WO2005067159A1 - Battery-less rf tag and interrogator - Google Patents

Battery-less rf tag and interrogator Download PDF

Info

Publication number
WO2005067159A1
WO2005067159A1 PCT/JP2005/000041 JP2005000041W WO2005067159A1 WO 2005067159 A1 WO2005067159 A1 WO 2005067159A1 JP 2005000041 W JP2005000041 W JP 2005000041W WO 2005067159 A1 WO2005067159 A1 WO 2005067159A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
interrogator
light
power
radio wave
Prior art date
Application number
PCT/JP2005/000041
Other languages
French (fr)
Japanese (ja)
Inventor
Masao Nakagawa
Yukitoshi Sanada
Shinichiro Haruyama
Original Assignee
Nakagawa Laboratories, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakagawa Laboratories, Inc. filed Critical Nakagawa Laboratories, Inc.
Publication of WO2005067159A1 publication Critical patent/WO2005067159A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1141One-way transmission
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs

Definitions

  • the present invention relates to a powerless RF tag and an interrogator.
  • FIG. 1 is a conceptual diagram showing the relationship between a conventional RF tag 120 and an interrogator 110. This is shown in Figure 1 with no power supply on the tag side.
  • a radio wave is emitted from the reader (interrogator) 110 as energy.
  • the non-powered RF tag 120 rectifies the radio wave from the interrogator 110 to generate power (power regeneration), modulates the radio wave sent from the interrogator 110, sends it back, and returns the tag.
  • the information is transmitted to the reader (interrogator) 110.
  • the reader (interrogator) 110 receives and demodulates the radio wave modulated by the RF tag to detect information.
  • Non-Patent Document 1 For the above-mentioned conventional RF tag and interrogator, see Non-Patent Document 1, for example.
  • an important performance is how long the distance between the tag 120 and the interrogator 110 is. The longer the better, the better.
  • the communication distance depends on the magnitude of the radio wave output of the interrogator 110 and the gain of the antennas 112 and 122 of the interrogator 110 and the RF tag 120. Normally, the force is several millimeters and several centimeters. It is said that the interrogator antenna can be made about 10 cm square at 2.4 GHz (the highest carrier frequency used for RF tags) to achieve a communication distance of about lm. Increasing the radio wave output to increase the distance will not be able to increase the license because it will cause interference with other tags and other communications.
  • an antenna 112 having a large gain is prepared for the interrogator 110.
  • the antenna 112 having a large gain is also an antenna having a large shape. become.
  • the antenna 122 on the tag side cannot be made larger than the interrogator, gain cannot be gained on the tag side.
  • the antenna 112 of the reader (interrogator) 110 increases, and the reader (interrogator) 110 was an obstacle to miniaturization.
  • Non-Patent Document 1 Japan Automatic Recognition System Association, "RFIDs That We Understand” (Ohm Co., Ltd., September 10, 2003)
  • An object of the present invention is to make it possible to increase the distance from an interrogator in a non-power-supply RF tag.
  • the present invention relates to a light emitting unit that generates visible light with strong directivity for a non-powered RF tag, and information based on radio waves from the non-powered RF tag.
  • An interrogator comprising: a receiver that receives a visible light having the power of the interrogator and converts the light into electric energy; and an electric energy is supplied from the light receiver, and the interrogator is provided. And a transmitter for transmitting information by radio waves to the RF tag.
  • the interrogator may be provided with a transmitter for transmitting a radio wave to the non-powered RF tag.
  • the non-powered RF tag may be supplied with electric energy from the light receiving unit, and the interrogator may receive the electric energy from the interrogator.
  • a transmitter for receiving radio waves is provided, and the transmitter modulates and transmits the received radio waves.
  • the interrogator is provided with a positive periodic wave generator, and the light emitting unit is driven by the positive periodic wave generator.
  • the light receiving unit of the non-power-supply RF tag has a filter and a rectifier circuit. The visible light that fluctuates at a specific cycle may be converted into electric energy.
  • 2 (a) and 2 (b) are views showing the configuration of the embodiment of the present invention.
  • the interrogator 200 includes a transmitting / receiving unit 210 having the same configuration as that of the related art, and a light emitting unit 220 that generates visible light with sharp directivity.
  • a transmitting / receiving unit 210 having the same configuration as that of the related art, and a light emitting unit 220 that generates visible light with sharp directivity.
  • an electromagnetic wave emitted from the interrogator 200 to the tag 300 for energy supply is radiated to the tag side as light having a sharp directivity of a visible laser or an LED.
  • the tag 300 the light is received by the light receiving unit 320 and converted into electric energy, and the transmission / reception unit 310 of the tag 300 is operated as an energy source.
  • the radio wave transmitted from the interrogator 200 is modulated by the information held in the transmission / reception unit 310 of the tag 300 and transmitted to the interrogator as a radio wave.
  • FIG. 2 (b) The configuration shown in FIG. 2 (b) is a slight modification of the configuration shown in FIG. 2 (a).
  • the tag 300 that has received the visible light from the interrogator 200 converts the light received by the light receiving unit 320 into electric energy. Utilizing the power, the transmitter 330 on the tag 300 generates a microphone mouth wave, modulates the data, and sends the modulated data to the interrogator 200.
  • the load on the tag 300 will increase compared to the configuration shown in FIG. 2A, the load on the interrogator 200 will decrease.
  • the communication distance between the interrogator 200 and the tag 300 is determined by how much energy the tag 300 can receive as power. Using the radio wave from the interrogator 200, it modulates in a way such as reflection or non-reflection and sends it back. The sharp directivity of the light allows the transmitted energy to be transmitted to the tag without any loss even at long distances, and can supply energy to the power supply.
  • FIG. 3 shows a case where a no-power tag 300 for transmitting power by light is attached to the spine of a book. Since the power is transmitted to the non-powered tag 300 by light having a high directivity, even if the tags are densely arranged, the medium power can be selected. Only the tag selected by illuminating will react; other tags will not. The information of the book can be selectively obtained by illuminating the powerless tag 300 attached to the spine of the book.
  • tags In the case of a conventional tag that supplies power by radio waves, surrounding tags also react. In addition, since radio waves do not have sufficient directional characteristics of the antenna, power cannot be transmitted over long distances. Alternatively, the only option is to increase the size of the interrogator antenna. If it is light, the directivity is strong and tags can be selected.
  • sending visible light to the interrogator tag is the power that a small LD (semiconductor laser) or LED (Light Emission Diode) can obtain by far the sharpest directivity compared to a radio wave. .
  • the directivity of the laser light source is strong. This indicates that much of the energy transmitted can be transmitted to the tag without loss. The loss is small even if the distance is long. Since it is difficult to obtain such directivity with radio waves, a long distance loses a lot of energy. If it is attempted to have directivity, the radio wave becomes a large antenna and hinders miniaturization, but LEDs and LEDs can be miniaturized despite sharp directivity. In the configuration shown in FIG.
  • the reason for sending back from the tag side not by light but by radio waves is that only information needs to be sent back, and energy need not be transmitted.
  • the transmission of information is much easier than the transmission of energy. That is, a large antenna gain and a large size antenna are not required for the interrogator.
  • FIG. 4 is a diagram for specifically explaining the interrogator 200 and the tag 300 shown in FIG. 2 (a).
  • the interrogator 200 includes a light emitting unit 224 using visible laser or LED, an antenna 231, a microwave transceiver 232, and a data display unit 234.
  • the DC power supply 222 supplies power to each part.
  • Interrogator 200 has the same configuration as the conventional interrogator except that it has light emitting section 224.
  • the light receiving unit 322 of the solar cell in the tag 300 receives the light from the light emitting unit 224, converts the received light into electric energy, and supplies power in the tag.
  • the antenna 31, the modulation unit 313, and the data unit 314 have the same configuration as a conventional non-power-supply RF tag.
  • the transmission and reception between the interrogator 200 and the tag 300 are performed only between the interrogator 200 and the tag irradiated with the power for transmission from the light emitting unit 224 of the interrogator 200.
  • FIG. 5 is a diagram showing another configuration example of the interrogator 200 and the tag 300 shown in FIG. 2 (a).
  • the configuration shown in FIG. 5 is a configuration example of power transmission that is not affected by background light.
  • the same components as those in FIG. 4 are denoted by the same reference numerals.
  • the light emitting unit (visible laser or LED) 224 of the interrogator 200 is driven by the output of the positive periodic wave generating unit 223 (it fluctuates at a constant frequency or a pseudo random pattern), the power transmission is performed.
  • the working light fluctuates at a constant frequency or a pseudo-random pattern.
  • the light receiving section (solar cell) 322 of the tag 300 which has received the light for power transmission, is a matched filter having a pseudo random pattern or frequency of the positive periodic wave generating section 223.
  • the power in the tag is supplied as a DC current by the rectifier circuit 326 after passing through the bandpass filter 324.
  • the tag 300 does not operate unless the laser light or the LED light, which is a periodic wave, from the interrogator 200 is received. Therefore, the operation of the tag 300 is not affected by the sun or lighting. Note that the number of cycles (frequency) that takes a positive value is not 50 Hz or 60 Hz for AC power supply, but a frequency that is not easily affected by lighting.
  • the band-pass filter is used for selecting a simple periodic wave such as a sine wave.
  • Matched 'filters can be used to select more general periodic waves, such as pseudo-random patterns.
  • Bandpass filters are a special type of matched filters.
  • FIG. 6 is a diagram showing a configuration example of the interrogator 200 and the tag 300 shown in FIG. 2 (b).
  • the configuration shown in FIG. 6 is similar to the configuration example of power transmission not affected by the background light shown in FIG.
  • the same components as those in FIG. 5 are denoted by the same reference numerals.
  • the interrogator 200 receives the radio wave from the tag 300 with the antenna 231, demodulates it with the microwave transceiver 232, and displays it on the data display unit 234.
  • the tag 300 that receives the light for power transmission is used.
  • the light receiving section (solar cell) 322 passes through a band-pass filter or a matched filter 324 that passes through the number of cycles (frequency) of the positive periodic wave generating section 223 and a pseudo random pattern, and then receives a direct current through a rectifier circuit 326. Power is supplied inside the tag using current. Therefore, as in the configuration of FIG. 5, unless the interrogator 200 receives laser light or LED light of the number of cycles (frequency) in the interrogator 200, the tag 300 does not operate. Therefore, the operation of the tag 300 is not affected by the sun or lighting.
  • FIG. 1 is a diagram showing a configuration of a conventional RF tag.
  • FIG. 2 is a diagram showing a configuration of an embodiment of the present invention.
  • FIG. 3 is a diagram showing an application example in which a tag is attached to a spine of a book.
  • FIG. 4 is a diagram showing a specific example of an interrogator and a tag.
  • FIG. 5 is a diagram showing another specific example of an interrogator and a tag.
  • FIG. 6 is a diagram showing another specific example of an interrogator and a tag.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Credit Cards Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

[Problems] To provide a battery-less RF tag capable of acquiring information even from a long distance. [Means for solving problems] In structure (a), an interrogator (200) has a transmitting/receiving section (210) and a light-emitting section (220) for emitting a visible light having a sharp directivity. When a light having a sharp directivity such as a visible laser beam or an LED light beam is applied to a tag (300). A light-receiving section (320) of the tag (300) receives the light and converts the light into electric energy, and a transmitting/receiving section (310) of the tag (300) is operated by using the electric energy as the energy source. The radio wave sent from the interrogator (200) is modulated with information that the transmitting/receiving section (310) has and is sent to the interrogator as a radio wave. In structure (b), a tag (300) that has received a visible light from an interrogator (200) converts the light received at a light-receiving section (320) into electric energy. Using the power, a transmitting section (330) of the tag (300) generates a microwave, the microwave is modulated with data, and the modulated microwave is sent to the interrogator (200).

Description

明 細 書  Specification
無電源 RFタグ及び質問器  No power supply RF tag and interrogator
技術分野  Technical field
[0001] 本発明は、無電源の RFタグ及び質問器に関するものである。  The present invention relates to a powerless RF tag and an interrogator.
背景技術  Background art
[0002] 従来から RF (無線周波数)を用いたタグが利用され、物の識別に利用されている。  [0002] Conventionally, tags using RF (radio frequency) have been used and used for identifying objects.
たとえば、薬に RFタグを貼り付け、どんな薬なのかの情報を得ようとする場合、そのタ グに向けて質問器力もタグが共振する無線周波数の電波を発射する。タグはその電 波を整流してタグ内の電子回路を動作させ、送られる電波を変調し、逆に読み取り器 側に電波として送り返す。図 1に、従来の RFタグ 120と質問器 110の関係を示した概 念図を示す。図 1に示したこれはタグ側が無電源のものである。  For example, if you attach an RF tag to a drug and try to obtain information about what kind of drug it is, the interrogator will emit a radio frequency radio wave at which the tag resonates toward the tag. The tag rectifies the radio wave to operate the electronic circuit in the tag, modulates the transmitted radio wave, and sends it back to the reader as a radio wave. FIG. 1 is a conceptual diagram showing the relationship between a conventional RF tag 120 and an interrogator 110. This is shown in Figure 1 with no power supply on the tag side.
読み取り器 (質問器) 110からエネルギーとして電波を出す。無電源 RFタグ 120で は、 RFタグ 120を動作させるために、質問器 110からの電波を整流して電源とし (電 源再生)、質問器 110から送られた電波を変調し送り返し、タグの情報を読み取り器( 質問器) 110に伝える。読み取り器 (質問器) 110では、 RFタグで変調した電波を受 信して復調し、情報を検出する。  A radio wave is emitted from the reader (interrogator) 110 as energy. In order to operate the RF tag 120, the non-powered RF tag 120 rectifies the radio wave from the interrogator 110 to generate power (power regeneration), modulates the radio wave sent from the interrogator 110, sends it back, and returns the tag. The information is transmitted to the reader (interrogator) 110. The reader (interrogator) 110 receives and demodulates the radio wave modulated by the RF tag to detect information.
上述の従来の RFタグや質問器については、例えば、非特許文献 1を参照されたい  For the above-mentioned conventional RF tag and interrogator, see Non-Patent Document 1, for example.
[0003] 図 1に示した従来のシステムでは、タグ 120と質問器 110間の距離がどの程度にな るかが重要な性能である。長いほど良いといえる。通信距離は、質問器 110の電波 出力の大きさ、質問器 110と RFタグ 120のアンテナ 112, 122のゲインによって左右 される力 通常は数 mm力も数 cmである。質問器のアンテナを、 2. 4GHz (RFタグに 用いられる最高の搬送波周波数)で 10cmの四角形程度にして、通信距離 lmぐらい にできるとされている。距離を長くするのに電波出力を大きくするのは、他のタグへの 干渉や他の通信への干渉に問題を生じるので、免許の上で大きくできない。そのた め、ゲインの大きなアンテナ 112を質問器 110に用意することになる。しかし、ゲイン の大きなアンテナ 112とは形状も大きなアンテナになり、質問器 110の小型化の障害 になる。またタグ側のアンテナ 122は質問器以上に大きくできないので、タグ側でゲイ ンを稼ぐわけにいかない。 In the conventional system shown in FIG. 1, an important performance is how long the distance between the tag 120 and the interrogator 110 is. The longer the better, the better. The communication distance depends on the magnitude of the radio wave output of the interrogator 110 and the gain of the antennas 112 and 122 of the interrogator 110 and the RF tag 120. Normally, the force is several millimeters and several centimeters. It is said that the interrogator antenna can be made about 10 cm square at 2.4 GHz (the highest carrier frequency used for RF tags) to achieve a communication distance of about lm. Increasing the radio wave output to increase the distance will not be able to increase the license because it will cause interference with other tags and other communications. Therefore, an antenna 112 having a large gain is prepared for the interrogator 110. However, the antenna 112 having a large gain is also an antenna having a large shape. become. In addition, since the antenna 122 on the tag side cannot be made larger than the interrogator, gain cannot be gained on the tag side.
このように、従来の RFタグは、 RFタグ 120と読み取り器 (質問器) 110間の距離を 長くするほど、読み取り器 (質問器) 110のアンテナ 112を大きくし、読み取り器 (質問 器) 110の小型化の障害となっていた。  Thus, in the conventional RF tag, as the distance between the RF tag 120 and the reader (interrogator) 110 increases, the antenna 112 of the reader (interrogator) 110 increases, and the reader (interrogator) 110 Was an obstacle to miniaturization.
非特許文献 1:社団法人日本自動認識システム協会編「これでわかった RFID」(株式 会社オーム社 平成 15年 9月 10日)  Non-Patent Document 1: Japan Automatic Recognition System Association, "RFIDs That We Understand" (Ohm Co., Ltd., September 10, 2003)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の目的は、無電源 RFタグにおいて、質問器との距離を大きくできるようにす ることである。 An object of the present invention is to make it possible to increase the distance from an interrogator in a non-power-supply RF tag.
課題を解決するための手段  Means for solving the problem
[0005] 上述の発明の目的を達成するために、本発明は、無電源 RFタグに対して、指向性 の強い可視光を発生する発光部と、前記無電源 RFタグからの電波による情報を受 信する受信機とを備えることを特徴とする質問器であり、質問器力 の可視光を受光 して電気エネルギーに変換する受光部と、該受光部から電気エネルギーを供給され 、前記質問器へ電波による情報を送信する送信機とを備えることを特徴とする無電源 RFタグである。 [0005] In order to achieve the object of the invention described above, the present invention relates to a light emitting unit that generates visible light with strong directivity for a non-powered RF tag, and information based on radio waves from the non-powered RF tag. An interrogator, comprising: a receiver that receives a visible light having the power of the interrogator and converts the light into electric energy; and an electric energy is supplied from the light receiver, and the interrogator is provided. And a transmitter for transmitting information by radio waves to the RF tag.
さらに、前記質問器に、前記無電源 RFタグに対して電波を送る送信機を備えてもよ ぐ前記無電源 RFタグに、前記受光部カゝら電気エネルギーを供給され、前記質問器 からの電波を受信する受信機を備えて、前記送信機は、受信した電波を変調して送 信してちょい。  Further, the interrogator may be provided with a transmitter for transmitting a radio wave to the non-powered RF tag. The non-powered RF tag may be supplied with electric energy from the light receiving unit, and the interrogator may receive the electric energy from the interrogator. A transmitter for receiving radio waves is provided, and the transmitter modulates and transmits the received radio waves.
また、前記質問器に正値周期波発生部を備え、前記発光部を該正値周期波発生 部で駆動するとよぐそして、前記無電源 RFタグの受光部に、フィルタと整流回路を 有して、特定の周期で変動する可視光を電気エネルギーに変換するとよい。  Further, the interrogator is provided with a positive periodic wave generator, and the light emitting unit is driven by the positive periodic wave generator. The light receiving unit of the non-power-supply RF tag has a filter and a rectifier circuit. The visible light that fluctuates at a specific cycle may be converted into electric energy.
発明の効果  The invention's effect
[0006] 可視光により、無電源タグに対してパワー供給をしているので、電波で供給する場 合と比較して、タグと質問器との距離を大きくできる。 [0006] Since power is supplied to a non-power-supply tag using visible light, a power supply As compared with the case, the distance between the tag and the interrogator can be increased.
また、可視光による指向性を利用して、目的のタグのみ作動させることが可能なの で、複数のタグが存在する場合でも、誤ったデータを得ることはない。  In addition, since only the target tag can be activated using the directivity of visible light, erroneous data is not obtained even when there are a plurality of tags.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0007] 図面を用いて、本発明の実施形態を説明する。  An embodiment of the present invention will be described with reference to the drawings.
図 2 (a) ,図 2 (b)は、本発明の実施形態の構成を示す図である。  2 (a) and 2 (b) are views showing the configuration of the embodiment of the present invention.
図 2 (a)において、質問器 200は、従来と同様の構成を有する送受信部 210と、鋭 い指向性の可視光を発生する発光部 220とを備えている。この構成では、従来では 、エネルギー供給のために質問器 200からタグ 300に出される電磁波を、可視のレ 一ザや LEDのもつ鋭い指向性を持つ光として、タグ側に照射している。タグ 300では 、その光を受光部 320で受光して電気エネルギーに変換し、それを、エネルギー源と してタグ 300の送受信部 310を動作させる。そして、質問器 200から送られた電波を 、タグ 300の送受信部 310に持つ情報で変調して質問器側に電波として送る。  In FIG. 2A, the interrogator 200 includes a transmitting / receiving unit 210 having the same configuration as that of the related art, and a light emitting unit 220 that generates visible light with sharp directivity. In this configuration, conventionally, an electromagnetic wave emitted from the interrogator 200 to the tag 300 for energy supply is radiated to the tag side as light having a sharp directivity of a visible laser or an LED. In the tag 300, the light is received by the light receiving unit 320 and converted into electric energy, and the transmission / reception unit 310 of the tag 300 is operated as an energy source. Then, the radio wave transmitted from the interrogator 200 is modulated by the information held in the transmission / reception unit 310 of the tag 300 and transmitted to the interrogator as a radio wave.
[0008] 図 2 (b)に示す構成は、図 2 (a)に示した構成を少し変更したものである。図 2 (b)に おいて、質問器 200からの可視光を受けたタグ 300は、受光部 320で受けた光を電 気エネルギーに変換する。そのパワーを利用して、タグ 300側の送信部 330でマイク 口波を発生させ、データで変調して質問器 200に送っている。図 2 (a)に示した構成 よりもタグ 300側の負担が増すことにはなるが、質問器 200側の負担が減る。  [0008] The configuration shown in FIG. 2 (b) is a slight modification of the configuration shown in FIG. 2 (a). In FIG. 2B, the tag 300 that has received the visible light from the interrogator 200 converts the light received by the light receiving unit 320 into electric energy. Utilizing the power, the transmitter 330 on the tag 300 generates a microphone mouth wave, modulates the data, and sends the modulated data to the interrogator 200. Although the load on the tag 300 will increase compared to the configuration shown in FIG. 2A, the load on the interrogator 200 will decrease.
[0009] 質問器 200とタグ 300との間の通信距離は、タグ 300にどれだけ電源としてのエネ ルギーを与えられるかで決まる。質問器 200からの電波を利用して、反射、無反射な どの方法で変調し、送り返す情報伝送の部分よりも、電源再生の能力で決まる。光の 鋭い指向性は送ったエネルギーを距離が長くてもタグに十分に損失なく送ることがで き、電源にエネルギーを供給できる。  [0009] The communication distance between the interrogator 200 and the tag 300 is determined by how much energy the tag 300 can receive as power. Using the radio wave from the interrogator 200, it modulates in a way such as reflection or non-reflection and sends it back. The sharp directivity of the light allows the transmitted energy to be transmitted to the tag without any loss even at long distances, and can supply energy to the power supply.
[0010] さて、質問器 200の発光部であるレーザや LEDによって、タグ 300にエネルギーを 供給する際には、質問器 200からの光で、正確にタグ 300を照らす必要がある。可視 光を利用すれば、利用者は目視でどのタグ 300を選んだ力確認できる。はずれてい ればエネルギーは伝わらず、タグは動作しない。質問器の周辺に複数のタグが存在 したら、照射されたタグだけが応答する。鋭い光線は十分にタグ一つを選択すること ができる。このことは電波のように近傍の複数のタグが応答し、干渉を引き起こす危険 性が少ないことを示している。さらに、複数のタグが応答して質問器側に狙ったタグ以 外のデータを、 目的のタグのものと誤認識することがない。さらに、 目的のタグも含ん だ複数データが現れても、質問器側で、その中から必要なデータを選択する必要は ない。 [0010] When energy is supplied to the tag 300 by a laser or an LED, which is a light emitting unit of the interrogator 200, it is necessary to accurately illuminate the tag 300 with light from the interrogator 200. By using visible light, the user can visually check which tag 300 was selected. If it is off, energy will not be transferred and the tag will not work. If there are multiple tags around the interrogator, only the illuminated tag will respond. Sharp rays should select enough tags Can do. This indicates that there is little danger of multiple nearby tags responding like radio waves and causing interference. Furthermore, data other than the tag targeted by the interrogator in response to a plurality of tags is not erroneously recognized as that of the target tag. Furthermore, even if multiple data including the target tag appear, it is not necessary for the interrogator to select necessary data from among them.
[0011] 図 3には、パワー伝送を光で行う無電源タグ 300を本の背表紙につけた場合を示し ている。無電源タグ 300に対して、指向性の強い光によってパワーを伝送しているの で、タグが密集していてもその中力も選ぶことができる。光を当てて選択したタグのみ が反応し、他のタグは反応しない。本の背表紙に取り付けた無電源タグ 300に光を 当てて、本の情報を選択的に得ることができる。  FIG. 3 shows a case where a no-power tag 300 for transmitting power by light is attached to the spine of a book. Since the power is transmitted to the non-powered tag 300 by light having a high directivity, even if the tags are densely arranged, the medium power can be selected. Only the tag selected by illuminating will react; other tags will not. The information of the book can be selectively obtained by illuminating the powerless tag 300 attached to the spine of the book.
電波によるパワー供給を行う従来のタグの場合は、周囲のタグも反応してしまう。ま た、電波ではアンテナの指向特性が十分に得られないので、長い距離をパワー伝送 できない。もしくは、質問器のアンテナを大きくするしかない。光であれば指向性は強 くタグを選択することができる。  In the case of a conventional tag that supplies power by radio waves, surrounding tags also react. In addition, since radio waves do not have sufficient directional characteristics of the antenna, power cannot be transmitted over long distances. Alternatively, the only option is to increase the size of the interrogator antenna. If it is light, the directivity is strong and tags can be selected.
[0012] 電波によらず、可視光を質問器力 タグに送るのは、小型の LD (半導体レーザ)や LED (Light Emission Diode)が電波よりも圧倒的に鋭い指向性を得られる力 である 。特にレーザ光源の指向性は強い。このことは、送ったエネルギーの多くを損失なく タグ側に伝えることができることを示している。距離が長くても損失が少ない。電波で は、このような指向性を得にくいので、距離が長いと多くのエネルギーを失ってしまう 。指向性を持とうとすると、電波では大きなアンテナになり小型化の妨げになるが、 L Dや LEDは鋭い指向性にもかかわらず小型化できる。図 2に示した構成で、タグ側か ら光でなくて電波で送り返す理由は、送り返しでは情報のみを送ればよいのであって 、エネルギーを伝送する必要がないからである。情報の伝送のほうがエネルギーの伝 送よりもはるかに容易であるからである。すなわち、大きなアンテナゲイン、大きなサイ ズのアンテナを質問器に要求されな 、。  [0012] Regardless of the radio wave, sending visible light to the interrogator tag is the power that a small LD (semiconductor laser) or LED (Light Emission Diode) can obtain by far the sharpest directivity compared to a radio wave. . In particular, the directivity of the laser light source is strong. This indicates that much of the energy transmitted can be transmitted to the tag without loss. The loss is small even if the distance is long. Since it is difficult to obtain such directivity with radio waves, a long distance loses a lot of energy. If it is attempted to have directivity, the radio wave becomes a large antenna and hinders miniaturization, but LEDs and LEDs can be miniaturized despite sharp directivity. In the configuration shown in FIG. 2, the reason for sending back from the tag side not by light but by radio waves is that only information needs to be sent back, and energy need not be transmitted. The transmission of information is much easier than the transmission of energy. That is, a large antenna gain and a large size antenna are not required for the interrogator.
図 2 (b)に示したタグ側でマイクロ波を発生する構成では、タグ側の負担は増すが、 電波は情報の伝送のみで、エネルギー伝送が要求されないので、図 2 (a)とアンテナ 等の観点では同じである。 実施例 1 In the configuration where microwaves are generated on the tag side shown in Fig. 2 (b), the burden on the tag side increases, but since radio waves only transmit information and energy transmission is not required, Fig. 2 (a) and the antenna It is the same from the viewpoint of. Example 1
[0013] 図 4は、図 2 (a)に示した質問器 200及びタグ 300を具体的に説明するための図で ある。  FIG. 4 is a diagram for specifically explaining the interrogator 200 and the tag 300 shown in FIG. 2 (a).
図 4において、質問器 200は、可視レーザや LEDによる発光部 224,アンテナ 231 ,マイクロ波送受信機 232,データ表示部 234で構成されている。 DC電源 222は各 部に電力を供給している。質問器 200は、発光部 224を有していること以外は、従来 の質問器と同様の構成である。  In FIG. 4, the interrogator 200 includes a light emitting unit 224 using visible laser or LED, an antenna 231, a microwave transceiver 232, and a data display unit 234. The DC power supply 222 supplies power to each part. Interrogator 200 has the same configuration as the conventional interrogator except that it has light emitting section 224.
タグ 300における太陽電池の受光部 322は、発光部 224からの光を受光することに より、受光した光を電気エネルギーに変換して、タグ内の電力を供給する。アンテナ 3 11,変調部 313,データ部 314は従来の無電源 RFタグと同様の構成である。  The light receiving unit 322 of the solar cell in the tag 300 receives the light from the light emitting unit 224, converts the received light into electric energy, and supplies power in the tag. The antenna 31, the modulation unit 313, and the data unit 314 have the same configuration as a conventional non-power-supply RF tag.
この構成において、質問器 200の発光部 224からのパワー伝送用の光がタグ 300 の受光部 322に当たると、送受信部 310 (図 2 (a) )への電力供給が始まる。そして、 質問器 200のマイクロ波送受信機 232からの電波を、タグ 300のアンテナ 311で受け 、この電波を変調部 313で、データ部 314からのデータで変調することで、タグ 300 内のデータを質問器 200へアンテナ 311から送信する。質問器 200は、タグ 300から の電波をアンテナ 231で受信し、マイクロ波送受信機 232で復調して、データ表示部 234に表示する。  In this configuration, when light for power transmission from the light emitting unit 224 of the interrogator 200 hits the light receiving unit 322 of the tag 300, power supply to the transmitting and receiving unit 310 (FIG. 2A) starts. Then, the radio wave from the microwave transceiver 232 of the interrogator 200 is received by the antenna 311 of the tag 300, and the radio wave is modulated by the data from the data unit 314 by the modulation unit 313, so that the data in the tag 300 is transmitted. It is transmitted from the antenna 311 to the interrogator 200. Interrogator 200 receives the radio wave from tag 300 by antenna 231, demodulates by microwave transceiver 232, and displays it on data display unit 234.
この質問器 200とタグ 300との間の送受信は、質問器 200の発光部 224からのパヮ 一伝送用光が照射されたタグとの間のみ行われる。  The transmission and reception between the interrogator 200 and the tag 300 are performed only between the interrogator 200 and the tag irradiated with the power for transmission from the light emitting unit 224 of the interrogator 200.
実施例 2  Example 2
[0014] 図 5は、図 2 (a)に示した質問器 200及びタグ 300の他の構成例を示す図である。こ の図 5に示した構成は、背景光の影響を受けないパワー伝送の構成例である。図 4と 同じ構成には、同じ参照番号を付している。  FIG. 5 is a diagram showing another configuration example of the interrogator 200 and the tag 300 shown in FIG. 2 (a). The configuration shown in FIG. 5 is a configuration example of power transmission that is not affected by background light. The same components as those in FIG. 4 are denoted by the same reference numerals.
図 5において、質問器 200の発光部(可視レーザや LED) 224は、正値周期波発 生部 223の出力(一定の周波数又は擬似ランダムパターン等で変動)により駆動して いるので、パワー伝送用光は、一定の周波数又は擬似ランダムパターンで変動して いる。このパワー伝送用光を受光した、タグ 300の受光部(太陽電池) 322は、正値 周期波発生部 223の擬似ランダムパターンや周波数を通過させるマッチド 'フィルタ 又はバンドパス'フィルタ 324を介してから、整流回路 326で直流電流として、タグ内 の電力供給を行っている。このため、質問器 200からの周期波であるレーザ光または LED光を受光しないと、タグ 300は動作しない。このため、タグ 300の動作は、太陽 や照明からの影響を受けない。なお、正の値をとる周期数 (周波数)は交流電源で用 Vヽて 、る 50Hzや 60Hzではなく、照明の影響を受けにく 、周波数とする。 In FIG. 5, since the light emitting unit (visible laser or LED) 224 of the interrogator 200 is driven by the output of the positive periodic wave generating unit 223 (it fluctuates at a constant frequency or a pseudo random pattern), the power transmission is performed. The working light fluctuates at a constant frequency or a pseudo-random pattern. The light receiving section (solar cell) 322 of the tag 300, which has received the light for power transmission, is a matched filter having a pseudo random pattern or frequency of the positive periodic wave generating section 223. Alternatively, the power in the tag is supplied as a DC current by the rectifier circuit 326 after passing through the bandpass filter 324. Therefore, the tag 300 does not operate unless the laser light or the LED light, which is a periodic wave, from the interrogator 200 is received. Therefore, the operation of the tag 300 is not affected by the sun or lighting. Note that the number of cycles (frequency) that takes a positive value is not 50 Hz or 60 Hz for AC power supply, but a frequency that is not easily affected by lighting.
なお、バンドパス'フィルタは、正弦波などの単純周期波の選択に使用する。マッチ ド 'フィルタは、擬似ランダムパターンなどの、より一般的な周期波の選択に利用でき る。バンドパス ·フィルタはマッチド ·フィルタの特殊型とも言える。  The band-pass filter is used for selecting a simple periodic wave such as a sine wave. Matched 'filters can be used to select more general periodic waves, such as pseudo-random patterns. Bandpass filters are a special type of matched filters.
実施例 3 Example 3
図 6は、図 2 (b)に示した質問器 200及びタグ 300の構成例を示す図である。この図 6に示した構成は、図 5に示した背景光の影響を受けないパワー伝送の構成例と同 様の構成である。図 5と同じ構成には、同じ参照番号を付している。  FIG. 6 is a diagram showing a configuration example of the interrogator 200 and the tag 300 shown in FIG. 2 (b). The configuration shown in FIG. 6 is similar to the configuration example of power transmission not affected by the background light shown in FIG. The same components as those in FIG. 5 are denoted by the same reference numerals.
この構成において、質問器 200の発光部 224からのパワー伝送用の光がタグ 300 の受光部 322に当たると、送信部 330 (図 2 (b) )への電力供給が始まる。そして、タ グ 300の発振回路 331が発信した信号を変調回路 332において、データ部 314から のデータ信号で変調することで、タグ 300内の情報を質問器 200へアンテナ 311から 送信する。  In this configuration, when light for power transmission from the light emitting unit 224 of the interrogator 200 hits the light receiving unit 322 of the tag 300, power supply to the transmitting unit 330 (FIG. 2 (b)) starts. Then, the signal transmitted by the oscillation circuit 331 of the tag 300 is modulated by the modulation circuit 332 with the data signal from the data section 314, so that the information in the tag 300 is transmitted from the antenna 311 to the interrogator 200.
質問器 200は、タグ 300からの電波をアンテナ 231で受信し、マイクロ波送受信機 2 32で復調して、データ表示部 234に表示する。  The interrogator 200 receives the radio wave from the tag 300 with the antenna 231, demodulates it with the microwave transceiver 232, and displays it on the data display unit 234.
図 6に示した構成でも、質問器 200の発光部(可視レーザや LED) 224は、正値周 期波発生部 223の出力により駆動しているので、パワー伝送用光を受光するタグ 30 0の受光部 (太陽電池) 322は、正値周期波発生部 223の周期数 (周波数)や擬似ラ ンダムパターンを通過させるバンドパス ·フィルタ又はマッチド ·フィルタ 324を介して から、整流回路 326で直流電流とし、タグ内の電力供給を行っている。このため、図 5 の構成と同様に、質問器 200内の周期数 (周波数)のレーザ光または LED光を受光 しないと、タグ 300は動作しない。このため、タグ 300の動作は、太陽や照明からの影 響を受けない。  Even in the configuration shown in FIG. 6, since the light emitting unit (visible laser or LED) 224 of the interrogator 200 is driven by the output of the positive periodic wave generating unit 223, the tag 300 that receives the light for power transmission is used. The light receiving section (solar cell) 322 passes through a band-pass filter or a matched filter 324 that passes through the number of cycles (frequency) of the positive periodic wave generating section 223 and a pseudo random pattern, and then receives a direct current through a rectifier circuit 326. Power is supplied inside the tag using current. Therefore, as in the configuration of FIG. 5, unless the interrogator 200 receives laser light or LED light of the number of cycles (frequency) in the interrogator 200, the tag 300 does not operate. Therefore, the operation of the tag 300 is not affected by the sun or lighting.
なお、正値周期波発生部 223やマッチド ·フィルタやバンドパス ·フィルタ 324を用 いない、図 4と同様の構成で、図 2 (b)の質問器やタグを構成することもできる。 図面の簡単な説明 Note that the positive periodic wave generator 223, matched filter and bandpass filter 324 are used. However, the interrogator and tag in FIG. 2 (b) can be configured with the same configuration as in FIG. Brief Description of Drawings
[図 1]従来の RFタグの構成を示す図である。 FIG. 1 is a diagram showing a configuration of a conventional RF tag.
[図 2]本発明の実施形態の構成を示す図である。  FIG. 2 is a diagram showing a configuration of an embodiment of the present invention.
[図 3]本の背表紙にタグを付けた適用例を示す図である。  FIG. 3 is a diagram showing an application example in which a tag is attached to a spine of a book.
圆 4]質問器とタグの具体例を示す図である。 [4] FIG. 4 is a diagram showing a specific example of an interrogator and a tag.
[図 5]質問器とタグの他の具体例を示す図である。  FIG. 5 is a diagram showing another specific example of an interrogator and a tag.
[図 6]質問器とタグの他の具体例を示す図である。  FIG. 6 is a diagram showing another specific example of an interrogator and a tag.

Claims

請求の範囲 The scope of the claims
[1] 無電源 RFタグに対して、指向性の強い可視光を発生する発光部と、  [1] a light-emitting unit that generates visible light with high directivity for a non-powered RF tag,
前記無電源 RFタグ力 の電波による情報を受信する受信機と  A receiver for receiving information by radio waves of the powerless RF tag power;
を備えることを特徴とする質問器。  An interrogator characterized by comprising:
[2] 請求項 1に記載の質問器において、 [2] The interrogator according to claim 1,
さらに、前記無電源 RFタグに対して、電波を送る送信機を備えることを特徴とする 質問器。  The interrogator further includes a transmitter for transmitting a radio wave to the non-powered RF tag.
[3] 請求項 1又は 2に記載の質問器において、  [3] In the interrogator according to claim 1 or 2,
さらに正値周期波発生部を備え、前記発光部を該正値周期波発生部で駆動するこ とを特徴とする質問器。  An interrogator further comprising a positive periodic wave generator, wherein the light emitting unit is driven by the positive periodic wave generator.
[4] 質問器力 の可視光を受光して電気工ネルギ一に変換する受光部と、 [4] a light-receiving unit that receives the visible light of the interrogator power and converts it into electrical energy
該受光部から電気工ネルギーを供給され、前記質問器へ電波による情報を送信す る送信機と  A transmitter supplied with electric energy from the light receiving unit and transmitting information by radio waves to the interrogator;
を備えることを特徴とする無電源 RFタグ。  A powerless RF tag comprising:
[5] 請求項 4に記載の無電源 RFタグにおいて、 [5] The powerless RF tag according to claim 4,
さらに、前記受光部から電気エネルギーを供給され、前記質問器からの電波を受 信する受信機を備え、  Further, a receiver is supplied with electric energy from the light receiving unit, and receives a radio wave from the interrogator,
前記送信機は、受信した電波を変調して送信することを特徴とする無電源 RFタグ。  A non-powered RF tag, wherein the transmitter modulates and transmits a received radio wave.
[6] 請求項 4又は 5に記載の無電源 RFタグにぉ ヽて、 [6] According to the powerless RF tag according to claim 4 or 5,
前記受光部は、フィルタと整流回路とを有し、  The light receiving unit has a filter and a rectifier circuit,
特定の周期で変動する可視光力 のみ電気エネルギーに変換することを特徴とす る無電源 RFタグ。  A powerless RF tag that converts only visible light power that fluctuates in a specific cycle into electrical energy.
PCT/JP2005/000041 2004-01-07 2005-01-05 Battery-less rf tag and interrogator WO2005067159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-002391 2004-01-07
JP2004002391A JP2005198032A (en) 2004-01-07 2004-01-07 Non-electric source rf tag and interrogator

Publications (1)

Publication Number Publication Date
WO2005067159A1 true WO2005067159A1 (en) 2005-07-21

Family

ID=34747035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000041 WO2005067159A1 (en) 2004-01-07 2005-01-05 Battery-less rf tag and interrogator

Country Status (2)

Country Link
JP (1) JP2005198032A (en)
WO (1) WO2005067159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132469A1 (en) * 2008-12-01 2010-06-03 University Of South Carolina Nano-PWAS: Structurally Integrated Thin-Film Active Sensors for Structural Health Monitoring

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699894B2 (en) * 2005-12-26 2011-06-15 日立電子サービス株式会社 RFID tag sensing system and sensing light emitting tag
US20090051497A1 (en) * 2006-03-09 2009-02-26 Matsushita Electric Industrial Co., Ltd. Wireless ic tag, document medium, and information processor
JP2009118074A (en) * 2007-11-05 2009-05-28 Sharp Corp Radio communication system
JP5394339B2 (en) * 2010-08-31 2014-01-22 株式会社日立システムズ RFID tag sensing system and sensing light emitting tag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500223A (en) * 1992-08-14 1996-01-09 マジェラン コーポレイション (オーストラリア)プロプライアタリー リミティド Identification device
JP2003179527A (en) * 1985-06-03 2003-06-27 Nippon System Kenkyusho:Kk Non-contact transmission apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294106A (en) * 1996-04-26 1997-11-11 Sharp Corp Contactless infrared ray communication equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179527A (en) * 1985-06-03 2003-06-27 Nippon System Kenkyusho:Kk Non-contact transmission apparatus
JPH08500223A (en) * 1992-08-14 1996-01-09 マジェラン コーポレイション (オーストラリア)プロプライアタリー リミティド Identification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132469A1 (en) * 2008-12-01 2010-06-03 University Of South Carolina Nano-PWAS: Structurally Integrated Thin-Film Active Sensors for Structural Health Monitoring

Also Published As

Publication number Publication date
JP2005198032A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
CN102257741B (en) Back scattering type RFID communication system
JP4577577B2 (en) Optical communication system
JP2004336240A (en) Rfid tag
US6914528B2 (en) Wireless communication systems, radio frequency identification devices, methods of enhancing a communications range of a radio frequency identification device, and wireless communication methods
US20110090060A1 (en) Isolating RFID Reader
US7106173B2 (en) Tags, wireless communication systems, tag communication methods, and wireless communications methods
JP2009500999A (en) Power transmission system, apparatus and method with communication
JP2011505053A (en) Intrinsic flux detection
JP2012502511A (en) RFID repeater for range expansion in modulated backscatter system
CA2532875A1 (en) System and method for optimizing power usage in a radio frequency communication device
KR101286943B1 (en) Warning system for indicating danger
WO2004013652A1 (en) Interrogator of moving body identification device
JP2005216044A (en) Non-contact ic card and holder for non-contact ic card
WO2005067159A1 (en) Battery-less rf tag and interrogator
US7049966B2 (en) Flat antenna architecture for use in radio frequency monitoring systems
Wu et al. Millimeter-wave identification for future sensing, tracking, positioning and communicating systems
EP1524719B1 (en) Wireless communication system capable of visually indicating failure of transmission and reception states
JP2008257489A (en) Non-contact ic tag system
JP5065385B2 (en) Transponder and system having said transponder
JP5151714B2 (en) RFID tag system
KR101222184B1 (en) Toilet guide system for blind person
KR100745723B1 (en) Method for the RFID reader of control
JP2009118074A (en) Radio communication system
KR20120109673A (en) Method of sensing rfid tag using semi-passive rfid
JPH0843527A (en) Noncontact-type individual discrimination system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase