WO2005071093A2 - Chimpanzee adenovirus vaccine carriers - Google Patents
Chimpanzee adenovirus vaccine carriers Download PDFInfo
- Publication number
- WO2005071093A2 WO2005071093A2 PCT/EP2005/000558 EP2005000558W WO2005071093A2 WO 2005071093 A2 WO2005071093 A2 WO 2005071093A2 EP 2005000558 W EP2005000558 W EP 2005000558W WO 2005071093 A2 WO2005071093 A2 WO 2005071093A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- vector
- antigen
- adenoviral
- immune response
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10041—Use of virus, viral particle or viral elements as a vector
- C12N2710/10043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10321—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10351—Methods of production or purification of viral material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10361—Methods of inactivation or attenuation
- C12N2710/10362—Methods of inactivation or attenuation by genetic engineering
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24211—Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
- C12N2770/24222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24211—Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
- C12N2770/24234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/60—Vectors comprising as targeting moiety peptide derived from defined protein from viruses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to the field of recombinant vectors and more specifically to the production and use of recombinant replication-defective chimpanzee adenoviral vectors to elicit immune responses in mammalian hosts.
- Ads comprise a large family of double-stranded DNA viruses found in amphibians, avians, and mammals which have a nonenveloped icosahedral capsid structure (Straus, Adenovirus infections in humans. In The Adenoviruses. 451-498, 1984; Hierholzer et al., J. Infect. Dis., 158: 804-813, 1988; Schnurr and Dondero, Intervirology., 36: 79-83, 1993; Jong et al, J Clin Microbiol, 37:3940-3945: 1999).
- adenoviruses can transduce numerous cell types of several mammalian species, including both dividing and nondividing cells, without integrating into the genome of the host cell.
- adenoviral DNA is typically very stable and remains episomal (e.g., extrachromosomal), unless transformation or tumorigenesis has occurred.
- adenoviral vectors can be propagated to high yields in well-defined production systems which are readily amenable to pharmaceutical scale production of clinical grade compositions. These characteristics and their well- characterized molecular genetics make recombinant adenoviral vectors good candidates for use as vaccine carriers.
- adenoviral vectors typically require L tr ⁇ e use of a packaging cell line which is capable of complementing the functions of adenoviral gene products that have been either deleted or engineered to be nonfunctional.
- a packaging cell line which is capable of complementing the functions of adenoviral gene products that have been either deleted or engineered to be nonfunctional.
- hAd2 and hAd5 two well-characterized human subgroup C adenovirus serotypes (i.e., hAd2 and hAd5) are widely used as the sources of the viral backbone for most of the adenoviral vectors that are used for gene therapy.
- Replication-defective human adenoviral vectors have also been tested as vaccine carriers for the delivery of a variety of immunogens derived from a variety of infectious agents (e.g., viruses, parasites, or bacterial pathogens) and tumor cells, including tumor-associated antigens (TAAs).
- infectious agents e.g., viruses, parasites, or bacterial pathogens
- tumor cells including tumor-associated antigens (TAAs).
- TAAs tumor-associated antigens
- adenoviral vectors as vaccine carriers in nonhuman experimental systems by either using an immunization protocols that utilizes high doses of recombinant adenoviral vectors that are predicted to elicit immune responses; or by using immunization protocols which employ the sequential administration of adenoviral vectors that are derived from different serotypes but which carry the same transgene product as boosting immunizations (Mastrangeli, et al., Human Gene Tlierapy, 7: 79-87 (1996).
- vectors derived from viruses that naturally infect and replicate in humans may not be optimal candidates for use as vaccine carriers.
- Another problem associated with the use of human adenoviral-derived vectors is the risk that the production method used to propagate the recombinant viruses will give rise to vector stocks that are contaminated with replication competent adenovirus (RCA). This is caused by homologous recombination between overlapping sequences from the recombinant vector and the adenoviral genes that are present in the El-complementing helper cell lines such as human 293 (Graham, F.L. et al, (-1977) J. Gen. Virol. 36:59-72.) cells.
- RCA in vector stocks prepared for use in clinical trials constitutes a safety risk because it can promote the mobilization and spread of the replication defective virus.
- Spread of the defective virus can aggravate the host immune response and cause other adverse immunopathological consequences (Fallux, F. J., et al. Human Gene Therapy 9: 1909-1917 (1998).
- FDA Food and Drug Administration
- Other regulatory bodies have promulgated guidelines which establish limits on the levels of RCA that can be present in vector preparations intended for clinical use.
- the intent of imposing RCA limits is to ensure limited exposure of patients to replicating adenovirus in compositions that are used in clinical trials.
- adenoviral vaccine carriers that are suitable for use in mammalian hosts which are: easy to manipulate, amenable to pharmaceutical scale production and long term storage, capable of high-level replication in human complementation cell lines, highly immunogenic, devoid of neutralizing B cell epitopes that cross-react with the common serotypes of human adenoviruses, comply with the safety RCA standards promulgated by regulatory agencies, and which are amenable for use in prime/boost protocols that are suitable for use in humans.
- the present invention relates to recombinant replication-defective adenovirus vectors derived from chimpanzee adenoviruses and methods for generating chimpanzee adenoviral vectors in human El-expressing cell lines.
- the invention also provides methods for generating clinical grade vector stocks suitable for use in humans and means for using the disclosed .vectors as vaccine carriers to elicit protective and/or therapeutic immune responses.
- the invention further provides methods for using the recombinant adenoviruses of the invention to prepare vaccine compositions designed to delivery, and direct the expression of, transgenes encoding immunogens.
- the invention contemplates the use of the disclosed vectors as vaccine carriers for the administration of vaccines comprising transgenes encoding immunogens derived from an infectious agent.
- the invention contemplates the use of the disclosed vectors to prepare and administer cancer vaccines.
- the invention contemplates the preparation and administration of a cancer vaccine comprising a transgene encoding a TAA.
- the invention discloses the complete genomic sequence of five chimpanzee adenoviruses (ChAds), referred to herein as ChAd3 (SEQ ID NO: 1) ( Figures 5A-5K), ChAd ⁇ (SEQ ID NO: 2) ( Figures 6A-6K, CV32 (SEQ ID NO: 3) ( Figures 7A-7K), CV33 (SEQ ID NO: 4) ( Figures 8A- 8K), and CV23 (SEQ ID NO: 5) ( Figures 9A-9J).
- ChAd3 and ChAd ⁇ represent novel adenoviruses isolated according to the methods disclosed herein.
- the genomes of the ChAd3 and ChAd ⁇ are 37741 and 36648 base pairs in length, respectively.
- the ChAd3 hexon gene (SEQ ID NO: 41) comprises nucleotides (nt) 19086-21965 of SEQ ID NO: 1 (exclusive of stop codon) and the ChAd3 fiber gene (SEQ ID NO: 42) comprises nt 32805- 34487 of SEQ ID NO: 1 (exclusive of stop codon).
- the ChAd ⁇ hexon gene comprises nt 18266-21124 (SEQ ID NO: 43) of SEQ ID NO: 2 (exclusive of stop codon) and its fiber gene (SEQ ID NO: 44) comprises nt 32218-33552of SEQ ID NO:2 (exclusive of stop codon).
- ChAd3 has been classified into human subgroup C and ChAd ⁇ has been classified into human subgroup E.
- the genomes of the CV32, CV33 and CV23 adenoviruses are 36,606, 36,535, and 32,020 base pairs in length, respectively.
- CV32 (Pan 6) (ATCC N. VR-592)
- CV33 (Pan 7) (ATCC N. VR-593)
- CV23 (Pan 5) Esoterix Inc., have all been determined to be related to human Ad4 (hAd4) (subgroup E) (Wigand, R et al. Intervirology 1989, 30:1-9).
- the invention provides nucleotide sequences for the fiber and hexon genes of 21 additional chimpanzee adenoviruses (ChAd20, ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9, ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63 and ChAd82) isolated according to the methods disclosed herein.
- 21 additional chimpanzee adenoviruses ChAd20, ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9, ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChA
- SEQ ID NOS: 6- 15 (SEQ ID NO: 6, ChAd20); (SEQ ID NO: 7, ChAd4); (SEQ ID NO: 8, ChAd5); (SEQ ID NO: 9, ChAd7); (SEQ ID NO: 10, ChAd9); (SEQ ID NO: 11, ChAdlO); (SEQ ID NO: 12, ChAdl 1); (SEQ ID NO: 13, ChAdl ⁇ ) (SEQ ID NO: 14, ChAdl7) and (SEQ ID NO: 15, ChAdl9).
- the fiber gene nucleotide sequences for ChAd ⁇ , ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63 and ChAd82 referred to herein as: (SEQ ID NO: 58, ChAd8), (SEQ ID NO: 60, ChAd22), (SEQ ID NO: 62, ChAd24), (SEQ ID NO: 64, ChAd26), (SEQ ID NO: 66, ChAd30), (SEQ ID NO: 68, ChAd31), (SEQ ID NO: 70, ChAd37), (SEQ ED NO: 72, ChAd38), (SEQ ID NO: 74, ChAd44), (SEQ ID NO: 76, ChAd63) and (SEQ ID NO: 78, ChAd82) and are set forth in the sequence listing.
- the hexon gene nucleotide sequences for ChAd20, ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9, are set forth in Figures 21-30, respectively, and are referred to herein as SEQ ID NOS: 16-25: (SEQ ID NO: 16, ChAd20); (SEQ ID NO: 17, ChAd4); (SEQ ID NO: 18, ChAd5); (SEQ ID NO: 19, ChAd7); (SEQ ID NO: 20, ChAd9); (SEQ ID NO: 21, ChAdlO); (SEQ ID NO: 22, ChAdl 1); (SEQ ID NO: 23, ChAdl ⁇ ); (SEQ ID NO: 24, ChAdl7) and (SEQ ID NO: 25, ChAdl9).
- ChAd31 , ChAd37, ChAd38, ChAd44, ChAd63 and ChAd82 referred to herein as: (SEQ ID NO: 97, - ChAd8), (SEQ ID NO: 99, ChAd22), (SEQ ID NO: 101, ChAd24), (SEQ ID NO: 103, ChAd26), (SEQ ID NO: 105, ChAd30), (SEQ ID NO: 107, ChAd31), (SEQ ID NO: 109, ChAd37), (SiEQ ID NO: 111, ChAd38), (SEQ ID NO: 113, ChAd44), (SEQ ID NO: 115, ChAd63) and (SEQ ID NO: 117, ChAd82) and are set forth in the sequence listing.
- the invention provides amino acid sequences for the fiber and hexon proteins of 21 additional chimpanzee adenoviruses (ChAd20, ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9, ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63 and ChAd82) isolated according to the methods disclosed herein.
- 21 additional chimpanzee adenoviruses ChAd20, ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9, ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38,
- the fiber proteins which are disclosed and claimed here as are referred to as: (SEQ ID NO: 83, ChAd3), (SEQ ID NO: 84, ChAd ⁇ ), (SEQ ID NO: 48, ChAd20), (SEQ ID NO: 49, ChAd4), (SEQ ID NO: 50, ChAd5), (SEQ ED NO: 51, ChAd7), (SEQ ID NO: 52, ChAd9), (SEQ ID NO: 53, ChAdlO), (SEQ ID NO: 54, ChAdl 1), (SEQ ID NO: 55, ChAdl ⁇ ), (SEQ ID NO: 56, ChAdl7), (SEQ ID NO: 57, ChAdl9), (SEQ ID NO: 59, ChAd8), (SEQ ID NO: 61, ChAd22), (SEQ ID NO: 63, ChAd24), (SEQ ID NO: 65, ChAd26), (SEQ ID NO: 67, ChAd30), (SEQ ID
- Figures 20A-20G provides an alignment comparing the amino acid sequences of the fiber proteins disclosed and claimed herein with the amino acid sequences of the fiber proteins of: Cl (SEQ ID NO: 85), CV68 (SEQ ID NO: 86), Pan5 (alternatively referred to as CV23) (SEQ ID NO: 80), Pan6
- CV32 (alternatively referred to as CV32) (SEQ ID NO: 81), and Pan7 (alternatively referred to as CV33) (SEQ ID NO: 82).
- the hexon proteins which are disclosed and claimed here as are referred to as: (SEQ ID NO: 122, ChAd3), (SEQ ID NO: 123, ChAd ⁇ ), (SEQ ID NO: 87, ChAd20), (SEQ ID NO: 88, ChAd4), (SEQ ID NO: 89, ChAd5), (SEQ ID NO: 90, ChAd7), (SEQ ID NO: 91, ChAd9), (SEQ ID NO: 92,
- ChAdlO (SEQ ID NO: 93, ChAdl 1), (SEQ ID NO: 94, ChAdl ⁇ ), (SEQ ID NO: 95, ChAdl7), (SEQ ID NO: 96, ChAdl9), (SEQ ID NO: 98, ChAd8), (SEQ ID NO: 100, ChAd22), (SEQ ID NO: 102, ChAd24), (SEQ ID NO: 104, ChAd26), (SEQ ID NO: 106, ChAd30), (SEQ ID NO: 108, ChAd31), (SEQ ID NO: 110, ChAd37), (SEQ ID NO: 112, ChAd38), (SEQ ID NO: 114, ChAd44), (SEQ ID NO: 116, ChAd63) and (SEQ ID NO: 118, ChAd82).
- Figures 31A-3 IJ provide a comparison of the amino acid sequences of the hexon proteins disclosed and claimed herein with the amino acid sequences of the hexon proteins of: Cl (SEQ ID NO: 124), CV68 (SEQ ID NO: 125), Pan5 (alternatively referred to as CV23) (SEQ ID NO: 119), Pan6 (alternatively referred to as CV32) (SEQ ID NO: 120), and Pan7 (alternatively referred to as CV33) (SEQ ID NO: 121).
- the invention further provides 21 additional chimpanzee adenovirus isolates.
- Samples comprising ChAd20, ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7 and ChAdl9 were deposited on December 12, 2003 with the European Collection of Cell Cultures (ECACC, Porton Down, Salisbury, Wiltshire, SP4 0JG, United Kingdom) as an original deposit under the Budapest Treaty.
- ECACC European Collection of Cell Cultures
- the deposits were assigned accession numbers: 03121201 (ChAd4), 03121202 (ChAd5), 03121203 (ChAd7), 03121204 (ChAd9), 03121205 (ChAdlO), 03121206 (ChAdll), 03121207 (ChAdl ⁇ ), 03121208 (ChAdl7), 03121209 (ChAdl9) and 03121210 (ChAd20).
- Samples comprising ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63 and ChAd82 were deposited with the ECACC (Porton Down, Salisbury, Wiltshire, SP4 OJG, United Kingdom) as an original deposit under the Budapest Treaty on January 12, 2005.
- ECACC Porton Down, Salisbury, Wiltshire, SP4 OJG, United Kingdom
- the invention also provides replication-defective recombinant adenoviral vectors which are capable of infecting mammalian cells, preferably human cells, and directing expression of encoded transgene product(s).
- the disclosed vectors are suitable for use as vaccine carriers for the delivery of transgenes comprising immunogens against which an immune response is desired.
- the invention provides recombinant replication- defective chimpanzee adenoviral vectors that are capable of high-level replication in human El- expressing (i.e., packaging) cell lines.
- the invention provides recombinant adenoviruses that are capable of replicating in PER.C6TM cells.
- the recombinant vectors encompassed by the invention provide vaccine carriers tha will evade pre-existing immunity to the adenovirus serotypes that are typically encountered in the human population.
- the recombinant vectors of the invention comprise vector backbone sequences which are shown herein to be devoid of neutralizing B epitopes that cross-react with the common serotypes of human adenoviral derived vectors.
- the invention further provides group-specific shuttle vectors that include an adenoviral portion and a plasmid portion, wherein said adenoviral portion generally comprises: a) viral left end (ITR and packaging signal), part of the pIX gene and viral genome right end; and b) a gene expression cassette.
- the group-specific shuttle vectors are designed to exploit the nucleotide sequence homology which is observed between adenoviruses that are assigned to the same serotype subgroup (i.e., subgroups A, B, C, D or E), and can be used to manipulate the nucleotide sequences disclosed herein and/or to clone other chimpanzee adenoviruses belonging to the same subgroup generating an adenovirus pre-plasmid containing a chimp adenoviral genome deleted of El region.
- aspects of this invention include host cells comprising the adenoviral vaccine vectors and/or the adenovirus pre-plasmid vectors, methods of producing the vectors comprising introducing the adenoviral vaccine vector into a host cell which expresses adenoviral El protein, and harvesting the resultant adenoviral vaccine vectors.
- the invention provides a method of producing a replication-defective chimpanzee adenoviral vector comprising introducing one of the disclosed adenoviral vectors into an adenoviral E-l expressing human cell, and harvesting the resulting recombinant adenoviruses.
- Another aspect of the invention also provides vaccine compositions which comprise an adenoviral vector of the invention.
- compositions comprising recombinant chimpanzee adenoviral vectors may be administered alone or in combination with other viral- or non-viral-based DNA protein vaccines. They also may be administered as part of a broader treatment regimen. These compositions can be administered to mammalian hosts, preferably human hosts, in either a prophylactic or therapeutic setting. As shown herein, administration of the disclosed vaccine compositions, either alone or in a combined modality, such as a prime boost regimen or multiple injections of serologically distinct Ad vectors results in the induction of an immune response in a mammal that is capable of specifically recognizing the immunogen encoded by the transgene.
- a combined modality such as a prime boost regimen or multiple injections of serologically distinct Ad vectors results in the induction of an immune response in a mammal that is capable of specifically recognizing the immunogen encoded by the transgene.
- One of the methods disclosed and claimed herein comprises administering to a mammal (that is either naive or primed to be immunoreactive to a target antigen), a sufficient amount of a recombinant chimpanzee adenoviral vector, containing at least a functional deletion of its wild-type El gene, carrying a sequence comprising a promoter capable of directing expression of a nucleotide sequence encoding the least one target antigen, wherein administration of the recombinant vector elicits (or primes) an antigen-specific immune response.
- the invention provides a method designed to induce an immune response (prophylactic or therapeutic) against an infectious agent (e.g., a viral or bacterial pathogen or a mammalian parasite).
- an infectious agent e.g., a viral or bacterial pathogen or a mammalian parasite.
- the invention provides a method designed to induce an immune response in a mammal that will break tolerance to a self-antigen, such as a TAA.
- This aspect of the invention contemplates the use of the disclosed vectors as a vaccine carrier for the preparation and administration of cancer vaccines. Yet other embodiments and advantages of the present invention will be readily apparent from the following detailed description of the invention. .-
- Figure 1 is a schematic drawing which summarizes the cloning strategy used to construct a
- FIG. 1 is a schematic drawing which illustrates the cloning strategy used to clone the " ChAd ⁇ viral genome by homologous recombination in E.coli strain BJ5183.
- Figure 3 is a schematic drawing illustrating the elements of various ChAd ⁇ shuttle plasmids including: pARS ChAd ⁇ -3 GAG; pARS ChAd ⁇ -3 SEAP; pARS ChAd ⁇ -3 EGFP; and pARS ChAd6-3 NS MUT.
- Figure 4 is a schematic drawing which illustrates the homologous recombination scheme utilized to clone the ChAd ⁇ ⁇ Elexpression vectors.
- Figures 5A-5K provides the genomic nucleotide sequence of ChAd3 (SEQ ID NO: 1).
- Figures 6A-6K provides the genomic nucleotide sequence of ChAd ⁇ (SEQ ID NO: 2).
- Figures 7A-7K provides the genomic nucleotides sequence of CV32 (SEQ ID NO: 3).
- Figures 8A-8K provides the genomic nucleotide sequence of CV33 (SEQ ID NO: 4).
- Figures 9A-9J provides the genomic nucleotide sequence of CV23 (SEQ ID NO: 5).
- Figure 10 provides the nucleotide sequence of the fiber gene of ChAd20 (SEQ ID NO: 6).
- Figure 11 provides the nucleotide sequence of the fiber gene of ChAd4 (SEQ ID NO: 7).
- Figure 12 provides the nucleotide sequence of the fiber gene of ChAd5 (SEQ ID NO: 8).
- Figure 13 provides the nucleotide sequence of the fiber gene of ChAd7 (SEQ ID NO: 9).
- Figure 14 provides the nucleotide sequence of the fiber gene of ChAd9 (SEQ ID NO: 10).
- Figure 15 provides the nucleotide sequence of the fiber gene of ChAdlO (SEQ ID NO: 11)
- Figure 16 provides the nucleotide sequence of the fiber gene of ChAdl 1 (SEQ ID NO: 12)
- Figure 17 provides the nucleotide sequence of the fiber gene of ChAdl ⁇ (SEQ ID NO: 13)
- Figure 18 provides the nucleotide sequence of the fiber gene of ChAdl7 (SEQ ID NO: 14)
- Figure 19 provides the nucleotide sequence of the fiber gene of CbAdl9 (SEQ ID NO: 15)
- Figures 20A-20G provides a comparison of the amino acid sequences of the fiber proteins of: CbAd3, ChAd4, ChAd5, ChAd ⁇ , ChAd7, ChAd8,ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9, ChAd20, ChAd22, ChAd24, ChAd26,
- Figure 21 provides the nucleotide sequence of the hexon gene of ChAd20 (SEQ ID NO: 16).
- Figure 22 provides the nucleotide sequence of the hexon gene of ChAd4 (SEQ ID NO: 17).
- Figure 23 provides the nucleotide sequence of the hexon gene of ChAd5 (SEQ ID NO: 18).
- Figure 24 provides the nucleotide sequence of the hexon gene of ChAd7 (SEQ E) NO: 19).
- Figure 25 provides the nucleotide sequence of the hexon gene of ChAd9 (SEQ ID NO: 20).
- Figure 26 provides the nucleotide sequence of the hexon gene of ChAdlO (SEQ ID NO: 21).
- Figure 27 provides the nucleotide sequence of the hexon gene of ChAdl 1 (SEQ ID NO:
- Figure 28 provides the nucleotide sequence of the hexon gene of ChAdl ⁇ (SEQ ID NO: 23).
- Figure 29 provides the nucleotide sequence of the hexon gene of ChAdl7 (SEQ ID NO: 24).
- Figure 30 provides the nucleotide sequence of the hexon gene of ChAdl9 (SEQ ID NO: 25).
- Figures 31A-31J provides a comparison of the amino acid sequences of the hexon proteins of ChAd3, ChAd4, ChAd5, ChAd ⁇ , ChAd7, ChAd8,ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7,
- Figure 32 provides a listing of the artificial sequences SEQ ID NOS: 26-40 and SEQ ID
- FIG. 33 is a graphic representation of the immunization break-point of ChAd vectors belonging to different serotype subgroups (i.e., subgroups C, E and D). The lowest dose eliciting a measurable immune response was determined by performing titration experiments in mice immunized with gag-expressing ChAd3, ChAdl 1, ChAd20, CV33, CV68, ChAd ⁇ , ChAd9, ChAdlO, CV32, ChAd4, ChAd7 and ChAdl ⁇ vectors.
- Figure 34 provides a graphic representation of a CEA-specific T cell response elicited in rhesus macaques immunized sequentially with a human adenoviral vector (MRKAd5 RhCEA) followed by a chimpanzee adenoviral vector (CV33 RhCEA) after 12 week interval.
- the immune responses were evaluated by IFN- ⁇ ELISPOT assay, and the data illustrate the number of spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) following incubation in the absence (DMSO) and presence of rhesus CEA C and D peptide pools.
- SFC spot-forming cells
- PBMC peripheral blood mononuclear cells
- Figure 35 provides a phylogenetic tree of human and chimpanzee adenoviruses of deduced from a multiple sequence alignment of full-length hexon peptide sequences using PAUPSEARCH (Wisconsin Package Version 10.3, Accelrys Inc.) and visualized and manipulated with TREEVIEW.
- Figure 36 is a graphic representation of immunization results obtained in response to the administration of ChAd3 and hAd5 gag vectors to mice which were pre-exposed to hAd5.
- Cell-mediated immunity was evaluated 3 weeks post-immunization by IFN- ⁇ ELISPOT using purified splenocytes.
- Figure 37 is a graphic representation of kinetics of anti-CEA CMI elicited in human CEA transgenic mice immunized with ChAd3hCEA and Ad5hCEA. CMI was evaluated by ICS of PBMC stimulated with CEA peptide pool. The results are expressed as % of IFN ⁇ + CD8 + /total PBMC.
- Figures 38 A-D is a graphic representation of the efficiency of infection of different human primary cells exposed to moi 50, 250 and 1250 of different ChAd vectors expressing EGFP and belonging to different subgroups (B, C, D, E). The results are expressed as % of fluorescent cells /on total cells.
- cassette refers to a nucleic acid molecule which comprises at least one nucleic acid sequence that is to be expressed, along with its transcription and translational control sequences.
- the cassette will cause the vector into which is incorporated to direct the expression of different sequence or combination of sequences.
- the nucleic acid sequences present in the cassette will usually encode an immunogen. Because of the restriction sites engineered to be present at the 5' and 3' ends, the cassette can be easily inserted, removed or replaced with another cassette.
- c ⁇ -acting element refers to nucleotide sequences which regulate genes to which they are attached. Czs-acting elements present in DNA regulate transcription, and those transcribed into mRNA can regulate RNA processing, turnover and protein synthesis.
- vector refers to some means by which DNA fragments can be introduced into a host organism or host tissue.
- vectors including plasmid, virus (including adenovirus), bacteriophages and cosmids.
- promoter refers to a recognition site on a DNA strand to which an RNA polymerase binds. The promoter forms an initiation complex with RNA polymerase to initiate and drive transcriptional activity. The complex can be modified by activating sequences such as enhancers, or inhibiting sequences such as silencers.
- pharmaceutically effective amount refers to an amount of recombinant adenovirus that is effective in a particular route of administration to transduce host cells and provide sufficient levels of transgene expression to elicit an immune response.
- replication-competent recombinant adenovirus refers to an adenovirus with intact or functional essential early genes (i.e., El A, E1B, E2A, E2B and E4). Wild type adenoviruses are replication competent.
- replication-defective recombinant AdV refers to an adenovirus that has been rendered to be incapable of replication because it has been engineered to have at least a functional deletion, or a complete removal of, a gene product that is essential for viral replication.
- the recombinant chimpanzee adenoviral vectors of the invention are replication-defective.
- sequence identity refers to the residues in the two sequences that are the same when aligned for maximum correspondence.
- the length of sequence identity comparison may be over the full-length of the genome (e.g., about 36 kbp), the full-length of an open reading frame of a gene, protein, subunit, or enzyme [see, e.g., the tables providing the adenoviral coding regions], or a fragment of at least about 500 to 5000 nucleotides, is desired.
- identity among smaller fragments e.g.
- nucleotides of at least about nine nucleotides, usually at least about 20 to 24 nucleotides, at least about 28 to 32 nucleotides, at least about 36 or more nucleotides, may also be desired.
- percent sequence identity may be readily determined for amino acid sequences, over the full-length of a protein, or a fragment thereof.
- a fragment is at least about 8 amino acids in length, and may be up to about 700 amino acids. Examples of suitable fragments are described herein.
- Identity is readily determined using such algorithms and computer programs as are defined herein at default settings. Preferably, such identity is over the full length of the protein, enzyme, subunit, or over a fragment of at least about 8 amino acids in length.
- adenoviral constructs gene constructs are named by reference to the genes contained therem.
- pChAd3 ⁇ Elgag refers to a plasmid construct which comprises a ChAd3 chimpanzee adenoviral genome deleted of the El region.
- the El region is replaced by an immunogen expression cassette comprising an HTV gag gene under the control of a human CMV promoter followed by a bovine growth hormone polyadenylation signal.
- pCV33DEl-E3 NSmut refers to a second plasmid construct disclosed herein which comprises a CV33 chimpanzee adenoviral genome, deleted of the El and E3 regions, which is replaced by an immunogen expression cassette comprising HCV non-structural genes under the control a human CMV promoter followed by a bovine growth hormone polyadenylation signal.
- Ag refers to an antigen.
- Ads Adenoviruses
- hAd Human Ads
- human Ads belong to the Mastadeno virus genus which includes all known human and many Ads of animal (e.g., bovine, porcine, canine, murine, equine, simian and ovine) origin.
- Human adenoviruses are divided into six subgroups (A-F) based on a number of biological, chemical, immunological and structural criteria which include hemagglutination properties of rat and rhesus monkey erythrocytes, DNA homology, restriction enzyme cleavage patterns, percentage G+C content and oncogenicity (Straus, 1984, In The Adenoviruses, ed. H. Ginsberg, pps. 451-498, New York: Plenus Press, and Horwitz, 1990 In Virology, eds. B.N. Fields and D.M. Knipe, pps. 1679-1721).
- the adenoviral virion has an icosahedral symmetry and, depending on the serotype, a diameter of 60-90 nm.
- the icosahedral capsid consists three major proteins, hexon (II), penton base (in) and a knobbed fiber (IV) as well as a number of minor proteins (i.e., VI, VHI, DC, Ilia and IVa2) (W.C. Russel, J. Gen. Virol., 81: 2573-2604 (2000).
- the administration of a-vector based on a specific viral serotype elicits an immune-response against the vector that prevents the re-administration of the same serotype.
- the invention provides a method of circumventing the adverse effects associated with the consequences of preexisting immunity to common serotypes of hAds. More specifically, the invention contemplates the use of chimpanzee adenoviral vectors characterized by a serotype that does not circulate in humans. Accordingly, the invention provides adenoviral (Chad) vectors which lack neutralizing B-cell epitopes that cross react with those of common human serotypes as a vaccine carrier.
- adenoviral-specific cell mediated immunity can be cross-reactive
- vaccination studies based on repeated injections of multiple serotypes demonstrated a higher efficiency than immunization schedules based on a single vector.
- CMI adenoviral-specific cell mediated immunity
- vaccination studies based on repeated injections of multiple serotypes demonstrated a higher efficiency than immunization schedules based on a single vector.
- These experiments further demonstrate that the main limitation of a vector administration for vaccine purposes is the humoral pre- existing immunity against the vector.
- Potential solutions to the problems associated with the use of a human adenovirus as a vaccine carrier include the administration of a higher dose of an adenovirus (e.g., a subgroup C serotype) that is predicted to encounter a preexisting immune response, and the use of vectors based on rare human serotypes.
- an adenovirus e.g., a subgroup C serotype
- CV68 chimpanzee adenovirus type 68
- the genome of the virus is 36,521 base pairs in length and has been described as being most similar to subgroup E of human adenoviruses, with 90% identity to most human Ad4 open reading frames that have been sequenced.
- the CV68 ITRs are 130 base pairs in length, and all of the major adenoviral early and late genes are present.
- CV68 is characterized by a serotype that does not circulate in humans and which lacks neutralizing B cell epitopes that cross-react with those of common human serotypes.
- Chimpanzee adenonviruses are similar to human adenoviruses cross-reactive neutralizing immunity against chimpanzee serotypes has not been documented in humans (Farina, S. F. et al. J.
- CV68 is described as being sufficiently similar to human serotypes to support transduction of cells expressing the coxsackievirus and adenovirus receptor (Cohen, C. et al., J. Gen. Virol. 83: 151-155 (2002).
- CV68 is characterized by a sufficient level of similarity to human adenoviruses to support its replication 293 cells which harbor El from human adenovirus type 5 (Farina, S. F. et al., J. Virol. 75(23): 11603-11613 (2001).
- CV68-derived adenoviral sequences as a vaccine carrier for induction of antibodies to the rabies virus glycoprotein in mice.
- a replication-defective version of CV68 was created by replacing the EIA and EIB genes with a minigene cassette.
- mice immunized with an El -deletion-containing adenoviral recombinant comprising a transgene product encoding the rabies virus glycoprotein developed protective immunity to rabies virus and remained resistant to challenge with an otherwise lethal dose of rabies virus (Xiang, Z et al., J. Virol. 76(5): 2667-2675 (2002).
- a second CV68 construct expressing a codon-optimized, truncated form of gag of HIV-1 was recently reported to induce a vigorous gag-specific CD8 + T cell response in mice. The vaccine-induced response was shown to provide protection to challenge with a vaccinia gag recombinant virus (Fitzgerald, J. C.
- Each extremity of the adenoviral genome comprises a sequence known as an inverted terminal repeat (ITRs), which is necessary for viral replication.
- the virus also comprises a virus-encoded protease, which is necessary for processing some of the structural proteins required to produce infectious virions.
- the structure of the adenoviral genome is described on the basis of the order in which the viral genes are expressed following host cell transduction. More specifically, the viral genes are referred to as early (E) or late (L) genes according to whether transcription occurs prior to or after onset of DNA replication. In the early phase of transduction, the El, E2, E3 and E4 genes of adenovirus are expressed to prepare the host cell for viral replication.
- the virus can be rendered replication defective by deletion of the essential early-region 1(E1) of the viral genome. Brody et al, 1994 Ann N Y Acad Sci., 716:90-101.
- L1-L5 which encode the structural components of the virus particles is switched on. All of the late genes are under the control of a single promoter and encode proteins including the penton (L2), the hexon (L3), the 100 kDa scaffolding protein (L4), and the fiber protein (L5), which form the new virus particle into which the adenoviral DNA becomes encapsidated.
- L2 penton
- L3 the hexon
- L4 100 kDa scaffolding protein
- L5 the fiber protein
- 10,000-100,000 progeny adenovirus particles can be generated in a single host cell.
- the adenoviral replication process causes lysis of the cells.
- the replication-defective adenoviral vectors disclosed herein were constructed by deletion of specific nucleotide sequences from the disclosed chimpanzee nucleic acid sequences and insertion of sequences derived other DNA sequences that are useful for transgene insertion, expression or other genetic manipulations.
- the recombinant chimpanzee adenoviruses described herein may contain adenoviral sequences derived from one or more chimpanzee adenoviruses, or sequences from a chimpanzee adenovirus and from a human adenovirus.
- Suitable polynucleotide sequences can be produced recombinantly, synthetically or isolated from natural sources.
- Adenoviral sequences suitable for use in particular aspects of the invention include sequences which lack neutralizing B-cell epitopes that are cross-reactive with common human serotypes.
- the recombinant chimpanzee adenovirus (e.g., vector) of the invention contain the chimpanzee adenovirus cz ' s-acting elements necessary for replication and virion encapsidation, in combination with at least one immunogen expression cassette.
- the ris-acting elements flank the expression cassette which comprises a transgene that encodes at least one antigen.
- the vectors of the invention contain the requisite cis-acting 5' inverted terminal repeat (HR) sequences of the adenoviruses (which function as origins of replication), 3' ITR sequences, packaging/enhancer domains, and a nucleotide sequence encoding a heterologous molecule.
- HR inverted terminal repeat
- the recombinant vector comprises only the minimal adenoviral sequences or an entire adenoviral genome with only functional deletions in particular genes (e.g., the El and/or E3 or E4 regions)
- the vectors of the invention comprise a chimpanzee adenovirus capsid.
- the adenoviral vectors disclosed herein comprise a replication- defective adenoviral genome, wherein the adenoviral genome does not have a functional El gene, and an immunogen expression cassette which comprises: a) a nucleic acid encoding at least one immunogen against which an immune response is desired; and b) a heterologous (i.e., with respect to the adenoviral sequence) promoter operatively linked to the nucleic acid sequence encoding the immunogen(s); and a transcription terminator.
- the invention provides replication-defective vectors that consist of a recombinant adenoviral genome that is devoid of at least one early gene selected from the group consisting of El, E2, E3, and E4.
- a replication-defective vector is prepared by replacing, or disrupting, the El gene of one of the adenoviral isolates disclosed herein (e.g., ChAd3, ChAd ⁇ , ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9,ChAd20, ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63 or ChAd82) with an immunogen expression cassette.
- the adenoviral isolates disclosed herein e.g., ChAd3, ChAd ⁇ , ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, ChAdl ⁇ , ChAdl7, ChAdl9,ChAd20, ChAd8, ChAd22, ChAd
- a vector can be prepared by deleting disrupting the El gene of ChAd 3 (SEQ ID NO: 1) or ChA ⁇ (SEQ ID NOS: 2).
- a replication-defective vector can be prepared from any one of the other adenovirus isolates disclosed herein, including ChAd3, ChAd ⁇ , ChAd4, ChAd5, ChAd7, ChAd9, ChAdlO, ChAdl 1, Chadl ⁇ , Chadl7, ChAdl9, ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63 and ChAd82 or ChAd20.
- replication-defective vectors of the invention comprises an adenoviral genome derived from one of the ChAds disclosed herein that has been optionally engineered to lack: a functional E3 gene.
- the chimpanzee adenoviral sequences disclosed herein can be rendered replication-defective by either completely removing an early gene or by rendering the gene inoperative or nonfunctional.
- the invention encompasses vectors that are characterized as having modifications, such as a "functional deletion" which destroys the ability of the adenovirus to express one or more selected gene products.
- the phrase "functional deletion.” as used herein broadly encompasses modifications that have the effect of rendering a particular gene product nonfunctional.
- adenoviral deletions take the form of a partial or total deletion of an adenoviral gene.
- manipulations including but not limited to making a modification which introduces a frame shift mutation, will also achieve a functional deletion.
- the recombinant chimpanzee adenoviral vectors of the invention can be rendered replication-defective by introducing a modification that is designed to interfere with, or to functionally delete, the ability of the virus to express adenoviral EIA and/or EIB.
- replication-defective adenoviral vectors can be obtained by introducing a modification that is designed to interfere with, or to functionally delete the expression of one o more genes from the group of E2 genes. More in detail, a replication-defective vector can be constructed by inactivating the polymerase gene, or the pre-terminal protein gene or the DNA binding protein gene. Moreover deletion or inactivation of genes expressed by E4 region is an alternative strategy to construct replication-defective chimp Ad vectors. Early gene deletion or inactivation can be combined in order to produce more attenuated vectors. Alternatively, replication-defective ChAd vectors can also comprise additional modifications in other viral genes, such as the late genes Ll through L5.
- novel adenoviral vaccine carriers can be generated by combining hexon and fiber genes obtained from different serotypes.
- the utilization of a hexon and fiber gene shuffling strategy will also allow an investigator to change the biological properties of a ChAd and facilitate the production of vectors with a different tropism or with new serological characteristics.
- the present invention encompasses recombinant adenoviral vectors comprising deletions of entire genes or portions thereof which effectively destroy the biological activity of the modified gene either alone or in any combination.
- recombinant simian adenoviruses can be constructed which have a functional deletion of the genes expressed by E4 region, although as shown herein it may be desirable to introduce the heterologous Ad5 E4 sequence into the vector in combination with the functional deletion of an El gene.
- the function of the adenoviral delayed early E3 gene may be eliminated; however because the function of E3 is not necessary for the production of a recombinant adenoviral particle it is not necessary to replace this gene product in order to produce a recombinant that is capable of packaging a virus useful in the invention.
- the replication- defective adenoviral vector used is a chimpanzee subgroup C adenovirus containing deletions in El and optionally in E3.
- a suitable El deletion/disruption can be introduced in the region from bp 460 to bp 3542 (with reference to SEQ ID NO: 1).
- a suitable El deletion/disruption can be introduced in the region from bp 457 to bp 3425 (with reference to SEQ ID NO: 2).
- the El deletion is_ preferably from bp 456 to bp 3416 (with reference to SEQ ID NO: 3); for CV33, the El deletion is preferably from bp 456 to bp 3425 (with reference to SEQ ID NO: 4) and for CV23, the El deletion is preferably from bp 456 to bp 3415 (with reference to SEQ ID NO: 5).
- E3 deletions for CV32 and CV33 are preferably from bp 27446 to bp 31911 (with reference to SEQ ID NO: 3); from bp 27146 to bp 31609 (with reference to SEQ ID NO: 4) respectively.
- nucleic acid sequence embodying the transgene can be a gene, or a functional part of a gene and will typically exist in the form of an expression cassette.
- a gene expression cassette includes: (a) nucleic acid encoding a protein or antigen of interest; (b) a heterologous promoter operatively linked to the nucleic acid encoding the protein; and (c) a transcription termination signal.
- the nucleic acid can be DNA and or RNA, can be double or single stranded.
- the nucleic acid can be codon- optimized for expression in the desired host (e.g., a mammalian host). Decisions must also be made regarding the site within the backbone where the transgene will be introduced and the orientation of the transgene.
- the transgene can be inserted in an El parallel (transcribed 5' to 3') or anti-parallel (transcribed in a 3' to 5' direction relative to the vector backbone) orientation.
- appropriate transcriptional regulatory elements that are capable of directing expression of the transgene in the mammalian host cells that the vector is being prepared for use as a vaccine carrier in need to be identified and operatively linked to the transgene.
- "Operatively linked" sequences include both expression control sequences that are contiguous with the nucleic acid sequences that they regulate and regulatory sequences that act in trans, or at a distance to control the regulated nucleic acid sequence.
- Regulatory sequences include: appropriate expression control sequences, such as transcription initiation, termination, enhancer and promoter sequences; efficient RNA processing signals, such as splicing and polyadenylation signals; sequences that enhance translation efficiency (e.g., Kozak consensus sequences); sequences that enhance protein stability, and optionally sequences that promote protein secretion. Selection of these and other common vector elements are conventional and many suitable sequences are well known to those of skill in the art (see, e.g., Sambrook et al, and references cited therein at, for example, pages 3.18-3.26 and 16.17-16.27 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989).
- the promoter is a heterologous promoter (i.e., with respect to the adenovirus sequences) which is recognized by an eukaryotic RNA polymerase.
- the promoter is a "strong" or “efficient” promoter.
- An example of a strong promoter is the immediate early human cytomegalovirus promoter (Chapman et al, 1991 Nucl. Acids Res 19:3979-3986, which is incorporated by reference).
- the human CMV promoter can be used without (CMV) or with the intron A sequence (CMV-intA), although those skilled in the art will recognize that any of a number of other known promoters, such as the strong immunoglobulin, or other eukaryotic gene promoters may be used, including the EF1 alpha promoter, the murine CMV promoter, Rous sarcoma virus (RSV) promoter, SV40 early/late promoters and the beta-actin promoter.
- CMV human CMV promoter
- CMV-intA intron A sequence
- promoters that can be used in the present invention are the strong immunoglobulin promoter, the EF1 alpha promoter, the murine CMV promoter, the Rous Sarcoma Virus promoter, the SV40 early/late promoters and the beta actin promoter, albeit those of skill in the art can appreciate that any promoter capable of effecting expression in the intended host can be used in accordance with the methods of the present invention.
- the promoter may comprise a regulatable sequence such as the Tet operator sequence. Sequences such as these that offer the potential for regulation of transcription and expression are useful in instances where repression of gene transcription is sought. Suitable gene expression cassettes will also comprise a transcription termination sequence.
- a preferred transcriptional terminator is the bovine growth hormone terminator.
- the promoter/transcription termination combination of CMVintA-BGH terminator is particularly preferred although other promoter/terminator combinations may also be used.
- the bovine growth hormone termination/polyadenylation signal (bGHpA) or short synthetic poly A signal (SPA) of 50 nucleotides in length defined as follows: AATAAAAGATCTTTATTTTCATTAGATCTGTGTGTTGGTTTTTTGTGTG (SEQ ID NO: 26).
- the polyA signal is inserted following the nucleic acid sequence which comprises the transgene and before the 3' adenovirus ITR sequence.
- the recombinant adenoviral vectors described herein may contain adenoviral sequences derived from one or more strain of adenovirus. Suitable sequences may be obtained from natural sources, produced recombinantly, synthetically, or by other genetic engineering or chemical methods.
- the recombinant chimpanzee adenovirus is a chimeric recombinant comprising non-chimpanzee adenoviral polynucleotide sequences.
- Suitable non-chimpanzee adenoviral sequences can be obtained from human adenoviral strains.
- the native E4 region can be replaced by hAd5 E4 (Ad5 nt 32816 to nt 35619) or by Ad5E4orf6 (Ad5 nt 33193 to nt 34077) (Ad5 GenBank Accession No: M73260).
- the immunogen (antigenic molecule) delivered by the recombinant adenoviral vector of the invention comprises a polypeptide, protein, or enzyme product which is encoded by a transgene in combination with a nucleotide sequence which provides the necessary regulatory sequences to direct transcription and/or translation of the encoded product in a host cell.
- the composition of the transgene depends upon the intended use of the vector. For example, if the immunogenic composition is being designed to elicit an antibody response or a cell-mediated immune response in a mammalian host which is specific for an infectious agent, then it is appropriate to utilize a nucleic acid sequence encoding at least one immunogenic product that is predicted to confer pathogen-specific immunity to the recipient.
- a suitable transgene may comprise an immunogenic portion of a self-antigen, such as a TAA, which has been selected with the goal of eliciting a protective immune response of sufficient potency to both break host tolerance to a particular TAA and to elicit a long-lived (e.g., memory) response that will be sufficient to prevent the initiation of cancer or to prevent tumor progression.
- a self-antigen such as a TAA
- suitable immunogenic gene products may be obtained from a wide variety of pathogenic agents (such as, but not limited to viruses, parasites, bacteria and fungi) that infect mammalian hosts, or from a cancer or tumor cell.
- the invention is illustrated herein with a particular set of test immunogens it is to be understood that the invention is not limited to the use of the antigens exemplified herein. More specifically, the invention contemplates the use of both heterologous and self-antigens as immunogens, including but not limited to TAAs.
- the invention provides an immunogenic composition (e.g., a vaccine) for inducing an immune response against antigens (i.e., immunogens) expressed by anjnfectious agent. For example, it is desirable to elicit an immune response against a virus infecting humans and/or non- human animal species.
- virus families against which a prophylactic and/or therapeutic immune response would be desirable include the Picomaviridae family which includes six different genera such as Aphtovirus, Cardiovirus, Enterovirus, Hepatovirus, Parechovirus, Rhinovirus.
- Picomaviridae family which includes six different genera such as Aphtovirus, Cardiovirus, Enterovirus, Hepatovirus, Parechovirus, Rhinovirus.
- Examples of Picomavirus against which an immune response would be desirable are: Foot-and-mouth disease viruses, Encephalomyocarditis viruses, Polioviruses, Coxackieviruses, Human hepatitis A virus, Human parechoviruses, Rhinoviruses.
- Caliciviridae family includes different genera associated with epidemic gastroenteritis in humans caused by the Norwalk group of viruses and other syndromes in animals like the hemorrhagic disease in rabbits associated with rabbit hemorrhagic disease virus or respiratory disease in cats caused by feline calicivirus.
- Another family of viruses, against which it may be desirable to elicit an immune response is the Astroviridae which comprises viruses isolated from humans as well as many different animal species. Human astroviruses are associated with gastroenteritis and young children diarrhea.
- Togaviridae family of viruses which comprises two genera: alphavirus and rubivirus.
- Alphaviruses are associated with human and veterinary diseases such as arthritis (i.e. Chikungunya virus, Sindbis virus) or encephalitis (i.e. Eastern Equine Encephalitis Virus, Western Equine Encephalitis Virus).
- Rubella virus provides an alternative viral target against which is the only member of the Rubivirus genus is responsible for outbreaks of a mild exanthematic disease associated with fever and lymphoadenopathy. Rubella virus infection is also associated with fetus abnormalities when acquired by mother during in early pregnancy.
- Flaviviridae is another virus family consisting of three genera: the flaviviruses, the pestiviruses and the hepaciviruses that includes important human as well as animal pathogens. Many of the flavivirus genus members are arthropod-borne human pathogens causing a variety of diseases including fever, encephalitis and hemorrhagic fevers. Dengue Fever Viruses, Yellow Fever Virus, Japanese Encephalitis Virus, West Nile Fever Virus, Tick-bome Encephalitis Virus are pathogens of major global concern or of regional (endemic) concern.
- Pestivirus genus includes animal pathogens of major economic importance such as Bovine Viral Diarrhea Virus, Classical Swine Fever Virus, Border Disease Virus.
- Hepatitis C Virus is the only member of the Hepacivirus genus responsible for acute and chronic hepatitis.
- HCV proteins expressed by a recombinant adenovirus can elicit a protective as well as therapeutic immune response limiting the consequences of a viral infection affecting 170 million people worldwide.
- antigens derived from members of the Coronavi ⁇ dae family can be expressed by recombinant adenovirus vectors in order to obtain protection against infection.
- SARS-Co Virus Protection against the severe acute respiratory syndrome coronavirus (SARS-Co Virus) can be obtained by immunizing with one or more chimpanzee adenovirus chosen from the group including ChAd3, 4, 5,6, 7,9,10,11,16,17,19, 20, ChAd8, ChAd22, ChAd24, ChAd26, ChAd30, ChAd31, ChAd37, ChAd38, ChAd44, ChAd63 and ChAd82 expressing one or more SARS-CoV protein including without limitations nucleocapsid (N) protein, polymerase (P) protein, membrane (M) glycoprotein, spike (S) glycoprotein, small envelope (E) protein or any other polypeptide expressed by the virus.
- N nucleocapsid
- P polymerase
- M membrane glycoprotein
- S spike glycoprotein
- E small envelope
- Rhabdoviridae family members including rabies virus can be target of recombinant vaccine expressing viral proteins.
- Other possible targets include the Filoviridae family comprising Ebola-like viruses and Marburg-like viruses genera, that is responsible of outbreaks of severe hemorrhagic fever; the Paramyxoviridae family comprising some of the most prevalent virus known in humans like measles, respiratory syncytial, parainfluenza viruses and viruses of veterinary interest like Newcastle disease and rinderpest viruses; the Orthom.yxovirid.ae family including Influenza A,B,C viruses; Bunyaviridae family mainly transmitted by arthropod to vertebrate hosts comprising important human pathogens like Rift valley fever, Sin Nombre, Hantaan, Puumala viruses; Arenaviridae family comprising Lymphocytic choriomeningitis, Lassa fever, Argentine Hemorragic fever, Venezuelan Hemorragic fever viruses; Bomaviridae family comprising
- Papilloma viral infection is associated with the development of cancer in both humans and animals.
- Human papilloma viruses are associated with cervical cancer, vaginal cancer and skin cancer.
- the herpesviridae families includes subfamilies in which are classified a number of important pathogens for humans and other mammals.
- Suitable sources of antigens can be but are not limited to herpes simplex viruses 1 and 2, varicella-zoster virus, Epstein-Barr virus, Cytomegalovirus, human herpesviruses 6A,6B and 7, Kaposi's sarcoma-associated herpesvirus.
- adenoviral vectors of the present invention are also suitable for the preparation of immunogenic compositions designed to stimulate an immune response in humans or animals against protein expressed by non-viral pathogens including bacteria, fungi, parasites pathogens.
- the vectors disclosed herein can be used to prepare vaccines against, but not limited to: Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Vibrio cholerae, Clostridiwn tetani, Neisseria meningitis, Corynebacterium diphteriae, Mycobacteria tuberculosis and leprae, Listeria monocytogenes, and Legionella pneumofila.
- TAAs tumor-associated antigens
- Tumor antigens can be produced by oncogenic mutants of normal cellular genes altered proto-oncogenes or tumor suppressor genes such as Ras, p53 or Bcr-Abl protein are examples of altered cellular proteins that can stimulate T/B cell response.
- Tumor antigens can be normal cellular proteins that are overexpressed in tumor cells (tyrosinase, GP100, MART are normally expressed at low levels in melanocytes and overexpressed in melanoma) or aberrantly expressed in tumor cells (MAGE, BAGE, GAGE expressed in melanomas and many carcinomas but normally expressed in the testis and placenta).
- Tumor antigens can be products of oncogenic viruses: papillomavirus E6 and E7 proteins expressed by cervical carcinomas; EBV EBNA-1 protein produced by EBV+ lymphomas and nasopharyngeal carcinomas; SV40 T antigen in SV40 induced experimental tumors.
- Oncofetal antigens are expressed to high levels on cancer cells and in normal developing (fetal) tissues but not in adult tissues.
- Carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) are examples of well characterized oncofetal antigens.
- TAAs Carcinoembryonic antigen
- AFP alpha-fetoprotein
- TAAs are notoriously poor immunogens and T cells that are highly specific for TAAs are either deleted or anergized during T-cell development. Accordingly, there is an expectation that the immune response of a tumor-bearing host to a particular TAA will be extremely weak. Because of the inherent need to break host tolerance to a target TAA experimental clinical vaccine studies are particularly focused on developing immunization strategies that will enhance TAA-specific T-cell responses.
- an effective cancer vaccine must both overcome immunotolerance and enhance host's immune response to a level that is preventative and/or protective. Anti-tumor effects in many experimental vaccine studies have been correlated with T-cell responses to TAAs.
- an immunogenic composition e.g., a cancer vaccine
- a suitable composition would contain a recombinant chimpanzee adenovirus comprising nucleic acid sequence encoding a tumor antigen and a physiologically acceptable carrier.
- the coding sequence element of the cassette may encode a single immunogen, such as an immunogenic peptide sequence derived from a self-antigen, such as a tumor-associated antigen.
- the nucleic acid sequence encoding the immunogen i.e., the transgene
- the " coding sequence may encode more than one immunogen, such as one or more codon optimized tumor antigens.
- a cancer vaccine utilizing the disclosed adenoviral vectors may encode a combination of self-antigens such as: HER2/neu, CEA, Hepcam, PSA, PSMA, Telomerase, gplOO, Melan-A/MART-1, Muc-1, NY-ESO-1, Survivin, Stromelysin 3, Tyrosinase, MAGE3, CML68, CML66, OY-TES-1, SSX-2, SART-1, SART-2, SART-3, NY-CO-58, NY-BR-62, hKLP2, VEGF.
- self-antigens such as: HER2/neu, CEA, Hepcam, PSA, PSMA, Telomerase, gplOO, Melan-A/MART-1, Muc-1, NY-ESO-1, Survivin, Stromelysin 3, Tyrosinase, MAGE3, CML68, CML66, OY-TES-1, SSX-2, SART-1, SART-2, SART
- TAAs tumor-specific antigens
- TAAs are extremely weak immunogens or functionally nonimmunogenic in tumor-bearing subjects.
- vaccines can be used as immunotherapy in patients afflicted with cancer.
- cancer vaccines can be designed to elicit an immune response that is that is directed against a TAA that is expressed by a pre-existing tumor or malignancy.
- therapeutic cancer vaccines are intended for use in tumor-bearing patients who have developed resistance to conventional regimens of treatment or who have a high probability of developing a recurrence following conventional treatment.
- adenoviral vectors make adenoviral vectors particularly good candidates for use in the context of a vaccine carrier designed to break host tolerance to a self-antigen.
- the phenomenon of epitope or determinant spreading which was first described in autoimmune diseases, has been associated with both MHC class I- and MHC class II-restricted responses and correlated to the development of HER-2/neu protein-specific T-cell immunity.
- Epitope spreading represents the generation of an immune response to a particular portion of an immunogenie protein followed by the natural spread of immunity to other antigenic determinants present on the same protein. For example, Disis et al.
- TAAs that are suitable for use in the disclosed adenoviral vectors and methods as a target for a cancer vaccine should possess a number of characteristics.
- a target TAA must have a favorable expression profile, meaning that it should be preferentially expressed or overexpressed in the tumor or malignant tissue as compared with normal tissue.
- a suitable target TAA should also preserved throughout tumor progression and metastases. Suitable target TAAs should also be expressed homogenously within the tumor.
- suitable target TAAs must not be subject to absolute immunologic tolerance. More specifically, there should be some evidence that T cells which can both recognize and respond to the TAA of interest have not been entirely deleted from the host's T-cell repertoire (Berinstein, N. L., J. Clin. Oncol. 29(8): 2197 (2002).
- Carcinoembryonic antigen has many characteristics which make it an attractive TAA for use as a target antigen for an anticancer vaccine. It is a member of the Ig superfamily which is characterized by a favorable expression pattern. It is expressed in more than 50% of all human cancers and has been implicated in the tumorigenesis process, which suggests that its expression may be selected and conserved throughout cancer progression. In addition, it has been established that immunologic tolerance to CEA is not absolute. Published studies establish that human T cells can recognize, become activated to, and lyse cancer cells that express CEA (Berinstein, N. L., J. Clin. Oncol 29(8): 2197 (2002).
- the immunization of patients with recombinant vaccinia virus expressing CEA combined with subsequent peptide-based in vitro stimulations, generated CD8+ MHC-restricted CTLs capable of lysing autologous tumors (Tsang, K. Y. et al. J. Natl. Cancer Inst., (1995) 87:982-990).
- immunization of colorectal carcinoma patients after surgery with recombinant CEA was reported to induce weak antibody and cellular responses to recombinant CEA (Samanci, A., et al. (1998) Cancer Immunol. Immunother.
- CEA is an oncofetal glycoprotein that is expressed in normal fetal colon and to a much lesser extent in normal colonic mucosa. It is also overexpressed in the vast majority of adenocarcinomas, particularly those of the colon, pancreas, breast, lung, rectum and stomach.
- a second TAA which provides a suitable immunogen for use in the compositions and methods of the invention is product of the HER2/erb-2 (also called neu) proto-oncogene.
- HER2/neu has a favorable expression pattern and is not subject to absolute tolerance.
- HER2/neu encodes a transmembrane glycoprotein possessing intrinsic tyrosine kinase activity and displaying extensive homology to the epidermal growth factor (EGF) receptor (Akiyama, T et al, (1986) Science 232: 1644-1646).
- EGF epidermal growth factor
- Such techniques include, but are not limited to conventional cDNA cloning techniques, use of overlapping oligonucleotde sequences derived from the adenoviral genome, homologous recombination, polymerase chain reaction, standard transfection techniques, plaquing of viruses in agar overlay and other related methodologies.
- a plasmid- version of the adenovirus vector is often prepared (adenovirus pre-plasmid).
- the adenovirus pre-plasmid contains an adenoviral portion and a plasmid portion.
- the adenoviral portion is essentially the same as the adenoviral portion contained in the adenoviral vectors of the invention (containing adenoviral sequences with nonfunctional or deleted El and optionally E3 regions) and an immunogen expression cassette, flanked by convenient restriction sites.
- the plasmid portion of the adenovirus pre-plasmid often contains an antibiotic resistance marker under transcriptional control of a prokaryotic promoter so that expression of the antibiotic does not occur in eukaryotic cells. Ampicillin resistance genes, neomycin resistance genes and other pharmaceutically acceptable antibiotic resistance markers may be used.
- the adenovirus pre-plasmid to contain a prokaryotic origin of replication and be of high copy number.
- a number of commercially available prokaryotic cloning vectors provide these benefits. It is desirable to remove non-essential DNA sequences. It is also desirable that the vectors not be able to replicate in eukaryotic cells. This minimizes the risk of integration of polynucleotide vaccine sequences into the recipients' genome. Tissue-specific promoters or enhancers may be used whenever it is desirable to limit expression of the polynucleotide to a particular tissue type.
- Adenovirus pre-plasmids (plasmids comprising the genome of the replication-defective adenovirus with desired deletions and insertions) can be generated by homologous recombination using adenovirus backbones DNA and an appropriate shuttle vector (designed to target-in specific deletions and incorporate desired restriction sites into the resultant plasmid).
- Shuttle vectors of use in this process can be generated using general methods widely understood and appreciated in the art, e.g., PCR of the adenoviral terminal ends taking into account the desired deletions, and the sequential cloning of the respective segments into an appropriate cloning plasmid.
- the adenoviral pre-plasmid can then be digested and transfected into the complementing cell line via calcium phosphate co-precipitation or other suitable means. Virus replication and amplification then occurs, a phenomenon made evident by notable cytopathic effect. Infected cells and media are then harvested after viral replication is complete (generally, 7-10 days post-transfection). Generally speaking, following the construction and assembly of the desired adenovirus pre- plasmids, adenovirus pre-plasmids are rescued into virus by transfecting an adenoviral El-expressing human cell line.
- adenovirus-transgene sequences in the vector to be replicated and packaged into virion capsids, resulting in the production of recombinant adenoviruses.
- the resulting viruses may be isolated and purified by any of a variety of methods known to those of skill in the art for use in the methods of the invention. - ;.. It will be readily apparent to those of skill in the art that when one or more selected deletions of chimpanzee adenoviral genes are introduced into a viral vector, the function of the deleted gene product can be supplied during the production process by sequences present in the production cell line.
- the function of the manipulated genes can be provided by a permanently transformed cell line that is characterized by some or all of the adenoviral functions which are required for packaging but which are not functional in the vector (e.g., any of EIA, EIB, E2A, E2B E4).
- the requisite adenoviral functions can be provided to a suitable packaging cell line by infecting or transiently transfecting a suitable cell with a construct comprising the requisite gene to provide the function.
- the present invention also provides a method of producing chimpanzee adenoviral vectors in El-expressing human cell lines.
- the disclosed vectors can be propagated in an El complementing cell lines, including the known cell lines 293 and PER.C6TM. Both these cell lines express the adenoviral El gene product.
- PER.C6TM is described in WO 97/00326, published January 3, 1997, which is hereby incorporated by reference. It is a primary human retinoblast cell line transduced with an El gene segment that complements the production of replication deficient first generation adenoviruses, but is designed to prevent generation of replication competent adenovirus by homologous recombination. 293 cells are described in Graham et al (1977) J. Gen. Virol 36:59-72, which is also hereby incorporated by reference.
- first generation adenovirus refers to a replication deficient adenovirus which has either a non-functional or deleted El region, and optionally a non-functional or deleted E3 region.
- Batches of replication-defective adenoviral vectors that are intended for use as a vaccine composition in a clinical trial should be proven to be free of RCA (Fallaux, F.J. et al (1998) Human Gene Tlierapy, 9:1909-1917). In practice, this is a labor intensive process which, requires establishing and utilizing an expensive screening program.
- a high frequency of RCA generation not only results in a high failure rate for the batches produced, but also severely limits scale-up efforts.
- Elimination of sequence homology between the nucleotide sequence of the vector and the adenoviral sequences present in the genome of the helper production/packaging cell line should eliminate the possibility of producing batches of vector that are contaminated with RCAs produced by homologous recombination.
- recombinant replication-defective adenoviral vectors are propagated in cell lines that provide El gene products in trans. Supplementation of the essential El gene, products in trans is very effective when the vectors are from the same or a very similar serotype. For example, it is well-known that El-deleted (i.e.
- ⁇ E1 group C serotype Ad2 and Ad5 vectors
- Ad5 El sequences present in the 293 and PER.C6 production cells may not always fully complement the replication of non-group C serotypes.
- El -deleted serotypes outside of subgroup C for example those from subgroups A, B, D, E, and F may replicate with a lower efficiency respect to the corresponding wt virus or may not replicate at all in 293 or PER.C6 cells.
- Ad5 Elb 55k Although the interaction between Ad5 Elb 55k and vector-expressing E4 orf ⁇ protein is conserved within members of the same subgroup, it may be not sufficiently stable when E4 orf ⁇ protein of a non-C serotype is expressed. This inefficient or unstable formation of El B-55K/E4-orf6 complex lead to an absent of reduced propagation of the ⁇ E1 vector. Accordingly, it has been empirically determined that in order to successfully and efficiently rescue recombinant adenovirus of groupB serotypes, a cell line expressing the El region of the serotype of interest may need to be generated. In cells expressing Ad5El like 293 or Per.C ⁇ TM, the expression can be limited to Elb 55K protein.
- Ad5El-expressing cell lines could be modified to express the entire Ad5 E4 region (or E4 orf ⁇ only) in addition to Ad5El.
- the generation of cell lines expressing both Ad5 El and orf ⁇ are useful in complementing alternative adenovirus serotypes; see, e.g., Abrahamsen et al, 1997 J. Virol. 8946-8951.
- the incorporation of E4 (orf ⁇ ) into Ad5 complementing cell lines is known, as is the generation of serotype-specific cell lines providing a serotype-specific El gene product(s) in trans.
- the efficiency of non-group C vector propagation may be improved by modification of the viral backbone by substituting the native E4 region with Ad5 orf ⁇ .
- U.S. Patent No. 5,849,561 discloses complementation of an El-deleted non-group C adenovirus vector in an Ad5-El complementing cell line which also expresses portions of the Ad5-E4 gene.
- U.S. Patent No. 6,127,175, issued to Vigne, et al. discloses a stably transfected mammalian cell line which expresses a portion of the E4 region of adenovirus, preferably orf6/orf ⁇ /7.
- compositions including vaccine compositions, comprising the disclosed adenoviral vectors are an important aspect of the present invention. These compositions can be administered to mammalian hosts, preferably human hosts, in either a prophylactic or therapeutic setting. Potential hosts/vaccinees include but are not limited to primates and especially humans and non-human primates, and -include any non-human mammal of commercial or domestic veterinary importance. Compositions comprising recombinant chimpanzee adenoviral vectors may be administered alone or in combination with other viral- or non-viral-based DNA/protein vaccines. They also may be administered as part of a broader treatment regimen.
- the disclosed vectors may be used in an immunization protocol designed to break host tolerance to a self-antigen or a tumor-associated antigen.
- the identification of a number of TAA has enabled the development of active vaccination approaches for the therapy of cancer. Both cell surface antigens and intracellular antigens that are processed and presented provide useful targets.
- the disclosed method of breaking host tolerance to a self-antigen comprises: (a) stimulating an antigen-specific response to a self-antigen by administering a first vaccine composition comprising a first CtiAd vector or a plasmid vector carrying a nucleotide sequence encoding the self-antigen against wriich an antigen-specific immune response is desired, and (b) sustaining and expanding the immune response of (a) by administering a second vaccine composition comprising a recombinant ChAd vector of a different serotype containing at least a functional deletion of its genomic El gene, and in the site of the El gene, a sequence comprising a promoter capable of directing the expression of DNA encoding the same self-antigen delivered in the priming step, whereby the host mounts an immune response which has the effect of breaking tolerance to the self-antigen.
- the first, or priming immunization comprises plasmid DNA which encodes a particular self-antigen, such as a T ⁇
- any subsequent immunizations comprise a ChAd vector.
- Plasmid DNA sequences comprising nucleotide sequences that encode self-antigens, may be delivered intramuscularly, with or without electrostimulation, in one or more injections.
- an immunization protocol based on multiple (e.g.
- intramuscular injections of plasmid DNA encoding a TAA via electroporation followed by one or more intramuscular injections of a ChAd vector comprising a transgene encoding the same TPsJ is encompassed by the general method disclosed and claimed herein.
- a suitable protocol to break tolerance could involve one or more priming immunizations with a ChAd or hAd vector comprising a transgene encoding a self antigen, followed by one or more boosting immunizations with either the same, or a different ChAd vector that is know to be non cross-reactive with the vector used for the priming immunization(s).
- an immunization protocol using ChAd3 for priming and ChAdCS for boosting, or ChAd3 for priming followed by ChAd ⁇ and ChAd9 for boosting could be used to break host tolerance.
- the invention contemplates the use of self-antigens comprising at least one tumor associated antigen selected from the group consisting of: HER2/neu, CEA, EpCAlvI, PSA, PSMA, Telomerase, gplOO, Melan-A/MART-1, Muc-1, NY-ESO-1, Survivin, Stromelysin 3, Tyrosinase, MAGE3, CML68, CML66, OY-TES-1, SSX-2, SART-1, SART-2, SART-3, NY-CO-58, NY-BR-62, hKLP2, VEGF.
- the invention provides a method for inducing an immune response (e.g., humoral or cell-mediated) to a tumor-associated antigen which is specific for a selected malignancy by delivering a recombinant chimpanzee adenovirus encoding the TAA to a mammal afflicted with cancer.
- an immune response e.g., humoral or cell-mediated
- the elicited immune response constitutes ah immune response characterized by the production of antigen-specific CD4-1- and CD8+ T cells.
- the immunogenic compositions of the invention can be administered to mammalian hosts, preferably human hosts, in either a prophylactic or therapeutic setting.
- compositions comprising recombinant chimpanzee adenoviral vectors may be administered alone or in combination with other viral- or non-viral-based DNA/protein vaccines. They also may be administered as part of a broader treatment regimen.
- Suitable compositions, for use in the methods of the invention may comprise the recombinant viral vectors of the invention in combination with physiologically acceptable components, such as buffer, normal saline or phosphate buffered saline, sucrose, other salts and polysorbate. It does not cause tissue irritation upon intramuscular injection. It is preferably frozen until use.
- a vaccine composition of the invention may be formulated to contain other components, such as but not limited to, an adjuvant, a stabilizer, a pH adjusting agent, or a preservative. Such components are well known to those of skill in the art. It is envisioned that the recombinant chimpanzee adenoviruses of the invention will be administered to human or veterinary hosts in an "effective amount," that is an amount of recombinant virus which is effective in a chosen route of administration to transduce host cells and provide sufficient levels of expression of the transgene to invoke an immune response which confers a therapeutic benefit or protective immunity to the recipient/vaccine.
- lxlO 7 to lxlO 12 particles i.e., lx 10 7 , 2xl0 7 , 3xl0 7 , 5xl0 7 , 1x10 s , 2xl0 8 , 3xl0 8 , 5xl0 8 or lxlO 9 , 2xl0 9 , 3xl0 9 , 5xl0 9
- lxlO 10 to lxlO 11 particles is administered directly into muscle tissue.
- a priming dose(s) comprising at least one immunogen is administered to a mammalian host in need of an ' effective immune response to a particular pathogen or self-antigen.
- Prime-boost administrations typically involve priming the subject (by viral vector, plasmid, protein, etc.) at least one time, allowing a predetermined length of time to pass, and then boosting (by viral vector, plasmid, protein, etc.).
- IMultiple immunizations typically 1-4, are usually employed, although more may be used.
- a vaccine is given more than one administration of adenovirus vaccine vector, and it may be given in a regiment accompanied by the administration of a plasmid vaccine.
- Suitable plasmid vaccines for use in combination with the vectors disclosed herein comprise a plasmid encoding at least one immunogen against which a primed or boosted immune response is desired, in combination with a heterologous promoter, which is capable of directing expression of the nucleic acid sequences encoding the immunogen(s), operably linked to the immunogen coding sequence, and a transcription terminator sequence.
- a dosing regimen which utilizes multiple injection of different serotypes of recombinant replication-defective chimpanzee adenoviral vectors can be used.
- an individual may be given a first dose (i.e., a priming dose) of a plasmid vaccine, and a second dose (i.e., a boosting dose) which comprises a replication-defective recombinant chimpanzee adenoviral vector which comprises a coding sequence for the same immunogen that was delivered in the plasmid vaccine.
- a priming dose i.e., a priming dose
- a second dose i.e., a boosting dose
- a replication-defective recombinant chimpanzee adenoviral vector which comprises a coding sequence for the same immunogen that was delivered in the plasmid vaccine.
- the individual may be given a first dose of a human adenovirus vaccine vector encoding at least one immunogen, followed by a second dose comprising a replication-defective recombinant chimpanzee adenoviral vector disclosed herein, which comprises a coding sequence for the same immunogen that was delivered in the priming dose.
- a vaccine composition comprising a vector of the invention may be administered first, followed by the administration of a plasmid vaccine.
- an individual may be given multiple doses of the same immunogen in either viral vector or plasmid form. There may be a predetermined minimum amount of time separating the administrations.
- two or more proteins or antigens can be delivered either via separate vehicles or delivered via the same vehicle.
- Multiple genes/functional equivalents may be ligated into a proper shuttle plasmid for generation of a adenovirus - pre-plasmid comprising multiple open reading frames. Open reading frames for the multiple genes/functional equivalents can be operatively linked to distinct promoters and transcription termination sequences.
- suitable immunization regimens can employ different adenoviral serotypes.
- a priming dose(s) comprising a recombinant adenoviral vector of a first serotype, for example a ChAd3 or ChAd ⁇ followed by a boosting dose comprising a recombinant chimpanzee adenoviral vector of a second serotype.
- the priming dose can comprise a mixture of separate adenoviral vehicles each comprising a gene encoding for a different protein/antigen.
- the " boosting dose would also comprise a mixture of vectors each comprising a gene encoding a separate protein/antigen, provided that the boosting dose(s) administers recombinant viral vectors comprising genetic material encoding for the same or similar set of antigens that were delivered in the priming dose(s).
- boosting dose(s) administers recombinant viral vectors comprising genetic material encoding for the same or similar set of antigens that were delivered in the priming dose(s).
- These multiple gene/vector administration modalities can further be combined. It is further within the scope of the present invention to embark on combined modality regimes which include multiple but distinct components from a specific antigen.
- Use of recombinant vectors derived from chimpanzee adenoviruses that are not neutralized by preexisting immunity directed against the viral elements of human vector offers an alternative to the use of human Ad vectors as vaccine carriers.
- adenoviral vectors are particularly good candidates for use in the context of a vaccine carrier designed to break host tolerance to a self-antigen.
- the ability to propagate the chimp viruses in human cells, particularly in the Per.C ⁇ TM cell line, with an efficiency comparable to human viruses offers considerable advantages both from a regulatory point of view and for the large scale production of therapeutics or vaccines. Accordingly, the instant invention provides a collection of chimpanzee adenoviral sequences, vectors and plasmids that allow the preparation of recombinant virus which may be used, alone or in combination, as a vaccine carrier for genetic vaccination.
- Example 1 Isolation, Cloning, Sequencing And Characterization Of ChAds Chimpanzee Adenovirus Isolation Stool specimens were collected in viral transport medium (VTM; Microtest M4-R Multi- Microbe Transport Medium, Remel Inc.) then frozen or frozen directly at -70°C at NIRC (New Iberia Research Center 4401 W. Admiral Doyle Drive New Iberia, LA ⁇ OS ⁇ O). The specimens were kept frozen at ⁇ -70°C until they were processed for inoculation into cell cultures. At that time, the specimens were thawed and then vortexed in excess of chilled viral transport medium. After the specimens had dissociated into suspensions, they were centrifuged for 10 min at 1500-1800 rpm.
- VTM viral transport medium
- NIRC New Iberia Research Center 4401 W. Admiral Doyle Drive New Iberia, LA ⁇ OS ⁇ O
- the supematants were filtered through 0.8 and 0.2 ⁇ m syringe filters in series and then the filtered material was inoculated into cell cultures (200-250 ⁇ L into shell vials and 250-300 ⁇ L into tube cultures). Each processed specimen was inoculated into tube cultures and shell vial cultures seeded with 293 cells or A549 cells. Control (positive and negative) cultures were prepared each time a set of samples was inoculated. Once all of the shell vials in a set-up had been inoculated, they were centrifuged at room temperature for 60 + 10 min at 2000 rpm (900 x g). The vials were removed from the centrifuge immediately after the rotor stopped spinning to prevent heat damage in the cultures.
- the inocula were aspirated from the shell vials, using a fresh sterile Pasteur pipette in each vial to prevent cross-contamination.
- the cultures were washed three times using 1.0-mL fresh culture medium for each wash.
- Fresh medium 1.0 mL was pipetted into each vial after the third wash and the shell vials were placed in an incubator at 35-37°C for three to four days (approx. 96 hr).
- the supematants were aspirated from the cultures and the cell layer in each vial was washed twice with Immunofluorescence Assay (IFA) Buffer using approximately 1.0 mL buffer with each wash.
- IFA Immunofluorescence Assay
- the cells were fixed by adding 1.0 mL refrigerated acetone to each vial (10 min at 2-8°C.
- Acetone-cleaned slides were labeled with the specimen identification number(s) associated with the shell vial coverslips.
- the shell vial coverslips were processed for fluorescence labeling of Adenovirus-infected cells using a primary mouse anti-adenovirus antibody [MAB8052, Chemicon].
- the slides are evaluated with the aid of a fluorescence microscope. Each preparation was scanned using the 10X objective noting the extent of immunofluorescence coverage across the well (1+ to 4+). The presence or absence of specific immunofluorescence was confirmed using the 40X objective.
- Tube cultures were inoculated in the same sequence as described for the shell vials (e.g., negative control first, followed by clinical specimens and positive controls).
- the inocula were allowed to adsorb for 60-120 min at 36-38°C.
- the specimens/controls were aspirated from the tubes and replaced by fresh culture medium.
- ' - - " ' ⁇ l Three to four days post-inoculation, and once a week thereafter, the media was aspirated from the culture tubes and replaced with 1.5 mL fresh media.
- Culture tubes were visually monitored for CPE at least every other day for at least 21 days after inoculation.
- Cultures inoculated with chimp specimens were compared against the controls and rated by observing the CPE extent. Cultures showing no CPE were passed to fresh tube cultures after 14 days; culture tubes that were negative for CPE after 21 days were considered negative. Culture tubes with 3-4+ CPE were vortexed for 10 seconds. The cells were scraped from the wall of the tube using a sterile 1.0 mL serological pipette and suspended in the culture supernatant. After labeling a 5 mL snap cap tube with the specimen identification number and date and stored at -70°C.
- 500 ⁇ L of the cell suspension was transferred from the culture tube into the snap cap tube and stored for up to one day at 2-8°C until it was processed using an indirect immunofluorescent antibody technique to detect adenovirus (equivalent to procedure for staining shell vials).
- Infected cells and medium were collected when 100% of the cells exhibited virus-induced cytopathic effect (CPE) and lysed by three cycles of freezing and thawing.
- All wild type chimp adenoviral (CV) stocks were cloned by inferring 293 cells seeded in 96-well plates, after the first passage of amplification. The virus cloning was performed by limiting dilution of the cell lysate obtained at the first passage of the virus amplification. Five isolated clones were picked up and serially propagated. After 3-4 serial passages of amplification, a large-scale preparation of adenovirus was performed on cells planted on 5 two-layer cell-factories (NUNC) (200 millions of cells/cell factory). Purified viral particles were obtained from cell lysate by two ultra- centrifugation steps on cesium chloride density gradients.
- NUNC two-layer cell-factories
- Genomic DNA was isolated from 3 X 10 12 pp of purified virus preparation by digestion with Proteinase K (0.5 mg/ml) in 1% SDS-TEN (2 hrs at 55°C). After a Phenol-Chloroform extraction and Ethanol precipitation, the genomic DNA was resuspended in water and submitted for genomic sequencing. For full length Ad genome sequencing, the purified viral DNA was nebulized to produce randomly sheared fragments. The DNA fragments were blunt-ended with the klenow fragment of E.coli DNA polymerase and polynucleotide kinase.
- the blunt end fragment were run on a low melting point agarose gel to purify the fragments in the size range of 1-3 kb and cloned into the Smal site of pUC19 vector to create a shotgun library.
- the ligations were used to transform competent XL1- Blue MRF'. Positive colonies were identified by white/blue screening on LB agar containing X-gal and IPTG.
- Three to four 96-well block of plasmid DNA were isolated from the library and sequenced with pUC forward and reverse primers. All sequencing reads were screened for quality and vector sequence using the Phred-Phrap software package. The reads that passed the screening were assembled into contigs.
- Primers were designed to directly sequence the adenoviral DNA for closing the gaps and determine the DNA sequence of both ends.
- Complete viral genome sequencing was obtained for selected viruses including ChAd3 (SEQ ID NO: 1), ChAd ⁇ (SEQ ID NO: 2), CV32 (SEQ ID NO: 3), CV33 (SEQ ID NO: 4), and CV23 (SEQ TD NO: 5).
- Table 1 provides data summarizing the percentage of identity between the nucleotide sequences of ChAd3, ChAd ⁇ , Pan5 (CV23), Pan ⁇ (CV32), Pan7 (CV33), Cl and C68 adenoviral genomes. Alignments were calculated using the ALIGN program as part of the FASTA package version 2 (William R. Penson, University of Virginia; Myers & Miller, CABIOS 1989, 4:11 -17).
- ChAd3 100 68.1 68.5 68.2 68.3 6 .2 68.0
- the nucleotide sequence of the hexon and fiber genes were also determined by primer walking.
- Figures 20A-20G provide a comparison of the amino acid sequences of the fiber proteins of the ChAd isolates disclosed and claimed herein.
- the hexon gene sequences are set forth in SEQ ID NOS: 16-25: (SEQ ID NO: 16, ChAd20); SEQ TD NO: 17, ChAd4); SEQ TD NO: 18, ChAd5); SEQ TD NO: 19, ChAd7); SEQ ID NO: 20, ChAd9); SEQ ID NO: 21, ChAdlO); SEQ TD NO: 22, ChAdl 1); SEQ ID NO: 23, ChAdl ⁇ ); SEQ ED NO: 24, ChAdl7) SEQ ID NO: 25, ChAdl9), (SEQ ID NO: 97, ChAd8), (SEQ TD NO: 99, ChAd22), (SEQ ED NO: 101, ChAd24), (SEQ DD NO: 103, ChAd26), (SEQ ID NO: 105, ChAd30), (SEQ ID NO:
- the HVR7 was amplified by PCR using purified viral DNA or crude 293 lysate as template and then sequenced. Based on HVR7 sequence analysis we classified the new isolated viruses into the subgroups (A-F) proposed for human Ad viruses (Horowitz, MS (1990) Adenoviridae and their replication. In Virology B.N. Fields and D.M. Knipe, eds (raven Press, New York) pp.1679-1740). The phylogenetic tree presented in Figure 35 was obtained by alignment of human and chimp adenovirus hexon amino acid sequences.
- Example 2 ChAd Shuttle Vector and Expression Vector Construction and Rescue Vector Construction and Rescue Genomic viral DNA was cloned into a standard plasmid vector by homologous recombination with an appropriate shuttle vector containing viral DNA sequences derived from both left and right end of viral genome ( Figure 2). As described more fully below, the sequence homology observed between viruses classified in the same serotype subgroup was exploited to develop group- specific shuttle vectors. Genomic viral DNA of Chimp adenovirus classified into subgroup D and E resulted to be sufficiently homologous to allow the construction of a common shuttle vector in order to clone viruses belonging to both subgroups.
- the right ChAd ⁇ ITR (bp 36222 to bp 36648) was amplified by PCR using the oligonucleotides: 5'- ATGAAGCTTGTTTAAACCCAT CATCAATAATATACCT-3 '(SEQ ID NO: 29) and 5'- ATCTAGACAGCGTCCATAGCTTACCG- 3 '(SEQ ED NO: 30) digested with restriction enzymes HindHI and Xbal and cloned into pNEBChAd6-LI Hindin-Xbal digested thus generating pNEBChAd6-RLI.
- the DNA fragment corresponding to nucleotides 3426-3813 of the ChAd ⁇ genomic DNA sequence was amplified with the oligonucleotides: 5' ATGCTACGTAGCGATCGCGTGAGTAGTGTTTGGGGGTGGGTGGG-3' (SEQ TD NO: 31) and 5'- TAGGCGCGCCGCTTCTCCTCGTTCAGGCTGGCG-3' (SEQ TD NO: 32), digested with SnaBI and Ascl then ligated with SnaBI-AscI digested pNEBChAd ⁇ -RLI thus generating .pNEBChAd ⁇ -RLIdEl.
- SnaBI-AscI digested pNEBChAd ⁇ -RLI thus generating .pNEBChAd ⁇ -RLIdEl.
- the 1306 bp fragment containing both left and right ITRs of ChAd ⁇ as well as pIX gene fragment was excised by Pmel digestion from pNEBChAd ⁇ -RLIdEl and transferred to a different plasmid vector ⁇ obtained by PCR amplification with the olinucleotides 5'- GATCTAGTTAGTTTAAACGAATTCGGATCTGCGACGCG-3' (SEQ ED NO: 33) and 5' TTCGATCATGTTTAAACGAAATTAAGAATTCGGATCC-3' (SEQ ID NO: 34) from pMRKAd5SEAP.
- This final ligation step generated the ChAd ⁇ shuttle vector pARSChAd ⁇ -3.
- the ChAd3 viral genome was fully sequenced (SEQ ID NO: 1) and the information obtained was used to construct a shuttle vector to facilitate cloning by homologous recombination of subgroup C chimpanzee adenovirus.
- pChAd3EGFP the shuttle vector used to clone subgroup C chimp adenovirus, referred to herein as pChAd3EGFP was constructed as follows: a ChAd3 DNA fragment (nt 3542-4105) containing pDC coding region was amplified by PCR with the oligonucleotides 5'- TATTCTGCGATCGCTGAGGTGGGTGAGTGGGCG-3' (SEQ ED NO: 35) and 5'- TAGGCGCGCCCTTAAACGGCATTTGTGGGAG-3' (SEQ TD NO: 36) digested with Sgfl- Ascl then cloned into pARSCV32-3 digested with Sgfl- Ascl, generating pARS-ChAd3D.
- ChAd3 right end (nt 37320-37441) was amplified by PCR with oligonucleotides 5'- CGTCTAGAAGACCCGAGTCTTACCAGT-3' (
- CGGGATCCGTTTAAACCATCATCAATAATATACCTTATT-3' (SEQ TD NO: 38) digested with Xbal and BamHI then ligated to pARS-ChAd3D restricted with Xbal and BamHI, generating pARS- ChAdSRD.
- ChAd3 viral DNA left end was amplified by PCR with oligonucleotides 5'- ATGGAATTCGTTTAAACCATCATCAATAATATACCTT-3' (SEQ ED NO: 39) and 5'- ATGACGCGATCGCTGATATCCTATAATAATAAAACGCAGACTTTG-3', (SEQ ID NO: 40) digested with EcoRI and Sgfl then cloned pARS-ChAd3RD digested with EcoRI and Sgfl, thus generating pARS-ChAd3RLD.
- the viral DNA cassette was also designed to contain restriction enzyme sites (Pmel) located at the end of both TTR's so that digestion will release viral DNA from plasmid DNA.
- Subgroup B Shuttle Vector Construction of a Subgroup B Shuttle Vector
- pARS-ChAd3RLD was modified by substituting the left end, the pTX region, the right end with the corresponding fragments o GhAd30.
- E4 region of ChAd30 was substituted with Ad5 E4orf ⁇ that was cloned under the ChAd30 E4 promoter control.
- the shuttle plasmid was denominated pChAd30 EGFP shuttle vector.
- Subgroup B chimp adenovirus vectors were constructed by homologous recombination in E. coli strain BJ5183.
- BJ5183 cells were co-transformed with pChAd30EGFP shuttle vector digested with BstEII and Bstl 1071 and ChAd8 and ChAd30, purified viral DNA.
- Homologous recombination between pDC genes, right TTR DNA sequences present at the ends of linearized pChAd30EGFP shuttle and viral genomic DNA allowed its insertion in the plasmid vector, deleting at the same time the El region that was substituted by EGFP expression cassette.
- Expression cassettes based on human cytomegalovirus (HCMV) promoter and bovine growth hormone polyadenylation signal (Bgh polyA) were constructed to express secreted alkaline phosphatase (SEAP), EGFP, HIV gag, HCV NS region (as described in f ⁇ g.3 for ChAd ⁇ shuttle vectors) as well as tumor-associated antigens like CEA and HER2/neu from human and Rhesus monkey origin. All expression cassette were inserted into ChAd30 vectors by homologous recombination.
- Subgroup C Subgroup C chimp adenovirus vectors were constructed by homologous recombination in E. coli strain BJ5183.
- BJ5183 cells were co-transformed with pChAd3EGFP shuttle vector digested with BstEH and Bstll07I and ChAd3, ChAdl 1, ChAdl9 and ChAd20 purified viral DNA. Homologous recombination between pDC genes, right TTR DNA sequences present at the ends of linearized pChAd3EGFP and viral genomic DNA allowed its insertion in the plasmid vector, deleting at the same time the El region that was substituted by EGFP expression cassette.
- Expression cassettes based on human cytomegalovirus (HCMV) promoter and bovine growth hormone polyadenylation signal (Bgh polyA) were constructed to express secreted alkaline phosphatase (SEAP), EGFP, HTV gag, HCV NS region (as described in fig.3 for ChAd ⁇ shuttle vectors) as well as tumor-associated antigens like CEA. and HER2/neu from human and Rhesus monkey origin.
- Subgroups D and E In order to construct ⁇ E1 vectors based on subgroup D and E chimp adenovirus, the shuttle vector pARS ChAd ⁇ -3 was digested with Ascl and co-transformed into E.
- Expression cassettes based on human cytomegalovirus (HCMV) promoter and bovine growth hormone poly-adenylation signal (Bgh polyA) were constructed to express secreted alkaline phosphatase (SEAP), EGFP, HTV gag, HCV NS genes ( Figure 3) as well as tumor-associated antigens like CEA and HER2/ne ⁇ _ ⁇ of human and Rhesus monkey origin. All the expression cassette were inserted into the single SnaBI site . of pARS ChAd ⁇ -3 vector to be transferred by homologous recombination into the ⁇ E1 adenovirus- pre- plasmids as described in Figure 4.
- HCMV human cytomegalovirus
- Bgh polyA bovine growth hormone poly-adenylation signal
- SEAP alkaline phosphatase
- the neutralization titer is defined as the dilution of serum giving a 50% reduction of the SEAP activity observed in the positive control with the virus alone.
- CV32-SEAP and ChAd3-SEAP vector were diluted in 100 ⁇ l of complete medium and added to an equal volume of human or chimp serum diluted in complete medium. Each serum samples was tested at various dilutions (five 4-fold increments starting from 1/18 dilution through 1:4608). Samples were pre-incubated for one hour at 37°CP and then added to 293 cells seeded into 96-well plates (3xl0 4 cells/well).
- the inoculum was removed after one hour of incubation, the cells were re-fed with fresh medium and, 24 hours later, 50 ⁇ l of medium was removed and the SEAP activity was measured by a chemiluminescent assay.
- the neutralization titer- is defined as the dilution of serum giving a 50% reduction of the SEAP activity observed in the positive control with the virus alone.
- a panel of 100 human sera was tested for ChAd neutralization activity. In parallel the same panel was tested on Ad5 SEAP vector.
- Table 2 indicates that a very low prevalence in human sera of neutralizing antibodies directed against vector derived from chimpanzee adenoviruses. Only four sera showed a titer over the threshold of 200 on CV32 vector while 8 showed a titer over 200 on ChAd3 SEAJP vector. On the contrary, the panel of chimp sera examined showed a very high prevalence of anti-Chimp Ad immunity.
- Example 4 ChAd Vector Tropism Gene transfer efficacy mediated by Ad5 and ChAd vectors was assessed by EGFP expression on a panel of human primary cells of different histological origin. Human chondrocytes, osteoblasts, keratinocytes, melanocytes, skeletal muscle cells and melanocytes were cultivated according to manufacturer indication. Human monocytes, immature and mature dendritic cells (DC) were obtained as described (Romani, N. et al. 1996, J. Immunol. Methods, 196,137.). Transduced, fluorescent cells were detected by FACS analysis.
- DC dendritic cells
- the panel of human primary cells tested includes cells that are important target cells for different therapeutic strategies based on in vivo as well as ex vivo gene transfer in the field of cardiovascular disease, rheumatoid arthritis, tissue engineering (bone, skin, and cartilage), and vaccination.
- the results presented in Figure 38A-D suggests that different chimp adenoviruses can recognize receptors alternative to CAR as demonstrated by the differential efficiency of infection of the different cell types.
- mice were immunized with the selected adenoviruses diluted in 0.1 ml of buffer. Each vector dose was divided in two aliquot of 50 ⁇ l and injected in both quadriceps of mice.
- Splenocyte Preparation Mice were sacrificed 3 weeks post-injection and their spleens excised and transferred in 10 ml of RIO (10% FCS, 55mM 2-mercaptoethanol, IM HEPES buffer, 2mM L-glutamine, IX penicillin-streptomicine solution in RPMI medium 1640). Spleens were minced through.
- splenocytes were transferred in a- 50 ml Falcon tube and centrifuged at 1200 rpm, 10 min, room temperature (rt). Supernatant was removed and 3 ml of ACK lysis buffer (Gibco BRL Formulation#79-0422DG) were added. Cells were incubated 5' min, rt. 45 ml of IX PBS were added and tubes were centrifuged as above. After washing with 30 ml of RIO, cells were resuspended in 5 ml of RIO, filtered through a 70 m Nylon cell strainer (Falcon 2350).
- PBMC Peripheral blood mononuclear cell
- IFN- ⁇ ELISPOT Assay Millipore MAEP 45 plates were coated with 100 ⁇ l/well of purified rat anti-mouse IFN- ⁇ monoclonal antibody (Pharmingen, cat. 551216) diluted at 2.5 ⁇ g/ml in PBS and incubated over-night (o/n) at 4°C. Plates were washed 2X with sterile PBS and un-specific binding sites were blocked by incubation for 2hrs in the C0 incubator with 200 ⁇ l/well of RIO.
- Balb/C mice (SEQ ED NO: 47) was diluted to 2 ⁇ g/ml in RIO and added to the wells in the amount of 50 ⁇ l/well.
- a pool of peptides covering NS3 helicase domain as well a 9-mer peptide representing a mapped CD8 epitope comprised in helicase domain were used.
- Immunization experiments with ChAds expressing human CEA antigen were evaluated by pools of overlapping 15-mer peptides covering the entire amino acid sequence. As controls DMSO and Concanavalin A were used. Cells were added to each well at the amount of 5X10 5 and 2.5X10 5 .
- Murine IFN- ⁇ Intracellular Staining Splenocytes were diluted at 2X10 6 cells in 1 ml of RIO and stimulated with the same antigens described above at the concentration of 2 ⁇ g/ml.
- DMSO and Staphylococcal Enterotoxin B SEB
- FACS buffer 1% FCS, 0.01% NaN3, PBS
- purified anti-mouse CD16/CD32 Fc block (clone 2.4G2, Pharmingen cat. 553142) was diluted 1/25, added in the amount of 100 ⁇ l/sample and incubated for 15min at 4°C.
- Example 5 ChAd Vectors Elicit Strong CMI Responses in Mice
- CMI cell-mediated immune response
- the number of IFN- ⁇ secreting CD8+ T cells was determined by ELISPOT assay or by TFN- ⁇ intracellular staining and FACS analysis after stimulation in vitro with a peptide reproducing a gag CD8+ T cell epitope mapped in Balb/C mice.
- the results obtained from the 5 immunized animals, reported in Table 3, are expressed as spot forming cells per 10 6 splenocytes. Shown are the number of spot forming cells per million splenocytes following incubation with 9-mer CD8+ gag epitope or with gag peptide pool.
- the gag peptide pool consisted of 20-aa peptide overlapping by lOaa encompassing the entire gag sequence. Positive values are reported in bold.
- the data provided in Table 3 indicate that the administration of the ChAd vectors disclosed and claimed herein elicits a strong cell mediated immune response which is comparable to the response elicited by hAd5.
- immunization breakpoint By looking at the lowest vector dose resulting in a positive immunization result (immunization breakpoint), we ranked the potency of the different vectors being subgroup C ChAd3gag the most potent with a breakpoint at 10 6 pp vector dose. Ranking by immunization break-points is shown in Figure 33.
- Example 6 ChAd3 and CV33 GAG Vectors Elicit a CMI Response Characterized by GAG- Specific CD8+ T Cells
- splenocytes pooled from cohorts of five mice immunized with different doses of vector were analyzed by intracellular TFN- ⁇ staining. The data shown in table 3 and table 4 were collected in separate experiments. Splenocytes were diluted at 2X10 6 cells in 1 ml of RIO and stimulated with the same antigens described above at the concentration of 2 ⁇ g/ml. As controls, DMSO and SEB (Staphylococcal Enterotoxin B) were used.
- FACS buffer 1% FCS, 0.01% NaN3, PBS
- purified anti-mouse CD16/CD32 Fc block (clone 2.4G2, Pharmingen cat. 553142) was diluted 1/25, added in the amount of 100 ⁇ l/sample and incubated for 15min at 4°C.
- Cells were washed in FACS buffer and APC conjugated anti-mouse CD3e (clone 145- 2C11, Pharmingen #553066), PE conjugated anti-mouse CD4 (clone L3T4, BD Pharmingen cat.
- PerCP conjugated anti-mouse CD8a (clone 53-6.7, Pharmingen cat. 553036) diluted 1:50 in FACS buffer were added in the amount of 100 ⁇ l/sample.
- Cells were incubated 30 min rt, washed, fixed and permeabilized (Becton Dickinson, FACS Perm 2) and incubated with FITC conjugated anti-mouse TFN- ⁇ Pharmingen cat.554411) diluted 1:50 in PermWash (100 ul/sample) for 30 min at RT.
- Table 4 provides data summarizing the percentage of gag-specific CD3+T cells that were either gag-specific CD8+ or CD4+ T cells. Positive results are reported in bold.
- the data provided herein indicate that the cellular profile of the immune response elicited by ChAd vectors derived from viruses classified into different serotype subgroups (i.e., subgroups C, D and E) are similar and all of the gag- specific responses characterized predominantly by CD8+ T cells.
- Example 7 ChAd Vectors Elicit HCV NS-Specific T Cell Response
- the potency of CV32-NSmut and CV33-NSmut vectors was evaluated in C57/Black ⁇ mice relative to the potency of MRKAd ⁇ NSmut.
- the animals were injected with 10-fold increasing doses of vector starting from 10 7 up to 10 9 vp/mouse.
- CMI was analyzed 3 weeks after a single injection by EFN- ⁇ ELISPOT and TFN- ⁇ intracellular staining by stimulating T cells with a 9-mer peptide reproducing a CD8+ T cell epitope mapped in the helicase domain of NS3 protein.
- Example 8 Anti -Ad5 Pre-Existing Immunity Does Not Abrogate Anti-GAG CMI Elicited by ChAd3gag
- 4 cohorts of 5 BalbC mice were pre-immunized with two injection of 10 10 vp of Ad5 wt in the quadriceps at week 0 and 2.
- 2 cohorts of 5 mice were injected at the same time points with buffer only.
- Cohorts of Ad5 pre-immunized mice were then immunized with 10 6 and 10 7 vp/mouse of either Ad5gag or ChAd3gag vectors.
- Cohorts of control (na ⁇ ve) mice were immunized with 106 vp/mouse of Ad5gag or ChAd3gag vectors.
- Anti-Ad5 and ChAd3 neutralizing immunity was evaluated at week 4 by the neutralization assay described above using Ad5 and ChAd3 SEAP vectors.
- Anti-gag immunity was evaluated by ⁇ .
- ChAd3hCEA Immunization Elicits a Strong CEA-Specific Immune Response in Transgenic Mice Expressing Human CEA
- the ability of the ChAd vectors disclosed and claimed herein to elicit an immune response against a self-antigen therefore breaking the tolerance was also evaluated in transgenic mice expressing human CEA (Clarke, P et al. Cancer Res.
- ELISPOT Assay The IFN- ⁇ ELISPOT assays for rhesus macaques were conducted following a previously described protocol (Allen et al., 2001 J. Virol. 75(2):738-749), with some modifications.
- gag-specific stimulation a peptide pool was prepared from 20-aa peptides that encompass the entire HTV-l gag sequence with 10-aa overlaps (Synpep Corp., Dublin, CA).
- 6 peptide pools were prepared from 15-aa peptides that encompass the entire HCV-NS sequence from NS3 to NS5b with 10-aa overlaps.
- HER2/neu and CEA-specific stimulations were performed with 15-aa peptides that encompass the entire protein sequence with 10-aa overlaps.
- 50 ⁇ L of 2-4 x 10 5 peripheral blood mononuclear cells (PBMCs) were added; the cells were counted using Beckman Coulter Z2 particle analyzer with a lower size cut-off set at 80 fL.
- Either 50 ⁇ L of media or the gag peptide pool at 8 ⁇ g/mL concentration per peptide was added to the PBMC.
- the samples were incubated at 37°C, 5% C0 2 for 20-24 hrs. Spots were developed accordingly and the plates were processed using custom-built imager and automatic counting subroutine based on the ImagePro platform (Silver Spring, MD); the counts were normalized to 10 6 cell input.
- ICS Intracellular Cytokine Staining
- ICS Intracellular Cytokine Staining
- For gag-specific stimulation 10 ⁇ L of the peptide pool (at 0.4 mg/mL per peptide) were added. Similar conditions were used for HCV NS-specific stimulation.
- the tubes were incubated at 37 °C for 1 hr., after which 20 ⁇ L of 5 mg/mL of brefeldin A (Sigma) were added.
- the cells were incubated for 16 hr at 37 °C, 5% C0 2 , 90% humidity. 4 mL cold PBS/2%FBS were added to each tube and the cells were pelleted for 10 min at 1200 rpm.
- the cells were re-suspended in PBS/2%FBS and stained (30 min, 4 °C) for surface markers using several fluorescent-tagged mAbs: 20 ⁇ L per tube anti-hCD3-APC, clone FN-18 (Biosource); 20 ⁇ L anti-hCD8-PerCP, clone SKI (Becton Dickinson, Franklin Lakes, NJ); and 20 ⁇ L anti-hCD4-PE, clone SK3 (Becton Dickinson). Sample handling from this stage was conducted in the dark. The cells were washed and incubated in 750 ⁇ L lxFACS Perm buffer (Becton Dickinson) for 10 min at room temperature.
- the cells were pelleted and re-suspended in PBS/2 %FBS and 0.1 ⁇ g of FTTC- anti-hTFN- ⁇ , clone MD-1 (Biosource) was added. After 30 min incubation, the cells were washed and re- suspended in PBS. Samples were analyzed using all four color channels of the Becton Dickinson
- FACSCalibur instrument To analyze the data, the low side- and forward-scatter- lymphocyte population was initially gated; a common fluorescence cut-off for cytokine-positive events was used for both CD4 + and CD8 + populations, and for both mock and gag-peptide reaction tubes of a sample.
- Example 10 A Homologous Prime-Boost Regimen Using ChAd ⁇ El-gag Vectors Elicits Gag- Specific T Cells in Monkeys Cohorts of 3 animals were given intramuscular injection at week 0 and week 4 of either of the following constructs: 10 ⁇ 10 vp of CV-32 ⁇ El-gag; or 10 ⁇ 10 vp CV33 ⁇ El-gag; or 10 ⁇ 10 vp and 10 ⁇ 8 vp MRKAd5 ⁇ Elgag.
- PBMCs collected at regular 4-wks intervals were analyzed in an ELISPOT assay.
- Example 11 ChAd Vectors Elicit a HCV NS-Specific T-Cell Response in a Heterologous Prime- Boost Regimen
- groups of two and three monkey s ' were given immunization " at week 0, 4 of MRK Ad ⁇ NSoptmut vector at 10 ⁇ 8 or 10 ⁇ 10 vp per animal.
- the animals were'boosted with- the same virus at the same dose at week 24 and then boosted again at week 104 with CV33-NSmut at - 10 ⁇ 10 vp per animal.
- Tables 7 and 8 summarize the number of spot- forming cells per million PBMC following incubation in absence (mock) or presence of HCV NS peptide pool.
- T cell immunity as assessed by EFN- ⁇ ELISPOT, showed a peak response at week 4 after the first dose in the animals injected with 10 ⁇ 10 vp (Table 8) and at week 8 (post-dose 2) in the animals injected at 10 ⁇ 8 (Table 7). The response was not boosted by the injection at week 24 ("homologous boost"), while a strong boost effect was observed after the injection with CV33-NSmut ("heterologous boost”).
- Table 7 HCV NS-Specific T Cell Response in Monkeys Immunized with MRK Ad ⁇ NSoptmut At 10*8 Yp/Animal and Boosted with CV33-Nsmut
- Example 12 Vaccination with a ChAd Vector Comprising a TAA Breaks Tolerance and Elicits a TAA-Specific T Cell Response in Monkeys
- a ChAd Vector Comprising a TAA Breaks Tolerance and Elicits a TAA-Specific T Cell Response in Monkeys
- Ad5DEl RhCEA 10*11 vp
- CV33DE1 RhCEA 10*11 vp
- T cell response was measured by EFN ⁇ ELISPOT with rhesus CEA peptides.
- the results reported in figure 34 which provide the number of spot-forming cells per million PBMC following incubation in absence (DMSO) or in presence of rhesus CEA C and D peptides pools, establish that an immunization protocol based on vaccination with two different Ad serotypes leads to a sustained.
- T cell response against CEA in non-human primates While the invention has been described in detail with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which is described and claimed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Pulmonology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Cell Biology (AREA)
- AIDS & HIV (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006550042A JP4814800B2 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carrier |
DK05701091.0T DK1711518T3 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
EP05701091A EP1711518B1 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
CN2005800030434A CN101014613B (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carrier |
AU2005206292A AU2005206292B2 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
CA2553541A CA2553541C (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
PL05701091T PL1711518T3 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
DE602005017743T DE602005017743D1 (en) | 2004-01-23 | 2005-01-18 | VACCINE CARRIER FOR CHIMPANE ADENOVIRUS |
SI200530917T SI1711518T1 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
AT05701091T ATE449105T1 (en) | 2004-01-23 | 2005-01-18 | CHIMPANZEE ADENOVIRUS VACCINE CARRIAGE |
EP17156766.2A EP3269390B1 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
US10/587,389 US8216834B2 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
US13/529,518 US8673319B2 (en) | 2004-01-23 | 2012-06-21 | Chimpanzee adenovirus vaccine carriers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53879904P | 2004-01-23 | 2004-01-23 | |
US60/538,799 | 2004-01-23 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09176105.6A Previously-Filed-Application EP2163260B1 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
US11/587,389 A-371-Of-International US20070225398A1 (en) | 2004-07-06 | 2005-05-20 | Concentrated Aqueous Methacrylamide Solution Comprising Methacrylic Acid |
US13/529,518 Division US8673319B2 (en) | 2004-01-23 | 2012-06-21 | Chimpanzee adenovirus vaccine carriers |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005071093A2 true WO2005071093A2 (en) | 2005-08-04 |
WO2005071093A3 WO2005071093A3 (en) | 2006-03-30 |
Family
ID=34807229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/000558 WO2005071093A2 (en) | 2004-01-23 | 2005-01-18 | Chimpanzee adenovirus vaccine carriers |
Country Status (17)
Country | Link |
---|---|
US (2) | US8216834B2 (en) |
EP (3) | EP1711518B1 (en) |
JP (4) | JP4814800B2 (en) |
CN (3) | CN102719478A (en) |
AT (1) | ATE449105T1 (en) |
AU (2) | AU2005206292B2 (en) |
CA (5) | CA2553541C (en) |
CY (2) | CY1109841T1 (en) |
DE (1) | DE602005017743D1 (en) |
DK (2) | DK1711518T3 (en) |
ES (3) | ES2337374T3 (en) |
HU (1) | HUE033576T2 (en) |
LT (1) | LT2163260T (en) |
PL (2) | PL1711518T3 (en) |
PT (2) | PT1711518E (en) |
SI (2) | SI2163260T1 (en) |
WO (1) | WO2005071093A2 (en) |
Cited By (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007071997A2 (en) * | 2005-12-21 | 2007-06-28 | Glaxo Group Limited | Method of eliciting immune response |
WO2008122769A2 (en) * | 2007-04-10 | 2008-10-16 | Isis Innovation Limited | Adenoviral vector encoding malaria antigen |
EP2044947A1 (en) | 2007-10-05 | 2009-04-08 | Isis Innovation Limited | Compositions and methods |
WO2009073104A2 (en) * | 2007-11-28 | 2009-06-11 | The Trustees Of The University Of Pennsylvania | Simian e adenoviruses sadv-39, -25. 2, -26, -30, -37, and -38 |
WO2009071613A2 (en) * | 2007-12-06 | 2009-06-11 | Glaxosmithkline Biologicals S.A. | Vaccine |
WO2009105084A2 (en) * | 2007-11-28 | 2009-08-27 | The Trustees Of The University Of Pennsylvania | Simian subfamily c adenoviruses sadv-40, -31, and-34 and uses thereof |
WO2010062815A1 (en) | 2008-11-26 | 2010-06-03 | Merck Sharp & Dohme Corp. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2010062814A1 (en) | 2008-11-26 | 2010-06-03 | Merck Sharp & Dohme Corp. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2010085984A1 (en) * | 2009-02-02 | 2010-08-05 | Okairos Ag | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
WO2010086189A2 (en) | 2009-02-02 | 2010-08-05 | Okairòs Ag, Switzerland | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
WO2010138675A1 (en) | 2009-05-29 | 2010-12-02 | The Trustees Of The University Of Pennsylvania | Simian adenovirus 41 and uses thereof |
WO2011057254A3 (en) * | 2009-11-09 | 2011-08-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Simian adenoviral vector-based vaccines |
WO2011057248A3 (en) * | 2009-11-09 | 2011-09-15 | Genvec, Inc. | Methods of propagating monkey adenoviral vectors |
WO2011130627A2 (en) | 2010-04-16 | 2011-10-20 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Chimpanzee adenoviral vector-based filovirus vaccines |
WO2012071318A2 (en) | 2010-11-23 | 2012-05-31 | The Trustees Of The University Of Pennsylvania | Subfamily e simian adenoviruses a1321, a1325, a1295, a1309, a1316 and a1322 and uses thereof |
WO2012089833A2 (en) | 2010-12-30 | 2012-07-05 | Okairos Ag | Expression Systems |
EP2325298A3 (en) * | 2008-03-04 | 2012-08-29 | The Trustees of The University of Pennsylvania | Simian adenoviruses SAdV-36, -42.1, -42.2, AND -44 and uses thereof |
WO2013007772A1 (en) | 2011-07-12 | 2013-01-17 | Transgene Sa | Hbv polymerase mutants |
EP2570423A1 (en) | 2005-06-17 | 2013-03-20 | Instituto di Ricerche di Biologia Molecolare p Angeletti S.P.A. | Hepatitis C virus nucleic acid vaccine |
WO2013045658A1 (en) | 2011-09-29 | 2013-04-04 | Transgene Sa | Immunotherapy composition and regimen for treating hepatitis c virus infection |
WO2013045668A2 (en) | 2011-09-29 | 2013-04-04 | Transgene Sa | Immunotherapy composition and regimen for treating hepatitis c virus infection |
WO2013074501A1 (en) | 2011-11-14 | 2013-05-23 | Crucell Holland B.V. | Heterologous prime-boost immunization using measles virus-based vaccines |
US8524219B2 (en) | 2007-11-28 | 2013-09-03 | The Trustees Of The University Of Pennsylvania | Simian subfamily B adenoviruses SAdV-28, -27, -29, -32, -33, and -35 and uses thereof |
WO2013135615A1 (en) | 2012-03-12 | 2013-09-19 | Crucell Holland B.V. | Batches of recombinant adenovirus with altered terminal ends |
WO2013164754A2 (en) | 2012-05-04 | 2013-11-07 | Pfizer Inc. | Prostate-associated antigens and vaccine-based immunotherapy regimens |
WO2013173702A2 (en) | 2012-05-18 | 2013-11-21 | The Trustees Of The University Of Pennsylvania | Subfamily e simian adenoviruses a1302, a1320, a1331 and a1337 and uses thereof |
WO2014005643A1 (en) | 2012-07-05 | 2014-01-09 | Okairos Ag | Novel prime-boosting regimens involving immunogenic polypeptides encoded by polynucleotides |
WO2014009433A1 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterium resuscitation promoting factor for use as adjuvant |
WO2014009438A2 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterial antigen vaccine |
EP2774985A1 (en) * | 2008-10-31 | 2014-09-10 | The Trustees of The University of Pennsylvania | Simian adenovirus SAdV-43 and uses thereof |
WO2014139587A1 (en) | 2013-03-15 | 2014-09-18 | Okairòs Ag | Improved poxviral vaccines |
US8932607B2 (en) | 2012-03-12 | 2015-01-13 | Crucell Holland B.V. | Batches of recombinant adenovirus with altered terminal ends |
WO2015104380A1 (en) | 2014-01-09 | 2015-07-16 | Transgene Sa | Fusion of heterooligomeric mycobacterial antigens |
US20150259388A1 (en) * | 2012-10-05 | 2015-09-17 | Isis Innovation Limited | Staphylococcus aureus antigens |
CN105189755A (en) * | 2013-01-15 | 2015-12-23 | 加利福尼亚大学董事会 | Adenoviruses and their use |
WO2016049287A1 (en) | 2014-09-26 | 2016-03-31 | Beth Israel Deaconess Medical Center, Inc. | Methods and compositions for inducing protective immunity against human immunodeficiency virus infection |
AU2014203073B2 (en) * | 2007-11-28 | 2016-07-07 | The Trustees Of The University Of Pennsylvania | Simian E adenovirus SAdV-30 |
US9402888B2 (en) | 2013-03-14 | 2016-08-02 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating cancer |
WO2016131945A1 (en) | 2015-02-20 | 2016-08-25 | Transgene Sa | Combination product with autophagy modulator |
WO2016166088A1 (en) | 2015-04-14 | 2016-10-20 | Janssen Vaccines & Prevention B.V. | Recombinant adenovirus expressing two transgenes with a bidirectional promoter |
WO2016184822A1 (en) | 2015-05-15 | 2016-11-24 | Curevac Ag | Prime-boost regimens involving administration of at least one mrna construct |
WO2016198599A1 (en) * | 2015-06-12 | 2016-12-15 | Glaxosmithkline Biologicals S.A. | Adenovirus polynucleotides and polypeptides |
WO2017017049A1 (en) * | 2015-07-27 | 2017-02-02 | Glaxosmithkline Biologicals S.A. | Novel adenovirus |
WO2017025782A1 (en) | 2014-09-17 | 2017-02-16 | Glaxosmithkline Biologicals Sa | Improved poxviral vaccines |
WO2017125844A1 (en) | 2016-01-19 | 2017-07-27 | Pfizer Inc. | Cancer vaccines |
GB2549809A (en) * | 2016-06-23 | 2017-11-01 | Univ Oxford Innovation Ltd | Vector |
WO2017191147A1 (en) | 2016-05-04 | 2017-11-09 | Transgene Sa | Combination therapy with cpg tlr9 ligand |
WO2017220499A1 (en) | 2016-06-20 | 2017-12-28 | Janssen Vaccines & Prevention B.V. | Potent and balanced bidirectional promoter |
WO2018011198A1 (en) | 2016-07-15 | 2018-01-18 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against a marburg virus infection |
WO2018011768A1 (en) | 2016-07-15 | 2018-01-18 | Janssen Vaccines And Prevention B.V. | Methods and compositions for inducing protective immunity against a marburg virus infection |
WO2018037045A1 (en) | 2016-08-23 | 2018-03-01 | Glaxosmithkline Biologicals Sa | Fusion peptides with antigens linked to short fragments of invariant chain (cd74) |
WO2018060288A1 (en) | 2016-09-29 | 2018-04-05 | Glaxosmithkline Biologicals S.A. | Compositions and methods of treatment of persistent hpv infection |
WO2018065931A1 (en) | 2016-10-05 | 2018-04-12 | Glaxosmithkline Biologicals Sa | Vaccine |
WO2018069316A2 (en) | 2016-10-10 | 2018-04-19 | Transgene Sa | Immunotherapeutic product and mdsc modulator combination therapy |
WO2018104919A1 (en) | 2016-12-09 | 2018-06-14 | Glaxosmithkline Biologicals Sa | Chimpanzee adenovirus constructs with lyssavirus antigens |
WO2018104911A1 (en) | 2016-12-09 | 2018-06-14 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
BE1024824B1 (en) * | 2015-06-12 | 2018-07-13 | Glaxosmithkline Biologicals Sa | POLYNUCLEOTIDES AND POLYPEPTIDES OF ADENOVIRUS |
WO2018138667A1 (en) | 2017-01-25 | 2018-08-02 | Glaxosmithkline Biologicals Sa | Novel formulation |
WO2018146205A1 (en) | 2017-02-09 | 2018-08-16 | Janssen Vaccines & Prevention B.V. | Potent and short promoter for expression of heterologous genes |
WO2018185732A1 (en) | 2017-04-06 | 2018-10-11 | Janssen Vaccines & Prevention B.V. | Mva-bn and ad26.zebov or ad26.filo prime-boost regimen |
WO2018210871A1 (en) | 2017-05-17 | 2018-11-22 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against rsv infection |
WO2018229711A1 (en) | 2017-06-15 | 2018-12-20 | Janssen Vaccines & Prevention B.V. | Poxvirus vectors encoding hiv antigens, and methods of use thereof |
WO2019008111A1 (en) | 2017-07-05 | 2019-01-10 | Nouscom Ag | Non human great apes adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
WO2019012091A1 (en) | 2017-07-12 | 2019-01-17 | Nouscom Ag | Neoantigen vaccine composition for treatment of cancer |
WO2019012371A1 (en) | 2017-07-11 | 2019-01-17 | Pfizer Inc. | Immunogenic compositions comprising cea muc1 and tert |
WO2019016756A1 (en) | 2017-07-21 | 2019-01-24 | Glaxosmithkline Biologicals Sa | Chikungunya virus antigen constructs |
WO2019023566A1 (en) | 2017-07-28 | 2019-01-31 | Janssen Vaccines & Prevention B.V. | Methods and compositions for heterologous reprna immunizations |
US10245308B2 (en) | 2011-07-01 | 2019-04-02 | Biosceptre (Aust) Pty Ltd | Combination therapy utilizing P2X7 peptides |
US10259855B2 (en) | 2014-10-02 | 2019-04-16 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating cancer |
WO2019086466A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
WO2019086450A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
WO2019086456A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
WO2019086615A1 (en) | 2017-11-03 | 2019-05-09 | Nouscom Ag | Vaccine t cell enhancer |
WO2019086461A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus vectors and uses thereof |
US10286060B2 (en) | 2007-10-05 | 2019-05-14 | Oxford University Innovation Limited | Compositions and methods |
WO2019099970A1 (en) | 2017-11-20 | 2019-05-23 | Janssen Pharmaceuticals Inc. | Method of providing safe administration of adenoviral vectors encoding a zika virus antigen |
WO2019115816A1 (en) | 2017-12-15 | 2019-06-20 | Glaxosmithkline Biologicals Sa | Hepatitis b immunisation regimen and compositions |
WO2019115817A2 (en) | 2017-12-15 | 2019-06-20 | Glaxosmithkline Biologicals Sa | Hepatitis b immunisation regimen and compositions |
WO2019123169A1 (en) | 2017-12-20 | 2019-06-27 | Glaxosmithkline Biologicals Sa | Epstein-barr virus antigen constructs |
WO2019123250A1 (en) | 2017-12-19 | 2019-06-27 | Janssen Sciences Ireland Unlimited Company | Methods and compositions for inducing an immune response against hepatitis b virus (hbv) |
EP3581201A1 (en) | 2018-06-15 | 2019-12-18 | GlaxoSmithKline Biologicals S.A. | Escherichia coli o157:h7 proteins and uses thereof |
WO2019239311A1 (en) | 2018-06-12 | 2019-12-19 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
EP3584252A1 (en) | 2015-12-15 | 2019-12-25 | Janssen Vaccines & Prevention B.V. | Human immunodeficiency virus antigens, vectors, compositions, and methods of use thereof |
EP3587581A1 (en) | 2018-06-26 | 2020-01-01 | GlaxoSmithKline Biologicals S.A. | Formulations for simian adenoviral vectors having enhanced storage stability |
WO2020016394A1 (en) | 2018-07-20 | 2020-01-23 | Janssen Vaccines & Prevention B.V. | Recombinant adenoviral vector expressing zika antigen with improved productivity |
WO2020025642A1 (en) | 2018-08-03 | 2020-02-06 | Ludwig Institute For Cancer Research Ltd. | Viral vectors encoding cancer/testis antigens for use in a method of prevention or treatment of cancer |
US10561722B2 (en) | 2014-09-03 | 2020-02-18 | Bavarian Nordic A/S | Methods and compositions for enhancing immune responses |
US10561721B2 (en) | 2014-09-03 | 2020-02-18 | Bavarian Nordic A/S | Methods and compositions for inducing protective immunity against filovirus infection |
WO2020079234A1 (en) | 2018-10-19 | 2020-04-23 | Nouscom Ag | Teleost invariant chain cancer vaccine |
WO2020099614A1 (en) | 2018-11-15 | 2020-05-22 | Nouscom Ag | Selection of cancer mutations for generation of a personalized cancer vaccine |
WO2020128012A1 (en) | 2018-12-21 | 2020-06-25 | Glaxosmithkline Biologicals Sa | Methods of inducing an immune response |
WO2020144615A1 (en) | 2019-01-10 | 2020-07-16 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
US10729757B2 (en) | 2016-04-05 | 2020-08-04 | Janssen Vaccines & Prevention B.V. | Vaccine against RSV |
WO2020178359A1 (en) | 2019-03-05 | 2020-09-10 | Glaxosmithkline Biologicals Sa | Hepatitis b immunisation regimen and compositions |
US10899800B2 (en) | 2013-04-25 | 2021-01-26 | Janssen Vaccines & Prevention B.V. | Stabilized soluble pre-fusion RSV F polypeptides |
US10953087B2 (en) | 2016-05-30 | 2021-03-23 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion RSV F proteins |
WO2021064688A1 (en) | 2019-10-03 | 2021-04-08 | Janssen Vaccines & Prevention B.V. | Adenovirus vectors and uses thereof |
WO2021099906A1 (en) | 2019-11-18 | 2021-05-27 | Janssen Biotech, Inc. | Vaccines based on mutant calr and jak2 and their uses |
US11034731B2 (en) | 2015-07-07 | 2021-06-15 | Janssen Vaccines & Prevention B.V. | Stabilized soluble pre-fusion RSV F polypeptides |
US11045535B2 (en) | 2010-11-12 | 2021-06-29 | The Trustees Of The University Of Pennsylvania | Consensus prostate antigens, nucleic acid molecule encoding the same and vaccine and uses comprising the same |
EP3842068A1 (en) | 2012-07-05 | 2021-06-30 | GlaxoSmithKline Biologicals S.A. | Novel prime-boosting regimens involving immunogenic polypeptides encoded by polynucleotides |
US20210230633A1 (en) * | 2005-11-30 | 2021-07-29 | Copenhagen University | Nucleotide vaccine |
WO2021156267A1 (en) | 2020-02-04 | 2021-08-12 | Curevac Ag | Coronavirus vaccine |
WO2021161244A1 (en) | 2020-02-14 | 2021-08-19 | Janssen Biotech, Inc. | Neoantigens expressed in ovarian cancer and their uses |
WO2021161245A1 (en) | 2020-02-14 | 2021-08-19 | Janssen Biotech, Inc. | Neoantigens expressed in multiple myeloma and their uses |
EP3888676A1 (en) | 2014-06-13 | 2021-10-06 | GlaxoSmithKline Biologicals S.A. | Immunogenic combinations |
WO2021203104A1 (en) * | 2020-04-03 | 2021-10-07 | Gritstone Bio, Inc. | Infectious disease antigens and vaccines |
WO2021209897A1 (en) | 2020-04-13 | 2021-10-21 | Janssen Biotech, Inc. | Psma and steap1 vaccines and their uses |
US11155583B2 (en) | 2016-04-05 | 2021-10-26 | Janssen Vaccines & Prevention B.V. | Stabilized soluble pre-fusion RSV F proteins |
US11173196B2 (en) | 2013-11-01 | 2021-11-16 | Pfizer Inc. | Vectors for expression of prostate-associated antigens |
WO2021228842A1 (en) | 2020-05-11 | 2021-11-18 | Janssen Pharmaceuticals, Inc. | Stabilized coronavirus spike protein fusion proteins |
EA039001B1 (en) * | 2015-08-19 | 2021-11-19 | Глаксосмитклайн Байолоджикалс С.А. | Adenovirus polynucleotides and polypeptides |
WO2021239880A1 (en) | 2020-05-29 | 2021-12-02 | Curevac Ag | Nucleic acid based combination vaccines |
US11208468B2 (en) | 2016-02-18 | 2021-12-28 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating melanoma |
WO2022002894A1 (en) | 2020-06-29 | 2022-01-06 | Janssen Vaccines & Prevention B.V. | Vaccine combination against respiratory syncytial virus infection |
WO2022009052A2 (en) | 2020-07-06 | 2022-01-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
WO2022008438A1 (en) | 2020-07-06 | 2022-01-13 | Janssen Pharmaceuticals, Inc. | Stabilized corona virus spike protein fusion proteins |
WO2022008613A1 (en) | 2020-07-08 | 2022-01-13 | Janssen Sciences Ireland Unlimited Company | Rna replicon vaccines against hbv |
WO2022009051A1 (en) | 2020-07-06 | 2022-01-13 | Janssen Biotech, Inc. | A method for determining responsiveness to prostate cancer treatment |
WO2022009049A1 (en) | 2020-07-06 | 2022-01-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
WO2022013221A1 (en) | 2020-07-13 | 2022-01-20 | Transgene | Treatment of immune depression |
US11229692B2 (en) | 2017-05-17 | 2022-01-25 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against RSV infection |
US11229694B2 (en) | 2015-07-07 | 2022-01-25 | Janssen Vaccines & Prevention B.V. | Vaccine against RSV |
US11229695B2 (en) | 2017-09-15 | 2022-01-25 | Janssen Vaccines & Prevention B.V. | Method for the safe induction of immunity against RSV |
WO2022023559A1 (en) | 2020-07-31 | 2022-02-03 | Curevac Ag | Nucleic acid encoded antibody mixtures |
WO2022043551A2 (en) | 2020-08-31 | 2022-03-03 | Curevac Ag | Multivalent nucleic acid based coronavirus vaccines |
WO2022140759A2 (en) | 2020-12-23 | 2022-06-30 | Janssen Biotech, Inc. | Neoantigen peptide mimics |
US11384122B2 (en) | 2020-01-31 | 2022-07-12 | Janssen Pharmaceuticals, Inc. | Compositions and methods for preventing and treating coronavirus infection—SARS-CoV-2 vaccines |
IT202100003470A1 (en) | 2021-02-16 | 2022-08-16 | Fond Toscana Life Sciences | VACCINES AGAINST SARS-COV-2 |
WO2022175479A1 (en) | 2021-02-19 | 2022-08-25 | Janssen Vaccines & Prevention B.V. | Vaccine combinations against respiratory syncytial virus strain a and b infections |
WO2022175477A1 (en) | 2021-02-19 | 2022-08-25 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion rsv fb antigens |
WO2022207839A2 (en) | 2021-04-01 | 2022-10-06 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion piv3 f proteins |
US11473105B2 (en) | 2016-05-12 | 2022-10-18 | Janssen Vaccines & Prevention B.V. | Potent and balanced bidirectional promoter |
WO2022218997A1 (en) | 2021-04-12 | 2022-10-20 | Centre National De La Recherche Scientifique (Cnrs) | Novel universal vaccine presenting system |
US11504421B2 (en) | 2017-05-08 | 2022-11-22 | Gritstone Bio, Inc. | Alphavirus neoantigen vectors |
WO2022268722A1 (en) | 2021-06-21 | 2022-12-29 | Nouscom Ag | Vaccine composition comprising encoded adjuvant |
WO2023020939A1 (en) | 2021-08-17 | 2023-02-23 | Janssen Pharmaceuticals, Inc. | Sars-cov-2 vaccines |
US11591619B2 (en) | 2019-05-30 | 2023-02-28 | Gritstone Bio, Inc. | Modified adenoviruses |
WO2023026182A1 (en) | 2021-08-24 | 2023-03-02 | Janssen Pharmaceuticals, Inc. | Sars-cov-2 vaccines |
WO2023047349A1 (en) | 2021-09-24 | 2023-03-30 | Janssen Pharmaceuticals, Inc. | Stabilized coronavirus spike protein fusion proteins |
WO2023047348A1 (en) | 2021-09-24 | 2023-03-30 | Janssen Pharmaceuticals, Inc. | Stabilized corona virus spike protein fusion proteins |
EP4190906A1 (en) | 2016-03-31 | 2023-06-07 | The European Molecular Biology Laboratory | Engineered polypeptides derived from adenoviral fibre protein and vlps containing the polypeptides |
WO2023110618A1 (en) | 2021-12-16 | 2023-06-22 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion hmpv fusion proteins |
WO2023111725A1 (en) | 2021-12-14 | 2023-06-22 | Janssen Pharmaceuticals, Inc. | Sars-cov-2 vaccines |
US11771747B2 (en) | 2020-08-06 | 2023-10-03 | Gritstone Bio, Inc. | Multiepitope vaccine cassettes |
WO2023196634A2 (en) | 2022-04-08 | 2023-10-12 | Flagship Pioneering Innovations Vii, Llc | Vaccines and related methods |
WO2023198815A1 (en) | 2022-04-14 | 2023-10-19 | Janssen Vaccines & Prevention B.V. | Sequential administration of adenoviruses |
WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
WO2024030856A2 (en) | 2022-08-01 | 2024-02-08 | Flagship Pioneering Innovations Vii, Llc | Immunomodulatory proteins and related methods |
WO2024061757A1 (en) | 2022-09-23 | 2024-03-28 | Janssen Vaccines & Prevention B.V. | Pre-fusion human piv1 f proteins |
WO2024061759A1 (en) | 2022-09-23 | 2024-03-28 | Janssen Vaccines & Prevention B.V. | Stabilized coronavirus s proteins |
WO2024074584A1 (en) | 2022-10-06 | 2024-04-11 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion piv3 f proteins |
WO2024151583A2 (en) | 2023-01-09 | 2024-07-18 | Flagship Pioneering Innovations Vii, Llc | Vaccines and related methods |
WO2024167885A1 (en) | 2023-02-06 | 2024-08-15 | Flagship Pioneering Innovations Vii, Llc | Immunomodulatory compositions and related methods |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT1711518E (en) * | 2004-01-23 | 2010-02-26 | Isti Di Ric Di Bio Moleco P An | Chimpanzee adenovirus vaccine carriers |
US9758794B2 (en) | 2008-04-22 | 2017-09-12 | Rutgers, The State University Of New Jersey | HCV E2 construct compositions and methods |
CA2722423A1 (en) * | 2008-04-22 | 2009-10-29 | Rutgers, The State University | Hcv e2 construct compositions and methods |
HUE039908T2 (en) * | 2009-02-02 | 2019-02-28 | Glaxosmithkline Biologicals Sa | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
JP2012044910A (en) * | 2010-08-25 | 2012-03-08 | Chubu Food & Environmental Safety Center Co Ltd | Vector for expressing gene of feline calicivirus and method for producing the virus using the vector |
US10183069B2 (en) * | 2011-03-21 | 2019-01-22 | Altimmune Inc. | Rapid and prolonged immunologic-therapeutic |
WO2012129295A1 (en) * | 2011-03-21 | 2012-09-27 | Vaxin Inc. | Rapid and prolonged immunologic-therapeutic |
GB201108879D0 (en) * | 2011-05-25 | 2011-07-06 | Isis Innovation | Vector |
US9629906B2 (en) * | 2011-10-05 | 2017-04-25 | Genvec, Inc. | Affenadenovirus (gorilla) or adenoviral vectors and methods of use |
JP6576326B2 (en) | 2013-03-14 | 2019-09-18 | ソーク インスティテュート フォー バイオロジカル スタディーズ | Oncolytic adenovirus composition |
GB201310031D0 (en) * | 2013-06-05 | 2013-07-17 | Pirbright Inst The | Cell |
US9592327B2 (en) | 2013-09-06 | 2017-03-14 | Cardiac Pacemakers, Inc. | Systems and methods for heart failure management |
CA2974237C (en) * | 2015-01-09 | 2021-07-20 | Etubics Corporation | Methods and compositions for combination immunotherapy |
GB201501523D0 (en) * | 2015-01-30 | 2015-03-18 | Univ Plymouth | Differential immune response modulation |
US11149087B2 (en) | 2015-04-20 | 2021-10-19 | Etubics Corporation | Methods and compositions for combination immunotherapy |
CA2985029A1 (en) * | 2015-05-04 | 2016-11-10 | Vcn Biosciences Sl | Oncolytic adenoviruses with mutations in immunodominant adenovirus epitopes and their use in cancer treatment |
GB201513010D0 (en) * | 2015-07-23 | 2015-09-09 | Glaxosmithkline Biolog Sa | Novel formulation |
CA3013637A1 (en) | 2016-02-23 | 2017-08-31 | Salk Institute For Biological Studies | High throughput assay for measuring adenovirus replication kinetics |
AU2017223589B2 (en) | 2016-02-23 | 2023-08-03 | Salk Institute For Biological Studies | Exogenous gene expression in therapeutic adenovirus for minimal impact on viral kinetics |
CN107753941A (en) * | 2016-08-19 | 2018-03-06 | 中国科学院上海巴斯德研究所 | Research of Ebola vaccine based on chimpanzee adenoviral vector |
AU2017363308B2 (en) * | 2016-11-23 | 2024-08-08 | Gritstone Bio, Inc. | Viral delivery of neoantigens |
WO2018111767A1 (en) | 2016-12-12 | 2018-06-21 | Salk Institute For Biological Studies | Tumor-targeting synthetic adenoviruses and uses thereof |
KR102688005B1 (en) * | 2017-10-25 | 2024-07-25 | 노우스콤 아게 | eukaryotic cell line |
KR20200118029A (en) | 2018-01-04 | 2020-10-14 | 아이코닉 테라퓨틱스, 인코포레이티드 | Anti-tissue factor antibodies, antibody-drug conjugates, and related methods |
JP7554119B2 (en) * | 2018-05-23 | 2024-09-19 | グリットストーン バイオ インコーポレイテッド | Shared antigens |
CN110616198B (en) * | 2018-06-19 | 2021-02-19 | 清华大学 | Novel coronavirus vaccine based on chimpanzee adenovirus type 68 and MERS-CoV full-length membrane protein |
CN112410375B (en) * | 2019-08-22 | 2024-06-14 | 苏州相奕生物技术有限公司 | Adenovirus vector AdC68XY, virus packaged by adenovirus vector AdC68XY and application of adenovirus vector AdC68XY |
CN117843811A (en) * | 2019-09-30 | 2024-04-09 | 吉利德科学公司 | HBV vaccine and method of treating HBV |
WO2021119545A1 (en) * | 2019-12-11 | 2021-06-17 | Gritstone Bio, Inc. | Durable vaccination |
CN113088530A (en) * | 2020-01-08 | 2021-07-09 | 怡道生物科技(苏州)有限公司 | Expression vector based on chimpanzee ChAd63 adenovirus and construction method thereof |
CN113088538A (en) * | 2020-01-08 | 2021-07-09 | 怡道生物科技(苏州)有限公司 | Expression vector based on chimpanzee ChAd3 adenovirus and construction method thereof |
CN111394334B (en) * | 2020-01-10 | 2022-02-15 | 中山大学 | Anti-tumor polypeptide for inhibiting EZH2 activity and application thereof |
WO2021000969A2 (en) * | 2020-02-23 | 2021-01-07 | 广州恩宝生物医药科技有限公司 | Nucleic acid sequence expressing sars-cov-2 virus antigen peptide and use thereof |
EP4177347A1 (en) * | 2020-07-06 | 2023-05-10 | Jiaxing Anyu Biotechnology Co., Ltd | Novel chimpanzee adenovirus vector, construction method therefor, and application thereof |
CN112220921B (en) * | 2020-08-25 | 2022-08-16 | 北京交通大学 | Combined vaccine for respiratory syncytial virus infection |
CN112226450B (en) * | 2020-08-25 | 2022-10-14 | 北京交通大学 | Replication-defective adenovirus vector vaccine for co-expressing respiratory syncytial virus fusion pre-protein and adhesion glycoprotein |
GB202016604D0 (en) | 2020-10-20 | 2020-12-02 | Univ Of Oxford | Compositions and methods for inducing an immune response |
CN112138150A (en) * | 2020-11-26 | 2020-12-29 | 怡道生物科技(苏州)有限公司 | Therapeutic HPV vaccine based on chimpanzee adenovirus vector, preparation method and application thereof |
US20240033334A1 (en) * | 2020-12-04 | 2024-02-01 | Gritstone Bio, Inc. | Compositions and methods of use thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL116816A (en) | 1995-01-20 | 2003-05-29 | Rhone Poulenc Rorer Sa | Cell for the production of a defective recombinant adenovirus or an adeno-associated virus and the various uses thereof |
US6127525A (en) * | 1995-02-21 | 2000-10-03 | Cornell Research Foundation, Inc. | Chimeric adenoviral coat protein and methods of using same |
US6019978A (en) | 1995-06-05 | 2000-02-01 | The Wistar Institute Of Anatomy And Biology | Replication-defective adenovirus human type 5 recombinant as a vaccine carrier |
DK0833934T4 (en) | 1995-06-15 | 2012-11-19 | Crucell Holland Bv | Packaging systems for human recombinant adenovirus for use in gene therapy |
AU4255397A (en) | 1996-09-06 | 1998-03-26 | Trustees Of The University Of Pennsylvania, The | Chimpanzee adenovirus vectors |
US5922315A (en) | 1997-01-24 | 1999-07-13 | Genetic Therapy, Inc. | Adenoviruses having altered hexon proteins |
FR2761689B1 (en) * | 1997-04-02 | 1999-06-25 | Transgene Sa | MODIFIED ADENOVIRAL FIBER AND TARGET ADENOVIRUS |
US5849561A (en) | 1997-05-22 | 1998-12-15 | Cornell Research Foundation, Inc. | Method for the production of non-group C adenoviral vectors |
US20040136963A1 (en) * | 2001-06-22 | 2004-07-15 | The Trustees Of The University Of Pennsylvania | Simian adenovirus vectors and methods of use |
AU2002322285A1 (en) | 2001-06-22 | 2003-01-08 | The Trustees Of The University Of Pennsylvania | Method for rapid screening of bacterial transformants and novel simian adenovirus proteins |
PT1409012E (en) | 2001-06-22 | 2009-05-11 | Wistar Inst | Methods of inducing a cytotoxic immune response and recombinant simian adenovirus compositions useful therein |
NZ532383A (en) * | 2001-11-21 | 2007-03-30 | Univ Pennsylvania | Pan-7 simian adenovirus nucleic acid and amino acid sequences, vectors containing same, and methods of use |
US20040002060A1 (en) * | 2002-01-24 | 2004-01-01 | Novartis Ag | Fiber shaft modifications for efficient targeting |
US7491508B2 (en) | 2003-06-20 | 2009-02-17 | The Trustees Of The University Of Pennsylvania | Methods of generating chimeric adenoviruses and uses for such chimeric adenoviruses |
PT1711518E (en) * | 2004-01-23 | 2010-02-26 | Isti Di Ric Di Bio Moleco P An | Chimpanzee adenovirus vaccine carriers |
-
2005
- 2005-01-18 PT PT05701091T patent/PT1711518E/en unknown
- 2005-01-18 CN CN2012100567959A patent/CN102719478A/en active Pending
- 2005-01-18 AT AT05701091T patent/ATE449105T1/en active
- 2005-01-18 EP EP05701091A patent/EP1711518B1/en active Active
- 2005-01-18 SI SI200532153A patent/SI2163260T1/en unknown
- 2005-01-18 ES ES05701091T patent/ES2337374T3/en active Active
- 2005-01-18 EP EP17156766.2A patent/EP3269390B1/en active Active
- 2005-01-18 CA CA2553541A patent/CA2553541C/en active Active
- 2005-01-18 CN CN201710767616.5A patent/CN107723298A/en active Pending
- 2005-01-18 PL PL05701091T patent/PL1711518T3/en unknown
- 2005-01-18 AU AU2005206292A patent/AU2005206292B2/en active Active
- 2005-01-18 WO PCT/EP2005/000558 patent/WO2005071093A2/en active Application Filing
- 2005-01-18 EP EP09176105.6A patent/EP2163260B1/en active Active
- 2005-01-18 CA CA2880061A patent/CA2880061C/en active Active
- 2005-01-18 CN CN2005800030434A patent/CN101014613B/en active Active
- 2005-01-18 ES ES09176105.6T patent/ES2627288T3/en active Active
- 2005-01-18 DE DE602005017743T patent/DE602005017743D1/en active Active
- 2005-01-18 ES ES17156766T patent/ES2871907T3/en active Active
- 2005-01-18 US US10/587,389 patent/US8216834B2/en active Active
- 2005-01-18 PT PT91761056T patent/PT2163260T/en unknown
- 2005-01-18 DK DK05701091.0T patent/DK1711518T3/en active
- 2005-01-18 CA CA3028774A patent/CA3028774A1/en not_active Abandoned
- 2005-01-18 HU HUE09176105A patent/HUE033576T2/en unknown
- 2005-01-18 CA CA2993042A patent/CA2993042A1/en not_active Abandoned
- 2005-01-18 LT LTEP09176105.6T patent/LT2163260T/en unknown
- 2005-01-18 PL PL09176105T patent/PL2163260T3/en unknown
- 2005-01-18 CA CA2880060A patent/CA2880060C/en active Active
- 2005-01-18 SI SI200530917T patent/SI1711518T1/en unknown
- 2005-01-18 DK DK09176105.6T patent/DK2163260T3/en active
- 2005-01-18 JP JP2006550042A patent/JP4814800B2/en active Active
-
2010
- 2010-02-18 CY CY20101100163T patent/CY1109841T1/en unknown
- 2010-12-15 JP JP2010279756A patent/JP5753377B2/en active Active
-
2011
- 2011-11-09 AU AU2011247884A patent/AU2011247884B2/en active Active
- 2011-11-30 JP JP2011261349A patent/JP5427874B2/en active Active
-
2012
- 2012-06-21 US US13/529,518 patent/US8673319B2/en active Active
-
2014
- 2014-03-05 JP JP2014042853A patent/JP2014158467A/en active Pending
-
2017
- 2017-06-06 CY CY20171100588T patent/CY1119285T1/en unknown
Non-Patent Citations (2)
Title |
---|
BRODY ET AL., ANN N YACAD SCI., vol. 716, 1994, pages 90 - 101 |
WIGAND, R ET AL., INTERVIROLOGY, vol. 30, 1989, pages 1 - 9 |
Cited By (285)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2570423A1 (en) | 2005-06-17 | 2013-03-20 | Instituto di Ricerche di Biologia Molecolare p Angeletti S.P.A. | Hepatitis C virus nucleic acid vaccine |
US9056090B2 (en) | 2005-06-17 | 2015-06-16 | Msd Italia Srl | Hepatitis C virus nucleic acid vaccine |
US20210230633A1 (en) * | 2005-11-30 | 2021-07-29 | Copenhagen University | Nucleotide vaccine |
WO2007071997A3 (en) * | 2005-12-21 | 2007-09-07 | Glaxo Group Ltd | Method of eliciting immune response |
WO2007071997A2 (en) * | 2005-12-21 | 2007-06-28 | Glaxo Group Limited | Method of eliciting immune response |
WO2008122811A2 (en) * | 2007-04-10 | 2008-10-16 | Isis Innovation Ltd | Adenoviral vectors encoding a pathogen or tumour antigen |
WO2008122811A3 (en) * | 2007-04-10 | 2009-01-22 | Isis Innovation | Adenoviral vectors encoding a pathogen or tumour antigen |
WO2008122769A2 (en) * | 2007-04-10 | 2008-10-16 | Isis Innovation Limited | Adenoviral vector encoding malaria antigen |
AU2008235363B2 (en) * | 2007-04-10 | 2013-05-16 | Isis Innovation Limited | Adenoviral vector encoding malaria antigen |
EP2486939A1 (en) | 2007-04-10 | 2012-08-15 | Isis Innovation Limited | Adenoviral vector encoding malaria antigen |
CN101848729A (en) * | 2007-04-10 | 2010-09-29 | Isis创新有限公司 | Adenoviral vector encoding malaria antigen |
US9017696B2 (en) | 2007-04-10 | 2015-04-28 | Isis Innovation Limited | Adenovirus vectors |
WO2008122769A3 (en) * | 2007-04-10 | 2009-01-22 | Isis Innovation | Adenoviral vector encoding malaria antigen |
US10124048B2 (en) | 2007-04-10 | 2018-11-13 | Oxford University Innovation Limited | Adenovirus vectors |
US9895431B1 (en) | 2007-04-10 | 2018-02-20 | Glaxosmithkline Biologicals Sa | Simian adenoviral vectors encoding malaria antigen |
JP2010523137A (en) * | 2007-04-10 | 2010-07-15 | アイシス イノヴェイション リミテッド | Adenoviral vector encoding malaria antigen |
EP3202411A1 (en) | 2007-10-05 | 2017-08-09 | Oxford University Innovation Limited | Compositions and methods |
US10286060B2 (en) | 2007-10-05 | 2019-05-14 | Oxford University Innovation Limited | Compositions and methods |
EP2044947A1 (en) | 2007-10-05 | 2009-04-08 | Isis Innovation Limited | Compositions and methods |
WO2009105084A3 (en) * | 2007-11-28 | 2009-12-30 | The Trustees Of The University Of Pennsylvania | Simian subfamily c adenoviruses sadv-40, -31, and-34 and uses thereof |
US9359618B2 (en) | 2007-11-28 | 2016-06-07 | The Trustees Of The University Of Pennsylvania | Simian subfamily E adenoviruses SAdV-39, -25.2, -26, -30, -37, and -38 and uses thereof |
EP2463362A1 (en) | 2007-11-28 | 2012-06-13 | The Trustees of The University of Pennsylvania | Simian subfamily c adenovirus SAdv-31 and uses thereof |
US8685387B2 (en) | 2007-11-28 | 2014-04-01 | The Trustees Of The University Of Pennsylvania | Simian E adenoviruses SAdV-39, -25.2, -26, -30, -37, and -38 |
AU2008331906B2 (en) * | 2007-11-28 | 2014-03-06 | The Trustees Of The University Of Pennsylvania | Simian E adenovirus SAdV-39 |
KR20150108945A (en) * | 2007-11-28 | 2015-09-30 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | Simian e adenoviruses sadv-39, -25.2, -26, -30, -37, and -38 |
WO2009105084A2 (en) * | 2007-11-28 | 2009-08-27 | The Trustees Of The University Of Pennsylvania | Simian subfamily c adenoviruses sadv-40, -31, and-34 and uses thereof |
WO2009073104A3 (en) * | 2007-11-28 | 2009-08-20 | Univ Pennsylvania | Simian e adenoviruses sadv-39, -25. 2, -26, -30, -37, and -38 |
EP3128010A1 (en) | 2007-11-28 | 2017-02-08 | The Trustees Of The University Of Pennsylvania | Simian subfamily e adenoviruses sadv-30 and uses thereof |
US8231880B2 (en) | 2007-11-28 | 2012-07-31 | The Trustess Of The University Of Pennsylvania | Simian subfamily C adenoviruses SAdV-40, -31, and -34 and uses thereof |
US8524219B2 (en) | 2007-11-28 | 2013-09-03 | The Trustees Of The University Of Pennsylvania | Simian subfamily B adenoviruses SAdV-28, -27, -29, -32, -33, and -35 and uses thereof |
US9206238B2 (en) | 2007-11-28 | 2015-12-08 | The Trustees Of The University Of Pennsylvania | Simian subfamily B adenoviruses SAdV-28, -27, -29, -32, -33, and -35 and uses thereof |
AU2008350937B2 (en) * | 2007-11-28 | 2014-10-09 | The Trustees Of The University Of Pennsylvania | Simian subfamily C adenovirus SAdV-31 and uses thereof |
KR101662574B1 (en) | 2007-11-28 | 2016-10-05 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | Simian e adenoviruses sadv-39, -25.2, -26, -30, -37, and -38 |
WO2009073104A2 (en) * | 2007-11-28 | 2009-06-11 | The Trustees Of The University Of Pennsylvania | Simian e adenoviruses sadv-39, -25. 2, -26, -30, -37, and -38 |
AU2014203073B2 (en) * | 2007-11-28 | 2016-07-07 | The Trustees Of The University Of Pennsylvania | Simian E adenovirus SAdV-30 |
WO2009071613A2 (en) * | 2007-12-06 | 2009-06-11 | Glaxosmithkline Biologicals S.A. | Vaccine |
WO2009071613A3 (en) * | 2007-12-06 | 2009-08-13 | Glaxosmithkline Biolog Sa | Vaccine |
US9597363B2 (en) | 2008-03-04 | 2017-03-21 | The Trustees Of The University Of Pennsylvania | Simian adenoviruses SAdV-36, -42.1, -42.2, and -44 and uses thereof |
EP2325298A3 (en) * | 2008-03-04 | 2012-08-29 | The Trustees of The University of Pennsylvania | Simian adenoviruses SAdV-36, -42.1, -42.2, AND -44 and uses thereof |
US8470310B2 (en) | 2008-03-04 | 2013-06-25 | The Trustees Of The University Of Pennsylvania | Simian adenoviruses SAdV-36, -42.1, -42.2, and -44 and uses thereof |
EP2774985A1 (en) * | 2008-10-31 | 2014-09-10 | The Trustees of The University of Pennsylvania | Simian adenovirus SAdV-43 and uses thereof |
US11807866B2 (en) | 2008-10-31 | 2023-11-07 | The Trustees Of The University Of Pennsylvania | Simian adenoviruses SAdV-43, -45, -46, -47, -48, -49, and -50, and uses thereof |
US10501757B2 (en) | 2008-10-31 | 2019-12-10 | The Trustees Of The University Of Pennsylvania | Simian adenoviruses SAdV-43, -45, -46, -47, -48, -49, and -50, and uses thereof |
US8940290B2 (en) | 2008-10-31 | 2015-01-27 | The Trustees Of The University Of Pennsylvania | Simian adenoviruses SAdV-43, -45, -46, -47, -48, -49, and -50 and uses thereof |
US9593346B2 (en) | 2008-10-31 | 2017-03-14 | The Trustees Of The University Of Pennsylvania | Simian adenoviruses SAdV-43, -45, -46, -47, -48, -49, and -50, and uses thereof |
WO2010062814A1 (en) | 2008-11-26 | 2010-06-03 | Merck Sharp & Dohme Corp. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2010062815A1 (en) | 2008-11-26 | 2010-06-03 | Merck Sharp & Dohme Corp. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
US9718863B2 (en) | 2009-02-02 | 2017-08-01 | Glaxosmithkline Biologicals Sa | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
US20180057540A1 (en) * | 2009-02-02 | 2018-03-01 | Glaxosmithkline Biologicals Sa | Simian adenovirus nucleic acid-and amino acid-sequences, vectors containing same, and uses thereof |
AU2015238866B2 (en) * | 2009-02-02 | 2017-05-25 | Glaxosmithkline Biologicals Sa | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
WO2010085984A1 (en) * | 2009-02-02 | 2010-08-05 | Okairos Ag | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
WO2010086189A2 (en) | 2009-02-02 | 2010-08-05 | Okairòs Ag, Switzerland | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
KR101761425B1 (en) | 2009-02-02 | 2017-07-26 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | Simian Adenovirus Nucleic Acid- and Amino Acid-Sequences, Vectors Containing Same, and Uses Thereof |
EP3385387A1 (en) * | 2009-02-02 | 2018-10-10 | GlaxoSmithKline Biologicals S.A. | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
WO2010086189A3 (en) * | 2009-02-02 | 2010-09-23 | Okairòs Ag, Switzerland | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
KR101763093B1 (en) | 2009-02-02 | 2017-07-28 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | Simian Adenovirus Nucleic Acid- and Amino Acid-Sequences, Vectors Containing Same, and Uses Thereof |
AU2017204292B2 (en) * | 2009-02-02 | 2019-02-07 | Glaxosmithkline Biologicals Sa | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
US10544192B2 (en) | 2009-02-02 | 2020-01-28 | Glaxosmithkline Biologicals Sa | Chimpanzee clade E adenovirus nucleic acid-and amino acid-sequences, vectors containing same, and uses thereof |
US11214599B2 (en) | 2009-02-02 | 2022-01-04 | Glaxosmithkline Biologicals Sa | Recombinant simian adenoviral vectors encoding a heterologous fiber protein and uses thereof |
WO2010138675A1 (en) | 2009-05-29 | 2010-12-02 | The Trustees Of The University Of Pennsylvania | Simian adenovirus 41 and uses thereof |
US8846031B2 (en) | 2009-05-29 | 2014-09-30 | The Trustees Of The University Of Pennsylvania | Simian adenovirus 41 and uses thereof |
US9617561B2 (en) | 2009-05-29 | 2017-04-11 | The Trustees Of The University Of Pennsylvania | Simian adenovirus 41 and uses thereof |
WO2011057254A3 (en) * | 2009-11-09 | 2011-08-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Simian adenoviral vector-based vaccines |
US9133248B2 (en) | 2009-11-09 | 2015-09-15 | Genvec, Inc. | Methods of propagating monkey adenoviral vectors |
WO2011057248A3 (en) * | 2009-11-09 | 2011-09-15 | Genvec, Inc. | Methods of propagating monkey adenoviral vectors |
CN102770146A (en) * | 2009-11-09 | 2012-11-07 | 金维克有限公司 | Simian adenovirus and methods of use |
EP2853266A1 (en) * | 2009-11-09 | 2015-04-01 | Genvec, Inc. | Methods of propagating monkey adenoviral vectors |
US9586998B2 (en) | 2009-11-09 | 2017-03-07 | Genvec, Inc. | Methods of propagating monkey adenoviral vectors |
WO2011130627A2 (en) | 2010-04-16 | 2011-10-20 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Chimpanzee adenoviral vector-based filovirus vaccines |
EP3466440A1 (en) | 2010-04-16 | 2019-04-10 | The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services | Chimpanzee adenoviral vector-based filovirus vaccines |
US11045535B2 (en) | 2010-11-12 | 2021-06-29 | The Trustees Of The University Of Pennsylvania | Consensus prostate antigens, nucleic acid molecule encoding the same and vaccine and uses comprising the same |
US11980659B2 (en) | 2010-11-12 | 2024-05-14 | The Trustees Of The University Of Pennsylvania | Consensus prostate antigens, nucleic acid molecule encoding the same and vaccine and uses comprising the same |
US10149873B2 (en) | 2010-11-23 | 2018-12-11 | The Trustees Of The University Of Pennsylvania | Subfamily E simian adenoviruses A1321, A1325, A1295, A1309, A1316 and A1322 and uses thereof |
US8834863B2 (en) | 2010-11-23 | 2014-09-16 | The Trustees Of The University Of Pennsylvania | Subfamily E simian adenoviruses A1321, A1325, A1295, A1309, A1316 and A1322 and uses thereof |
US9382551B2 (en) | 2010-11-23 | 2016-07-05 | The Trustees Of The University Of Pennsylvania | Subfamily E simian adenoviruses A1321, A1325, A1295, A1309, A1316 and A1322 and uses thereof |
WO2012071318A2 (en) | 2010-11-23 | 2012-05-31 | The Trustees Of The University Of Pennsylvania | Subfamily e simian adenoviruses a1321, a1325, a1295, a1309, a1316 and a1322 and uses thereof |
WO2012089833A2 (en) | 2010-12-30 | 2012-07-05 | Okairos Ag | Expression Systems |
EP3868397A1 (en) | 2010-12-30 | 2021-08-25 | GlaxoSmithKline Biologicals S.A. | Expression system |
WO2012089231A1 (en) | 2010-12-30 | 2012-07-05 | Okairòs Ag | Paramyxovirus vaccines |
US10245308B2 (en) | 2011-07-01 | 2019-04-02 | Biosceptre (Aust) Pty Ltd | Combination therapy utilizing P2X7 peptides |
US10543262B2 (en) | 2011-07-01 | 2020-01-28 | Biosceptre (Aust) Pty Ltd | Combination therapy utilizing P2X7 peptides |
WO2013007772A1 (en) | 2011-07-12 | 2013-01-17 | Transgene Sa | Hbv polymerase mutants |
WO2013045658A1 (en) | 2011-09-29 | 2013-04-04 | Transgene Sa | Immunotherapy composition and regimen for treating hepatitis c virus infection |
WO2013045668A2 (en) | 2011-09-29 | 2013-04-04 | Transgene Sa | Immunotherapy composition and regimen for treating hepatitis c virus infection |
WO2013074501A1 (en) | 2011-11-14 | 2013-05-23 | Crucell Holland B.V. | Heterologous prime-boost immunization using measles virus-based vaccines |
WO2013135615A1 (en) | 2012-03-12 | 2013-09-19 | Crucell Holland B.V. | Batches of recombinant adenovirus with altered terminal ends |
US8932607B2 (en) | 2012-03-12 | 2015-01-13 | Crucell Holland B.V. | Batches of recombinant adenovirus with altered terminal ends |
WO2013164754A2 (en) | 2012-05-04 | 2013-11-07 | Pfizer Inc. | Prostate-associated antigens and vaccine-based immunotherapy regimens |
EP3563865A2 (en) | 2012-05-04 | 2019-11-06 | Pfizer Inc | Prostate-associated antigens and vaccine-based immunotherapy regimens |
US10113182B2 (en) | 2012-05-18 | 2018-10-30 | The Trustees Of The University Of Pennsylvania | Subfamily E simian adenoviruses A1302, A1320, A1331 and A1337 and uses thereof |
WO2013173702A2 (en) | 2012-05-18 | 2013-11-21 | The Trustees Of The University Of Pennsylvania | Subfamily e simian adenoviruses a1302, a1320, a1331 and a1337 and uses thereof |
US9217159B2 (en) | 2012-05-18 | 2015-12-22 | The Trustees Of The University Of Pennsylvania | Subfamily E simian adenoviruses A1302, A1320, A1331 and A1337 and uses thereof |
WO2014005643A1 (en) | 2012-07-05 | 2014-01-09 | Okairos Ag | Novel prime-boosting regimens involving immunogenic polypeptides encoded by polynucleotides |
EP3842068A1 (en) | 2012-07-05 | 2021-06-30 | GlaxoSmithKline Biologicals S.A. | Novel prime-boosting regimens involving immunogenic polypeptides encoded by polynucleotides |
WO2014009433A1 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterium resuscitation promoting factor for use as adjuvant |
WO2014009438A2 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterial antigen vaccine |
US20150259388A1 (en) * | 2012-10-05 | 2015-09-17 | Isis Innovation Limited | Staphylococcus aureus antigens |
CN105189755A (en) * | 2013-01-15 | 2015-12-23 | 加利福尼亚大学董事会 | Adenoviruses and their use |
US9744224B2 (en) | 2013-03-14 | 2017-08-29 | The Wistar Institute Of Anatomy And Biology | Methods for treating cancer by administration of nucleic acids encoding FAP and cancer antigens |
US9402888B2 (en) | 2013-03-14 | 2016-08-02 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating cancer |
WO2014141176A1 (en) | 2013-03-15 | 2014-09-18 | Okairos Ag | Improved poxviral vaccines |
WO2014139587A1 (en) | 2013-03-15 | 2014-09-18 | Okairòs Ag | Improved poxviral vaccines |
US10899800B2 (en) | 2013-04-25 | 2021-01-26 | Janssen Vaccines & Prevention B.V. | Stabilized soluble pre-fusion RSV F polypeptides |
US11173196B2 (en) | 2013-11-01 | 2021-11-16 | Pfizer Inc. | Vectors for expression of prostate-associated antigens |
WO2015104380A1 (en) | 2014-01-09 | 2015-07-16 | Transgene Sa | Fusion of heterooligomeric mycobacterial antigens |
US11571472B2 (en) | 2014-06-13 | 2023-02-07 | Glaxosmithkline Biologicals Sa | Immunogenic combinations |
EP3888676A1 (en) | 2014-06-13 | 2021-10-06 | GlaxoSmithKline Biologicals S.A. | Immunogenic combinations |
US11173201B2 (en) | 2014-09-03 | 2021-11-16 | Bavarian Nordic A/S | Methods and compositions for inducing protective immunity against filovirus infection |
US11918639B2 (en) | 2014-09-03 | 2024-03-05 | Bavarian Nordic A/S | Methods and compositions for inducing protective immunity against filovirus infection |
US10561721B2 (en) | 2014-09-03 | 2020-02-18 | Bavarian Nordic A/S | Methods and compositions for inducing protective immunity against filovirus infection |
US10561722B2 (en) | 2014-09-03 | 2020-02-18 | Bavarian Nordic A/S | Methods and compositions for enhancing immune responses |
EP3656395A1 (en) | 2014-09-03 | 2020-05-27 | Bavarian Nordic A/S | Methods and compositions for inducing protective immunity against filovirus infection |
WO2017025782A1 (en) | 2014-09-17 | 2017-02-16 | Glaxosmithkline Biologicals Sa | Improved poxviral vaccines |
EP3868398A1 (en) | 2014-09-26 | 2021-08-25 | Beth Israel Deaconess Medical Center, Inc. | Methods and compositions for inducing protective immunity against human immunodeficiency virus infection |
WO2016049287A1 (en) | 2014-09-26 | 2016-03-31 | Beth Israel Deaconess Medical Center, Inc. | Methods and compositions for inducing protective immunity against human immunodeficiency virus infection |
US11248033B2 (en) | 2014-10-02 | 2022-02-15 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating cancer |
US10259855B2 (en) | 2014-10-02 | 2019-04-16 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating cancer |
WO2016131945A1 (en) | 2015-02-20 | 2016-08-25 | Transgene Sa | Combination product with autophagy modulator |
US10570417B2 (en) | 2015-04-14 | 2020-02-25 | Janssen Vaccines & Prevention B.V. | Recombinant adenovirus expressing two transgenes with a bidirectional promoter |
WO2016166088A1 (en) | 2015-04-14 | 2016-10-20 | Janssen Vaccines & Prevention B.V. | Recombinant adenovirus expressing two transgenes with a bidirectional promoter |
WO2016184822A1 (en) | 2015-05-15 | 2016-11-24 | Curevac Ag | Prime-boost regimens involving administration of at least one mrna construct |
AU2016275619B2 (en) * | 2015-06-12 | 2019-09-19 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
US11254710B2 (en) | 2015-06-12 | 2022-02-22 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
EA038402B1 (en) * | 2015-06-12 | 2021-08-23 | Глаксосмитклайн Байолоджикалс Са | Adenovirus polynucleotides and polypeptides |
CN108025058B (en) * | 2015-06-12 | 2022-12-16 | 葛兰素史密丝克莱恩生物有限公司 | Adenovirus polynucleotides and polypeptides |
WO2016198599A1 (en) * | 2015-06-12 | 2016-12-15 | Glaxosmithkline Biologicals S.A. | Adenovirus polynucleotides and polypeptides |
EA038402B9 (en) * | 2015-06-12 | 2021-09-22 | Глаксосмитклайн Байолоджикалс Са | Adenovirus polynucleotides and polypeptides |
WO2016198621A1 (en) * | 2015-06-12 | 2016-12-15 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
BE1024420B1 (en) * | 2015-06-12 | 2018-02-19 | Glaxosmithkline Biologicals Sa | POLYNUCLEOTIDES AND POLYPEPTIDES OF ADENOVIRUS |
CN107921118B (en) * | 2015-06-12 | 2022-11-08 | 葛兰素史密丝克莱恩生物有限公司 | Adenovirus polynucleotides and polypeptides |
BE1024824B1 (en) * | 2015-06-12 | 2018-07-13 | Glaxosmithkline Biologicals Sa | POLYNUCLEOTIDES AND POLYPEPTIDES OF ADENOVIRUS |
US11254711B2 (en) | 2015-06-12 | 2022-02-22 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
CN107921118A (en) * | 2015-06-12 | 2018-04-17 | 葛兰素史密丝克莱恩生物有限公司 | Adenovirus polynucleotides and polypeptides |
CN108025058A (en) * | 2015-06-12 | 2018-05-11 | 葛兰素史密丝克莱恩生物有限公司 | Adenovirus polynucleotides and polypeptides |
IL256121B2 (en) * | 2015-06-12 | 2023-02-01 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
IL256121B (en) * | 2015-06-12 | 2022-10-01 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
US11229694B2 (en) | 2015-07-07 | 2022-01-25 | Janssen Vaccines & Prevention B.V. | Vaccine against RSV |
US11034731B2 (en) | 2015-07-07 | 2021-06-15 | Janssen Vaccines & Prevention B.V. | Stabilized soluble pre-fusion RSV F polypeptides |
US11998597B2 (en) | 2015-07-07 | 2024-06-04 | Janssen Vaccines & Prevention B.V. | Vaccine against RSV |
WO2017017050A1 (en) * | 2015-07-27 | 2017-02-02 | Glaxosmithkline Biologicals S.A. | Novel methods for inducing an immune response |
US11110159B2 (en) | 2015-07-27 | 2021-09-07 | Glaxosmithkline Biologicals Sa | Methods for inducing an immune response |
BE1023916B1 (en) * | 2015-07-27 | 2018-01-22 | Glaxosmithkline Biologicals Sa | NEW ADENOVIRUS |
BE1023915B1 (en) * | 2015-07-27 | 2018-01-31 | Glaxosmithkline Biologicals Sa | NOVEL METHODS FOR INDUCING AN IMMUNE RESPONSE |
WO2017017049A1 (en) * | 2015-07-27 | 2017-02-02 | Glaxosmithkline Biologicals S.A. | Novel adenovirus |
EA039001B1 (en) * | 2015-08-19 | 2021-11-19 | Глаксосмитклайн Байолоджикалс С.А. | Adenovirus polynucleotides and polypeptides |
EP3584252A1 (en) | 2015-12-15 | 2019-12-25 | Janssen Vaccines & Prevention B.V. | Human immunodeficiency virus antigens, vectors, compositions, and methods of use thereof |
EP3964569A1 (en) | 2015-12-15 | 2022-03-09 | Janssen Vaccines & Prevention B.V. | Human immunodeficiency virus antigens, vectors, compositions, and methods of use thereof |
WO2017125844A1 (en) | 2016-01-19 | 2017-07-27 | Pfizer Inc. | Cancer vaccines |
EP3733201A1 (en) | 2016-01-19 | 2020-11-04 | Pfizer Inc | Cancer vaccines |
US11208468B2 (en) | 2016-02-18 | 2021-12-28 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating melanoma |
EP4190906A1 (en) | 2016-03-31 | 2023-06-07 | The European Molecular Biology Laboratory | Engineered polypeptides derived from adenoviral fibre protein and vlps containing the polypeptides |
US10729757B2 (en) | 2016-04-05 | 2020-08-04 | Janssen Vaccines & Prevention B.V. | Vaccine against RSV |
US11338031B2 (en) | 2016-04-05 | 2022-05-24 | Janssen Vaccines & Prevention B.V. | Vaccine against RSV |
US11155583B2 (en) | 2016-04-05 | 2021-10-26 | Janssen Vaccines & Prevention B.V. | Stabilized soluble pre-fusion RSV F proteins |
US11801297B2 (en) | 2016-04-05 | 2023-10-31 | Janssen Vaccines & Prevention B.V. | Vaccine against RSV |
WO2017191147A1 (en) | 2016-05-04 | 2017-11-09 | Transgene Sa | Combination therapy with cpg tlr9 ligand |
US11473105B2 (en) | 2016-05-12 | 2022-10-18 | Janssen Vaccines & Prevention B.V. | Potent and balanced bidirectional promoter |
US10953087B2 (en) | 2016-05-30 | 2021-03-23 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion RSV F proteins |
US11759514B2 (en) | 2016-05-30 | 2023-09-19 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion RSV F proteins |
US11001858B2 (en) | 2016-06-20 | 2021-05-11 | Janssen Vaccines & Prevention B.V. | Potent and balanced bidirectional promoter |
US11781155B2 (en) | 2016-06-20 | 2023-10-10 | Janssen Vaccines & Prevention B.V. | Potent and balanced bidirectional promoter |
WO2017220499A1 (en) | 2016-06-20 | 2017-12-28 | Janssen Vaccines & Prevention B.V. | Potent and balanced bidirectional promoter |
GB2549809A (en) * | 2016-06-23 | 2017-11-01 | Univ Oxford Innovation Ltd | Vector |
US11306325B2 (en) | 2016-06-23 | 2022-04-19 | Oxford University Innovation Limited | Adenoviral vector |
US11970709B2 (en) | 2016-06-23 | 2024-04-30 | Oxford University Innovation Limited | Adenoviral vector |
GB2549809B (en) * | 2016-06-23 | 2019-04-03 | Univ Oxford Innovation Ltd | Vector |
WO2018011768A1 (en) | 2016-07-15 | 2018-01-18 | Janssen Vaccines And Prevention B.V. | Methods and compositions for inducing protective immunity against a marburg virus infection |
WO2018011198A1 (en) | 2016-07-15 | 2018-01-18 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against a marburg virus infection |
US10925956B2 (en) | 2016-07-15 | 2021-02-23 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against a marburg virus infection |
US10925955B2 (en) | 2016-07-15 | 2021-02-23 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against a Marburg virus infection |
WO2018037045A1 (en) | 2016-08-23 | 2018-03-01 | Glaxosmithkline Biologicals Sa | Fusion peptides with antigens linked to short fragments of invariant chain (cd74) |
WO2018060288A1 (en) | 2016-09-29 | 2018-04-05 | Glaxosmithkline Biologicals S.A. | Compositions and methods of treatment of persistent hpv infection |
WO2018065931A1 (en) | 2016-10-05 | 2018-04-12 | Glaxosmithkline Biologicals Sa | Vaccine |
WO2018069316A2 (en) | 2016-10-10 | 2018-04-19 | Transgene Sa | Immunotherapeutic product and mdsc modulator combination therapy |
US11414679B2 (en) | 2016-12-09 | 2022-08-16 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
AU2017371944B2 (en) * | 2016-12-09 | 2020-07-02 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
BE1025029B1 (en) * | 2016-12-09 | 2018-10-10 | Glaxosmithkline Biologicals Sa | POLYNUCLEOTIDES AND POLYPEPTIDES OF ADENOVIRUS |
WO2018104911A1 (en) | 2016-12-09 | 2018-06-14 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
WO2018104919A1 (en) | 2016-12-09 | 2018-06-14 | Glaxosmithkline Biologicals Sa | Chimpanzee adenovirus constructs with lyssavirus antigens |
US11795478B2 (en) | 2016-12-09 | 2023-10-24 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
WO2018138667A1 (en) | 2017-01-25 | 2018-08-02 | Glaxosmithkline Biologicals Sa | Novel formulation |
US11590243B2 (en) | 2017-01-25 | 2023-02-28 | Glaxosmithkline Biologicals Sa | Formulation |
US11034978B2 (en) | 2017-02-09 | 2021-06-15 | Janssen Vaccines & Prevention B.V. | Potent and short promoter for expression of heterologous genes |
WO2018146205A1 (en) | 2017-02-09 | 2018-08-16 | Janssen Vaccines & Prevention B.V. | Potent and short promoter for expression of heterologous genes |
US12054737B2 (en) | 2017-02-09 | 2024-08-06 | Janssen Vaccines & Prevention B.V. | Potent and short promoter for expression of heterologous genes |
US11173204B2 (en) | 2017-04-06 | 2021-11-16 | Janssen Vaccines & Prevention B.V. | MVA-BN and Ad26.ZEBOV or Ad26.filo prime-boost regimen |
WO2018185732A1 (en) | 2017-04-06 | 2018-10-11 | Janssen Vaccines & Prevention B.V. | Mva-bn and ad26.zebov or ad26.filo prime-boost regimen |
US11510973B2 (en) | 2017-05-08 | 2022-11-29 | Gritstone Bio, Inc. | Alphavirus antigen vectors |
US12109257B2 (en) | 2017-05-08 | 2024-10-08 | Gritstone Bio, Inc. | Alphavirus neoantigen vectors |
US11504421B2 (en) | 2017-05-08 | 2022-11-22 | Gritstone Bio, Inc. | Alphavirus neoantigen vectors |
WO2018210871A1 (en) | 2017-05-17 | 2018-11-22 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against rsv infection |
US11229692B2 (en) | 2017-05-17 | 2022-01-25 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against RSV infection |
WO2018229711A1 (en) | 2017-06-15 | 2018-12-20 | Janssen Vaccines & Prevention B.V. | Poxvirus vectors encoding hiv antigens, and methods of use thereof |
WO2019008111A1 (en) | 2017-07-05 | 2019-01-10 | Nouscom Ag | Non human great apes adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof |
WO2019012371A1 (en) | 2017-07-11 | 2019-01-17 | Pfizer Inc. | Immunogenic compositions comprising cea muc1 and tert |
WO2019012091A1 (en) | 2017-07-12 | 2019-01-17 | Nouscom Ag | Neoantigen vaccine composition for treatment of cancer |
WO2019016756A1 (en) | 2017-07-21 | 2019-01-24 | Glaxosmithkline Biologicals Sa | Chikungunya virus antigen constructs |
US11964007B2 (en) | 2017-07-28 | 2024-04-23 | Janssen Vaccines & Prevention B.V. | Methods and compositions for heterologous repRNA immunizations |
WO2019023566A1 (en) | 2017-07-28 | 2019-01-31 | Janssen Vaccines & Prevention B.V. | Methods and compositions for heterologous reprna immunizations |
US11235051B2 (en) | 2017-07-28 | 2022-02-01 | Janssen Vaccines & Prevention B.V. | Methods and compositions for heterologous repRNA immunizations |
US11229695B2 (en) | 2017-09-15 | 2022-01-25 | Janssen Vaccines & Prevention B.V. | Method for the safe induction of immunity against RSV |
CN111295391A (en) * | 2017-10-31 | 2020-06-16 | 扬森疫苗与预防公司 | Adenovirus and uses thereof |
US11236361B2 (en) | 2017-10-31 | 2022-02-01 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
WO2019086461A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus vectors and uses thereof |
US11872281B2 (en) | 2017-10-31 | 2024-01-16 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
CN111295391B (en) * | 2017-10-31 | 2023-12-05 | 扬森疫苗与预防公司 | Adenovirus and use thereof |
WO2019086466A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
WO2019086450A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
US11459583B2 (en) | 2017-10-31 | 2022-10-04 | Janssen Vaccines & Prevention B.V. | Adenovirus vectors and uses thereof |
WO2019086456A1 (en) | 2017-10-31 | 2019-05-09 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
US11142551B2 (en) | 2017-10-31 | 2021-10-12 | Janssen Vaccines & Prevention B.V. | Adenovirus and uses thereof |
WO2019086615A1 (en) | 2017-11-03 | 2019-05-09 | Nouscom Ag | Vaccine t cell enhancer |
US10864263B2 (en) | 2017-11-20 | 2020-12-15 | Janssen Pharmaceuticals, Inc. | Method of providing safe administration of adenoviral vectors encoding a zika virus antigen |
WO2019099970A1 (en) | 2017-11-20 | 2019-05-23 | Janssen Pharmaceuticals Inc. | Method of providing safe administration of adenoviral vectors encoding a zika virus antigen |
WO2019115816A1 (en) | 2017-12-15 | 2019-06-20 | Glaxosmithkline Biologicals Sa | Hepatitis b immunisation regimen and compositions |
WO2019115817A2 (en) | 2017-12-15 | 2019-06-20 | Glaxosmithkline Biologicals Sa | Hepatitis b immunisation regimen and compositions |
WO2019123250A1 (en) | 2017-12-19 | 2019-06-27 | Janssen Sciences Ireland Unlimited Company | Methods and compositions for inducing an immune response against hepatitis b virus (hbv) |
WO2019123169A1 (en) | 2017-12-20 | 2019-06-27 | Glaxosmithkline Biologicals Sa | Epstein-barr virus antigen constructs |
WO2019239311A1 (en) | 2018-06-12 | 2019-12-19 | Glaxosmithkline Biologicals Sa | Adenovirus polynucleotides and polypeptides |
EP3581201A1 (en) | 2018-06-15 | 2019-12-18 | GlaxoSmithKline Biologicals S.A. | Escherichia coli o157:h7 proteins and uses thereof |
WO2019238757A1 (en) | 2018-06-15 | 2019-12-19 | Glaxosmithkline Biologicals Sa | Escherichia coli o157:h7 proteins and uses thereof |
EP3587581A1 (en) | 2018-06-26 | 2020-01-01 | GlaxoSmithKline Biologicals S.A. | Formulations for simian adenoviral vectors having enhanced storage stability |
WO2020003126A1 (en) | 2018-06-26 | 2020-01-02 | Glaxosmithkline Biologicals Sa | Formulations for simian adenoviral vectors having enhanced stability |
US11713469B2 (en) | 2018-07-20 | 2023-08-01 | Janssen Vaccines & Prevention B.V. | Recombinant adenoviral vector expressing Zika antigen with improved productivity |
WO2020016394A1 (en) | 2018-07-20 | 2020-01-23 | Janssen Vaccines & Prevention B.V. | Recombinant adenoviral vector expressing zika antigen with improved productivity |
WO2020025642A1 (en) | 2018-08-03 | 2020-02-06 | Ludwig Institute For Cancer Research Ltd. | Viral vectors encoding cancer/testis antigens for use in a method of prevention or treatment of cancer |
WO2020079234A1 (en) | 2018-10-19 | 2020-04-23 | Nouscom Ag | Teleost invariant chain cancer vaccine |
WO2020099614A1 (en) | 2018-11-15 | 2020-05-22 | Nouscom Ag | Selection of cancer mutations for generation of a personalized cancer vaccine |
WO2020128012A1 (en) | 2018-12-21 | 2020-06-25 | Glaxosmithkline Biologicals Sa | Methods of inducing an immune response |
US11793843B2 (en) | 2019-01-10 | 2023-10-24 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
WO2020144615A1 (en) | 2019-01-10 | 2020-07-16 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
WO2020178359A1 (en) | 2019-03-05 | 2020-09-10 | Glaxosmithkline Biologicals Sa | Hepatitis b immunisation regimen and compositions |
US11591619B2 (en) | 2019-05-30 | 2023-02-28 | Gritstone Bio, Inc. | Modified adenoviruses |
US12098383B2 (en) | 2019-05-30 | 2024-09-24 | Gritstone Bio, Inc. | Modified adenoviruses |
WO2021064688A1 (en) | 2019-10-03 | 2021-04-08 | Janssen Vaccines & Prevention B.V. | Adenovirus vectors and uses thereof |
WO2021099906A1 (en) | 2019-11-18 | 2021-05-27 | Janssen Biotech, Inc. | Vaccines based on mutant calr and jak2 and their uses |
US12018289B2 (en) | 2019-11-18 | 2024-06-25 | Janssen Biotech, Inc. | Vaccines based on mutant CALR and JAK2 and their uses |
US11384122B2 (en) | 2020-01-31 | 2022-07-12 | Janssen Pharmaceuticals, Inc. | Compositions and methods for preventing and treating coronavirus infection—SARS-CoV-2 vaccines |
US11498944B2 (en) | 2020-01-31 | 2022-11-15 | Janssen Pharmaceuticals, Inc. | Compositions and methods for preventing and treating coronavirus infection—SARS-CoV-2 vaccines |
DE202021004130U1 (en) | 2020-02-04 | 2022-10-26 | Curevac Ag | Coronavirus Vaccine |
EP4147717A1 (en) | 2020-02-04 | 2023-03-15 | CureVac SE | Coronavirus vaccine |
DE202021004123U1 (en) | 2020-02-04 | 2022-10-26 | Curevac Ag | Coronavirus Vaccine |
DE202021003575U1 (en) | 2020-02-04 | 2022-01-17 | Curevac Ag | Coronavirus Vaccine |
WO2021156267A1 (en) | 2020-02-04 | 2021-08-12 | Curevac Ag | Coronavirus vaccine |
DE112021000012T5 (en) | 2020-02-04 | 2021-11-18 | Curevac Ag | Coronavirus vaccine |
WO2021161244A1 (en) | 2020-02-14 | 2021-08-19 | Janssen Biotech, Inc. | Neoantigens expressed in ovarian cancer and their uses |
WO2021161245A1 (en) | 2020-02-14 | 2021-08-19 | Janssen Biotech, Inc. | Neoantigens expressed in multiple myeloma and their uses |
WO2021203104A1 (en) * | 2020-04-03 | 2021-10-07 | Gritstone Bio, Inc. | Infectious disease antigens and vaccines |
WO2021209897A1 (en) | 2020-04-13 | 2021-10-21 | Janssen Biotech, Inc. | Psma and steap1 vaccines and their uses |
WO2021228842A1 (en) | 2020-05-11 | 2021-11-18 | Janssen Pharmaceuticals, Inc. | Stabilized coronavirus spike protein fusion proteins |
WO2021239880A1 (en) | 2020-05-29 | 2021-12-02 | Curevac Ag | Nucleic acid based combination vaccines |
WO2022002894A1 (en) | 2020-06-29 | 2022-01-06 | Janssen Vaccines & Prevention B.V. | Vaccine combination against respiratory syncytial virus infection |
WO2022008438A1 (en) | 2020-07-06 | 2022-01-13 | Janssen Pharmaceuticals, Inc. | Stabilized corona virus spike protein fusion proteins |
WO2022009051A1 (en) | 2020-07-06 | 2022-01-13 | Janssen Biotech, Inc. | A method for determining responsiveness to prostate cancer treatment |
WO2022009049A1 (en) | 2020-07-06 | 2022-01-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
WO2022009052A2 (en) | 2020-07-06 | 2022-01-13 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
WO2022008613A1 (en) | 2020-07-08 | 2022-01-13 | Janssen Sciences Ireland Unlimited Company | Rna replicon vaccines against hbv |
KR20230038496A (en) | 2020-07-13 | 2023-03-20 | 트랜스진 | treatment of immunosuppression |
WO2022013221A1 (en) | 2020-07-13 | 2022-01-20 | Transgene | Treatment of immune depression |
WO2022023559A1 (en) | 2020-07-31 | 2022-02-03 | Curevac Ag | Nucleic acid encoded antibody mixtures |
US11771747B2 (en) | 2020-08-06 | 2023-10-03 | Gritstone Bio, Inc. | Multiepitope vaccine cassettes |
WO2022043551A2 (en) | 2020-08-31 | 2022-03-03 | Curevac Ag | Multivalent nucleic acid based coronavirus vaccines |
WO2022140759A2 (en) | 2020-12-23 | 2022-06-30 | Janssen Biotech, Inc. | Neoantigen peptide mimics |
IT202100003470A1 (en) | 2021-02-16 | 2022-08-16 | Fond Toscana Life Sciences | VACCINES AGAINST SARS-COV-2 |
WO2022175831A1 (en) | 2021-02-16 | 2022-08-25 | Fondazione Toscana Life Sciences | Vaccines against sars-cov-2 |
WO2022175477A1 (en) | 2021-02-19 | 2022-08-25 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion rsv fb antigens |
WO2022175479A1 (en) | 2021-02-19 | 2022-08-25 | Janssen Vaccines & Prevention B.V. | Vaccine combinations against respiratory syncytial virus strain a and b infections |
WO2022207839A2 (en) | 2021-04-01 | 2022-10-06 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion piv3 f proteins |
WO2022218997A1 (en) | 2021-04-12 | 2022-10-20 | Centre National De La Recherche Scientifique (Cnrs) | Novel universal vaccine presenting system |
WO2022268722A1 (en) | 2021-06-21 | 2022-12-29 | Nouscom Ag | Vaccine composition comprising encoded adjuvant |
WO2023020939A1 (en) | 2021-08-17 | 2023-02-23 | Janssen Pharmaceuticals, Inc. | Sars-cov-2 vaccines |
WO2023026182A1 (en) | 2021-08-24 | 2023-03-02 | Janssen Pharmaceuticals, Inc. | Sars-cov-2 vaccines |
WO2023047349A1 (en) | 2021-09-24 | 2023-03-30 | Janssen Pharmaceuticals, Inc. | Stabilized coronavirus spike protein fusion proteins |
WO2023047348A1 (en) | 2021-09-24 | 2023-03-30 | Janssen Pharmaceuticals, Inc. | Stabilized corona virus spike protein fusion proteins |
WO2023111725A1 (en) | 2021-12-14 | 2023-06-22 | Janssen Pharmaceuticals, Inc. | Sars-cov-2 vaccines |
WO2023110618A1 (en) | 2021-12-16 | 2023-06-22 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion hmpv fusion proteins |
WO2023196634A2 (en) | 2022-04-08 | 2023-10-12 | Flagship Pioneering Innovations Vii, Llc | Vaccines and related methods |
WO2023198815A1 (en) | 2022-04-14 | 2023-10-19 | Janssen Vaccines & Prevention B.V. | Sequential administration of adenoviruses |
WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
WO2024030856A2 (en) | 2022-08-01 | 2024-02-08 | Flagship Pioneering Innovations Vii, Llc | Immunomodulatory proteins and related methods |
WO2024061759A1 (en) | 2022-09-23 | 2024-03-28 | Janssen Vaccines & Prevention B.V. | Stabilized coronavirus s proteins |
WO2024061757A1 (en) | 2022-09-23 | 2024-03-28 | Janssen Vaccines & Prevention B.V. | Pre-fusion human piv1 f proteins |
WO2024074584A1 (en) | 2022-10-06 | 2024-04-11 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion piv3 f proteins |
WO2024151583A2 (en) | 2023-01-09 | 2024-07-18 | Flagship Pioneering Innovations Vii, Llc | Vaccines and related methods |
WO2024167885A1 (en) | 2023-02-06 | 2024-08-15 | Flagship Pioneering Innovations Vii, Llc | Immunomodulatory compositions and related methods |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2163260B1 (en) | Chimpanzee adenovirus vaccine carriers | |
EP3385387B1 (en) | Simian adenovirus nucleic acid- and amino acid-sequences, vectors containing same, and uses thereof | |
WO2006040330A2 (en) | Improved adenoviral vectors and uses thereof | |
JP2006513714A (en) | Adenovirus serotype 24 vector, nucleic acid and virus produced thereby | |
JP2006521089A (en) | Adenovirus serotype 34 vector, nucleic acid and virus produced thereby | |
AU2011247887B2 (en) | Chimpanzee adenovirus vaccine carriers | |
Iampietro | Immunogenicity and Cross-reactivity of Human and Rhesus Adenoviral Vectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2553541 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006550042 Country of ref document: JP Ref document number: 2005701091 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580003043.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005206292 Country of ref document: AU |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4510/DELNP/2006 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2005206292 Country of ref document: AU Date of ref document: 20050118 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005206292 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005701091 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10587389 Country of ref document: US |