WO2005065785A1 - Golf shaft - Google Patents

Golf shaft Download PDF

Info

Publication number
WO2005065785A1
WO2005065785A1 PCT/JP2004/008815 JP2004008815W WO2005065785A1 WO 2005065785 A1 WO2005065785 A1 WO 2005065785A1 JP 2004008815 W JP2004008815 W JP 2004008815W WO 2005065785 A1 WO2005065785 A1 WO 2005065785A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
fiber
axis
reinforced resin
reinforcing
Prior art date
Application number
PCT/JP2004/008815
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Saito
Susumu Hironaka
Yasushi Matsui
Original Assignee
Mizuno Corporation
Mizuno Technics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuno Corporation, Mizuno Technics Corporation filed Critical Mizuno Corporation
Priority to JP2005516788A priority Critical patent/JPWO2005065785A1/en
Publication of WO2005065785A1 publication Critical patent/WO2005065785A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/10Non-metallic shafts
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/14Coverings specially adapted for handles, e.g. sleeves or ribbons
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/08Handles characterised by the material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/10Handles with means for indicating correct holding positions

Definitions

  • the present invention relates to a gonofleft shaft having a vibration characteristic with a good feel and improved timing.
  • Timing of a golf club at the time of swing differs depending on the characteristics, weight, length, center of gravity, hardness, and the like of a player and a golf shaft.
  • Various improvements have been made to the golf shaft to facilitate this timing.
  • Golf shaft design items related to timing include shaft flex. It is known that this shaft flex is controlled by the amount of bending and the natural frequency when a certain weight is added to the tip of the golf shaft by fixing a gonolef shaft near its grip.
  • the amount of bending of the shaft during a swing is a combination of deformation due to bending in a direction along the axis of the golf shaft and deformation due to compression in a radial direction perpendicular to the axis. Therefore, if the deformation due to the compression is large, it interferes with the deformation due to the bending, making it difficult to feel the golfer's force S, and the restoring force of the golf shaft is also reduced, resulting in a problem that the flight distance is lost.
  • a shaft using a woven fabric, particularly a multiaxial woven fabric mainly composed of three axes is disclosed in JP-A-58-76559, JP-A-3-151989, and It is described in Japanese Utility Model Application Laid-Open No. 51970/1991.
  • the gonolev shafts described in these documents use the characteristics of triaxial fabrics to reinforce structures or improve productivity. Multiaxial fabrics are used.
  • JP-A-2000-245880 describes a golf shaft using a four-axis fabric.
  • This golf shaft is excellent in bending, torsion, and compression rigidity by using 4-axis woven fabric, has sufficient strength even when force in all directions is applied, and has a good balance of restoring force with high reactivity. It is said that a good golf shaft can be obtained.
  • a golf shaft using a multiaxial woven fabric such as the three-axis woven fabric or the four-axis woven fabric utilizes a quasi-isotropy or the like which is a feature of a structure.
  • a load is applied to the golf shaft, different stresses are applied to the longitudinal direction of the shaft, that is, the longitudinal direction, the lateral direction perpendicular to the longitudinal direction, and the oblique direction having a predetermined angle with respect to the longitudinal direction.
  • different characteristics are required in each direction.
  • each of the above-mentioned documents does not disclose such a problem at all.
  • an object of the present invention is to provide a gonolef shaft having excellent mechanical properties and capable of satisfying demands for properties based on a sensory expression such as "flicking" and a sense of stability. Is what you do.
  • a golf shaft according to an embodiment of the present invention is made of a fiber reinforced resin obtained by laminating a plurality of fiber reinforced resin layers.
  • the fiber reinforced resin layer includes a four-axis woven fabric layer obtained by reinforcing a four-axis woven fabric with a molding resin, and the four-axis woven fabric has a plurality of longitudinal threads extending parallel to the longitudinal direction of the shaft and a direction perpendicular to the longitudinal direction of the shaft.
  • a plurality of horizontal threads extending along the shaft, It is composed of a set of a plurality of oblique shaft yarns. At least one of the vertical axis yarn, the horizontal axis yarn, and the oblique axis yarn is formed of a reinforcing fiber having characteristics different from those of the other axis yarns.
  • the reinforcing fiber of the vertical axis yarn has a tensile strength of carbon fiber strength of 4000MPa and 7000MPa
  • the reinforcing fiber of the horizontal axis yarn has a tensile modulus of 240GPa and carbon fiber of 800GPa.
  • the reinforcing fibers are preferably made of carbon fibers having a tensile modulus of 400 GPa and 800 GPa.
  • the fineness of the reinforcing fibers of the four-axis woven fabric layer is preferably 50tex-200tex (g / 1000m).
  • the four-axis woven fabric layer is preferably arranged at the outermost layer or at the second layer from the outermost layer.
  • the resin content of the fiber reinforced resin layer of the golf shaft is preferably 20% to 30% of the total weight of the Gonoref shaft.
  • the Gonoref shaft may have a tapered shape whose outer diameter gradually increases from the front end to the rear end.
  • FIG. 1 is a front view showing a gonolef shaft according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a fiber reinforced resin pre-preda used for the golf shaft of FIG. 1.
  • FIG. 3 is a view showing a configuration of a four-axis woven fabric.
  • FIG. 4 is a perspective view for explaining a method of measuring a vibration damping characteristic of a shaft.
  • FIG. 5 is a diagram for explaining a method of measuring an EI value of a shaft.
  • FIG. 1 shows a gonolef shaft according to an embodiment of the present invention.
  • the golf shaft 1 is formed by laminating a plurality of fiber-reinforced resin layers, and has a total length of 1143 mm.
  • the golf shaft 1 has a tapered shape in which the outer diameter gradually increases from the front end to the rear end.
  • a head 2 is mounted on the front end on the small diameter side, and the grip is mounted on the rear end on the large diameter side. 3 is installed Has been.
  • the fiber reinforced resin layer is formed using a plurality of fiber reinforced resin pre-preda. As shown in FIG. 2, these fiber-reinforced resin pre-preders are a first-fifth fiber-reinforced resin pre-predder 11-11 cut into a shape such that the orientation angle of the reinforcing fibers is a predetermined angle, and a four-axis woven fabric. Strengthening prepredder 10 and power.
  • the golf shaft 1 is formed by sequentially winding these pre-predaders 10, 11 and 15 around the mandrel 7 and laminating them.
  • first to fifth fiber reinforced resin pre-predators 11 to 15 and the 4-axis woven fabric pre-predator 10 carbon fiber is used as the reinforcing fiber, and epoxy resin is used as the matrix resin.
  • thermosetting resin represented by the above-mentioned epoxy resin is preferable.
  • unsaturated polyester resin phenol resin, melamine resin, urea resin, diaryl phthalate Resin, polyurethane resin, polyimide resin, silicone resin and the like.
  • the four-axis woven fabric layer 4 forming the four-axis woven fabric pre-predader 10 includes a plurality of vertical yarns 41 and a plurality of horizontal yarns 42 woven so as to intersect each other. And a set of a plurality of oblique shaft yarns 43 woven so as to intersect these left and right yarns 41 and 42 in the left and right directions (+ and-directions).
  • the longitudinal axis thread 41 of the four-axis fabric layer 4 is arranged parallel to the longitudinal direction of the shaft 1
  • the transverse axis thread 42 is arranged perpendicular to the longitudinal direction of the shaft
  • the oblique axis thread 43 is It is arranged so as to be oblique to the longitudinal direction.
  • a high-strength reinforcing fiber is used as the reinforcing fiber.
  • carbon fibers having a tensile strength of 3500 to 700 OMPa are preferably used.
  • the horizontal thread 42 a material having a higher spring constant is required as the golfer's power becomes higher. The golfer's ability depends on head speed and speed. And the maximum amount of deflection of the shaft 1 during the swing. As the head speed increases and the maximum deflection of the shaft 1 increases, a heavier and harder shaft is required. Therefore, the heavier and harder the shaft 1, the better the elastic modulus of the reinforcing fiber used for the horizontal thread 42 is.
  • carbon fiber having a tensile modulus of 240 to 800 GPa is preferable.
  • the fineness of the carbon fiber or to increase the number of fibers bundled to form one horizontal thread 42 In that case, the roughness of the shaft surface becomes large, so that the polishing allowance of the outermost layer needs to be increased.
  • the fineness of the reinforcing fibers of the four-axis woven fabric layer is 50 tex / 200 tex.
  • the reinforcing fiber preferably has a higher tensile elastic modulus as the golfer's power becomes higher.
  • a fiber having a higher elastic modulus tends to have a lower tensile strength.
  • carbon fiber of 240 to 500 GPa is more preferable.
  • the oblique shaft yarn 43 is a shaft yarn that most affects the attenuation of bending vibration.
  • the behavior of the shaft can be specified by the characteristic of “playing”. That is, in the present embodiment, the vibration indicating the bending of the shaft during the swing is sensed by the gonofer, and the vibration caused by hitting the ball is sensed.
  • the reinforcing fibers constituting the oblique shaft yarn 43 have high elasticity.
  • the reinforcing fibers are arranged so that the orientation angle with respect to the axis of the shaft 1 is ⁇ 45 degrees.
  • the reinforcing fibers it is preferable to use carbon fibers having a tensile modulus of 400 to 800 GPa. The higher the tensile modulus, the better. However, in the process of weaving the fiber along the oblique axis, the higher the modulus, the lower the tensile strength of the fiber. Carbon fiber is more preferred.
  • the reinforcing fibers used in the oblique shaft yarn 43 have the same characteristics in the + -direction oblique axis and the one-way oblique axis. If the characteristics differ between the + direction and the-direction, anisotropy occurs in the torsional characteristics. It is.
  • the four-axis woven fabric layer preferably has a low vibration damping rate in order to obtain the effect of "flicking" which is a desired vibration characteristic, and in order to achieve the effect, the resin amount of the pre-preda is also reduced. There is a need. This is because the damping coefficient of the resin itself is lower than that of the reinforcing fiber.
  • the pre-predeers 10 to 15 that form another fiber-reinforced resin layer including the four-axis fabric layer 4 if the resin content is within the range of 2050% by weight of the weight of each pre-prede, Suitable for both properties and manufacturing. It is preferable that the ratio of the resin used in all the pre-predas 10 to 15 to the entire gonolev shaft 1 is in the range of 20 to 30% by weight.
