WO2005071492A1 - Positive electrification toner - Google Patents

Positive electrification toner Download PDF

Info

Publication number
WO2005071492A1
WO2005071492A1 PCT/JP2005/000984 JP2005000984W WO2005071492A1 WO 2005071492 A1 WO2005071492 A1 WO 2005071492A1 JP 2005000984 W JP2005000984 W JP 2005000984W WO 2005071492 A1 WO2005071492 A1 WO 2005071492A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica fine
positively chargeable
fine particles
chargeable toner
particles
Prior art date
Application number
PCT/JP2005/000984
Other languages
French (fr)
Japanese (ja)
Inventor
Genichi Ohta
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004018325A external-priority patent/JP2005215033A/en
Priority claimed from JP2004094675A external-priority patent/JP2005283745A/en
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2005071492A1 publication Critical patent/WO2005071492A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds

Definitions

  • the present invention relates to a positively chargeable toner for developing an electrostatic latent image formed by an electrophotographic method, an electrostatic recording method, or the like, and more specifically, to a toner after storage in a high temperature state.
  • the present invention relates to a positively chargeable toner which is less durable and has excellent durability.
  • Electrophotography generally involves forming an electric latent image on a photoreceptor by various means, then developing the latent image with toner to form a visible image, and transferring the image onto paper or an OHP sheet. After transferring the visible toner to the transfer material, fix the transferred toner on the transfer material by heat or pressure to obtain a printed material.
  • the binder resin of the toner is reduced in Tg or a release agent such as wax is added, the binder resin melts when the toner is kept stored at a high temperature. Or the release agent bleeds to the surface of the toner particles, which tends to cause blocking of the toner.
  • the toner particles are encapsulated in a core-shell type to suppress the melting of the binder resin and the bleeding of the release agent, and by adding an external additive, the fluidity of the toner is reduced. It has been proposed to enhance
  • Patent Document 1 discloses a toner particle (colored resin particle) containing at least a colorant and a binder resin, and a large negatively chargeable inorganic material having a number average particle size of 80 to 800 nm.
  • a positively chargeable toner for developing an electrostatic latent image comprising a mixture of particles and inorganic particles having a small number of positively chargeable particles having a number average particle diameter of 5-50 nm.
  • the toner disclosed in Reference 1 has problems such as fogging after being stored at a high temperature and a decrease in durability.
  • Patent Document 2 discloses a toner treated with a specific amino-substituted silane compound and an organopolysiloxane and added with a silica powder having a triboelectric charge amount with respect to iron and a hydrophobicity in a specific range. Have been. It is disclosed that the toner disclosed in the patent document can suppress generation of capri and deterioration of image quality. However, the toner disclosed in the patent document has a problem that fog occurs when the number of printed sheets increases.
  • Patent Document 3 discloses dry silica fine powder having a positively charged polar group and a hydrophobic group on the surface, and wet silica fine powder having both a positively charged polar group and a fluorine-containing charged polar group on the surface.
  • a developer (toner) externally added to toner particles (colored resin particles) is disclosed by using in combination. It is disclosed that the toner disclosed in this patent document has excellent durability and environmental stability. However, the toner disclosed in the patent document has a problem that fogging occurs when the number of printed sheets increases.
  • Patent Document 4 discloses a method in which a silica fine particle which contains colored resin particles and an external additive, has a number average particle diameter of about 30 nm as an external additive, and has been subjected to a hydrophobic treatment with a specific treating agent, and Further, an electrostatic latent image developing toner containing silica fine particles having a number average particle diameter of 30-100 nm is disclosed.
  • a silica fine particle which contains colored resin particles and an external additive
  • Patent Document 4 has a number average particle diameter of about 30 nm as an external additive, and has been subjected to a hydrophobic treatment with a specific treating agent, and Further, an electrostatic latent image developing toner containing silica fine particles having a number average particle diameter of 30-100 nm is disclosed.
  • further improvement has been desired in which the occurrence of fogging after storage in a high-temperature state and the reduction in durability are not sufficiently suppressed.
  • Patent Document 1 JP-A-2000-122337
  • Patent Document 2 JP-A-5-94037
  • Patent Document 3 JP-A-11-143111
  • Patent Document 4 JP 2002-244340 A
  • an object of the present invention is to provide a positively chargeable toner which is less likely to generate fog even after being stored in a high temperature state and has excellent durability.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the colored resin particles and the external additive
  • the surface is treated with an amino group-containing compound, silica fine particles having a hydrophobicity and a charge amount in a specific range, and a charge amount in a specific range. It has been found that the above object can be achieved by incorporating certain silica fine particles.
  • the present invention has been made based on the above findings, and is a positively chargeable toner containing colored resin particles and an external additive, wherein the external additive is treated with a compound having an amino group-containing surface.
  • a positively chargeable toner having less fog and excellent durability.
  • the positively chargeable toner of the present invention contains colored resin particles and an external additive.
  • the external additive adheres to the colored resin particles or is partially carried. Further, the external additive may be partially dropped from the colored resin particles.
  • the external additive constituting the positively chargeable toner of the present invention contains fine silica particles (A) and fine silica particles (B) described later. By using the silica fine particles (A) and (B) together as an external additive, it is possible to obtain a positively chargeable toner having less fog and excellent durability.
  • the surface of the silica fine particles (A) is treated with an amino group-containing compound.
  • the amino group-containing compound include, for example, secondary amine compounds such as N-ethyl- ⁇ -aminopropyltrimethoxysilane and diphenylamine, ⁇ -aminopropyltriethoxysilane, ⁇ - (2-aminoethyl Silane coupling agents such as silane, ⁇ - (2-aminoethyl) 3-aminopropyltrimethoxysilane, ⁇ -j3- ( ⁇ -vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane, and amino And silicone oils such as modified silicone oils.
  • the contained compounds can be used alone or in combination of two or more.
  • the above-mentioned treatment is preferably carried out with the above-mentioned secondary amine compound, more preferably with a secondary amine compound having a phenyl group, particularly when the printing quality due to release of external additives is reduced. Is less likely to occur.
  • the secondary amine compound having a phenyl group include N-phenyl-y-aminopropyltrimethoxysilane.
  • Examples of the method of treating the silica fine particles (A) with the above-mentioned amino group-containing compound include a common method, for example, a dry method and a wet method.
  • the charge amount of the silica fine particles can be adjusted by adjusting the amount of the amino group-containing compound used, and silica fine particles (A) having a desired charge amount can be obtained.
  • the charge amount of the silica fine particles (A) treated with the amino group-containing compound is -700-0 ⁇ c / g, preferably f-500 ⁇ c / g, particularly preferably f It is 400-0 ⁇ c / g.
  • the charge amount of the silica fine particles can be measured by the method described below.
  • the preparation method of the silica fine particles (A) contained in the positively chargeable toner of the present invention is limited as long as the silica fine particles (A) have the above charge amount. However, it is preferable to use 0.1 to 10 parts by weight of an amino group-containing compound with respect to 100 parts by weight of untreated silica fine particles.
  • the silica fine particles (A) have a degree of hydrophobicity of at least 40%, preferably at least 55%, as measured by the methanol method. If the degree of hydrophobicity is less than 40%, the influence of the environment becomes large, and particularly under high temperature and high humidity, the charge may be reduced and fog may be easily generated. In order to keep the degree of hydrophobicity of the silicic acid fine particles (A) within the above range, it is preferable to use a hydrophobizing agent such as a commonly used silane coupling agent ⁇ silicone oil.
  • the hydrophobizing method is a method of dropping or spraying the treating agent while stirring the silica fine particles at a high speed, dissolving the treating agent with an organic solvent, and stirring the organic solvent containing the treating agent with the silica.
  • a method of adding fine particles and the like can be mentioned.
  • the treating agent may be diluted with an organic solvent or the like before use.
  • the silane coupling agent include hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, and methinoletrichloro.
  • silicone oil examples include dimethylpolysiloxane, methylhydrogenpolysiloxane, and methylphenylpolysiloxane.
  • the silica fine particles ( ⁇ ) may be simultaneously treated with the amino group-containing compound and the treatment agent.
  • the BET specific surface area of the silica fine particles ( ⁇ ) by nitrogen adsorption is preferably from 10 to 80 m 2 / g, and more preferably from 2060 m 2 Zg. When the BET specific surface area is in the above range, it is preferable because generation of blur and reduction in durability can be suppressed.
  • the BET specific surface area by nitrogen adsorption is a value measured by the BET method according to ASTM D3037-81.
  • the bulk density of the silica fine particles (A) is preferably from 50 to 250 g / l, more preferably from 80 to 200 g / 1. It is preferable that the bulk density of the silica fine particles (A) is in the above range because filming and fogging on the photoreceptor and reduction in cleaning property can be suppressed.
  • the silica fine particles (A) preferably have a volume average particle size of primary particles of 0.05 to 1.0 / im, more preferably 0.08 to 1.0 ⁇ , More preferably, it is 0.1-1.0 / im, particularly preferably 0.1-0.3 / im.
  • the silica fine particles (A) contained in the external additive constituting the positively chargeable toner of the present invention when counted from the small particle diameter side in the volume standard distribution, have a particle diameter corresponding to 10% as DvlO, Similarly, assuming that the particle size corresponding to 50% is Dv50, i (Dv50 / Dvl0) between Dv50 and DvlO is preferably 1.8 or more, more preferably 2 or more. When Dv50 / Dvl0 is 1.8 or more, a positively chargeable toner capable of suppressing blocking and filming on the photoreceptor. You can get a ner.
  • the method for measuring the particle size and the particle size distribution of the silica fine particles (A) is not particularly limited.However, for example, the silica fine particles (A) are dispersed in water, and the dispersion of the silica fine particles (A) is subjected to a laser method. It can be measured using a particle size distribution analyzer (trade name “Microtrac UPA150” manufactured by Nikkiso Co., Ltd.).
  • the fine silica particles (A) preferably have a sphericity of 1-1.3, more preferably 1-1.2. When the sphericity is in the range of 1.1-3, a positively chargeable toner having excellent environmental stability can be obtained.
  • the sphericity means a value (Sc / Sr) obtained by dividing an area (Sc) of a circle having a diameter based on an absolute maximum length of a particle by a substantial projected area (Sr) of the particle. Then, it can be measured as follows.
  • the sphericity was determined by taking an electron micrograph of the silica microparticles (A) and using the image processing and analysis equipment, Lusettas IID (manufactured by NIRECO), to increase the area ratio of the particles to the frame area by up to 2% and the total number of processed particles. Is measured under 100 conditions, and the sphericity of the obtained 100 silica fine particles (A) is averaged.
  • the amount of the silica fine particles (A) is usually 0.3 to 5 parts by weight, preferably 0.5 to 3 parts by weight, more preferably 0.5 to 3 parts by weight based on 100 parts by weight of the colored resin particles. 3-3 parts by weight.
  • amount of the silica fine particles (A) is in the above range, a positively chargeable toner free from fogging and blurring can be obtained. .
  • the fine silica particles (B) contained in the positively chargeable toner of the present invention have a charge amount of 500-1000.
  • Fogging occurs when the charge amount power is S500 ⁇ c / g or less / J, and when it is more than 1000 ⁇ c / g, the print density decreases.
  • the BET specific surface area of the silica fine particles (B) by nitrogen adsorption is preferably 150 to 300 m 2 / g, more preferably 170 to 280 m 2 Zg.
  • the BET specific surface area is within the above range, it is possible to obtain a positively chargeable toner without causing blurring.
  • the degree of hydrophobicity is preferably 40% or more, and more preferably 55% or more. If the degree of hydrophobicity is greater than 40%, the influence of the environment is reduced, and the charge is reduced or fogged especially under high temperature and high humidity. No longer occurs.
  • the amount of the silica fine particles (B) is preferably 0.1 to 3 parts by weight, more preferably 0.3 to 2 parts by weight, based on 100 parts by weight of the colored resin particles.
  • the amount of the silica fine particles (B) is within the above range, a decrease in fluidity and a decrease in environmental stability can be suppressed.
  • the use ratio of the silica fine particles (A) and the silica fine particles (B) used in the present invention is preferably 30: 70-70: 30 force by weight ratio, and more preferably 40:60 60:40 force S. It is preferable that the use range be within this range, since the occurrence of fogging can be suppressed.
  • the positively chargeable toner of the present invention may contain, as an external additive, an external additive usually used in toners in addition to the above-mentioned silica fine particles (A) and silica fine particles (B).
  • Such external additives include inorganic particles and organic resin particles.
  • the inorganic particles include silica particles other than the silica fine particles (A) and silica fine particles (B), aluminum oxide, titanium oxide, and zinc oxide.
  • organic resin particles such as methacrylate ester polymer particles, acrylate polymer particles, styrene-methacrylate copolymer particles, styrene acrylate copolymer particles, and a core.
  • Core-shell particles, fluororesin particles, silicone resin particles, melamine resin particles, and the like formed of a styrene polymer and having a shell strength of S methacrylate polymer are exemplified.
  • the colored resin particles constituting the positively chargeable toner of the present invention are particles containing at least a binder resin and a colorant, and additionally contain a release agent and a charge control agent.
  • a magnetic material or the like may be contained as necessary.
  • binder resin examples include resins widely used in conventional toners such as polystyrene, styrene butyl acrylate copolymer, polyester resin, and epoxy resin.
  • any colorant and dye can be used in addition to carbon black, titanium black, magnetic powder, oil black, and titanium white.
  • a black carbon black having a primary particle diameter of 20 to 40 nm is preferably used. When the particle size is in this range, carbon black can be uniformly dispersed in the positively chargeable toner, and fogging can be reduced.
  • a full-color toner When a full-color toner is obtained, usually a yellow colorant, a magenta colorant and a shear colorant are used. Use colorants.
  • yellow colorant for example, an azo colorant, a condensed polycyclic colorant, or the like is used.
  • magenta colorant for example, an azo colorant, a condensed polycyclic colorant, or the like is used.
  • cyan colorant for example, copper phthalocyanine conjugates and derivatives thereof, and anthraquinone conjugates can be used. Specifically, C.I. pigment blue 2, 3, 6, 15, 15: 1, 15: 2, 15: 3, 15: 4, 16, 17, and 60 and the like can be mentioned.
  • One, two or more yellow colorants, magenta colorants and cyan colorants can be used in combination.
  • the amount of the coloring agent is preferably 110 parts by weight based on 100 parts by weight of the binder resin.
  • release agent examples include polyolefin waxes such as low molecular weight polyethylene, low molecular weight polypropylene and low molecular weight polybutylene; natural plant waxes such as candelilla, carnauba, rice, wood wax, jojoba; paraffin, microcrystalline Waxes such as petroleum and petrolatum and modified waxes thereof; synthetic waxes such as Fischer-Tropsch wax; Polyfunctional ester compounds such as myristate; and the like.
  • polyolefin waxes such as low molecular weight polyethylene, low molecular weight polypropylene and low molecular weight polybutylene
  • natural plant waxes such as candelilla, carnauba, rice, wood wax, jojoba
  • paraffin, microcrystalline Waxes such as petroleum and petrolatum and modified waxes thereof
  • synthetic waxes such as Fischer-Tropsch wax
  • Polyfunctional ester compounds such as myristate; and the like.
  • the release agent can be used alone or in combination of two or more.
  • a synthetic wax and a polyfunctional ester compound are preferable.
  • 2-6 functional polyfunctional ester compounds are more preferably used.
  • the endothermic peak temperature at the time of temperature rise is preferably 30 to 150 ° C, more preferably 40 to 130 ° C, and most preferably 50 to 110 ° C.
  • those having a molecular weight of 1000 or more, dissolving at least 5 parts by weight with respect to 100 parts by weight of styrene at 25 ° C, and having an acid value of 10 mgK / H / g or less have a remarkable effect on lowering the fixing temperature, and thus are further improved.
  • polyfunctional ester compounds dipentaerythritol-hexapalmitate and pentaerythritol tetramyristate are particularly preferred.
  • Endothermic peak temperature refers to the value measured by ASTM D3418-82.
  • the amount of the release agent is usually 0.120 parts by weight, preferably 515 parts by weight, based on 100 parts by weight of the binder resin.
  • the positively chargeable toner of the present invention preferably contains a charge control agent.
  • a charge control agent a positive charge control agent conventionally used in toner can be used without any limitation.
  • the positive charge control agents used it is preferable to include a positive charge control resin.
  • the reason for this is that the charge control resin has high compatibility with the binder resin, is colorless, and can provide a positively chargeable toner having stable chargeability even in high-speed continuous color printing.
  • the charge control resin is manufactured as described in JP-A-63-60458, JP-A-3-175456, JP-A-3-243954, and JP-A-11-15192 as a positive charge control resin.
  • a quaternary ammonium (salt) group-containing copolymer can be used.
  • the amount of the monomer unit having a quaternary ammonium (salt) group contained in these copolymers is preferably 0.5 to 15% by weight, more preferably 110 to 10% by weight. When the content is within this range, it is easy to control the charge amount of the positively chargeable toner, and the occurrence of fog can be reduced.
  • the charge control resin those having a weight average molecular weight of 2,000 50,000 are preferred, and those having a weight average molecular weight of 4,000 to 40,000 S are more preferred, and those having a weight average molecular weight of 6,000 to 35,000 are more preferred. Most preferred When the weight average molecular weight of the charge control resin is in the above range, it is possible to suppress occurrence of offset and deterioration of fixability.
  • the glass transition temperature of the charge control resin is preferably 40 to 80 ° C, more preferably 45 to 75 ° C, and most preferably 45 to 70 ° C. Glass transition temperature is in the above range In this case, it is possible to suppress a decrease in the storability and fixability of the positively chargeable toner.
  • the amount of the above-mentioned charge controlling agent is usually 0.01 to 20 parts by weight, preferably 0.3 to 10 parts by weight, based on 100 parts by weight of the binder resin.
  • the colored resin particles which are obtained by combining two different polymers inside (core layer) and outside (shell layer) of the particles, so-called core-shell type fires are also called “capsule type”. ) are preferred.
  • core-shell type particles by lowering the softening point material inside (core layer) with a material having a higher softening point, it is possible to balance between lowering the fixing temperature and preventing aggregation during storage. It is preferable because it is possible.
  • the core layer of the core-shell type particles is composed of the binder resin and the colorant, and if necessary, contains a charge control agent and a release agent.
  • the shell layer is composed of only the binder resin.
  • the weight ratio of the core layer to the shell layer of the core-shell type particles is not particularly limited, but is usually from 80/20 to 99.9 / 0.1.
  • the ratio of the shell layer By setting the ratio of the shell layer to the above ratio, it is possible to have both the storage property of the positively chargeable toner and the fixability at a low temperature.
  • the average thickness of the shell layer of the core-shell type particles is usually 0.001 to 0.1 / im, preferably 0.003 to 0.08 ⁇ , more preferably 0.005 to 0.05 / im. It is believed that there is.
  • the fixability decreases, and when the thickness force S decreases, the storability may decrease.
  • all the surfaces of the core particles forming the core-shell type colored resin particles do not need to be covered with the shell layer, and it is sufficient if a part of the surface of the core particles is covered with the shell layer.
  • the core particle diameter and the shell layer thickness of the core-shell type particles can be observed by an electron microscope, they can be obtained by directly measuring the particle size and shell thickness selected at random from the observation photograph. When it is difficult to observe the core and the shell at the same time, it can be calculated from the particle size of the core particles and the amount of the monomer forming the shell used in producing the positively chargeable toner.
  • the colored resin particles constituting the positively chargeable toner of the present invention preferably have a volume average particle size (Dv) of 315 xm, and more preferably 412 x 12 m. If Dv is less than 3 xm, the fluidity of the positively chargeable toner will decrease, resulting in poor transferability, blurring, and printing. Density may be reduced, image resolution may be reduced above 15 / im
  • the colored resin particles constituting the positively chargeable toner of the present invention have a ratio (Dv / Dp) force between the volume average particle diameter (Dv) and the number average particle diameter (Dp), preferably 1.0-1. 3 and more preferably 1.0-1.2.
  • DvZDp exceeds 1.3, blurring may occur and transferability, print density, and resolution may decrease.
  • the volume average particle size and the number average particle size of the colored resin particles can be measured using, for example, Multisizer 1 (manufactured by Beckman Coulter, Inc.).
  • the colored resin particles constituting the positively chargeable toner of the present invention preferably have a sphericity of 1.0-1.3 and a sphericity of 1.0-1.2. It is even more preferred to use certain ones.
  • the transferability may be reduced, and the flowability of the positively chargeable toner may be reduced, and the toner may be easily blurred.
  • the sphericity of the colored resin particles can be measured in the same manner as in the case of the silica fine particles (A).
  • the method for producing the colored resin particles is not particularly limited, but is preferably produced by a polymerization method such as a suspension polymerization method or an emulsion polymerization aggregation method, and particularly preferably produced by a suspension polymerization method. preferable.
  • the colored resin particles constituting the positively chargeable toner of the present invention are obtained by dissolving or dispersing a colorant, a charge control agent and other additives in a polymerizable monomer which is a raw material of a binder resin, and Can be produced by adding a polymerization initiator in an aqueous dispersion medium containing, polymerizing, and filtering, washing, dehydrating and drying.
  • Examples of the polymerizable monomer include a monovinyl monomer, a crosslinkable monomer, and a macromonomer. This polymerizable monomer is polymerized to become a binder resin component.
  • Examples of the monobutyl monomer include aromatic vinyl monomers such as styrene, butyl toluene, and methyl styrene; (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
  • (Meth) acrylic monomers such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobonyl (meth) acrylate; ethylene, propylene, butylene And the like.
  • the monobutyl monomer may be used alone or in combination of a plurality of monomers.
  • an aromatic vinyl monomer alone or a combination of an aromatic vinyl monomer and a (meth) acrylic monomer is preferably used.
  • the crosslinkable monomer is a monomer having two or more vinyl groups. Specific examples thereof include divininolebenzene, divininolenaphthalene, ethylene glycolone methacrylate, pentaerythritol triallyl ether, and trimethylolpropane triatalylate. These crosslinkable monomers can be used alone or in combination of two or more.
  • the amount of the crosslinkable monomer is usually 10 parts by weight or less, preferably 0.1 to 12 parts by weight, per 100 parts by weight of the monovinyl monomer.
  • the macromonomer has a polymerizable carbon-carbon unsaturated double bond at the terminal of the molecular chain, and is an oligomer or polymer having a number average molecular weight of usually 1,000 to 30,000.
  • the macromonomer is preferably one that gives a polymer having a glass transition temperature higher than the glass transition temperature of the polymer obtained by polymerizing the monobutyl monomer.
  • the amount of the macromonomer is usually 0.01 to 10 parts by weight, preferably 0.03 to 5 parts by weight, more preferably 0.05 to 1 part by weight based on 100 parts by weight of the monovinyl monomer.
  • Examples of the polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate; 4,4, -azobis (4-cyanovaleric acid), 2,2, -azobis (2-methyl-N- ( 2-hydroxysethyl) propionamide, 2,2, azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile Azo compounds such as di-t-butylperoxide, benzoylperoxide, t_butylperoxy_2_ethylhexanoate, t-hexylperoxy_2_ethylhexanoate, t_butylperoxypivalate, Peroxides such as di-isopropylperoxydicarbonate, di-t-butylperoxyisophthalate, and t-butylperoxyisobutyrate;
  • the amount of the polymerization initiator used in the polymerization of the polymerizable monomer is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 100 parts by weight of the polymerizable monomer. -15 parts by weight, most preferably 0.5-10 parts by weight.
  • the polymerization initiator may be preliminarily added to the polymerizable monomer composition, but may be added to the aqueous dispersion medium after the formation of the droplets in some cases.
  • dispersion stabilizer examples include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; phosphates such as calcium phosphate; and metal oxides such as aluminum oxide and titanium oxide. And metal hydroxides such as ethanol, magnesium hydroxide, and ferric hydroxide; water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and gelatin; anionic surfactants and nonionics And amphoteric surfactants.
  • the above-mentioned dispersion stabilizers can be used alone or in combination of two or more.
  • metal compounds particularly dispersion stabilizers containing colloids of poorly water-soluble inorganic hydroxides, can narrow the particle size distribution of polymer particles, This is preferable because the amount of the stabilizer remaining after washing is small and an image can be clearly reproduced.
  • the colloid of the poorly water-soluble metal hydroxide has a particle size (Dp50) of 0.5% or less in the number particle size distribution where the total number of particles calculated from the small particle size side is 50% or less.
  • the particle size (Dp90) for which the cumulative number calculated from the small particle size side is 90% is 1 ⁇ m or less.
  • the amount of the dispersion stabilizer is preferably 0.120 parts by weight based on 100 parts by weight of the polymerizable monomer. If the amount of the dispersion stabilizer is less than 0.1 part by weight, it is difficult to obtain sufficient polymerization stability, and it may be easy to form a polymerized aggregate. Then, the particle diameter of the positively chargeable toner after polymerization may become too small to be practical.
  • a molecular weight modifier In the polymerization, it is preferable to use a molecular weight modifier.
  • the molecular weight regulator Examples thereof include mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan, and 2,2,4,6,6-pentamethylheptane-14-thiol.
  • the above-mentioned molecular weight modifier can be added before or during the polymerization.
  • the amount of the molecular weight modifier is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the polymerizable monomer.
  • the method for producing the above-described preferred core-shell type colored resin particles is not particularly limited, and can be produced by a conventionally known method.
  • methods such as a spray drying method, an interfacial reaction method, an in situ polymerization method, and a phase separation method may be mentioned.
  • core-shell type colored resin particles can be obtained by using the colored resin particles obtained by a pulverization method, a polymerization method, an association method or a phase inversion emulsification method as a core particle and coating a shell layer thereon.
  • an in situ polymerization method and a phase separation method are preferable from the viewpoint of production efficiency.
  • a polymerizable monomer (polymerizable monomer for shell) for forming a shell and a polymerization initiator are added to an aqueous dispersion medium in which core particles are dispersed, and the mixture is polymerized to give a color having a core-shell structure. Resin particles can be obtained.
  • a method of continuously polymerizing by adding a polymerizable monomer for the shell to the reaction system of the polymerization reaction performed to obtain the core particles, or using another reaction system A method in which the obtained core particles are charged, a polymerizable monomer for shell is added thereto, and polymerization is performed.
  • the polymerizable monomer for shell may be added to the reaction system at once, or may be added continuously or intermittently using a pump such as a plunger pump.
  • polymerizable monomer for the shell monomers that form a polymer having a glass transition temperature of more than 80 ° C, such as styrene, acrylonitrile, and methyl methacrylate, may be used alone or in combination. These can be used in combination.
  • a water-soluble polymerization initiator When a polymerizable monomer for shell is added, it is preferable to add a water-soluble polymerization initiator, since it becomes easier to obtain colored resin particles having a core-shell structure.
  • a water-soluble polymerization initiator is added during the addition of the shell polymerizable monomer, the shell polymerizable monomer is transferred. It is considered that the water-soluble polymerization initiator moves to the vicinity of the outer surface of the core particles, and a polymer (shell) is easily formed on the surface of the core particles.
  • water-soluble polymerization initiator examples include persulfates such as potassium persulfate and ammonium persulfate; 2,2,2-azobis (2_methyl_N_ (2-hydroxyethyl) propionamide), 2,2, And azo-based initiators such as azo bis-mono (2-methyl-N- (1,1-bis (hydroxymethinole) 2-hydroxyethyl) propionamide).
  • the amount of the water-soluble polymerization initiator is usually 0.1 to 30 parts by weight, preferably 111 to 20 parts by weight, based on 100 parts by weight of the polymerizable monomer for shell.
  • the temperature at the time of polymerization is preferably 50 ° C or higher, and more preferably 60 to 95 ° C.
  • the reaction time is preferably 1 to 20 hours, more preferably 2 to 15 hours, particularly preferably 2 to 10 hours. After completion of the polymerization, it is preferable that the operations of filtration, washing, dehydration and drying are repeated several times as necessary according to a conventional method.
  • an aqueous dispersion of colored resin particles obtained by polymerization when an inorganic compound such as an inorganic hydroxide is used as a dispersion stabilizer, an acid or alkali is added to the dispersion to disperse the dispersion stabilizer in water. It is preferable to dissolve and remove.
  • an acid or alkali is added to the dispersion to disperse the dispersion stabilizer in water. It is preferable to dissolve and remove.
  • a colloid of a poorly water-soluble inorganic hydroxide is used as the dispersion stabilizer, it is preferable to adjust the pH of the aqueous dispersion to 6.5 or less by adding an acid.
  • inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid
  • organic acids such as formic acid and acetic acid
  • sulfuric acid is particularly preferred because of its high removal efficiency and less burden on production equipment. It is suitable.
  • the method for filtering and dehydrating the colored resin particles from the aqueous dispersion medium is not particularly limited.
  • a centrifugal filtration method, a vacuum filtration method, a pressure filtration method, and the like can be given. Of these, centrifugal filtration is preferred.
  • the positively chargeable toner of the present invention is obtained by mixing colored resin particles, silica fine particles (A) and silica fine particles (B), and if necessary, other fine particles with a high-speed stirrer such as a Henschel mixer. Is obtained by
  • the positively chargeable toner was evaluated by the following method.
  • the volume average particle size (Dv) and the particle size distribution of the colored resin particles that is, the ratio of the volume average particle size to the number average particle size (Dp) (DvZDp) were measured by a multisizer (manufactured by Beckman Coulter). .
  • the measurement of the volume average particle size and the particle size distribution by the multisizer was carried out under the conditions of an avatar diameter: 100 ⁇ m, a dispersion medium: Isoton II, a concentration: 10%, and the number of measured particles: 100,000.
  • silica fine particles 0.5 g were placed in a 100 ml beaker, a few drops of a surfactant were added, 50 ml of ion-exchanged water was added, and the mixture was dispersed for 5 minutes using an ultrasonic homogenizer US-150T. The volume average particle size and the particle size distribution were measured using Nikkiso Co., Ltd.).
  • the sphericity (Sc / Sr) of the value obtained by dividing the area (Sc) of the circle whose major axis is the absolute maximum length of the colored resin particles and the silica fine particles (A) by the actual projected area (Sr) of the particles is the electron density of each particle. Photographs were taken under a microscope, and the photographs were measured with an image processing analyzer Lusettas IID (manufactured by Nireco Co., Ltd.) under the conditions that the area ratio of the particles to the frame area was up to 2% and the total number of processed particles was 100. The average value of the calculated 100 pieces was defined as sphericity.
  • the degree of hydrophobicity of the silica fine particles was determined by a methanol method.
  • X is the amount of methanol used (ml).
  • Vibration of the silica fine particles to be measured is applied to a pre-weighed 100 ml measuring cylinder. It was soaked slowly so as not to have it. When the volume reaches 100 ml, the weight is measured together with the measuring cylinder, the difference between the weight before and after adding the silica fine particles is calculated, and the value is multiplied by 10 to obtain the bulk density (g / 1) of the silica fine particles (A). And
  • Silica fine particles 0.1 lg and 49.9 g of a carrier (product name: “EF80B2” manufactured by Powder Tech) were weighed into a 30 ml glass bottle, left at room temperature and a temperature of 23 ° C. and a humidity of 50% for 24 hours, and then ball milled. And stirred at 150 rpm for 30 minutes. 0.2 g of the stirred mixture of the silica fine particles and the carrier was weighed out, and the mixture was blown with nitrogen at a nitrogen pressure of 1. OkgfZm 2 using a blow-off powder charge amount measurement device (product name: TB_200, manufactured by Toshiba Chemical Corporation). Blowing was performed for 60 seconds, and the measured value force The charge amount ( ⁇ c / g) of the silica fine particles was calculated.
  • a carrier product name: “EF80B2” manufactured by Powder Tech
  • a specific surface area measuring device manufactured by Shimadzu Corporation, trade name "Flow Soap 2300" was used to adsorb nitrogen gas on the surface of silica fine particles and measured.
  • Positively chargeable toner was placed in a sealable container at 23 ° C and 50% humidity, and sealed. This container was stored in an environment at a temperature of 50 ° C for 5 days, opened, and returned to an environment of a temperature of 23 ° C and a humidity of 50%. The positively chargeable toner was taken out of the container, and the fog value was measured in the same manner as above using this positively chargeable toner. This was taken as the fog value after high-temperature storage.
  • Positively chargeable toner was placed in a sealable container at 23 ° C and 50% humidity, and sealed. This container was stored in an environment at a temperature of 50 ° C for 5 days, opened, and returned to an environment of a temperature of 23 ° C and a humidity of 50%. The positively chargeable toner was taken out of the container, and the durability was examined in the same manner as described above using the positively chargeable toner. This was taken as the durability after high-temperature storage.
  • the positively chargeable toner into the developing device of the printer used in (8), and put it in a 35 ° C, 80% humidity (H / H) environment, a 10 ° C temperature, 20% humidity (L / L) environment. After being left under the light for one day, the fog value at the time of printing the 100th sheet was measured in the same manner as in (8).
  • Positively chargeable toner was put into the developing device of the printer used in (8), and the durability test of (9) was performed. After that, the developing blade was observed to confirm the accumulation of the external additive.
  • the criteria are as follows.
  • silica fine particles were collected by a filter.
  • the collected silica fine particles are classified using an air classifier, and the primary particles have a volume average particle size of 0.1 ll / im, Dv50 / Dvl0 of 2.14, sphericity of 1.10, and BET ratio by nitrogen adsorption.
  • Silica fine particles having a surface area of 30 m 2 / g were obtained.
  • silica fine particles 200 parts were stirred in a stainless steel container equipped with a stirrer, and 1.2 parts of -aminopropyltriethoxysilane and 1.4 parts of hexamethyldisilazane were sprayed. After completion of the spraying, the mixture was maintained at 60 ° C for 10 hours under a nitrogen atmosphere, further heated to 150 ° C and maintained for 5 hours, and the remaining volatile components were removed by a nitrogen stream to obtain silica fine particles A1. .
  • the obtained silica fine particles A1 had a charge amount of ⁇ 80 zc / g, a BET specific surface area by nitrogen adsorption of 24 m 2 / g, a degree of hydrophobicity of 58%, and a bulk density of 130 gZl.
  • silica fine particles A2 The charge amount of the obtained silica fine particles A2 was -240 / ic / g, the BET specific surface area by nitrogen adsorption was 22 m 2 / g, the hydrophobicity was 62%, and the bulk density was 160 g / l. Was.
  • silica fine particles A3 The same procedures as in Production Example 1 were carried out, except that 1.7 parts of ⁇ -aminopropyltriethoxysilane and 1.4 parts of hexamethyldisilazane were used, to obtain silica fine particles A3.
  • the charge amount of the obtained silica fine particles A3 was 100 ⁇ c / g
  • the BET specific surface area by nitrogen adsorption was 21 m 2 / g
  • the degree of hydrophobicity was 59%
  • the bulk density was 130 g / l.
  • silica fine particles 4 The same operation as in Production Example 1 was carried out except that 0.1 part of ⁇ -aminopropyltriethoxysilane and 1.4 parts of hexamethyldisilazane were used, to obtain silica fine particles 4.
  • the charge amount of the obtained silica fine particles 4 was _780 ⁇ cZg, the BET specific surface area by nitrogen adsorption was 25 m 2 / g, the degree of hydrophobicity was 66%, and the bulk density was 140 gZl.
  • Silica fine particles with a Dv50ZDvlO force of 86, a sphericity of 1.38, and a BET specific surface area of 50 m 2 / g by nitrogen adsorption (manufactured by Nippon Aerosil Co., Ltd., trade name “AER ⁇ SIL 50 ”) 200 parts of ⁇ -aminopropyltriethoxysilane and 4.0 parts of silicone oil (Shin-Etsu Chemical Co., Ltd., trade name“ KF_96 ”) were used, and the operation was performed in the same manner as in Production Example 1.
  • the surface treatment of the silica fine particles was performed to obtain silica fine particles A5.
  • the obtained silica fine particles A5 had a charge of 800 ⁇ c / g, a BET specific surface area by nitrogen adsorption of 38 m 2 Zg, a degree of hydrophobicity of 85%, and a bulk density of 45 g / l.
  • silica fine particles A6 had a charge amount of ⁇ 550 zc / g, a BET specific surface area by nitrogen adsorption of 24 m 2 / g, a degree of hydrophobicity of 65%, and a bulk density of 160 gZl.
  • silica fine particles # 7. The same procedures as in Production Example 1 were carried out, except that 1.7 parts of ⁇ -aminopropyltrimethoxysilane were used instead of ⁇ -aminopropyltriethoxysilane, to obtain silica fine particles # 7. .
  • the obtained silica fine particles had a charge amount of ⁇ 310 / ic / g, a BET specific surface area by nitrogen adsorption of 23 m 2 / g, a degree of hydrophobicity of 75%, and a bulk density of 150 g / l. It was hot.
  • aqueous dispersion of the monomer mixture obtained as described above was put into a reactor equipped with a stirring blade, the temperature was raised, and the temperature was controlled to be constant at 90 ° C. .
  • a water-soluble initiator dissolved in 1 part of a polymerizable monomer for shell (methyl methacrylate) and 10 parts of ion-exchanged water (manufactured by Wako Pure Chemical Industries, Ltd.) , Trade name “VA-086”) 0.1 part of (2,2, azobis (2-methyl-N (2-hydroxyethyl) -propionamide)) was added to the reactor. After continuing for 4 hours, the reactor was cooled to stop the reaction, and an aqueous dispersion of core-shell type colored resin particles was obtained.
  • silica fine particles A1 obtained in Production Example 1 and TG820F manufactured by Cabot Corporation, charge amount: 800 ⁇ c
  • BET specific surface area by nitrogen adsorption: 180 m 2 Zg, degree of hydrophobicity: 55%) 0.8 parts of calorie was added, and mixed with a Henschel mixer at 1,400 rpm for 8 minutes to obtain the positive chargeability of the present invention.
  • a toner was obtained.
  • the above-described evaluation was performed on the obtained positively chargeable toner. Table 1 shows the evaluation results.
  • Example 2 shows the evaluation results.
  • a positively-chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A2 obtained in Production Example 2 were used instead of the silica fine particles Al.
  • the properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a positively chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A3 obtained in Production Example 3 were used instead of the silica fine particles A1.
  • the properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a positively-chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A4 obtained in Production Example 4 were used instead of the silica fine particles A1.
  • the properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a positively-chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A5 obtained in Production Example 5 were used instead of the silica fine particles A1.
  • the properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the amount of styrene used was 83 parts, the amount of n-butyl acrylate used was 17 parts, and the charge control resin was 85% styrene, 11% n-butyl acrylate and N, N-Jetyl-N-methyl- ( Example 1 was repeated except that a resin (weight average molecular weight: 12,000, Tg: 68 ° C) obtained by polymerizing 4% of 2-methacryloyloxy) ethylammonium-p-toluenesulfonate was used. The same operation was performed to obtain colored resin particles having a volume average particle size (Dv) of 7.8 ⁇ m, a particle size distribution (Dv / Dp) of 1.25, and a sphericity of 1.15.
  • Dv volume average particle size
  • Dv / Dp particle size distribution
  • a positively chargeable toner was obtained in the same manner as in Example 1 except that the silica fine particles A6 obtained in Production Example 6 were used instead of the silica fine particles A1.
  • the properties, images, and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 The operation was performed in the same manner as in Example 3 except that the silica fine particles A7 obtained in Production Example 7 were used instead of the silica fine particles A6, to obtain a positively chargeable toner.
  • the properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 The same operation as in Example 3 was carried out except that the silica fine particles A3 obtained in Production Example 3 were used instead of the silica fine particles A6, to obtain a positively chargeable toner.
  • the properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 2 The operation was performed in the same manner as in Example 3 except that the silica fine particles A5 obtained in Production Example 5 were used instead of the silica fine particles A6, to obtain a positively chargeable toner.
  • the properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Fine particles A 1 A 2 A3 A4 A 5 Silica particles (A) 80-240 100-780 800 Charge (c / g)
  • Fogging 0.12 0.09 0.1 1 0.20 0.35 Durability (sheets) 15,000 or more 15,000 or more 15,000 or more 15,000 or more 15,000 or more 15,000 or more 15,000 or more
  • the charge amount of the silica fine particles A used as the external additive is out of the range specified in the present invention.
  • the positively chargeable toner of Comparative Examples 13 to 13 fogs after storage at high temperature or has good environmental stability. Not.
  • the positively chargeable toners of Example 1 and Example 2 of the present invention are less likely to generate fog even after storage at a high temperature, and have excellent environmental stability.
  • the positively chargeable toners of Examples 1 to 4 of the present invention are less durable even after storage at high temperatures, have excellent durability, and do not cause development blade contamination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

[PROBLEMS] To provide a positive electrification toner which is reduced in the occurrence of fogging even after it is stored in a state of high humidity and is excellent in durability. [MEANS FOR SOLVING PROBLEMS] A positive electrification toner containing coloring resin particles and a surface additive, characterized in that the surface of said surface additive has been treated with an amino group containing compound, and said surface additive comprises fine silica particles (A) having a degree of hydrophobicity of 40 % or more and an electrification amount of -700 to 0 μc/g, and fine silica particles (B) having an electrification amount of 500 to 1000 μc/g.

Description

明 細 書  Specification
正帯電性トナー  Positively chargeable toner
技術分野  Technical field
[0001] 本発明は、電子写真法、静電記録法等によって形成される静電潜像を現像するた めの正帯電性トナーに関し、更に詳細には、高温状態に保存した後であってもかぶり の発生が少なぐ耐久性に優れる正帯電性トナーに関する。  The present invention relates to a positively chargeable toner for developing an electrostatic latent image formed by an electrophotographic method, an electrostatic recording method, or the like, and more specifically, to a toner after storage in a high temperature state. The present invention relates to a positively chargeable toner which is less durable and has excellent durability.
背景技術  Background art
[0002] 電子写真法とは、一般に、種々の手段により感光体上に電気的潜像を形成し、次 いで該潜像をトナーで現像して可視像とし、紙又は OHPシート等の転写材に、可視 像となったトナーを転写した後、転写されたトナーを熱や圧力などにより転写材上に 定着して印刷物を得る方法をレ、う。  [0002] Electrophotography generally involves forming an electric latent image on a photoreceptor by various means, then developing the latent image with toner to form a visible image, and transferring the image onto paper or an OHP sheet. After transferring the visible toner to the transfer material, fix the transferred toner on the transfer material by heat or pressure to obtain a printed material.
[0003] 近年においては、画像形成装置の高機能化が進んでおり、静電潜像をレーザーで 形成する方法により高解像度と同時に高速化することが要請されている。このため、ト ナーに対しては高解像度化に対応できるように小粒径化、粒径分布のシャープ化の 他に、高速化に対応できる低温定着化が要求されている。低温定着化の要求を満た すために、トナーの結着樹脂のガラス転移温度 (Tg)を低くすることや、トナーにヮック ス等の離型剤を添加することが行われてレ、る。  [0003] In recent years, the functions of image forming apparatuses have been advanced, and there has been a demand for a method of forming an electrostatic latent image with a laser to increase the resolution and speed at the same time. For this reason, toners are required not only to reduce the particle size and sharpen the particle size distribution so as to cope with higher resolution, but also to fix the toner at a low temperature which can cope with high speed. To meet the demand for low-temperature fixing, lowering the glass transition temperature (Tg) of the binder resin of the toner and adding a releasing agent such as a wax to the toner have been performed.
[0004] 上述したように、トナーの結着樹脂の低 Tg化や、ワックス等の離型剤の添加を行うと 、トナーが高温で保存される状態が続いた場合に、結着樹脂が溶融したり、離型剤が トナー粒子表面にブリードしたりして、トナーのブロッキングが生じやすくなるという問 題があった。この問題を解決するために、トナー粒子をコア—シェル型としカプセル化 することで結着樹脂の溶融や離型剤のブリードを抑えることや、外添剤を添加するこ とでトナーの流動性を高めることが提案されてレ、る。  [0004] As described above, if the binder resin of the toner is reduced in Tg or a release agent such as wax is added, the binder resin melts when the toner is kept stored at a high temperature. Or the release agent bleeds to the surface of the toner particles, which tends to cause blocking of the toner. To solve this problem, the toner particles are encapsulated in a core-shell type to suppress the melting of the binder resin and the bleeding of the release agent, and by adding an external additive, the fluidity of the toner is reduced. It has been proposed to enhance
[0005] 例えば、特許文献 1には、少なくとも着色剤及び結着樹脂を含有してなるトナー粒 子 (着色樹脂粒子)と、 80— 800nmの個数平均粒径を有する負帯電性の大きめの 無機粒子と 5— 50nmの個数平均粒径を有する正帯電性の小さめの無機粒子とを混 合してなる静電潜像現像用正帯電性トナーが開示されている。しかしながら、特許文 献 1に開示されたトナーでは、高温状態に保存された後にかぶりが発生する、耐久性 が低下するなどの問題があった。 [0005] For example, Patent Document 1 discloses a toner particle (colored resin particle) containing at least a colorant and a binder resin, and a large negatively chargeable inorganic material having a number average particle size of 80 to 800 nm. There is disclosed a positively chargeable toner for developing an electrostatic latent image, comprising a mixture of particles and inorganic particles having a small number of positively chargeable particles having a number average particle diameter of 5-50 nm. However, the patent statement The toner disclosed in Reference 1 has problems such as fogging after being stored at a high temperature and a decrease in durability.
[0006] 例えば、特許文献 2には、特定のァミノ置換シラン化合物とオルガノポリシロキサンと によって処理され、鉄に対する摩擦帯電量及び疎水化度を特定の範囲とするシリカ 粉体を添加したトナーが開示されている。該特許文献に開示されたトナーはカプリの 発生や画質の低下を抑制できることが開示されている。しかし、該特許文献に開示さ れたトナーでは、印字枚数が多くなるとかぶりが発生するという問題があった。  [0006] For example, Patent Document 2 discloses a toner treated with a specific amino-substituted silane compound and an organopolysiloxane and added with a silica powder having a triboelectric charge amount with respect to iron and a hydrophobicity in a specific range. Have been. It is disclosed that the toner disclosed in the patent document can suppress generation of capri and deterioration of image quality. However, the toner disclosed in the patent document has a problem that fog occurs when the number of printed sheets increases.
[0007] また、特許文献 3には、正帯電極性基と疎水基を表面に有する乾式シリカ微粉末と 、正帯電極性基とフッ素含有帯電極性基の両極性基を表面に有する湿式シリカ微粉 末とを併用して、トナー粒子 (着色樹脂粒子)に外添した現像剤(トナー)が開示され ている。該特許文献に開示されたトナーは耐久性、環境安定性に優れることが開示 されている。しかし、該特許文献に開示されたトナーでは、印字枚数が多くなるとかぶ りが発生するという問題があった。  [0007] Further, Patent Document 3 discloses dry silica fine powder having a positively charged polar group and a hydrophobic group on the surface, and wet silica fine powder having both a positively charged polar group and a fluorine-containing charged polar group on the surface. A developer (toner) externally added to toner particles (colored resin particles) is disclosed by using in combination. It is disclosed that the toner disclosed in this patent document has excellent durability and environmental stability. However, the toner disclosed in the patent document has a problem that fogging occurs when the number of printed sheets increases.
[0008] 特許文献 4には、着色樹脂粒子と外添剤とを含有し、外添剤として、個数平均粒径 力 ¾一 30nmであり、特定の処理剤で疎水化処理されたシリカ微粒子と、個数平均粒 径が 30— lOOnmであるシリカ微粒子を含有する静電潜像現像用トナーが開示され ている。し力 ながら、特許文献 4に開示されたトナーでも、高温状態に保存された後 のかぶりの発生や耐久性の低下の抑制が十分でなぐ更なる改善が望まれていた。  [0008] Patent Document 4 discloses a method in which a silica fine particle which contains colored resin particles and an external additive, has a number average particle diameter of about 30 nm as an external additive, and has been subjected to a hydrophobic treatment with a specific treating agent, and Further, an electrostatic latent image developing toner containing silica fine particles having a number average particle diameter of 30-100 nm is disclosed. However, even with the toner disclosed in Patent Document 4, further improvement has been desired in which the occurrence of fogging after storage in a high-temperature state and the reduction in durability are not sufficiently suppressed.
[0009] 特許文献 1 :特開 2000 - 122337号公報  Patent Document 1: JP-A-2000-122337
特許文献 2:特開平 5-94037号公報  Patent Document 2: JP-A-5-94037
特許文献 3 :特開平 11-143111号公報  Patent Document 3: JP-A-11-143111
特許文献 4 :特開 2002— 244340号公報  Patent Document 4: JP 2002-244340 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 従って、本発明の目的は、高温状態に保存した後であってもかぶりの発生が少なく 、耐久性に優れる正帯電性トナーを提供することにある。 [0010] Accordingly, an object of the present invention is to provide a positively chargeable toner which is less likely to generate fog even after being stored in a high temperature state and has excellent durability.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者は、上記目的を達成すべく鋭意検討した結果、着色樹脂粒子と外添剤と を含有する正帯電性トナーにおいて、外添剤として、表面がアミノ基含有化合物で処 理されており、疎水化度及び帯電量が特定の範囲であるシリカ微粒子と、帯電量が 特定の範囲であるシリカ微粒子とを含有させることにより、上記目的を達成し得るとい う知見を得た。 The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the colored resin particles and the external additive In a positively-chargeable toner containing, as an external additive, the surface is treated with an amino group-containing compound, silica fine particles having a hydrophobicity and a charge amount in a specific range, and a charge amount in a specific range. It has been found that the above object can be achieved by incorporating certain silica fine particles.
[0012] 本発明は上記知見に基づいてなされたものであり、着色樹脂粒子と外添剤とを含 有する正帯電性トナーであって、該外添剤が、表面がアミノ基含有化合物で処理さ れており、疎水化度が 40%以上であり、帯電量カ 700— Ο μ c/gであるシリカ微粒 子 (A)、及び帯電量が 500— 1000 μ cZgであるシリカ微粒子(B)を含有することを 特徴とする正帯電性トナーを提供するものである。  [0012] The present invention has been made based on the above findings, and is a positively chargeable toner containing colored resin particles and an external additive, wherein the external additive is treated with a compound having an amino group-containing surface. Silica particles (A) with a hydrophobicity of 40% or more and a charge amount of 700-—μc / g (A), and silica particles (B) with a charge amount of 500-1000 μcZg It is intended to provide a positively chargeable toner characterized by containing:
発明の効果  The invention's effect
[0013] 本発明により、かぶりの発生が少なぐ耐久性に優れる正帯電性トナーが提供され る。  According to the present invention, there is provided a positively chargeable toner having less fog and excellent durability.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の正帯電性トナーについて説明する。  Hereinafter, the positively chargeable toner of the present invention will be described.
本発明の正帯電性トナーは、着色樹脂粒子と外添剤とを含有する。本発明では、 通常、外添剤は着色樹脂粒子に付着しているか、部分的に坦め込まれている。また 、外添剤は、その一部が着色樹脂粒子から脱落していても構わない。  The positively chargeable toner of the present invention contains colored resin particles and an external additive. In the present invention, usually, the external additive adheres to the colored resin particles or is partially carried. Further, the external additive may be partially dropped from the colored resin particles.
本発明の正帯電性トナーを構成する外添剤は、後述するシリカ微粒子 (A)及びシリ 力微粒子 (B)を含有する。外添剤として、シリカ微粒子 (A)及び (B)を併用することに より、かぶりの発生が少なぐ耐久性に優れる正帯電性トナーを得ることができる。  The external additive constituting the positively chargeable toner of the present invention contains fine silica particles (A) and fine silica particles (B) described later. By using the silica fine particles (A) and (B) together as an external additive, it is possible to obtain a positively chargeable toner having less fog and excellent durability.
[0015] シリカ微粒子 (A)は、表面がアミノ基含有化合物で処理されてレ、る。アミノ基含有化 合物としては、例えば、 N—ェチルー γ—ァミノプロピルトリメトキシシラン、 Ν—フエニル ミン等の 2級ァミン化合物、 γ—ァミノプロピルトリエトキシシラン、 γ— (2—アミノエチル シシラン、 Ν— (2—アミノエチル) 3—ァミノプロピルトリメトキシシラン、 Ν— j3— (Ν—ビニ ルベンジルアミノエチル)— γ—ァミノプロピルトリメトキシシラン等のシランカップリング 剤や、ァミノ変性シリコーンオイル等のシリコーンオイル等が挙げられる。上記アミノ基 含有化合物は、 1種あるいは 2種以上を組み合わせて使用することができる。また、上 記処理は、好適には、上記 2級アミンィヒ合物で処理した場合、さらに好適にはフエ二 ル基を有する 2級ァミン化合物で処理した場合に、とくに外添剤遊離による印字品質 の低下が起こり難くなる。フエ二ル基を有する 2級ァミン化合物としては、 N—フエニル - y—ァミノプロピルトリメトキシシランが挙げられる。シリカ微粒子 (A)を上記アミノ基 含有化合物で処理する方法としては、一般的な方法でよぐ例えば乾式法、湿式法 が挙げられる。シリカ微粒子 (A)をァミノ基含有化合物で処理する方法として、例え ば、特開平 5—94037号公報に記載の方法を適用することができる。この方法では、 アミノ基含有化合物の使用量を調整することによって、シリカ微粒子の帯電量を調整 し、所望の帯電量を有するシリカ微粒子 (A)を得ることができる。 [0015] The surface of the silica fine particles (A) is treated with an amino group-containing compound. Examples of the amino group-containing compound include, for example, secondary amine compounds such as N-ethyl-γ-aminopropyltrimethoxysilane and diphenylamine, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl Silane coupling agents such as silane, Ν- (2-aminoethyl) 3-aminopropyltrimethoxysilane, Ν-j3- (Ν-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, and amino And silicone oils such as modified silicone oils. The contained compounds can be used alone or in combination of two or more. In addition, the above-mentioned treatment is preferably carried out with the above-mentioned secondary amine compound, more preferably with a secondary amine compound having a phenyl group, particularly when the printing quality due to release of external additives is reduced. Is less likely to occur. Examples of the secondary amine compound having a phenyl group include N-phenyl-y-aminopropyltrimethoxysilane. Examples of the method of treating the silica fine particles (A) with the above-mentioned amino group-containing compound include a common method, for example, a dry method and a wet method. As a method for treating the silica fine particles (A) with an amino group-containing compound, for example, the method described in JP-A-5-94037 can be applied. In this method, the charge amount of the silica fine particles can be adjusted by adjusting the amount of the amino group-containing compound used, and silica fine particles (A) having a desired charge amount can be obtained.
[0016] アミノ基含有化合物で処理されたシリカ微粒子 (A)の帯電量は、 -700-0 μ c/g であり、好ましく fま一500 0 μ c/gであり、特 ίこ好ましく fま一400— 0 μ c/gである。 帯電量がこの範囲にあると、環境安定性の低下や高温保存後の耐久性の低下やか ぶりが起こり難い。シリカ微粒子の帯電量は後述の方法により、測定することができる 本発明の正帯電性トナーに含有されるシリカ微粒子 (A)は、上記帯電量を有して いれば、その調製法は限定されなレ、が、未処理のシリカ微粒子 100重量部に対し、 アミノ基含有化合物を、 0. 1一 10重量部用いることが好ましい。 [0016] The charge amount of the silica fine particles (A) treated with the amino group-containing compound is -700-0 μc / g, preferably f-500 μc / g, particularly preferably f It is 400-0 μc / g. When the charge amount is in this range, the environmental stability, the durability after high-temperature storage, and the fogging hardly occur. The charge amount of the silica fine particles can be measured by the method described below.The preparation method of the silica fine particles (A) contained in the positively chargeable toner of the present invention is limited as long as the silica fine particles (A) have the above charge amount. However, it is preferable to use 0.1 to 10 parts by weight of an amino group-containing compound with respect to 100 parts by weight of untreated silica fine particles.
[0017] また、シリカ微粒子 (A)は、メタノール法で測定する疎水化度が 40%以上であり、 好ましくは 55%以上である。疎水化度が 40%より小さいと、環境による影響が大きく なり、特に高温高湿下で帯電低下が起こり、かぶりが発生し易くなる場合がある。シリ 力微粒子 (A)の疎水化度を上記範囲内とするには、通常使用されるシランカップリン グ剤ゃシリコーンオイル等の疎水化処理剤を使用することが好ましい。疎水化処理の 方法としては、シリカ微粒子を高速で撹拌しながら、上記処理剤を滴下または噴霧す る方法、上記処理剤を有機溶媒で溶解し、処理剤を含む有機溶媒を撹拌しながらシ リカ微粒子を添加する方法等が挙げられる。前者の場合、処理剤を有機溶媒等で希 釈して用いてもよい。上記シランカップリング剤としては、例えば、へキサメチルジシラ ザン、トリメチルシラン、トリメチルクロルシラン、ジメチルジクロルシラン、メチノレトリクロ シシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシ ラン、ジメチルジェトキシシラン、トリメチルメトキシシラン、ヒドロキシプロビルトリメトキ シシラン、フエニルトリメトキシシラン、 n—ブチルトリメトキシシラン、 n キサデシルトリ メトキシシラン、 n—ォクタデシルトリメトキシシラン、ビュルトリメトキシシラン、ビュルトリ エトキシシラン、 γ—メタクリルォキシプロピルトリメトキシシラン、ビュルトリァセトキシシ ラン等が挙げられる。また、シリコーンオイルとしては、例えば、ジメチルポリシロキサ ン、メチルハイドロジヱンポリシロキサン、メチルフヱニルポリシロキサン等が挙げられ る。シリカ微粒子 (Α)は、アミノ基含有化合物及び上記処理剤との処理を同時に行つ てもよい。 [0017] The silica fine particles (A) have a degree of hydrophobicity of at least 40%, preferably at least 55%, as measured by the methanol method. If the degree of hydrophobicity is less than 40%, the influence of the environment becomes large, and particularly under high temperature and high humidity, the charge may be reduced and fog may be easily generated. In order to keep the degree of hydrophobicity of the silicic acid fine particles (A) within the above range, it is preferable to use a hydrophobizing agent such as a commonly used silane coupling agent ゃ silicone oil. The hydrophobizing method is a method of dropping or spraying the treating agent while stirring the silica fine particles at a high speed, dissolving the treating agent with an organic solvent, and stirring the organic solvent containing the treating agent with the silica. A method of adding fine particles and the like can be mentioned. In the former case, the treating agent may be diluted with an organic solvent or the like before use. Examples of the silane coupling agent include hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, and methinoletrichloro. Sisilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethylethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-xadecyltrimethoxysilane , N-octadecyltrimethoxysilane, burtrimethoxysilane, burtriethoxysilane, γ-methacryloxypropyltrimethoxysilane, burtriacetoxysilane and the like. Examples of the silicone oil include dimethylpolysiloxane, methylhydrogenpolysiloxane, and methylphenylpolysiloxane. The silica fine particles (Α) may be simultaneously treated with the amino group-containing compound and the treatment agent.
[0018] シリカ微粒子 (Α)の窒素吸着による BET比表面積は、好ましくは 10— 80m2/gで あり、更に好ましくは 20 60m2Zgである。 BET比表面積が上記範囲にあると、カス レの発生や耐久性の低下を抑制できるので好ましい。なお、窒素吸着による BET比 表面積は、 ASTMD3037— 81に準じ、 BET法で測定される値である。 The BET specific surface area of the silica fine particles (Α) by nitrogen adsorption is preferably from 10 to 80 m 2 / g, and more preferably from 2060 m 2 Zg. When the BET specific surface area is in the above range, it is preferable because generation of blur and reduction in durability can be suppressed. The BET specific surface area by nitrogen adsorption is a value measured by the BET method according to ASTM D3037-81.
[0019] また、シリカ微粒子 (A)の嵩密度は 50— 250g/lであることが好ましぐ 80— 200g /1であることが更に好ましい。シリカ微粒子 (A)の嵩密度が上記範囲にあると、感光 体でのフィルミングゃかぶりの発生、クリーニング性の低下を抑制できるので好ましい  Further, the bulk density of the silica fine particles (A) is preferably from 50 to 250 g / l, more preferably from 80 to 200 g / 1. It is preferable that the bulk density of the silica fine particles (A) is in the above range because filming and fogging on the photoreceptor and reduction in cleaning property can be suppressed.
[0020] シリカ微粒子 (A)は、その一次粒子の体積平均粒径が、好ましくは 0. 05-1. 0 /i mであり、より好ましく ίま 0. 08— 1. 0 μ ΐηであり、更に好ましく ίま 0. 1— 1. 0 /i mであ り、特に好ましくは 0. 1-0. 3 /i mである。一次粒子の体積平均粒径が上記範囲に あるシリカ微粒子 (A)を用いることにより、流動性に優れ、転写性の良好な正帯電性 トナーを得ることができる。 [0020] The silica fine particles (A) preferably have a volume average particle size of primary particles of 0.05 to 1.0 / im, more preferably 0.08 to 1.0 μΐη, More preferably, it is 0.1-1.0 / im, particularly preferably 0.1-0.3 / im. By using the silica fine particles (A) whose primary particles have a volume average particle diameter in the above range, a positively chargeable toner having excellent fluidity and good transferability can be obtained.
本発明の正帯電性トナーを構成する外添剤に含有されるシリカ微粒子 (A)は、体 積基準分布において、小粒径側から積算して、 10%に該当する粒径を DvlOとし、 同じく 50%に該当する粒径を Dv50とした場合、 Dv50と DvlOとの i (Dv50/Dvl 0)は 1. 8以上であることが好ましぐ 2以上であることが更に好ましレ、。 Dv50/Dvl0 が 1. 8以上であると、ブロッキングや感光体でのフィルミングを抑制できる正帯電性ト ナーを得ることができる。 The silica fine particles (A) contained in the external additive constituting the positively chargeable toner of the present invention, when counted from the small particle diameter side in the volume standard distribution, have a particle diameter corresponding to 10% as DvlO, Similarly, assuming that the particle size corresponding to 50% is Dv50, i (Dv50 / Dvl0) between Dv50 and DvlO is preferably 1.8 or more, more preferably 2 or more. When Dv50 / Dvl0 is 1.8 or more, a positively chargeable toner capable of suppressing blocking and filming on the photoreceptor. You can get a ner.
シリカ微粒子 (A)の粒径及び粒径分布の測定方法としては特に制限はなレ、が、例 えばシリカ微粒子 (A)を水に分散させ、そのシリカ微粒子 (A)の分散液をレーザー 式粒度分布測定装置(日機装 (株)製:商品名「マイクロトラック UPA150)等を用い て測定することができる。  The method for measuring the particle size and the particle size distribution of the silica fine particles (A) is not particularly limited.However, for example, the silica fine particles (A) are dispersed in water, and the dispersion of the silica fine particles (A) is subjected to a laser method. It can be measured using a particle size distribution analyzer (trade name “Microtrac UPA150” manufactured by Nikkiso Co., Ltd.).
[0021] シリカ微粒子 (A)は、その球形度が 1一 1. 3であることが好ましぐ 1-1. 2であるこ とが更に好ましい。球形度が 1一 1. 3の範囲にあると、環境安定性に優れた正帯電 性トナーを得ることができる。 [0021] The fine silica particles (A) preferably have a sphericity of 1-1.3, more preferably 1-1.2. When the sphericity is in the range of 1.1-3, a positively chargeable toner having excellent environmental stability can be obtained.
なお、本明細書において、球形度とは、粒子の絶対最大長を直径とした円の面積(S c)を粒子の実質投影面積(Sr)で割った値 (Sc/Sr)のことを意味し、以下のようにし て測定することができる。  In the present specification, the sphericity means a value (Sc / Sr) obtained by dividing an area (Sc) of a circle having a diameter based on an absolute maximum length of a particle by a substantial projected area (Sr) of the particle. Then, it can be measured as follows.
球形度は、シリカ微粒子 (A)の電子顕微鏡写真を撮影し、その写真を画像処理解 析装置ルーゼッタス IID (二レコ社製)により、フレーム面積に対する粒子の面積率を 最大 2%、トータル処理数を 100個の条件で測定し、得られた 100個のシリカ微粒子 (A)の球形度を平均して求められる。  The sphericity was determined by taking an electron micrograph of the silica microparticles (A) and using the image processing and analysis equipment, Lusettas IID (manufactured by NIRECO), to increase the area ratio of the particles to the frame area by up to 2% and the total number of processed particles. Is measured under 100 conditions, and the sphericity of the obtained 100 silica fine particles (A) is averaged.
[0022] シリカ微粒子 (A)の量は、着色樹脂粒子 100重量部に対し、通常は 0. 3— 5重量 部であり、好ましくは 0. 5— 3重量部であり、更に好ましくは 0. 3— 3重量部である。シ リカ微粒子 (A)の量が上記範囲にあると、かぶりやカスレの発生しない正帯電性トナ 一を得ることができる。。 [0022] The amount of the silica fine particles (A) is usually 0.3 to 5 parts by weight, preferably 0.5 to 3 parts by weight, more preferably 0.5 to 3 parts by weight based on 100 parts by weight of the colored resin particles. 3-3 parts by weight. When the amount of the silica fine particles (A) is in the above range, a positively chargeable toner free from fogging and blurring can be obtained. .
[0023] 本発明の正帯電性トナーに含有されるシリカ微粒子(B)は、帯電量が 500— 1000  The fine silica particles (B) contained in the positively chargeable toner of the present invention have a charge amount of 500-1000.
μ c/gであり、好ましくは 600— 900 μ c/gである。帯電量力 S500 μ c/gより/ Jヽさレヽ と、かぶりが発生し、一方、 1000 μ c/gより大きいと印字濃度が低下する。  μc / g, preferably 600-900 μc / g. Fogging occurs when the charge amount power is S500 μc / g or less / J, and when it is more than 1000 μc / g, the print density decreases.
[0024] シリカ微粒子(B)の窒素吸着による BET比表面積は、好ましくは 150— 300m2/g であり、更に好ましくは 170 280m2Zgである。 BET比表面積が上記範囲にあると 、カスレの発生しなレ、正帯電性トナーを得ることができる。 The BET specific surface area of the silica fine particles (B) by nitrogen adsorption is preferably 150 to 300 m 2 / g, more preferably 170 to 280 m 2 Zg. When the BET specific surface area is within the above range, it is possible to obtain a positively chargeable toner without causing blurring.
[0025] シリカ微粒子(B)は、疎水化処理したものを用いることが好ましぐその場合、疎水 化度は、好ましくは 40%以上であり、更に好ましくは 55%以上である。疎水化度が 4 0%より大きいと、環境による影響が小さくなり、特に高温高湿下で帯電低下やかぶり が発生しなくなる。 [0025] It is preferable to use the silica fine particles (B) that have been subjected to a hydrophobic treatment. In this case, the degree of hydrophobicity is preferably 40% or more, and more preferably 55% or more. If the degree of hydrophobicity is greater than 40%, the influence of the environment is reduced, and the charge is reduced or fogged especially under high temperature and high humidity. No longer occurs.
[0026] シリカ微粒子(B)の量は、着色樹脂粒子 100重量部に対し、好ましくは 0. 1— 3重 量部であり、更に好ましくは 0. 3— 2重量部である。シリカ微粒子(B)の量が上記範 囲にあると、流動性の低下や、環境安定性の低下を抑制することができる。  [0026] The amount of the silica fine particles (B) is preferably 0.1 to 3 parts by weight, more preferably 0.3 to 2 parts by weight, based on 100 parts by weight of the colored resin particles. When the amount of the silica fine particles (B) is within the above range, a decrease in fluidity and a decrease in environmental stability can be suppressed.
本発明に用いるシリカ微粒子 (A)及びシリカ微粒子(B)の使用割合は、重量比で 3 0: 70-70: 30力好ましく、 40: 60 60 : 40力 S更に好ましレヽ。使用範囲がこの範囲に あると、かぶりの発生を抑制できるので好ましい。  The use ratio of the silica fine particles (A) and the silica fine particles (B) used in the present invention is preferably 30: 70-70: 30 force by weight ratio, and more preferably 40:60 60:40 force S. It is preferable that the use range be within this range, since the occurrence of fogging can be suppressed.
[0027] 本発明の正帯電性トナーにおいては、外添剤として、上述したシリカ微粒子 (A)及 びシリカ微粒子(B)以外に、トナーに通常に用いられる外添剤を含有してもよい。こ のような外添剤としては、無機粒子と有機樹脂粒子とがあり、無機粒子としては、上記 シリカ微粒子 (A)及びシリカ微粒子(B)以外のシリカ粒子、酸化アルミニウム、酸化 チタン、酸化亜鉛、酸化錫などが挙げられ、有機樹脂粒子としては、メタクリル酸エス テル重合体粒子、アクリル酸エステル重合体粒子、スチレンーメタクリル酸エステル共 重合体粒子、スチレン アクリル酸エステル共重合体粒子、コアがスチレン重合体で 、シェル力 Sメタクリル酸エステル重合体で形成されたコアシェル型粒子、フッ素樹脂粒 子、シリコーン樹脂粒子、メラミン樹脂粒子などが挙げられる。  [0027] The positively chargeable toner of the present invention may contain, as an external additive, an external additive usually used in toners in addition to the above-mentioned silica fine particles (A) and silica fine particles (B). . Such external additives include inorganic particles and organic resin particles. Examples of the inorganic particles include silica particles other than the silica fine particles (A) and silica fine particles (B), aluminum oxide, titanium oxide, and zinc oxide. And organic resin particles such as methacrylate ester polymer particles, acrylate polymer particles, styrene-methacrylate copolymer particles, styrene acrylate copolymer particles, and a core. Core-shell particles, fluororesin particles, silicone resin particles, melamine resin particles, and the like formed of a styrene polymer and having a shell strength of S methacrylate polymer are exemplified.
[0028] 本発明の正帯電性トナーを構成する着色樹脂粒子は、少なくとも結着樹脂及び着 色剤を含有してなる粒子であり、その他、離型剤、帯電制御剤を含有していることが 好ましぐ必要に応じて磁性材料等を含有してもよい。  [0028] The colored resin particles constituting the positively chargeable toner of the present invention are particles containing at least a binder resin and a colorant, and additionally contain a release agent and a charge control agent. Preferably, a magnetic material or the like may be contained as necessary.
結着樹脂の具体例としては、ポリスチレン、スチレン アクリル酸ブチル共重合体、 ポリエステル樹脂、エポキシ樹脂等の従来からトナーに広く用いられている樹脂を挙 げ'ること力 Sできる。  Specific examples of the binder resin include resins widely used in conventional toners such as polystyrene, styrene butyl acrylate copolymer, polyester resin, and epoxy resin.
[0029] 着色剤としては、カーボンブラック、チタンブラック、磁性粉、オイルブラック、チタン ホワイトの他、あらゆる着色剤および染料を用いることができる。黒色のカーボンブラ ックは、一次粒径が 20— 40nmであるものが好適に用いられる。粒径がこの範囲にあ ることにより、カーボンブラックを正帯電性トナー中に均一に分散でき、かぶりも少なく なるので好ましい。  [0029] As the colorant, any colorant and dye can be used in addition to carbon black, titanium black, magnetic powder, oil black, and titanium white. A black carbon black having a primary particle diameter of 20 to 40 nm is preferably used. When the particle size is in this range, carbon black can be uniformly dispersed in the positively chargeable toner, and fogging can be reduced.
[0030] フルカラートナーを得る場合は、通常、イェロー着色剤、マゼンタ着色剤およびシァ ン着色剤を使用する。 When a full-color toner is obtained, usually a yellow colorant, a magenta colorant and a shear colorant are used. Use colorants.
イェロー着色剤としては、例えば、ァゾ系着色剤、縮合多環系着色剤等が用いられ る。具体白勺に ίま C. I.ビグメントイエロー 3、 12、 13、 14、 15、 17、 62、 65、 73、 74、 83、 90、 93、 97、 120、 138、 155、 180、 181、 185および 186等力 S挙げられる。 マゼンタ着色剤としては、例えば、ァゾ系着色剤、縮合多環系着色剤等が用いられ る。具体白勺に fま C. I.ピグメントレッド 31、 48、 57、 58、 60、 63、 64、 68、 81、 83、 8 7、 88、 89、 90、 112、 114、 122、 123、 144、 146、 149、 150、 163、 170、 184、 185、 187、 202、 206、 207、 209、 251、 C. I.ピグメントノィォレット 19等カ挙げ、ら れる。  As the yellow colorant, for example, an azo colorant, a condensed polycyclic colorant, or the like is used. Concrete white stir pama CI Pigment Yellow 3, 12, 13, 14, 15, 17, 62, 65, 73, 74, 83, 90, 93, 97, 120, 138, 155, 180, 181, 185 and 186 mag S. As the magenta colorant, for example, an azo colorant, a condensed polycyclic colorant, or the like is used. On concrete stirrups CI Pigment Red 31, 48, 57, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90, 112, 114, 122, 123, 144, 146, 149, 150, 163, 170, 184, 185, 187, 202, 206, 207, 209, 251 and CI Pigment Knollette 19.
シアン着色剤としては、例えば、銅フタロシアニンィ匕合物およびその誘導体、アント ラキノンィ匕合物等が利用できる。具体的には C. I.ビグメントブルー 2、 3、 6、 15、 15 : 1、 15 : 2、 15 : 3、 15 : 4、 16、 17、および 60等カ挙げられる。  As the cyan colorant, for example, copper phthalocyanine conjugates and derivatives thereof, and anthraquinone conjugates can be used. Specifically, C.I. pigment blue 2, 3, 6, 15, 15: 1, 15: 2, 15: 3, 15: 4, 16, 17, and 60 and the like can be mentioned.
イェロー着色剤、マゼンタ着色剤及びシアン着色剤は、それぞれ、 1種又は 2種以 上を併用することができる。  One, two or more yellow colorants, magenta colorants and cyan colorants can be used in combination.
着色剤の量は、結着樹脂 100重量部に対して、好ましくは 1一 10重量部である。  The amount of the coloring agent is preferably 110 parts by weight based on 100 parts by weight of the binder resin.
[0031] 上記離型剤としては、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、低 分子量ポリブチレンなどのポリオレフインワックス類;キャンデリラ、カルナゥバ、ライス 、木ロウ、ホホバなどの植物系天然ワックス;パラフィン、マイクロクリスタリン、ペトロラ タムなどの石油系ワックスおよびその変性ワックス;フィッシャートロプシュワックスなど の合成ワックス;ペンタエリスリトールテトラミリステート、ペンタエリスリトールテトラパル ミテート、ジペンタエリスリトールへキサパルミテート、ペンタエリスリトールテトラステア レート、ジペンタエリスリトールへキサミリステートなどの多官能エステル化合物;など が挙げられる。 Examples of the release agent include polyolefin waxes such as low molecular weight polyethylene, low molecular weight polypropylene and low molecular weight polybutylene; natural plant waxes such as candelilla, carnauba, rice, wood wax, jojoba; paraffin, microcrystalline Waxes such as petroleum and petrolatum and modified waxes thereof; synthetic waxes such as Fischer-Tropsch wax; Polyfunctional ester compounds such as myristate; and the like.
離型剤は 1種あるいは 2種以上を組み合わせて使用することができる。  The release agent can be used alone or in combination of two or more.
[0032] 上記離型剤の中でも、合成ワックス及び多官能エステル化合物が好ましい。中でも 、 2— 6官能の多官能エステル化合物がより好ましく用いられる。また、示差走查熱量 計により測定される DSC曲線において、昇温時の吸熱ピーク温度が好ましくは 30 150°C、更に好ましくは 40 130°C、最も好ましくは 50 110°Cの範囲にある多官 能エステル化合物力 S、定着時の定着一剥離性バランスに優れるトナーが得られるの で好ましい。特に、分子量が 1000以上であり、 25°Cでスチレン 100重量部に対し 5 重量部以上溶解し、酸価が 10mgK〇H/g以下であるものは定着温度低下に顕著 な効果を示すので更に好ましい。このような多官能エステル化合物としてはジペンタ エリスリトール—へキサパルミテート及びペンタエリスリトールテトラミリステートが特に 好ましレ、。吸熱ピーク温度とは、 ASTM D3418— 82によって測定される値を意味 する。 [0032] Among the above release agents, a synthetic wax and a polyfunctional ester compound are preferable. Among them, 2-6 functional polyfunctional ester compounds are more preferably used. In the DSC curve measured by the differential scanning calorimeter, the endothermic peak temperature at the time of temperature rise is preferably 30 to 150 ° C, more preferably 40 to 130 ° C, and most preferably 50 to 110 ° C. Government It is preferable because a toner having an excellent balance between the active ester compound power S and the fixing-release property during fixing can be obtained. In particular, those having a molecular weight of 1000 or more, dissolving at least 5 parts by weight with respect to 100 parts by weight of styrene at 25 ° C, and having an acid value of 10 mgK / H / g or less have a remarkable effect on lowering the fixing temperature, and thus are further improved. preferable. As such polyfunctional ester compounds, dipentaerythritol-hexapalmitate and pentaerythritol tetramyristate are particularly preferred. Endothermic peak temperature refers to the value measured by ASTM D3418-82.
離型剤の量は、結着樹脂 100重量部に対して、通常、 0. 1 20重量部であり、好 ましくは 5 15重量部である。  The amount of the release agent is usually 0.120 parts by weight, preferably 515 parts by weight, based on 100 parts by weight of the binder resin.
[0033] 本発明の正帯電性トナーには、帯電制御剤が含有されていることが好ましい。帯電 制御剤としては、従来からトナーに用いられている正帯電制御剤を何ら制限なく用い ること力 Sできる。用いられる正帯電制御剤の中でも、正帯電制御樹脂を含有させるこ とが好ましい。その理由として、帯電制御樹脂は結着樹脂との相溶性が高ぐ無色で あり高速でのカラー連続印刷においても帯電性が安定した正帯電性トナーを得ること ができるからである。帯電制御樹脂は、正帯電制御樹脂として特開昭 63-60458号 公報、特開平 3-175456号公報、特開平 3-243954号公報、特開平 11-15192 号公報などの記載に準じて製造される 4級アンモニゥム (塩)基含有共重合体等を用 レ、ることができる。 [0033] The positively chargeable toner of the present invention preferably contains a charge control agent. As the charge control agent, a positive charge control agent conventionally used in toner can be used without any limitation. Among the positive charge control agents used, it is preferable to include a positive charge control resin. The reason for this is that the charge control resin has high compatibility with the binder resin, is colorless, and can provide a positively chargeable toner having stable chargeability even in high-speed continuous color printing. The charge control resin is manufactured as described in JP-A-63-60458, JP-A-3-175456, JP-A-3-243954, and JP-A-11-15192 as a positive charge control resin. A quaternary ammonium (salt) group-containing copolymer can be used.
これらの共重合体に含有される 4級アンモニゥム (塩)基を有する単量体単位量は、 好ましくは 0. 5— 15重量%であり、更に好ましくは 1一 10重量%である。含有量がこ の範囲にあると、正帯電性トナーの帯電量を制御し易ぐかぶりの発生を少なくするこ とができる。  The amount of the monomer unit having a quaternary ammonium (salt) group contained in these copolymers is preferably 0.5 to 15% by weight, more preferably 110 to 10% by weight. When the content is within this range, it is easy to control the charge amount of the positively chargeable toner, and the occurrence of fog can be reduced.
[0034] 帯電制御樹脂としては、重量平均分子量が 2, 000 50, 000のものが好ましぐ 4 , 000— 40, 000のもの力 S更に好ましく、 6, 000— 35, 000のもの力 S最も好ましレヽ。 帯電制御樹脂の重量平均分子量が上記範囲にあると、オフセットの発生や、定着性 の低下を抑制することができる。  [0034] As the charge control resin, those having a weight average molecular weight of 2,000 50,000 are preferred, and those having a weight average molecular weight of 4,000 to 40,000 S are more preferred, and those having a weight average molecular weight of 6,000 to 35,000 are more preferred. Most preferred When the weight average molecular weight of the charge control resin is in the above range, it is possible to suppress occurrence of offset and deterioration of fixability.
帯電制御樹脂のガラス転移温度は、好ましくは 40 80°Cであり、更に好ましくは 4 5— 75°Cであり、最も好ましくは 45— 70°Cである。ガラス転移温度が上記範囲にある と、正帯電性トナーの保存性や定着性の低下を抑制することができる。 上述した帯電制御剤の量は、結着樹脂 100重量部に対して、通常 0. 01— 20重量 部であり、好ましくは 0. 3— 10重量部である。 The glass transition temperature of the charge control resin is preferably 40 to 80 ° C, more preferably 45 to 75 ° C, and most preferably 45 to 70 ° C. Glass transition temperature is in the above range In this case, it is possible to suppress a decrease in the storability and fixability of the positively chargeable toner. The amount of the above-mentioned charge controlling agent is usually 0.01 to 20 parts by weight, preferably 0.3 to 10 parts by weight, based on 100 parts by weight of the binder resin.
[0035] 着色樹脂粒子は、粒子の内部(コア層)と外部(シェル層)に異なる二つの重合体を 組み合わせて得られる、所謂コアシェル型ほたは、「カプセル型」ともいう。)の粒子と することが好ましい。コアシェル型粒子では、内部(コア層)の低軟化点物質をそれよ り高い軟化点を有する物質で被覆することにより、定着温度の低温化と保存時の凝 集防止とのバランスを取ることができるので好ましい。 The colored resin particles, which are obtained by combining two different polymers inside (core layer) and outside (shell layer) of the particles, so-called core-shell type fires are also called “capsule type”. ) Are preferred. In core-shell type particles, by lowering the softening point material inside (core layer) with a material having a higher softening point, it is possible to balance between lowering the fixing temperature and preventing aggregation during storage. It is preferable because it is possible.
通常、このコアシェル型粒子のコア層は前記結着樹脂及び着色剤で構成され、必 要に応じて帯電制御剤、離型剤が含有され、シェル層は結着樹脂のみで構成される  Usually, the core layer of the core-shell type particles is composed of the binder resin and the colorant, and if necessary, contains a charge control agent and a release agent. The shell layer is composed of only the binder resin.
[0036] コアシェル型粒子のコア層とシェル層との重量比率は特に限定されなレ、が、通常 8 0/20— 99. 9/0. 1である。 [0036] The weight ratio of the core layer to the shell layer of the core-shell type particles is not particularly limited, but is usually from 80/20 to 99.9 / 0.1.
シェル層の割合を上記割合にすることにより、正帯電性トナーの保存性と低温での 定着性を兼備することができる。  By setting the ratio of the shell layer to the above ratio, it is possible to have both the storage property of the positively chargeable toner and the fixability at a low temperature.
[0037] コアシェル型粒子のシェル層の平均厚みは、通常 0. 001— 0. 1 /i m、好ましくは 0 . 003— 0. 08 μ ΐη、より好ましくは 0. 005— 0. 05 /i mであると考えられる。厚み力 S 大きくなると定着性が低下し、小さくなると保存性が低下するおそれがある。なお、コ ァシェル型の着色樹脂粒子を形成するコア粒子はすべての表面がシェル層で覆わ れている必要はなぐコア粒子の表面の一部がシェル層で覆われていればよい。 コアシェル型粒子のコア粒子径およびシェル層の厚みは、電子顕微鏡により観察 できる場合は、その観察写真から無作為に選択した粒子の大きさおよびシェル厚み を直接測ることにより得ることができ、電子顕微鏡でコアとシェルとを観察することが困 難な場合は、コア粒子の粒径および正帯電性トナー製造時に用いたシェルを形成す る単量体の量から算定することができる。  The average thickness of the shell layer of the core-shell type particles is usually 0.001 to 0.1 / im, preferably 0.003 to 0.08 μΐη, more preferably 0.005 to 0.05 / im. It is believed that there is. When the thickness force S increases, the fixability decreases, and when the thickness force S decreases, the storability may decrease. Note that all the surfaces of the core particles forming the core-shell type colored resin particles do not need to be covered with the shell layer, and it is sufficient if a part of the surface of the core particles is covered with the shell layer. When the core particle diameter and the shell layer thickness of the core-shell type particles can be observed by an electron microscope, they can be obtained by directly measuring the particle size and shell thickness selected at random from the observation photograph. When it is difficult to observe the core and the shell at the same time, it can be calculated from the particle size of the core particles and the amount of the monomer forming the shell used in producing the positively chargeable toner.
[0038] 本発明の正帯電性トナーを構成する着色樹脂粒子は、体積平均粒径 (Dv)が好ま しくは 3 15 x mであり、更に好ましくは 4一 12 μ mである。 Dvが 3 x m未満であると 正帯電性トナーの流動性が小さくなり、転写性が低下したり、カスレが発生し、又印字 濃度が低下する場合があり、 15 /i mを超えると画像の解像度が低下する場合がある [0038] The colored resin particles constituting the positively chargeable toner of the present invention preferably have a volume average particle size (Dv) of 315 xm, and more preferably 412 x 12 m. If Dv is less than 3 xm, the fluidity of the positively chargeable toner will decrease, resulting in poor transferability, blurring, and printing. Density may be reduced, image resolution may be reduced above 15 / im
[0039] 本発明の正帯電性トナーを構成する着色樹脂粒子は、その体積平均粒径 (Dv)と 個数平均粒径(Dp)との比(Dv/Dp)力 好ましくは 1. 0- 1. 3であり、更に好ましく は 1. 0- 1. 2である。 DvZDpが 1. 3を超えると、カスレが発生したり、転写性、印字 濃度及び解像度の低下が起こる場合がある。 The colored resin particles constituting the positively chargeable toner of the present invention have a ratio (Dv / Dp) force between the volume average particle diameter (Dv) and the number average particle diameter (Dp), preferably 1.0-1. 3 and more preferably 1.0-1.2. When DvZDp exceeds 1.3, blurring may occur and transferability, print density, and resolution may decrease.
着色樹脂粒子の体積平均粒径及び個数平均粒径は、例えば、マルチサイザ一(ベ ックマン ·コールター社製)等を用いて測定することができる。  The volume average particle size and the number average particle size of the colored resin particles can be measured using, for example, Multisizer 1 (manufactured by Beckman Coulter, Inc.).
[0040] 本発明の正帯電性トナーを構成する着色樹脂粒子は、その球形度が 1. 0- 1. 3 であるものを用いることが好ましぐ球形度が 1. 0- 1. 2であるものを用いることが更 に好ましい。球形度が 1. 3を超える着色樹脂粒子を用いると、転写性が低下したり、 正帯電性トナーの流動性が低下しカスレ易くなつたりする場合がある。  [0040] The colored resin particles constituting the positively chargeable toner of the present invention preferably have a sphericity of 1.0-1.3 and a sphericity of 1.0-1.2. It is even more preferred to use certain ones. When the colored resin particles having a sphericity of more than 1.3 are used, the transferability may be reduced, and the flowability of the positively chargeable toner may be reduced, and the toner may be easily blurred.
着色樹脂粒子の球形度は、シリカ微粒子 (A)と同様にして測定することができる。  The sphericity of the colored resin particles can be measured in the same manner as in the case of the silica fine particles (A).
[0041] 着色樹脂粒子を製造する方法については特に制限はないが、懸濁重合法や乳化 重合凝集法等の重合法により製造することが好ましぐ特に懸濁重合法により製造す ることが好ましい。  The method for producing the colored resin particles is not particularly limited, but is preferably produced by a polymerization method such as a suspension polymerization method or an emulsion polymerization aggregation method, and particularly preferably produced by a suspension polymerization method. preferable.
次に、懸濁重合法により着色樹脂粒子を製造する方法について詳細に説明する。 本発明の正帯電性トナーを構成する着色樹脂粒子は、結着樹脂の原料である重合 性単量体に、着色剤、帯電制御剤及びその他の添加剤を溶解あるいは分散させ、 分散安定化剤を含有する水系分散媒中で重合開始剤を添加して重合し、濾過、洗 浄、脱水及び乾燥することにより製造することができる。  Next, a method for producing colored resin particles by a suspension polymerization method will be described in detail. The colored resin particles constituting the positively chargeable toner of the present invention are obtained by dissolving or dispersing a colorant, a charge control agent and other additives in a polymerizable monomer which is a raw material of a binder resin, and Can be produced by adding a polymerization initiator in an aqueous dispersion medium containing, polymerizing, and filtering, washing, dehydrating and drying.
[0042] 重合性単量体としては、例えば、モノビニル単量体、架橋性単量体、マクロモノマ 一等を挙げることができる。この重合性単量体が重合され、結着樹脂成分となる。 モノビュル単量体としては、スチレン、ビュルトルエン、 ひーメチルスチレン等の芳香 族ビニル単量体;(メタ)アクリル酸;(メタ)アクリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸プロピル、 (メタ)アクリル酸ブチル、 (メタ)アクリル酸 2_ェチルへキシ ノレ、 (メタ)アクリル酸シクロへキシル、 (メタ)アクリル酸イソボニル等の(メタ)アクリル系 単量体;エチレン、プロピレン、ブチレン等のモノォレフィン単量体;等が挙げられる。 モノビュル単量体は、単独で用いても、複数の単量体を組み合わせて用いても良 レ、。これらモノビュル単量体のうち、芳香族ビニル単量体単独、芳香族ビニル単量体 と (メタ)アクリル系単量体との併用などが好適に用いられる。 [0042] Examples of the polymerizable monomer include a monovinyl monomer, a crosslinkable monomer, and a macromonomer. This polymerizable monomer is polymerized to become a binder resin component. Examples of the monobutyl monomer include aromatic vinyl monomers such as styrene, butyl toluene, and methyl styrene; (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate. (Meth) acrylic monomers such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobonyl (meth) acrylate; ethylene, propylene, butylene And the like. The monobutyl monomer may be used alone or in combination of a plurality of monomers. Of these monobutyl monomers, an aromatic vinyl monomer alone or a combination of an aromatic vinyl monomer and a (meth) acrylic monomer is preferably used.
[0043] モノビュル単量体と共に、架橋性単量体を用いるとホットオフセットが有効に改善さ れる。架橋性単量体は、 2個以上のビニル基を有する単量体である。具体的には、ジ ビニノレベンゼン、ジビニノレナフタレン、エチレングリコーノレジメタクリレート、ペンタエリ スリトールトリアリルエーテルやトリメチロールプロパントリアタリレート等を挙げることが できる。これらの架橋性単量体は、それぞれ単独で、あるいは 2種以上組み合わせて 用いることができる。架橋性単量体の量は、モノビニル単量体 100重量部当たり、通 常 10重量部以下、好ましくは、 0. 1一 2重量部である。  When a crosslinkable monomer is used together with the monobutyl monomer, hot offset is effectively improved. The crosslinkable monomer is a monomer having two or more vinyl groups. Specific examples thereof include divininolebenzene, divininolenaphthalene, ethylene glycolone methacrylate, pentaerythritol triallyl ether, and trimethylolpropane triatalylate. These crosslinkable monomers can be used alone or in combination of two or more. The amount of the crosslinkable monomer is usually 10 parts by weight or less, preferably 0.1 to 12 parts by weight, per 100 parts by weight of the monovinyl monomer.
[0044] また、モノビュル単量体と共に、マクロモノマーを用いると、保存性と低温での定着 性とのバランスが良好になるので好ましい。マクロモノマーは、分子鎖の末端に重合 可能な炭素 -炭素不飽和二重結合を有するもので、数平均分子量が、通常、 1 , 000 一 30, 000のオリゴマーまたはポリマーである。  [0044] It is preferable to use a macromonomer together with the monobutyl monomer, because the balance between the storability and the fixability at a low temperature is improved. The macromonomer has a polymerizable carbon-carbon unsaturated double bond at the terminal of the molecular chain, and is an oligomer or polymer having a number average molecular weight of usually 1,000 to 30,000.
マクロモノマーは、前記モノビュル単量体を重合して得られる重合体のガラス転移 温度よりも、高いガラス転移温度を有する重合体を与えるものが好ましい。  The macromonomer is preferably one that gives a polymer having a glass transition temperature higher than the glass transition temperature of the polymer obtained by polymerizing the monobutyl monomer.
マクロモノマーの量は、モノビニル単量体 100重量部に対して、通常、 0. 01— 10 重量部、好ましくは 0. 03— 5重量部、さらに好ましくは 0. 05— 1重量部である。  The amount of the macromonomer is usually 0.01 to 10 parts by weight, preferably 0.03 to 5 parts by weight, more preferably 0.05 to 1 part by weight based on 100 parts by weight of the monovinyl monomer.
[0045] 重合開始剤としては、例えば過硫酸カリウム、過硫酸アンモニゥム等の過硫酸塩; 4 , 4,-ァゾビス(4—シァノバレリック酸)、 2, 2,-ァゾビス(2-メチル -N— (2—ヒドロキ シェチル)プロピオンアミド、 2, 2,ーァゾビス(2—アミジノプロパン)ジヒドロクロライド、 2, 2'—ァゾビス(2, 4—ジメチルバレロニトリル)、 2, 2'—ァゾビスイソブチロニトリル等 のァゾ化合物;ジ一 t_ブチルパーォキシド、ベンゾィルパーォキシド、 t_ブチルパー ォキシ _2_ェチルへキサノエート、 t—へキシルパーォキシ _2_ェチルへキサノエート 、 t_ブチルパーォキシピバレート、ジ—イソプロピルパーォキシジカーボネート、ジ— t —ブチルパーォキシイソフタレート、 t一ブチルパーォキシイソブチレート等の過酸化 物類等が挙げられる。また、上記重合開始剤と還元剤とを組み合わせたレドックス開 始剤を用いてもよい。 [0046] 重合性単量体の重合に用いられる重合開始剤の量は、重合性単量体 100重量部 に対して、好ましくは 0. 1— 20重量部であり、更に好ましくは 0. 3— 15重量部であり 、最も好ましくは 0. 5— 10重量部である。重合開始剤は、重合性単量体組成物中に あら力、じめ添加しておいてもよいが、場合によっては、液滴形成後の水性分散媒中 に添加してもよい。 [0045] Examples of the polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate; 4,4, -azobis (4-cyanovaleric acid), 2,2, -azobis (2-methyl-N- ( 2-hydroxysethyl) propionamide, 2,2, azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile Azo compounds such as di-t-butylperoxide, benzoylperoxide, t_butylperoxy_2_ethylhexanoate, t-hexylperoxy_2_ethylhexanoate, t_butylperoxypivalate, Peroxides such as di-isopropylperoxydicarbonate, di-t-butylperoxyisophthalate, and t-butylperoxyisobutyrate; The redox open initiator which is a combination of a polymerization initiator and a reducing agent may be used. [0046] The amount of the polymerization initiator used in the polymerization of the polymerizable monomer is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 100 parts by weight of the polymerizable monomer. -15 parts by weight, most preferably 0.5-10 parts by weight. The polymerization initiator may be preliminarily added to the polymerizable monomer composition, but may be added to the aqueous dispersion medium after the formation of the droplets in some cases.
[0047] また、重合に際しては、水性媒体中に分散安定化剤を含有させることが好ましい。  [0047] At the time of polymerization, it is preferable to include a dispersion stabilizer in an aqueous medium.
該分散安定化剤としては、例えば、硫酸バリウム、硫酸カルシウム等の硫酸塩;炭酸 バリウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩;リン酸カルシウム等のリン 酸塩;酸化アルミニウム、酸化チタン等の金属酸化物等の金属化合物や、水酸化ァ ノレミニゥム、水酸化マグネシウム、水酸化第二鉄等の金属水酸化物;ポリビニルアル コール、メチルセルロース、ゼラチン等の水溶性高分子;ァニオン性界面活性剤、ノ 二オン性界面活性剤、両性界面活性剤等が挙げられる。上記分散安定化剤は 1種 又は 2種以上を組み合わせて用いることができる。  Examples of the dispersion stabilizer include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; phosphates such as calcium phosphate; and metal oxides such as aluminum oxide and titanium oxide. And metal hydroxides such as ethanol, magnesium hydroxide, and ferric hydroxide; water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and gelatin; anionic surfactants and nonionics And amphoteric surfactants. The above-mentioned dispersion stabilizers can be used alone or in combination of two or more.
[0048] 上記分散安定化剤の中でも、金属化合物、特に難水溶性の無機水酸化物のコロイ ドを含有する分散安定化剤は、重合体粒子の粒径分布を狭くすることができ、分散 安定化剤の洗浄後の残存量が少なぐかつ画像を鮮明に再現することができるので 好ましい。  [0048] Among the above-mentioned dispersion stabilizers, metal compounds, particularly dispersion stabilizers containing colloids of poorly water-soluble inorganic hydroxides, can narrow the particle size distribution of polymer particles, This is preferable because the amount of the stabilizer remaining after washing is small and an image can be clearly reproduced.
上記難水溶性の金属水酸化物のコロイドは、その個数粒径分布において、小粒径 側から起算した個数累計が 50%である粒径(Dp50)が 0. 5 / m以下で、上記と同様 に小粒径側から起算した個数累計が 90%である粒径(Dp90)が 1 μ m以下であるこ とが好ましい。コロイドの粒径が大きくなると重合の安定性が崩れるとともに正帯電性 トナーの安定性が低下する場合がある。  The colloid of the poorly water-soluble metal hydroxide has a particle size (Dp50) of 0.5% or less in the number particle size distribution where the total number of particles calculated from the small particle size side is 50% or less. Similarly, it is preferable that the particle size (Dp90) for which the cumulative number calculated from the small particle size side is 90% is 1 μm or less. When the particle size of the colloid is large, the stability of polymerization may be lost and the stability of the positively chargeable toner may be reduced.
[0049] 上記分散安定化剤の量は、重合性単量体 100重量部に対して、好ましくは 0. 1 20重量部である。分散安定化剤の量が 0. 1重量部未満であると十分な重合安定性 を得ることが困難になり、重合凝集物が生成しやすくなる場合があり、一方、 20重量 部を超えて使用すると、重合後の正帯電性トナー粒径が細力べなりすぎ、実用的でな くなる場合がある。 [0049] The amount of the dispersion stabilizer is preferably 0.120 parts by weight based on 100 parts by weight of the polymerizable monomer. If the amount of the dispersion stabilizer is less than 0.1 part by weight, it is difficult to obtain sufficient polymerization stability, and it may be easy to form a polymerized aggregate. Then, the particle diameter of the positively chargeable toner after polymerization may become too small to be practical.
[0050] また、重合に際しては、分子量調整剤を使用することが好ましい。該分子量調整剤 としては、例えば tードデシルメルカプタン、 n—ドデシルメルカプタン、 n—ォクチルメル カプタン、 2, 2, 4, 6, 6—ペンタメチルヘプタン一 4ーチオール等のメルカプタン類等 力 S挙げられる。上記分子量調整剤は、重合開始前または重合途中に添加することが できる。上記分子量調整剤の量は、重合性単量体 100重量部に対して、好ましくは 0 . 01— 10重量部であり、更に好ましくは 0. 1— 5重量部である。 [0050] In the polymerization, it is preferable to use a molecular weight modifier. The molecular weight regulator Examples thereof include mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan, and 2,2,4,6,6-pentamethylheptane-14-thiol. The above-mentioned molecular weight modifier can be added before or during the polymerization. The amount of the molecular weight modifier is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the polymerizable monomer.
[0051] 上述した、好ましいコアシェル型着色樹脂粒子を製造する方法としては特に制限は なぐ従来公知の方法によって製造することができる。例えば、スプレイドライ法、界面 反応法、 in situ重合法、相分離法などの方法が挙げられる。具体的には、粉砕法、 重合法、会合法又は転相乳化法により得られた着色樹脂粒子をコア粒子として、そ れに、シェル層を被覆することによりコアシェル型着色樹脂粒子が得られる。この製 造方法の中でも、 in situ重合法や相分離法が、製造効率の点から好ましい。  [0051] The method for producing the above-described preferred core-shell type colored resin particles is not particularly limited, and can be produced by a conventionally known method. For example, methods such as a spray drying method, an interfacial reaction method, an in situ polymerization method, and a phase separation method may be mentioned. More specifically, core-shell type colored resin particles can be obtained by using the colored resin particles obtained by a pulverization method, a polymerization method, an association method or a phase inversion emulsification method as a core particle and coating a shell layer thereon. Among these production methods, an in situ polymerization method and a phase separation method are preferable from the viewpoint of production efficiency.
[0052] in situ重合法によるコアシェル構造を有する着色樹脂粒子の製造方法を以下に 説明する。  A method for producing colored resin particles having a core-shell structure by an in situ polymerization method will be described below.
コア粒子が分散している水系分散媒体中に、シェルを形成するための重合性単量 体 (シェル用重合性単量体)と重合開始剤を添加し、重合することでコアシェル構造 を有する着色樹脂粒子を得ることができる。  A polymerizable monomer (polymerizable monomer for shell) for forming a shell and a polymerization initiator are added to an aqueous dispersion medium in which core particles are dispersed, and the mixture is polymerized to give a color having a core-shell structure. Resin particles can be obtained.
シェルを形成する具体的な方法としては、コア粒子を得るために行った重合反応の 反応系にシェル用重合性単量体を添加して継続的に重合する方法、または別の反 応系で得たコア粒子を仕込み、これにシェル用重合性単量体を添加して重合する方 法などを挙げることができる。  As a specific method of forming the shell, a method of continuously polymerizing by adding a polymerizable monomer for the shell to the reaction system of the polymerization reaction performed to obtain the core particles, or using another reaction system A method in which the obtained core particles are charged, a polymerizable monomer for shell is added thereto, and polymerization is performed.
シェル用重合性単量体は反応系中に一括して添加しても、またはプランジャポンプ などのポンプを使用して連続的もしくは断続的に添加してもよい。  The polymerizable monomer for shell may be added to the reaction system at once, or may be added continuously or intermittently using a pump such as a plunger pump.
[0053] シェル用重合性単量体としては、スチレン、アクリロニトリル、メチルメタタリレートなど のガラス転移温度が 80°Cを超える重合体を形成する単量体をそれぞれ単独で、ある いは 2種以上組み合わせて使用することができる。 [0053] As the polymerizable monomer for the shell, monomers that form a polymer having a glass transition temperature of more than 80 ° C, such as styrene, acrylonitrile, and methyl methacrylate, may be used alone or in combination. These can be used in combination.
[0054] シェル用重合性単量体を添加する際に、水溶性の重合開始剤を添加することがコ ァシェル構造を有する着色樹脂粒子を得やすくなるので好ましレ、。シェル用重合性 単量体の添カ卩の際に水溶性重合開始剤を添加すると、シェル用重合性単量体が移 行したコア粒子の外表面近傍に水溶性重合開始剤が移動し、コア粒子表面に重合 体 (シェル)を形成しやすくなると考えられる。 When a polymerizable monomer for shell is added, it is preferable to add a water-soluble polymerization initiator, since it becomes easier to obtain colored resin particles having a core-shell structure. When a water-soluble polymerization initiator is added during the addition of the shell polymerizable monomer, the shell polymerizable monomer is transferred. It is considered that the water-soluble polymerization initiator moves to the vicinity of the outer surface of the core particles, and a polymer (shell) is easily formed on the surface of the core particles.
[0055] 水溶性重合開始剤としては、過硫酸カリウム、過硫酸アンモニゥム等の過硫酸塩; 2 , 2,—ァゾビス(2_メチル _N_ (2—ヒドロキシェチル)プロピオンアミド)、 2, 2,—ァゾ ビス一(2—メチルー N—(1, 1—ビス(ヒドロキシメチノレ) 2—ヒドロキシェチル)プロピオン アミド)等のァゾ系開始剤などを挙げることができる。水溶性重合開始剤の量は、シェ ル用重合性単量体 100重量部に対して、通常、 0. 1— 30重量部、好ましくは 1一 20 重量部である。 [0055] Examples of the water-soluble polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate; 2,2,2-azobis (2_methyl_N_ (2-hydroxyethyl) propionamide), 2,2, And azo-based initiators such as azo bis-mono (2-methyl-N- (1,1-bis (hydroxymethinole) 2-hydroxyethyl) propionamide). The amount of the water-soluble polymerization initiator is usually 0.1 to 30 parts by weight, preferably 111 to 20 parts by weight, based on 100 parts by weight of the polymerizable monomer for shell.
[0056] 重合の際の温度は、好ましくは 50°C以上であり、更に好ましくは 60— 95°Cである。  [0056] The temperature at the time of polymerization is preferably 50 ° C or higher, and more preferably 60 to 95 ° C.
また、反応時間は好ましくは 1一 20時間であり、更に好ましくは 2— 15時間であり、特 に好ましくは 2— 10時間である。重合終了後に、常法に従い、濾過、洗浄、脱水およ び乾燥の操作を、必要に応じて数回繰り返すことが好ましい。  The reaction time is preferably 1 to 20 hours, more preferably 2 to 15 hours, particularly preferably 2 to 10 hours. After completion of the polymerization, it is preferable that the operations of filtration, washing, dehydration and drying are repeated several times as necessary according to a conventional method.
[0057] 重合によって得られる着色樹脂粒子の水分散液は、分散安定化剤として無機水酸 化物等の無機化合物を使用した場合は、酸又はアルカリを添加して、分散安定化剤 を水に溶解して、除去することが好ましい。分散安定化剤として、難水溶性無機水酸 化物のコロイドを使用した場合には、酸を添加して、水分散液の pHを 6. 5以下に調 整することが好ましい。添加する酸としては、硫酸、塩酸、硝酸などの無機酸、蟻酸、 酢酸などの有機酸を用いることができるが、除去効率の大きいことや製造設備への負 担が小さいことから、特に硫酸が好適である。  [0057] When an aqueous dispersion of colored resin particles obtained by polymerization is used, when an inorganic compound such as an inorganic hydroxide is used as a dispersion stabilizer, an acid or alkali is added to the dispersion to disperse the dispersion stabilizer in water. It is preferable to dissolve and remove. When a colloid of a poorly water-soluble inorganic hydroxide is used as the dispersion stabilizer, it is preferable to adjust the pH of the aqueous dispersion to 6.5 or less by adding an acid. As the acid to be added, inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as formic acid and acetic acid can be used.However, sulfuric acid is particularly preferred because of its high removal efficiency and less burden on production equipment. It is suitable.
水系分散媒中から着色樹脂粒子を濾過脱水する方法は特に制限されない。例え ば、遠心濾過法、真空濾過法、加圧濾過法などを挙げることができる。これらのうち遠 心濾過法が好適である。  The method for filtering and dehydrating the colored resin particles from the aqueous dispersion medium is not particularly limited. For example, a centrifugal filtration method, a vacuum filtration method, a pressure filtration method, and the like can be given. Of these, centrifugal filtration is preferred.
[0058] 本発明の正帯電性トナーは、着色樹脂粒子、シリカ微粒子 (A)及びシリカ微粒子( B)、また必要に応じてその他の微粒子をヘンシェルミキサー等の高速撹拌機を用い て混合することにより得られる。  [0058] The positively chargeable toner of the present invention is obtained by mixing colored resin particles, silica fine particles (A) and silica fine particles (B), and if necessary, other fine particles with a high-speed stirrer such as a Henschel mixer. Is obtained by
実施例  Example
[0059] 以下、本発明を実施例により更に詳細に説明する。なお、本発明の範囲は、かかる 実施例に限定されないことはいうまでもない。なお、以下の実施例において、部およ び%は、特に断りのない限り重量部又は重量%を表す。 Hereinafter, the present invention will be described in more detail with reference to Examples. It goes without saying that the scope of the present invention is not limited to the embodiments. In the following examples, parts and And% represent parts by weight or% by weight unless otherwise specified.
[0060] 本実施例では、以下の方法で正帯電性トナーの評価を行った。  In this example, the positively chargeable toner was evaluated by the following method.
(1)着色樹脂粒子の平均粒径及び粒径分布  (1) Average particle size and particle size distribution of colored resin particles
着色樹脂粒子の体積平均粒径 (Dv)及び粒径分布、すなわち体積平均粒径と個 数平均粒径(Dp)との比(DvZDp)は、マルチサイザ一(ベックマン'コールター社製 )により測定した。マルチサイザ一による体積平均粒径及び粒径分布の測定は、アバ 一チヤ一径: 100 x m、分散媒:ァイソトン II、濃度: 10%、測定粒子個数: 100, 000 個の条件により実施した。  The volume average particle size (Dv) and the particle size distribution of the colored resin particles, that is, the ratio of the volume average particle size to the number average particle size (Dp) (DvZDp) were measured by a multisizer (manufactured by Beckman Coulter). . The measurement of the volume average particle size and the particle size distribution by the multisizer was carried out under the conditions of an avatar diameter: 100 × m, a dispersion medium: Isoton II, a concentration: 10%, and the number of measured particles: 100,000.
[0061] (2)外添剤の平均粒径及び粒径分布(DvlO、 Dv50)  (2) Average particle size and particle size distribution of external additives (DvlO, Dv50)
シリカ微粒子 0. 5gを 100ml容量のビーカーに入れ、界面活性剤を数滴滴下し、ィ オン交換水 50mlを加え、超音波ホモジナイザー US—150Tを用いて 5分間分散させ た後、マイクロトラック UPA150 (日機装社製)を用いて体積平均粒径及び粒径分布 を測定した。  0.5 g of silica fine particles were placed in a 100 ml beaker, a few drops of a surfactant were added, 50 ml of ion-exchanged water was added, and the mixture was dispersed for 5 minutes using an ultrasonic homogenizer US-150T. The volume average particle size and the particle size distribution were measured using Nikkiso Co., Ltd.).
[0062] (3)球形度  [0062] (3) Sphericity
着色樹脂粒子及びシリカ微粒子 (A)の絶対最大長を長径とした円の面積 (Sc)を 粒子の実質投影面積 (Sr)で割った値の球形度(Sc/Sr)は、各粒子の電子顕微鏡 写真を撮影し、その写真を画像処理解析装置ルーゼッタス IID ( (株)ニレコ製)により 、フレーム面積に対する粒子の面積率:最大 2%、トータル処理粒子数: 100個の条 件で測定し、計算した 100個についての平均値を球形度とした。  The sphericity (Sc / Sr) of the value obtained by dividing the area (Sc) of the circle whose major axis is the absolute maximum length of the colored resin particles and the silica fine particles (A) by the actual projected area (Sr) of the particles is the electron density of each particle. Photographs were taken under a microscope, and the photographs were measured with an image processing analyzer Lusettas IID (manufactured by Nireco Co., Ltd.) under the conditions that the area ratio of the particles to the frame area was up to 2% and the total number of processed particles was 100. The average value of the calculated 100 pieces was defined as sphericity.
[0063] (4)疎水化度 (4) Degree of hydrophobicity
シリカ微粒子の疎水化度はメタノール法により求めた。  The degree of hydrophobicity of the silica fine particles was determined by a methanol method.
シリカ微粒子 0. 2gを 500mlのビーカーに入れ、純水 50mlをカロえ、マグネチックス ターラーを用いて 200rpmで撹拌しながら、液面下へメタノールを加えた。液面上に 微粒子が認められなくなった点を終点とし、下記式により疎水化度を算出した。 疎水化度(%) = 7(50+ )) 100  0.2 g of the silica fine particles was placed in a 500 ml beaker, and 50 ml of pure water was calored. Methanol was added below the liquid surface while stirring at 200 rpm using a magnetic stirrer. The point at which no fine particles were observed on the liquid surface was defined as the end point, and the degree of hydrophobicity was calculated by the following equation. Hydrophobicity (%) = 7 (50+)) 100
上記式において、 Xはメタノールの使用量 (ml)である。  In the above formula, X is the amount of methanol used (ml).
[0064] (5)嵩密度 [0064] (5) Bulk density
予め秤量してある 100mlのメスシリンダーに、測定するシリカ微粒子を振動を加え ないようにして徐々に添カ卩した。 100mlに達したときにメスシリンダーごと重量を測定 し、シリカ微粒子を加える前と後の重量の差を計算し、その値を 10倍してシリカ微粒 子 (A)の嵩密度 (g/1)とした。 Vibration of the silica fine particles to be measured is applied to a pre-weighed 100 ml measuring cylinder. It was soaked slowly so as not to have it. When the volume reaches 100 ml, the weight is measured together with the measuring cylinder, the difference between the weight before and after adding the silica fine particles is calculated, and the value is multiplied by 10 to obtain the bulk density (g / 1) of the silica fine particles (A). And
[0065] (6)シリカ微粒子の帯電量  (6) Charge Amount of Silica Fine Particles
シリカ微粒子 0. lg及びキャリア(パウダーテック社製、商品名「EF80B2」)49. 9g を 30mlのガラス瓶に秤り取り、温度 23°C、湿度 50%の環境下で一昼夜放置した後 、ボールミルを用いて 150rpmで 30分間撹拌した。撹拌したシリカ微粒子とキャリア の混合物を 0. 2g秤り取り、ブローオフ粉体帯電量測定装置 (東芝ケミカル社製、機 器名「TB_200」)を用いて、窒素圧 1. OkgfZm2の窒素にて 60秒間ブローを行い、 測定値力 シリカ微粒子の帯電量( μ c/g)を算出した。 Silica fine particles 0.1 lg and 49.9 g of a carrier (product name: “EF80B2” manufactured by Powder Tech) were weighed into a 30 ml glass bottle, left at room temperature and a temperature of 23 ° C. and a humidity of 50% for 24 hours, and then ball milled. And stirred at 150 rpm for 30 minutes. 0.2 g of the stirred mixture of the silica fine particles and the carrier was weighed out, and the mixture was blown with nitrogen at a nitrogen pressure of 1. OkgfZm 2 using a blow-off powder charge amount measurement device (product name: TB_200, manufactured by Toshiba Chemical Corporation). Blowing was performed for 60 seconds, and the measured value force The charge amount (μc / g) of the silica fine particles was calculated.
[0066] (7)シリカ微粒子の BET比表面積  (7) BET specific surface area of silica fine particles
ASTM D3037-81に準拠して、比表面積測定装置(島津製作所製、商品名「フ ローソープ 2300」を用いて、シリカ微粒子表面に窒素ガスを吸着させて測定した。  In accordance with ASTM D3037-81, a specific surface area measuring device (manufactured by Shimadzu Corporation, trade name "Flow Soap 2300") was used to adsorb nitrogen gas on the surface of silica fine particles and measured.
[0067] (8)かぶり  [0067] (8) Cover
市販の非磁性一成分現像方式のプリンター(18枚機)にコピー用紙をセットし、現 像装置に正帯電性トナーを入れ、温度 23°C及び湿度 50%の(N/N)環境下で一 昼夜放置後、 5%印字濃度で連続印字を行い、 100枚印字時に、白ベタ印字を行い 、現像後の感光体上にあるトナーを粘着テープ (住友スリーェム社製、スコッチメンデ イングテープ 810-3— 18)に付着させた。その粘着テープを新しい印字用紙に貼り 付け、その白色度 (B)を白色度計(日本電色社製)で測定した。同時に、粘着テープ だけを印字用紙に貼り付け、その白色度 (A)を測定した。この白色度の差 (A— B)を かぶり値とした。この値が小さい方力 かぶりが少ないことを示す。  Set the copy paper in a commercially available non-magnetic one-component development type printer (18-sheet machine), put the positively charged toner in the imaging device, and operate in an environment of 23 ° C and 50% humidity (N / N). (1) After standing overnight, continuous printing is performed at 5% printing density, and when printing 100 sheets, white solid printing is performed.After development, the toner on the photoreceptor is adhered to an adhesive tape (Scotch Mending Tape 810- 3-18). The adhesive tape was stuck on new printing paper, and the whiteness (B) was measured with a whiteness meter (Nippon Denshoku Co., Ltd.). At the same time, only the adhesive tape was attached to the printing paper, and the whiteness (A) was measured. This difference in whiteness (AB) was taken as the fog value. A smaller value indicates less force fogging.
また、正帯電性トナーを、密閉できる容器に温度 23°C及び湿度 50%の環境下で 入れて密閉した。この容器を、温度 50°Cの環境下に 5日間保存した後、開封して、温 度 23°C及び湿度 50%の環境下に戻した。容器内から正帯電性トナーを取り出し、こ の正帯電性トナーを用いて上記と同様にしてかぶり値を測定した。これを、高温保存 後のかぶり値とした。  Positively chargeable toner was placed in a sealable container at 23 ° C and 50% humidity, and sealed. This container was stored in an environment at a temperature of 50 ° C for 5 days, opened, and returned to an environment of a temperature of 23 ° C and a humidity of 50%. The positively chargeable toner was taken out of the container, and the fog value was measured in the same manner as above using this positively chargeable toner. This was taken as the fog value after high-temperature storage.
[0068] (9)耐久性 (8)で用いたプリンターの現像装置にトナーを入れ、温度 23°C、湿度 50%の(N/ N)環境下で一昼夜放置した後、 5%濃度で初期から連続印字を行い、 500枚毎に 白ベタ印字を行った。 (8)と同様にしてかぶり値を測定し、この値が 1. 0%以下を維 持できる連続印字枚数を 15, 000枚まで調べた。なお、表中に 15, 000枚以上とあ るのは、 15, 000枚で、かぶり値が 1. 0%以下であったことを示す。 [0068] (9) Durability Put the toner in the developing device of the printer used in (8), leave it for 24 hours in an environment of 23 ° C and 50% humidity (N / N). Solid printing was performed every time. The fog value was measured in the same manner as in (8), and the number of continuous prints that could maintain this value at 1.0% or less was checked up to 15,000 sheets. It should be noted that “15,000 or more” in the table indicates 15,000 sheets, and the fog value was 1.0% or less.
また、正帯電性トナーを、密閉できる容器に温度 23°C及び湿度 50%の環境下で 入れて密閉した。この容器を、温度 50°Cの環境下に 5日間保存した後、開封して、温 度 23°C及び湿度 50%の環境下に戻した。容器内から正帯電性トナーを取り出し、こ の正帯電性トナーを用いて上記と同様にして耐久性を調べた。これを、高温保存後 の耐久性とした。  Positively chargeable toner was placed in a sealable container at 23 ° C and 50% humidity, and sealed. This container was stored in an environment at a temperature of 50 ° C for 5 days, opened, and returned to an environment of a temperature of 23 ° C and a humidity of 50%. The positively chargeable toner was taken out of the container, and the durability was examined in the same manner as described above using the positively chargeable toner. This was taken as the durability after high-temperature storage.
[0069] (10)環境安定性 [0069] (10) Environmental stability
(8)で用いたプリンターの現像装置に正帯電性トナーを入れ、温度 35°C、湿度 80 %の(H/H)環境下、温度 10°C、湿度 20%の(L/L)環境下に一昼夜放置した後 、(8)と同様にして、 100枚目印字時のかぶり値を測定した。  Put the positively chargeable toner into the developing device of the printer used in (8), and put it in a 35 ° C, 80% humidity (H / H) environment, a 10 ° C temperature, 20% humidity (L / L) environment. After being left under the light for one day, the fog value at the time of printing the 100th sheet was measured in the same manner as in (8).
(11)現像ブレード部への外添剤汚染  (11) External additive contamination on the developing blade
(8)で用いたプリンターの現像装置に正帯電性トナーを入れ、(9)の耐久性試験を 実施した後、現像ブレード部の観察を行い外添剤の蓄積を確認した。なお、判断基 準は、以下の通りである。  Positively chargeable toner was put into the developing device of the printer used in (8), and the durability test of (9) was performed. After that, the developing blade was observed to confirm the accumulation of the external additive. The criteria are as follows.
〇:現像ブレード部に外添剤蓄積がなぐ印字品質問題なし。  〇: No print quality problem due to accumulation of external additives in the developing blade.
△:現像ブレード部に外添剤蓄積が認められるが、印字品質問題なし。  Δ: External additive accumulation was observed in the developing blade portion, but there was no printing quality problem.
X:現像ブレード部に外添剤蓄積が認められ、印字品質の低下が生じる。  X: Accumulation of external additives was observed in the developing blade portion, and the print quality was degraded.
[0070] 製造例 1 Production Example 1
シリカ粉末(平均粒子径: 2 μ m、最大粒子径: 60 μ m)、及び金属シリコン粉末(平 均粒子径: 10 μ m、最大粒子径: 100 μ m)の混合粉末(シリカ粉末の SiO分 1. 0モ  Mixed powder of silica powder (average particle diameter: 2 μm, maximum particle diameter: 60 μm) and metallic silicon powder (average particle diameter: 10 μm, maximum particle diameter: 100 μm) (SiO powder of silica powder) Min 1.0 mo
2 ルに対して、金属シリコン粉末は 0. 8モル) 100部と純水 50部とを混合し、この混合 原料を 2000°Cに加熱した電気炉に連続供給した。また、混合原料の送入と同一の 方向から水素ガスを導入し、水素ガス及び発生したガスを反対方向上部に設けた排 気ブロワ一で吸引し、更に空気と接触させ(400Nm3Zhr)、冷却しながらバグフィノレ ターでシリカ微粒子を捕集した。捕集したシリカ微粒子を風力分級機を用いて分級を 行い、一次粒子の体積平均粒子径が 0. l l /i m、 Dv50/Dvl0が 2. 14、球形度が 1. 10、窒素吸着による BET比表面積が 30m2/gのシリカ微粒子を得た。 100 parts of metal silicon powder (0.8 mol per 2 parts) and 50 parts of pure water were mixed, and the mixed raw material was continuously supplied to an electric furnace heated to 2000 ° C. In addition, hydrogen gas was introduced from the same direction as the mixed raw material was introduced, and the hydrogen gas and generated gas were sucked by the exhaust blower provided in the upper part in the opposite direction, and then brought into contact with air (400 Nm 3 Zhr). Bagfinole while cooling The silica fine particles were collected by a filter. The collected silica fine particles are classified using an air classifier, and the primary particles have a volume average particle size of 0.1 ll / im, Dv50 / Dvl0 of 2.14, sphericity of 1.10, and BET ratio by nitrogen adsorption. Silica fine particles having a surface area of 30 m 2 / g were obtained.
次いで、上記シリカ微粒子 200部を攪拌機付きステンレス製容器中にて撹拌し、 —ァミノプロピルトリエトキシシラン 1. 2部及びへキサメチルジシラザン 1. 4部を噴霧し た。噴霧終了後、窒素雰囲気下にて 60°Cで 10時間保持し、更に 150°Cに昇温して 5時間保持した後、窒素気流により残存揮発性成分を除去してシリカ微粒子 A1を得 た。得られたシリカ微粒子 A1の帯電量は—80 z c/gであり、窒素吸着による BET比 表面積は 24m2/gであり、疎水化度は 58%であり、嵩密度は 130gZlであった。 Next, 200 parts of the above silica fine particles were stirred in a stainless steel container equipped with a stirrer, and 1.2 parts of -aminopropyltriethoxysilane and 1.4 parts of hexamethyldisilazane were sprayed. After completion of the spraying, the mixture was maintained at 60 ° C for 10 hours under a nitrogen atmosphere, further heated to 150 ° C and maintained for 5 hours, and the remaining volatile components were removed by a nitrogen stream to obtain silica fine particles A1. . The obtained silica fine particles A1 had a charge amount of −80 zc / g, a BET specific surface area by nitrogen adsorption of 24 m 2 / g, a degree of hydrophobicity of 58%, and a bulk density of 130 gZl.
[0071] 製造例 2 [0071] Production Example 2
γ—アミノプロピルトリエトキシシランを 1. 0部用い、へキサメチルジシラザンに代え、 シリコーンオイル (信越化学社製、商品名「KF-96」)3. 0部を用いた以外は、製造 例 1と同様に操作を行い、シリカ微粒子 A2を得た。得られたシリカ微粒子 A2の帯電 量は- 240 /i c/gであり、窒素吸着による BET比表面積は 22m2/gであり、疎水化 度は 62%であり、嵩密度は 160g/lであった。 Production example except that 1.0 part of γ-aminopropyltriethoxysilane was used and 3.0 parts of silicone oil (trade name “KF-96” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of hexamethyldisilazane. The same operation as in 1 was performed to obtain silica fine particles A2. The charge amount of the obtained silica fine particles A2 was -240 / ic / g, the BET specific surface area by nitrogen adsorption was 22 m 2 / g, the hydrophobicity was 62%, and the bulk density was 160 g / l. Was.
[0072] 製造例 3 Production Example 3
γ—アミノプロピルトリエトキシシランを 1 · 7部用い、へキサメチルジシラザンを 1 · 4 部用いた以外は、製造例 1と同様に操作を行い、シリカ微粒子 A3を得た。得られた シリカ微粒子 A3の帯電量は 100 μ c/gであり、窒素吸着による BET比表面積は 21 m2/gであり、疎水化度は 59%であり、嵩密度は 130g/lであった。 The same procedures as in Production Example 1 were carried out, except that 1.7 parts of γ-aminopropyltriethoxysilane and 1.4 parts of hexamethyldisilazane were used, to obtain silica fine particles A3. The charge amount of the obtained silica fine particles A3 was 100 μc / g, the BET specific surface area by nitrogen adsorption was 21 m 2 / g, the degree of hydrophobicity was 59%, and the bulk density was 130 g / l. Was.
[0073] 製造例 4 Production Example 4
γ—アミノプロピルトリエトキシシランを 0. 1部用レ、、へキサメチルジシラザンを 1. 4 部用いた以外は、製造例 1と同様に操作を行レ、、シリカ微粒子 Α4を得た。得られた シリカ微粒子 Α4の帯電量は _780 μ cZgであり、窒素吸着による BET比表面積は 2 5m2/gであり、疎水化度は 66%であり、嵩密度は 140gZlであった。 The same operation as in Production Example 1 was carried out except that 0.1 part of γ-aminopropyltriethoxysilane and 1.4 parts of hexamethyldisilazane were used, to obtain silica fine particles 4. The charge amount of the obtained silica fine particles 4 was _780 μcZg, the BET specific surface area by nitrogen adsorption was 25 m 2 / g, the degree of hydrophobicity was 66%, and the bulk density was 140 gZl.
[0074] 製造例 5 Production Example 5
気相法で製造された、 Dv50ZDvlO力 86、球形度が 1. 38、窒素吸着による B ET比表面積が 50m2/gのシリカ微粒子(日本ァエロジル社製、商品名「AER〇SIL 50」)200部に、 γ—ァミノプロピルトリエトキシシラン 2· 0部及びシリコーンオイル(信 越化学社製、商品名「KF_96」)4. 0部を用い、製造例 1と同様に操作を行い、シリ 力微粒子の表面処理を行レ、シリカ微粒子 A5を得た。得られたシリカ微粒子 A5の帯 電量は 800 μ c/gであり、窒素吸着による BET比表面積は 38m2Zgであり、疎水化 度は 85%であり、嵩密度は 45g/lであった。 Silica fine particles with a Dv50ZDvlO force of 86, a sphericity of 1.38, and a BET specific surface area of 50 m 2 / g by nitrogen adsorption (manufactured by Nippon Aerosil Co., Ltd., trade name “AER〇SIL 50 ”) 200 parts of γ-aminopropyltriethoxysilane and 4.0 parts of silicone oil (Shin-Etsu Chemical Co., Ltd., trade name“ KF_96 ”) were used, and the operation was performed in the same manner as in Production Example 1. The surface treatment of the silica fine particles was performed to obtain silica fine particles A5. The obtained silica fine particles A5 had a charge of 800 μc / g, a BET specific surface area by nitrogen adsorption of 38 m 2 Zg, a degree of hydrophobicity of 85%, and a bulk density of 45 g / l.
[0075] 製造例 6 Production Example 6
y—ァミノプロピルトリエトキシシランに代え、 N_フエ二ルー y—ァミノプロピルトリメト キシシランを 1. 2部用いた以外は、製造例 1と同様に操作を行い、シリカ微粒子 A6 を得た。得られたシリカ微粒子 A6の帯電量は—550 z c/gであり、窒素吸着による B ET比表面積は 24m2/gであり、疎水化度は 65%であり、嵩密度は 160gZlであつ た。 The same operation as in Production Example 1 was carried out except that 1.2 parts of N_phenyl y-aminopropyltrimethoxysilane was used instead of y-aminopropyltriethoxysilane, to obtain silica fine particles A6. . The obtained silica fine particles A6 had a charge amount of −550 zc / g, a BET specific surface area by nitrogen adsorption of 24 m 2 / g, a degree of hydrophobicity of 65%, and a bulk density of 160 gZl.
[0076] 製造例 7  Production Example 7
γ—ァミノプロピルトリエトキシシランに代え、 Ν—フエ二ルー γ—ァミノプロピルトリメト キシシランを 1. 7部用いた以外は、製造例 1と同様に操作を行い、シリカ微粒子 Α7 を得た。得られたシリカ微粒子 Α7の帯電量は- 310 /i c/gであり、窒素吸着による B ET比表面積は 23m2/gであり、疎水化度は 75%であり、嵩密度は 150g/lであつ た。 The same procedures as in Production Example 1 were carried out, except that 1.7 parts of Ν-aminopropyltrimethoxysilane were used instead of γ-aminopropyltriethoxysilane, to obtain silica fine particles # 7. . The obtained silica fine particles had a charge amount of −310 / ic / g, a BET specific surface area by nitrogen adsorption of 23 m 2 / g, a degree of hydrophobicity of 75%, and a bulk density of 150 g / l. It was hot.
[0077] 実施例 1  Example 1
スチレン 87部、 n—ブチノレアタリレート 13部、ジビニルベンゼン 0. 5部、カーボンブ ラック(三菱化学社製、商品名「 # 25B」 ) 6部、ポリメタクリル酸エステルマクロモノマ 一(東亜合成化学工業社製、商品名「AA6」、ガラス転移温度 (Tg): 94°C) 0. 25部 、帯電制御樹脂(スチレン 82%、 n_ブチルアタリレート 11 %及び N, N—ジェチルー N —メチルー(2—メタクリロイルォキシ)ェチルアンモニゥム _p—トルエンスルホナート 7% を重合してなる樹脂、重量平均分子量: 12, 000、Tg : 67°C) l部、ペンタエリスリトー ルテトラミリステート 10部、及び tードデシルメルカプタン 1. 5部を室温下、ビーズミル で分散させ、均一な重合性単量体組成物混合液を得た。  87 parts of styrene, 13 parts of n-butynoleatalylate, 0.5 part of divinylbenzene, 6 parts of carbon black (Mitsubishi Chemical Co., Ltd., trade name "# 25B"), 6 parts of polymethacrylate macromonomer I (Toa Gosei Chemical Industry) 0.25 parts of a charge control resin (82% styrene, 11% n_butyl acrylate, N, N-Jetyl-N-methyl) (trade name "AA6", glass transition temperature (Tg): 94 ° C) 2-Methacryloyloxy) ethylammonium _p-Resin obtained by polymerizing 7% toluenesulfonate, weight average molecular weight: 12,000, Tg: 67 ° C) l part, pentaerythritol tetramyristate 10 And 1.5 parts of t-decyl mercaptan were dispersed at room temperature in a bead mill to obtain a uniform polymerizable monomer composition mixture.
[0078] 上記とは別途に、イオン交換水 250部に塩化マグネシウム 9. 8部を溶解した塩化 マグネシウム水溶液に、イオン交換水 50部に水酸化ナトリウム 6. 9部を溶解した水酸 化ナトリウム水溶液を撹拌しつつ徐々に添加し、水酸化マグネシウムコロイド分散液 を調製した。 [0078] Separately from the above, in a magnesium chloride aqueous solution in which 9.8 parts of magnesium chloride is dissolved in 250 parts of ion-exchanged water, a hydroxylic acid in which 6.9 parts of sodium hydroxide is dissolved in 50 parts of ion-exchanged water A sodium hydroxide aqueous solution was gradually added with stirring to prepare a magnesium hydroxide colloid dispersion.
[0079] 上述のようにして得られた水酸化マグネシウムコロイド分散液に、上記重合性単量 体組成物混合液を投入し、液滴が安定するまで撹拌を行った。次いで、重合開始剤 t一ブチルパーォキシ一 2—ェチルへキサノエート (日本油脂(株)製、商品名「パーブ チル 0」) 5部を添加した後、 15, OOOrpmで回転するェバラマイルダー(荏原製作所 (株)製、商品名「MDN303V」)で 30分間高剪断撹拌して、単量体混合物の液滴を 形成させた。  [0079] The above-mentioned mixed solution of the polymerizable monomer composition was added to the magnesium hydroxide colloidal dispersion obtained as described above, and the mixture was stirred until the droplets became stable. Then, after adding 5 parts of a polymerization initiator t-butylperoxy-1-ethylhexanoate (trade name “Perbutyl 0” manufactured by NOF Corporation), Ebara Milder (EBARA CORPORATION) rotating at 15, OOOrpm (Trade name “MDN303V”), and high-shear stirring was performed for 30 minutes to form droplets of the monomer mixture.
[0080] 上述のようにして得られた単量体混合物の水分散液を、撹拌翼を装着した反応 器に入れ、昇温を開始し、 90°Cで温度が一定になるように制御した。重合転化率が ほぼ 100%に達した後、シェル用重合性単量体 (メチルメタタリレート) 1部と、イオン 交換水 10部に溶解した水溶性開始剤 (和光純薬工業 (株)製、商品名「VA— 086」) (2, 2,ーァゾビス(2—メチルー N (2—ヒドロキシェチル)—プロピオンアミド) 0· 1部を反 応器に添加した。 90°Cで重合反応を 4時間継続した後、反応器を冷却して反応を停 止し、コアシェル型の着色樹脂粒子の水分散液を得た。  [0080] The aqueous dispersion of the monomer mixture obtained as described above was put into a reactor equipped with a stirring blade, the temperature was raised, and the temperature was controlled to be constant at 90 ° C. . After the polymerization conversion reaches almost 100%, a water-soluble initiator dissolved in 1 part of a polymerizable monomer for shell (methyl methacrylate) and 10 parts of ion-exchanged water (manufactured by Wako Pure Chemical Industries, Ltd.) , Trade name “VA-086”) 0.1 part of (2,2, azobis (2-methyl-N (2-hydroxyethyl) -propionamide)) was added to the reactor. After continuing for 4 hours, the reactor was cooled to stop the reaction, and an aqueous dispersion of core-shell type colored resin particles was obtained.
[0081] 上述のようにして得られた着色樹脂粒子の水分散液を撹拌しながら、 pHが 6になる まで硫酸を添加して着色樹脂粒子表面の水酸化マグネシウムを水に可溶化させた。 次いで、得られたコアシェル型の着色樹脂粒子の水分散液を、撹拌しながら硫酸に より酸洗浄(25°C、 10分間)して、遠心濾過により水を分離した。次いで、新たにィォ ン交換水 500部を加えて再スラリー化して水洗浄を行った。次いで、再度、脱水及び 水洗浄を数回繰り返して行い、真空乾燥して、体積平均粒径 (Dv)が 7. 8 / m、粒径 分布(DvZDp)が 1. 25、球形度が 1. 15の着色樹脂粒子を得た。  [0081] While stirring the aqueous dispersion of the colored resin particles obtained as described above, sulfuric acid was added until the pH reached 6, so that the magnesium hydroxide on the surface of the colored resin particles was solubilized in water. Next, the obtained aqueous dispersion of the core-shell type colored resin particles was washed with acid (25 ° C., 10 minutes) with sulfuric acid while stirring, and water was separated by centrifugal filtration. Next, 500 parts of ion-exchanged water was added to reslurry to wash with water. Then, dehydration and washing with water are repeated several times, and the resultant is vacuum-dried. The volume average particle size (Dv) is 7.8 / m, the particle size distribution (DvZDp) is 1.25, and the sphericity is 1. 15 colored resin particles were obtained.
上述のようにして得られた着色樹脂粒子 100部に、製造例 1で得られたシリカ微粒 子 A1を 1. 0重量部、シリカ微粒子 Bとして TG820F (キャボット社製、帯電量: 800 μ cん窒素吸着による BET比表面積: 180m2Zg、疎水化度: 55%) 0. 8部を添カロ し、ヘンシェルミキサーを用いて 1, 400rpmの回転数で 8分間混合し、本発明の正 帯電性トナーを得た。得られた正帯電性トナーについて、上述した評価を行った。評 価結果を表 1に示す。 [0082] 実施例 2 To 100 parts of the colored resin particles obtained as described above, 1.0 part by weight of the silica fine particles A1 obtained in Production Example 1 and TG820F (manufactured by Cabot Corporation, charge amount: 800 μc) were used as silica fine particles B. BET specific surface area by nitrogen adsorption: 180 m 2 Zg, degree of hydrophobicity: 55%) 0.8 parts of calorie was added, and mixed with a Henschel mixer at 1,400 rpm for 8 minutes to obtain the positive chargeability of the present invention. A toner was obtained. The above-described evaluation was performed on the obtained positively chargeable toner. Table 1 shows the evaluation results. Example 2
シリカ微粒子 Alに代え、製造例 2で得られたシリカ微粒子 A2を用いた以外は、実 施例 1と同様にして操作を行い、正帯電性トナーを得た。得られた正帯電性トナーの 特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 1に示す。  A positively-chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A2 obtained in Production Example 2 were used instead of the silica fine particles Al. The properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0083] 比較例 1 [0083] Comparative Example 1
シリカ微粒子 A1に代え、製造例 3で得られたシリカ微粒子 A3を用いた以外は、実 施例 1と同様にして操作を行い、正帯電性トナーを得た。得られた正帯電性トナーの 特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 1に示す。  A positively chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A3 obtained in Production Example 3 were used instead of the silica fine particles A1. The properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0084] 比較例 2 [0084] Comparative Example 2
シリカ微粒子 A1に代え、製造例 4で得られたシリカ微粒子 A4を用いた以外は、実 施例 1と同様にして操作を行い、正帯電性トナーを得た。得られた正帯電性トナーの 特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 1に示す。  A positively-chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A4 obtained in Production Example 4 were used instead of the silica fine particles A1. The properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0085] 比較例 3 [0085] Comparative Example 3
シリカ微粒子 A1に代え、製造例 5で得られたシリカ微粒子 A5を用いた以外は、実 施例 1と同様にして操作を行い、正帯電性トナーを得た。得られた正帯電性トナーの 特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 1に示す。  A positively-chargeable toner was obtained in the same manner as in Example 1, except that the silica fine particles A5 obtained in Production Example 5 were used instead of the silica fine particles A1. The properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0086] 実施例 3 [0086] Example 3
スチレンの使用量を 83部、 n-ブチルアタリレートの使用量を 17部とし、帯電制御樹 脂として、スチレン 85%、 n-ブチルアタリレート 11 %及び N, N -ジェチル -N -メチル- (2-メタクリロイルォキシ)ェチルアンモニゥム -p-トルエンスルホナート 4%を重合して なる樹脂(重量平均分子量: 12, 000、Tg : 68°C)を用いた以外は、実施例 1と同様 に操作を行レ、、体積平均粒径(Dv)が 7. 8 μ m、粒径分布(Dv/Dp)が 1. 25、球 形度が 1. 15の着色樹脂粒子を得た。  The amount of styrene used was 83 parts, the amount of n-butyl acrylate used was 17 parts, and the charge control resin was 85% styrene, 11% n-butyl acrylate and N, N-Jetyl-N-methyl- ( Example 1 was repeated except that a resin (weight average molecular weight: 12,000, Tg: 68 ° C) obtained by polymerizing 4% of 2-methacryloyloxy) ethylammonium-p-toluenesulfonate was used. The same operation was performed to obtain colored resin particles having a volume average particle size (Dv) of 7.8 μm, a particle size distribution (Dv / Dp) of 1.25, and a sphericity of 1.15.
次いで、シリカ微粒子 A1に代え、製造例 6で得られたシリカ微粒子 A6を用いた以 外は、実施例 1と同様にして操作を行い、正帯電性トナーを得た。得られた正帯電性 トナーの特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 2に 示す。  Next, a positively chargeable toner was obtained in the same manner as in Example 1 except that the silica fine particles A6 obtained in Production Example 6 were used instead of the silica fine particles A1. The properties, images, and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0087] 実施例 4 シリカ微粒子 A6に代え、製造例 7で得られたシリカ微粒子 A7を用いた以外は、実 施例 3と同様にして操作を行い、正帯電性トナーを得た。得られた正帯電性トナーの 特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 2に示す。 Example 4 The operation was performed in the same manner as in Example 3 except that the silica fine particles A7 obtained in Production Example 7 were used instead of the silica fine particles A6, to obtain a positively chargeable toner. The properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0088] 比較例 4 [0088] Comparative Example 4
シリカ微粒子 A6に代え、製造例 3で得られたシリカ微粒子 A3を用いた以外は、実 施例 3と同様にして操作を行レ、、正帯電性トナーを得た。得られた正帯電性トナーの 特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 2に示す。  The same operation as in Example 3 was carried out except that the silica fine particles A3 obtained in Production Example 3 were used instead of the silica fine particles A6, to obtain a positively chargeable toner. The properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0089] 比較例 5 [0089] Comparative Example 5
シリカ微粒子 A6に代え、製造例 5で得られたシリカ微粒子 A5を用いた以外は、実 施例 3と同様にして操作を行い、正帯電性トナーを得た。得られた正帯電性トナーの 特性及び画像等の評価を実施例 1と同様にして行った。その結果を表 2に示す。  The operation was performed in the same manner as in Example 3 except that the silica fine particles A5 obtained in Production Example 5 were used instead of the silica fine particles A6, to obtain a positively chargeable toner. The properties, images and the like of the obtained positively chargeable toner were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0090] [表 1] 実施例 1 実施例 2 比較例 1 比較例 2 比較例 3 シ Ϊ力微粒子特性 [Table 1] Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3
力微粒子 (A) A 1 A 2 A3 A4 A 5 シリカ微粒子 (A) 一 80 - 240 100 - 780 800 帯電量 ( c/g)  Fine particles (A) A 1 A 2 A3 A4 A 5 Silica particles (A) 80-240 100-780 800 Charge (c / g)
BET比表 'ί 24 22 2 1 25 38  BET ratio table 'ί 24 22 2 1 25 38
積 (m2/g)  Product (m2 / g)
疎水化度 58 62 5 9 66 85  Hydrophobicity 58 62 5 9 66 85
(%)  (%)
嵩密度 (g1) 1 30 1 60 1 30 1 0 45  Bulk density (g1) 1 30 1 60 1 30 1 0 45
画質評価  Image quality evaluation
咼温保存前  Before saving
かぶり 0. 12 0. 09 0. 1 1 0. 20 0. 35 耐久性 (枚) 15,000以上 15,000以上 15,000以上 15,000以上 15,000以上 卨温保存後  Fogging 0.12 0.09 0.1 1 0.20 0.35 Durability (sheets) 15,000 or more 15,000 or more 15,000 or more 15,000 or more 15,000 or more
かぶり 0. 13 0. 1 9 1. 2 0. 2 1 0 , 50 耐久性 (枚) 15,000以上 15,000以上 1,000 15,000以上 9,000 澴境安定性  Fogging 0.13 0. 1 9 1. 2 0. 2 1 0, 50 Durability (sheets) 15,000 or more 15,000 or more 1,000 15,000 or more 9,000 Environmental stability
HH 0. 35 0. 32 0. 20 3. 4 0 - 21  HH 0.35 0.32 0.20 3.40-21
T. T. 0. 14 0. 1 3 0. 1 3 0. 1 6 2. 0 [0091] 表 1に記載のトナーの評価結果から、以下のことがわかる。 TT 0.14 0.1 3 0.1 3 0.1 62.0 [0091] From the evaluation results of the toners shown in Table 1, the following can be understood.
外添剤として用いたシリカ微粒子 Aの帯電量が、本発明で規定する範囲外である、 比較例 1一 3の正帯電性トナーは、高温保存後にかぶりが発生するか、環境安定性 が良好でない。  The charge amount of the silica fine particles A used as the external additive is out of the range specified in the present invention. The positively chargeable toner of Comparative Examples 13 to 13 fogs after storage at high temperature or has good environmental stability. Not.
これに対し、本発明の実施例 1及び実施例 2の正帯電性トナーは、高温保存後であ つてもかぶりの発生が少なく、環境安定性に優れるものである。  On the other hand, the positively chargeable toners of Example 1 and Example 2 of the present invention are less likely to generate fog even after storage at a high temperature, and have excellent environmental stability.
[0092] [表 2] [0092] [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
表 2に記載のトナーの評価結果から、以下のことがわかる。 外添剤として用いたシリ 力微粒子 Aの帯電量が、本発明で規定する範囲外である、比較例 4及び 5の正帯電 性トナーは、高温保存後にかぶりが発生するか、耐久性が良好でないか、現像ブレ ード汚染が発生する。 From the evaluation results of the toners shown in Table 2, the following can be understood. The positively chargeable toners of Comparative Examples 4 and 5, in which the charge amount of the silica fine particles A used as the external additive is out of the range specified in the present invention, generate fog after storage at high temperatures or have good durability. Otherwise, development blade contamination occurs.
これに対し、本発明の実施例 1ないし実施例 4の正帯電性トナーは、高温保存後で あってもかぶりの発生が少なぐ耐久性に優れ、現像ブレード汚染が発生しないもの である。  On the other hand, the positively chargeable toners of Examples 1 to 4 of the present invention are less durable even after storage at high temperatures, have excellent durability, and do not cause development blade contamination.

Claims

請求の範囲  The scope of the claims
[I] 着色樹脂粒子と外添剤とを含有する正帯電性トナーであって、  [I] A positively chargeable toner containing colored resin particles and an external additive,
該外添剤が、  The external additive is
表面がアミノ基含有化合物で処理されており、疎水化度が 40%以上であり、帯電 量カ 700—0 μ cZgであるシリカ微粒子(A)、及び  Silica fine particles (A) whose surface is treated with an amino group-containing compound, has a hydrophobicity of 40% or more, and has a charge amount of 700-0 μcZg; and
帯電量が 500 1000 z cZgであるシリカ微粒子(B)  Silica fine particles with a charge of 500 1000 z cZg (B)
を含有することを特徴とする正帯電性トナー。  And a positively chargeable toner.
[2] シリカ微粒子 (A)の窒素吸着による BET比表面積が 10— 80m2/gである、請求項 1 に記載の正帯電性トナー。 [2] The positively chargeable toner according to claim 1, wherein the silica fine particles (A) have a BET specific surface area of 10 to 80 m 2 / g by nitrogen adsorption.
[3] シリカ微粒子(B)の窒素吸着による BET比表面積が 150— 300m2/gである、請求 項 1に記載の正帯電性トナー。 3. The positively chargeable toner according to claim 1, wherein the silica fine particles (B) have a BET specific surface area of 150 to 300 m 2 / g by nitrogen adsorption.
[4] シリカ微粒子 (A)の嵩密度が 50— 250g/lである、請求項 1に記載の正帯電性トナ [4] The positively chargeable toner according to claim 1, wherein the bulk density of the silica fine particles (A) is 50 to 250 g / l.
[5] シリカ微粒子 (A)の一次粒子の体積平均粒径が 0. 1-1. Ο μ mである、請求項 1に 記載の正帯電性トナー。 [5] The positively chargeable toner according to claim 1, wherein the volume average particle diameter of primary particles of the silica fine particles (A) is 0.1 to 1 μm.
[6] シリカ微粒子 (A)の球形度が 1一 1. 3である、請求項 1に記載の正帯電性トナー。 [6] The positively chargeable toner according to claim 1, wherein the sphericity of the silica fine particles (A) is 1 to 1.3.
[7] シリカ微粒子 (A)が、小粒径側から起算した体積累計が 10%に該当する粒径を Dv[7] The silica fine particles (A) have a Dv
10とし、同じく 50%に該当する粒径を Dv50とした場合、 Dv50/Dvl0力 1. 8以上 である、請求項 1に記載の正帯電性トナー。 2. The positively chargeable toner according to claim 1, wherein the Dv50 / Dvl0 force is 1.8 or more, where Dv50 is the particle size corresponding to 50%.
[8] アミノ基含有化合物が 2級ァミン化合物である、請求項 1に記載の正帯電性トナー。 [8] The positively chargeable toner according to claim 1, wherein the amino group-containing compound is a secondary amine compound.
[9] アミノ基含有化合物が、フエ二ル基を有する 2級アミンィ匕合物である、、請求項 1に記 載の正帯電性トナー。 [9] The positively chargeable toner according to claim 1, wherein the amino group-containing compound is a secondary amine conjugate having a phenyl group.
[10] シリカ微粒子(B)の疎水化度が 40%以上である、請求項 1に記載の正帯電性トナー  [10] The positively chargeable toner according to claim 1, wherein the hydrophobicity of the silica fine particles (B) is 40% or more.
[II] シリカ微粒子 (A)の帯電量力 -500— 0 /i C/gである、請求項 1に記載の正帯電 性トナー。 [II] The positively chargeable toner according to claim 1, wherein the chargeability of the silica fine particles (A) is -500-0 / iC / g.
[12] シリカ微粒子 (A)の添加量が、着色樹脂粒子 100重量部に対して、 0. 3— 3重量部 である、請求項 1に記載の正帯電性トナー。 [12] The positively chargeable toner according to claim 1, wherein the addition amount of the silica fine particles (A) is 0.3 to 3 parts by weight based on 100 parts by weight of the colored resin particles.
[13] シリカ微粒子(B)の添カ卩量力 着色樹脂粒子 100重量部に対して、 0. 1一 3重量部 である、請求項 1に記載の正帯電性トナー。 [13] The positively chargeable toner according to claim 1, wherein the addition amount of the silica fine particles (B) is 0.1 to 13 parts by weight based on 100 parts by weight of the colored resin particles.
[14] シリカ微粒子 (A)及びシリカ微粒子(B)の使用割合が、重量比で 30: 70— 70: 30で ある、請求項 1に記載の正帯電性トナー。 [14] The positively chargeable toner according to claim 1, wherein the use ratio of the silica fine particles (A) and the silica fine particles (B) is from 30:70 to 70:30 by weight.
[15] 着色樹脂粒子の球形度が 1. 0-1. 3である、請求項 1に記載の正帯電性トナー。 [15] The positively chargeable toner according to claim 1, wherein the sphericity of the colored resin particles is 1.0 to 1.3.
[16] 着色樹脂粒子の体積平均粒径 (Dv)と個数平均粒径 (Dp)との比(DvZDp)力 1. [16] Ratio (DvZDp) force between volume average particle diameter (Dv) and number average particle diameter (Dp) of colored resin particles 1.
0-1. 3である、請求項 1に記載の正帯電性トナー。  2. The positively chargeable toner according to claim 1, wherein the ratio is 0-1.3.
[17] 着色樹脂粒子が重合法により製造されたものである、請求項 1に記載の正帯電性ト ナー。 [17] The positively chargeable toner according to claim 1, wherein the colored resin particles are produced by a polymerization method.
[18] 着色樹脂粒子が懸濁重合法により製造されたものである、請求項 1に記載の正帯電 性トナー。  [18] The positively chargeable toner according to claim 1, wherein the colored resin particles are produced by a suspension polymerization method.
[19] 着色樹脂粒子が、コアシェル型着色樹脂粒子である、請求項 1に記載の正帯電性ト ナー。  [19] The positively chargeable toner according to claim 1, wherein the colored resin particles are core-shell type colored resin particles.
PCT/JP2005/000984 2004-01-27 2005-01-26 Positive electrification toner WO2005071492A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004018325A JP2005215033A (en) 2004-01-27 2004-01-27 Positive electrifying toner
JP2004-018325 2004-01-27
JP2004-094675 2004-03-29
JP2004094675A JP2005283745A (en) 2004-03-29 2004-03-29 Positive charging toner

Publications (1)

Publication Number Publication Date
WO2005071492A1 true WO2005071492A1 (en) 2005-08-04

Family

ID=34810148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000984 WO2005071492A1 (en) 2004-01-27 2005-01-26 Positive electrification toner

Country Status (1)

Country Link
WO (1) WO2005071492A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292579A (en) * 1995-04-21 1996-11-05 Toray Ind Inc Developing method for waterless planographic printing plate
JPH11143119A (en) * 1997-11-07 1999-05-28 Kyocera Corp Positive electrification toner for printing of magnetic ink character identification
JP2001013717A (en) * 1999-07-01 2001-01-19 Kao Corp Two-component developer
JP2001281918A (en) * 2000-03-31 2001-10-10 Nippon Zeon Co Ltd Toner and method for forming image
JP2002244340A (en) * 2001-02-16 2002-08-30 Nippon Zeon Co Ltd Electrostatic latent image developing toner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292579A (en) * 1995-04-21 1996-11-05 Toray Ind Inc Developing method for waterless planographic printing plate
JPH11143119A (en) * 1997-11-07 1999-05-28 Kyocera Corp Positive electrification toner for printing of magnetic ink character identification
JP2001013717A (en) * 1999-07-01 2001-01-19 Kao Corp Two-component developer
JP2001281918A (en) * 2000-03-31 2001-10-10 Nippon Zeon Co Ltd Toner and method for forming image
JP2002244340A (en) * 2001-02-16 2002-08-30 Nippon Zeon Co Ltd Electrostatic latent image developing toner

Similar Documents

Publication Publication Date Title
JP7031718B2 (en) Toner for static charge image development
JP4998596B2 (en) Toner production method
JP5381914B2 (en) Toner for electrostatic image development
JP5088317B2 (en) Developer for developing positively charged electrostatic image and method for producing the same
WO2012002278A1 (en) Toner for electrostatic image development
JP2006251220A (en) Negatively charged toner
JP6756335B2 (en) Toner for static charge image development
JP7052804B2 (en) Toner for static charge image development
JP6056470B2 (en) Toner for electrostatic image development
JP5152172B2 (en) Positively chargeable toner for electrostatic image development
JP6327177B2 (en) Two-component developer for developing electrostatic latent images
JP2016153817A (en) Toner for electrostatic latent image development and two-component developer for electrostatic latent image development
JP4337548B2 (en) Developer for developing electrostatic image
JP2006235527A (en) Electrophotographic toner and method for manufacturing the same
JP6372351B2 (en) Positively chargeable toner for electrostatic image development
JP2005215033A (en) Positive electrifying toner
JP2002031913A (en) Toner
JP3979216B2 (en) toner
WO2008001702A1 (en) Electrostatic image-developing toner
WO2005071492A1 (en) Positive electrification toner
JP2005283745A (en) Positive charging toner
JP2006184638A (en) Positive charge type toner
JP6244800B2 (en) Toner for electrostatic image development
JP2018025828A (en) Method for manufacturing toner for electrostatic charge image development
JP4779830B2 (en) Toner for electrostatic image development

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase