyl)) Mn = 4, 00). Lino ヽ0 -ze 6. O mg (0.1 l mo 1) was placed in a volumetric flask and adjusted to 100 mL with a phosphate buffer (pH 7.0, 50 mM). Each lmL was collected, 5mL of gold colloid solution (BBI, 10nm) was added, and the mixture was allowed to stand at 4 ° C for 10 minutes. Next, 28.6 mg (4 symbol) of the polymer was dissolved in each, and a solution was added. The solution thus obtained was used as an enzyme solution. Further, a process of mixing 2.0 mL of a buffer having 0.5 mM p-NPP as a substrate, heating to 58 ° C for 10 minutes, cooling to 25 ° C for 5 minutes, and maintaining the temperature was repeated. Figure 5 shows the results of measuring the absorbance at each step. Enzyme activity did not decrease significantly after repeated heating of the system containing colloidal gold, PEG-PMAMA block copolymer and lysozyme.
産業上の利用可能性 Industrial applicability
本発明により、 提供できる酵素複合体は、 著しく高い熱安定性を示す ので、 工業的に利用できる酵素触媒の製造業および該酵素触媒を使用す る各種化合物および材料の加工業で利用できる。  The enzyme complex that can be provided according to the present invention exhibits remarkably high thermal stability, and thus can be used in the manufacturing industry of industrially applicable enzyme catalysts and in the processing of various compounds and materials using the enzyme catalysts.

Claims

請求の範囲 The scope of the claims
1 . 親水性ポリマー鎖の末端に荷電性基もしくは疎水性基を 1ないし 多数有するポリマーと酵素とが非共有結合的にバインディングした酵素 複合体。  1. An enzyme complex in which a polymer having one or many charged or hydrophobic groups at the end of a hydrophilic polymer chain is non-covalently bound to an enzyme.
2 . 親水性ポリマー鎖が、 ポリ (エチレングリ コール)、 ポリ (メタク リ ル酸 2—ヒ ドロキシェチル)、 ポリ (アタ リル酸 2—ヒ ドロキシェチル)、 ポリ (ビュルアルコール)、 ポリ (アタ リルァミ ド)、 ポリ (メタク リルァミ ド) 、 ポリ (N, N—ジメチルアク リルアミ ド)、 ポリ (N , N—ジメチ ノレメタク リルァミ ド)、 ポリ (ビニルピロ リ ドン)、 ァガロースおよびデキ ス トランからなる群より選ばれるポリマーに由来する請求項 1に記載の 酵素複合体。  2. The hydrophilic polymer chain is composed of poly (ethylene glycol), poly (2-hydroxyl methacrylate), poly (2-hydroxyl acetylate), poly (bul alcohol), poly (acrylamide). , Poly (methacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-dimethylmethacrylamide), poly (vinylpyrrolidone), agarose and dextran 2. The enzyme conjugate according to claim 1, which is derived from a polymer.
3 . 親水性ポリマー鎖が、 ポリ (エチレングリ コール)、 ポリ (メタク リ ル酸 2—ヒ ドロキシェチル)、 ポリ (アタ リル酸 2—ヒ ドロキシェチル)、 ポリ (ビュルアルコール)、 ポリ (アタ リルァミ ド)、 ポリ (メタク リルァミ ド)、 ポリ (N , N—ジメチルアク リルアミ ド)、 ポリ (N , N—ジメチ ノレメタク リルァミ ド)、 ポリ (ビニルピロ リ ドン)、 ァガロースおよびデキ ス トランからなる群より選ばれるポリマーに由来し、かつ、荷電性基が、 一級、 二級もしくは三級ァミンを分子内に一種もしくは二種含む低分子 ァミン化合物に由来するか、 または一級、 二級もしくは三級アミンを反 復単位の側鎖もしくは主鎖内に一種もしくは二種含むポリマー鎖に由来 する請求項 1に記載の酵素複合体。  3. The hydrophilic polymer chain is composed of poly (ethylene glycol), poly (2-hydroxyl methacrylate), poly (2-hydroxyl acetylate), poly (bul alcohol), poly (atarylamide) Selected from the group consisting of poly (methacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-dimethylmethacrylamide), poly (vinylpyrrolidone), agarose and dextran. Derived from a polymer, and the charged group is derived from a low-molecular-weight amine compound containing one or two primary, secondary or tertiary amines in the molecule, or repeating a primary, secondary or tertiary amine. 2. The enzyme complex according to claim 1, which is derived from a polymer chain containing one or two kinds in the side chain or main chain of the unit.
4 . 親水性ポリマー鎖がポリ (エチレングリ コール)に由来し、 かつ、 荷 電性基が一級、 二級もしくは三級ァミンを反復単位の主鎖もしくは側鎖 内に一種もしくは二種含むポリマー鎖に由来する請求項 1に記載の酵素 複合体。 4. The hydrophilic polymer chain is derived from poly (ethylene glycol) and the chargeable group is a primary, secondary or tertiary amine with a main or side chain of a repeating unit. 2. The enzyme conjugate according to claim 1, wherein the enzyme conjugate is derived from a polymer chain containing one or two kinds thereof.
5. 親水性ポリマー鎖の末端に荷電性基を 1ないし多数有するポリマ —が、 式 ( I ) :  5. A polymer having one or many charged groups at the end of a hydrophilic polymer chain is represented by the formula (I):
R a - L! - (CH2CH20) n - L 2 - X ( I ) 上式中、 R aは、 水素、 メチル基、 アルデヒ ド基、 アミノ基、 カルボ キシル基、 マレイ ミ ド基、 p— トルエンスルホニル基またはビニルスル ホニル基であり、 R a -L! -(CH 2 CH 2 0) n -L 2 -X (I) In the above formula, Ra is hydrogen, methyl, aldehyde, amino, carboxyl, maleimide, p-toluenesulfonyl Group or vinylsulfonyl group,
1^ぉょびし 2は、 独立して、 原子価結合またはリ ンカ一を表し、 nは、 2〜 2 0 , 0 0 0の整数であり、 そして 1 ^ 2 independently represents a valence bond or a linker; n is an integer from 2 to 20;
Xは、 N—も しく は N, N—モノ も しく はジー C L— C 3アルキル置換 アミノ C — C i 2アルキル、 反復単位が 2ないし 2 0 , 0 0 0のオリ ゴ もしく はポリ (N—も しく は N, N—モノ も しく はジー C 一 C 3アルキ ル置換ァミ ノエチルメ タアタ リ レー ト) 鎖、 ポリエチレンイ ミ ン鎖、 ス ペルジミン鎖およびカダベリン鎖からなる群より選ばれる基またはオリ ゴもしくはポリマー鎖セグメントである、 X is N- or N, N-mono or di-CL—C 3 alkyl-substituted amino C—Ci 2 alkyl, oligo or poly (2 to 20,000) repeating unit N- also properly N, N- mono- also properly is di C one C 3 alkyl-substituted § Mi Noechirume Taata Li rate) chain, polyethyleneimine Mi down chain, a group selected from the group consisting of scan Perujimin chain and cadaverine chain Or an oligo or polymer chain segment,
で表される請求項 1に記載の酵素複合体。 The enzyme complex according to claim 1, which is represented by:
6. 親水性ポリマー鎖が、ポリ (エチレングリ コール)に由来し、かつ、 疎水性基がポリ (乳酸) に由来する請求項 1に記載の酵素複合体。  6. The enzyme complex according to claim 1, wherein the hydrophilic polymer chain is derived from poly (ethylene glycol), and the hydrophobic group is derived from poly (lactic acid).
7. 親水性ポリマ一鎖の末端に荷電性基を 1ないし多数有するポリマ 一が、 式 : 7. A polymer having one or more chargeable groups at one end of a hydrophilic polymer chain has the formula:
CH3OCH2CH2CH20-(CH2CH20)n- (CH2C(CH3》 H CH 3 OCH 2 CH 2 CH 2 0- (CH 2 CH 20 ) n- (CH 2 C (CH 3 》 H
COOCH2CH2N(R)2 上式中、 mおよび nは、 独立して、 2〜 2 0 , 0 0 0の整数であり、COOCH 2 CH 2 N (R) 2 In the above formula, m and n are each independently an integer of 2 to 20,
Rは C 一 C 3アルキル基である、 R is a C 1 -C 3 alkyl group,
で表される請求項 1に記載の酵素複合体。 The enzyme complex according to claim 1, which is represented by:
8. 親水性ポリマー鎖の末端に荷電性基を 1ないし多数有するポリマ 一が、 式:  8. A polymer having one or many charged groups at the end of a hydrophilic polymer chain has the formula:
Figure imgf000018_0001
Figure imgf000018_0001
上式中、 m, nおよび xは、 独立して、 2〜 2 0 , 0 0 0の整数であ り、R 1は水素またはメチル基であり、1 2は〇 1—〇 3ァルキル基でぁり、 R 3は水素または C!一 C 5アルキル基である、 In the above formula, m, n, and x are each independently an integer of 2 to 20, 000, R 1 is hydrogen or a methyl group, and 12 is 〇 1 —〇 3 alkyl group. Ari, R 3 is hydrogen or C! Is an C 5 alkyl group,
である請求項 1に記載の酵素複合体。 2. The enzyme complex according to claim 1, which is:
9. 水不溶性微小粒子の表面に、 親水性ポリマー鎖の末端に荷電性基 もしくは疎水性基を 1ないし多数有するポリマーおよび酵素が非共有結 合的にバインディングした酵素複合体。  9. An enzyme complex in which a polymer having one or many charged or hydrophobic groups at the end of a hydrophilic polymer chain and an enzyme are non-covalently bound on the surface of water-insoluble microparticles.
1 0. 微小粒子が、 コロイ ド状金、 コロイ ド状銀、 コロイ ド状酸化ァ ルミ二ゥム、 コロイ ド状シリカ、 コロイ ド状酸化チタン、 微小磁鉄鋼粒 子、 およびコロイ ド状半導体からなる群より選ばれる請求項 9に記載の 酵素複合体。  10. Microparticles from colloidal gold, colloidal silver, colloidal aluminum oxide, colloidal silica, colloidal titanium oxide, micromagnetic steel particles, and colloidal semiconductor The enzyme complex according to claim 9, which is selected from the group consisting of:
1 1. 親水性ポリマー鎖が、 ポリ (エチレングリ コール)、 ポリ (メタク リル酸 2—ヒ ドロキシェチル)、ポリ (アタ リル酸 2—ヒ ドロキシェチル) ポリ (ビュルアルコール)、 ポリ (アタ リルァ ミ ド)、 ポリ (メタタ リルァ ミ ド)、 ポリ (N , N—ジメチルアク リルアミ ド)、 ポリ (N, N _ジメチ ノレメタク リルァミ ド)、 ポリ (ビニルピロ リ ドン)、 ァガロースおよびデキ ス トランからなる群より選ばれるポリマーに由来する請求項 9に記載の 酵素複合体。 1 1. When the hydrophilic polymer chain is poly (ethylene glycol), poly (meth Poly (N-N-N-dimethylacrylamide) Poly (Butyl alcohol), Poly (Butyl alcohol), Poly (Atharylamide), Poly (Metharylamide), Poly (N-N-dimethylacrylamide) 10. The enzyme complex according to claim 9, which is derived from a polymer selected from the group consisting of poly (N, N-dimethylmethacrylamide), poly (vinylpyrrolidone), agarose and dextran.
1 2 . 親水性ポリマー鎖が、 ポリ (エチレングリ コール)、 ポリ (メタク リル酸 2—ヒ ドロキシェチル)、ポリ (アタ リル酸 2—ヒ ドロキシェチル) ポリ (ビニルアルコール)、 ポリ (アタ リルァミ ド)、 ポリ (メタク リルァミ ド)、 ポリ (N, N—ジメチルアク リルアミ ド)、 ポリ (N , N—ジメチ ノレメタク リノレアミ ド)、 ポリ (ビニルピロ リ ドン)、 ァガロースおよびデキ ス トランからなる群より選ばれるポリマーに由来し、かつ、荷電性基が、 一級、 二級もしくは三級ァミンを分子内に一種もしくは二種含む低分子 ァミン化合物に由来するか、 または一級、 二級もしくは三級アミンを反 復単位の側鎖もしくは主鎖内に一種もしくは二種含むポリマー鎖に由来 する請求項 9に記載の酵素複合体。  1 2. The hydrophilic polymer chain is composed of poly (ethylene glycol), poly (2-hydroxyl methacrylate), poly (2-hydroxyl acetylate) poly (vinyl alcohol), poly (atarylamide), Polymers selected from the group consisting of poly (methacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-dimethylmethacryloleamide), poly (vinylpyrrolidone), agarose and dextran And the chargeable group is derived from a low-molecular-weight amine compound containing one or two primary, secondary or tertiary amines in the molecule, or a repeating unit of a primary, secondary or tertiary amine. The enzyme complex according to claim 9, which is derived from a polymer chain containing one or two kinds in the side chain or main chain of the enzyme.
1 3 . 親水性ポリマー鎖の末端に荷電性基を 1ないし多数有するポリ マーが、 式 ( I ) :  13. A polymer having one or many charged groups at the terminal of a hydrophilic polymer chain is represented by the formula (I):
R 3 - L ! - ( C H 2 C H 2 O ) n - L 2 - X ( I ) 上式中、 R aは、 水素、 メ チル基、 アルデヒ ド基、 アミノ基、 カルボ キシル基、 マレイ ミ ド基、 p— トルエンスルホニル基またはビニルスノレ ホニル基であり、 R 3 -L! - (CH 2 CH 2 O) n - L 2 - in X (I) above formula, R a is hydrogen, methylation group, aldehyde group, amino group, carboxyl group, maleimidyl de group, p- toluene A sulfonyl group or a vinyl snolephonyl group,
および L。は、 独立して、 原子価結合またはリ ンカ一を表し、 nは、 2〜 2 0 , 0 0 0の整数であり、 そして And L. Represents independently a valence bond or a linker; n is an integer from 2 to 20, 00 00, and
Xは、 N—もしく は N , N—モノ も しく はジ一 C i— C 3アルキル置換 アミ ノ C i— C 2アルキル、 反復単位が 2ないし 2 0 , 0 0 0のオリ ゴ もしくはポリ (N—もしくは N , N—モノもしくはジ一 C — C gアルキ ル置換ァミ ノエチルメ タアタ リ レー ト) 鎖、 ポリエチレンイ ミ ン鎖、 ス ペルジミン鎖およびカダベリ ン鎖からなる群より選ばれる基またはオリ ゴもしくはポリマー鎖セグメントである、 X is, N- Moshiku is N, N- mono- be properly di one C i-C 3 alkyl substituted amino C i-C 2 alkyl, having 2 to repeating units 2 0 0 0 0 oligo or poly (N- or N, N-mono- or di-C-Cg alkyl-substituted aminoethylmethatalylate) a group selected from the group consisting of a chain, a polyethyleneimine chain, a sperdimine chain and a cadaverine chain; An oligo or polymer chain segment,
で表される請求項 1に記載の酵素複合体。 The enzyme complex according to claim 1, which is represented by:
1 4 . 微小粒子を、 酵素を溶解させた水溶液中に縣濁させて微小粒子 上にバインディングさせ、 次いで、 こう して得られた縣濁液に親水性ポ リマー鎖の末端に荷電性基もしくは疎水性基を 1ないし多数有するポリ マーを添加して酵素複合体が形成するのに十分な条件下でィンキュベー トして得られる請求項 9に記載の酵素複合体。  14. The microparticles are suspended in an aqueous solution in which an enzyme is dissolved and bound on the microparticles, and then the suspension obtained in this manner is charged with a charged group or a terminal at the end of the hydrophilic polymer chain. 10. The enzyme complex according to claim 9, which is obtained by adding a polymer having one or many hydrophobic groups and incubating the mixture under conditions sufficient to form an enzyme complex.
PCT/JP2005/000446 2004-01-31 2005-01-11 Enzyme composite WO2005073370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517409A JPWO2005073370A1 (en) 2004-01-31 2005-01-11 Enzyme complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004056812 2004-01-31
JP2004-56812 2004-01-31

Publications (1)

Publication Number Publication Date
WO2005073370A1 true WO2005073370A1 (en) 2005-08-11

Family

ID=34824506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000446 WO2005073370A1 (en) 2004-01-31 2005-01-11 Enzyme composite

Country Status (2)

Country Link
JP (1) JPWO2005073370A1 (en)
WO (1) WO2005073370A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092816A (en) * 2006-10-06 2008-04-24 Japan Science & Technology Agency Method for using thermostable enzyme
CN109251924A (en) * 2018-09-30 2019-01-22 江南大学 A kind of preparation method of dynamic key polymer and its application in terms of improving enzyme heat stability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188541A (en) * 1995-01-10 1996-07-23 Res Dev Corp Of Japan Medicinal substance carrier of electrostatical binding type polymer micelle and medicine using the same
WO1996032434A1 (en) * 1995-04-14 1996-10-17 Kazunori Kataoka Polyethylene oxides having saccharide residue at one end and different functional group at another end, and process for producing the same
WO1996033233A1 (en) * 1995-04-19 1996-10-24 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
WO1997006202A1 (en) * 1995-08-10 1997-02-20 Kazunori Kataoka Block polymer having functional groups at both ends
WO1998046655A1 (en) * 1997-04-14 1998-10-22 Yukio Nagasaki Methacrylic polymer having terminal functional group and composition thereof
JP2002080903A (en) * 2000-09-08 2002-03-22 Japan Science & Technology Corp Functional metallic fine particle with stabilized dispersion and semiconductor fine particle and method for producing the same
WO2002097436A1 (en) * 2001-05-30 2002-12-05 Mitsubishi Kagaku Iatron, Inc. Core-shell type particles having signal-generating substance enclosed therein and process for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188541A (en) * 1995-01-10 1996-07-23 Res Dev Corp Of Japan Medicinal substance carrier of electrostatical binding type polymer micelle and medicine using the same
WO1996032434A1 (en) * 1995-04-14 1996-10-17 Kazunori Kataoka Polyethylene oxides having saccharide residue at one end and different functional group at another end, and process for producing the same
WO1996033233A1 (en) * 1995-04-19 1996-10-24 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
WO1997006202A1 (en) * 1995-08-10 1997-02-20 Kazunori Kataoka Block polymer having functional groups at both ends
WO1998046655A1 (en) * 1997-04-14 1998-10-22 Yukio Nagasaki Methacrylic polymer having terminal functional group and composition thereof
JP2002080903A (en) * 2000-09-08 2002-03-22 Japan Science & Technology Corp Functional metallic fine particle with stabilized dispersion and semiconductor fine particle and method for producing the same
WO2002097436A1 (en) * 2001-05-30 2002-12-05 Mitsubishi Kagaku Iatron, Inc. Core-shell type particles having signal-generating substance enclosed therein and process for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GOLE A. ET AL: "Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity", LANGMUIR, vol. 17, no. 5, 2001, pages 1674 - 1679, XP002988241 *
KAWASE M. ET AL: "Effects of non-covalent interaction of dimethyl suberimidate on lipase stability", AGRIC BIOL CHEM, vol. 54, no. 10, 1990, pages 2605 - 2609, XP002988244 *
MUKHOPADHYAY K. ET AL: "Gold nanoparticles assembled on amine-functionalized Na-Y zeolite: A biocompatible surface for enzyme immobilization", LANGMUIR, vol. 19, no. 9, 2003, pages 3858 - 3863, XP002988242 *
NAGASAKI Y. ET AL: "A Novel Synthesis of Semitelechelic Functional Poly(methacrylate)s through an Alkolate Initiated Polymerization. Synthesis of Poly[2-(N,N-diethylaminoethyl)methacrylate] Macromonomer", MACROMOL RAPID COMMUN, vol. 18, no. 9, 1997, pages 827 - 835, XP000721457 *
OTSUKA H. ET AL: "PEGylated nanoparticles for biological and pharmaceutical applications", ADVANCED DRUG DELIVERY REVIEWS, vol. 55, no. 3, 2003, pages 403 - 409, XP002988243 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092816A (en) * 2006-10-06 2008-04-24 Japan Science & Technology Agency Method for using thermostable enzyme
CN109251924A (en) * 2018-09-30 2019-01-22 江南大学 A kind of preparation method of dynamic key polymer and its application in terms of improving enzyme heat stability

Also Published As

Publication number Publication date
JPWO2005073370A1 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US6573313B2 (en) Amphiphilic core-shell latexes
EP2542889B1 (en) Ligand guanidinyl functionalized polymers
Wischerhoff et al. Smart polymer surfaces: Concepts and applications in biosciences
US8067174B1 (en) Polymerase chain reaction (PCR) method for amplifying a DNA template
JP2010007081A (en) Azlactone-functional hydrophilic coating and hydrogel
JP2008540726A (en) NOVEL WATER SOLUBLE NANOCRYSTAL CONTAINING POLYMER COATING REAGENT AND METHOD FOR PREPARING THE SAME
US7846656B2 (en) Composition for polymerizing immobilization of biological molecules and method for producing said composition
JP2010539320A (en) Amphiphilic polymer and method for forming the same
Chen et al. Postpolymerization modification: a powerful tool for the synthesis and function tuning of stimuli‐responsive polymers
Song et al. Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst
JP2007071832A (en) Modified gold particles
Jiang et al. Nanoparticle-supported temperature responsive polymer brushes for affinity separation of histidine-tagged recombinant proteins
WO2005073370A1 (en) Enzyme composite
Yu et al. Lysozyme-imprinted polymer synthesized using UV free-radical polymerization
JP5217973B2 (en) Method for producing substance immobilization carrier
US20230272127A1 (en) Polymeric particles
EP3423511B1 (en) Anti-fouling and specific binding surface, dispersions comprising particles having such surfaces, and methods of making these
CN111108200A (en) Flow cell with reactive surface for nucleic acid sequence analysis
Glebe et al. Synthetic Modifications of Proteins
EP3470443A1 (en) Micro/nanomaterial, product thereof with surface covalently modified with hydrophilic material, and manufacturing method
JP4171982B2 (en) Biochip
US5077344A (en) Polymer modification
WO2003008570A1 (en) A method for immobilizing molecules with physiological activity
Rodríguez López de Abetxuko Dressing enzymes with tailored nanogels as a versatile approach for the development of heterogeneous biocatalysts.
Banerjee et al. Wang et a

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517409

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase