WO2005066288A1 - Substrates having a nanoporous carbon-containing coating, method for the production thereof and their use - Google Patents

Substrates having a nanoporous carbon-containing coating, method for the production thereof and their use Download PDF

Info

Publication number
WO2005066288A1
WO2005066288A1 PCT/EP2004/014426 EP2004014426W WO2005066288A1 WO 2005066288 A1 WO2005066288 A1 WO 2005066288A1 EP 2004014426 W EP2004014426 W EP 2004014426W WO 2005066288 A1 WO2005066288 A1 WO 2005066288A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
substrate
coating
nanoporous
organic
Prior art date
Application number
PCT/EP2004/014426
Other languages
German (de)
French (fr)
Inventor
Henning Bolz
Helmut Schmidt
Carsten Becker-Willinger
Matthias Naumann
Pamela Kalmes
Peter Müller
Original Assignee
Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh filed Critical Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh
Publication of WO2005066288A1 publication Critical patent/WO2005066288A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/324Inorganic material layers containing free carbon, e.g. activated carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the invention relates to substrates provided with a nanoporous carbon-containing coating, a process for their production and their use.
  • Porous carbon-containing layers are of interest for numerous applications. For example, they can be used as adsorbent layers in a wide variety of geometries. Such layers have the advantage over pellets and other shaped bodies that they are aerodynamically favorable and at the same time have very rapid kinetics, especially if the layers have corresponding geometries with regard to their thickness and their pore structure. Problems arise, however, from the fact that it is very difficult to deposit porous carbon layers on surfaces in a stable form without affecting the porosity. This requires binders that make it possible to bind to a layer without affecting the porosity. Porous carbon-containing systems are known to be good adsorbents, but only if the porosity is sufficiently high.
  • the object of the present invention was therefore to provide substrates with a carbon-containing coating with a suitable pore structure via a wet-chemical coating process.
  • binders in particular are to be used which make it possible to carry out a wet-chemical coating and at the same time maintain sufficient porosity after baking or baking.
  • the invention relates to a substrate with a nanoporous, carbon-containing coating.
  • the invention further relates to a method for producing such a substrate with a nanoporous, carbon-containing coating, which is characterized in that a coating composition containing a contains organic, inorganic or organic-inorganic binder and carbon particles and optionally other solid particles, applied to the substrate and heat-treated to form a nanoporous layer.
  • Suitable carbon materials are e.g. Carbon black, graphite, activated carbon, crushed natural coal, fullerenes and mixtures of these carbon materials.
  • the carbon black used can be any type of carbon black or a mixture of such types.
  • An industrial carbon black is expediently used.
  • the carbon black can be in the form of a powder, in granular form or else as a carbon black preparation, i.e. be used as a liquid, pasty or solid carbon black solvent concentrate. Such soot forms are commercially available.
  • carbon black consists of approximately spherical primary particles of approximately 5 to 500 nm in diameter, which can sometimes grow together to form branched, chain-like aggregates.
  • Suitable types of carbon black are e.g. Fuma carbon black, channel black, flame black, degussa gas black, thermal black or acetylene black.
  • the soot can optionally be oxidatively e.g. aftertreated with water vapor, oxygen or air, which increases the hydrophilicity.
  • Both natural and synthetic graphite which e.g. can be obtained from pitch or petroleum coke.
  • Activated graphite can also be used.
  • the activated carbons can e.g. can be obtained from petroleum coke, sugar, wood or other carbon-containing materials.
  • As comminuted coals are e.g. ground brown coal, hard coal, anthracite or pitch coal.
  • the coating can also contain other solid particles which have a binder function and / or give the coating a specific (eg catalytic) functionality.
  • additional solid particles are preferably nanoscale particles.
  • nanoscale refers to a size below 1 micron. Particles with an average particle diameter (volume average) below 1 ⁇ m, preferably not more than 300 nm, more preferably not more than 100 nm and in particular not more than 50, are thus considered to be nanoscale particles In general, the particles are larger than 1 nm, in particular larger than 2 nm and preferably larger than 5 nm.
  • nanoporous refers to an average pore size in the range from ⁇ 1 to 100 nm, preferably ⁇ 1 to 50 nm. Micro- and mesoporous layers are particularly preferred according to the invention, the term “microporous” corresponding to the IUPAC nomenclature Pore size ⁇ 2 nm and the term “mesoporous” denotes an average pore size of 2 to 50 nm.
  • the other solid particles optionally used in addition to the carbon particles are, for example, one- or multi-component oxide particles.
  • nanoscale SiO 2 particles (silica) are particularly preferred, which are obtained, for example, by flame pyrolysis, plasma processes, colloid techniques, sol-gel processes, controlled nucleation and growth processes, MOCVD processes and emulsion processes.
  • the nanoscale SiO 2 particles can also be produced in situ, for example using sol-gel processes. These methods are described in detail in the literature.
  • the SiO 2 particles are also commercially available, for example as silica sols such as the Levasil ® silica sols from Bayer AG, or pyrogenic silicas, for example the Aerosil products from Degussa.
  • the SiO 2 particles are preferably used in the form of an alkaline or, in particular, acid-stabilized sol (silica sol) which, however, can also contain further components such as functionalized silanes.
  • further solid particles made of any inorganic materials can optionally be added.
  • metal compounds such as oxides or oxide hydrates of Al, B, Ba, Pb, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Mn, Cu, Co, Ni, Cr, Ta , Nb, V, Mo or W, and corresponding mixed oxides or spinels.
  • examples are the optionally hydrated oxides ZnO, CdO, TiO 2 , ZrO 2 (also Y-stabilized), Ce0 2 , SnO 2 , Al 2 O 3 , including AIO (OH) (boehmite), ln 2 O 3 , La 2 O 3 , Y 2 O 3 , Fe 2 O 3 , Fe x O y (intermediates between Fe 2 O 3 and Fe 3 O 4 ), Cu 2 O, Ta 2 O 5 , Nb 2 0 5 , V 2 O, MoO 3 or WO 3rd It is also possible to use particles provided with noble metal spots on the particle surfaces, which are obtained by impregnating the particles with noble metal salt solutions (halides, nitrates or also complexes) and subsequent annealing.
  • noble metal salt solutions halides, nitrates or also complexes
  • components for such composite binder systems are minerals such as asbestos, talc, mica, and ceramic materials such as boehmite, corundum and mixed systems boehmite / corundum.
  • a component can be added in the form of a powder, a sol or a slurry in a suitable suspending agent.
  • the solid particles can be surface-modified.
  • the surface modification of solid particles is a known method, e.g. is described in WO 93/21127 (DE 4212633) or WO 96/31572, to which reference is hereby made.
  • All particles or nanoparticles can be crystalline or amorphous; they can have any shape, e.g. spherical, cubic, hexagonal, plate-shaped, needle, whisker or fibrous.
  • the coating composition used to coat the substrate contains an organic, inorganic or organic-inorganic binder or mixtures thereof.
  • suitable organic binders are polyacrylic acid, polyacrylic acid esters, polymethacrylic acid, polymethacrylic acid esters, polyacrylamide, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, polyvinyl butyral, polyvinyl pyridine, polyallylamine, polyethylene glycol, polypropylene glycol,
  • Polybutylene glycol or corresponding copolymers and mixtures fats, fatty acids (e.g. stearic acid), paraffins, waxes, gums (e.g. gum arabic), rubber derivatives (e.g. rubber hydrochloride) or carbohydrates, such as mono-, oligo- and polysaccharides.
  • fatty acids e.g. stearic acid
  • paraffins e.g. waxes
  • gums e.g. gum arabic
  • rubber derivatives e.g. rubber hydrochloride
  • carbohydrates such as mono-, oligo- and polysaccharides. Examples of the latter are sugar, starches dextrin, cellulose and cellulose derivatives, for example cellulose ethers and cellulose esters such as cellulose acetate, cellulose acetate butyrate and cellulose nitrate.
  • inorganic binders are metal oxides, semimetal oxides, minerals, glasses or ceramic materials, as have already been mentioned above.
  • a particularly preferred organic-inorganic binder contains a hydrolyzate or precondensate of one or more silanes of the formula (I)
  • radicals R are identical or different and represent hydrolytically non-removable groups
  • radicals X are identical or different and represent hydrolytically removable groups or hydroxyl groups
  • n has the value 0, 1, 2 or 3, preferably at least one silane at least one hydrolytically has non-removable group.
  • the hydrolytically removable groups X which can be identical or different, are, for example, hydrogen, halogen (F, Cl, Br or I, in particular Cl or Br), alkoxy (for example C 1-6 alkoxy, such as methoxy, ethoxy, n-propoxy, i-propoxy and n-, i-, sec.- or tert.-butoxy), aryloxy (preferably C 6- io-aryloxy, such as phenoxy), alkaryloxy, e.g.
  • halogen F, Cl, Br or I, in particular Cl or Br
  • alkoxy for example C 1-6 alkoxy, such as methoxy, ethoxy, n-propoxy, i-propoxy and n-, i-, sec.- or tert.-butoxy
  • aryloxy preferably C 6- io-aryloxy, such as phenoxy
  • alkaryloxy e.g.
  • benzoyloxy Acyloxy (eg Ci- ⁇ -acyloxy, preferably C ⁇ - 4 -acyloxy, such as acetoxy or propionyloxy) and alkylcarbonyl (eg C 2-7 alkylcarbonyl such as acetyl).
  • alkylcarbonyl eg C 2-7 alkylcarbonyl such as acetyl.
  • NH 2 amino mono- or disubstituted with alkyl, aryl and / or aralkyl, examples of the alkyl, aryl and / or aralkyl radicals being those given below for R, amido such as benzamido or aldoxime or ketoxime groups.
  • Two or three groups X can also be connected to one another, for example in the case of Si-polyol complexes with glycol, glycerol or Brenzcatec in.
  • the groups mentioned can optionally contain substituents, such as halogen, hydroxy, alkoxy, amino or epoxy.
  • Preferred hydrolytically removable radicals X are halogen, alkoxy groups and acyloxy groups.
  • Particularly preferred hydrolytically removable radicals are C 2-4 alkoxy groups, especially ethoxy.
  • the hydrolytically non-cleavable radicals R of the formula (I), which may be the same or different for n greater than 1, are, for example, alkyl (for example C -2 o-alkyl, in particular C 4 -4 -alkyl, such as methyl, ethyl, n-propyl , i-Propyl, n-butyl, i-butyl, sec-butyl and tert-butyl), alkenyl (for example C 2-20 alkenyl, in particular C 2- alkenyl, such as vinyl, 1-propenyl, 2- Propenyl and butenyl), alkynyl (for example C 2 _ 20 -alkynyl, especially C 2-4 -alkynyl, such as ethynyl or propargyl), aryl (especially C 6 - ⁇ o-aryl, such as phenyl and naphthyl) and corresponding aralkyl and alkaryl groups
  • the radicals R can have customary substituents, but the radicals preferably do not have any substituents.
  • the substituents can be functional groups via which the condensate can also be crosslinked via the organic groups, if required. Common substituents are e.g. Halogen (e.g. chlorine or fluorine), epoxy (e.g.
  • glycidyl or glycidyloxy hydroxy, ether, amino, monoalkylamino, dialkylamino, optionally substituted anilino, amide, carboxy, alkenyl, alkynyl, acrylic, acryloxy, methacrylic, methacryloxy, mercapto, cyano, Alkoxy, isocyanato, aldehyde, alkylcarbonyl, acid anhydride and phosphoric acid.
  • These substituents are bonded to the silicon atom via divalent bridging groups, in particular alkylene, alkenylene or arylene bridging groups, which can be interrupted by oxygen or -NH groups.
  • the bridge groups contain e.g.
  • the bivalent bridging groups mentioned are derived e.g. from the monovalent alkyl, alkenyl or aryl radicals mentioned above.
  • the radical R can also have more than one functional group.
  • hydrolytically non-releasable radicals R with functional groups via which crosslinking is possible are a glycidyl or a glycidyloxy- (C ⁇ -20 ) alkylene radical, such as ß-glycidyloxyethyl, ⁇ -glycidyloxypropyl, ⁇ - Glycidyloxybutyl, ⁇ -glycidyloxypentyl, ⁇ -glycidyloxyhexyl, and 2- (3,4-epoxycyclohexyl) ethyl, a (meth) acryloxy (C 1-6 ) alkylene radical, e.g.
  • An example of a fluorine-substituted radical R is 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl.
  • Particularly preferred residues are ⁇ -glycidyloxypropyl and (meth) acryloxypropyl.
  • (meth) acrylic stands for acrylic and methacrylic.
  • Preferred radicals R are alkyl groups, preferably having 1 to 4 carbon atoms, in particular methyl and ethyl, and phenyl.
  • silanes tetraethoxysilane is particularly preferred.
  • silanes of the formula (I) with n greater than 0 are compounds of the following formulas, the alkylsilanes and in particular methyltriethoxysilane being particularly preferred:
  • n 0 (SiX-, and at least one silane Formula (I) in which n is greater than 0 and preferably 1.
  • the hydrolyzable compounds used preferably at least 50 mol%, more preferably at least 60 mol% and in particular at least 70 or 80 mol% of the hydrolyzable compounds used have at least one hydrolytically non-removable group and preferably only one hydrolytically non-removable group. Accordingly, the rest of the hydrolyzable compounds are compounds, in particular silanes, without groups which cannot be hydrolytically split off (for example SiX).
  • hydrolyzable compounds are silanes of the formula (I) with n> 1.
  • hydrolyzable compounds or silanes are generally understood to be the monomeric compounds. If, as explained below, precondensed compounds (dimers, etc.) are used as starting materials, the corresponding monomers must be converted.
  • the coating composition preferably comprises hydrolysates or precondensates of methyltriethoxysilane (MTEOS) or of mixtures of MTEOS and tetraethoxysilane (TEOS).
  • MTEOS methyltriethoxysilane
  • TEOS tetraethoxysilane
  • hydrolyzable compounds of elements other than Si can be used for the coating composition to produce the hydrolyzate or precondensate.
  • elements other than Si are in particular compounds of glass- or ceramic-forming elements, in particular compounds of at least one element M from the main groups III to V and / or the subgroups II to IV of the periodic table of the elements.
  • They are preferably hydrolyzable compounds of Al, B, Sn, Ti, Zr, V or Zn, in particular those of Al, Ti or Zr, or mixtures of two or more of these elements.
  • hydrolyzable compounds can also be used, in particular those of elements of main groups I and II of the periodic table (for example Na, K, Ca and Mg) and subgroups V to VIII of the periodic table (for example Mn, Cr, Fe and Ni).
  • Hydrolyzable compounds of the lanthanides can also be used. These compounds have in particular the general formula MX a , where M is the element defined above, X is as defined in formula (I), two groups X can be replaced by an oxo group, and a corresponds to the valence of the element and usually 3 or 4.
  • Alkoxides of Zr and Ti are preferably used.
  • Examples of usable hydrolyzable compounds of elements M are AI (OCH 3 ) 3 , AI (OC 2 H 5 ) 3 , AI (OnC 3 H 7 ) 3 , AI (OiC 3 H 7 ) 3 , AI (OnC 4 H 9 ) 3 , AI (O-sec.-C 4 H 9 ) 3 , AICI 3 , AICl (OH) 2 , AI (OC 2 H 4 OC 4 H 9 ) 3 , TiCI 4 , Ti (OC 2 H 5 ) 4 , Ti (OnC 3 H 7 ) 4 , Ti (OiC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4 , Ti (2-ethylhexoxy) 4 , ZrCI 4 , Zr (OC 2 H 5 ) 4 , Zr (OnC 3 H 7 ) 4 , Zr (OiC 3 H 7 ) l Zr (OC 4 Hg), ZrOCI 2 , Zr (2-ethylhexoxy),
  • hydrolysates or precondensates of the coating composition are obtained from the hydrolyzable silanes or hydrolyzable compounds by hydrolysis and condensation.
  • Hydrolyzates or precondensates are understood to mean, in particular, hydrolyzed or at least partially condensed compounds of the hydrolyzable starting compounds.
  • Pre-condensed compounds can also be used instead of the hydrolyzable monomer compounds.
  • Such oligomers which are preferably soluble in the reaction medium, can e.g. straight-chain or cyclic low-molecular partial condensates (e.g. polyorganosiloxanes) with a degree of condensation of e.g. about 2 to 100, especially about 2 to 6.
  • the hydrolysates or precondensates are preferably obtained by hydrolysis and condensation of the hydrolyzable starting compounds by the sol-gel process.
  • the hydrolyzable compounds are hydrolyzed with water, optionally by heating or acidic or basic catalysis, and, if appropriate, at least partially condensed.
  • the sol which forms can be adjusted to the viscosity desired for the coating composition by means of suitable parameters, for example degree of condensation, solvent or pH.
  • sol-gel process Further details of the sol-gel process are available, for example, from CJ Brinker, GW Scherer: "Sol-Gel Science - The Physics and Chemistry of Sol-Gel-Processing", Academic Press, Boston, San Diego, New York, Sydney (1990) described.
  • the hydrolysis and condensation is preferably carried out under sol-gel conditions in the presence of acidic condensation catalysts (e.g. hydrochloric acid, phosphoric acid or formic acid) at a pH of preferably 1 to 2.
  • acidic condensation catalysts e.g. hydrochloric acid, phosphoric acid or formic acid
  • a viscous sol is generally obtained.
  • the amount of water used for the hydrolysis and condensation of the hydrolyzable compounds, in particular the silanes of the formula (I) is preferably 0.1 to 0.9 and particularly preferably 0.25 to 0.75 mol of water per mol of the hydrolyzable groups present. Particularly good results are often achieved with less than 0.5 mol of water, in particular 0.35 to 0.45 mol of water, per mol of the hydrolyzable groups present.
  • the organic-inorganic binder described above additionally contains (preferably nanoscale) solid particles. These are either powder or brine. Suspensions added or formed in situ. These solid particles are preferably SiO 2 particles, but are, for example, TiO 2 , ZrO 2 , GeO 2 , CeO 2 , Al 2 O 3 , including AIO (OH) (boehmite), corundum and mixed systems boehmite / corundum, ZnO , CdO, SnO 2 , Ta 2 O 5 and mixtures thereof are also suitable.
  • AIO OH
  • the coating composition can contain other conventional components.
  • solvents such as solvents, surfactants, dyes, flame-retardant additives, anti-corrosion agents, starters and coating aids such as defoamers, surface modifiers, thickeners and leveling agents.
  • the coating composition typically comprises a solvent for application to a substrate.
  • solvents are water, alcohols, preferably lower aliphatic alcohols (-CC 8 alcohols), such as methanol, ethanol, 1-propanol, i-propanol and 1-butanol, ketones, preferably lower dialkyl ketones, such as acetone and methyl isobutyl ketone, Ethers, preferably lower dialkyl ethers, such as diethyl ether, or monoethers of diols, such as ethylene glycol or propylene glycol, with C 1 -C 8 alcohols, amides, such as dimethylformamide, tetrahydrofuran, dioxane, sulfoxides, sulfones or butyl glycol and mixtures thereof.
  • High-boiling solvents can also be used, for example polyethers such as triethylene glycol, diethylene glycol diethyl ether and tetraethylene glycol dimethyl ether. If hydrolyzable compounds with alkoxylate groups are used, it is optionally not necessary to use an additional solvent in addition to the alcohol formed during the hydrolysis. In some cases, other solvents are also used, e.g. light paraffins (petroleum ether, alkanes and cycloalkanes), aromatics, heteroaromatics and halogenated hydrocarbons.
  • polyethers such as triethylene glycol, diethylene glycol diethyl ether and tetraethylene glycol dimethyl ether.
  • hydrolyzable compounds with alkoxylate groups it is optionally not necessary to use an additional solvent in addition to the alcohol formed during the hydrolysis.
  • other solvents are also used, e.g. light paraffins (petroleum ether, alkanes and cycloalkanes), aromatics
  • the proportion of the carbon particles in the coating composition is usually at least 1% by weight, preferably at least 3% by weight and more preferably at least 8% by weight and generally not more than 30% by weight, preferably not more than 5% by weight. -% and more preferably not more than 12% by weight.
  • the carbon particles can be admixed as such or predispersed in a solvent.
  • the usual coating methods can be used to coat the substrate with the coating composition, e.g. Dipping, flooding, knife coating, drawing, spraying, rolling, spinning, spreading, screen printing or electrostatic coating. Flooding or knife coating is particularly preferred according to the invention.
  • the substrate can be any substrate suitable for the purpose.
  • suitable substrate materials are metals or metal alloys, such as Steel including stainless steel, chrome, copper, titanium, tin, zinc, brass and aluminum; Glasses such as float glass, borosilicate glass, lead crystal and silica glass; Ceramics, glass ceramics, enamel and heat-resistant plastics.
  • the substrate either consists of such materials or has at least one surface made of such a material.
  • the substrate can have any physical shape, for example tubular or sheet-like. However, spherical and granular substrates can also be coated, for example.
  • the applied layer is preferably dried before the heat treatment (hardening). Drying can be a simple flashing off at room temperature. Higher drying temperatures are e.g. above 50 ° C and preferably above 80 ° C and at not more than 150 ° C and preferably not more than 120 ° C.
  • the heat treatment temperatures used depend, among other things, on the type of substrate and the binder system used, and on the heat treatment atmosphere.
  • the heat treatment can e.g. at a temperature above 150 ° C, preferably above 250 ° C, and up. at 400 to 500 ° C.
  • an inert gas atmosphere e.g. nitrogen or argon
  • higher temperatures up to 500 to 1000 ° C can be used, e.g. 800 to 1000 ° C for steels.
  • the duration of the heat treatment depends on the coating and the temperature used.
  • the curing time is usually around 1 hour.
  • the heating rate is often chosen to be 1K / min, starting at room temperature.
  • the layer thicknesses achieved for the nanoporous carbon-containing coating are usually 0.1 to 500 ⁇ m, preferably 0.1 to 100 ⁇ m.
  • the desired layer thickness can easily be adjusted via the solids content of the coating composition.
  • the substrates according to the invention with a nanoporous, carbon-containing coating are particularly suitable as adsorbents or / or catalysts.
  • the functionality of the nanoporous, carbon-containing coating can be controlled by using appropriate binder and particle systems and / or changed by subsequent surface modification (eg hydrophilization or coupling of functional groups). In this way, for example, bi- or multifunctional absorber materials can be produced that have a wide adsorption capacity to different systems.
  • Example 1 carbon black / organic binder
  • a surfactant (Leunapon F1315 / 7 from Leuna-Tenside GmbH) are dissolved in 100 g of water and 5 g of carbon black (Printex 90 from Degussa) are added. After 15 minutes of treatment with an ultrasound disintegrator, the mixture is stirred overnight. 1 g of the mixed binder obtained above is added and the mixture is stirred for a further 2 hours. The finished suspension is applied to glass or stainless steel by flooding and dried to a crack-free film at room temperature. The layers are air cured for 1 hour at 350 ° C.
  • Example 2 (graphite / organic binder)
  • Example 3 carbon black suspension / organic binder
  • a carbon black suspension (AN1-25 ⁇ / L from Degussa) are diluted with 61.6 g water. 8.2 g of the mixed binder from Example 1 and 0.5 ml of octanol are added. The finished suspension is applied to glass or stainless steel by flooding and dried to a crack-free film at room temperature. Curing at 450 ° C for 1 hour in the air produces deep black, crack-free layers. '
  • Example 4 (alumina / carbon black / organic binder)
  • 60 g of water are adjusted to pH 3 with concentrated nitric acid.
  • 140 g of corundum (APA-0.5 from Ceralox) are suspended in portions in the water with ultrasound treatment. If necessary, the pH is readjusted with concentrated nitric acid.
  • the suspension is homogenized in an attritor mill for 1 hour, then separated from the grinding balls and, if necessary, corrected again to pH 3. 42.86 g of the suspension are mixed with 8.9 g of a 30% solution of a polyvinyl alcohol A (Moviol M4-88), 22.3 g of a 12% solution of a polyvinyl alcohol B (Moviol M26-88), 2.1 g Glycerin and 23.7 g of water are added.
  • Example 5 carbon black / organic-inorganic binder system
  • a mixture of 1069.9 g (6.0 mol) of methyltriethoxysilane and 312.5 g (1.5 mol) of tetraethoxysilane is divided into two portions (portion 1 and portion 2) of the same weight.
  • 246.8 g of silica sol (Levasil 300/30 from Bayer) are added to portion 1 with stirring.
  • 5.60 g of 36% by weight HCl are added.
  • the reaction mixture becomes clear with heating.
  • portion 2 in one go.
  • the reaction mixture becomes cloudy due to a white precipitate (NaCl).
  • the mixture is then stirred for 15 minutes with cooling in an ice bath.
  • the silane hydrolyzate is left to stand at room temperature for 12 hours and decanted from the sedimented solid. Before use, the sol is adjusted to a degree of hydrolysis of 0.8 by activation with hydrochloric acid (8% by weight, addition of 0.108 g of acid per g of sol).
  • Example 6 ground activated carbon / organic binder

Abstract

Substrates having a nanoporous, carbon-containing coating are produced by applying to the substrate a coating composition, which contains an organic, inorganic or organic/inorganic binding agent and carbon particles as well as optional other solid particles, and by heat treating this composition whereby forming a nanoporous layer. The coated substrates are suited for use as adsorbents and catalysts.

Description

SUBSTRATE MIT NANOPOROSER KOHLENSTOFFHALTIGER BESCHICHTUNG, VERFAHREN ZU DEREN HERSTELLUNG UND DEREN VERWENDUNGSUBSTRATES WITH A NANOPOROUS CARBONATING COATING, METHOD FOR THE PRODUCTION AND USE THEREOF
Die Erfindung betrifft mit einer nanoporosen kohlenstoffhaltigen Beschichtung versehene Substrate, ein Verfahren zu deren Herstellung und deren Verwendung.The invention relates to substrates provided with a nanoporous carbon-containing coating, a process for their production and their use.
Poröse kohlenstoffhaltige Schichten sind für zahlreiche Anwendungen von Interesse. Beispielsweise können sie als Adsorbensschichten in den verschiedensten Geometrien angewandt werden. Solche Schichten haben gegenüber Pellets und anderen Formkörpern den Vorteil, dass sie strömungsgünstig sind und gleichzeitig über eine sehr rasche Kinetik verfügen, insbesondere dann, wenn die Schichten hinsichtlich ihrer Dicke und ihrer Porenstruktur entsprechende Geometrien aufweisen. Probleme bereitet jedoch die Tatsache, dass es sehr schwierig ist, poröse Kohlenstoffschichten in stabiler Form auf Oberflächen abzuscheiden, ohne die Porosität zu beeinträchtigen. Dazu sind Bindemittel erforderlich, die es gestatten, eine Bindung zu einer Schicht zu ermöglichen, ohne die Porositäten zu beeinträchtigen. Poröse kohlenstoffhaltige Systeme sind bekanntermaßen gute Adsorbentien, aber nur dann, wenn die Porosität ausreichend hoch ist.Porous carbon-containing layers are of interest for numerous applications. For example, they can be used as adsorbent layers in a wide variety of geometries. Such layers have the advantage over pellets and other shaped bodies that they are aerodynamically favorable and at the same time have very rapid kinetics, especially if the layers have corresponding geometries with regard to their thickness and their pore structure. Problems arise, however, from the fact that it is very difficult to deposit porous carbon layers on surfaces in a stable form without affecting the porosity. This requires binders that make it possible to bind to a layer without affecting the porosity. Porous carbon-containing systems are known to be good adsorbents, but only if the porosity is sufficiently high.
Aufgabe der vorliegenden Erfindung war es daher, Substrate mit einer kohlenstoffhaltigen Beschichtung von geeigneter Porenstruktur über einen nasschemischen Beschichtungsprozess bereitzustellen. Hierbei sollen insbesondere Bindemittel angewandt werden, die es gestatten, eine nasschemische Beschichtung durchzuführen und gleichzeitig nach dem Ausheizen oder Einbrennen eine ausreichende Porosität aufrechtzuerhalten.The object of the present invention was therefore to provide substrates with a carbon-containing coating with a suitable pore structure via a wet-chemical coating process. In this case, binders in particular are to be used which make it possible to carry out a wet-chemical coating and at the same time maintain sufficient porosity after baking or baking.
Gegenstand der Erfindung ist ein Substrat mit einer nanoporosen, kohlenstoffhaltigen Beschichtung.The invention relates to a substrate with a nanoporous, carbon-containing coating.
Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung eines derartigen Substrats mit einer nanoporosen, kohlenstoffhaltigen Beschichtung, das dadurch gekennzeichnet ist, dass man eine Beschichtungszusammensetzung, die ein organisches, anorganisches oder organisch-anorganisches Bindemittel und Kohlenstoffpartikel sowie gegebenenfalls andere Feststoffpartikel enthält, auf das Substrat aufbringt und unter Bildung einer nanoporosen Schicht wärmebehandelt.The invention further relates to a method for producing such a substrate with a nanoporous, carbon-containing coating, which is characterized in that a coating composition containing a contains organic, inorganic or organic-inorganic binder and carbon particles and optionally other solid particles, applied to the substrate and heat-treated to form a nanoporous layer.
Geeignete Kohlenstoffmaterialien sind z.B. Ruß, Graphit, Aktivkohle, zerkleinerte natürliche Kohle, Fullerene und Mischungen dieser Kohlenstoffmaterialien.Suitable carbon materials are e.g. Carbon black, graphite, activated carbon, crushed natural coal, fullerenes and mixtures of these carbon materials.
Bei dem eingesetzten Ruß kann es sich um jede beliebige Rußsorte oder eine Mischung derartiger Sorten handeln. Zweckmäßigerweise wird ein Industrieruß verwendet. Der Ruß kann als Pulver, in granulierter Form oder auch als Ruß-Präparation, d.h. als flüssiges, pastenförmiges oder festes Ruß-Lösungsmittel-Konzentrat, eingesetzt werden. Solche Rußformen sind im Handel erhältlich. Im allgemeinen besteht Ruß aus etwa kugelförmigen Primärteilchen von etwa 5 bis 500 nm Durchmesser, die manchmal zu verzweigten, kettenförmigen Aggregaten zusammenwachsen können.The carbon black used can be any type of carbon black or a mixture of such types. An industrial carbon black is expediently used. The carbon black can be in the form of a powder, in granular form or else as a carbon black preparation, i.e. be used as a liquid, pasty or solid carbon black solvent concentrate. Such soot forms are commercially available. In general, carbon black consists of approximately spherical primary particles of approximately 5 to 500 nm in diameter, which can sometimes grow together to form branched, chain-like aggregates.
Beispiele für geeignete Rußsorten sind z.B. Fumaceruß, Channel-Black, Flammruß, Degussa-Gasruß, Thermalruß oder Acetylenruß. Zur Aktivierung kann der Ruß gegebenenfalls oxidativ z.B. mit Wasserdampf, Sauerstoff oder Luft nachbehandelt worden sein, wodurch die Hydrophilie erhöht wird.Examples of suitable types of carbon black are e.g. Fuma carbon black, channel black, flame black, degussa gas black, thermal black or acetylene black. For activation, the soot can optionally be oxidatively e.g. aftertreated with water vapor, oxygen or air, which increases the hydrophilicity.
Als Graphit eignet sich sowohl natürlicher als auch synthetischer Graphit, der z.B. aus Pech oder Petrolkoks gewonnen sein kann. Auch aktivierter Graphit kann verwendet werden. Die Aktivkohlen können z.B. aus Petrolkoks, Zuckern, Holz oder anderen kohlenstoffhaltigen Materialien gewonnen werden. Als zerkleinerte Kohlen eignen sich z.B. gemahlene Braunkohle, Steinkohle, Anthrazit oder Pechkohle.Both natural and synthetic graphite, which e.g. can be obtained from pitch or petroleum coke. Activated graphite can also be used. The activated carbons can e.g. can be obtained from petroleum coke, sugar, wood or other carbon-containing materials. As comminuted coals are e.g. ground brown coal, hard coal, anthracite or pitch coal.
Neben den Kohlenstoffpartikeln kann die Beschichtung zusätzlich andere Feststoffpartikel enthalten, die Bindemittelfunktion haben und/oder der Beschichtung eine spezifische (z.B. katalytische) Funktionalität verleihen. Bei diesen zusätzlichen Feststoffpartikeln handelt es sich vorzugsweise um nanoskalige Partikel. Der Begriff „nanoskalig" bezieht sich auf eine Größe unter 1 Mikron. Unter nanoskaligen Partikeln werden somit Partikel mit einem durchschnittlichen Teilchendurchmesser (Volumenmittel) unter 1 μm, vorzugsweise nicht mehr als 300 nm, bevorzugter nicht mehr als 100 nm und insbesondere nicht mehr als 50 nm verstanden. Im allgemeinen sind die Partikel größer als 1 nm, insbesondere größer als 2 nm und bevorzugt größer als 5 nm.In addition to the carbon particles, the coating can also contain other solid particles which have a binder function and / or give the coating a specific (eg catalytic) functionality. These additional solid particles are preferably nanoscale particles. The term “nanoscale” refers to a size below 1 micron. Particles with an average particle diameter (volume average) below 1 μm, preferably not more than 300 nm, more preferably not more than 100 nm and in particular not more than 50, are thus considered to be nanoscale particles In general, the particles are larger than 1 nm, in particular larger than 2 nm and preferably larger than 5 nm.
Der Begriff „nanoporös" bezieht sich auf eine mittlere Porengröße im Bereich von <1 bis 100 nm, vorzugsweise <1 bis 50 nm. Erfindungsgemäß besonders bevorzugt sind mikro- und mesoporöse Schichten, wobei entsprechend der IUPAC- Nomenklatur der Begriff „mikroporös" eine mittlere Porengröße < 2 nm und der Begriff „mesoporös" eine mittlere Porengröße von 2 bis 50 nm bezeichnet.The term “nanoporous” refers to an average pore size in the range from <1 to 100 nm, preferably <1 to 50 nm. Micro- and mesoporous layers are particularly preferred according to the invention, the term “microporous” corresponding to the IUPAC nomenclature Pore size <2 nm and the term "mesoporous" denotes an average pore size of 2 to 50 nm.
Die neben den Kohlenstoffpartikeln gegebenenfalls verwendeten anderen Feststoffpartikel sind z.B. ein- oder mehrkomponentige Oxidpartikel. Unter diesen sind nanoskalige SiO2-Teilchen (Silica) besonders bevorzugt, die z.B. durch Flammpyrolyse, Plasmaverfahren, Kolloidtechniken, Sol-Gel-Prozesse, kontrollierte Keimbildungs- und Wachstumsprozesse, MOCVD-Verfahren und Emulsionsverfahren erhalten werden. Die Herstellung der nanoskaligen SiO2- Teilchen kann auch in situ erfolgen, beispielsweise unter Anwendung von Sol-Gel-Prozessen. Diese Verfahren sind in der Literatur ausführlich beschrieben. Die SiO2-Teilchen sind auch im Handel erhältlich, z.B. als Kieselsole wie die Levasil ® Kieselsole der Bayer AG, oder pyrogene Kieselsäuren, z.B. die Aerosil-Produkte von Degussa. Die SiO2-Teilchen werden jedoch vorzugsweise in Form eines alkalisch oder insbesondere sauer stabilisierten Sols (Kieselsols) verwendet, welches jedoch auch noch weitere Komponenten wie z.B. funktionalisierte Silaπe enthalten kann.The other solid particles optionally used in addition to the carbon particles are, for example, one- or multi-component oxide particles. Among these, nanoscale SiO 2 particles (silica) are particularly preferred, which are obtained, for example, by flame pyrolysis, plasma processes, colloid techniques, sol-gel processes, controlled nucleation and growth processes, MOCVD processes and emulsion processes. The nanoscale SiO 2 particles can also be produced in situ, for example using sol-gel processes. These methods are described in detail in the literature. The SiO 2 particles are also commercially available, for example as silica sols such as the Levasil ® silica sols from Bayer AG, or pyrogenic silicas, for example the Aerosil products from Degussa. However, the SiO 2 particles are preferably used in the form of an alkaline or, in particular, acid-stabilized sol (silica sol) which, however, can also contain further components such as functionalized silanes.
Anstelle oder zusätzlich zu den SiO2-Teilchen können gegebenenfalls weitere Feststoffpartikel aus beliebigen anorganischen Materialien zugegeben werden. Dabei handelt es sich insbesondere um Metallverbindungen, wie Oxide oder Oxidhydrate von AI, B, Ba, Pb, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Mn, Cu, Co, Ni, Cr, Ta, Nb, V, Mo oder W, und entsprechende Mischoxide oder Spinelle. Beispiele sind die gegebenenfalls hydratisierten Oxide ZnO, CdO, TiO2, ZrO2 (auch Y-stabilisiert), Ce02, SnO2, AI2O3, einschließlich AIO(OH) (Böhmit), ln2O3, La2O3, Y2O3, Fe2O3, FexOy (Zwischenstufen zwischen Fe2O3 und Fe3O4) , Cu2O, Ta2O5, Nb205, V2O , MoO3 oder WO3. Es können auch mit Edelmetallspots auf den Partikeloberflächeπ versehene Partikel eingesetzt werden, die durch Imprägnieren der Partikel mit Edelmetallsalzlösungen (Halogenide, Nitrate oder auch Komplexe) und anschließendes Glühen erhalten werden.Instead of or in addition to the SiO 2 particles, further solid particles made of any inorganic materials can optionally be added. These are in particular metal compounds, such as oxides or oxide hydrates of Al, B, Ba, Pb, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Mn, Cu, Co, Ni, Cr, Ta , Nb, V, Mo or W, and corresponding mixed oxides or spinels. examples are the optionally hydrated oxides ZnO, CdO, TiO 2 , ZrO 2 (also Y-stabilized), Ce0 2 , SnO 2 , Al 2 O 3 , including AIO (OH) (boehmite), ln 2 O 3 , La 2 O 3 , Y 2 O 3 , Fe 2 O 3 , Fe x O y (intermediates between Fe 2 O 3 and Fe 3 O 4 ), Cu 2 O, Ta 2 O 5 , Nb 2 0 5 , V 2 O, MoO 3 or WO 3rd It is also possible to use particles provided with noble metal spots on the particle surfaces, which are obtained by impregnating the particles with noble metal salt solutions (halides, nitrates or also complexes) and subsequent annealing.
Weitere Komponenten für derartige Komposit-Bindemittelsysteme sind Mineralien wie Asbest, Talk, Glimmer, und keramische Materialien, wie Böhmit, Korund und Mischsysteme Böhmit/Korund. Eine solche Komponente kann in Form eines Pulvers, eines Sols oder einer Aufschlämmung in einem geeigneten Suspendiermittel zugegeben werden.Other components for such composite binder systems are minerals such as asbestos, talc, mica, and ceramic materials such as boehmite, corundum and mixed systems boehmite / corundum. Such a component can be added in the form of a powder, a sol or a slurry in a suitable suspending agent.
Die Feststoffpartikel können oberflächenmodifiziert sein. Bei der Oberflächenmodifizierung von Feststoffpartikeln handelt es sich um ein bekanntes Verfahren, wie es z.B. in WO 93/21127 (DE 4212633) oder WO 96/31572 beschrieben ist, worauf hiermit Bezug genommen wird.The solid particles can be surface-modified. The surface modification of solid particles is a known method, e.g. is described in WO 93/21127 (DE 4212633) or WO 96/31572, to which reference is hereby made.
Alle Partikel bzw. Nanopartikel können kristallin oder amorph sein; sie können beliebige Gestalt haben, z.B. sphärisch, kubisch, hexagonal, plattenförmig, nadel-, whisker- oder faserförmig.All particles or nanoparticles can be crystalline or amorphous; they can have any shape, e.g. spherical, cubic, hexagonal, plate-shaped, needle, whisker or fibrous.
Die zum Beschichten des Substrats verwendete Beschichtungszusammensetzung enthält ein organisches, anorganisches oder organisch-anorganisches Bindemittel oder Mischungen davon. Beispiele für geeignete organische Bindemittel sind Polyacrylsäure, Polyacrylsäureester, Polymethacrylsäure, Polymethacrylsäureester, Polyacrylamid, Polyvinylalkohol, Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylbutyral, Polyvinylpyridin, Polyallylamin, Polyethylenglycol, Polypropylenglycol,The coating composition used to coat the substrate contains an organic, inorganic or organic-inorganic binder or mixtures thereof. Examples of suitable organic binders are polyacrylic acid, polyacrylic acid esters, polymethacrylic acid, polymethacrylic acid esters, polyacrylamide, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, polyvinyl butyral, polyvinyl pyridine, polyallylamine, polyethylene glycol, polypropylene glycol,
Polybutylenglycol oder entsprechende Copolymere und Mischungen, Fette, Fettsäuren (z.B. Stearinsäure), Paraffine, Wachse, Gummen (z.B. Gummi arabicum), Kautschukderivate (z.B. Kautschuk-Hydrochlorid) oder Kohlenhydrate, wie Mono-, Oligo- und Polysaccharide. Beispiele für letztere sind Zucker, Stärken Dextrin, Cellulose und Cellulosederivate, z.B. Celluloseether und Celluloseester wie Celluloseacetat, Celluloseacetatbutyrat und Cellulosenitrat.Polybutylene glycol or corresponding copolymers and mixtures, fats, fatty acids (e.g. stearic acid), paraffins, waxes, gums (e.g. gum arabic), rubber derivatives (e.g. rubber hydrochloride) or carbohydrates, such as mono-, oligo- and polysaccharides. Examples of the latter are sugar, starches dextrin, cellulose and cellulose derivatives, for example cellulose ethers and cellulose esters such as cellulose acetate, cellulose acetate butyrate and cellulose nitrate.
Beispiele für anorganische Bindemittel sind Metalloxide, Halbmetalloxide, Mineralien, Gläser oder keramische Materialien, wie sie vorstehend bereits genannt wurden.Examples of inorganic binders are metal oxides, semimetal oxides, minerals, glasses or ceramic materials, as have already been mentioned above.
Ein besonders bevorzugtes organisch-anorganisches Bindemittel enthält ein Hydrolysat oder Vorkondensat von einem oder mehreren Silanen der Formel (I)A particularly preferred organic-inorganic binder contains a hydrolyzate or precondensate of one or more silanes of the formula (I)
RnSiX4.n (I)RnSiX 4 . n (I)
worin die Reste R gleich oder verschieden sind und hydrolytisch nicht abspaltbare Gruppen darstellen, die Reste X gleich oder verschieden sind und hydrolytisch abspaltbare Gruppen oder Hydroxygruppen darstellen und n den Wert 0, 1 , 2 oder 3 hat, wobei vorzugsweise mindestens ein Silan mindestens eine hydrolytisch nicht abspaltbare Gruppe aufweist.wherein the radicals R are identical or different and represent hydrolytically non-removable groups, the radicals X are identical or different and represent hydrolytically removable groups or hydroxyl groups and n has the value 0, 1, 2 or 3, preferably at least one silane at least one hydrolytically has non-removable group.
In der allgemeinen Formel (I) sind die hydrolytiscrTabspaltbaren Gruppen X, die gleich oder voneinander verschieden sein können, beispielsweise Wasserstoff, Halogen (F, Cl, Br oder I, insbesondere Cl oder Br), Alkoxy (z.B. C1-6-Alkoxy, wie z.B. Methoxy, Ethoxy, n-Propoxy, i-Propoxy und n-, i-, sek.- oder tert.-Butoxy), Aryloxy (vorzugsweise C6-ιo-Aryloxy, wie z.B. Phenoxy), Alkaryloxy, z.B. Benzoyloxy, Acyloxy (z.B. C-i-β-Acyloxy, vorzugsweise Cι-4-Acyloxy, wie z.B. Acetoxy oder Propionyloxy) und Alkylcarbonyl (z.B. C2-7-Alkylcarbonyl wie Acetyl). Ebenfalls geeignet sind NH2, mit Alkyl, Aryl und/oder Aralkyl mono- oder disubstituiertes Amino, wobei Beispiele für die Alkyl-, Aryl und/oder Aralkylreste die nachstehend für R angegebenen sind, Amido wie Benzamido oder Aldoxim- oder Ketoximgruppen. Zwei oder drei Gruppen X können auch miteinander verbunden sein, z.B. bei Si-Polyolkomplexen mit Glycol, Glycerin oder Brenzcatec in. Die genannten Gruppen können gegebenenfalls Sub- stituenten, wie Halogen, Hydroxy, Alkoxy, Amino oder Epoxy, enthalten. Bevorzugte hydrolytisch abspaltbare Reste X sind Halogen, Alkoxygruppen und Acyl- oxygruppen. Besonders bevorzugte hydrolytisch abspaltbare Reste sind C2-4- Alkoxygruppen, insbesondere Ethoxy.In the general formula (I), the hydrolytically removable groups X, which can be identical or different, are, for example, hydrogen, halogen (F, Cl, Br or I, in particular Cl or Br), alkoxy (for example C 1-6 alkoxy, such as methoxy, ethoxy, n-propoxy, i-propoxy and n-, i-, sec.- or tert.-butoxy), aryloxy (preferably C 6- io-aryloxy, such as phenoxy), alkaryloxy, e.g. benzoyloxy, Acyloxy (eg Ci-β-acyloxy, preferably Cι- 4 -acyloxy, such as acetoxy or propionyloxy) and alkylcarbonyl (eg C 2-7 alkylcarbonyl such as acetyl). Also suitable are NH 2 , amino mono- or disubstituted with alkyl, aryl and / or aralkyl, examples of the alkyl, aryl and / or aralkyl radicals being those given below for R, amido such as benzamido or aldoxime or ketoxime groups. Two or three groups X can also be connected to one another, for example in the case of Si-polyol complexes with glycol, glycerol or Brenzcatec in. The groups mentioned can optionally contain substituents, such as halogen, hydroxy, alkoxy, amino or epoxy. Preferred hydrolytically removable radicals X are halogen, alkoxy groups and acyloxy groups. Particularly preferred hydrolytically removable radicals are C 2-4 alkoxy groups, especially ethoxy.
Die hydrolytisch nicht abspaltbaren Reste R der Formel (I), die für n größer 1 gleich oder verschieden sein können, sind z.B. Alkyl (z.B. Cι-2o-Alkyl, insbesondere Cι-4- Alkyl, wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, sek.-Butyl und tert.-Butyl), Alkenyl (z.B. C2-20-AlkenyI, insbesondere C2- -Alkenyl, wie Vinyl, 1-PropenyI, 2- Propenyl und Butenyl), Alkinyl (z.B. C2_20-Alkinyl, insbesondere C2-4-Alkinyl, wie Ethinyl oder Propargyl), Aryl (insbesondere C6-ιo-Aryl, wie Phenyl und Naphthyl) und entsprechende Aralkyl- und Alkarylgruppen, wie Tolyl und Benzyl, und cyclische C3- Ci2-Alkyl- und -Alkenylgruppen, wie Cyclopropyl, Cyclopentyl und Cyclohexyl.The hydrolytically non-cleavable radicals R of the formula (I), which may be the same or different for n greater than 1, are, for example, alkyl (for example C -2 o-alkyl, in particular C 4 -4 -alkyl, such as methyl, ethyl, n-propyl , i-Propyl, n-butyl, i-butyl, sec-butyl and tert-butyl), alkenyl (for example C 2-20 alkenyl, in particular C 2- alkenyl, such as vinyl, 1-propenyl, 2- Propenyl and butenyl), alkynyl (for example C 2 _ 20 -alkynyl, especially C 2-4 -alkynyl, such as ethynyl or propargyl), aryl (especially C 6 -ιo-aryl, such as phenyl and naphthyl) and corresponding aralkyl and alkaryl groups such as tolyl and benzyl, and cyclic C 3 -C 2 alkyl and alkenyl groups such as cyclopropyl, cyclopentyl and cyclohexyl.
Die Reste R können übliche Substituenten aufweisen, vorzugsweise tragen die Reste aber keinen Substituenten. Bei den Substituenten kann es sich um funktio- nelle Gruppen handeln, über die nach Bedarf auch eine Vernetzung des Kondensats über die organischen Gruppen möglich ist. Übliche Substituenten sind z.B. Halogen (z.B. Chlor oder Fluor), Epoxid (z.B. Glycidyl oder Glycidyloxy), Hydroxy, Ether, Amino, Monoalkylamino, Dialkylamino, gegebenenfalls substituiertes Anilino, Amid, Carboxy, Alkenyl, Alkinyl, Acryl, Acryloxy, Methacryl, Methacryloxy, Mercapto, Cyano, Alkoxy, Isocyanato, Aldehyd, Alkylcarbonyl, Säureanhydrid und Phosphorsäure. Diese Substituenten sind über zweiwertige Brückengruppen, insbesondere Alkylen-, Alkenylen- oder Arylen-Brückengruppen, die durch Sauerstoff- oder -NH-Gruppen unterbrochen sein können, an das Siliciumatom gebunden. Die Brückengruppen enthalten z.B. 1 bis 18, vorzugsweise 1 bis 8 und insbesondere 1 bis 6 Kohlenstoffatome. Die genannten zweiwertigen Brückengruppen leiten sich z.B. von den oben genannten einwertigen Alkyl-, Alkenyl- oder Arylresten ab. Natürlich kann der Rest R auch mehr als eine funktionelle Gruppe aufweisen.The radicals R can have customary substituents, but the radicals preferably do not have any substituents. The substituents can be functional groups via which the condensate can also be crosslinked via the organic groups, if required. Common substituents are e.g. Halogen (e.g. chlorine or fluorine), epoxy (e.g. glycidyl or glycidyloxy), hydroxy, ether, amino, monoalkylamino, dialkylamino, optionally substituted anilino, amide, carboxy, alkenyl, alkynyl, acrylic, acryloxy, methacrylic, methacryloxy, mercapto, cyano, Alkoxy, isocyanato, aldehyde, alkylcarbonyl, acid anhydride and phosphoric acid. These substituents are bonded to the silicon atom via divalent bridging groups, in particular alkylene, alkenylene or arylene bridging groups, which can be interrupted by oxygen or -NH groups. The bridge groups contain e.g. 1 to 18, preferably 1 to 8 and in particular 1 to 6 carbon atoms. The bivalent bridging groups mentioned are derived e.g. from the monovalent alkyl, alkenyl or aryl radicals mentioned above. Of course, the radical R can also have more than one functional group.
Bevorzugte Beispiele für hydrolytisch nicht abspaltbare Reste R mit funktionellen Gruppen, über die eine Vernetzung möglich ist, sind ein Glycidyl- oder ein Glycidyloxy-(Cι-20)-alkylen-Rest, wie ß-Glycidyloxyethyl, γ-Glycidyloxypropyl, δ- Glycidyloxybutyl, ε-Glycidyloxypentyl, ω-Glycidyloxyhexyl, und 2-(3,4-Epoxy- cyclohexyl)ethyl, ein (Meth)acryloxy-(C1-6)-alkylen-Rest, z.B. (Meth)acryloxymethyl, (Meth)acryloxyethyl, (Meth)acryloxypropyl oder (Meth)acryloxybutyl, und ein 3-lsocyanatopropylrest. Ein Beispiel für einen fluorsubstituierten Rest R ist 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl. Besonders bevorzugte Reste sind γ-Glycidyloxypropyl und (Meth)acryloxypropyl. Hierbei steht (Meth)acryl für Acryl und Methacryl.Preferred examples of hydrolytically non-releasable radicals R with functional groups via which crosslinking is possible are a glycidyl or a glycidyloxy- (Cι -20 ) alkylene radical, such as ß-glycidyloxyethyl, γ-glycidyloxypropyl, δ- Glycidyloxybutyl, ε-glycidyloxypentyl, ω-glycidyloxyhexyl, and 2- (3,4-epoxycyclohexyl) ethyl, a (meth) acryloxy (C 1-6 ) alkylene radical, e.g. (meth) acryloxymethyl, (meth) acryloxyethyl, (meth) acryloxypropyl or (meth) acryloxybutyl, and a 3-isocyanatopropyl radical. An example of a fluorine-substituted radical R is 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl. Particularly preferred residues are γ-glycidyloxypropyl and (meth) acryloxypropyl. Here, (meth) acrylic stands for acrylic and methacrylic.
Bevorzugte Reste R sind Alkylgruppen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen, insbesondere Methyl und Ethyl, sowie Phenyl.Preferred radicals R are alkyl groups, preferably having 1 to 4 carbon atoms, in particular methyl and ethyl, and phenyl.
Beispiele für hydrolytisch abspaltbare Silane der Formel (I) mit n = 0 sind Si(OCH3)4, Si(OC2H5)4, Si(O-n- oder i-C3H7)4, Si(OC4H9) , SiCI , HSiCI3, Si(OOCCH3)4. Von diesen Silanen ist insbesondere Tetraethoxysilan bevorzugt.Examples of hydrolytically removable silanes of the formula (I) with n = 0 are Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (On- or iC 3 H 7 ) 4 , Si (OC 4 H 9 ) , SiCI, HSiCI 3 , Si (OOCCH 3 ) 4 . Of these silanes, tetraethoxysilane is particularly preferred.
Beispiele für Silane der Formel (I) mit n größer 0 sind Verbindungen der folgenden Formeln, wobei die Alkylsilane und insbesondere Methyltriethoxysilan besonders bevorzugt sind:Examples of silanes of the formula (I) with n greater than 0 are compounds of the following formulas, the alkylsilanes and in particular methyltriethoxysilane being particularly preferred:
CH3-SiCI3, CH3-Si(OC2H5)3, C2H5-SiCI3, C2H5-Si(OC2H5)3, C3H7-Si(OC2H5)3, C6H5- Si(OC2H5)3, (C2H5O)3-Si-C3H6-CI, (CH3)2SiCI2, (CH3)2Si(OC2H5)2, (CH3)2Si(OH)2, (C6H5)2SiCI2, (C6H5)2Si(OC2H5)2, (i-C3H7)3SiOH, CH2=CH-Si(OOCCH3)3, CH2=CH- SiCI3, CH2=CH-Si(OC2H5)3, CH2=CHSi(OC2H5)3l CH2=CH-Si(OC2H4OCH3)3, CH2=CH-CH2-Si(OC2H5)3, CH2=CH-CH2-Si(OC2H5)3, CH2=CH-CH2-Si(OOCCH3)3, CH2=C(CH3)COO-C3H7-Si(OC2H5)3, n-C6H13-CH2-CH2-Si(OC2H5)3, n-C8H17-CH2-CH2- Si(OC2H5)3, (C2H5O)3Si-(CH2)3-O-CH2-CH-CH2 O Die Silane lassen sich nach bekannten Methoden herstellen; vgl. W. Noll, "Chemie und Technologie der Silicone", Verlag Chemie GmbH, Weinheim/Bergstraße (1968).CH 3 -SiCI 3 , CH 3 -Si (OC 2 H 5 ) 3 , C 2 H 5 -SiCI 3 , C 2 H 5 -Si (OC 2 H 5 ) 3, C 3 H 7 -Si (OC 2 H 5 ) 3, C 6 H 5 - Si (OC 2 H 5 ) 3 , (C 2 H 5 O) 3-Si-C 3 H 6 -CI, (CH 3 ) 2 SiCl 2 , (CH 3 ) 2 Si (OC 2 H 5 ) 2, (CH 3 ) 2 Si (OH) 2 , (C 6 H 5 ) 2 SiCl 2 , (C 6 H 5 ) 2 Si (OC 2 H 5 ) 2 , (iC 3 H 7 ) 3 SiOH, CH 2 = CH-Si (OOCCH 3 ) 3 , CH 2 = CH-SiCI 3 , CH 2 = CH-Si (OC 2 H 5 ) 3 , CH 2 = CHSi (OC 2 H 5 ) 3l CH 2 = CH-Si (OC 2 H 4 OCH 3 ) 3, CH 2 = CH-CH 2 -Si (OC 2 H 5 ) 3 , CH 2 = CH-CH 2 -Si (OC 2 H 5 ) 3 , CH 2 = CH-CH 2 -Si (OOCCH 3 ) 3 , CH 2 = C (CH 3 ) COO-C 3 H 7 -Si (OC 2 H 5 ) 3 , nC 6 H 13 -CH 2 -CH 2 -Si (OC 2 H 5 ) 3 , nC 8 H 17 -CH 2 -CH 2 - Si (OC 2 H 5 ) 3 , (C 2 H 5 O) 3 Si- (CH 2 ) 3 -O-CH 2 -CH -CH 2 O The silanes can be prepared by known methods; see. W. Noll, "Chemistry and Technology of Silicones", Verlag Chemie GmbH, Weinheim / Bergstrasse (1968).
In einer bevorzugten Ausführungsform umfasst die Beschichtungszusammensetzung mindestens ein Silan der Formel (I), worin n = 0 (SiX- , und mindestens ein Silan der Formel (I), worin n größer 0 und bevorzugt 1 ist. In der Beschichtungszusammensetzung weisen bevorzugt mindestens 50 Mol.-%, bevorzugter mindestens 60 Mol.-% und insbesondere mindestens 70 oder 80 Mol.-% der eingesetzten hydrolysierbaren Verbindungen mindestens eine hydrolytisch nicht abspaltbare Gruppe und bevorzugt nur eine hydrolytisch nicht abspaltbare Gruppe auf. Entsprechend sind der Rest der hydrolysierbaren Verbindungen Verbindungen, insbesondere Silane, ohne hydrolytisch nicht abspaltbare Gruppen (z.B. SiX ). In bestimmten Fällen kann es noch günstiger sein, wenn mehr als 80 oder sogar mehr als 90 Mol-% (z.B. 100%) der hydrolysierbaren Verbindungen Silane der Formel (I) mit n > 1 sind. Für die Berechnung von Mengenverhältnissen werden unter hydrolysierbaren Verbindungen bzw. Silanen allgemein die monomeren Verbindungen verstanden. Wenn wie nachstehend erläutert bereits vorkondensierte Verbindungen (Dimere usw.) als Ausgangsmaterialien eingesetzt werden, ist auf die entsprechenden Monomere umzurechnen.In a preferred embodiment, the coating composition comprises at least one silane of the formula (I), where n = 0 (SiX-, and at least one silane Formula (I) in which n is greater than 0 and preferably 1. In the coating composition, preferably at least 50 mol%, more preferably at least 60 mol% and in particular at least 70 or 80 mol% of the hydrolyzable compounds used have at least one hydrolytically non-removable group and preferably only one hydrolytically non-removable group. Accordingly, the rest of the hydrolyzable compounds are compounds, in particular silanes, without groups which cannot be hydrolytically split off (for example SiX). In certain cases it may be even more favorable if more than 80 or even more than 90 mol% (for example 100%) of the hydrolyzable compounds are silanes of the formula (I) with n> 1. For the calculation of quantitative ratios, hydrolyzable compounds or silanes are generally understood to be the monomeric compounds. If, as explained below, precondensed compounds (dimers, etc.) are used as starting materials, the corresponding monomers must be converted.
Bevorzugt umfasst die Beschichtungszusammensetzung Hydrolysate oder Vorkondensate von Methyltriethoxysilan (MTEOS) oder aus Mischungen von MTEOS und Tetraethoxysilan (TEOS).The coating composition preferably comprises hydrolysates or precondensates of methyltriethoxysilane (MTEOS) or of mixtures of MTEOS and tetraethoxysilane (TEOS).
Gegebenenfalls können für die Beschichtungszusammensetzung auch hydrolysierbare Verbindungen von Elementen, die von Si verschieden sind, verwendet werden, um das Hydrolysat oder Vorkondensat herzustellen. Dabei handelt es sich insbesondere um Verbindungen von glas- oder keramikbildenden Elementen, insbesondere Verbindungen mindestens eines Elements M aus den Hauptgruppen III bis V und/oder den Nebengruppen II bis IV des Periodensystems der Elemente. Vorzugsweise handelt es sich um hydrolysierbare Verbindungen von AI, B, Sn, Ti, Zr, V oder Zn, insbesondere solche von AI, Ti oder Zr, oder Mischungen aus zwei oder mehreren dieser Elemente. Selbstverständlich können auch andere hydrolysierbare Verbindungen eingesetzt werden, insbesondere solche von Elementen der Hauptgruppen I und II des Periodensystems (z.B. Na, K, Ca und Mg) und der Nebengruppen V bis VIII des Periodensystems (z.B. Mn, Cr, Fe und Ni). Auch hydrolysierbare Verbindungen der Lanthaniden können verwendet werden. Diese Verbindungen weisen insbesondere die allgemeine Formel MXa auf, worin M das vorstehend definierte Element ist, X wie in Formel (I) definiert ist, wobei zwei Gruppen X durch eine Oxogruppe ersetzt sein können, und a der Wertigkeit des Elements entspricht und meist 3 oder 4 ist. Bevorzugt werden Alkoxide von Zr und Ti verwendet.Optionally, hydrolyzable compounds of elements other than Si can be used for the coating composition to produce the hydrolyzate or precondensate. These are in particular compounds of glass- or ceramic-forming elements, in particular compounds of at least one element M from the main groups III to V and / or the subgroups II to IV of the periodic table of the elements. They are preferably hydrolyzable compounds of Al, B, Sn, Ti, Zr, V or Zn, in particular those of Al, Ti or Zr, or mixtures of two or more of these elements. Of course, other hydrolyzable compounds can also be used, in particular those of elements of main groups I and II of the periodic table (for example Na, K, Ca and Mg) and subgroups V to VIII of the periodic table (for example Mn, Cr, Fe and Ni). Hydrolyzable compounds of the lanthanides can also be used. These compounds have in particular the general formula MX a , where M is the element defined above, X is as defined in formula (I), two groups X can be replaced by an oxo group, and a corresponds to the valence of the element and usually 3 or 4. Alkoxides of Zr and Ti are preferably used.
Beispiele für einsetzbare hydrolysierbare Verbindungen von Elementen M sind AI(OCH3)3, AI(OC2H5)3, AI(O-n-C3H7)3, AI(O-i-C3H7)3, AI(O-n-C4H9)3, AI(O-sek.-C4H9)3, AICI3, AICl(OH)2, AI(OC2H4OC4H9)3, TiCI4, Ti(OC2H5)4, Ti(O-n-C3H7)4, Ti(O-i-C3H7)4, Ti(OC4H9)4, Ti(2-ethylhexoxy)4, ZrCI4, Zr(OC2H5)4, Zr(O-n-C3H7)4, Zr(O-i-C3H7) l Zr(OC4Hg) , ZrOCI2, Zr(2-ethylhexoxy) , sowie Zr-Verbindungen, die komplexierende Reste aufweisen, wie z.B. ß-Diketon- und (Meth)acrylreste, Natriummethylat, Kalium- acetat, Borsäure, BCI3, B(OCH3)3, B(OC2H5)3, SnCI4, Sn(OCH3) , Sn(OC2H5)4, VOCI3 und VO(OCH3)3.Examples of usable hydrolyzable compounds of elements M are AI (OCH 3 ) 3 , AI (OC 2 H 5 ) 3 , AI (OnC 3 H 7 ) 3 , AI (OiC 3 H 7 ) 3 , AI (OnC 4 H 9 ) 3 , AI (O-sec.-C 4 H 9 ) 3 , AICI 3 , AICl (OH) 2 , AI (OC 2 H 4 OC 4 H 9 ) 3 , TiCI 4 , Ti (OC 2 H 5 ) 4 , Ti (OnC 3 H 7 ) 4 , Ti (OiC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4 , Ti (2-ethylhexoxy) 4 , ZrCI 4 , Zr (OC 2 H 5 ) 4 , Zr (OnC 3 H 7 ) 4 , Zr (OiC 3 H 7 ) l Zr (OC 4 Hg), ZrOCI 2 , Zr (2-ethylhexoxy), and Zr compounds which have complexing residues, such as, for example, β-diketone and (meth ) acrylic residues, sodium methylate, potassium acetate, boric acid, BCI 3 , B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 , SnCI 4 , Sn (OCH 3 ), Sn (OC 2 H 5 ) 4 , VOCI 3 and VO (OCH 3 ) 3 .
Die Hydrolysate oder Vorkondensate der Beschichtungszusammensetzung werden aus den hydrolysierbaren Silanen bzw. hydrolysierbaren Verbindungen durch Hydrolyse und Kondensation erhalten. Unter Hydrolysaten oder Vorkondensaten werden dabei insbesondere hydrolysierte bzw. zumindest teilweise kondensierte Verbindungen der hydrolysierbaren Ausgangsverbindungen verstanden. Statt der hydrolysierbaren Monomerverbindungen können auch bereits vorkondensierte Verbindungen eingesetzt werden. Derartige, im Reaktionsmedium vorzugsweise lösliche Oligomere können z.B. geradkettige oder cyclische niedermolekulare Teilkondensate (z.B. Polyorganosiloxane) mit einem Kondensationsgrad von z.B. etwa 2 bis 100, insbesondere etwa 2 bis 6, sein.The hydrolysates or precondensates of the coating composition are obtained from the hydrolyzable silanes or hydrolyzable compounds by hydrolysis and condensation. Hydrolyzates or precondensates are understood to mean, in particular, hydrolyzed or at least partially condensed compounds of the hydrolyzable starting compounds. Pre-condensed compounds can also be used instead of the hydrolyzable monomer compounds. Such oligomers, which are preferably soluble in the reaction medium, can e.g. straight-chain or cyclic low-molecular partial condensates (e.g. polyorganosiloxanes) with a degree of condensation of e.g. about 2 to 100, especially about 2 to 6.
Die Hydrolysate oder Vorkondensate werden vorzugsweise durch Hydrolyse und Kondensation der hydrolysierbaren Ausgangsverbindungen nach dem Sol-Gel- Verfahren erhalten. Beim Sol-Gel-Verfahren werden die hydrolysierbaren Verbindungen mit Wasser, gegebenenfalls durch Erwärmen oder saure oder basische Katalyse, hydrolysiert und gegebenenfalls zumindest teilweise kondensiert. Es können stöchiometrische Wassermengen, aber auch geringere oder größere Mengen verwendet werden. Das sich bildende Sol kann durch geeignete Parameter, z.B. Kondensationsgrad, Lösungsmittel oder pH-Wert, auf die für die Beschichtungszusammensetzung gewünschte Viskosität eingestellt werden. Weitere Einzelheiten des Sol-Gel-Verfahrens sind z.B. bei C.J. Brinker, G.W. Scherer: "Sol-Gel Science - The Physics and Chemistry of Sol-Gel-Processing", Academic Press, Boston, San Diego, New York, Sydney (1990) beschrieben.The hydrolysates or precondensates are preferably obtained by hydrolysis and condensation of the hydrolyzable starting compounds by the sol-gel process. In the sol-gel process, the hydrolyzable compounds are hydrolyzed with water, optionally by heating or acidic or basic catalysis, and, if appropriate, at least partially condensed. There can be stoichiometric amounts of water, but also smaller or larger ones Amounts used. The sol which forms can be adjusted to the viscosity desired for the coating composition by means of suitable parameters, for example degree of condensation, solvent or pH. Further details of the sol-gel process are available, for example, from CJ Brinker, GW Scherer: "Sol-Gel Science - The Physics and Chemistry of Sol-Gel-Processing", Academic Press, Boston, San Diego, New York, Sydney (1990) described.
Die Hydrolyse und Kondensation erfolgt vorzugsweise unter Sol-Gel-Bedingungen in Gegenwart saurer Kondensationskatalysatoren (z.B. Salzsäure, Phosphorsäure oder Ameisensäure) bei einem pH-Wert von vorzugsweise 1 bis 2. In der Regel wird ein viskoses Sol erhalten. Die zur Hydrolyse und Kondensation der hydrolysierbaren Verbindungen, insbesondere der Silane der Formel (I), eingesetzte Wassermenge beträgt vorzugsweise 0,1 bis 0,9, und besonders bevorzugt 0,25 bis 0,75 Mol Wasser pro Mol der vorhandenen hydrolysierbaren Gruppen. Oft werden besonders gute Ergebnisse mit weniger als 0,5 Mol Wasser, insbesondere 0,35 bis 0,45 Mol Wasser, pro Mol der vorhandenen hydrolysierbaren Gruppen erzielt.The hydrolysis and condensation is preferably carried out under sol-gel conditions in the presence of acidic condensation catalysts (e.g. hydrochloric acid, phosphoric acid or formic acid) at a pH of preferably 1 to 2. A viscous sol is generally obtained. The amount of water used for the hydrolysis and condensation of the hydrolyzable compounds, in particular the silanes of the formula (I), is preferably 0.1 to 0.9 and particularly preferably 0.25 to 0.75 mol of water per mol of the hydrolyzable groups present. Particularly good results are often achieved with less than 0.5 mol of water, in particular 0.35 to 0.45 mol of water, per mol of the hydrolyzable groups present.
In einer bevorzugten Ausführungsform enthält das vorstehend beschriebene organisch-anorganische Bindemittel zusätzlich (vorzugsweise nanoskalige) Feststoffpartikel. Diese werden entweder als Pulver, Sole oder. Suspensionen zugesetzt oder aber in situ gebildet. Bei diesen Feststoffpartikeln handelt es sich vorzugsweise um SiO2-Teilchen, jedoch sind z.B. TiO2, ZrO2, GeO2, CeO2, AI2O3, einschließlich AIO(OH) (Böhmit), Korund und Mischsysteme Böhmit/Korund, ZnO, CdO, SnO2, Ta2O5 und Mischungen davon ebenfalls geeignet.In a preferred embodiment, the organic-inorganic binder described above additionally contains (preferably nanoscale) solid particles. These are either powder or brine. Suspensions added or formed in situ. These solid particles are preferably SiO 2 particles, but are, for example, TiO 2 , ZrO 2 , GeO 2 , CeO 2 , Al 2 O 3 , including AIO (OH) (boehmite), corundum and mixed systems boehmite / corundum, ZnO , CdO, SnO 2 , Ta 2 O 5 and mixtures thereof are also suitable.
Die Beschichtungszusammensetzung kann weitere übliche Komponenten enthalten. Beispiele sind Lösungsmittel, Tenside, Farbstoffe, flammhemmende Zusätze, Korrosionsschutzmittel, Starter und Beschichtungshilfsmittel wie Entschäumer, Oberflächenmodifikatoren, Verdickungsmittel und Verlaufshilfsmittel.The coating composition can contain other conventional components. Examples are solvents, surfactants, dyes, flame-retardant additives, anti-corrosion agents, starters and coating aids such as defoamers, surface modifiers, thickeners and leveling agents.
Die Beschichtungszusammensetzung umfasst zum Auftragen auf ein Substrat üblicherweise ein Lösungsmittel. Dabei handelt es sich um die üblichen, auf dem Gebiet der Beschichtung eingesetzten Lösungsmittel. Beispiele für geeignete Lösungsmittel sind Wasser, Alkohole, vorzugsweise niedere aliphatische Alkohole (Cι-C8-Alkohole), wie Methanol, Ethanol, 1-Propanol, i-Propanol und 1-Butanol, Ketone, vorzugsweise niedere Dialkylketone, wie Aceton und Methylisobutylketon, Ether, vorzugsweise niedere Dialkylether, wie Diethylether, oder Monoether von Diolen, wie Ethylenglycol oder Propylenglycol, mit Cι-C8-Alkoholen, Amide, wie Dimethylformamid, Tetrahydrofuran, Dioxan, Sulfoxide, Sulfone oder Butylglycol und deren Gemische. Bevorzugt werden Wasser und Alkohole verwendet. Es können auch hochsiedende Lösungsmittel eingesetzt werden, z.B. Polyether wie Triethylenglycol, Diethylenglycoldiethylether und Tetraethylenglycoldimethylether. Sofern hydrolysierbare Verbindungen mit Alkoxylatgruppen eingesetzt werden, braucht man gegebenenfalls neben dem bei der Hydrolyse entstehenden Alkohol kein zusätzliches Lösungsmittel zu verwenden. In manchen Fällen finden auch andere Lösungsmittel Verwendung, z.B. Leichtparaffine (Petrolether, Alkane und Cycloalkane), Aromaten, Heteroaromaten und halogenierte Kohlenwasserstoffe.The coating composition typically comprises a solvent for application to a substrate. These are the usual ones on the Solvent used in the field of coating. Examples of suitable solvents are water, alcohols, preferably lower aliphatic alcohols (-CC 8 alcohols), such as methanol, ethanol, 1-propanol, i-propanol and 1-butanol, ketones, preferably lower dialkyl ketones, such as acetone and methyl isobutyl ketone, Ethers, preferably lower dialkyl ethers, such as diethyl ether, or monoethers of diols, such as ethylene glycol or propylene glycol, with C 1 -C 8 alcohols, amides, such as dimethylformamide, tetrahydrofuran, dioxane, sulfoxides, sulfones or butyl glycol and mixtures thereof. Water and alcohols are preferably used. High-boiling solvents can also be used, for example polyethers such as triethylene glycol, diethylene glycol diethyl ether and tetraethylene glycol dimethyl ether. If hydrolyzable compounds with alkoxylate groups are used, it is optionally not necessary to use an additional solvent in addition to the alcohol formed during the hydrolysis. In some cases, other solvents are also used, e.g. light paraffins (petroleum ether, alkanes and cycloalkanes), aromatics, heteroaromatics and halogenated hydrocarbons.
Der Anteil der Kohlenstoffpartikel in der Beschichtungszusammensetzung beträgt gewöhnlich mindestens 1 Gew.-%, bevorzugt mindestens 3 Gew.-% und bevorzugter mindestens 8 Gew.-% und im allgemeinen nicht mehr als 30 Gew.-%, bevorzugt nicht mehr als 5 Gew.-% und bevorzugter nicht mehr als 12 Gew.-%.The proportion of the carbon particles in the coating composition is usually at least 1% by weight, preferably at least 3% by weight and more preferably at least 8% by weight and generally not more than 30% by weight, preferably not more than 5% by weight. -% and more preferably not more than 12% by weight.
Die Kohlenstoffpartikel können als solche zugemischt werden oder aber in einem Lösungsmittel vordispergiert werden.The carbon particles can be admixed as such or predispersed in a solvent.
Für die Beschichtung des Substrats mit der Beschichtungszusammensetzung können die üblichen Beschichtungsverfahren angewandt werden, z.B. Tauchen, Fluten, Rakeln, Ziehen, Spritzen, Rollen, Schleudern, Aufstreichen, Siebdruck oder elektrostatische Beschichtung. Besonders bevorzugt wird erfindungsgemäß das Fluten oder Rakeln.The usual coating methods can be used to coat the substrate with the coating composition, e.g. Dipping, flooding, knife coating, drawing, spraying, rolling, spinning, spreading, screen printing or electrostatic coating. Flooding or knife coating is particularly preferred according to the invention.
Bei dem Substrat kann es sich um jedes für den Zweck geeignete Substrat handeln. Beispiele für geeignete Substratmaterialien sind Metalle oder Metalllegierungen, wie Stahl, einschließlich Edelstahl, Chrom, Kupfer, Titan, Zinn, Zink, Messing und Aluminium; Gläser, wie Floatglas, Borosilicatglas, Bleikristall und Kieselglas; Keramik, Glaskeramik, Email und wärmebeständige Kunststoffe. Das Substrat besteht entweder aus derartigen Materialien oder weist zumindest eine Oberfläche aus einem solchen Material auf. Das Substrat kann eine beliebige physikalische Form aufweisen, z.B. röhren- oder flächenförmig. Es können jedoch z.B. auch kugelförmige und granuläre Substrate beschichtet werden.The substrate can be any substrate suitable for the purpose. Examples of suitable substrate materials are metals or metal alloys, such as Steel including stainless steel, chrome, copper, titanium, tin, zinc, brass and aluminum; Glasses such as float glass, borosilicate glass, lead crystal and silica glass; Ceramics, glass ceramics, enamel and heat-resistant plastics. The substrate either consists of such materials or has at least one surface made of such a material. The substrate can have any physical shape, for example tubular or sheet-like. However, spherical and granular substrates can also be coated, for example.
Die aufgebrachte Schicht wird vorzugsweise vor der Wärmebehandlung (Härtung) getrocknet. Bei der Trocknung kann es sich um ein einfaches Ablüften bei Raumtemperatur handeln. Höhere Trocknungstemperaturen liegen z.B. über 50°C und bevorzugt über 80°C und bei nicht mehr als 150°C und bevorzugt nicht mehr als 120°C.The applied layer is preferably dried before the heat treatment (hardening). Drying can be a simple flashing off at room temperature. Higher drying temperatures are e.g. above 50 ° C and preferably above 80 ° C and at not more than 150 ° C and preferably not more than 120 ° C.
Die angewandten Wärmebehandlungstemperaturen sind unter anderem abhängig von der Art des Substrats und des verwendeten Bindemittelsystems sowie von der Wärmebehandlungsatmosphäre. An der Luft kann die Wärmebehandlung z.B. bei einer Temperatur über 150°C, bevorzugt über 250°C, und bis. zu 400 bis 500°C erfolgen. In einer Inertgasatmosphäre (z.B. Stickstoff oder Argon) können, in Abhängigkeit von der Belastbarkeitsgrenze der Substrate, auch höhere Temperaturen bis zu 500 bis 1000°C angewandt werden, z.B. 800 bis 1000°C für Stähle.The heat treatment temperatures used depend, among other things, on the type of substrate and the binder system used, and on the heat treatment atmosphere. In the air, the heat treatment can e.g. at a temperature above 150 ° C, preferably above 250 ° C, and up. at 400 to 500 ° C. In an inert gas atmosphere (e.g. nitrogen or argon), depending on the load limit of the substrates, higher temperatures up to 500 to 1000 ° C can be used, e.g. 800 to 1000 ° C for steels.
Die Dauer der Wärmebehandlung hängt von der Beschichtung und der angewandten Temperatur ab. In der Regel beträgt die Härtungszeit etwa 1 Stunde. Die Aufheizrate wird oft mit 1K/min gewählt, beginnend bei Raumtemperatur.The duration of the heat treatment depends on the coating and the temperature used. The curing time is usually around 1 hour. The heating rate is often chosen to be 1K / min, starting at room temperature.
Die erzielten Schichtdicken der nanoporosen kohlenstoffhaltigen Beschichtung betragen gewöhnlich 0,1 bis 500 μm, vorzugsweise 0,1 bis 100 μm. Die gewünschte Schichtdicke lässt sich leicht über den Feststoffgehalt der Beschichtungszusammensetzung einstellen. Die erfindungsgemäßen Substrate mit einer nanoporosen, kohlenstoffhaltigen Beschichtung eignen sich insbesondere als Adsorbentien oder/oder Katalysatoren. Die Funktionalität der nanoporosen, kohlenstoffhaltigen Beschichtung kann durch Verwendung entsprechender Bindemittel- und Partikelsysteme gesteuert und/oder durch nachträgliche Oberflächenmodifizierung (z.B. Hydrophilierung oder Ankoppelung von funktioneilen Gruppen) verändert werden. Auf diese Weise lassen sich z.B. bi- oder multifunktionelle Absorberwerkstoffe herstellen, die breite Adsorptionsfähigkeit zu verschiedenen Systemen aufweisen.The layer thicknesses achieved for the nanoporous carbon-containing coating are usually 0.1 to 500 μm, preferably 0.1 to 100 μm. The desired layer thickness can easily be adjusted via the solids content of the coating composition. The substrates according to the invention with a nanoporous, carbon-containing coating are particularly suitable as adsorbents or / or catalysts. The functionality of the nanoporous, carbon-containing coating can be controlled by using appropriate binder and particle systems and / or changed by subsequent surface modification (eg hydrophilization or coupling of functional groups). In this way, for example, bi- or multifunctional absorber materials can be produced that have a wide adsorption capacity to different systems.
BeispieleExamples
Beispiel 1 (Ruß/organisches Bindemittel)Example 1 (carbon black / organic binder)
Zur Herstellung eines Mischbinders werden 35,7 g einer 30%igen Lösung eines Polyvinylalkohols A (Moviol M4-88 von Clariant), 35,7 g einer 12%igen Lösung eines Polyvinylalkohols B (Moviol M26-88 von Clariant) und 28,6 g Glycerin gemischt und über Nacht gerührt.35.7 g of a 30% solution of a polyvinyl alcohol A (Moviol M4-88 from Clariant), 35.7 g of a 12% solution of a polyvinyl alcohol B (Moviol M26-88 from Clariant) and 28.6 g of glycerin mixed and stirred overnight.
2 g eines Tensids (Leunapon F1315/7 von Leuna-Tenside GmbH) werden in 100 g Wasser gelöst und mit 5 g Ruß (Printex 90 von Degussa) versetzt. Nach 15minütiger Behandlung mit einem Ultraschall-Desintegrator wird über Nacht gerührt. Man gibt 1 g des vorstehend erhaltenen Mischbinders zu und rührt weitere 2 Stunden. Die fertige Suspension wird auf Glas oder Edelstahl durch Fluten aufgetragen und bei Raumtemperatur zu einem rissfreien Film getrocknet. Die Schichten werden 1 Stunde bei 350°C an der Luft gehärtet.2 g of a surfactant (Leunapon F1315 / 7 from Leuna-Tenside GmbH) are dissolved in 100 g of water and 5 g of carbon black (Printex 90 from Degussa) are added. After 15 minutes of treatment with an ultrasound disintegrator, the mixture is stirred overnight. 1 g of the mixed binder obtained above is added and the mixture is stirred for a further 2 hours. The finished suspension is applied to glass or stainless steel by flooding and dried to a crack-free film at room temperature. The layers are air cured for 1 hour at 350 ° C.
Beispiel 2 (Graphit/organisches Bindemittel)Example 2 (graphite / organic binder)
12,8 g Graphit (Timrex KS6) werden zu einer Lösung aus 1 ,95 g eines Tensids (Tween 80) in 200 g Wasser gegeben. Die Suspension wird 5 Minuten mit einem Ultraschall-Desintegrator behandelt und anschließend über Nacht gerührt. Man gibt 12,8 g einer 30%igen Lösung eines Polyvinylalkohols (Moviol 4-88) in Wasser zu und rührt erneut für 2 Stunden. Die fertige Suspension wird auf Glas oder Edelstahl durch Fluten aufgetragen und bei Raumtemperatur zu einem rissfreien Film getrocknet. Die Schichten werden 1 Stunde bei 350°C an der Luft gehärtet.12.8 g of graphite (Timrex KS6) are added to a solution of 1.95 g of a surfactant (Tween 80) in 200 g of water. The suspension is treated with an ultrasound disintegrator for 5 minutes and then stirred overnight. 12.8 g of a 30% solution of a polyvinyl alcohol (Moviol 4-88) in water are added and stir again for 2 hours. The finished suspension is applied to glass or stainless steel by flooding and dried to a crack-free film at room temperature. The layers are air cured for 1 hour at 350 ° C.
Beispiel 3 (Rußsuspension/organisches Bindemittel)Example 3 (carbon black suspension / organic binder)
30 g einer Rußsuspension (AN1-25Λ/L von Degussa) werden mit 61 ,6 g Wasser verdünnt. Dazu werden 8,2 g des Mischbinders aus Beispiel 1 und 0,5 ml Octanol gegeben. Die fertige Suspension wird auf Glas oder Edelstahl durch Fluten aufgetragen und bei Raumtemperatur zu einem rissfreien Film getrocknet. Die Härtung bei 450°C für 1 Stunde an der Luft ergibt tiefschwarze, rissfreie Schichten.'30 g of a carbon black suspension (AN1-25Λ / L from Degussa) are diluted with 61.6 g water. 8.2 g of the mixed binder from Example 1 and 0.5 ml of octanol are added. The finished suspension is applied to glass or stainless steel by flooding and dried to a crack-free film at room temperature. Curing at 450 ° C for 1 hour in the air produces deep black, crack-free layers. '
Beispiel 4 (Aluminiumoxid/Ruß/organisches Bindemittel)Example 4 (alumina / carbon black / organic binder)
a) Ansatz der keramischen Komponentea) Approach of the ceramic component
60 g Wasser werden mit konzentrierter Salpetersäure auf pH 3 eingestellt. 140 g Korund (APA-0.5 von der Fa. Ceralox) werden portionsweise unter Ultraschallbehandlung in dem Wasser suspendiert. Gegebenenfalls wird der pH mit konzentrierter Salpetersäure nachjustiert. Die Suspension wird in einer Attritormühle 1 Stunde homogenisiert, dann von den Mahlkugeln abgetrennt und gegebenenfalls erneut auf pH 3 korrigiert. 42,86 g der Suspension werden mit 8,9 g einer 30%igen Lösung eines Polyvinylalkohols A (Moviol M4-88), 22,3 g einer 12%igen Lösung eines Polyvinylalkohols B (Moviol M26-88), 2,1 g Glycerin und 23,7 g Wasser versetzt.60 g of water are adjusted to pH 3 with concentrated nitric acid. 140 g of corundum (APA-0.5 from Ceralox) are suspended in portions in the water with ultrasound treatment. If necessary, the pH is readjusted with concentrated nitric acid. The suspension is homogenized in an attritor mill for 1 hour, then separated from the grinding balls and, if necessary, corrected again to pH 3. 42.86 g of the suspension are mixed with 8.9 g of a 30% solution of a polyvinyl alcohol A (Moviol M4-88), 22.3 g of a 12% solution of a polyvinyl alcohol B (Moviol M26-88), 2.1 g Glycerin and 23.7 g of water are added.
b) Zugabe der Rußsuspensionb) adding the soot suspension
Zu 100g der Aluminiumoxidsuspension aus 4a) werden 60,1 g einer Rußsuspension (Derussol A von Degussa) gegeben und über Nacht gerührt. Die fertige Suspension wird auf Edelstahl-Substraten durch Fluten aufgetragen und bei Raumtemperatur zu einem rissfreien Film getrocknet. Die Schichten werden bei 500°C für 3 Stunden unter Stickstoff gehärtet. Beispiel 5 (Ruß/organisch-aπorganisches Bindemittelsystem)60.1 g of a carbon black suspension (Derussol A from Degussa) are added to 100 g of the aluminum oxide suspension from 4a) and the mixture is stirred overnight. The finished suspension is applied to stainless steel substrates by flooding and dried to a crack-free film at room temperature. The layers are cured at 500 ° C for 3 hours under nitrogen. Example 5 (carbon black / organic-inorganic binder system)
a) Herstellung des Bindemittelsa) Preparation of the binder
Eine Mischung aus 1069,9 g (6,0 mol) Methyltriethoxysilan und 312,5 g (1 ,5 mol) Tetraethoxysilan wird in zwei Portionen (Portion 1 und Portion 2) gleichen Gewichts geteilt. Zu Portion 1 gibt man unter Rühren 246,8 g Kieselsol (Levasil 300/30 von Bayer). Nach Bildung einer Emulsion (ca. 30 s) gibt man 5,60 g 36 gew.-%ige HCI zu. Nach kurzem Rühren (30-50 s) wird die Reaktionsmischung unter Erwärmen klar. Dazu gibt man die Portion 2 in einem Zuge. Nach kurzer Zeit trübt sich die Reaktionsmischung durch einen weißen Niederschlag (NaCI). Anschließend rührt man noch 15 Minuten unter Kühlung in einem Eisbad. Man lässt das Silanhydrolysat 12 Stunden bei Raumtemperatur stehen und dekantiert vom sedimeπtierten Feststoff ab. Das Sol wird vor Gebrauch durch Aktivierung mit Salzsäure (8% Massenanteil, Zugabe 0,108 g Säure pro g Sol) auf einen Hydrolysegrad von 0,8 eingestellt.A mixture of 1069.9 g (6.0 mol) of methyltriethoxysilane and 312.5 g (1.5 mol) of tetraethoxysilane is divided into two portions (portion 1 and portion 2) of the same weight. 246.8 g of silica sol (Levasil 300/30 from Bayer) are added to portion 1 with stirring. After an emulsion has been formed (approx. 30 s), 5.60 g of 36% by weight HCl are added. After briefly stirring (30-50 s) the reaction mixture becomes clear with heating. Serve with portion 2 in one go. After a short time, the reaction mixture becomes cloudy due to a white precipitate (NaCl). The mixture is then stirred for 15 minutes with cooling in an ice bath. The silane hydrolyzate is left to stand at room temperature for 12 hours and decanted from the sedimented solid. Before use, the sol is adjusted to a degree of hydrolysis of 0.8 by activation with hydrochloric acid (8% by weight, addition of 0.108 g of acid per g of sol).
b) Zugabe der Kohlenstoff-Suspensionb) adding the carbon suspension
2,6 g Graphit (Timrex KS6) werden in 40 g Ethanol dispergiert, mit 0,39 g Tensid (Tween 80) versetzt und 30 Minuten mit dem Ultraschall-Desintegrator im Eisbad behandelt. Dazu werden 0,52 g des aktivierten Silanhydrolysats aus 5a) gegeben und 1 Stunde lang gerührt. Die fertige Suspension wird auf Edelstahl-Substrate durch Fluten aufgetragen und bei Raumtemperatur zu einem rissfreien Film getrocknet. Die Schichten werden 1 Stunde bei 350°C gehärtet.2.6 g of graphite (Timrex KS6) are dispersed in 40 g of ethanol, mixed with 0.39 g of surfactant (Tween 80) and treated with the ultrasound disintegrator in an ice bath for 30 minutes. 0.52 g of the activated silane hydrolyzate from 5a) are added and the mixture is stirred for 1 hour. The finished suspension is applied to stainless steel substrates by flooding and dried to a crack-free film at room temperature. The layers are cured at 350 ° C for 1 hour.
Beispiel 6 (gemahlene Aktivkohle/organisches Bindemittel)Example 6 (ground activated carbon / organic binder)
a.) 5 g Tensid (Tween 80) werden in 40 g Wasser gelöst und mit 10 g gemörserter Aktivkohle (Rx3 Extra von Norit) versetzt. Die Mischung wird in einer Kugelmühle in einem Zirkoπoxidmahlbecher für 2 Stunden gemahlen. Danach gibt man 2 g des Mischbinders aus Beispiel 1 zu und rührt über Nacht. Die fertige Suspension wird auf Edelstahl-Substrate durch Fluten aufgetragen und bei Raumtemperatur zu einem rissfreien Film getrocknet. Die Schichten werden 1 Stunde bei 550°C unter Stickstoff gehärtet. b.) Analog kann die Aktivkohle mit dem Tensid in Ethanol gemahlen werde. Man gibt nach dem Mahlprozeß 3 g des Bindemittels aus Beispiel 5a zu und rührt eine Stunde. Die fertige Suspension wird auf Edelstahl-Substrate durch Fluten aufgetragen und bei Raumtemperatur zu einem rißfreien Film getrocknet. Die Schichten werden 1 Stunde bei 350°C gehärtet. a.) 5 g of surfactant (Tween 80) are dissolved in 40 g of water and 10 g of mortarized activated carbon (Rx3 Extra from Norit) are added. The mixture is ground in a ball mill in a zirconium oxide grinding jar for 2 hours. Then 2 g of the mixed binder from Example 1 are added and the mixture is stirred overnight. The finished suspension is applied to stainless steel substrates by flooding and dried to a crack-free film at room temperature. The layers are cured for 1 hour at 550 ° C under nitrogen. b.) Analogously, the activated carbon can be ground with the surfactant in ethanol. After the grinding process, 3 g of the binder from Example 5a are added and the mixture is stirred for one hour. The finished suspension is applied to stainless steel substrates by flooding and dried to a crack-free film at room temperature. The layers are cured at 350 ° C for 1 hour.

Claims

PATENTANSPRÜCHE
1. Substrat mit einer nanoporosen, kohlenstoffhaltigen Beschichtung.1. Substrate with a nanoporous, carbon-containing coating.
2. Substrat nach Anspruch 1 , dadurch gekennzeichnet, dass der Kohlenstoff aus Ruß, Graphit, Aktivkohle, zerkleinerter natürlicher Kohle, Fullerenen und Mischungen dieser Kohlenstoffmaterialien ausgewählt ist.2. Substrate according to claim 1, characterized in that the carbon is selected from carbon black, graphite, activated carbon, comminuted natural coal, fullerenes and mixtures of these carbon materials.
3. Substrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Beschichtung zusätzlich andere Feststoffpartikel enthält.3. Substrate according to claim 1 or 2, characterized in that the coating additionally contains other solid particles.
4. Substrat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Substrat aus Metall, Glas, Keramik, Glaskeramik oder einem anderen wärmebeständigen Werkstoff besteht oder eine Oberfläche aus diesen Materialien aufweist.4. Substrate according to one of claims 1 to 3, characterized in that the substrate consists of metal, glass, ceramic, glass ceramic or another heat-resistant material or has a surface made of these materials.
5. Verfahren zur Herstellung eines Substrats mit einer nanoporosen, kohlenstoffhaltigen Beschichtung, dadurch gekennzeichnet, dass man eine Beschichtungszusammensetzung, die ein organisches, anorganisches oder organisch-anorganisches Bindemittel und Kohlenstoffpartikel sowie gegebenenfalls andere Feststoffpartikel enthält, auf das Substrat aufbringt und unter Bildung einer nanoporosen Schicht wärmebehandelt.5. A method for producing a substrate with a nanoporous, carbon-containing coating, characterized in that a coating composition which contains an organic, inorganic or organic-inorganic binder and carbon particles and optionally other solid particles is applied to the substrate and to form a nanoporous layer heat treated.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man als organisches Bindemittel für die Beschichtungszusammensetzung Polyacrylsäure, Polyacrylsäureester, Polymethacrylsäure, Polymethacrylsäure- ester, Polyacrylamid, Polyvinylalkohol, Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylbutyral, Polyvinylpyridin, Polyallylamin, Polyethylenglycol, Polypropylenglycol, Polybutylenglycol oder entsprechende Copolymere und Mischungen, Fette, Fettsäuren, Paraffine, Wachse, Gummen, Kautschukderivate oder Kohlenhydrate verwendet. 6. The method according to claim 5, characterized in that the organic binder for the coating composition is polyacrylic acid, polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid ester, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl butyral, polyvinyl pyridine, polyallylamine, polyethylene glycol, polypropylene glycol or polybutylene glycol or polybutylene glycol or polybutylene glycol or polybutylene glycol, and mixtures, fats, fatty acids, paraffins, waxes, gums, rubber derivatives or carbohydrates.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man als anorganisches Bindemittel für die Beschichtungszusammensetzung Metalloxide, Halbmetalloxide, Mineralien, Gläser oder keramische Materialien verwendet.7. The method according to claim 5, characterized in that metal oxides, semimetal oxides, minerals, glasses or ceramic materials are used as the inorganic binder for the coating composition.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man als organischanorganisches Bindemittel für die Beschichtungszusammensetzung ein Hydrolysat oder Vorkondensat aus einem oder mehreren Silanen der Formel RnSiX4-n verwendet, worin die Reste R gleich oder verschieden sind und hydrolytisch nicht abspaltbare Gruppen darstellen, die Reste X gleich oder verschieden sind und Hydroxylgruppen oder hydrolytisch abspaltbare Gruppen darstellen und n den Wert 0, 1 , 2 oder 3 hat, wobei vorzugsweise mindestens ein Silan mindestens eine hydrolytisch nicht abspaltbare Gruppe aufweist.8. The method according to claim 5, characterized in that a hydrolyzate or precondensate of one or more silanes of the formula RnSiX 4-n is used as the organic-inorganic binder for the coating composition, in which the radicals R are identical or different and represent groups which cannot be split off hydrolytically, the radicals X are identical or different and represent hydroxyl groups or hydrolytically removable groups and n has the value 0, 1, 2 or 3, preferably at least one silane having at least one hydrolytically non-removable group.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Bindemittel zusätzlich Feststoffpartikel enthält.9. The method according to claim 8, characterized in that the binder additionally contains solid particles.
10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass man die Wärmebehandlung an der Luft bei Temperaturen von bis zu 400- 500°C durchführt.10. The method according to any one of claims 5 to 9, characterized in that one carries out the heat treatment in air at temperatures of up to 400-500 ° C.
11. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass man die Wärmebehandlung in einer Inertgasatmosphäre bei Temperaturen von bis zu 500-1000°C durchführt.11. The method according to any one of claims 5 to 9, characterized in that one carries out the heat treatment in an inert gas atmosphere at temperatures of up to 500-1000 ° C.
12. Verwendung des Substrats mit einer nanoporosen, kohlenstoffhaltigen Beschichtung nach einem der Ansprüche 1 bis 4 als Adsorptionsmittel und/oder Katalysator. 12. Use of the substrate with a nanoporous, carbon-containing coating according to one of claims 1 to 4 as an adsorbent and / or catalyst.
PCT/EP2004/014426 2003-12-30 2004-12-17 Substrates having a nanoporous carbon-containing coating, method for the production thereof and their use WO2005066288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10361632A DE10361632A1 (en) 2003-12-30 2003-12-30 Substrates with nanoporous, carbon-containing coating, process for their preparation and their use
DE10361632.2 2003-12-30

Publications (1)

Publication Number Publication Date
WO2005066288A1 true WO2005066288A1 (en) 2005-07-21

Family

ID=34706683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014426 WO2005066288A1 (en) 2003-12-30 2004-12-17 Substrates having a nanoporous carbon-containing coating, method for the production thereof and their use

Country Status (2)

Country Link
DE (1) DE10361632A1 (en)
WO (1) WO2005066288A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8302458B2 (en) 2007-04-20 2012-11-06 Parker-Hannifin Corporation Portable analytical system for detecting organic chemicals in water
CN107020022A (en) * 2017-04-26 2017-08-08 山东工业陶瓷研究设计院有限公司 A kind of sewage disposal earthenware slab UF membrane film layer and its preparation technology
US9766215B2 (en) 2011-09-07 2017-09-19 Parker-Hannifin Corporation Analytical system and method for detecting volatile organic compounds in water
US10895565B2 (en) 2015-06-05 2021-01-19 Parker-Hannifin Corporation Analysis system and method for detecting volatile organic compounds in liquid
US20220199304A1 (en) * 2020-12-18 2022-06-23 Vacuumschmelze Gmbh & Co. Kg Water-based alkaline composition for forming an insulating layer of an annealing separator, coated soft magnetic alloy and method for producing a coated soft magnetic strip
CN115197592A (en) * 2021-04-14 2022-10-18 立邦涂料(中国)有限公司 Formaldehyde-free, ultralow-VOC (volatile organic compounds) and A1 flame-retardant water-based inorganic coating
DE102022209933A1 (en) 2022-09-21 2024-03-21 Robert Bosch Gesellschaft mit beschränkter Haftung Mixture of substances, use of a mixture of substances, process for producing a functional body for an electrochemical energy converter and electrochemical energy converter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112642A1 (en) * 2012-12-19 2014-06-26 Ald Vacuum Technologies Gmbh Graphite matrix, useful for manufacturing a molded body to store radioactive waste, comprises graphite and glass ceramic
DE102014218292A1 (en) 2014-09-12 2016-03-17 Evonik Degussa Gmbh Liquid coating compositions, processes for their preparation and their use

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469079A (en) * 1965-12-22 1967-02-10 Lorraine Carbone Process for the preparation of a thin graphitic oxide membrane and applications of said membrane
CH511047A (en) * 1967-02-13 1971-08-15 Westinghouse Electric Corp Semi-permeable membrane with resin binder
US4469721A (en) * 1983-06-06 1984-09-04 Kiyohiko Shioya High emissivity refractory coating, process for manufacturing the same, and coating composition therefor
US5453413A (en) * 1993-06-08 1995-09-26 Nanotechnologies, Inc. Phototransformation of fullerenes
WO2001096074A2 (en) * 2000-06-14 2001-12-20 Fosroc International Limited Fire retardant coating
WO2001097956A1 (en) * 2000-06-22 2001-12-27 E.I. Dupont De Nemours And Company Mixed matrix nanoporous carbon membranes
WO2002032558A1 (en) * 2000-10-19 2002-04-25 Membrana Mundi Gmbh Flexible and porous membranes and adsorbents, and method for the production thereof
WO2002060996A1 (en) * 2001-02-01 2002-08-08 Colfirmit Rajasil Gmbh Coating with adsorbing properties for use on interior room surfaces
US6471745B1 (en) * 1996-06-28 2002-10-29 University Of Delaware Nanoporous carbon catalytic membranes and method for making the same
WO2003088344A1 (en) * 2002-04-10 2003-10-23 Honeywell International, Inc. Low metal porous silica dielectric for integral circuit applications

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469079A (en) * 1965-12-22 1967-02-10 Lorraine Carbone Process for the preparation of a thin graphitic oxide membrane and applications of said membrane
CH511047A (en) * 1967-02-13 1971-08-15 Westinghouse Electric Corp Semi-permeable membrane with resin binder
US4469721A (en) * 1983-06-06 1984-09-04 Kiyohiko Shioya High emissivity refractory coating, process for manufacturing the same, and coating composition therefor
US5453413A (en) * 1993-06-08 1995-09-26 Nanotechnologies, Inc. Phototransformation of fullerenes
US6471745B1 (en) * 1996-06-28 2002-10-29 University Of Delaware Nanoporous carbon catalytic membranes and method for making the same
WO2001096074A2 (en) * 2000-06-14 2001-12-20 Fosroc International Limited Fire retardant coating
WO2001097956A1 (en) * 2000-06-22 2001-12-27 E.I. Dupont De Nemours And Company Mixed matrix nanoporous carbon membranes
WO2002032558A1 (en) * 2000-10-19 2002-04-25 Membrana Mundi Gmbh Flexible and porous membranes and adsorbents, and method for the production thereof
WO2002060996A1 (en) * 2001-02-01 2002-08-08 Colfirmit Rajasil Gmbh Coating with adsorbing properties for use on interior room surfaces
WO2003088344A1 (en) * 2002-04-10 2003-10-23 Honeywell International, Inc. Low metal porous silica dielectric for integral circuit applications

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8302458B2 (en) 2007-04-20 2012-11-06 Parker-Hannifin Corporation Portable analytical system for detecting organic chemicals in water
US9766215B2 (en) 2011-09-07 2017-09-19 Parker-Hannifin Corporation Analytical system and method for detecting volatile organic compounds in water
US10161920B2 (en) 2011-09-07 2018-12-25 Parker-Hannifin Corporation Analytical system and method for detecting volatile organic compounds in water
US10895565B2 (en) 2015-06-05 2021-01-19 Parker-Hannifin Corporation Analysis system and method for detecting volatile organic compounds in liquid
CN107020022A (en) * 2017-04-26 2017-08-08 山东工业陶瓷研究设计院有限公司 A kind of sewage disposal earthenware slab UF membrane film layer and its preparation technology
US20220199304A1 (en) * 2020-12-18 2022-06-23 Vacuumschmelze Gmbh & Co. Kg Water-based alkaline composition for forming an insulating layer of an annealing separator, coated soft magnetic alloy and method for producing a coated soft magnetic strip
CN115197592A (en) * 2021-04-14 2022-10-18 立邦涂料(中国)有限公司 Formaldehyde-free, ultralow-VOC (volatile organic compounds) and A1 flame-retardant water-based inorganic coating
DE102022209933A1 (en) 2022-09-21 2024-03-21 Robert Bosch Gesellschaft mit beschränkter Haftung Mixture of substances, use of a mixture of substances, process for producing a functional body for an electrochemical energy converter and electrochemical energy converter

Also Published As

Publication number Publication date
DE10361632A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
EP1687244B1 (en) Insulation material
EP1525338B1 (en) Substrate comprising a photocatalytic tio2 layer
EP1633822B1 (en) Antiadhesive high temperature layers
EP1284307B1 (en) Method for providing a metal surface with a vitreous layer
DE69930399T2 (en) PHOTOCATORATORY ITEMS FOR PREVENTING CONSTROGENSES AND DEPOSITS, METHOD FOR PRODUCING THE ARTICLE
DE2506202C3 (en) Aqueous coating agent
DE10324519B4 (en) Ceramic molded article with photocatalytic coating and method of making the same
EP2162565B1 (en) Ultra-hard composite layers on metal surfaces and method for producing the same
EP1181256A1 (en) Tempered safety-glass that is provided with a scratch-resistant, porous sio2 antireflective layer and method for producing the same
EP1659106B1 (en) Ceramic article having photocatalytically active coating and method for producing the same
CN110809561B (en) Method for producing fine particle dispersion of iron-containing rutile titanium oxide, fine particles of iron-containing rutile titanium oxide, and use thereof
WO2005066288A1 (en) Substrates having a nanoporous carbon-containing coating, method for the production thereof and their use
WO2021200135A1 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
EP2122008B1 (en) Fine interference pigments containing glass layers on metal glass and ceramic surfaces and method for production thereof
WO2009037072A1 (en) Silicon/titanium dioxide layer having improved surface properties
WO2011116980A1 (en) Method for applying an antireflection layer to a solar receiver module and solar receiver module comprising an antireflection layer
DE4116522C2 (en) Process for the production of substrates provided with a porous alpha-Al¶2¶O¶3¶ layer, substrates obtained by the process and coating compositions for carrying out the process
DE10235803A1 (en) Substrate used as self-cleaning substrate for protecting objects in medicine and where hygiene is important comprises photocatalytic layer comprising photocatalytically active titanium dioxide and matrix material
WO2009103489A2 (en) Titanium dioxide nanoparticles doped with alkali metal and/or earth alkali metal, and method for the production thereof
DE102013009881B3 (en) Process for the preparation of an SiO 2 antireflective coating, SiO 2 antireflective coated substrate and its use
WO2006125636A1 (en) Method for producing ceramic flakes
EP3010986B1 (en) Method for producing an aqueous composition comprising a condensate based on silicon compounds for producing antireflective coatings
JP4348679B2 (en) Photocatalyst carrying paint and photocatalyst using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: PI0506590

Country of ref document: BR