WO2005066138A1 - Substituierte heterocyclische amide mit fungizider wirkung - Google Patents

Substituierte heterocyclische amide mit fungizider wirkung Download PDF

Info

Publication number
WO2005066138A1
WO2005066138A1 PCT/EP2004/014453 EP2004014453W WO2005066138A1 WO 2005066138 A1 WO2005066138 A1 WO 2005066138A1 EP 2004014453 W EP2004014453 W EP 2004014453W WO 2005066138 A1 WO2005066138 A1 WO 2005066138A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
methyl
ethyl
butyl
propyl
Prior art date
Application number
PCT/EP2004/014453
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Linker
Joachim Kluth
Thomas Seitz
Heiko Rieck
Ulrike Wachendorff-Neumann
Karl-Heinz Kuck
Adeline Mousques
Nathalie Huser-Schwarz
Hélène LACHAISE
Gilbert Spica
Pierre Genix
Jean-Pierre Vors
Jean-Luc Zundel
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Priority to JP2006546013A priority Critical patent/JP2007515444A/ja
Priority to EP04804054A priority patent/EP1706387A1/de
Publication of WO2005066138A1 publication Critical patent/WO2005066138A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/34Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/80Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/18Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen

Definitions

  • the invention relates to amides, several processes for their preparation and their use for controlling harmful organisms.
  • Rl, R 2 , and R 3 are the same or different and are independently hydrogen, halogen, cyano, nitro, each straight-chain or branched alkyl, alkoxy, alkylthio.
  • Alkylsulfonyl or alkylsulfonyl each having 1 to 8 carbon atoms; each straight-chain or branched alkenyl, alkynyl, alkenyloxy or alkynyloxy each having 2 to 6 carbon atoms; each straight-chain or branched haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulfmyl or haloalkylsulfonyl each having 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; each straight-chain or branched haloalkenyl or haloalkenyloxy each having 2 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; each straight-chain
  • Rl, R 2 , and R 3 are not simultaneously hydrogen, or
  • R and R 2 together with the carbon atoms to which they are attached form a carbocyclic ring
  • Het represents an unsubstituted or substituted five-membered aromatic heterocyclic ring
  • R ⁇ represents hydrogen, halogen, cyano, alkyl having 1 to 8 carbon atoms, alkenyl or alkynyl having 2 to 8 carbon atoms or haloalkyl having 1 to 8 carbon atoms and 1 to 9 halogen atoms,
  • R 5 and R ⁇ are the same or different and are independently of one another unsubstituted or halogen or cyano-substituted alkyl, alkoxyalkyl each having 1-8 carbon atoms in the respective alkyl chains or alkenyl or alkynyl each having 2-8 carbon atoms or cycloalkyl having 3-8 Carbon atoms or. Represents unsubstituted or substituted arylalkyl having 1 to 8 carbon atoms in the alkyl chain,
  • A represents alkanediyl or cycloalkanediyl
  • Y stands for oxygen or sulfur.
  • the saturated or unsaturated hydrocarbon chains such as alkyl, alkanediyl, alkenyl or alkynyl, are in each case straight-chain or branched, also in combination with heteroatoms, such as in alkoxy, alkylthio or alkylamino.
  • Halogen generally represents fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, in particular fluorine or chlorine.
  • Aryl stands for aromatic, mono- or polycyclic hydrocarbon rings, such as.
  • Cycloalkyl stands for saturated, carbocyclic, ring-shaped compounds which optionally form a polycyclic ring system with further carbocyclic, fused or bridged rings.
  • Cycloalkenyl stands for carbocyclic, ring-shaped compounds which contain at least one double bond and optionally form a polycyclic ring system with further carbocyclic, fused-on ⁇ i or bridged rings.
  • the new amides of the general formula (I) have a very good activity against harmful organisms, in particular a strong fungicidal activity.
  • the compounds according to the invention are optionally in the form of mixtures of various possible isomeric forms, in particular stereoisomers, such as, for. B. E and Z, eis or trans, threo and erythro, and optical isomers before. Both the E and the Z isomers, as well as the threo- and erythro, the optical isomers, and any mixtures of these isomers, tautomers are described and claimed.
  • the invention preferably relates to compounds of the formula (Ia)
  • R ⁇ R 2, and R 3 are identical or different and independently hydrogen ", fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n- or i-propyl, n-, i-, s- or t -Butyl, ⁇ -pentyl, n-hexyl, n-heptyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl or ethylsulfonyl, trifluoromethyl, trifluoroethyl, difluoromethoxy , Trifluoromethoxy, difluorochloro ethoxy, Trifluoroethoxy, difluoromethylthio, difluorochloromethylthio, trifluor
  • Rl and R 2 together with the carbon atoms to which they are attached form a carbocyclic ring with 5 or 6 ring members, where Rl, R 2 and R 3 are not simultaneously hydrogen,
  • R ⁇ a represents hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-pentyl, n-hexyl, n-heptyl, Is allyl, propargyl or trifluoromethyl,
  • R ⁇ and R ⁇ are the same or different and are independently methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-pentyl, n-hexyl, n-heptyl,
  • Y stands for oxygen or sulfur
  • G represents oxygen, sulfur or -R ⁇ a , where R 7a represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • R 7a represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • the invention also preferably relates to compounds of the formula (Ib)
  • A, R1, R 2 , R 3 , R ⁇ , R ⁇ and Y have the same meaning as preferably given for A, R% R 2 , R 3 , R 5 , R ⁇ and Y in formula (Ia) is
  • R ⁇ b represents hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-pentyl, n-hexyl, n-heptyl, Is allyl, propargyl or trifluoromethyl,
  • G 2 represents oxygen, sulfur or NR 71D , where
  • R ⁇ b represents methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • the invention further preferably relates to compounds of the formula (Ic)
  • R 1 , R 2 , R 3 , R 5 , R 6 and Y have the same meaning as has preferably been given for AR *, R 2 , R 3 , R 5 , R ⁇ and Y in formula (la) .
  • R ⁇ 0 represents hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-pentyl, n-hexyl, n-heptyl, Is allyl, propargyl or trifluoromethyl
  • G 3 represents oxygen, sulfur or NR 7c , where
  • R 7c represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • the invention further preferably relates to compounds of the formula (Id)
  • A, Rl, R 2 , R 3 , R 5 , R 6 and Y have the same meaning as preferably given for A, R *, R 2 , R 3 , R 5 , R ⁇ and Y in formula (la) is TM represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl,
  • G ⁇ stands for oxygen, sulfur or N-R,
  • R 7 ( ⁇ represents methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • the invention further preferably relates to compounds of the formula (Ie)
  • R 1 , R 2 , R 3 , R 5 , R 6 and Y have the same meaning as preferably given for AR 1 , R 2 , R 3 , R 5 , R 6 and Y in formula (1 a) is
  • G 5 represents oxygen, sulfur or NR 7e , where R 7e represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • the invention further preferably relates to compounds of the formula (If)
  • A, R, R 2 , R 3 , R 5 , R ⁇ and Y have the same meaning as has preferably been given for A, R, R 2 , R 3 , R ⁇ , R ⁇ and Y in formula (la) .
  • G ⁇ stands for oxygen, sulfur or -R 7 ⁇ , wherein
  • R 7 ⁇ represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • the invention further preferably relates to compounds of the formula (Ig)
  • A, R, R 2 , R 3 , R 5 , R6 and Y have the same meaning as preferably given for A, Rl, R 2 , R 3 , R 5 , R ° and Y in formula (Ia),
  • G 7 represents oxygen, sulfur or NR 7 S, where
  • R 7 ⁇ represents methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • Rl, R 2 and R 3 are the same or different and, independently of one another, are also particularly preferably hydrogen, fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n- or i-propyl, n-, i-, s - or t-butyl, n-pentyl, n-hexyl, n-heptyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl or ethylsulfonyl
  • R and R 2 together with the carbon atoms to which they are attached form a carbocyclic ring with 5 or 6 ring members:
  • R, R 2 , and R 3 do not simultaneously represent hydrogen.
  • Y particularly preferably represents oxygen.
  • R5 and R6 are identical or different and, independently of one another, are particularly preferably methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-pentyl, n-hexyl, n-heptyl, Allyl, methylallyl, crotonyl, propynyl or butynyl or cyanomethyl.
  • R ⁇ a is particularly preferred for hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-heptyl trifluoromethyl, chlorine or cyano and
  • G particularly preferably represents oxygen, sulfur or NR 7a , where R 7a particularly preferably represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • R ⁇ b particularly preferably for hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, trifluoromethyl, chlorine or cyano and G 2 particularly preferably represents oxygen, sulfur or NR 71 :) , where
  • R 71D particularly preferably represents methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • R ⁇ 0 particularly preferably for hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-heptyl, trifluoromethyl, chlorine or cyano and
  • G 3 particularly preferably for oxygen, sulfur or NR 7c , wherein
  • R 7c particularly preferably represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • R ⁇ d particularly preferably for hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, n-heptyl trifluoromethyl, chlorine or cyano and
  • G ⁇ particularly preferred for oxygen, sulfur or NR 7c *, wherein
  • R 7 d particularly preferably represents methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • G ⁇ particularly preferably represents oxygen, sulfur or NR e , where
  • R 7e particularly preferably represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • G ⁇ particularly preferably represents oxygen, sulfur or NR 7 ⁇ , wherein
  • R 7f particularly preferably represents hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • G 7 particularly preferably represents oxygen, sulfur or NR 7 S, where R 7 S particularly preferably represents methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl.
  • radical definitions given for these radicals in the respective combinations or preferred combinations of radicals are independently replaced by radical definitions of other preferred ranges, regardless of the combination specified in each case.
  • R, R 2 , R 3 and R ⁇ have the meanings given above and represent hydroxyl, halogen or alkoxy,
  • Formula (II) provides a general definition of the carboxylic acid derivatives required as starting materials for carrying out process a) according to the invention.
  • R *, R 2 , R 3 and R ⁇ preferably, or in particular, have those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred or particularly preferred for R1 , R 2 , R 3 and R ⁇ were specified;
  • T preferably represents alkoxy having 1 to 4 carbon atoms, in particular methoxy or ethoxy, hydroxyl or chlorine.
  • the starting materials of the formula (II) are known and / or can be prepared by processes known per se (see, for example, J. Org. Chem. 27 (1962) 4305; J. Chem. Soc. (1963) 5838, 'J. Chem Soc. (1963) 5845; Chem. Ber. 106, 3275 (1973); US 3,479,365; US 3,551,440; J. Org. Chem. (1967) 32 (10) 3132; Tetrahedron 25, (1969), 389; Synthetic Com. (1987), 17 (2), 165; EP 352581; EP 352581; EP 1186598; Bioor. & Medicinal Chem.
  • the amines required for starting materials are generally defined by the formula (HI).
  • A, R 5 and R ⁇ preferably, or in particular, have those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred or as particularly preferred for R ⁇ and R ° were specified.
  • Some of the amines of the formula (IH) are known organic synthetic chemicals and / or can be prepared by processes known per se.
  • a and R 5 have the meanings given above and
  • R 8 represents allyl, propargyl, 2-butynyl or cyanoethyl
  • R9 represents allyl, propargyl, 2-butinyl or cyanomethyl.
  • a and R 5 have the meanings given above,
  • the amino group of the compounds of the formulas (IV-a) and (IV-b) is optionally provided with a protective group which is customary for amines, such as, for example, t-butoxycarbonyl, by customary methods. This gives rise to compounds of the formula (IV-a *) or (IV-b *)
  • PG stands for the protective group.
  • R °, R ", PG, and R ⁇ and R ° have the meanings given above,
  • Hydroxy compounds are generally defined by the formula (TV-a).
  • this formula (IV-a) preferably, or in particular, has the meaning which has already been stated in connection with the description of the compounds of the formula (I) according to the invention as preferred or as particularly preferred for R ⁇ .
  • hydroxy compounds of the formula (IV-a) are commercially available synthetic chemicals or can be obtained by known methods (compare, for example, J. Chem. Soc. 127 (1925), 560 and J. Amer. Chem. Soc. 72 (1950), 2781; JP 11130739 or DE 19958165).
  • Formula (IV-b) provides a general definition of the hydroxy compounds required alternatively as starting materials for carrying out process c) according to the invention.
  • R ° preferably or in particular has the meaning which has already been stated as preferred or as particularly preferred for RP in connection with the description of the compounds of the formula (I) according to the invention.
  • the hydroxy compounds of the formula (IV-b) are commercially available synthetic chemicals or can be obtained by known methods (compare, for example, Ger. Offen, 4322065; J. Org. Chem., 53 (5), 1064-71 (1988); Synth. Comm., 7 (1), 71-8 (1977)).
  • the compounds allyl, propargyl, 2-butynyl chloride, bromide or iodide or chlorine, bromine or iodoacetonitrile which are furthermore required as starting materials for carrying out process c) according to the invention are generally customary synthetic chemicals.
  • Amides required as starting materials for carrying out process b) according to the invention are compounds according to the invention and can be obtained by process a) according to the invention.
  • All reagents that are capable of exchanging carbon-bound oxygen atoms for sulfur atoms such as e.g. Hydrogen sulfide, phosphorus pentasulfide or Lawesson's reagent.
  • Hydrogen sulfide, phosphorus pentasulfide or Lawesson's reagent are commercially available
  • Process a) according to the invention is optionally carried out in the presence of a diluent.
  • a diluent water and organic solvents come into consideration. These include in particular aliphatic, alicyclic or aromatic, optionally halogenated hydrocarbons, such as, for example, gasoline, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, petroleum ether, hexane, cyclohexane, dichloromethane, chloroform, carbon tetrachloride; Ethers such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran or ethylene glycol dimethyl or diethyl ether; Ketones, such as acetone, butanone or methyl isobutyl ketone; Nitriles such as acetonitrile, propionitrile or benzonitrile; Amides such as N, N-dimethylformamide
  • Process a) according to the invention is optionally carried out in the presence of a suitable acid acceptor.
  • a suitable acid acceptor All conventional inorganic or organic bases are suitable as such. These include, for example, alkaline earth metal or alkali metal hydrides, hydroxides, amides, alcoholates, acetates, carbonates or hydrogen carbonates, such as, for example, sodium hydride, sodium amide, sodium methylate, sodium ethylate, potassium tert-butoxide, sodium hydroxide , Potassium hydroxide, ammonium hydroxide, sodium acetate, potassium acetate, calcium acetate, ammonium acetate, sodium carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate or ammonium carbonate, and also tertiary amines, such as.
  • Trimethylamine triethylamine, tributylamine, N, N-dimethylaniline, N, N-dimethylbenzylamine, pyridine, N-methylpiperidine, N, N-dimethylaminopyridine, diazabicyclooctane (DABCO), diazabicyclonones (DBN) or diazabicycloundecen (DBU).
  • DABCO diazabicyclooctane
  • DBN diazabicyclonones
  • DBU diazabicycloundecen
  • Process a) according to the invention is optionally carried out in the presence of a suitable condensing agent.
  • a suitable condensing agent include acid halide formers such as phosgene, phosphorus tribromide, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride or thionyl chloride; Anhydride formers such as ethyl chloroformate, methyl chloroformate, isobutyl chloroformate or methanesulfonyl chloride; Carbodiimides, such as N, N'-dicyclohexylcarbodiimide (DCC) or other customary condensing agents, such as phosphorus pentoxide, polyphosphoric acid, N, N'-carbonyldiimidazole, 2-ethoxy-N-ethoxycarbonyl-l, 2-dihydroquinoline (EEDQ) or triphehyl-
  • Process a) according to the invention is optionally carried out in the presence of a catalyst.
  • a catalyst examples include 4-dimethylaminopyridine, 1-hydroxy-benzotriazole or dimethylformamide.
  • reaction temperatures can be varied within a substantial range when carrying out process a) according to the invention. In general, temperatures between - 50 ° C and + 150 ° C, preferably at temperatures between -20 ° C and 150 ° C.
  • process a) according to the invention 1 to 5 mol, preferably 1.0 to 2.5 mol, of amine are generally employed per mol of carboxylic acid derivative of the formula (11).
  • the process a) according to the invention can also be carried out as a two-stage process.
  • the carboxylic acid derivatives of the general formula (II) are first converted into an activated form and, in a subsequent step, reacted with the amines of the general formula (TU) to give the amides of the general formula (I) according to the invention.
  • all carboxy-activated derivatives can be used, e.g. Acid halides, preferably acid chlorides, acid azides, furthermore symmetrical and mixed anhydrides, such as for example the mixed o-alkyl carbonic anhydrides, further activated esters, such as e.g. p-nitrophenyl ester or N-hydroxisuccinimide ester as well as adducts with condensing agents, e.g. Dicyclohexyl carbodiimide or activated forms of the carboxylic acids generated in situ.
  • Acid halides preferably acid chlorides, acid azides, furthermore symmetrical and mixed anhydrides, such as for example the mixed o-alkyl carbonic anhydrides, further activated esters, such as e.g. p-nitrophenyl ester or N-hydroxisuccinimide ester as well as adducts with condensing agents, e.g. Dicyclohexyl carbodiimide or activate
  • Suitable diluents for carrying out process b) according to the invention are all inert organic solvents. These preferably include aliphatic, alicyclic or aromatic hydrocarbons, such as, for example, petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin; halogenated hydrocarbons, such as chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane; Ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, • 1,2-dimethoxyethane, 1,2-diethoxyethane or anisole.
  • reaction temperatures can be varied within a substantial range when carrying out process b) according to the invention. In general, temperatures from 0 ° C to 150 ° C, preferably at temperatures from 0 ° C to 80 ° C.
  • reaction is carried out, worked up and isolated using known processes (see also the preparation examples).
  • the processes according to the invention are generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure - generally between 0.1 bar and 10 bar.
  • the reaction is carried out, worked up and isolated according to known methods.
  • the substances according to the invention have a strong microbicidal action and can be used to control unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used in crop protection to combat Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection to combat Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae;
  • Pseudomonas species such as, for example, Pseudomonas syringae pv. Lachrymans;
  • Erwinia species such as, for example, Erwinia amylovora;
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora hu uli or
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae;
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca fuliginea
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea (Conidial form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Sclerotinia species such as, for example, Sclerotinia sclerotiorum
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae;
  • Pellicularia species such as, for example, Pellicularia sasakii;
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as, for example, Septoria nodorum
  • Leptosphaeria species such as, for example, Leptosphaeria nodorum;
  • Cercospora species such as, for example, Cercospora canescens
  • Alternaria species such as, for example, Alternaria brassicae;
  • Pseudocercosporella species such as, for example, Pseudocercosporella herpotrichoides.
  • the active compounds according to the invention also have a strong strengthening effect in plants. They are therefore suitable for mobilizing the plant's own defenses against attack by unwanted microorganisms.
  • Plant-strengthening (resistance-inducing) substances are to be understood in the present context as substances which are able to stimulate the defense system of plants in such a way that the treated plants develop extensive resistance to these microorganisms when subsequently inoculated with undesired microorganisms.
  • Undesired microorganisms are to be understood in the present case as phytopathogenic fungi, bacteria and viruses.
  • the materials of the invention 'are thus used to protect plants for a certain period of time after treatment against attack by the pathogens mentioned.
  • the period of time within which protection is brought about generally extends from 1 to 10 days, preferably 1 to 7 days, after the plants have been treated with the active compounds.
  • the active compounds according to the invention can be used particularly successfully to combat diseases in wine, fruit and vegetable cultivation, such as, for example, against Alternaria, Phytophtora and Plasmopara species
  • the active compounds according to the invention are also suitable for increasing the crop yield. They are also less toxic and have good plant tolerance.
  • the active compounds according to the invention can also be used in certain concentrations and application rates as herbicides, for influencing plant growth and for controlling animal pests. If appropriate, they can also be used as intermediates and precursors for the synthesis of further active compounds.
  • Plants are understood here to mean all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant cultivars which can or cannot be protected by plant breeders' rights.
  • Plant parts are to be understood to mean all above-ground and underground parts and organs of the plants, such as shoots, leaves, flowers and roots, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds as well as roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment of the plants and plant parts according to the invention with the active compounds takes place directly or by influencing their surroundings, living space or storage space according to the usual treatment methods, for example by 'dipping, spraying, evaporating, atomizing, scattering, spreading and, in the case of propagation material, in particular seeds, furthermore by single- or multi-layer coating.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are understood to mean non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected against microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which can be attacked or decomposed by microorganisms .
  • parts of production plants for example cooling water circuits, which may be impaired by the multiplication of microorganisms, may also be mentioned.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can cause degradation or a change in the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular molds, wood-coloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • Microorganisms of the following genera may be mentioned, for example:
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Aspergillus niger
  • Chaetomium like Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • a ⁇ ireobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma like Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active ingredients can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV -Cold and warm mist formulations.
  • formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents. If water is used as an extender, organic solvents can, for example, also be used as auxiliary solvents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions
  • alcohols such as butanol or Glyc ⁇ l and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • Solid carrier materials come into question: for example natural rock powders such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Solid carrier materials for granules are considered: for example broken and fractionated natural rocks such as calcite, pumice, marble, sepiolite, dolomite and synthetic granules from inorganic and organic flours as well as granules from organic material such as sawdust, coconut shells, Corn cobs and tobacco stalks.
  • Suitable emulsifiers and / or foaming agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates.
  • Possible dispersants are: eg lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to to spread the spectrum of activity or to prevent the development of resistance.
  • fungicides bactericides
  • acaricides nematicides or insecticides
  • synergistic effects are obtained, i.e. the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • bilanafos binapacryl; biphenyl; bitertanol; Blasticidin-S; boscalid; bromuconazole; Bupirimate;
  • Buthiobate butylamine; Calcium polysulfide; capsimycin; captafol; captan; carbendazim; carboxin;
  • fenamidone Fenapanil; fenarimol; Fenbuconazole; fenfuram; fenhexamid; Fenitropan; fenoxanil;
  • fenpiclonil fenpropidin; fenpropimorph; ferbam; fluazinam; Flubenzimine; fludioxonil; flumetover;
  • flumorph fluoromides; fluoxastrobin; fluquinconazole; flurprimidol; flusilazole; flusulfamide; Flutolanil; flutriafol; folpet; Fosetyl-Al; Fosetyl-sodium; fuberidazole; furalaxyl; furametpyr; Furcarbanil;
  • iprovalicarb frumamycin; isoprothiolane; Isovaledione; kasugamycin; Kresoxim-methyl; mancozeb;
  • Organophosphates e.g. acephate, azamethiphos, azinphos (-methyl, -ethyl), bromophos-ethyl, bromfenvinfos (-methyl), butathiofos, cadusafos, carbophenothion, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorophyros (-methyl / -ethyl) Coumaphos, Cyanofenphos, 'Cyanophos, Chlorfenvinphos, Demeton-S-methyl, Demeton-S-methylsulphon, Dialifos, Diazinon, Dichlofenthion, Dichlorvos / DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Dioxabenzofos, Ethulophone, EthN.
  • Organophosphates e.g. acephate, azamethiphos, azin
  • EPN Famphur, Fenamiphos, Fenitrothion, Fensulfothion, Fenthion, Flupyrazofos, Fonofos, Formothion, Fosmethilan, Fosthiazate, Heptenophos, Iodofenphos, Iprobefos, Isazofos, Isofenphos, Isopropyl O-salicylate, Isoxathec, Methathionos, Methathionos, Malathion Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion (-methyl / -ethyl), Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Pirimiphos (-methyl ⁇ ethyl), Profenofos, Propaphos, Pro petamphos, prothiofos, prothoate, pyraclofo
  • Pyrethroids e.g. acrinathrin, allethrin (d-cis-trans, d-trans), beta-cyfluthrin, bifenthrin, bioallethrin, bioallethrin-S-cyclopentyl isomer, bioethanomethrin, biopermethrin, bioresmethrin, chlovaporthrin, cis-chlorothrinet -Resmethrin, Cis-Perrnethrin, Clocythrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin (alpha-, beta-, theta-, zeta-), Cyphenothrin, DDT, Delta-methrin, Empenthrin (lR-isomer), Esfenxerate, Fenofen, Etofen , Fenpropathrin, fenpyrithrin, f
  • Chloronicotinyls / neonicotinoids e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, nithiazine, thiacloprid, thiamethoxam
  • Fiprole e.g. Acetoprole, Ethiprole, Fipronil, Vaniliprole
  • Mectins e.g. abamectin, avermectin, emamectin, emamectin-benzoate, ivermectin, mitemectin, milbemycin
  • Diacylhydrazine e.g. chromafenozide, halofenozide, methoxyfenozide, tebufenozide
  • Benzoyl ureas e.g. bistrifluron, chlofluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, penfluron, teflubenzuron, triflumuron
  • Cyromazines 10. Inhibitors of oxidative phosphorylation, ATP disruptors
  • organotins e.g. azocyclotin, cyhexatin, fenbutatin-oxide
  • METI's e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, Tolfenpyrad
  • tetronic acids e.g. spirodiclofen, spiromesifen
  • 16.2 tetramic acids [e.g. 3- (2,5-dimethylphenyl) -8-methoxy-2-oxo-l-azaspiro [4.5] dec-3-en-4-yl ethyl carbonate (alias: Carbonic acid, 3- (2, 5-dimethylphenyl) -8-methoxy-2-oxo-l-azaspiro [4.5] - dec-3-en-4-yl ethyl ester, CAS Reg.No .: 382608-10-8) and carbonic acid, cis-3- (2,5-dimethylphenyl) -8-methoxy-2-oxo-l-azaspiro [4.5] dec-3-en-4-yl ethyl ester (CAS Reg.-No .: 203313- 25-1)] 17.
  • Carboxamides e.g. 3- (2,5-dimethylphenyl) -8-methoxy-2-oxo-l-azaspiro [4.5
  • fumigants e.g. aluminum phosphide, methyl bromide, sulfuryl fluoride
  • mite growth inhibitors e.g. clofentezine, etoxazole, hexythiazox
  • the compounds of the formula (I) according to the invention also have very good antimycotic effects. They have a very broad antimycotic activity spectrum in particular against dermatophytes and yeasts, molds and diphasic fungi (for example against Candida species such as Candida albicans, Candida glabrata), and Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus fumigatus, Trichophyton species such as Trichophyton mentagrophytes, microsporon species such as microsporon canis and audouinii.
  • Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum Aspergillus species such as Aspergillus niger and Aspergillus fumigatus
  • Trichophyton species such as Trichophyton mentagrophytes
  • microsporon species such as microsporon canis and audouinii.
  • the list of these fungi is in no way
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by pouring, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients using the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient into the soil itself. The seeds of the plants can also be treated.
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 10 and 1,000 g / ha.
  • the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • plant plants which occur wildly or are obtained by conventional organic breeding methods, such as crossing or protoplast fusion, are species and plant cultivars and their parts are treated; in a further preferred embodiment, transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms) and their parts are treated.
  • the term “parts” or “parts of plants” or “parts of plants” was explained above.
  • Plants of the plant varieties which are in each case commercially available or in use are particularly preferably treated according to the invention.
  • Plant cultivars are understood to mean plants with new properties (“traits”) which have been cultivated by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be cultivars, breeds, bio- and genotypes.
  • the treatment according to the invention can also result in superadditive (“synergistic”) effects Strengthening the effect of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products possible, which go beyond the effects that are actually to be expected.
  • superadditive superadditive
  • the preferred transgenic plants or plant cultivars to be treated according to the invention include all plants which have received genetic material through the genetic engineering modification, which gives these plants particularly advantageous valuable properties (“traits”).
  • traits are better plant wax. growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripening, higher harvest yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and or workability
  • Further and particularly highlighted examples of such properties are an increased defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria and / or vir and an increased tolerance of the plants to certain herbicidal active ingredients.
  • the important cultivated plants such as cereals (wheat, rice), corn, soybeans, potatoes, cotton, tobacco, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes) are mentioned as examples of transgenic plants, corn, soybeans, potatoes, cotton, tobacco and rapeseed are particularly emphasized.
  • the traits are particularly emphasized as the increased defense of the plants against insects, arachnids, namatodes and snails by toxins that arise in the plants, especially those that are caused by the genetic material from Bacillus thuringiensis (eg by the genes Cry ⁇ A (a) , CryIA (b), Cry ⁇ A (c), CryllA, CrylEA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF as well as their combinations) are produced in the plants (hereinafter referred to as "Bt plants").
  • Bacillus thuringiensis eg by the genes Cry ⁇ A (a) , CryIA (b), Cry ⁇ A (c), CryllA, CrylEA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF as well as their combinations
  • traits are also used Particularly emphasized is the increased, defense of plants against fungi, bacteria and viruses through systemic acquired resistance (SAR), systemin, phytoalexins, elicitors as well as resistance genes and correspondingly expressed proteins and toxins.
  • SAR systemic acquired resistance
  • the properties (“traits”) which are particularly emphasized are the increased tolerance of the plants to certain herbicidal active ingredients, for example imidazoline, ⁇ sulfonylureas, glyphosate or phosphinotricin (for example “PAT” gene).
  • the desired properties (“traits”) ) conferring genes can also occur in combinations with one another in the transgenic plants.
  • Bt plants are maize varieties, cotton varieties, soy varieties and potato varieties that are marketed under the trade names YIELD GARD® (e.g. corn, cotton, soy), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® ( Cotton), Nucoton® (cotton) and NewLeaf® (potato).
  • YIELD GARD® e.g. corn, cotton, soy
  • KnockOut® e.g. corn
  • StarLink® e.g. corn
  • Bollgard® Cotton
  • Nucoton® cotton
  • NewLeaf® potato
  • herbicide-tolerant plants are corn varieties, cotton varieties and soy varieties that are sold under the trade names Roundup Ready ⁇ (tolerance to glyphosate e.g. corn, cotton, soy), Liberty Link® (tolerance to phosphinotricin, e.g.
  • rapeseed rapeseed
  • LMI® tolerance to Imidazolinone
  • STS® tolerance to sulfonylureas such as maize
  • the herbicide-resistant plants include the varieties sold under the name Clearfield® (eg maize). Of course, these statements also apply to plant varieties developed in the future or to be marketed in the future with these or future-developed genetic properties ("traits").
  • plants listed can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active compound mixtures according to the invention.
  • the preferred ranges given above for the active substances or mixtures also apply to the treatment of these plants. Plant treatment with the compounds or mixtures specifically listed in the present text should be particularly emphasized.
  • logP values were determined in accordance with EEC Directive 79/831 Annex V. A 0, by HPLC (gradient method, acetonitrile / 0.1% aqueous phosphoric acid)
  • logP values were determined in accordance with EEC Directive 79/831 Annex V.
  • a 8 by HPLC gradient method, acetonitrile / 0.1% aqueous phosphoric acid
  • Solvent 24.5 parts by weight of acetone, 24.5 parts by weight of dimethylacetamide
  • Emulsifier . • 1 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 3 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Solvent 24.5 parts by weight of acetone 24.5 parts by weight of dimethylacetamide emulsifier: 1 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Amide der Formel (I), in der die Symbole die in der Beschreibung angegebenen Bedeutungen haben, ein Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen, sowie Zwischenprodukte der Formeln (IIIa) und (IIIb), wobei die Symbole die in der Beschreibung angegebenen Bedeutungen haben.

Description

SUBSTITUIERTE HETΞROCYC ISCHE AMIDE MIT FUNGIZIDER WIRKUNG
Die Erfindung betrifft Amide, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von schädlichen Organismen.
Amide mit fαngiziden Eigenschaften sind beispielsweise aus der JP 2001348378 bekannt. Die fungizide Wirkung dieser Verbindungen lässt jedoch in manchen Fällen Raum für Verbesserung.
Da sich zudem die ökologischen und ökonomischen Anforderungen an moderne Fungizide laufend erhöhen, beispielsweise was Wirkspektrum, Toxizität, Selektivität, Aufwandmenge, Rückstandsbildung und günstige Herstellbarkeit angeht, und außerdem z.B. Probleme mit Resistenzen auftreten können, besteht die ständige Aufgabe, neue Fungizide zu entwickeln, die zumindest in Teil- bereichen Vorteile gegenüber den bekannten aufweisen.
Es wurden neue Verbindungen der allgemeinen Formel (I) gefunden,
Figure imgf000003_0001
in welcher
Rl, R2, und R3 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, Halogen, Cyano, Nitro, jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio. Alkylsulfϊnyl oder Alkyl- sulfonyl mit jeweils 1 bis 8 Kohlenstoffatomen; jeweils geradkettiges oder verzweigtes Alkenyl, Alkinyl, Alkenyloxy oder Alkinyloxy mit jeweils 2 bis 6 Kohlenstoffatomen; jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfmyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen; jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen; jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkoxycarbonyl, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;
Cycloalkyl mit 3 bis 6 Kohlenstoffatomen stehen, wobei
Rl, R2, und R3 nicht gleichzeitig für Wasserstoff stehen, oder
R und R2 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen carbocyclischen Ring bilden,
Het für einen unsubstituierten oder substituierten fünfgliedrigen aromatischen heterocyclischen Ring steht,
R^ für Wasserstoff, Halogen, Cyano, Alkyl mit 1 bis 8 Kohlenstoffatomen, Alkenyl oder Alkinyl mit 2 bis 8 Kohlenstoffatomen oder Halogenalkyl mit 1 bis 8 Kohlenstoffatomen und 1 bis 9 Halogenatomen steht,
R5 und R^ gleich oder verschieden sind und unabhängig voneinander für unsubstituiertes oder jeweils durch Halogen oder Cyano substituiertes Alkyl, Alkoxyalkyl mit jeweils 1 - 8 Kohlenstoffatomen in den jeweiligen Alkylketten oder Alkenyl oder Alkinyl mit jeweils 2 - 8 Kohlenstoffatomen oder Cycloalkyl mit 3 - 8 Kohlenstoffatomen oder., für unsubstituiertes oder substituiertes Arylalkyl mit 1 - 8 Kohlenstoffatomen in der Alkylkette steht,
A für Alkandiyl oder Cycloalkandiyl steht und
Y für Sauerstoff oder Schwefel steht.
In den Definitionen sind die gesättigten oder ungesättigten Kohlenwasserstoffketten, wie Alkyl, Alkandiyl, Alkenyl oder Alkinyl, auch in Verknüpfung mit Heteroatomen, wie in Alkoxy, Alkylthio oder Alkylamino, jeweils geradkettig oder verzweigt. Halogen steht im allgemeinen für Fluor, Chlor, Brom oder lod, vorzugsweise für Fluor, Chlor oder Brom, insbesondere für Fluor oder Chlor.
Aryl steht für aromatische, mono- oder polycyclische Kohlenwasserstoffringe, wie z. B. Phenyl, Naphthyl, Anthranyl, Phenanthryl, vorzugsweise Phenyl oder Naphfhyl, insbesondere Phenyl.
Cycloalkyl steht für gesättigte, carbocyclische, ringförmige Verbindungen, die gegebenenfalls mit weiteren carbocyclischen, ankondensierten oder überbrückten Ringen ein polycyclisches Ringsystem bilden.
Cycloalkenyl steht für carbocyclische, ringförmige Verbindungen, die mindestens eine Doppelbindung enthalten und gegebenenfalls mit weiteren carbocyclischen, ankondensierteαi oder überbrückten Ringen ein polycyclisches Ringsystem bilden.
Weiterhin wurde gefunden, dass die neuen Amide der allgemeinen Formel (I) eine selir gute Wirkung gegen Schadorganismen, insbesondere eine starke fungizide Wirkung zeigen.
Die erfindungsgemäßen Verbindungen liegen gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z. B. E- und Z-, eis- oder trans- , threo- und erythro-, sowie optischen Isomeren vor. Es werden sowohl die E- als auch- die Z- Isomeren, wie auch die threo- und erythro-, die optischen Isomeren, sowie beliebige Mischungen dieser Isomeren, Tautomere beschrieben und beansprucht.
Gegenstand der Erfindung sind vorzugsweise Verbindungen der Formel (Ia),
Figure imgf000005_0001
in welcher
R\ R2, und R3 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff", Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, α-Pentyl, n-Hexyl, n-Heptyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i- Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlorr ethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluor- methylsulfinyl oder Trifluormethylsulfonyl, Dimethylamino, Diethylamino, Acetyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinόmethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl stehen, oder
Rl und R2 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen carbocyclischen Ring mit 5 oder 6 Ringgliedern bilden, wobei Rl , R2, und R3 nicht gleichzeitig für Wasserstoff stehen,
R^a für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Allyl, Propargyl oder Trifluormethyl steht,
R^ und R^ gleich oder verschieden sind und unabhängig voneinander für Methyl, Ethyl, n- oder i- Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl,
Allyl, Methylallyl, Crotonyl, Propinyl oder Butinyl oder Cyanomethyl steht, oder für gegebenenfalls durch Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfmyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluor- methoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl, Acetyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl substituiertes Benzyl steht,
A für Methandiyl, Ethan- 1 , 1 -diyl, Ethan- 1 ,2-diyl, Propan- 1 , 1 -diyl, Propan- 1 ,2-diyl, Propan- 1,3- diyl, Propan-2,2-diyl, Butan- 1,1 -diyl, Butan- 1 ,2-diyl, Butan- 1,3 -diyl, Butan- 1,4-diyl, Butan- 2,2-diyl, Butan-2,3-diyl, l,l-Diefhyletan-l,2-diyl, Cyclopropan- 1,1 -diyl oder Cyclopropan- 1 ,2-diyl steht,
Y für Sauerstoff oder Schwefel steht und
G für Sauerstoff, Schwefel oder -R^a steht, wobei R7a für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht. Gegenstand der Erfindung sind ebenfalls vorzugsweise Verbindungen der Formel (Ib),
Figure imgf000007_0001
in welcher
A, R1 , R2, R3, R^, R^ und Y die gleiche Bedeutung haben, wie vorzugsweise für A, R-% R2, R3, R5, R^ und Y in Formel (la) angegeben worden ist,
R^b für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Allyl, Propargyl oder Trifluormethyl steht,
G2 für Sauerstoff, Schwefel oder N-R71D steht, wobei
R^b für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
Gegenstand der Erfindung sind weiterhin vorzugsweise Verbindungen der Formel (Ic),
Figure imgf000007_0002
in welcher
A, R1, R2, R3, R5, R6 und Y die gleiche Bedeutung haben, wie vorzugsweise für A R*, R2, R3, R5, R^ und Y in Formel (la) angegeben worden ist,
R^0 für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Allyl, Propargyl oder Trifluormethyl steht, G3 für Sauerstoff, Schwefel oder N-R7c steht, wobei
R7c für für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
Gegenstand der Erfindung sind ferner vorzugsweise Verbindungen der Formel (Id),
Figure imgf000008_0001
in welcher
A, Rl, R2, R3, R5, R6 und Y die gleiche Bedeutung haben, wie vorzugsweise für A, R*, R2, R3, R5, R^ und Y in Formel (la) angegeben worden ist, ™ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht,
G^ für Sauerstoff, Schwefel oder N-R steht, wobei
R7(^ für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
Gegenstand der Erfindung sind ferner vorzugsweise Verbindungen der Formel (Ie),
Figure imgf000008_0002
in welcher
A, R1, R2, R3, R5, R6 und Y die gleiche Bedeutung haben, wie vorzugsweise für A R1, R2, R3, R5, R6 und Y in Formel (1 a) angegeben worden ist,
G5 für Sauerstoff, Schwefel oder N-R7e steht, wobei R7e für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
Gegenstand der Erfindung sind ferner vorzugsweise Verbindungen der Formel (If),
Figure imgf000009_0001
in welcher
A, R , R2, R3, R5, R^ und Y die gleiche Bedeutung haben, wie vorzugsweise für A, R , R2, R3, R^, R^ und Y in Formel (la) angegeben worden ist,
G^ für Sauerstoff, Schwefel oder -R7^ steht, wobei
R7^ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
Gegenstand der Erfindung sind ferner vorzugsweise Verbindungen der Formel (Ig),
Figure imgf000009_0002
in welcher
A, R , R2, R3, R5, R6 und Y die gleiche Bedeutung haben, wie vorzugsweise für A, Rl, R2, R3, R5, R° und Y in Formel (la) angegeben worden ist,
G7 für Sauerstoff, Schwefel oder N-R7S steht, wobei
R für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
In den Formeln (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig) haben A, R1, R2, R3, R5, RÖ und Y die folgenden besonders bevorzugten Bedeutungen: Rl, R2, und R3 sind gleich oder verschieden und stehen unabhängig voneinander auch besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i- Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Methoxy, Ethoxy, n- oder i- Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl, Dimethylamino, Diethylamino, Acetyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Meth- oximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl stehen, oder
R und R2 bilden gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen carbocyclischen Ring mit 5 oder 6 Ringgliedern:
R , R2, und R3 stehen nicht gleichzeitig für Wasserstoff.
A steht besonders bevorzugt für Methandiyl, Ethan- 1,1 -diyl, Ethan- 1 ,2-diyl, Propan-l,l-diyl, Propan- 1 ,2-diyl, Propan-l,3-diyl oder Propan-2,2-diyl.
Y steht besonders bevorzugt für Sauerstoff.
R5 und R6 sind gleich oder verschieden und stehen unabhängig voneinander besonders bevorzugt für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Allyl, Methylallyl, Crotonyl, Propinyl oder Butinyl oder Cyanomethyl.
In Formel (Ia) stehen
R^a besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Heptyl Trifluormethyl, Chlor oder Cyano und
G insbesondere bevorzugt für Sauerstoff, Schwefel oder N-R7a, wobei R7a besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
In Formel (Ib) stehen
R^b besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Trifluormethyl, Chlor oder Cyano und G2 besonders bevorzugt für Sauerstoff, Schwefel oder N-R71:) steht, wobei
R71D besonders bevorzugt für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
In Formel (Ic) stehen
R^0 besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Heptyl, Trifluormethyl, Chlor oder Cyano und
G3 besonders bevorzugt für Sauerstoff, Schwefel oder N-R7c, wobei
R7c besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
In Formel (Id) stehen
R^d besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Heptyl Trifluormethyl, Chlor oder Cyano und
G^ besonders bevorzugt für Sauerstoff, Schwefel oder N-R7c*, wobei
R7d besonders bevorzugt für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
In Formel (Ie) steht
G^ besonders bevorzugt für Sauerstoff, Schwefel oder N-R e steht, wobei
R7e besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
In Formel (If) stehen
G^ besonders bevorzugt für Sauerstoff, Schwefel oder N-R7^ steht, wobei
R7f besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
In Formel (Ig) stehen
G7 insbesondere bevorzugt für Sauerstoff, Schwefel oder N-R7S steht, wobei R7S besonders bevorzugt für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
Die oben aufgefülirten allgemeinen oder in Vorzugsbereichen angegebenen Reste-definitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangsstoffe bzw. Zwischenprodukte.
Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen für diese Reste angegebenen Restedefinitionen werden unabhängig von der jeweilig angegebenen Kombination, beliebig auch durch Restedefinitionen anderer Vorzugsbereiche ersetzt.
Schließlich wurde gefunden, dass man die Amide der allgemeinen Formel (I) erhält, wenn man
a) Carbonsäurederivate der allgemeinen Formel (II)
Figure imgf000012_0001
in welcher
R , R2, R3 und R^ die oben angegebenen Bedeutungen haben und für Hydroxy, Halogen oder Alkoxy steht,
mit einem Amin der allgemeinen Formel (DI)
Figure imgf000012_0002
in welcher
R-\ RÖ und A die oben angegebenen Bedeutungen haben,
■ oder mit einem Säureadditionskomplex hiervon ■ gegebenenfalls in Gegenwart eines Säureakzeptors, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt oder wenn man
b) Amide der Formel (I) mit Y ' in seiner Bedeutung als Sauerstoff mit einem Schwefelungsreagenz, gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.
Verwendet man beispielsweise 3-(4-Chlorphenyl)-5-methylisoxazol-4-carbonylchlorid und (4- Ethoxy-3-methoxybenzyl)amin als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema veranschaulicht werden:
Figure imgf000013_0001
Die zur Durchführung des erfindungsgemäßen Verfahrens a) als Ausgangsstoffe benötigten Carbonsäurederivate sind durch die Formel (II) allgemein definiert. In dieser Formel (II) haben R*, R2, R3 und R^ vorzugsweise, bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für Rl, R2, R3 und R^ angegeben wurden; T steht vorzugsweise für Alkoxy mit 1 bis 4 Kohlenstoffatomen, insbesondere für Methoxy oder Ethoxy, für Hydroxy oder Chlor.
Die Ausgangsstoffe der Formel (II) sind bekannt und/oder können nach an sich bekannten Verfahren hergestellt werden (vergleiche z. B. J. Org. Chem. 27 (1962) 4305; J. Chem. Soc. (1963) 5838,' J. Chem. Soc. (1963) 5845; Chem. Ber. 106, 3275 (1973); US 3,479,365; US 3,551,440; J. Org. Chem. (1967) 32(10) 3132; Tetrahedron 25, (1969), 389; Synthetic Com. (1987), 17(2), 165; EP 352581; EP 352581; EP 1186598; Bioor.&Medicinal Chem. Lett, 11(5),641(2001); JP 20011011060; JP 2001011059; EP 352581; Tet. Lett. 23,(2), 235 (1982); J. of Org. Chem. 55(13), 4011 (1990); EP 352581; EP 3252581; Synthesis, (1), 64 (1996); GB 1,058,384; US 3,257,411; J. Am. Chem. Soc. (1969), 89(21), 5462; J. Org. Chem. (1967), 27, 4305; US4,380,465; Chem.Ber. 105, (1972) 196; Tetrahedron Letters 17, (1971), 1281; WO95/04724; CH 502365; EP 785193; Heterocycles (2000), 53(1), 159; Aust. J. Chem. (1994), 47,1375; Bulletin des Soc. Chim. Beiges (1996), 105(1), 33; Bulletin des Soc. Chim. Beiges (1996), 105(4),189). Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens a) als . Ausgangsstoffe benötigten Amine sind durch die Formel (HI) allgemein definiert. In dieser Formel (HI) haben A, R5 und R^ vorzugsweise, bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R^ und R° angegeben wurden.
Die Amine der Formel (IH) sind teilweise bekannte organische Synthesechemikalien und/oder können nach an sich bekannten Verfahren hergestellt werden.
Neu und ebenfalls Gegenstand der Erfindung sind Amine der Formeln (Hl-a)
Figure imgf000014_0001
in welcher
A und R5 die oben angegebenen Bedeutungen haben und
R8 für Allyl, Propargyl, 2-Butinyl oder Cyanmerhyl steht
und (iπ-b)
Figure imgf000014_0002
in welcher
A und RP die oben angegebenen Bedeutungen haben und
R9 für Allyl, Propargyl, 2-Butinyl oder Cyanmethyl steht.
Die Amine der Formeln (Hl-a) und (Hl-b) werden erhalten (Verfahren c), wenn man Hydroxy- verbindungen der allgemeinen Formel (IV-a)
Figure imgf000014_0003
in welcher
A und R5 die oben angegebenen Bedeutungen haben,
bzw. Hydroxyverbmdungen der allgemeinen Formel (IV-b)
Figure imgf000015_0001
in welcher
A und R° die oben angegebenen Bedeutungen haben,
mit Allyl-, Propargyl-, 2-Butinyl-chlorid, -bromid oder -iodid oder Chlor- Brom- oder Iodacetonitril, gegebenenfalls in Gegenwart eines Verdünnungsmittels, wie beispielsweise Acetonitril, und gegebenenfalls in Gegenwart eines Säureakzeptors, wie beispielsweise Kaliumcarbonat, umsetzt.
Die Aminogruppe der Verbindungen der Formel (IV-a) und (IV-b) wird vor der Alkylierung gegebenenfalls mit einer für Amine üblichen Schutzgruppe, wie beispielsweise t-Butoxycarbonyl, nach üblichen Methoden versehen. Hierbei entstehen Verbindungen der Formel (IV-a*), bzw. (IV-b*)
Figure imgf000015_0002
(IV-a*) (IV-b*)
in welcher
R5 bzw. R" die oben angegebenen Bedeutungen haben und
PG für die Schutzgrupe steht.
Nach der Alkylierungsreaktion, die zunächst zu Verbindungen der Formel (HJ-a*) bzw. (HI-b*)
Figure imgf000016_0001
(lH-a*) (m-b*)
in welchen
R°, R", PG, sowie R^ bzw. R° die oben angegebenen Bedeutungen haben,
führt, wird die Schutzgruppe nach üblichen Methoden wieder abgespalten (siehe auch die Herstellungsbeispiele).
Verwendet man beispielsweise 4-(Aminomethyl)-2-methoxyphenol und Allylbromid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (c) durch das folgende Formelschema veranschaulicht werden:
Figure imgf000016_0002
Die zur Durchführung des erfindungsgemäßen Verfahrens c) als Ausgangsstoffe benötigten
Hydroxyverbindungen sind durch die Formel (TV-a) allgemein definiert. In dieser Formel (IV-a) hat vorzugsweise, bzw. insbesondere diejenige Bedeutung, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R^ angegeben wurde.
Die Hydroxyverbindungen der Formel (IV-a) sind handelsübliche Synthesechemikalien oder können nach bekannten Methoden erhalten werden (vergleiche z. B. J. Chem. Soc. 127 (1925), 560 und J. Amer. Chem. Soc. 72 (1950), 2781; JP 11130739 oder DE 19958165).
Die zur Durchführung des erfϊndungsgemäßen Verfahrens c) alternativ als Ausgangsstoffe benötigten Hydroxyverbindungen sind durch die Formel (IV-b) allgemein definiert. In dieser Formel (IV-b) hat R° vorzugsweise, bzw. insbesondere diejenige Bedeutung, die bereits im Zusammenhang mit der Beschreibung der erfmdungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für RP angegeben wurde. Die Hydroxyverbindungen der Formel (IV-b) sind handelsübliche Synthesechemikalien oder können nach bekannten Methoden erhalten werden (vergleiche z. B. Ger. Offen, 4322065; J. Org. Chem., 53(5), 1064-71 (1988); Synth. Comm., 7(1), 71-8 (1977)).
Die zur Durchführung des erfindungsgemäßen Verfahrens c) weiterhin als Ausgangsstoffe benötigten Verbindungen Allyl-, Propargyl-, 2-Butinyl-chlorid, -bromid oder -iodid oder Chlor- Brom- oder Iodacetonitril sind allgemein übliche Synthesechemikalien.
Verwendet man beispielsweise 3-(4-Chlo henyl)-N-(4-ethoxy-3-methoxybenzyl)-5- methylisoxazol-4-carboxamid und Phosphorpentasulfid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden:
Figure imgf000017_0001
zur Durchführung des erfindungsgemäßen Verfahrens b) als Ausgangsstoffe benötigten Amide sind erfindungsgemäße Verbindungen und können nach dem erfindungsgemäßen Verfahren a) erhalten werden.
Als Schwefelungsreagenz zur Durchführung des erfindungsgemäßen Verfahrens b) kommen alle Reagenzien infrage, die in der Lage sind, an Kohlenstoff gebundene Sauerstoffatome gegen Schwefelatome auszutauschen, wie z.B. Schwefelwasserstoff, Phosphorpentasulfid oder Lawesson's Reagenz.
Schwefelwasserstoff, Phosphorpentasulfid oder Lawesson's Reagenz sind handelsübliche
Synthesechemikalien.
Das erfindungsgemäße Verfahren a) wird gegebenenfalls in Gegenwart eines Verdünnungsmittels durchgeführt. Als solche kommen Wasser und organische Lösungsmittel in Betracht. Hierzu gehören insbesondere aliphatische, alicyclische oder aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie beispielsweise Benzin, Benzol, Toluol, Xylol, Chlorbenzol, Dichlorbenzol, Petrolether, Hexan, Cyclohexan, Dichlormethan, Chloroform, Tetra- chlorkohlenstoff; Ether, wie Diethylether, Diisopropylether, Dioxan, Tetrahydrofuran oder Ethylenglykol-dimethyl- oder -diethylether; Ketone, wie Aceton, Butanon oder Methyl-isobutyl- keton; Nitrile, wie Acetonitril, Propionitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphos- phorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester, Sulfoxide, wie Dimethylsulfoxid, Alkohole, wie Methanol, Ethanol, n- oder i-Propanol, Ethylenglykol, Ethylenglykolmonomethylether, Ethylenglykolmonoethylether, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, deren Gemische mit Wasser oder reines Wasser.
Das erfindungsgemäße Verfahren a) wird gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören beispielsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, - amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natrium- hydroxid, Kaliumhydroxid, Ammoniuihhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natrium- hydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie . Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methyl- piperidin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU) .
Das erfindungsgemäße Verfahren a) wird gegebenenfalls in Gegenwart eines geeigneten Kondensationsmittels durchgeführt. Als solche kommen alle üblicherweise für derartige Amidierungsreaktionen verwendbaren Kondensationsmittel infrage. Beispielhaft genannt seien Säurehalogenidbildner wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphor- pentachlorid, Phosphoroxychlorid oder Thionylchlorid; Anhydridbildner wie Chlor- ameisensäureethylester, Chlorameisensäuremethylester, Chlorameisensäureisobutylester oder Methansulfonylchlorid; Carbodiimide, wie N,N'-Dicyclohexylcarbodiimid (DCC) oder andere übliche Kondensationsmittel, wie Phosphorpentoxid, Polyphosphorsäure, N,N'-Carbonyl- diimidazol, 2-Ethoxy-N-ethoxycarbonyl-l,2-dihydrochinolin (EEDQ) oder Triphehyl- phosphin/Tetrachlorkohlenstoff.
Das erfindungsgemäße Verfahren a) wird gegebenenfalls in Gegenwart eines Katalysators durchgeführt. Beispielsweise genannt seien 4-Dimethylaminopyridin, 1-Hydroxy-benzotriazol oder Dimethylformamid.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen - 50°C und +150°C, vorzugsweise bei Temperaturen zwischen -20°C und 150°C.
Zur Durchführung des erfindungsgemäßen Verfahrens a) setzt man je Mol an Carbonsäurederivat der Formel (11) im allgemeinen 1 bis 5 Mol, vorzugsweise 1,0 bis 2,5 Mol an Amin ein. Das erfindungsgemäße Verfaliren a) kann auch als zweistufiger Prozess durchgeführt werden. Dabei werden die Carbonsäurederivate der allgemeinen Formel (II) zunächst in eine aktivierte Form überführt und in einem anschließenden Schritt mit den Aminen der allgemeinen Formel (TU) zu den erfindungsgemäßen Amiden der allgemeinen Formel (I) umgesetzt.
Als aktivierte Form der Carbonsäurederivate der Formel (II) kommen alle Carboxy-aktivierten Derivate infrage, wie z.B. Säurehalogenide, bevorzugt Säurechloride, Säureazide, ferner symmetrische und gemischte Anhydride, wie beispielsweise die gemischten o-Alkyl- kohlensäureanhydride, weiterhin aktivierte Ester, wie z.B. p-Nitrophenylester oder N- Hydroxisuccinimidester sowie Addukte mit Kondensationsmitteln, wie z.B. Dicyclohexyl- carbodiimid oder in situ erzeugte aktivierte Formen der Carbonsäuren.
Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens b) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasser- Stoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl- t-butylether, Methyl-t-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2- Diethoxyethan oder Anisol.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.
' Zur Durchführung des erfindungsgemäßen Verfahrens b) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Amides der Formel (I) mit Y in seiner Bedeutung als Sauerstoff im allgemeinen 0,1 bis 15 Mol, vorzugsweise 0,5 bis 8 Mol Schwefelungsreagenz ein.
Die Reaktionsdurchführung, Aufarbeitung und Isolierung der Reaktionsprodukte erfolgt nach bekannten Verfahren (vergleiche auch die Herstellungsbeispiele).
Die erfindungsgemäßen Verfahren werden im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck - im allgemeinen zwischen 0,1 bar und 10 bar - zu arbeiten.
Die Reaktionsdurchführung, Aufarbeitung und Isolierung der Reaktionsprodukte erfolgt nach bekannten Verfaliren. Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich im Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Pythium-Arten, wie beispielsweise Pythium ultimum;
Phytophthora- Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora hu uli oder
Pseudoperonospora cubensis;
Plasmopara- Arten, wie beispielsweise Plasmopara viticola;
Bremia-Arten, wie beispielsweise Bremia lactucae;
Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Erysiphe-Arten, wie beispielsweise Erysiphe graminis;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;
Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
Venturia-Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora- Arten, wie beispielsweise Pyrenophora teres oder P. graminea (Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus
(Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia-Arten, wie beispielsweise Puccinia recondita;
Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia- Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Botrytis-Arten, wie beispielsweise Botrytis cinerea;
Septoria-Arten, wie beispielsweise Septoria nodorum;
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;
Cercospora-Arten, wie beispielsweise Cercospora canescens;
Alternaria-Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.
Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.
Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten. Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe' können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.
Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Alternaria-, Phytophtora- und Plasmopara- Arten, einsetzen
Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs-und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch' Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der- zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfarbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum, Polyporus, wie Polyporus versicolor,
Aαireobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
Escherichia, wie Escherichia coli,
Pseudomonas, wie Pseudomonas aeruginosa,
Staphylococcus, wie Staphylococcus aureus.
Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aro- maten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlen- Wasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycόl sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabäkstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxy- ethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfo- nate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexformige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitem oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen infrage:
Fungizide:
2-Phenylphenol; 8-Hydroxyquinoline sulfate; Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampro- pylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin; Benalaxyl; Benalaxyl-M; Benodanil; Benomyl; Benthiavalicarb-isopropyl; Benzamäcril; Benzamacril-isobutyl;
Bilanafos; Binapacryl; Biphenyl; Bitertanol; Blasticidin-S; Boscalid; Bromuconazole; Bupirimate;
Buthiobate; Butylamine; Calcium polysulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin;
Carpropamid; Carvone; Chinomethionat; Chlobenthiazone; Chlorfenazole; Chloroneb; Chlorothalonil;
Chlozolinate; Clozylacon; Cyazofamid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram; Dagger G; Debacarb; Dichlofluanid; Dichlone; Dichlorophen; Diclocymet; Diclomezine;
Dicloran; Diethofencarb; Difenoconazole; Diflumetorim; Dimethirimol; Dimetiiomorph; Dimoxy- strobin; Diniconazole; Diniconazole-M; Dinocap; Diphenylamine; Dipyrithione; Ditalimfos; Dithianon; Dodine; Drazoxolon; Edifenphos; Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole; Famoxadone;
Fenamidone; Fenapanil; Fenarimol; Fenbuconazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxanil;
Fenpiclonil; Fenpropidin; Fenpropimorph; Ferbam; Fluazinam; Flubenzimine; Fludioxonil; Flumetover;
Flumorph; Fluoromide; Fluoxastrobin; Fluquinconazole; Flurprimidol; Flusilazole; Flusulfamide; Fluto- lanil; Flutriafol; Folpet; Fosetyl-Al; Fosetyl-sodium; Fuberidazole; Furalaxyl; Furametpyr; Furcarbanil;
Furmecyclox; Guazatine; Hexachlorobenzene; Hexaconazole; Hymexazol; L azalil; Imibenconazole; hninoctadine triacetate; Iminoctadine tris(albesilate); Iodocarb; Ipconazole; Iprobenfos; Iprodione;
Iprovalicarb; frumamycin; Isoprothiolane; Isovaledione; Kasugamycin; Kresoxim-methyl; Mancozeb;
Maneb; Meferi zone; Mepanipyrim; Mepronil; Metalaxyl; Metalaxyl-M; Metconazole; Metha- sulfocarb; Methfuroxam; Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil;
Myclozolin; Natamycin; Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol; Ofurace; Orysa- strobin; Oxadixyl; Oxolinic acid; Oxpoconazole; Oxycarboxin; Oxyfenthiin; Paclobutrazol; Pefura- zoate; Penconazole; Pencycuron; Phosdiphen; Phthalide; Picoxystrobin; Piperalin; Polyoxins; Poly- oxorim; Probenazole; Prochloraz; Procymidone; Propamocarb; Propanosine-sodium; Propiconazole; Propineb; Proquinazid; Prothioconazole; Pyraclostrobin; Pyrazophos; Pyrifenox; Pyrimethanil; Pyro- quilon; Pyroxyfur; Pyirolnitrine; Quinconazole; Quinoxyfen; Quintozene; Simeconazole; Spiroxamine;
Sulfur; Tebuconazole; Tecloftalam; Tecnazene; Tetcyclacis; Tetraconazole; Thiabendazole; Thicyofen;
Thifluzamide; Thiophanate-methyl; Thiram; Tioxymid; Tolclofos-methyl; Tolylfluanid; Triadimefon;
Triadimenol; Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemoφh; Trifloxystrobin; Triflu- mizole; Triforine; Triticonazole; Uniconazole; Validamycin A; Vinclozolin; Zineb; Ziram; Zoxamide;
(2S)-N-[2-[4-[[3-(4-Chloφhenyl)-2-propnyl]oxy]-3-methoxyphenyl]ethyl]-3-me1hyl-2-[(methylsulfo- nyl)amino]-butanarrιid; l-(l-Naphthalinyl)-lH-pyrrol-2,5-dion; 2,3,5,6-Tetrachlor-4-(meüιylsulfonyl)- pyridin; 2-Ammo-4-memyl-N-phenyl-5-thiazolcarboxarnid; 2-Chlor-N-(2,3-dihydro-l , 1 ,3-trimethyl-lH- inden-4-yl)-3-pyridiricarboxamid; 3,4,5-Trichlor-2,6-pyridindicarbonitril; Actinovate; cis-l-(4-Chlor- phenyl)-2-(lH-l,2,4-triazol-l-yl)-cycloheptanol; Methyl l-(2,3-dihydro-2,2-dimethyl-lH-inden-l-yl)- lH-imidazol-5-carboxylat; Monokaliumcarbonat; N-(6-Methoxy-3-pyridinyl)-cyclopropancarboxamid;
N-Butyl-8-(l,l-dinαethyle yl)-l-oxaspiro[4.5]decan-3-arrώι; Natriumtetracarbonat; sowie Kupfersalze und -Zubereitungen, wie Bordeaux Mischung; Kupferhydroxid, Rupfernaph- thenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid; Mancopper; Kupferoxin.
Bakterizide:
. Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure. Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen. Insektizide / Akarizide / Nematizide:
1. Acetylcholinesterase (AC E) Inhibitoren
1.1 Carbamate (z.B. Alanycarb, Aldicarb, Aldoxycarb, Allyxycarb, Aminocarb, Azamethiphos, Bendiocarb, Benfuracarb, Bufencarb, Butacarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbo- furan, Carbosulfan, Chloethocarb, Coumaphos, Cyanofenphos, Cyanophos, Dimetilan, Ethiofen- carb, Fenobucarb, Fenothiocarb, Formetanate, Furathiocarb, Isoprocarb, Metam-sodium, Methio- carb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Promecarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC, Xylylcarb)
1.2 Organophosphate (z.B. Acephate, Azamethiphos, Azinphos (-methyl, -ethyl), Bromophos- ethyl, Bromfenvinfos (-methyl), Butathiofos, Cadusafos, Carbophenothion, Chlorethoxyfos, Chlor- fenvinphos, Chlormephos, Chloφyrifos (-methyl/-ethyl), Coumaphos, Cyanofenphos,' Cyanophos, Chlorfenvinphos, Demeton-S-methyl, Demeton-S-methylsulphon, Dialifos, Diazinon, Dichlofen- thion, Dichlorvos/DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Dioxabenzofos, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitrothion, Fensulfothion, Fenthion, Flupyrazofos, Fonofos, Formothion, Fosmethilan, Fosthiazate, Heptenophos, Iodofenphos, Iprobenfos, Isazofos, Isofenphos, Isopropyl O-salicylate, Isoxathion, Malathion, Mecarbam, Methacrifos, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion (-methyl/-ethyl), Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Pirimiphos (-methylΛethyl), Profenofos, Propaphos, Propetamphos, Prothiofos, Prothoate, Pyraclofos, Pyridaphenthion, Pyridathion, Quinalphos, Sebufos, Sulfotep, Sulprofos, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Triclorfon, Vamidothion)
2. Natrium-Kanal-Modulatoren /Spannungsabhängige Natrium-Kanal-Blocker
2.1 Pyrethroide (z.B. Acrinathrin, Allethrin (d-cis-trans, d-trans), Beta-Cyfluthrin, Bifenthrin, Bio- allethrin, Bioallethrin-S-cyclopentyl-isomer, Bioethanomethrin, Biopermethrin, Bioresmethrin, Chlovaporthrin, Cis-Cypermethrin, Cis-Resmethrin, Cis-Perrnethrin, Clocythrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin (alpha-, beta-, theta-, zeta-), Cyphenothrin, DDT, Delta- methrin, Empenthrin (lR-isomer), Esfenvalerate, Etofenprox, Fenfluthrin, Fenpropathrin, Fenpy- rithrin, Fenvalerate, Flubrocythrinate, Flucythrinate, Flufenprox, Flumethrin, Fluvalinate, Fubfenprox, Gamma-Cyhalothrin, hniprothrin, Kadethrin, Lambda-Cyhalothrin, Metofluthrin, Per- methrin (eis-, trans-), Phenothrin (lR-trans isomer), Prallethrin, Profluthrin, Protrifenbute, Pyres- methrin, Resmethrin, RU 15525, Silafluofen, Tau-Fluvalinate, Tefluthrin, Terallethrin, Tetra- methrin (lR-isomer), Tralomethrin, Transfluthrin, ZXI 8901, Pyrethrins (pyretlirum)) 2.2 Oxadiazine (z.B. Indoxacarb)
3. Acetylcholin-Rezeptor-Agonistenf-Antagonisten
3.1 Chloronicotinyle/Neonicotinoide (z.B. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Nithiazine, Thiacloprid, Thiamethoxam)
3.2 Nicotine, Bensultap, Cartap
4. Acetylcholin-Rezeptor-Modulatoren
4.1 Spinosyne (z.B. Spinosad)
5. GABA-gesteuerte Chlorid-Kanal-Antagonisten
5.1 Cyclodiene Organochlorine (z.B. Camphechlor, Chlordane, Endosulfan,' Gamma-HCH, HCH, Heptachlor, Lindane, Methoxychlor
5.2 Fiprole (z.B. Acetoprole, Ethiprole, Fipronil, Vaniliprole)
6. Chlorid-Kanal-Aktivatoren
6.1 Mectine (z.B. Abamectin, Avermectin, Emamectin, Emamectin-benzoate, Ivermectin, Milbe- mectin, Milbemycin)
7. Juvenilhormon-Mimetika
(z.B. Diofenolan, Epofenonane, Fenoxycarb, Hydroprene, Kinoprene, Methoprene, Pyriproxifen, Triprene)
8. Ecdysonagonisten/disruptoren
8.1 Diacylhydrazine (z.B. Chromafenozide, Halofenozide, Methoxyfenozide, Tebufenozide)
9. Inhibitoren der Chitinbiosynthese
9.1 Benzoylhamstoffe (z.B. Bistrifluron, Chlofluazuron, Diflubenzuron, Fluazuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Penfluron, Teflubenzuron, Triflumuron)
9.2 Buprofezin
9.3 Cyromazine 10. Inhibitoren der oxidativen Phosphorylierung, ATP-Disruptoren
10.1 Diafenthiuron
10.2 Organotine (z.B. Azocyclotin, Cyhexatin, Fenbutatin-oxide)
11. Entkoppler der oxidativen Phoshorylierung durch Unterbrechung des H-Protongradienten
11.1 Pyrrole (z.B. Chlorfenapyr)
11.2 Dinitrophenole (z.B. Binapacyrl, Dinobuton, Dinocap, DNOC)
12. Site-I-Elektronentransportinhibitoren
12.1 METI's (z.B. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, Tolfenpyrad)
12.2 Hydramethylnone
12.3 Dicofol
13. Site-II-Elektronentransportinhibitoren
13.1 Rotenone
14. Site-III-Elektronentransportinhibitoren
14.1 Acequinocyl, Fluacrypyrim
15. Mikrobielle Disruptoren der Insektendarmmembran
Bacillus thuringiensis-Stämme
16. Inhibitoren der Fettsynthese
16.1 Tetronsäuren (z.B. Spirodiclofen, Spiromesifen)
16.2 Tetramsäuren [z.B. 3-(2,5-Dimethylphenyl)-8-methoxy-2-oxo-l-azaspiro[4.5]dec-3-en-4-yl ethyl carbonate (alias: Carbonic acid, 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-l-azaspiro[4.5]- dec-3-en-4-yl ethyl ester, CAS-Reg.-No.: 382608-10-8) and Carbonic acid, cis-3-(2,5-dimethylphe- nyl)-8-methoxy-2-oxo-l-azaspiro[4.5]dec-3-en-4-yl ethyl ester (CAS-Reg.-No.: 203313-25-1)] 17. Carboxamide
(z.B. Flonicamid)
18. Oktopaminerge Agonisten
(z.B. Amitraz)
19. Inhibitoren der Magnesium-stimulierten ATPase
(z.B. Propargite)
20. Phthalamide
(z.B. N2-[l,l-Dimethyl-2-(methylsulfonyl)ethyl]-3-iod-N1-[2-methyl-4-[l,2,2,2-tetrafluor-l-(tτi- fluormethyl)ethyl]phenyl]-l,2-benzenedicarboxamide (CAS-Reg.-No.: 272451-65-7), Flubendi- amide)
21. Nereistoxin-Analoge
(z.B. Thiocyclam hydrogen oxalate, Thiosultap-sodium)
22. Biologika, Hormone oder Pheromone
(z.B. Azadirachtin, Bacillus spec, Beauveria spec, Codlemone, Metarrhizium spec, Paecüomyces spec, Thuringiensin, Verticillium spec.)
23. Wirkstoffe mit unbekannten oder nicht spezifischen Wirkmechanismen
23.1 Begasungsmittel (z.B. Aluminium phosphide, Methyl bromide, Sulfuryl fluoride)
23.2 Selektive Fraßhemmer (z.B. Cryolite, Flonicamid, Pymetrozine)
23.3 Milbenwachstumsinhibitoren (z.B. Clofentezine, Etoxazole, Hexythiazox)
23.4 Amidoflumet, Benclothiaz, Benzoximate, Bifenazate, Bromopropylate, Buprofezin, Chinome- thionat, Chlordimeform, Chlorobenzilate, Chloropicrin, Clothiazoben, Cycloprene, Cyflumetofen, Dicyclanil, Fenoxacrim, Fentrifanil, Flubenzimine, Flufenerim, Flutenzin, Gossyplure, Hydra- methylnone, Japonilure, Metoxadiazone, Petroleum, Piperonyl butoxide, Potassium oleate, Pyra- fluprole, Pyridalyl, Pyriprole, Sulfluramid, Tetradifon, Tetrasul, Triarathene, Verbutin, ferner die Verbindung 3-Methyl-phenyl-propylcarbamat (Tsu acide Z), die Verbindung 3-(5-Chlor-3- pyridinyl)-8-(2,2,2-trifluore1hyl)-8-azabicyclo[3.2.l]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80-3) und das entsprechende 3-endo-Isomere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO 96/37494, WO 98/25923), sowie Präparate, welche Insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.
Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute anti- mykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist femer möglich, die Wirkstoffe nach dem Ultra-Low- Volume- Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.
Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzen- arten und Pflanzensorten sowie deren Teile behandelt, hi einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile" bzw. „Teile von Pflanzen" oder „Pflanzenteile" wurde oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive („synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachs- tum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Emährungswert der Ernteprodukte, höhere Lagerfälligkeit und oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kultuφflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Namatoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryΙA(a), CryIA(b), CryΙA(c), CryllA, CrylEA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften („Traits") werden auch besonders hervorgehoben die erhöhte , Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften („Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazoli- ■ nonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready© (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), LMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zu- künftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor. Herstellungsbeispiele
Beispiel 1
Figure imgf000034_0001
Verfahren a)
Zu einer Lösung von 1,201g (5,518 mMol) 4-Ethoxy-3-methoxy-benzylamin-hydrochlorid in 20 ml Dichlorethan und 1,117 g (11,035 mMol) Triethylamin gibt man bei Raumtemperatur 1,285 g (5,061 mmol) 3-(4-Chloφhenyl)-5-methyl-4-isoxazol-carbonylchlorid und rührt 1 Stunde unter Rückfluss. Die Mischung wird auf Raumtemperatur abgekühlt, mit 10O ml Eiswasser versetzt, mit konz. Salzsäure angesäuert, mit Dichlorethan versetzt, die organische Phase abgetrennt, mit Wasser gewaschen, über Natriumsulfat getrocknet und bei vermindertem Druck eingeengt. Der Rückstand wird aus Isopropanol umkristallisiert. Man erhält 1,1 g (55 % der Theorie) an N4-(4- Ethoxy-3-methoxy-benzyl)-3-(4-Chloφhenyl)- 5-methylisoxazol-4-carboxamid vom Schmelzpunkt 158°C.
HPLC: LogP = 2,93
Analog Beispiel 1, sowie entsprechend der allgemeinen Beschreibung der erfindungsgemäßen Herstellungsverfahren a) und b), können auch die in der nachstehenden Tabelle 1 aufgefülirten Verbindungen der Formel (I) hergestellt werden:
Figure imgf000034_0002
Tabelle 1
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A0, durch HPLC (Gradientenmethode, Acetonitril/0,1 % wässrige Phosphorsäure)
Herstellung der Vorprodukte der Formel (III)
Figure imgf000048_0001
Verfahren c)
Zu einer Lösung von 4,1 g (21,620 mMol) 4-Hydroxy-3-methoxybenzylamin Hydrochlorid in 50 ml Essigsäureethylester und 5 ml Triethylamin gibt man 4,954 g (22,7 mMol) Pyrokohlensäure-di- tert. -butylester und rührt 18 Stunden bei Raumtemperatur. Anschließend gibt man 100 ml Essigsäureethylester zu, wäscht mit 50 ml Wasser dann mit 50 ml verdünnter Zitronensäure und 50 ml Natriumhydrogencarbonatlösung und schließlich mit 50 ml gesättigter Natriumchloridlösung. Die organische Phase wird über Natriumsulfat getrocknet und bei vermindertem Druck eingeengt.
Man erhält 3,7 g (67 % der Theorie) 4-Hydroxy-3-methoxybenzylcarbaminsäure-tert. -butylester (VI-a*-l)
HPLC: logP = 1,91
Zu einer Lösung von 3,7 g (14,607 mMol) 4-Hydroxy-3-methoxybenzylcarbaminsäure-tert.- butylester (VI-a*-l) in 50 ml Aceton werden 5,43 g (36,519 mMol) Propargylbromid, 5 g wasserfreies Kaliumcarbonat und 0,15 g Kaliumiodid gegeben und 18 Stunden unter Rückfluss erhitzt. Das Reaktionsgemisch wird auf 100 ml Wasser gegeben und mit 200 ml Ether extrahiert. Die organische Phase wird zweimal mit 10 %iger Natronlauge gewaschen, über Natriumsύlfat getrocknet und eingeengt. Man erhält 3,2 g (73 % der Theorie) 4-(Propargyloxy)-3- methoxybenzylcarbaminsäure-ter -butylester (IH-a*-l).
(HPLC: logP = 2,57).
Zu einer Lösung von 3,2 g (10,984 mMol) 4-(Propargyloxy)-3-methoxybenzylcarbaminsäure-tert.- butylester in 50 ml Essigsäureethylester gibt man 3 ml einer konz. Chlorwasserstofflösung, rührt 18 Stunden bei Raumtemperatur und filtriert den entstandenen Niederschlag ab. Dieser wird zweimal mit Essigsäureetliylester gewaschen und im Vakuum getrocknet. Man erhält 2,0 g (79 % der Theorie) 4-(Propargyloxy)-3-methoxybenzylamin-hydrochlorid (HI-a-1)
(HPLC: logP = 0,20). Analog, sowie entsprechend der allgemeinen Beschreibung des erfindungsgemäßen Herstellungsverfahrens c), können auch die in der nachstehenden Tabelle 2 aufgeführten Verbindungen der Formel (HI) hergestellt werden:
Figure imgf000049_0001
Tabelle 2
Figure imgf000049_0002
Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wässrige Phosphorsäure)
Anwendungsb eispiele :
Beispiel A
Phytophthora-Test (Tomate) / protektiv
Lösungsmittel : 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid
Emulgator : . • 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Phytophthora infestans inokuliert. Die Pflanzen werden dann in einer Inkubationskabine bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.
3 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Bei diesem Test zeigen die in den Beispielen 1, 24, 38, 39, 40, 41, 42, 46, 47, 48, 50, 51, 54, 58, 61, 6 und 68 aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 94 % oder mehr.
Beispiel B
Plasmopara-Test (Rebe) / protektiv
Lösungsmittel : 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Plasmopara viticola inokuliert und verbleiben dann 1 Tag in einer Inkubationskabine bei ca. 20°C und 100 % relativer Luftfeuchtigkeit. Anschließend werden die Pflanzen 4 Tage im Gewächshaus bei ca. 21°C und ca. 90 % Luftfeuchtigkeit aufgestellt. Die Pflanzen werden dann angefeuchtet und 1 Tag in eine Inkubationskabine gestellt.
6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Bei diesem Test zeigen die in den Beispielen 1, 24, 35, 36, 38, 39, 40 ,41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 54, 56, 58, 61, 62 und 68 aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 90 % oder mehr.

Claims

Patentansprüche
Amide der Formel (I)
Figure imgf000052_0001
in welcher
R , R-2, und R- gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, Halogen, Cyano, Nitro, jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 8 Kohlenstoffatomen; jeweils geradkettiges oder verzweigtes Alkenyl, Alkinyl, Alkenyloxy oder Alkinyl- oxy mit jeweils 2 bis 6 Kohlenstoffatomen; jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogen- alkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen; jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen; jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkoxycarbonyl, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;
Cycloalkyl mit 3 bis 6 Kohlenstoffatomen stehen, wobei
R , R2, und R3 nicht gleichzeitig für Wasserstoff stehen, oder R und R2 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen carbocyclischen Ring bilden,
Het für einen unsubstituierten oder substituierten fünfgliedrigen aromatischen hetero- cyclischen Ring steht, R^ für Wasserstoff, Halogen, Cyano, Alkyl mit 1 bis 8 Kohlenstoffatomen, Alkenyl oder Alkinyl mit 2 bis 8 Kohlenstoffatomen oder Halogenalkyl mit 1 bis 8 Kohlenstoffatomen und 1 bis 9 Halogenatomen steht,
R5 und R6 gleich oder verschieden sind und unabhängig voneinander für unsubstituiertes oder jeweils durch Halogen oder Cyano substituiertes Alkyl, Alkoxyalkyl mit je- weils 1 - 8 Kohlenstoffatomen in den jeweiligen Alkylketten oder Alkenyl oder Alkinyl mit jeweils 2 - 8 Kohlenstoffatomen oder Cycloalkyl mit 3 - 8 Kohlenstoffatomen oder für unsubstituiertes oder substituiertes' Arylalkyl mit 1 - 8 Kohlenstoffatomen in der Alkylkette steht,
A für Alkandiyl oder Cycloalkandiyl steht und Y für Sauerstoff oder Schwefel steht.
2. Verbindungen der Formel (I) gemäß Anspruch 1, aus der Gruppe der Verbindungen der Formel (Ia), a)
Figure imgf000053_0001
in welcher
R , R2, und R3 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t- Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfmyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl, Dimethylamino, Diethylamino, Acetyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl stehen, oder
R und R2 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen carbocyclischen Ring mit 5 oder 6 Ringgliedern bilden, wobei R* , R2, und R3 nicht gleichzeitig für Wasserstoff stehen,
R^a für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Allyl, Propargyl oder Trifluormethyl steht,
R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl,
Allyl, Methylallyl, Crotonyl, Propinyl oder Butinyl oder Cyanomethyl steht, oder für gegebenenfalls durch Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfmyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl, Acetyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl substituiertes Benzyl steht,
A für Methandiyl, Ethan- 1,1 -diyl, Ethan- 1 ,2-diyl, Propan- 1,1 -diyl, Propan- 1 ,2-diyl, Propan-l,3-diyl, Propan-2,2-diyl, Butan- 1,1 -diyl, Butan- 1 ,2-diyl, Butan- 1,3 -diyl, Butan-l,4-diyl, Butan-2,2-diyl, Butan-2,3-diyl, l,l-Diethyletan-l,2-diyl, Cyclopropan- 1 , 1 -diyl oder Cyclopropan- 1 ,2-diyl steht,
Y für Sauerstoff oder Schwefel steht und G für Sauerstoff, Schwefel oder N-R7a steht, wobei
R^a für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
b) Verbindungen der Formel (Ib),
Figure imgf000055_0001
in welcher
A, R , R2, R3, R5, R^ imd Y die gleiche Bedeutung wie in Formel (Ia) haben, ,
P 4"b ^r Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Allyl, Propargyl oder Trifluormethyl steht,
G2 für Sauerstoff, Schwefel oder N-R7b steht, wobei
R7b für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
c) Verbindungen der Formel (Ic),
Figure imgf000055_0002
in welcher
A., R , R2, R3, R5, R6 und Y die gleiche Bedeutung wie in Formel (Ia) haben, R4c für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Allyl, Propargyl oder Trifluormethyl steht,
G3 für Sauerstoff, Schwefel oder N-R7c steht, wobei
R7c für für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
d) Verbindungen der Formel (Id),
Figure imgf000056_0001
in welcher
A, R , R2, R3, R5, R6 und Y die gleiche Bedeutung wie in Formel (Ia) haben,
R^d für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht, G4 für Sauerstoff, Schwefel oder N-R7( steht, wobei
R7d für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht; e) Verbindungen der Formel (Ie),
Figure imgf000056_0002
in welcher A, R , R2, R3, R5, R^ und Y die gleiche Bedeutung wie in Formel (Ia) haben,
G5 für Sauerstoff, Schwefel oder N-R7e steht, wobei
R7e für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
f) Verbindungen der Formel (If),
Figure imgf000057_0001
in welcher
A, R , R2, R3, R5, R6 und Y die gleiche Bedeutung wie in Formel (Ia) haben,
G^ für Sauerstoff, Schwefel oder N-R7^ steht, wobei
R7f fürWasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht und
g) Verbindungen der Formel (Ig),
Figure imgf000057_0002
in welcher
A, R , R2, R3, R5, R6 und Y die gleiche Bedeutung wie in Formel (Ia) haben, G7 für Sauerstoff, Schwefel oder N-R7S steht, wobei R7§ für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
3. ■ Verbindungen der Formeln (Ia) bis (Ig) gemäß Anspruch 2, wobei die Symbole folgende Bedeutungen haben:
R , R2, und R3 sind gleich oder verschieden und stehen unabhängig voneinander auch be- sonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfϊnyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluor- ethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluor- methylsulfinyl oder Trifluormethylsulfonyl, Dimethylamino, Diethylamino, Acetyl, Propionyl, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl stehen, oder und R2 bilden gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen carbocyclischen Ring mit 5 oder 6 Ringgliedern, , R2, und R3 stehen nicht gleichzeitig für Wasserstoff,
A steht besonders bevorzugt für Methandiyl, Ethan- 1,1 -diyl, Ethan- 1 ,2-diyl, Propan- 1,1 -diyl, Propan- 1 ,2-diyl, Propan- 1 ,3 -diyl oder Propan-2,2-diyl,
Y steht besonders bevorzugt für Sauerstoff,
Rp~ und RP sind gleich oder verschieden und stehen unabhängig voneinander besonders bevorzugt für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Pentyl, n- Hexyl, n-Heptyl, Allyl, Methylallyl, Crotonyl, Propinyl oder Butinyl oder Cyanomethyl, a) in Formel (Ia) stehen
R4a fijr Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Heptyl Trifluormethyl, Chlor oder Cyano und
G für Sauerstoff, Schwefel oder N-R7a, wobei R7a für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
b) in Formel (Ib) stehen
R4^ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Trifluormethyl, Chlor oder Cyano und
G2 für Sauerstoff, Schwefel oder N-R7b, wobei
R7b für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
c) in Formel (Ic) stehen
R c für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Heptyl, Trifluormethyl, Chlor oder Cyano und
G3 für Sauerstoff, Schwefel oder N-R7c, wobei
R7c für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
d) in Formel (Id) stehen
R4^ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, n-Heptyl Trifluormethyl, Chlor oder Cyano und
G4 für Sauerstoff, Schwefel oderN-R7d, wobei
R7d für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
e) in Formel (Ie) steht
G5 für Sauerstoff, Schwefel oder N-R7e steht, wobei
R7e für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
f) in Formel (If) stehen
G für Sauerstoff, Schwefel oderN-R7f, wobei R7f für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht;
g) in Formel (Ig) stehen
G7 für Sauerstoff, Schwefel oder N-R, wobei
R7S für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl steht.
Verfahren zur Herstellung von Amiden der Formel (I), wobei man
a) Carbonsäurederivate der allgemeinen Formel (II)
Figure imgf000060_0001
in welcher
Rl, R^, R3 und R4 die in der Formel (I) in Anspruch 1 angegebenen Bedeutungen haben und
T für Hydroxy, Halogen oder Alkoxy steht,
mit einem Amin der allgemeinen Formel (IH)
Figure imgf000060_0002
in welcher
R5, R6 und A die in der Formel (I) in Anspruch 1 angegebenen Bedeutungen haben, oder mit einem Säureadditionskomplex hiervon - gegebenenfalls in Gegenwart eines Säureakzeptors, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt und b) gegebenenfalls (falls Y in der Formel (I) S bedeutet) mit einem Schwefelungsreagenz, gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.
5. Mittel zur Bekämpfung von unerwünschten Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Amid der Foπnel (I) gemäß einem oder mehreren der Ansprüche 1 bis 3 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
6. Verwendung von Amiden der Foπnel (I) gemäß einem oder mehreren der Ansprüche 1 bis 3 zur Bekämpfung von unerwünschten Mikroorganismen.
7. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Amide der Formel (I) gemäß einem oder mehreren der Ansprüche 1 bis 3 auf die unerwünschten Mikroorganismen und/oder deren Lebensraum ausbringt.
8. Verfahren zur Herstellung von Mitteln zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Amide der Formel (I) gemäß einem oder melireren der Ansprüche 1 bis 3 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
9. Amine der Formeln
Figure imgf000061_0001
in welcher
A und R5 die in Formel (I) in Anspruch 1 angegebenen Bedeutungen haben und Rs für Allyl, Propargyl, 2-Butinyl oder Cyanmethyl steht und (fll-b)
Figure imgf000062_0001
in welcher
A und RP die in Formel (I) in Anspruch 1 angegebenen Bedeutungen haben und
R9 für Allyl, Propargyl, 2-Butinyl oder Cyanmethyl steht.
PCT/EP2004/014453 2003-12-22 2004-12-18 Substituierte heterocyclische amide mit fungizider wirkung WO2005066138A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006546013A JP2007515444A (ja) 2003-12-22 2004-12-18 殺菌効果を有する置換複素環式アミド
EP04804054A EP1706387A1 (de) 2003-12-22 2004-12-18 Substituierte heterocyclische amide mit fungizider wirkung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003160369 DE10360369A1 (de) 2003-12-22 2003-12-22 Amide
DE10360369.7 2003-12-22

Publications (1)

Publication Number Publication Date
WO2005066138A1 true WO2005066138A1 (de) 2005-07-21

Family

ID=34673002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014453 WO2005066138A1 (de) 2003-12-22 2004-12-18 Substituierte heterocyclische amide mit fungizider wirkung

Country Status (4)

Country Link
EP (1) EP1706387A1 (de)
JP (1) JP2007515444A (de)
DE (1) DE10360369A1 (de)
WO (1) WO2005066138A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1794167A1 (de) * 2004-09-10 2007-06-13 Syngenta Limited Substituierte isoxazole als fungizide
WO2008101976A1 (en) 2007-02-22 2008-08-28 Bayer Cropscience Sa Fungicide n-(3-phenylpropyl)carboxamide derivatives
WO2010141761A3 (en) * 2009-06-03 2011-04-21 Amira Pharmaceuticals, Inc. Polycyclic antagonists of lysophosphatidic acid receptors
US8048902B2 (en) 2008-12-15 2011-11-01 Amira Pharmaceuticals, Inc. Antagonists of lysophosphatidic acid receptors
US8217066B2 (en) 2009-10-01 2012-07-10 Amira Pharmaceuticals, Inc. Compounds as lysophosphatidic acid receptor antagonists
US8455499B2 (en) 2008-12-11 2013-06-04 Amira Pharmaceuticals, Inc. Alkyne antagonists of lysophosphatidic acid receptors
US8541587B2 (en) 2011-04-05 2013-09-24 Amira Pharmaceuticals, Inc. Lysophosphatidic acid receptor antagonists
US8592402B2 (en) 2009-08-04 2013-11-26 Amira Pharmaceuticals, Inc. Compounds as lysophosphatidic acid receptor antagonists
US8664220B2 (en) 2009-10-01 2014-03-04 Amira Pharmaceuticals, Inc. Polycyclic compounds as lysophosphatidic acid receptor antagonists

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119362A1 (de) * 2008-05-15 2009-11-18 Bayer CropScience AG Verfahren zur Verbesserung der Toleranz von Saatgut gegen kühle Temperaturen und/oder Frost
WO2010007482A2 (en) * 2008-07-16 2010-01-21 Glenmark Pharmaceuticals S.A. Thiazole derivatives as stearoyl coa desaturase inhibitors
DE102008054586A1 (de) 2008-12-12 2010-06-17 Basf Se Verfahren zur kontinuierlichen Herstellung von geometrischen Katalysatorformkörpern K
WO2020032080A1 (ja) * 2018-08-07 2020-02-13 学校法人慶應義塾 化合物、化合物の塩、神経機能調節物質、神経機能調節物質の評価方法、化合物の製造方法、及び化合物の塩の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH553159A (de) * 1970-10-30 1974-08-30 Hoffmann La Roche Verfahren zur herstellung von phenaethylaminderivaten.
WO1998023605A1 (de) * 1996-11-27 1998-06-04 Bayer Aktiengesellschaft Mikrobizide mittel auf basis von thiophen-2-carbonsäure-derivaten
JP2001348378A (ja) * 2000-06-07 2001-12-18 Ube Ind Ltd 5−(1−フルオロエチル)−3−メチルイソオキサゾール−4−カルボン酸誘導体及び農園芸用の有害生物防除剤
WO2003037274A2 (en) * 2001-11-01 2003-05-08 Icagen, Inc. Pyrazole-amides and-sulfonamides
WO2004060281A2 (en) * 2002-12-20 2004-07-22 Bristol-Myers Squibb Company 2-aryl thiazole derivatives as kcnq modulators
WO2005016909A1 (en) * 2003-08-15 2005-02-24 Astrazeneca Ab Substituted thiophenes and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH553159A (de) * 1970-10-30 1974-08-30 Hoffmann La Roche Verfahren zur herstellung von phenaethylaminderivaten.
WO1998023605A1 (de) * 1996-11-27 1998-06-04 Bayer Aktiengesellschaft Mikrobizide mittel auf basis von thiophen-2-carbonsäure-derivaten
JP2001348378A (ja) * 2000-06-07 2001-12-18 Ube Ind Ltd 5−(1−フルオロエチル)−3−メチルイソオキサゾール−4−カルボン酸誘導体及び農園芸用の有害生物防除剤
WO2003037274A2 (en) * 2001-11-01 2003-05-08 Icagen, Inc. Pyrazole-amides and-sulfonamides
WO2004060281A2 (en) * 2002-12-20 2004-07-22 Bristol-Myers Squibb Company 2-aryl thiazole derivatives as kcnq modulators
WO2005016909A1 (en) * 2003-08-15 2005-02-24 Astrazeneca Ab Substituted thiophenes and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 04 4 August 2002 (2002-08-04) *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1794167A4 (de) * 2004-09-10 2009-10-21 Syngenta Ltd Substituierte isoxazole als fungizide
EP1794167A1 (de) * 2004-09-10 2007-06-13 Syngenta Limited Substituierte isoxazole als fungizide
US8283349B2 (en) 2007-02-22 2012-10-09 Bayer Cropscience Ag Fungicide N-(3-phenylpropyl) carboxamide derivatives
WO2008101976A1 (en) 2007-02-22 2008-08-28 Bayer Cropscience Sa Fungicide n-(3-phenylpropyl)carboxamide derivatives
US8455499B2 (en) 2008-12-11 2013-06-04 Amira Pharmaceuticals, Inc. Alkyne antagonists of lysophosphatidic acid receptors
US8048902B2 (en) 2008-12-15 2011-11-01 Amira Pharmaceuticals, Inc. Antagonists of lysophosphatidic acid receptors
US8440707B2 (en) 2008-12-15 2013-05-14 Amira Pharmaceuticals, Inc. Antagonists of lysophosphatidic acid receptors
KR20120026593A (ko) * 2009-06-03 2012-03-19 아미라 파마슈티칼스 인코포레이티드 리소포스파티드산 수용체의 폴리시클릭 길항제
CN105061346A (zh) * 2009-06-03 2015-11-18 艾米拉医药股份有限公司 溶血磷脂酸受体的多环拮抗剂
US8273780B2 (en) 2009-06-03 2012-09-25 Amira Pharmaceuticals, Inc. Polycyclic antagonists of lysophosphatidic acid receptors
CN102459204A (zh) * 2009-06-03 2012-05-16 艾米拉医药股份有限公司 溶血磷脂酸受体的多环拮抗剂
US8058300B2 (en) 2009-06-03 2011-11-15 Amira Pharmaceuticals, Inc. Polycyclic antagonists of lysophosphatidic acid receptors
WO2010141761A3 (en) * 2009-06-03 2011-04-21 Amira Pharmaceuticals, Inc. Polycyclic antagonists of lysophosphatidic acid receptors
KR101774722B1 (ko) 2009-06-03 2017-09-04 아미라 파마슈티칼스 인코포레이티드 리소포스파티드산 수용체의 폴리시클릭 길항제
KR101628706B1 (ko) 2009-06-03 2016-06-09 아미라 파마슈티칼스 인코포레이티드 리소포스파티드산 수용체의 폴리시클릭 길항제
CN102459204B (zh) * 2009-06-03 2015-08-12 艾米拉医药股份有限公司 溶血磷脂酸受体的多环拮抗剂
EA020139B1 (ru) * 2009-06-03 2014-08-29 Амира Фармасьютикалс, Инк. Полициклические антагонисты рецепторов лизофосфатидной кислоты
US8592402B2 (en) 2009-08-04 2013-11-26 Amira Pharmaceuticals, Inc. Compounds as lysophosphatidic acid receptor antagonists
US8778983B2 (en) 2009-10-01 2014-07-15 Amira Pharmaceuticals, Inc. Polycyclic compounds as lysophosphatidic acid receptor antagonists
US9090573B2 (en) 2009-10-01 2015-07-28 Amira Pharmaceuticals, Inc. Compounds as lysophosphatidic acid receptor antagonists
US8664220B2 (en) 2009-10-01 2014-03-04 Amira Pharmaceuticals, Inc. Polycyclic compounds as lysophosphatidic acid receptor antagonists
US8217066B2 (en) 2009-10-01 2012-07-10 Amira Pharmaceuticals, Inc. Compounds as lysophosphatidic acid receptor antagonists
US9624182B2 (en) 2009-10-01 2017-04-18 Amira Pharmaceuticals, Inc. Compounds as lysophosphatidic acid receptor antagonists
US10000456B2 (en) 2009-10-01 2018-06-19 Amira Pharmaceuticals, Inc. Polycyclic compounds as lysophosphatidic acid receptor antagonists
US8541587B2 (en) 2011-04-05 2013-09-24 Amira Pharmaceuticals, Inc. Lysophosphatidic acid receptor antagonists

Also Published As

Publication number Publication date
JP2007515444A (ja) 2007-06-14
DE10360369A1 (de) 2005-07-14
EP1706387A1 (de) 2006-10-04

Similar Documents

Publication Publication Date Title
EP1716099B1 (de) Haloalkylcarboxamide zur bekämpfung von mikroorganismen
EP1771069B1 (de) N-(2-(hydroxymethyl)phenyl)-1h-pyrazol-4-carboxamid derivate und verwandte verbindungen als mikrobizide wirkstoffe zur anwendung im pflanzen- und materialschutz
EP1713789B1 (de) 2-halogenfuryl/thienyl-3-carboxamide
DE102005009458A1 (de) Pyrazolylcarboxanilide
DE102005007534A1 (de) Pyrazolopyrimidine
EP1786795A2 (de) Biphenylthiazolcarboxamide
EP1718652A2 (de) Pyrazolopyrimidine zur bekämpfung unerwünschter mikroorganismen
WO2004005242A1 (de) Phenylbenzamide
WO2006024387A2 (de) Biphenylthiazolcarboxamide
EP1727816B1 (de) Mikrobizide silylierte carboxamide
WO2005066138A1 (de) Substituierte heterocyclische amide mit fungizider wirkung
WO2005058839A1 (de) Optisch aktive carboxamide und deren verwendung zur bekämpfung von unerwünschten mikroorganismen
DE102004059725A1 (de) 2-Alkyl-cycloalk(en)yl-carboxamide
EP1694681B1 (de) Pyrazolopyrimidine
WO2005077952A1 (de) Imidazolopyrimidine als fungizide wirkstoffe
WO2005056557A1 (de) 7-amino-5-halopyrazolopyrimidine mit fungizider wirkung
WO2005056558A1 (de) Pyrazolopyrimidine als fungizide wirkstoffe
WO2008014905A2 (de) 3-difluormethyl-pyrazolylcarboxanilide
EP1697372B1 (de) Pyrazolopyrimidine
EP1694680A1 (de) Pyrazolopyrimidine
EP1709050A1 (de) Triazolopyrimidine mit fungiziden eigenschaften

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004804054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006546013

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004804054

Country of ref document: EP