  • the shaft 1 made of fiber reinforced resin is formed by a so-called sheet wrapping method
  • a plurality of pre-predaers 10-15 are sequentially wound around the mandrel 7, and then a wrapping tape is wound thereon and fixed. After curing and molding, the wrapping tape is removed, the surface is polished and painted to obtain the finished shaft.
  • one layer of the pre-preda 15 is provided outside the pre-preda 10 provided with the four-axis fabric layer 4 in order to secure a polishing allowance.
  • the thickness of the prepreg 15 is preferably between 0.02 mm and 0.15 mm. If the thickness of the pre-preda 15 is 0.02 mm or less, the reinforcing fibers of the four-axis woven fabric layer 4 are erroneously polished by polishing, which may adversely affect the performance of the shaft 1, which is not preferable. If the thickness of the prepreg 15 is 0.15 mm or more, the surface force of the prepreg 15 also increases the distance to the four-axis fabric layer 4, so that the effect of disposing the four-axis fabric layer 4 is hardly obtained.
  • the pre-predator 15 needs to have a large thickness. That is, each of the yarns 41, 42, 43 of the four-axis fabric layer 4 is formed by converging 1,000 to 6,000 carbon fibers. 3000 carbon fibers with a rate of 240 GPa are converged and used, and 1000 carbon fibers are converged and used. When converged and used, the thickness of the 4-axis woven fabric layer 4 at the intersection of each of the thread 41, 42, and 43 becomes larger. Therefore, it is necessary to increase the polishing allowance when the shaft surface is made smooth. Therefore, in such a case, it is necessary to increase the thickness of the pre-preda 15.
  • a bundle of 3000 carbon fibers is generally called 3K. K corresponds to 1000.
  • a production method that does not require polishing after curing molding for example, a method in which a pre-preda is covered with an extensible tube instead of a wrapping tape and molding is performed, or an internal pressure molding method is used, or the sheet wrapping method is used.
  • polishing is not required even if there is, for example, the 4-axis woven fabric prepreg 10 can be used for the outermost layer.
  • the first and second fiber-reinforced resin pre-predators 11, 12 are disposed by being wound 2-4 times over the entire length of the shaft. They are arranged at an angle of 65 °.
  • the third fiber-reinforced resin pre-predder 13 is provided by winding once over the entire length of the shaft 1, and the reinforcing fibers are arranged so as to form an angle of about 90 degrees with respect to the longitudinal direction of the shaft 1. .
  • the fourth and fifth fiber reinforced resin prepregs 14 and 15 are disposed by winding one or two turns over the entire length of the shaft 1, and the reinforcing fibers are substantially parallel to the longitudinal direction of the shaft 1. Are arranged as follows. However, as described above, the fifth fiber-reinforced resin pre-preda 15 may not be used depending on the manufacturing method.
  • the shaft 1 of the present embodiment is formed by a sheet winding manufacturing method.
  • the first to fourth fiber reinforced resin pre-predeers 11 to 14, the four-axis woven pre-predader 10, and the fifth fiber reinforced resin pre-preda 15 are wound around the mandrel 7 in this order, laminated, and wrapped around its outer periphery. Wind the tape to obtain a laminate. In this state, the laminate is heated and pressurized, cured and molded, and then the mandrel is pulled out of the laminate to obtain the shaft 1.
  • the golf shaft 1 of the present invention uses reinforcing fibers having different characteristics for each axis yarn so as to satisfy the necessary requirements for each axis yarn of the shaft 1, and woven fabrics thereof.
  • the four-axis woven fabric layers 4 are simultaneously present in one four-axis woven fabric layer 4, and such a four-axis woven fabric layer 4 is arranged at a position closer to the outer layer in the laminate of the pre-preda.
  • the panel constant is large, and the primary and secondary vibration modes are used.
  • Tables 1 and 2 show the configuration of the 4-axis woven fabric prepreg 10 used in each example and the lamination conditions of the fiber reinforced resin prepreg used in the comparative example. Both shafts are 45 inches (1143 mm) in length.
  • the first to fifth fiber reinforced resin prepregs 11 to 15 and the four-axis woven fabric prepreg 10 having the configuration shown in the column of Example 1 in Table 1 are employed in the mandrel, employing the laminated structure of the prepreg in the embodiment shown in FIG. 7 and laminated.
  • the 4-axis woven fabric pre-predator 10 a fiber obtained by converging 3,000 carbon fibers having a tensile elasticity of 385 GPa was used as the reinforcing fiber of the oblique axis yarn 43.
  • As the longitudinal axis yarn 41 and the horizontal axis thread 42 fibers obtained by converging 1,000 carbon fibers having a tensile modulus of elasticity of 240 GPa as reinforcing fibers were used.
  • 1000 bundles are indicated by 1K
  • first and second fiber reinforced resin pre-predas 11, 12 pre-predas obtained by impregnating carbon fibers having a tensile elasticity of 445 GPa with a synthetic resin so as to have a resin content of 25 wt% were used.
  • the thickness of the prepreg after molding is 0.06 lmm.
  • orientation angles of the reinforcing fibers in the pre-predators 11 and 12 are + 45 ° and ⁇ 45 ° with respect to the longitudinal direction of the shaft, respectively.
  • the third fiber-reinforced resin pre-predator 13 a prepreg obtained by impregnating carbon fibers having a tensile elasticity of 240 GPa as a reinforcing fiber with a synthetic resin so that the resin content becomes 25 wt% was used.
  • the thickness of the prepreg after molding is 0.045 mm.
  • the fourth fiber reinforced resin pre-predator 14 a prepreg obtained by impregnating carbon fibers having a tensile elasticity of 300 GPa as a reinforcing fiber with a synthetic resin so as to have a resin content of 25 wt% was used.
  • the thickness of the prepreg after molding is 0.081 mm.
  • the shaft was formed by disposing the four-axis woven prepreg 10 on the outermost layer of the laminate.
  • the weight of the shaft was 63 g.
  • the reinforcing fibers of the horizontal thread 42 of the 4-axis woven fabric prepreg 10 of Example 1 were changed to fibers in which 3000 carbon fibers having a tensile modulus of elasticity of 2 40 GPa were converged. Others were the same as Example 1.
  • the reinforcing fiber of the horizontal thread 42 of the 4-axis woven fabric prepreg 10 of Example 1 was changed to a fiber in which 3000 carbon fibers having a tensile elasticity of 3 85 GPa were converged. Others were the same as Example 1.
  • Example 1 The oblique axis yarn 43 of the 4-axis woven fabric prepreg 10 of Example 1 was changed to a fiber in which 1,000 carbon fibers having a tensile elasticity of 240 GPa were converged. Others were the same as Example 1. (Comparative Example 1)
  • Example 4 The four-axis woven fabric layer 4 was eliminated from the first embodiment, and the fourth fiber-reinforced resin pre-preda 14 was changed. In order to prevent the EI value, the shaft weight, and the outer diameter from being largely different from those in Examples 14 to 14 by eliminating the 4-axis woven fabric layer 4, the fourth fiber-reinforced resin pre-predator 14 was pulled as a reinforcing fiber.
  • Elasticity modulus A pre-predeer was used in which 300 GPa carbon fiber was impregnated with a synthetic resin so that the resin content was 25 wt%. The thickness of the prepreg after molding is two types, 0.081 mm and 0.11 mm. Others were the same as in Examples 1 to 4.
  • the vibration damping is performed by fixing the position of the center of gravity of the gonolev shaft 1 to the force shaker 5, vibrating the shaft 1, and transmitting the vibration transmission to the acceleration pickup ( (Not shown), and a loss coefficient 77 was calculated by the loss coefficient measuring device 6 from the detected data.
  • the following equations were used to calculate the primary and secondary loss factors. Indicates the decay rate.
  • the shaft 1 is pressed by the pressing member 63 while being supported by the two supports 61 and 62.
  • the span between the two supports 62 is represented by L, and the pressing position is set in the middle of the span L. Accordingly, the length L1 from the pressing position to the right support 61 is equal to the length L2 from the pressing position force to the left support 62.
  • a bending stiffness value that is, a ⁇ value was obtained by the following calculation formula showing the relationship between the amount of deflection ⁇ and the load W when the shaft 1 was pressurized.
  • the method of measuring the panel constant is in accordance with the flatness test of the S-shaped shaft of the golf club accreditation standards and the method of confirming the standards (Product Safety Association).
  • the panel constant K is calculated from the load P and the displacement ⁇ at that time by the following equation.
  • the spring constant ⁇ was measured to be used as an indicator of “stable feeling” and “stiffness and stiffness” of the shaft.
  • Tables 1 and 2 show the measurement results of various characteristics.
  • a golf club was manufactured by attaching a head and a grip to the shaft of each example and each comparative example. The test was conducted by four golfers. The sensory test was used to evaluate the "stable feeling", “play” and “stickiness” by test hits.
  • the damping ratio ⁇ can be obtained by the following equation.
  • c is the damping coefficient determined by the material
  • m is the weight
  • k is the elastic modulus.
  • Example 4 4 4 2 2 As can be seen from Table 3, the bending stiffness value (EI value in Tables 1 and 2) that affects the “hardness” as a result of the test hit evaluation by the professional golfer was determined in each of Examples 1 to 4. Although they were almost the same, “Stableness” was a very different evaluation. Among them, the professional golfers B and A with a high head speed (H / S) or with a fast swing tempo, said that the shafts of Example 2 and Example 3 with a high spring constant were "strong". It was highly evaluated for its “stableness” because it was felt.
  • H / S head speed
  • Example 3 Example 3 with a high spring constant
  • the inventor has the knowledge that the swing tempo can be represented by the maximum deflection of the shaft. That is, if the head speed is high or the swing tempo is fast, the bending moment applied to the shaft during the swing increases, and as a result, the bending amount of the shaft increases, and the person with the faster swing tempo becomes the bending amount.
  • a hard shaft is necessary to reduce the risk of stiffening.
  • the present inventors have invented a patent 3061640 (W96 / 11726) as a device for determining this.

Abstract

A fiber-reinforced resin golf shaft formed by laminating a plurality of fiber-reinforced resin layers, wherein the fiber-reinforced resin layers comprise tetraxial fabric layers formed by reinforcing tetraxial fabric with a molding resin. The tetraxial fabric is formed of a plurality of vertical axis yarns extending parallel with the longitudinal direction of the shaft, a plurality of lateral axis yarns extending along a direction orthogonal to the longitudinal direction of the shaft, and one set of a plurality of oblique axis yarns obliquely crossing with each other bilaterally with respect to the longitudinal direction of the shaft. At least one type of the axis yarns of the vertical axis yarns, lateral axis yarns, and oblique axis yarns are formed of fiber-reinforced fibers having characteristics different from those of the other axis yarns.

Description

明 細 書  Specification
ゴノレフシャフト 技術分野  Gonolev shaft technical field
[0001] 本発明は、フィーリングの良い振動特性を持ち、かつタイミングのとりやすさを向上 させたゴノレフシャフトに関するものである。  TECHNICAL FIELD [0001] The present invention relates to a gonofleft shaft having a vibration characteristic with a good feel and improved timing.
背景技術  Background art
[0002] ゴルフクラブのスイング時におけるタイミングの取り方は、プレーヤーやゴルフシャフ トの特性、重量、長さ、重心、硬さ等によりそれぞれ異なる。このタイミングを取りやす くするために、ゴルフシャフトにはいろいろな改良が加えられている。タイミングに関連 するゴルフシャフトの設計項目にシャフトフレックスがある。このシャフトフレックスは、 ゴノレフシャフトをそのグリップ近傍において固定し、ゴルフシャフトの先端部に一定の 重量を付加したときのしなり量や、固有振動数によって管理されることが知られている  [0002] The timing of a golf club at the time of swing differs depending on the characteristics, weight, length, center of gravity, hardness, and the like of a player and a golf shaft. Various improvements have been made to the golf shaft to facilitate this timing. Golf shaft design items related to timing include shaft flex. It is known that this shaft flex is controlled by the amount of bending and the natural frequency when a certain weight is added to the tip of the golf shaft by fixing a gonolef shaft near its grip.
[0003] スイング中のシャフトのしなり量は、ゴルフシャフトの軸線に沿った方向の曲げによる 変形と、前記軸線に直交する径方向に沿った圧縮による変形が複合されたものであ る。そのため、圧縮による変形が大きいと、曲げによる変形の邪魔をして、ゴルファー 力 Sしなり感を感じ難くなると共に、ゴルフシャフトの復元力も小さくなり、飛距離をロス するという問題が生じる。 [0003] The amount of bending of the shaft during a swing is a combination of deformation due to bending in a direction along the axis of the golf shaft and deformation due to compression in a radial direction perpendicular to the axis. Therefore, if the deformation due to the compression is large, it interferes with the deformation due to the bending, making it difficult to feel the golfer's force S, and the restoring force of the golf shaft is also reduced, resulting in a problem that the flight distance is lost.
[0004] 従って、ゴルファーがタイミングの取りやすいフレックスを選定する際には、ゴルフシ ャフトの径方向の剛性も考慮する必要がある。これら曲げによる変形と、径方向の変 形とに対する要求を同時に満足させるには、厚みの薄いプリプレダを幾重にも積層し た多層材をシャフトの素材として採用したり、もしくは、多軸織物を採用したりすること が知られている。  [0004] Therefore, when a golfer selects a flex that is easy to take timing, it is necessary to consider the radial rigidity of the golf shaft. In order to simultaneously satisfy the demands for deformation due to bending and radial deformation, a multilayer material consisting of multiple layers of thin pre-preda is used as the shaft material, or a multi-axial fabric is used. It is known to do.
[0005] 繊維強化樹脂製のゴルフシャフトにおいて、織物、特に 3軸を主とした多軸織物を 用いたシャフトに関しては、特開昭 58— 76559号公報、特開平 3— 151989号公報、 及び、実開平 4一 51970号公報に記載されている。これらの文献に記載のゴノレフシャ フトでは、 3軸織物の特徴を利用し、構造物の補強、もしくは生産性向上を目的として 多軸織物が用いられている。 [0005] In a golf shaft made of a fiber-reinforced resin, a shaft using a woven fabric, particularly a multiaxial woven fabric mainly composed of three axes, is disclosed in JP-A-58-76559, JP-A-3-151989, and It is described in Japanese Utility Model Application Laid-Open No. 51970/1991. The gonolev shafts described in these documents use the characteristics of triaxial fabrics to reinforce structures or improve productivity. Multiaxial fabrics are used.
[0006] また、福田博、「複合材料の設計」、繊維機械学会誌、社団法人日本繊維機械学 会、平成 6年 11月 25日、第 47卷、第 11号、 p. 467— 472によると、 4軸織物は擬似 等方性材としての効果を有し、「どの方向力 負荷が作用しても同様の特性を発揮す る」との記載があり、構造物としての利点が論じられている。  [0006] Also, Hiroshi Fukuda, "Design of Composite Materials", Journal of the Textile Machinery Society, Japan Textile Machinery Society, November 25, 1994, Vol. 47, No. 11, p. 467-472. There is a description that the 4-axis woven fabric has the effect of a quasi-isotropic material, and that "the same properties are exhibited regardless of the directional load applied", and the advantages as a structure are discussed. .
[0007] さらに、特開 2000—245880号公報には、 4軸織物を使用したゴルフシャフトが記 載されている。このゴルフシャフトは、 4軸織物を用いることにより、曲げ、捩り、圧縮剛 性に優れ、あらゆる方向の力が付加されても充分に強度があり、反応性が高ぐ復元 力の良好なバランスのとれたゴルフシャフトが得られる、とされてレ、る。  [0007] Further, JP-A-2000-245880 describes a golf shaft using a four-axis fabric. This golf shaft is excellent in bending, torsion, and compression rigidity by using 4-axis woven fabric, has sufficient strength even when force in all directions is applied, and has a good balance of restoring force with high reactivity. It is said that a good golf shaft can be obtained.
発明の開示  Disclosure of the invention
[0008] 前記 3軸織物又は 4軸織物等の多軸織物を用いたゴルフシャフトは、構造物として の特徴である擬似等方性等を利用したものである。ゴルフシャフトに負荷をかけたとき に、シャフトの長手方向、すなわち、縦方向、該長手方向に垂直な横方向、長手方向 に対して所定の角度を有する斜交方向には、それぞれ異なる応力が加わり、これら に対応するためには、各方向においてそれぞれ異なる特性が必要とされる。しかし、 前述した各文献においては、このような問題点について、何ら開示されていない。  [0008] A golf shaft using a multiaxial woven fabric such as the three-axis woven fabric or the four-axis woven fabric utilizes a quasi-isotropy or the like which is a feature of a structure. When a load is applied to the golf shaft, different stresses are applied to the longitudinal direction of the shaft, that is, the longitudinal direction, the lateral direction perpendicular to the longitudinal direction, and the oblique direction having a predetermined angle with respect to the longitudinal direction. To cope with these, different characteristics are required in each direction. However, each of the above-mentioned documents does not disclose such a problem at all.
[0009] また、ゴノレフシャフトの性能を特定する際、前記機械的特性のほかに、「弾く」、「粘 る」など官能表現が用いられている。このような官能表現はゴルファーの内、特に上 級者に多く用いられる力 レ、まだに物理量として特定されてはいなレ、。よって、「弾く」 シャフトを案出するための手段は明確になっていないのが現状である。  [0009] In addition, when specifying the performance of a Gonolev shaft, a sensory expression such as "play" or "stick" is used in addition to the mechanical characteristics. Such sensory expressions are often used by golfers, especially for advanced players, and have not yet been specified as physical quantities. Therefore, the means to devise a “flick” shaft is not clear at present.
[0010] そこで、本発明の目的は、優れた機械的特性を備え、かつ、「弾き」のような官能表 現に基づく特性や安定感に関する要望を満たすことができるようにしたゴノレフシャフト を提供しょうとするものである。  [0010] Therefore, an object of the present invention is to provide a gonolef shaft having excellent mechanical properties and capable of satisfying demands for properties based on a sensory expression such as "flicking" and a sense of stability. Is what you do.
[0011] 本発明は前記の目的を達成するためになされたものであり、本発明の一実施態様 のゴルフシャフトは、複数の繊維強化樹脂層を積層してなる繊維強化樹脂製である。 繊維強化樹脂層は 4軸織物を成形用樹脂で強化した 4軸織物層を含み、 4軸織物は 、シャフトの長手方向に平行に延びる複数の縦軸糸、シャフトの長手方向に直交する 方向に沿って延びる複数の横軸糸、シャフトの長手方向に対して左右に斜交する一 組の複数の斜交軸糸から構成されている。縦軸糸、横軸糸、及び斜交軸糸の内、少 なくとも一種類の軸糸が、他の軸糸とは異なる特性を有する強化繊維により形成され ている。 [0011] The present invention has been made to achieve the above object, and a golf shaft according to an embodiment of the present invention is made of a fiber reinforced resin obtained by laminating a plurality of fiber reinforced resin layers. The fiber reinforced resin layer includes a four-axis woven fabric layer obtained by reinforcing a four-axis woven fabric with a molding resin, and the four-axis woven fabric has a plurality of longitudinal threads extending parallel to the longitudinal direction of the shaft and a direction perpendicular to the longitudinal direction of the shaft. A plurality of horizontal threads extending along the shaft, It is composed of a set of a plurality of oblique shaft yarns. At least one of the vertical axis yarn, the horizontal axis yarn, and the oblique axis yarn is formed of a reinforcing fiber having characteristics different from those of the other axis yarns.
[0012] 前記縦軸糸の強化繊維は、その引張強度が 4000MPa 7000MPaの炭素繊維 力 なり、横軸糸の強化繊維は、その引張弾性率が 240GPa 800GPaの炭素繊 維からなり、斜交軸糸の強化繊維は、その引張弾性率が 400GPa 800GPaの炭 素繊維からなることが好ましレ、。  [0012] The reinforcing fiber of the vertical axis yarn has a tensile strength of carbon fiber strength of 4000MPa and 7000MPa, and the reinforcing fiber of the horizontal axis yarn has a tensile modulus of 240GPa and carbon fiber of 800GPa. The reinforcing fibers are preferably made of carbon fibers having a tensile modulus of 400 GPa and 800 GPa.
[0013] 前記 4軸織物層の強化繊維の繊度は、 50tex-200tex (g/ 1000m)であることが 好ましい。  [0013] The fineness of the reinforcing fibers of the four-axis woven fabric layer is preferably 50tex-200tex (g / 1000m).
前記 4軸織物層は、最外層または最外層から 2層目に配置することが好ましい。 前記ゴルフシャフトの繊維強化樹脂層の樹脂含有量は、前記ゴノレフシャフトの全重 量の 20% 30%であることが好ましい。  The four-axis woven fabric layer is preferably arranged at the outermost layer or at the second layer from the outermost layer. The resin content of the fiber reinforced resin layer of the golf shaft is preferably 20% to 30% of the total weight of the Gonoref shaft.
[0014] 前記ゴノレフシャフトはその先端から後端に向かって漸次外径が大きくなるテーパー 状を有していてもよい。 [0014] The Gonoref shaft may have a tapered shape whose outer diameter gradually increases from the front end to the rear end.
上述したいずれかの好ましいゴルフシャフトの先端にヘッドを装着し、その後端にグ リップを装着してゴノレフクラブを構成することが可能である。  It is possible to construct a gonolev club by attaching the head to the tip of any of the preferable golf shafts described above and attaching the grip to the trailing end.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の一実施形態のゴノレフシャフトを示す正面図。  FIG. 1 is a front view showing a gonolef shaft according to an embodiment of the present invention.
[図 2]図 1のゴルフシャフトに用レ、る繊維強化樹脂プリプレダを説明するための図。  FIG. 2 is a view for explaining a fiber reinforced resin pre-preda used for the golf shaft of FIG. 1.
[図 3]4軸織物の構成を示す図。  FIG. 3 is a view showing a configuration of a four-axis woven fabric.
[図 4]シャフトの振動減衰特性の測定方法を説明するための斜視図。  FIG. 4 is a perspective view for explaining a method of measuring a vibration damping characteristic of a shaft.
[図 5]シャフトの EI値の測定方法を説明するための図。  FIG. 5 is a diagram for explaining a method of measuring an EI value of a shaft.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明を具体化した一実施形態について詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail.
図 1は本発明の一実施形態に係るゴノレフシャフトを示す。ゴルフシャフト 1は、複数 の繊維強化樹脂層を積層して形成したもので、全長が 1143mmである。ゴルフシャ フト 1は、その先端から後端に向かって漸次外径が大きくなるテーパー状を有してい て、その小径側の先端にはヘッド 2が装着され、大径側の後端にはグリップ 3が装着 されている。 FIG. 1 shows a gonolef shaft according to an embodiment of the present invention. The golf shaft 1 is formed by laminating a plurality of fiber-reinforced resin layers, and has a total length of 1143 mm. The golf shaft 1 has a tapered shape in which the outer diameter gradually increases from the front end to the rear end. A head 2 is mounted on the front end on the small diameter side, and the grip is mounted on the rear end on the large diameter side. 3 is installed Has been.
[0017] 前記繊維強化樹脂層は、複数の繊維強化樹脂プリプレダを用いて形成されている 。これらの繊維強化樹脂プリプレダは、図 2に示すように、その強化繊維の配向角度 が所定の角度となるような形状に切り出した第 1一第 5繊維強化樹脂プリプレダ 11一 15と、 4軸織物強化プリプレダ 10と力もなる。これらのプリプレダ 10、 11一 15をマンド レル 7に順次卷きつけて積層することにより、ゴルフシャフト 1が形成されている。  [0017] The fiber reinforced resin layer is formed using a plurality of fiber reinforced resin pre-preda. As shown in FIG. 2, these fiber-reinforced resin pre-preders are a first-fifth fiber-reinforced resin pre-predder 11-11 cut into a shape such that the orientation angle of the reinforcing fibers is a predetermined angle, and a four-axis woven fabric. Strengthening prepredder 10 and power. The golf shaft 1 is formed by sequentially winding these pre-predaders 10, 11 and 15 around the mandrel 7 and laminating them.
[0018] 通常、ゴルフシャフト 1の成形には、これらのプリプレダ 10、 11一 15のほ力 に、補強 用として、シャフト 1の先端側や後端側に部分的に別のプリプレダを配置するが、ここ では、その説明を省略する。  [0018] Normally, in forming the golf shaft 1, another pre-predder is partially disposed on the front end side or the rear end side of the shaft 1 for the purpose of reinforcement by the force of the pre-preders 10, 11 and 15. Here, the description is omitted.
[0019] 第 1一第 5繊維強化樹脂プリプレダ 11一 15及び 4軸織物強化プリプレダ 10では、 強化繊維としていずれも炭素繊維を用レ、、マトリックス樹脂としてエポキシ系樹脂を用 いている。強化繊維としては、炭素繊維に限定されるものではなぐガラス繊維、ァラ ミド繊維、ボロン繊維、芳香族ポリアミド繊維、芳香族ポリエステル繊維、超高分子ポ リエチレン繊維等も用いることができる。  [0019] In the first to fifth fiber reinforced resin pre-predators 11 to 15 and the 4-axis woven fabric pre-predator 10, carbon fiber is used as the reinforcing fiber, and epoxy resin is used as the matrix resin. Glass fibers, aramide fibers, boron fibers, aromatic polyamide fibers, aromatic polyester fibers, ultra-high molecular weight polyethylene fibers, etc., which are not limited to carbon fibers, can be used as the reinforcing fibers.
[0020] また、マトリックス樹脂としては、前記エポキシ系樹脂に代表される熱硬化性樹脂が 好ましぐたとえば、不飽和ポリエステル系樹脂、フエノール系樹脂、メラミン系樹脂、 ユリア系樹脂、ジァリルフタレート系樹脂、ポリウレタン系樹脂、ポリイミド系樹脂、ケィ 素樹脂等が挙げられる。  As the matrix resin, a thermosetting resin represented by the above-mentioned epoxy resin is preferable. For example, unsaturated polyester resin, phenol resin, melamine resin, urea resin, diaryl phthalate Resin, polyurethane resin, polyimide resin, silicone resin and the like.
[0021] 4軸織物強化プリプレダ 10を形成する 4軸織物層 4は、図 3に示すように、相互に直 交するように織られた複数の縦軸糸 41と複数の横軸糸 42とを備え、さらに、これらの 縦軸糸 41及び横軸糸 42に対して左右(+方向と-方向)に交差するように織られた 一組の複数の斜交軸糸 43を備えている。前記 4軸織物層 4の縦軸糸 41はシャフト 1 の長手方向に対して平行に配置され、横軸糸 42はシャフトの長手方向に対して垂直 に配置され、斜交軸糸 43はシャフトの長手方向に対して斜交するように配置される。  As shown in FIG. 3, the four-axis woven fabric layer 4 forming the four-axis woven fabric pre-predader 10 includes a plurality of vertical yarns 41 and a plurality of horizontal yarns 42 woven so as to intersect each other. And a set of a plurality of oblique shaft yarns 43 woven so as to intersect these left and right yarns 41 and 42 in the left and right directions (+ and-directions). The longitudinal axis thread 41 of the four-axis fabric layer 4 is arranged parallel to the longitudinal direction of the shaft 1, the transverse axis thread 42 is arranged perpendicular to the longitudinal direction of the shaft, and the oblique axis thread 43 is It is arranged so as to be oblique to the longitudinal direction.
[0022] 縦軸糸 41には、シャフト 1の軸線に沿った曲げに対しては強度が必要であるため、 その強化繊維には高強度の強化繊維を用いる。たとえば、引張強度が 3500— 700 OMPaの炭素繊維が好ましく用いられる。横軸糸 42には、ゴルファーの力量が高くな るほどバネ定数の高い材料が必要である。ゴルファーの力量は、ヘッドスピードとスィ ング時のシャフト 1の最大たわみ量とによって表すことができる。ヘッドスピードが速く なるほど、また、シャフト 1の最大たわみ量が多くなるほど、重ぐかつ、硬いシャフトが 必要とされる。よって、シャフト 1が重くなるほど、また、硬くなるほど、横軸糸 42に採用 する強化繊維の弾性率は高い方が良い。横軸糸 42を構成する強化繊維に炭素繊 維を用いた場合は、引張弾性率が 240 800GPaの炭素繊維が好ましい。同様の 効果を得るため、炭素繊維の繊度を上げたり、一本の横軸糸 42を構成するために収 束される繊維数を多くしたりすることも可能である。その場合、シャフト表面の凹凸が 大きくなるため、最外層の研磨代を多くする必要がある。このような観点から、前記 4 軸織物層の強化繊維の繊度は、 50tex 200texであること力 Sこのましレ、。繊度の単 位 texは繊維 1000m当たりの g数に等しい値である(ltex= lg/ 1000m)。 [0022] Since the longitudinal thread 41 needs to be strong against bending along the axis of the shaft 1, a high-strength reinforcing fiber is used as the reinforcing fiber. For example, carbon fibers having a tensile strength of 3500 to 700 OMPa are preferably used. For the horizontal thread 42, a material having a higher spring constant is required as the golfer's power becomes higher. The golfer's ability depends on head speed and speed. And the maximum amount of deflection of the shaft 1 during the swing. As the head speed increases and the maximum deflection of the shaft 1 increases, a heavier and harder shaft is required. Therefore, the heavier and harder the shaft 1, the better the elastic modulus of the reinforcing fiber used for the horizontal thread 42 is. When carbon fiber is used as the reinforcing fiber constituting the horizontal thread 42, carbon fiber having a tensile modulus of 240 to 800 GPa is preferable. In order to obtain the same effect, it is possible to increase the fineness of the carbon fiber or to increase the number of fibers bundled to form one horizontal thread 42. In that case, the roughness of the shaft surface becomes large, so that the polishing allowance of the outermost layer needs to be increased. From this viewpoint, the fineness of the reinforcing fibers of the four-axis woven fabric layer is 50 tex / 200 tex. The unit of fineness, tex, is a value equal to the number of grams per 1000 m of fiber (ltex = lg / 1000 m).
[0023] 前記強化繊維は、ゴルファーの力量が高くなるほど、引張弾性率が高い方が好まし レ、が、高い弾性率の繊維ほど、繊維の引張強度が低くなる傾向にあるため、横軸方 向に繊維を織る工程において、繊維の破断による歩留まりの影響が大きくなる。よつ て、横軸糸 42の引張弾性率に関しては、 240— 500GPaの炭素繊維が更に好まし レ、。 [0023] The reinforcing fiber preferably has a higher tensile elastic modulus as the golfer's power becomes higher. However, a fiber having a higher elastic modulus tends to have a lower tensile strength. In the process of weaving fibers in the opposite direction, the effect of the yield due to fiber breakage becomes large. Therefore, regarding the tensile modulus of the horizontal yarn 42, carbon fiber of 240 to 500 GPa is more preferable.
[0024] 斜交軸糸 43は、曲げ振動の減衰に最も影響を与える軸糸である。本実施形態にお いては、「弾く」という特性により、シャフトの挙動を特定できるとみなしている。すなわ ち、本実施形態では、スイング中のシャフトのしなりを表す振動がゴノレファーによって 感知され、かつ、打球したことによる振動が感応される。  [0024] The oblique shaft yarn 43 is a shaft yarn that most affects the attenuation of bending vibration. In the present embodiment, it is considered that the behavior of the shaft can be specified by the characteristic of “playing”. That is, in the present embodiment, the vibration indicating the bending of the shaft during the swing is sensed by the gonofer, and the vibration caused by hitting the ball is sensed.
[0025] シャフトにこのような「弾く」、さらに「安定」という官能表現による特性を求める場合、 曲げ振動の減衰比をできるだけ小さくするために、斜交軸糸 43を構成する強化繊維 に高い弾性率の強化繊維を用レ、、シャフト 1の軸線に対する配向角度が ± 45度とな るように配置している。この強化繊維としては、引張弾性率が 400— 800GPaの炭素 繊維を用いるのが好ましい。引張弾性率が高いほど好ましいが、斜交軸に沿って繊 維を織る工程にぉレ、て、高レ、弾性率の繊維ほど、繊維の引張強度が低くなる傾向に あるため、 400— 500GPaの炭素繊維が更に好ましレ、。また、斜交軸糸 43に用いら れる強化繊維は、 +方向斜交軸と一方向斜交軸とにおける特性を同一にすることが 好ましい。 +方向と—方向とで特性が異なると、捻り特性において異方性が生じるた めである。 [0025] In the case where such a characteristic as "playing" and "stable" is required for the shaft, in order to minimize the bending vibration damping ratio, the reinforcing fibers constituting the oblique shaft yarn 43 have high elasticity. The reinforcing fibers are arranged so that the orientation angle with respect to the axis of the shaft 1 is ± 45 degrees. As the reinforcing fibers, it is preferable to use carbon fibers having a tensile modulus of 400 to 800 GPa. The higher the tensile modulus, the better. However, in the process of weaving the fiber along the oblique axis, the higher the modulus, the higher the modulus, the lower the tensile strength of the fiber. Carbon fiber is more preferred. Further, it is preferable that the reinforcing fibers used in the oblique shaft yarn 43 have the same characteristics in the + -direction oblique axis and the one-way oblique axis. If the characteristics differ between the + direction and the-direction, anisotropy occurs in the torsional characteristics. It is.
[0026] 前記 4軸織物層は、所望の振動特性である「弾く」ことに関して効果を得るためには 、振動減衰率を低くすることが好ましぐそのためには、プリプレダの樹脂量も少なく する必要がある。これは、樹脂自体の減衰係数が強化繊維に比べて低いためである 。また、 4軸織物層 4を含めた他の繊維強化樹脂層を形成するプリプレダ 10— 15に 関し、その樹脂含有量は、各プリプレダの重量の 20 50重量%の範囲であれば、シ ャフトの特性の上でも、製造する上でも適している。すべてのプリプレダ 10— 15に使 用される樹脂のゴノレフシャフト 1全体に占める割合は、 20 30重量%の範囲である ことが好ましい。  [0026] The four-axis woven fabric layer preferably has a low vibration damping rate in order to obtain the effect of "flicking" which is a desired vibration characteristic, and in order to achieve the effect, the resin amount of the pre-preda is also reduced. There is a need. This is because the damping coefficient of the resin itself is lower than that of the reinforcing fiber. In addition, regarding the pre-predeers 10 to 15 that form another fiber-reinforced resin layer including the four-axis fabric layer 4, if the resin content is within the range of 2050% by weight of the weight of each pre-prede, Suitable for both properties and manufacturing. It is preferable that the ratio of the resin used in all the pre-predas 10 to 15 to the entire gonolev shaft 1 is in the range of 20 to 30% by weight.
[0027] また、本発明の目的を効率的に達成するためには、 4軸織物層 4を最外側に配置 するのがより効果的であるが、製法や外観上の要求によっては、最外側ではなぐ最 外側により近い位置に配置するのが好ましぐ最外側の層から 2層目までに配置する のが好ましい。  [0027] In order to efficiently achieve the object of the present invention, it is more effective to arrange the four-axis woven fabric layer 4 on the outermost side. It is preferable to arrange at a position closer to the outermost layer than the outermost layer, and it is preferable to arrange the layers from the outermost layer to the second layer.
[0028] 繊維強化樹脂製のシャフト 1を、いわゆるシートラッピング製法で形成する場合は、 複数のプリプレダ 10-15をマンドレル 7に順次卷回した後、ラッピングテープを卷き 付けて固定し、これを硬化成形した後、そのラッピングテープを取り除き、表面を研磨 し、塗装して完成品のシャフトを得ている。  When the shaft 1 made of fiber reinforced resin is formed by a so-called sheet wrapping method, a plurality of pre-predaers 10-15 are sequentially wound around the mandrel 7, and then a wrapping tape is wound thereon and fixed. After curing and molding, the wrapping tape is removed, the surface is polished and painted to obtain the finished shaft.
[0029] このような製法を採用する場合には、研磨代を確保するために、 4軸織物層 4を備 えたプリプレダ 10の外側に、一つのプリプレダ 15の層が設けられている。このプリプ レグ 15の厚みは 0. 02mm— 0. 15mmであることが好ましレ、。このプリプレダ 15の厚 みが 0. 02mm以下であると、研磨により 4軸織物層 4の強化繊維が誤って研磨され てしまい、シャフト 1の性能に悪影響を及ぼす恐れがあるため、好ましくない。プリプレ グ 15の厚みが 0. 15mm以上であると、プリプレダ 15の表面力も 4軸織物層 4までの 距離が大きくなるので、 4軸織物層 4を配置する効果が得られ難い。  When such a manufacturing method is adopted, one layer of the pre-preda 15 is provided outside the pre-preda 10 provided with the four-axis fabric layer 4 in order to secure a polishing allowance. The thickness of the prepreg 15 is preferably between 0.02 mm and 0.15 mm. If the thickness of the pre-preda 15 is 0.02 mm or less, the reinforcing fibers of the four-axis woven fabric layer 4 are erroneously polished by polishing, which may adversely affect the performance of the shaft 1, which is not preferable. If the thickness of the prepreg 15 is 0.15 mm or more, the surface force of the prepreg 15 also increases the distance to the four-axis fabric layer 4, so that the effect of disposing the four-axis fabric layer 4 is hardly obtained.
[0030] 一方、以下の場合には、プリプレダ 15の厚みの大きいものが必要とされる。すなわ ち、 4軸織物層 4の各軸糸 41、 42、 43は、 1000本一 6000本の炭素繊維を収束して 形成されるが、各軸糸 41、 42、 43を、例えば引張り弾性率が 240GPaの炭素繊維を 3000本収束させて用いた場合と、 1000本収束させて用いた場合とでは、 3000本 収束させて用いた場合の方が、各軸糸 41、 42、 43の交点における 4軸織物層 4の厚 みが大きくなる。そのため、シャフト表面を滑らかにする場合には研磨代を多く取る必 要がある。よって、このような場合に、プリプレダ 15の厚みを厚くする必要がある。ここ で、 3000本の炭素繊維を収束した束を一般的に 3Kと言う。 Kは 1000に対応する。 [0030] On the other hand, in the following cases, the pre-predator 15 needs to have a large thickness. That is, each of the yarns 41, 42, 43 of the four-axis fabric layer 4 is formed by converging 1,000 to 6,000 carbon fibers. 3000 carbon fibers with a rate of 240 GPa are converged and used, and 1000 carbon fibers are converged and used. When converged and used, the thickness of the 4-axis woven fabric layer 4 at the intersection of each of the thread 41, 42, and 43 becomes larger. Therefore, it is necessary to increase the polishing allowance when the shaft surface is made smooth. Therefore, in such a case, it is necessary to increase the thickness of the pre-preda 15. Here, a bundle of 3000 carbon fibers is generally called 3K. K corresponds to 1000.
[0031] 硬化成形後の研磨を必要としない製法、たとえば、ラッピングテープの代わりに伸 縮自在のチューブでプリプレダを被覆して成形する方法や、内圧成形法による場合 、あるいは、前記シートラッピング製法であっても研磨を必要としない場合などには、 最外層に 4軸織物強化プリプレダ 10を用いることができる。  [0031] A production method that does not require polishing after curing molding, for example, a method in which a pre-preda is covered with an extensible tube instead of a wrapping tape and molding is performed, or an internal pressure molding method is used, or the sheet wrapping method is used. In the case where polishing is not required even if there is, for example, the 4-axis woven fabric prepreg 10 can be used for the outermost layer.
[0032] 第 1及び第 2繊維強化樹脂プリプレダ 11、 12は、シャフトの全長にわたり、 2— 4回 卷回して配設するもので、強化繊維がシャフト 1の長手方向に対して ± 30° ± 65 ° の角度をなすように配置されている。第 3繊維強化樹脂プリプレダ 13は、シャフト 1 の全長にわたり、 1回卷回して配設するもので、強化繊維がシャフト 1の長手方向に 対して略 90度の角度をなすように配置されている。第 4及び第 5繊維強化樹脂プリプ レグ 14、 15は、シャフト 1の全長にわたり、 1一 2回卷回して配設するもので、強化繊 維がシャフト 1の長手方向に対して略平行となるように配置されている。ただし、第 5 繊維強化樹脂プリプレダ 15は、上述したように、製法によっては使用されない場合が ある。  [0032] The first and second fiber-reinforced resin pre-predators 11, 12 are disposed by being wound 2-4 times over the entire length of the shaft. They are arranged at an angle of 65 °. The third fiber-reinforced resin pre-predder 13 is provided by winding once over the entire length of the shaft 1, and the reinforcing fibers are arranged so as to form an angle of about 90 degrees with respect to the longitudinal direction of the shaft 1. . The fourth and fifth fiber reinforced resin prepregs 14 and 15 are disposed by winding one or two turns over the entire length of the shaft 1, and the reinforcing fibers are substantially parallel to the longitudinal direction of the shaft 1. Are arranged as follows. However, as described above, the fifth fiber-reinforced resin pre-preda 15 may not be used depending on the manufacturing method.
[0033] 本実施形態のシャフト 1はシートワインデイング製法で成形されている。シャフト 1の 成形に当たり、マンドレル 7に第 1乃至第 4繊維強化樹脂プリプレダ 11一 14、 4軸織 物プリプレダ 10、及び第 5繊維強化樹脂プリプレダ 15をこの順で巻き付けて積層し、 その外周にラッピングテープを卷き締めて積層体を得る。その状態で、積層体を加熱 及び加圧し、硬化させて成形し、その後、マンドレルを積層体から引き抜いて、シャフ ト 1を得ている。  [0033] The shaft 1 of the present embodiment is formed by a sheet winding manufacturing method. In forming the shaft 1, the first to fourth fiber reinforced resin pre-predeers 11 to 14, the four-axis woven pre-predader 10, and the fifth fiber reinforced resin pre-preda 15 are wound around the mandrel 7 in this order, laminated, and wrapped around its outer periphery. Wind the tape to obtain a laminate. In this state, the laminate is heated and pressurized, cured and molded, and then the mandrel is pulled out of the laminate to obtain the shaft 1.
[0034] 本発明のゴルフシャフト 1は、前記したように、シャフト 1の各軸糸について必要な要 件を満たすように、各軸糸に特性の異なる強化繊維を用レ、、それらを織布することで 一つの 4軸織物層 4内に同時に存在させ、かつ、このような 4軸織物層 4をプリプレダ の積層体内においてより外層に近い位置に配置している。それにより、そのゴルフシ ャフトに設定した仕様において、パネ定数を大きぐかつ、 1次、 2次の振動モードで の損失係数を小さくして、スイング時のシャフトの挙動を感応できるようにし、いわゆる 「弾き」感を感応できると同時に、より安定性のあるシャフトを製造することができる。 [0034] As described above, the golf shaft 1 of the present invention uses reinforcing fibers having different characteristics for each axis yarn so as to satisfy the necessary requirements for each axis yarn of the shaft 1, and woven fabrics thereof. As a result, the four-axis woven fabric layers 4 are simultaneously present in one four-axis woven fabric layer 4, and such a four-axis woven fabric layer 4 is arranged at a position closer to the outer layer in the laminate of the pre-preda. As a result, in the specifications set for the golf shaft, the panel constant is large, and the primary and secondary vibration modes are used. By reducing the loss coefficient of the shaft, the behavior of the shaft at the time of swing can be sensed, so that a so-called "flicking" feeling can be sensed, and a more stable shaft can be manufactured.
[0035] 以下、本発明のゴルフシャフトの実施例 1一 4、および比較例 1について説明する。  Hereinafter, Examples 14 to 14 and Comparative Example 1 of the golf shaft of the present invention will be described.
各実施例で用いた 4軸織物強化プリプレダ 10の構成および比較例で用いた繊維 強化樹脂プリプレダの積層条件を表 1及び表 2に示す。シャフトの長さはいずれも 45 インチ(1143mm)である。  Tables 1 and 2 show the configuration of the 4-axis woven fabric prepreg 10 used in each example and the lamination conditions of the fiber reinforced resin prepreg used in the comparative example. Both shafts are 45 inches (1143 mm) in length.
[0036] [表 1] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[表 2] 比較例 1 [Table 2] Comparative Example 1
4 軸織 斜交軸糸 一  4 shaft weave crossed shaft thread
物層 縦軸糸 ―  Material layer Vertical thread-
横軸糸 ―  Horizontal thread ―
4軸織物層の配置位 配置無し  Arrangement position of 4-axis fabric layer No arrangement
 Place
塗装前シャフト重量(g ) 61 . 9  Shaft weight before painting (g) 61.9
シャフト先端径(mm) 8 . 9  Shaft tip diameter (mm) 8.9
シャフト後端径(mm) 15 . 63  Shaft rear end diameter (mm) 15. 63
トルク(度) 3 . 96  Torque (degrees) 3.96
EI値(kgfmm2 ) 9 . 5 EI value (kgfmm 2 ) 9.5
バネ定数 71  Spring constant 71
損失係数 (1次) 0 . 0035  Loss factor (1st order) 0.
損失係数 (2次) 0 . 0045  Loss factor (second order) 0 .0045
(実施例 1) (Example 1)
図 2に示す実施形態におけるプリプレダの積層構成を採用し、第 1一第 5繊維強化 樹脂プリプレダ 11一 15、および、表 1の実施例 1の欄に示す構成の 4軸織物プリプレ グ 10をマンドレル 7に巻き付けて積層した。 4軸織物強化プリプレダ 10として、斜交軸 糸 43の強化繊維には、引張り弾性率; 385GPaの炭素繊維を 3000本収束した繊維 を使用した。縦軸糸 41および横軸糸 42には、強化繊維として引張り弾性率; 240GP aの炭素繊維を 1000本収束した繊維を使用した。表 1中、 1000本の束を 1Kで示す  The first to fifth fiber reinforced resin prepregs 11 to 15 and the four-axis woven fabric prepreg 10 having the configuration shown in the column of Example 1 in Table 1 are employed in the mandrel, employing the laminated structure of the prepreg in the embodiment shown in FIG. 7 and laminated. As the 4-axis woven fabric pre-predator 10, a fiber obtained by converging 3,000 carbon fibers having a tensile elasticity of 385 GPa was used as the reinforcing fiber of the oblique axis yarn 43. As the longitudinal axis yarn 41 and the horizontal axis thread 42, fibers obtained by converging 1,000 carbon fibers having a tensile modulus of elasticity of 240 GPa as reinforcing fibers were used. In Table 1, 1000 bundles are indicated by 1K
[0037] 第 1、第 2繊維強化樹脂プリプレダ 11、 12としては、引張り弾性率; 445GPaの炭素 繊維に合成樹脂をその樹脂含有率が 25wt%となるように含浸させたプリプレダを使 用した。該プリプレダの成形後の厚みは 0. 06 lmmである。また、該プリプレダ 11、 1 2における強化繊維の配向角度は、シャフト長手方向に対してそれぞれ + 45° 及び 一 45° である。 [0037] As the first and second fiber reinforced resin pre-predas 11, 12, pre-predas obtained by impregnating carbon fibers having a tensile elasticity of 445 GPa with a synthetic resin so as to have a resin content of 25 wt% were used. The thickness of the prepreg after molding is 0.06 lmm. In addition, the orientation angles of the reinforcing fibers in the pre-predators 11 and 12 are + 45 ° and −45 ° with respect to the longitudinal direction of the shaft, respectively.
[0038] 第 3繊維強化樹脂プリプレダ 13としては、強化繊維として引張り弾性率; 240GPa の炭素繊維に、合成樹脂をその樹脂含有率が 25wt%となるように含浸させたプリプ レグを使用した。該プリプレダの成形後の厚みは 0. 045mmである。 [0039] 第 4繊維強化樹脂プリプレダ 14としては、強化繊維として引張り弾性率; 300GPa の炭素繊維に、合成樹脂をその樹脂含有率が 25wt%となるように含浸させたプリプ レグを使用した。該プリプレダの成形後の厚みは 0. 081mmである。 [0038] As the third fiber-reinforced resin pre-predator 13, a prepreg obtained by impregnating carbon fibers having a tensile elasticity of 240 GPa as a reinforcing fiber with a synthetic resin so that the resin content becomes 25 wt% was used. The thickness of the prepreg after molding is 0.045 mm. As the fourth fiber reinforced resin pre-predator 14, a prepreg obtained by impregnating carbon fibers having a tensile elasticity of 300 GPa as a reinforcing fiber with a synthetic resin so as to have a resin content of 25 wt% was used. The thickness of the prepreg after molding is 0.081 mm.
[0040] 前記 4軸織物強化プリプレダ 10を積層体の最外層に配置してシャフトを形成した。  The shaft was formed by disposing the four-axis woven prepreg 10 on the outermost layer of the laminate.
また、そのシャフトの重量は 63gとした。  The weight of the shaft was 63 g.
(実施例 2)  (Example 2)
実施例 1の 4軸織物強化プリプレダ 10の横軸糸 42の強化繊維を、引張り弾性率; 2 40GPaの炭素繊維を 3000本収束した繊維に変更した。その他は実施例 1と同一と した。  The reinforcing fibers of the horizontal thread 42 of the 4-axis woven fabric prepreg 10 of Example 1 were changed to fibers in which 3000 carbon fibers having a tensile modulus of elasticity of 2 40 GPa were converged. Others were the same as Example 1.
[0041] (実施例 3)  (Example 3)
実施例 1の 4軸織物強化プリプレダ 10の横軸糸 42の強化繊維を、引張り弾性率; 3 85GPaの炭素繊維を 3000本収束した繊維に変更した。その他は実施例 1と同一と した。  The reinforcing fiber of the horizontal thread 42 of the 4-axis woven fabric prepreg 10 of Example 1 was changed to a fiber in which 3000 carbon fibers having a tensile elasticity of 3 85 GPa were converged. Others were the same as Example 1.
[0042] (実施例 4)  (Example 4)
実施例 1の 4軸織物強化プリプレダ 10の斜交軸糸 43を、引張り弾性率; 240GPa の炭素繊維を 1000本収束した繊維に変更した。その他は実施例 1と同一とした。 (比較例 1)  The oblique axis yarn 43 of the 4-axis woven fabric prepreg 10 of Example 1 was changed to a fiber in which 1,000 carbon fibers having a tensile elasticity of 240 GPa were converged. Others were the same as Example 1. (Comparative Example 1)
実施例 1から 4軸織物層 4をなくし、第 4繊維強化樹脂プリプレダ 14を変更した。 4 軸織物層 4をなくすことで、実施例 1一 4と EI値、シャフト重量、及び、外径が大きく異 ならないようにするために、第 4繊維強化樹脂プリプレダ 14としては、強化繊維として 引張り弾性率; 300GPaの炭素繊維に、合成樹脂をその樹脂含有率が 25wt%とな るように含浸させたプリプレダを使用した。該プリプレダの成形後の厚みは 0. 081m mおよび 0. 101mmの 2種類である。その他は実施例 1から 4と同一とした。  Example 4 The four-axis woven fabric layer 4 was eliminated from the first embodiment, and the fourth fiber-reinforced resin pre-preda 14 was changed. In order to prevent the EI value, the shaft weight, and the outer diameter from being largely different from those in Examples 14 to 14 by eliminating the 4-axis woven fabric layer 4, the fourth fiber-reinforced resin pre-predator 14 was pulled as a reinforcing fiber. Elasticity modulus: A pre-predeer was used in which 300 GPa carbon fiber was impregnated with a synthetic resin so that the resin content was 25 wt%. The thickness of the prepreg after molding is two types, 0.081 mm and 0.11 mm. Others were the same as in Examples 1 to 4.
[0043] 前記実施例 1一 4、比較例 1の各ゴノレフシャフトについて後述する方法で振動減衰 性、 EI値、バネ定数の測定および評価を行った。各評価結果は表 1および表 2の下 欄に記載している。また、官能テストのうち、安定性に関するテストについては表 3に 示す。 With respect to each of the Gonolev shafts of Examples 14 and 14 and Comparative Example 1, measurement and evaluation of the vibration damping property, the EI value, and the spring constant were performed by the methods described later. The results of each evaluation are shown in the lower columns of Tables 1 and 2. Table 3 shows the stability tests among the sensory tests.
[0044] (振動減衰性の測定) 図 4に示すように、振動減衰性は、ゴノレフシャフト 1の重心位置を力卩振器 5に固定し て、そのシャフト 1を加振し、その振動伝達をシャフト 1に取り付けられた加速度ピック アップ (図示略)で検出し、検出したデータから損失係数測定器 6により、損失係数 77 を算出した。一次及び二次の損失係数の算出には以下の式を使用した。 は減衰 率を示す。 (Measurement of vibration damping property) As shown in Fig. 4, the vibration damping is performed by fixing the position of the center of gravity of the gonolev shaft 1 to the force shaker 5, vibrating the shaft 1, and transmitting the vibration transmission to the acceleration pickup ( (Not shown), and a loss coefficient 77 was calculated by the loss coefficient measuring device 6 from the detected data. The following equations were used to calculate the primary and secondary loss factors. Indicates the decay rate.
[0045] η = 2 ξ  [0045] η = 2 ξ
(EI値(曲げ剛性値)の測定)  (Measurement of EI value (flexural rigidity value))
図 5に示すように、財団法人製品安全協会 (CONSUMER PRODUCT SAFETY ASSOCIATION)によって規定されたゴルフクラブ用シャフトの 3点曲げ試験方法によ り、ゴルフシャフト 1のグリップ端から 200mm離れた位置で、シャフトをたわませて、そ のたわみ量を測定した。図 5に示すように、シャフト 1は 2つの支持体 61、 62によって 支持された状態で、加圧部材 63により加圧される。 2つの支持体 62の間のスパンは Lで表され、加圧位置はそのスパン Lの中間に設定される。従って、加圧位置から右 側支持体 61までの長さ L1と、加圧位置力も左側支持体 62までの長さ L2は等しい。  As shown in Fig. 5, according to the three-point bending test method for golf club shafts specified by the CONSUMER PRODUCT SAFETY ASSOCIATION, at a position 200 mm away from the grip end of golf shaft 1, And the amount of deflection was measured. As shown in FIG. 5, the shaft 1 is pressed by the pressing member 63 while being supported by the two supports 61 and 62. The span between the two supports 62 is represented by L, and the pressing position is set in the middle of the span L. Accordingly, the length L1 from the pressing position to the right support 61 is equal to the length L2 from the pressing position force to the left support 62.
[0046] そして、シャフト 1の加圧時におけるたわみ量 δ及び荷重 Wの関係を示す以下の計 算式により、曲げ剛性値、すなわち、 ΕΙ値を求めた。  Then, a bending stiffness value, that is, a ΕΙ value was obtained by the following calculation formula showing the relationship between the amount of deflection δ and the load W when the shaft 1 was pressurized.
EI=W/ δ χ L3 EI = W / δ χ L 3
(パネ定数の測定)  (Measurement of panel constant)
パネ定数の測定方法はゴルフクラブの認定基準及び基準確認方法 (財団法人製 品安全協会)の S型シャフトのへん平試験に準ずる。そのへん平試験法では、グリツ プ端から 50mmの範囲において、負荷速度 5mm/分で一定の荷重 Pを加えた時、 次式により、荷重 Pとその時の変位量 Δとからパネ定数 Kが求められる。  The method of measuring the panel constant is in accordance with the flatness test of the S-shaped shaft of the golf club accreditation standards and the method of confirming the standards (Product Safety Association). In the flattening test method, when a constant load P is applied at a load speed of 5 mm / min within a range of 50 mm from the grip end, the panel constant K is calculated from the load P and the displacement Δ at that time by the following equation. Can be
[0047] Κ=Ρ/ Δ [0047] Κ = Ρ / Δ
バネ定数 Κは、シャフトの「安定感」及び「しつ力、り感」の指標として使用するために、 測定した。  The spring constant Κ was measured to be used as an indicator of “stable feeling” and “stiffness and stiffness” of the shaft.
各種特性の測定結果については、表 1及び表 2に示されている。  Tables 1 and 2 show the measurement results of various characteristics.
実施例 1一 4と比較例 1とを比較すると、シャフトの曲げ剛性 (ΕΙ値)、捩り剛性(トル ク)、及び、重量が同程度である。尚、トルクはシャフトの先端及び後端を固定し、そ のシャフトに対して 1フィート(約 0· 3m)にっき 1ポンド(約 0· 45kg)のねじれ荷重を 加えた時、シャフトがねじれた角度(° )で表される。 When Examples 1-4 and Comparative Example 1 are compared, the bending stiffness (ΕΙ value), torsional stiffness (torque), and weight of the shaft are comparable. Torque is fixed at the front and rear ends of the shaft. When a torsional load of 1 pound (approximately 0.45 kg) is applied to the shaft of one foot (approximately 0.3 m), the angle of the shaft is expressed in degrees (°).
[0048] (官能テスト)  [0048] (Sensory test)
各実施例及び各比較例のシャフトに、ヘッドとグリップを装着してゴルフクラブを製 作した。そして、ゴルファー 4人によりテストを行った。官能テストにより、「安定感」、「 弾き」及び「粘り」について、試打による評価を行った。  A golf club was manufactured by attaching a head and a grip to the shaft of each example and each comparative example. The test was conducted by four golfers. The sensory test was used to evaluate the "stable feeling", "play" and "stickiness" by test hits.
[0049] 「弾き」及び「粘り」についての官能テストの結果、実施例 3のシャフトについて、「弾 く」「安定性がある」との、最も高い評価が得られ、次いで、実施例 2, 1 , 4、比較例 1 の順であった。つまり、 4軸織物層 4を有するシャフト、更には斜交軸糸及び横軸糸の 強化繊維の引張り弾性率が高いシャフトの方が「弾き」感が向上した。  [0049] As a result of the sensory test for "flicking" and "stickiness", the shaft of Example 3 was given the highest evaluation of "flicking" and "stable". 1, 4, and Comparative Example 1. In other words, the shaft having the four-axis woven fabric layer 4, and further the shaft having a higher tensile elastic modulus of the reinforcing fibers of the oblique axis yarn and the horizontal axis yarn, improved the feeling of “flipping”.
[0050] 次に、これらのシャフト重心に加振器を取り付け、振動特性 (振動減衰)について調 查した。実施例 1一 4及び比較例 1のシャフトについては、重量、剛性共に同等である ため、固有振動数の差は認めらない。しかし、各振動モードでの減衰比を表す損失 係数が異なることがわかる。振動減衰について、減衰比 ζは以下の式で求めることが できる。  Next, a vibrator was attached to the center of gravity of these shafts, and the vibration characteristics (vibration damping) were adjusted. Since the weights and rigidities of the shafts of Examples 1-4 and Comparative Example 1 are the same, no difference in the natural frequency is recognized. However, it can be seen that the loss coefficient representing the damping ratio in each vibration mode is different. For vibration damping, the damping ratio ζ can be obtained by the following equation.
[0051] ζ = c/2 (mk) 1/2 [0051] ζ = c / 2 (mk) 1/2
ここで、 cは材料によって定まる減衰係数、 mは重量、 kは弾性率を示す。減衰比が 小さいシャフトほど、より「弾く」という官能評価が高くなる。「弾き」がよいという官能評 価を得るには、減衰比を小さくする必要があり、それは弾性率の高い材料を使用する ことで達成できる。  Here, c is the damping coefficient determined by the material, m is the weight, and k is the elastic modulus. The lower the damping ratio, the higher the sensory evaluation of “play”. In order to obtain a good sensory evaluation of “popping”, it is necessary to reduce the damping ratio, which can be achieved by using a material having a high elastic modulus.
[0052] 官能テストの内、「安定感」に関しては、実施例 1一 4と比較例 1の比較評価を行つ た。その結果を表 3に示す。比較例 1と比べて、フィーリングの最も良いものを 1、良い もの 2、どちら力、といえばよいものを 3、同等のものを 4として評価をした。  [0052] Among the sensory tests, with respect to "stable feeling", a comparative evaluation of Examples 14 to 14 and Comparative Example 1 was performed. The results are shown in Table 3. Compared to Comparative Example 1, the evaluation was made as 1 for the best feeling, 2 for the good feeling, 3 for what strength, and 4 for the equivalent.
[0053] [表 3] テスター A B C D [0053] [Table 3] Tester ABCD
H/ S 48〜49 49〜50 43~ 44 42 ~43 テンポ 速め ゆつく り 標準 早め  H / S 48 ~ 49 49 ~ 50 43 ~ 44 42 ~ 43 Tempo Faster Comfortable Standard Faster
実施例 1 3 3 1 1  Example 1 3 3 1 1
実施例 2 2 1 3 3  Example 2 2 1 3 3
実施例 3 1 2 4 4  Example 3 1 2 4 4
実施例 4 4 4 2 2 表 3からわかるように、プロゴルファーによる試打評価の結果、「かたさ感」に影響す る曲げ剛性値(表 1、 2中の EI値)は、各実施例 1から 4において、ほとんど同等である にもかかわらず、「安定感」はかなり異なる評価であった。この中でも、ヘッドスピード( H/S)の速い、もしくはスイングテンポの速いプロゴルファー B及び Aには、バネ定数 の高い実施例 2及び実施例 3のシャフトは、「しつ力りしている」と感じられるために、「 安定感」について高評価であった。  Example 4 4 4 2 2 As can be seen from Table 3, the bending stiffness value (EI value in Tables 1 and 2) that affects the “hardness” as a result of the test hit evaluation by the professional golfer was determined in each of Examples 1 to 4. Although they were almost the same, “Stableness” was a very different evaluation. Among them, the professional golfers B and A with a high head speed (H / S) or with a fast swing tempo, said that the shafts of Example 2 and Example 3 with a high spring constant were "strong". It was highly evaluated for its “stableness” because it was felt.
[0054] 本発明者は、スイングテンポはシャフトの最大たわみ量で表すことができるとの知見 をもっている。すなわち、ヘッドスピードが速レ、、もしくはスイングテンポが速いと、スィ ング中にシャフトにかかる曲げモーメントが増大し、その結果、シャフトのしなり量が増 え、スイングテンポが速い人ほどしなり量を少なくするために、かたいシャフトが必要 であると考えている。これを判別する装置として、本発明者らは特許 3061640 (W〇 96/11726)を発明した。  [0054] The inventor has the knowledge that the swing tempo can be represented by the maximum deflection of the shaft. That is, if the head speed is high or the swing tempo is fast, the bending moment applied to the shaft during the swing increases, and as a result, the bending amount of the shaft increases, and the person with the faster swing tempo becomes the bending amount. We believe that a hard shaft is necessary to reduce the risk of stiffening. The present inventors have invented a patent 3061640 (W96 / 11726) as a device for determining this.
[0055] 以上の結果から、シャフトのしなりだけでなぐパネ定数に関しても安定性に影響す ること力 Sわ力る。よって、「弾き」が良ぐより安定感のあるシャフトを得るには、曲げ振 動減衰を小さくし、かつ、パネ定数を、ゴルファーの力量に応じて設定する必要があ る。  [0055] From the above results, it is clear that the panel constant, which is less than the bending of the shaft, affects the stability. Therefore, in order to obtain a more stable shaft with better “play”, it is necessary to reduce the bending vibration attenuation and set the panel constant in accordance with the golfer's ability.

Claims

請求の範囲 The scope of the claims
[1] 複数の繊維強化樹脂層を積層してなる繊維強化樹脂製のゴルフシャフトであって、 前記繊維強化樹脂層は 4軸織物を成形用樹脂で強化した 4軸織物層を含み、前記 4 軸織物は、シャフトの長手方向に平行に延びる複数の縦軸糸、シャフトの長手方向 に直交する方向に沿って延びる複数の横軸糸、シャフトの長手方向に対して左右に 斜交する一組の複数の斜交軸糸から構成され、前記縦軸糸、横軸糸、及び斜交軸 糸の内、少なくとも一種類の軸糸が、他の軸糸とは異なる特性を有する強化繊維によ り形成されていることを特徴とするゴルフシャフト。  [1] A golf shaft made of a fiber-reinforced resin obtained by laminating a plurality of fiber-reinforced resin layers, wherein the fiber-reinforced resin layer includes a 4-axis fabric layer obtained by reinforcing a 4-axis fabric with a molding resin. The shaft fabric is composed of a plurality of longitudinal yarns extending in parallel with the longitudinal direction of the shaft, a plurality of transverse yarns extending in a direction perpendicular to the longitudinal direction of the shaft, and a set of oblique lines extending left and right with respect to the longitudinal direction of the shaft. Wherein at least one of the longitudinal axis yarn, the transverse axis yarn, and the oblique axis yarn is a reinforcing fiber having characteristics different from those of the other axis yarns. A golf shaft characterized by being formed.
[2] 前記縦軸糸の強化繊維は、その引張強度が 4000MPa— 7000MPaの炭素繊維 からなり、横軸糸の強化繊維は、その引張弾性率が 240GPa— 800GPaの炭素繊 維からなり、斜交軸糸の強化繊維は、その引張弾性率が 400GPa— 800GPaの炭 素繊維からなることを特徴とする請求項 1に記載のゴルフシャフト。  [2] The reinforcing fiber of the vertical axis yarn is made of carbon fiber having a tensile strength of 4000 MPa to 7000 MPa, and the reinforcing fiber of the horizontal axis yarn is made of carbon fiber having a tensile modulus of 240 GPa to 800 GPa. 2. The golf shaft according to claim 1, wherein the reinforcing fibers of the shaft yarn are made of carbon fibers having a tensile modulus of 400 GPa to 800 GPa.
[3] 前記 4軸織物層の強化繊維の繊度は、 50tex— 200tex(g/1000m)であることを特 徴とする請求項 1または 2に記載のゴルフシャフト。  3. The golf shaft according to claim 1, wherein the fineness of the reinforcing fibers of the four-axis woven fabric layer is 50 tex to 200 tex (g / 1000 m).
[4] 前記 4軸織物層は、最外層または最外層から 2層目に配置したことを特徴とする請 求項 1から 3のいずれか一項に記載のゴルフシャフト。  [4] The golf shaft according to any one of claims 1 to 3, wherein the four-axis woven fabric layer is arranged as an outermost layer or a second layer from the outermost layer.
[5] 前記ゴノレフシャフトの繊維強化樹脂層の樹脂含有量は、前記ゴノレフシャフトの全重 量の 20% 30%であることを特徴とする請求項 1から 4のいずれか一項に記載のゴ ノレフシャフト。  [5] The Gonoref according to any one of claims 1 to 4, wherein the resin content of the fiber-reinforced resin layer of the Gonolev shaft is 20% to 30% of the total weight of the Gonolev shaft. shaft.
[6] 前記ゴノレフシャフトはその先端から後端に向かって漸次外径が大きくなるテーパー 状を有していることを特徴とする請求項 1から 4のいずれか一項に記載のゴノレフシャ フト。  6. The gonolev shaft according to claim 1, wherein the gonolev shaft has a tapered shape whose outer diameter gradually increases from a front end to a rear end.
[7] 請求項 1から 6のいずれか一項に記載のゴノレフシャフトを備え、その先端にヘッドが 装着され、その後端にグリップが装着されたゴノレフクラブ。  [7] A Gonoref club comprising the Gonoref shaft according to any one of claims 1 to 6, having a head mounted on a tip thereof, and a grip mounted on a rear end thereof.
PCT/JP2004/008815 2003-12-26 2004-06-23 Golf shaft WO2005065785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516788A JPWO2005065785A1 (en) 2003-12-26 2004-06-23 Golf shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003435255 2003-12-26
JP2003-435255 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005065785A1 true WO2005065785A1 (en) 2005-07-21

Family

ID=34746904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008815 WO2005065785A1 (en) 2003-12-26 2004-06-23 Golf shaft

Country Status (2)

Country Link
JP (1) JPWO2005065785A1 (en)
WO (1) WO2005065785A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524248B2 (en) 2006-09-19 2009-04-28 Sri Sports Limited Shaft for golf clubs and golf club
JP2010075457A (en) * 2008-09-26 2010-04-08 Fujikura Rubber Ltd Golf club shaft and golf club using the same
JP2010221568A (en) * 2009-03-24 2010-10-07 Olympic:Kk Tubular article
JP2019115474A (en) * 2017-12-27 2019-07-18 グローブライド株式会社 Putter club

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451970U (en) * 1990-09-12 1992-05-01
JPH09141754A (en) * 1995-11-17 1997-06-03 Nippon Oil Co Ltd Tapered hollow shaft
JPH09277389A (en) * 1996-04-19 1997-10-28 Nippon Oil Co Ltd Tapered hollow shaft
JP2000245880A (en) * 1999-03-03 2000-09-12 Fujikura Rubber Ltd Golf club shaft
JP2002177424A (en) * 2000-12-18 2002-06-25 Mizuno Corp Shaft for golf club
JP2003275355A (en) * 2002-03-26 2003-09-30 Mizuno Corp Golf shaft
JP2003334268A (en) * 2002-03-15 2003-11-25 Sumitomo Rubber Ind Ltd Golf club shaft

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451970U (en) * 1990-09-12 1992-05-01
JPH09141754A (en) * 1995-11-17 1997-06-03 Nippon Oil Co Ltd Tapered hollow shaft
JPH09277389A (en) * 1996-04-19 1997-10-28 Nippon Oil Co Ltd Tapered hollow shaft
JP2000245880A (en) * 1999-03-03 2000-09-12 Fujikura Rubber Ltd Golf club shaft
JP2002177424A (en) * 2000-12-18 2002-06-25 Mizuno Corp Shaft for golf club
JP2003334268A (en) * 2002-03-15 2003-11-25 Sumitomo Rubber Ind Ltd Golf club shaft
JP2003275355A (en) * 2002-03-26 2003-09-30 Mizuno Corp Golf shaft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524248B2 (en) 2006-09-19 2009-04-28 Sri Sports Limited Shaft for golf clubs and golf club
JP2010075457A (en) * 2008-09-26 2010-04-08 Fujikura Rubber Ltd Golf club shaft and golf club using the same
JP4571212B2 (en) * 2008-09-26 2010-10-27 藤倉ゴム工業株式会社 Golf club shaft and golf club using the same
US8376875B2 (en) 2008-09-26 2013-02-19 Fujikura Rubber Ltd. Golf club shaft and golf club using the same
JP2010221568A (en) * 2009-03-24 2010-10-07 Olympic:Kk Tubular article
JP2019115474A (en) * 2017-12-27 2019-07-18 グローブライド株式会社 Putter club

Also Published As

Publication number Publication date
JPWO2005065785A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US8376875B2 (en) Golf club shaft and golf club using the same
JP5080886B2 (en) Golf club shaft
JP5416973B2 (en) Golf club shaft
US20110151991A1 (en) Golf Club Shaft
EP1210964B1 (en) Golf club shaft
US6875127B2 (en) Golf club shaft
CN101380512B (en) Golf ball bar body
JP3546350B2 (en) Golf club shaft
US6572490B2 (en) FRP golf club shaft
US6666778B2 (en) FRP golf club shaft
WO2005065785A1 (en) Golf shaft
JP4489646B2 (en) Golf shaft
JP4439936B2 (en) Table tennis racket
KR101119733B1 (en) Golf club shaft
JP2992470B2 (en) Golf club set
JP6492639B2 (en) Golf club and shaft
JP4794657B2 (en) Golf club shaft
JP7098961B2 (en) Shaft for golf club
JP2010188204A (en) Golf club shaft and golf club using the same
JP2002045448A (en) Golf shaft made of frp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516788

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase