WO2005061655A1 - Use of gadolinium(iii) chelates as luminescent materials in organic light-emitting diodes (oleds) - Google Patents

Use of gadolinium(iii) chelates as luminescent materials in organic light-emitting diodes (oleds) Download PDF

Info

Publication number
WO2005061655A1
WO2005061655A1 PCT/EP2004/014494 EP2004014494W WO2005061655A1 WO 2005061655 A1 WO2005061655 A1 WO 2005061655A1 EP 2004014494 W EP2004014494 W EP 2004014494W WO 2005061655 A1 WO2005061655 A1 WO 2005061655A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
gadolinium
complexes
light
emitting layer
Prior art date
Application number
PCT/EP2004/014494
Other languages
German (de)
French (fr)
Inventor
Arnd Vogler
Andreas Strasser
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2005061655A1 publication Critical patent/WO2005061655A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/77Preparation of chelates of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/92Ketonic chelates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • Gadolinium (III) chelates as luminescent materials in organic light-emitting diodes (OLEDs)
  • the present invention relates to the use of gadolinium (III) complexes as emitter molecules in organic light-emitting diodes (OLEDs), the use of the gadolinium (III) complexes as light-emitting layer in OLEDs, a light-emitting layer containing at least one gadolinium (III). Complex, an OLED containing this light-emitting layer and devices that contain an OLED according to the invention.
  • OLEDs organic light-emitting diodes
  • OLEDs organic light-emitting diodes
  • the property of materials is used to emit light when they are excited by electrical current.
  • OLEDs are particularly interesting as an alternative to cathode ray tubes and liquid crystal displays for the production of flat screens. Due to the very compact design and the intrinsically lower power consumption, devices containing OLEDs are particularly suitable for mobile applications, for example for applications in cell phones, laptops, etc.
  • JP 01-256584 relates to an electroluminescent thin film element which contains a rare earth metal complex as a luminescent material.
  • Complexes of the following formulas are mentioned as suitable complexes
  • EP-A 0 556 005 relates to compounds which are obtained by reacting an imido reagent such as diphenylphosphonimido-triphenylphosphorane with a chelate of a transition metal, a lanthanide or an actinide, for example tris (dibenzoylmethide) europium (III).
  • an imido reagent such as diphenylphosphonimido-triphenylphosphorane
  • the compounds fluoresce when irradiated with UV light.
  • Suitable chelates have one or more diketonato ligands.
  • US 5,757,026 relates to a multicolor display containing a plurality of multicolor OLEDs.
  • Each LED contains a light-emitting layer that has an organic material, which can be a metal-acetylacetonate complex. These are preferably used to generate an emission in the blue region of visible light and preferably contain Al 3+ , Ga 3+ and In 3+ as metals. Concrete metal acetylacetonate complexes are not mentioned in US 5,757,026.
  • JP 11-260552 relates to organic light-emitting diodes which contain rare earth metal acetylacetonate complexes as light-emitting material and which have two perfluoroalkyl, perfluoroalkenyl, perfluoroaryl or perfluoroaralkyl groups.
  • Examples are Eu complexes of the formulas Eu (CF 3 COCHCOCF 3 ) 3 , Eu (C 2 F 5 COCHCOC 2 F 5 ) 3 , Eu (C 6 F 5 COCHCOC 6 F 5 ) 3 and Eu (CF 3 COCHCOC 6 F5 ) Called 3 .
  • US Pat. No. 6,524,727 relates to electroluminescent materials and organic light-emitting diodes which contain rare earth, actinide or transition metal complexes which have a diphenylphosphonimide-trisphenylphosphine ligand.
  • the complexes preferably contain diketonato groups as chelating groups.
  • Preferred metals are Sm (III), Eu (III), Tb (III), Dy (III), Yb (III), Lu (III), Gd (III), Eu (II), U (III), UO 2 (IV) and Th (III). Specific examples are disclosed for Tb (III), Eu (III), Dy (III) and UO 2 (IV).
  • Electroluminescence is understood to mean both electrofluorescence and electrophosphorescence.
  • the object of the present application is therefore to provide compounds which are suitable for electroluminescence in the blue, red and green regions of the electromagnetic spectrum, which enables the production of full-color displays. Furthermore, it is an object of the present application to provide compounds which can be used in substance, without host substances, as a light-emitting layer in OLEDs.
  • This task is accomplished by using
  • Gadolinium (III) complexes selected from the group consisting of Gadolinium (III) diketonato complexes of the formula (I)
  • R 3 , R 4 , R 5 independently of one another are a substituted or unsubstituted aryl, alkyl, heteroaryl or alkenyl group
  • R 1 and R 3 are preferably, independently of one another, C to C 4 alkyl, phenyl, pyridyl, imidazolyl, furyl , Thienyl, CF 3 , C 2 F 5 . or C 6 F 5 ; preferably methyl, ethyl, thienyl or CF 3 , particularly preferably thienyl or CF 3
  • R 4 and R 5 are independently C to C 4 alkyl, phenyl, 1-naphthyl, 2-naphthyl;
  • R 2 H a substituted or unsubstituted aryl, alkyl, heteroaryl or alkenyl group, preferably H, C to C 4 alkyl, CF 3 , phenyl; neutral ' ligand, preferably selected from the group consisting of water, ' pyridine, preferably 4-NN-
  • gadolinium (III) complexes of the formulas I and II according to the present application are suitable as light-emitting substances in OLEDs for the production of full-color displays.
  • Gadolinium (III) complexes of the formulas I and II are preferably used, in which the
  • R 1 , R 3 independently of one another are C to C 4 alkyl, phenyl, pyridyl, imidazolyl, furyl, thienyl, CF 3 , C 2 F 5 or C 6 F 5 ; preferably methyl, ethyl, thienyl or CF 3 , particularly preferably thienyl or CF 3 ;
  • R 4 , R 5 independently of one another are C to C 4 -alkyl, phenyl, 1-naphthyl, 2-naphthyl;
  • R 2 H C r to C 4 alkyl, CF 3 , phenyl; n, m 0 or 1, preferably 0.
  • aryl radical or group, heteroaryl radical or group, alkyl radical or group, alkenyl radical or group, arylene radical or group and heteroarylene radical or group have the following meanings:
  • An aryl radical is to be understood as a radical with a backbone of 6 to 30 carbon atoms, preferably 6 to 18 carbon atoms, which is composed of an aromatic ring or several fused aromatic rings. Suitable basic structures are, for example, phenyl, naphthyl, anthracenyl or phenanthrenyl.
  • This backbone can be unsubstituted (ie that all carbon atoms that can be substituted carry hydrogen atoms) or can be substituted at one, more or all substitutable positions of the backbone.
  • Suitable substituents are, for example, alkyl residues, preferably alkyl residues with 1 to 8 carbon atoms, particularly preferably methyl, ethyl, i-propyl or t-butyl, aryl residues, preferably C 6 aryl residues, which in turn can be substituted or unsubstituted, heteroaryl residues, preferably heteroaryl residues, which contain at least one nitrogen atom, particularly preferably pyridyl radicals, alkenyl radicals, preferably alkenyl radicals which carry a double bond, particularly preferably alkenyl radicals with a double bond and 1 to 8 carbon atoms, or groups with donor or acceptor action.
  • Groups with a donor effect are to be understood as groups which have a + 1 and / or + M effect and groups with an acceptor effect To understand groups that have an -I and / or -M effect.
  • Suitable groups with donor or acceptor action are halogen residues, preferably F, Cl, Br, particularly preferably F. alkoxy residues, carbonyl residues, ester residues, amine residues, amide residues, CH 2 F groups, CHF 2 groups, CF 3 groups, CN groups Groups, thio groups or SCN groups.
  • the aryl radicals very particularly preferably carry substituents selected from the group consisting of methyl, F, Cl and alkoxy, or the aryl radicals are unsubstituted.
  • the aryl radical or the aryl group is preferably a C 6 aryl radical or a naphthyl radical which is optionally substituted by at least one of the abovementioned substituents.
  • the C 6 aryl radical particularly preferably has none, one or two of the abovementioned substituents, the one substituent preferably being arranged in the para position to the further linking point of the aryl radical and - in the case of two substituents - each in the meta position further linkage point of the aryl radical are arranged or all H atoms of the C 6 aryl radical are substituted by F, that is to say C 6 F 5 .
  • the C 6 aryl radical is very particularly preferably an unsubstituted phenyl radical or C 6 F 5 .
  • the naphthyl radical is preferably 1-naphthyl or 2-naphthyl.
  • a heteroaryl radical or a heteroaryl group is understood to mean radicals which differ from the aryl radicals mentioned above in that at least one carbon atom in the basic structure of the aryl radicals is replaced by a hetero atom.
  • Preferred heteroatoms are N, O and S.
  • the basic structure is particularly preferably selected from systems such as pyridyl, imidazolyl, cyclic esters, cyclic amides and five-membered heteroaromatics such as thienyl, pyrryl, furyl.
  • the basic structure can be substituted at one, more or all substitutable positions of the basic structure. Suitable substituents are the same as those already mentioned for the aryl groups. Thienyl is particularly preferred.
  • An alkyl radical or an alkyl group is a radical with 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 8 carbon atoms, very particularly preferably 1 to 4 carbon atoms.
  • This alkyl radical can be branched or unbranched and optionally interrupted by one or more heteroatoms, preferably N, O or S.
  • the alkyl radical or the alkyl group can be a C 3 to C 8 cycloalkyl radical, preferably a C 5 or C 6 cycloalkyl radical, which can optionally be interrupted by one or more heteroatoms, preferably N, O or S, for example cyclopentyl and cyclohexyl.
  • this alkyl radical can be substituted with one or more of the substituents mentioned in relation to the aryl groups, in particular halogen radicals, preferably F, Cl, Br, particularly preferably F. It is also possible for the alkyl radical to carry one or more aryl groups. Are all of the aryl groups listed above are suitable.
  • the alkyl radicals are particularly preferably selected from the group consisting of methyl, ethyl, i-propyl, n-propyl, i-butyl; n-butyl, t-butyl, sec-butyl, i-pentyl, n-pentyl, sec-pentyl, neo-pentyl, n-hexyl, i-hexyl, sec-hexyl, cyclopentyl, cyclohexyl, CF 3 and C 2 F 5 .
  • Methyl, ethyl, i-propyl, n-hexyl, CF 3 and C 2 F 5 are very particularly preferred.
  • alkenyl radical or an alkenyl group is understood to mean a radical which corresponds to the above-mentioned alkyl radicals having at least two carbon atoms, with the difference that at least one C-C single bond of the alkyl radical is replaced by a C-C double bond.
  • the alkenyl radical preferably has one or two double bonds.
  • Preferred gadolinium (IH) complexes of the formula I are those in which R 1 and R 3 independently of one another are C to C 4 -alkyl, phenyl, pyridyl, imidazolyl, furyl, thienyl, CF 3 , C 2 F 5 or C 6 F 5 , particularly preferably methyl, ethyl, thienyl or CF 3 , very particularly preferably thienyl or CF 3 and R 2 , H, C r C 4 alkyl, phenyl, preferably H means, p preferably means in the gadolinium (III) - Complexes of the formula I 0 or 1, particularly preferably 0.
  • p in the gadolinium (H]) complexes of the formula II preferably denotes 0 or 1, particularly preferably 0.
  • transition metal complexes mentioned above are outstandingly suitable as emitter molecules in organic light-emitting diodes (OLEDs). Simple variations of the ligands make it possible to provide transition metal complexes which show electroluminescence in the red, green and in particular in the blue region of the electromagnetic spectrum.
  • the neutral transition metal complexes used according to the invention are therefore suitable for use in technically usable full-color displays.
  • GadoIinium (III) complexes are prepared by methods known to those skilled in the art. -
  • Typical methods are, for example, deprotonation of the ligand precursors corresponding to the ligands of the compounds of the formulas I and II and subsequent, generally in situ, reaction with suitable metal complexes containing Gd. Furthermore, the preparation of the gadolinium (III) complexes of the formulas I and II is possible by direct reaction of the neutral ligand precursors corresponding to the ligands of the gadolinium (III) complexes with the suitable gadolinium (III) complexes, which is preferred.
  • Suitable ligand precursors which lead to the ligands of the godinium (III) complexes of the formulas I and II are known to the person skilled in the art.
  • ligands are deprotonated, this can be done by basic metal salts, basic anions such as acetates, acetylacetonates, carbonates or alkoxylates or external bases such as KO'Bu, NaO'Bu, LiO l Bu, NaH, silylamides and phosphazene bases.
  • gadolinium complexes which can be used as the starting compound are known to the person skilled in the art. GdCl 3 x 2H 2 0 is particularly preferably used.
  • the reaction is preferably carried out in a solvent.
  • Suitable solvents are known to the person skilled in the art and are preferably selected from water and alcohols such as ethanol and mixtures thereof.
  • the molar ratio of gadolinium complex used to ligand precursor used is preferably 0.7: 3.0 to 1.5: 3.0, particularly preferably 0.9: 3.0 to 1.1, very particularly preferably 1: 3.
  • the gadolinium (III) complexes of the formulas I and II are preferably obtained by directly reacting the corresponding ligand precursor with a gadolinium complex. This reaction is particularly preferably carried out in water or an alcohol or mixtures thereof in the molar ratios of gadolinium complexes and ligand precursors already mentioned above.
  • the reaction is generally carried out at temperatures from 0 to the reflux temperature of the solvent, preferably 10 to 50 ° C., particularly preferably at room temperature.
  • the reaction time depends on the desired gadolinium (III) complex and is generally from 10 minutes to 50 hours, preferably from 20 minutes to 24 hours, particularly preferably from 0.5 hours to 12 hours.
  • the gadolinium complex of the formulas I and II obtained is worked up by methods known to the person skilled in the art.
  • the product is precipitated by adding water and the precipitated product is filtered, washed, for example with water, and then dried.
  • the gadolinium (III) complexes of the formulas I or II used according to the invention are outstandingly suitable as emitter substances, since they have luminescence (electroluminescence) in the visible range of the electromagnetic spectrum.
  • the gadolinium (III) complexes used as emitter substances according to the invention it is possible to provide compounds which have electroluminescence in the red, green and blue regions of the electromagnetic spectrum. So it is possible with the help of To provide gadolinium (III) complexes used according to the invention as emitter substances for full-color displays which can be used technically.
  • gadolinium (III) complexes of the formulas I and II show luminescence in the solid state, particularly preferably electroluminescence, in the visible range of the electromagnetic spectrum.
  • These complexes which are luminescent in the solid state can be used in bulk, that is to say without any further additives, as emitter substances in OLEDs.
  • an OLED can be produced with a light-emitting layer, with no complex cover evaporation of a matrix material with the emitter substance being necessary.
  • gadolinium (III) complexes of the formulas I and II are also subject of the present application.
  • Organic light-emitting diodes are basically made up of several layers:
  • the gadolinium (III) complexes of the formulas I and II are preferably used in the light-emitting layer as emitter molecules. Another object of the present application is therefore a light-emitting layer containing at least one gadolinium (III) complex of the formulas I and II as an emitter molecule. Preferred gadolinium (III) complexes of the formulas I and II have already been mentioned above.
  • the gadolinium (III) complexes of the formulas I and II used according to the invention can be present in substance - without further additives - in the light-emitting layer.
  • further compounds are present in the light-emitting layer.
  • a fluorescent dye can be present in order to change the emission color of the gadolinium (III) complex used as the emitter molecule.
  • a dilution material can also be used. This dilution material can be a polymer, for example Poly (N-vinyl carbazole) or polysilane.
  • the diluent can also be a small molecule, for example 4,4'-N, N'-dicarbazole biphenyl (CDP) or tertiary aromatic amines.
  • CDP 4,4'-N, N'-dicarbazole biphenyl
  • the proportion of the gadolinium (III) complexes used according to the invention in the light-emitting layer is generally less than 20% by weight, preferably 3 to 10% by weight.
  • the Gadoli ⁇ ium (III) complexes of the formulas I and II are preferably used in substance, as a result of which costly cover evaporation of the Gadolinium (III) complexes with a matrix material (diluent material or fluorescent dye) is avoided.
  • the gadolinium (III) complexes luminesce in the solid.
  • the gadolinium (III) complexes of the formulas I and II show luminescence in the solid state.
  • the light-emitting layer preferably contains at least one gadolinium (III) complex of the formula I or II and no matrix material selected from the dilution material and fluorescent dye.
  • Another object of the present application is, in a preferred embodiment, a light-emitting layer consisting of at least one gadolinium (III) complex of the formulas I and / or II as an emitter molecule.
  • III gadolinium
  • Each of the aforementioned layers of the OLED can be constructed again of 2 or more layers.
  • the hole-transporting layer can be constructed from a layer into which holes are injected from the electrode and a layer which transports the holes away from the hole-injecting layer into the light-emitting layer.
  • the electron-transporting layer can also consist of several layers, for example a layer in which electrons are injected through the electrode and a layer which receives electrons from the electron-injecting layer and transports them into the light-emitting layer. These layers are selected according to factors such as energy level, temperature resistance and charge mobility, as well as the energy difference of the layers with the organic layers or the metal electrodes.
  • the person skilled in the art is able to choose the structure of the OLEDs in such a way that it is optimally adapted to the gadolinium (III) complexes used as emitter substances according to the invention.
  • the HOMO (highest occupied molecular orbital) of the hole-transporting layer should match the work function of the anode and the LUMO (lowest unoccupied molecular orbital) electron transporting layer should match the work function of the cathode.
  • Another object of the present application is an OLED containing at least one light-emitting layer according to the invention.
  • the further layers in the OLED can be constructed from any material that is usually used in such layers and is known to the person skilled in the art.
  • the anode (1) is an electrode that provides positive charge carriers.
  • it can be constructed from materials that contain a metal, a mixture of different metals, a metal alloy, a metal oxide or a mixture of different metal oxides.
  • the anode can be a conductive polymer. Suitable metals include the metals of Groups Ib, IVa, Va and Via of the Periodic Table of the Elements and the transition metals of Group VIII. If the anode is to be translucent, mixed metal oxides of Groups Mb, Illb and IVb of the Periodic Table of the Elements are generally used , for example indium tin oxide (ITO).
  • ITO indium tin oxide
  • the anode (1) contains an organic material, for example polyaniline, as described, for example, in Nature, vol. 357, pages 477 to 479 (June 11, 1992). At least either the anode or the cathode should be at least partially transparent in order to be able to couple out the light formed.
  • organic material for example polyaniline
  • Suitable hole transport materials for the layer (2) of the OLED according to the invention are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technologie, 4th edition, vol. 18, pages 837 to 860, 1996. Both hole transporting molecules and polymers can be used as hole transport material.
  • Holes used to transport holes are selected from the group consisting of 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl ( ⁇ -NPD), N, N'-diphenyl-N, N '-bis (3-methylphenyl) - [, 1' -biphenyl] -4,4'-diamine (TPD), 1, 1-bis [(di-4-tolylamino) phenyl] cyclohexane (TAPC), N, N '-Bis (4-methylphenyl) -N, N'-bis (4-ethylphenyl) - [1, 1' - (3,3'-dimethyl) biphenyl] -4,4'-diamine (ETPD), tetrakis (3-methylphenyl) -N, N, N ', N'-2,5-phenylenediamine (PDA), ⁇ -phenyl-4-N, N-dip
  • dehyddiphenyIhydrazone ' DEH
  • triphenylamine TPA
  • bis [4- (N, N-diethylamino) -2-methylphenyl) (4-methy) -phenyl) methane MPMP
  • MPMP bis [4- (N, N-diethylamino) -2-methylphenyl) (4-methy) -phenyl) methane
  • MPMP 1-phenyl-3- [p- ( diethylamino) styryl] -5- [p- (diethylamino) phenyl] pyrazoline (PPR or DEASP)
  • 1, 2-trans-bis (9H-carbazol-9-yl) cyclobutane DCZB
  • N, N, N ', N'-tetrakis (4-methylphenyl) - (1, 1'-biphenyl) -4,4'-diamine TB
  • porphyrin compounds such as copper
  • hole transporting polymers are selected from the group consisting of polyvinyl carbazoles, (phenylmethyl) polysilanes and polyanilines. It is also possible to obtain hole transporting polymers by doping hole transporting molecules in polymers such as polystyrene and polycarbonate. Suitable molecules which transport holes are the molecules already mentioned above.
  • Suitable electron-transporting materials for the layer (4) of the OLEDs according to the invention include metals chelated with oxinoid compounds such as tris (8-quinolinato) aluminum (AIq 3 ), compounds based on phenanthroline such as 2,9-dimethyl, 4,7-diphenyl-1, 10-phenanthroline (DDPA) or 4,7-diphenyl-1, 10-phenanthroline (DPA) and azole compounds such as 2- (4-biphenylyl) -5- (4-t-butylphenyl) - 1, 3,4-oxadiazole ( PBD) and 3- (4-biphenylyI) -4-phenyl-5- (4-t-butylphenyl) -1, 2,4-triazole
  • oxinoid compounds such as tris (8-quinolinato) aluminum (AIq 3 )
  • DDPA 10-phenanthroline
  • DPA 4,7-diphenyl-1, 10-phenanthroline
  • azole compounds such as 2- (4-b
  • the layer (4) can serve both to facilitate electron transport and as a buffer layer or as a barrier layer in order to avoid quenching of the exciton at the interfaces of the layers of the OLED. ⁇ Preferably, the layer (4) improves the mobility of electrons and reduces quenching of the exciton.
  • the cathode (5) is an electrode that is used to introduce electrons or negative charge carriers.
  • the cathode can be any metal or non-metal that has a lower work function than the anode. Suitable materials for the cathode are selected from the group consisting of alkali metals of group 1, for example Li, Cs, alkaline earth metals of group 2, metals of group 12 of the periodic table of the elements, comprising the rare earth metals and the lanthanides and actinides. Metals such as aluminum, indium, calcium, barium, samarium and magnesium as well as combinations thereof can also be used. Furthermore, lithium-containing organometallic compounds or LiF can be applied between the organic layer and the cathode in order to reduce the operating voltage.
  • the OLED according to the present invention can additionally contain further layers which are known to the person skilled in the art.
  • a layer can be applied between the layer (2) and the light-emitting layer (3), which facilitates the transport of the positive charge and / or adjusts the band gap of the layers to one another.
  • this additional layer can serve as a protective layer.
  • additional layers can be present between the light-emitting layer (3) and the layer (4) in order to facilitate the transport of the negative charge and / or to match the band gap between the layers.
  • this layer can serve as a protective layer.
  • the OLED according to the invention contains, in addition to the layers (1) to (5), at least one of the further layers mentioned below: a hole injection layer between the anode (1) and the hole-transporting layer (2); - A block layer for electrons between the hole-transporting layer (2) and the light-emitting layer (3); a block layer for holes between the light-emitting layer (3) and the electron-transporting layer (4); an electron injection layer between the electron transporting layer (4) and the cathode (5).
  • suitable materials for example on the basis of electrochemical tests. Suitable materials for the individual layers are known to the person skilled in the art and are disclosed, for example, in WO 00/70655.
  • each of the named layers of the OLED according to the invention can be made up of two or more layers. Furthermore, it is possible that some or all of the layers (1), (2), (3), (4) and (5) are surface-treated in order to increase the efficiency of the charge carrier transport. The choice of materials for each of the layers mentioned is preferably determined by obtaining an OLED with high efficiency.
  • the OLED according to the invention can be produced by methods known to the person skilled in the art. Generally, the OLED is replaced by successive ones
  • Suitable substrates are, for example, glass or polymer films.
  • the organic layers can be made from solutions or dispersions in suitable solvent
  • Solvents are coated, known to those skilled in the art
  • the different layers have the following thicknesses: anode (2) 500 to 5000 ⁇ , preferably 1000 to 2000 ⁇ ; Hole-transporting layer (3) 50 to 1000 ⁇ , preferably 200 to 800 ⁇ , light-emitting layer (4) 10 to 1000 ⁇ , preferably 100 to 800 ⁇ , electron-transporting layer (5) 50 to 1000 ⁇ , preferably 200 to 800 ⁇ 'cathode (6) 200 to 10,000 ⁇ , preferably 300 to 5000 ⁇ .
  • the position of the recombination zone of holes and electrons in the OLED according to the invention and thus the emission spectrum of the OLED can be influenced by the relative thickness of each layer.
  • the thickness of the electron transport layer should preferably be chosen so that the electron / hole recombination zone lies in the light-emitting layer.
  • the ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used. The layer thicknesses of any additional layers used are known to the person skilled in the art.
  • OLEDs By using the gadolinium (III) complexes of the formulas I or II used as emitter molecules in the light-emitting layer of the OLEDs according to the invention, OLEDs can be obtained with high efficiency.
  • the efficiency of the OLEDs according to the invention can also be improved by optimizing the other layers.
  • highly efficient cathodes such as Ca, Ba or LiF can be used.
  • Shaped substrates and new hole-transporting materials which reduce the operating voltage or increase the quantum efficiency can also be used in the OLEDs according to the invention.
  • additional layers can be present in the OLEDs in order to adjust the energy level of the different layers and to facilitate electroluminescence.
  • the OLEDs according to the invention can be used in all devices in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile screens. Stationary screens are e.g. Screens of computers, televisions, screens in printers, kitchen appliances as well as billboards, lighting and information boards. Mobile screens are e.g. Screens in cell phones, laptops, vehicles and destination displays on buses and trains.
  • gadolinium (III) complexes of the formulas I or II used according to the invention can be used in OLEDs with an inverse structure.
  • the gadolinium (HI) complexes in these inverse OLEDs are in turn used in the light-emitting layer, particularly preferably as a light-emitting layer without further additives.
  • the structure of inverse OLEDs and the materials usually used therein are known to the person skilled in the art.
  • Hhfac hexafluoroacetylacetone
  • Htta thienyltrifluoroacetone
  • Hqu 8-quinolinol
  • GdCI 3 x H 2 0 are commercially available and are used without further purification.
  • Gd (qu) 3 The production of Gd (qu) 3 is described in RG Charles et al. Spectrochim., Acta 8 (1956) 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to the use of gadolinium(III) complexes of formulas (I) and (II) as emitter molecules in organic light-emitting diodes, wherein the radicals have the meaning defined in the claims and the description. The invention further relates to the use of said gadolinium(III) complexes as a light-emitting layer in OLEDs, a light-emitting layer containing at least one gadolinium(III) complex, an OLED containing said light-emitting layer, and devices comprising an inventive OLED.

Description

Verwendung von Gadolinium(lll)-Chelaten als lumineszierende Materialien in organischen Leuchtdioden (OLEDs) Use of Gadolinium (III) chelates as luminescent materials in organic light-emitting diodes (OLEDs)
Beschreibungdescription
Die vorliegende Erfindung betrifft die Verwendung von Gadolinium(lll)-Komplexen als Emittermolkeküle in organischen Leuchtdioden (OLEDs), die Verwendung der Gadolinium(lll)-Komplexe als Licht-emittierende Schicht in OLEDs, eine Lichtemittierende Schicht enthaltend mindestens einen Gadolinium(lll)-Komplex, ein OLED enthaltend diese Licht-emittierende Schicht sowie Vorrichtungen, die ein erfindungsgemäßes OLED enthalten.The present invention relates to the use of gadolinium (III) complexes as emitter molecules in organic light-emitting diodes (OLEDs), the use of the gadolinium (III) complexes as light-emitting layer in OLEDs, a light-emitting layer containing at least one gadolinium (III). Complex, an OLED containing this light-emitting layer and devices that contain an OLED according to the invention.
In organischen Leuchtdioden (OLED) wird die Eigenschaft von Materialien ausgenutzt, Licht zu emittieren, wenn sie durch elektrischen Strom angeregt werden. OLEDs sind insbesondere interessant als Alternative zu Kathodenstrahlröhren und Flüssigkristalldisplays zur Herstellung von Flachbildschirmen. Aufgrund der sehr kompakten Bauweise und des intrinsisch niedrigeren Stromverbrauchs eignen sich Vorrichtungen, enthaltend OLEDs insbesondere für mobile Anwendungen, zum Beispiel für Anwendungen in Handys, Laptops usw.In organic light-emitting diodes (OLEDs), the property of materials is used to emit light when they are excited by electrical current. OLEDs are particularly interesting as an alternative to cathode ray tubes and liquid crystal displays for the production of flat screens. Due to the very compact design and the intrinsically lower power consumption, devices containing OLEDs are particularly suitable for mobile applications, for example for applications in cell phones, laptops, etc.
Es wurden zahlreiche Materialien vorgeschlagen, die bei der Anregung durch elektrischen Strom Licht emittieren.Numerous materials have been proposed that emit light when excited by electrical current.
JP 01-256584 betrifft ein elektrolumineszierendes Dünnfilmelement, das einen Seltenerdmetall-Komplex als lumineszierendes Material enthält. Als geeignete Komplexe sind Komplexe der folgenden Formeln erwähntJP 01-256584 relates to an electroluminescent thin film element which contains a rare earth metal complex as a luminescent material. Complexes of the following formulas are mentioned as suitable complexes
Figure imgf000003_0001
Figure imgf000003_0001
EP-A 0 556 005 betrifft Verbindungen, die durch Reaktion eines Imido-Reagenzes wie Diphenylphosphonimido-triphenylphosphoran mit einem Chelat eines Übergangsmetalls, eines Lanthanids oder eines Actinids, z.B. Tris(dibenzoylmethid)europium(lll) erhalten werden. Die Verbindungen fluoreszieren bei Bestrahlung mit UV-Licht. Geeignete Chelate weisen einen oder mehrere Diketonatoliganden auf. Bevorzugt werden als Metalle Lanthanid-Metallionen ausgewählt aus Sm3+, Eu3+, Tb3+, Dy3+, Yb3+, Lu3+, Gd2+ und Eu2+ und Actinid Metallionen ausgewählt aus U3+ und U02 3+ eingesetzt.EP-A 0 556 005 relates to compounds which are obtained by reacting an imido reagent such as diphenylphosphonimido-triphenylphosphorane with a chelate of a transition metal, a lanthanide or an actinide, for example tris (dibenzoylmethide) europium (III). The compounds fluoresce when irradiated with UV light. Suitable chelates have one or more diketonato ligands. Prefers are selected as metals lanthanide metal ions from Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Yb 3+ , Lu 3+ , Gd 2+ and Eu 2+ and actinide metal ions selected from U 3+ and U0 2 3+ used.
US 5,757,026 betrifft ein Multicolor-Display- enthaltend mehrere Multicolor-OLEDs. Jedes LED enthält eine Licht-emittierende Schicht, die ein organisches Material aufweist, das u.a. ein Metall-Acetylacetonat-Komplex sein kann. Diese werden bevorzugt zur Erzeugung einer Emission im blauen Bereich des sichtbaren Lichts eingesetzt und enthalten als Metalle bevorzugt Al3+, Ga3+ und ln3+. Konktrete Metall- Acetylacetonat-Komplexe sind nicht in US 5,757,026 erwähnt.US 5,757,026 relates to a multicolor display containing a plurality of multicolor OLEDs. Each LED contains a light-emitting layer that has an organic material, which can be a metal-acetylacetonate complex. These are preferably used to generate an emission in the blue region of visible light and preferably contain Al 3+ , Ga 3+ and In 3+ as metals. Concrete metal acetylacetonate complexes are not mentioned in US 5,757,026.
JP 11-260552 betrifft organische Leuchtdioden, die als Licht-emittierendes Material Seltenerdmetall-Acetylacetonat-Komplexe enthalten, die zwei Perfluoroalkyl-, Perfluoroalkenyl-, Perfluoroaryl- oder Perfluoroaralkyl-Gruppen aufweisen. Als Beispiele sind Eu-Komplexe der Formeln Eu(CF3COCHCOCF3)3, Eu(C2F5COCHCOC2F5)3, Eu(C6F5COCHCOC6F5)3 und Eu(CF3COCHCOC6F5)3 genannt.JP 11-260552 relates to organic light-emitting diodes which contain rare earth metal acetylacetonate complexes as light-emitting material and which have two perfluoroalkyl, perfluoroalkenyl, perfluoroaryl or perfluoroaralkyl groups. Examples are Eu complexes of the formulas Eu (CF 3 COCHCOCF 3 ) 3 , Eu (C 2 F 5 COCHCOC 2 F 5 ) 3 , Eu (C 6 F 5 COCHCOC 6 F 5 ) 3 and Eu (CF 3 COCHCOC 6 F5 ) Called 3 .
US 6,524,727 betrifft elektrolumineszierende Materialien und organische Leuchtdioden, die Seltenerdmetall-, Actinidmetall- oder Übergangsmetallkomplexe enthalten, die einen Diphenylphosphonimid-trisphenyl-phosphoran-Liganden aufweisen. Als chelatisierende Gruppen enthalten die Komplexe bevorzugt Diketonato-Gruppen. Als bevorzugte Metalle sind Sm(lll), Eu(lll), Tb(lll), Dy(lll), Yb(III), Lu(lll), Gd(lll), Eu(ll), U(lll), UO2(IV) und Th(lll) genannt. Konkrete Beispiele sind für Tb(III), Eu(lll), Dy(lll) und UO2(IV) offenbart.US Pat. No. 6,524,727 relates to electroluminescent materials and organic light-emitting diodes which contain rare earth, actinide or transition metal complexes which have a diphenylphosphonimide-trisphenylphosphine ligand. The complexes preferably contain diketonato groups as chelating groups. Preferred metals are Sm (III), Eu (III), Tb (III), Dy (III), Yb (III), Lu (III), Gd (III), Eu (II), U (III), UO 2 (IV) and Th (III). Specific examples are disclosed for Tb (III), Eu (III), Dy (III) and UO 2 (IV).
Obwohl bereits Verbindungen bekannt sind, die im blauen, roten und grünen Bereich des elektromagnetischen Spektrums Elektrolumineszenz zeigen, ist die Bereitstellung von weiteren Verbindungen, die auch in Substanz als Licht-emittierende Schicht einsetzbar sind und bei Raumtemperatur lumineszieren, wünschenswert. Unter Elektrolumineszenz ist sowohl Elektrofluoreszenz als auch Elektrophosphoreszenz zu verstehen.Although compounds are already known which show electroluminescence in the blue, red and green region of the electromagnetic spectrum, the provision of further compounds which can also be used in substance as a light-emitting layer and which luminesce at room temperature is desirable. Electroluminescence is understood to mean both electrofluorescence and electrophosphorescence.
Aufgabe der vorliegenden Anmeldung ist daher die Bereitstellung von Verbindungen, die zur Elektrolumineszenz im blauen, roten und grünen Bereich des elektromagnetischen Spektrums geeignet sind, wodurch die Herstellung von Vollfarbendisplays ermöglicht wird. Des Weiteren ist es Aufgabe der vorliegenden Anmeldung, Verbindungen bereitzustellen, die in Substanz, ohne Wirtsubstanzen, als Licht-emittierende Schicht in OLEDs eingesetzt werden können.The object of the present application is therefore to provide compounds which are suitable for electroluminescence in the blue, red and green regions of the electromagnetic spectrum, which enables the production of full-color displays. Furthermore, it is an object of the present application to provide compounds which can be used in substance, without host substances, as a light-emitting layer in OLEDs.
Diese Aufgabe wird durch die Verwendung vonThis task is accomplished by using
Gadolinium(lll)-Kornplexen ausgewählt aus der Gruppe bestehend aus Gadolinium(III)-Diketonatokomplexen der Formel (I)Gadolinium (III) complexes selected from the group consisting of Gadolinium (III) diketonato complexes of the formula (I)
Figure imgf000005_0001
Figure imgf000005_0001
undand
Gadolinium(lll)-Oxinatkomplexen der Formel (II)Gadolinium (III) oxinate complexes of the formula (II)
Figure imgf000005_0002
Figure imgf000005_0002
worin die Symbole die folgenden Bedeutungen aufweisen:where the symbols have the following meanings:
R\ R3, R4, R5 unabhängig voneinander eine substituierte oder unsubstituierte Aryl-, Alkyl-, Heteroaryl- oder Alkenylgruppe, bevorzugt sind R1 und R3 unabhängig voneinander C bis C4-Alkyl, Phenyl, Pyridyl, Imidazolyl, Furyl, Thienyl, CF3, C2F5 . oder C6F5; bevorzugt Methyl, Ethyl, Thienyl oder CF3, besonders bevorzugt Thienyl oder CF3; und R4 und R5 unabhängig voneinander C bis C4-Alkyl, Phenyl, 1-Naphthyl, 2-Naphthyl;R 3 , R 4 , R 5 independently of one another are a substituted or unsubstituted aryl, alkyl, heteroaryl or alkenyl group, R 1 and R 3 are preferably, independently of one another, C to C 4 alkyl, phenyl, pyridyl, imidazolyl, furyl , Thienyl, CF 3 , C 2 F 5 . or C 6 F 5 ; preferably methyl, ethyl, thienyl or CF 3 , particularly preferably thienyl or CF 3 ; and R 4 and R 5 are independently C to C 4 alkyl, phenyl, 1-naphthyl, 2-naphthyl;
R2 H, eine substituierte oder unsubstituierte Aryl-, Alkyl-, Heteroaryl- oder Alkenylgruppe, bevorzugt H, C bis C4-Alkyl, CF3, Phenyl; neutraler ' Ligand, bevorzugt ausgewählt aus der Gruppe bestehend aus Wasser, ' Pyridin, bevorzugt 4-N.N-R 2 H, a substituted or unsubstituted aryl, alkyl, heteroaryl or alkenyl group, preferably H, C to C 4 alkyl, CF 3 , phenyl; neutral ' ligand, preferably selected from the group consisting of water, ' pyridine, preferably 4-NN-
Dimethylaminopyridin, 3-Cyanopyridin, 4-Cyanopyridin, 4- Methoxypyridin, 4-Phenylpyridin und deren N-Oxide, Bipyridyle, bevorzugt 2,2'-Bipyridyl, N-Methylimidazol, Phenanthrolin, bevorzugt 1 ,10-Diphenylphenanthrolin, Bathophenanthrolin, Bathocuproin, Phosphinoxid, bevorzugt Triphenylphosphinoxid, Phosphonimidoligand, bevorzugt Diphenylphosphonimid- trisphenylphosphoran, und Sulfoxid; n, m unabhängig voneinander 0 bis 3, bevorzugt 0 oder 1 , besonders bevorzugt 0; p 0 bis 2, bevorzugt 0 oder 1 , besonders bevorzugt 0; als Emittermoleküle in organischen Licht-emittierenden Dioden, gelöst.Dimethylaminopyridine, 3-cyanopyridine, 4-cyanopyridine, 4-methoxypyridine, 4-phenylpyridine and their N-oxides, bipyridyls, preferably 2,2'-bipyridyl, N-methylimidazole, phenanthroline, preferably 1, 10-diphenylphenanthroline, bathophenanthroline, bathocuproin Phosphine oxide, preferably triphenylphosphine oxide, Phosphonimido ligand, preferably diphenylphosphonimide trisphenylphosphorane, and sulfoxide; n, m independently of one another 0 to 3, preferably 0 or 1, particularly preferably 0; p 0 to 2, preferably 0 or 1, particularly preferably 0; as emitter molecules in organic light-emitting diodes.
Es wurde gefunden, dass die Gadolinium(lll)-Komplexe der Formeln I und II gemäß der vorliegenden Anmeldung als Licht-emittierende Substanzen in OLEDs zur Herstellung von Vollfarbendisplays geeignet sind.It has been found that the gadolinium (III) complexes of the formulas I and II according to the present application are suitable as light-emitting substances in OLEDs for the production of full-color displays.
Bevorzugt werden Gadolinium(lll)-Komplexe der Formeln I und II eingesetzt, worin dieGadolinium (III) complexes of the formulas I and II are preferably used, in which the
Symbole die folgenden Bedeutungen aufweisen:Symbols have the following meanings:
R1, R3 unabhängig voneinander C bis C4-Alkyl, Phenyl, Pyridyl, Imidazolyl, Furyl, Thienyl, CF3, C2F5 oder C6F5; bevorzugt Methyl, Ethyl, Thienyl oder CF3, besonders bevorzugt Thienyl oder CF3; R4, R5 unabhängig voneinander C bis C4-AIkyl, Phenyl, 1-Naphthyl, 2-Naphthyl;R 1 , R 3 independently of one another are C to C 4 alkyl, phenyl, pyridyl, imidazolyl, furyl, thienyl, CF 3 , C 2 F 5 or C 6 F 5 ; preferably methyl, ethyl, thienyl or CF 3 , particularly preferably thienyl or CF 3 ; R 4 , R 5 independently of one another are C to C 4 -alkyl, phenyl, 1-naphthyl, 2-naphthyl;
R2 H, Cr bis C4-Alkyl, CF3, Phenyl; n, m 0 oder 1 , bevorzugt 0.R 2 H, C r to C 4 alkyl, CF 3 , phenyl; n, m 0 or 1, preferably 0.
Im Sinne der vorliegenden Anmeldung haben die Begriffe Arylrest oder -gruppe, Heteroarylrest oder -gruppe, Alkylrest oder -gruppe, Alkenylrest oder -gruppe, Arylenrest oder -gruppe und Heteroarylenrest oder -gruppe die folgenden Bedeutungen:For the purposes of the present application, the terms aryl radical or group, heteroaryl radical or group, alkyl radical or group, alkenyl radical or group, arylene radical or group and heteroarylene radical or group have the following meanings:
Unter einem Arylrest (oder -gruppe) ist ein Rest mit einem Grundgerüst von 6 bis 30 Kohlenstoffatomen, bevorzugt 6 bis 18 Kohlenstoffatomen zu verstehen, der aus einem aromatischen Ring oder mehreren kondensierten aromatischen Ringen aufgebaut ist. Geeignete Grundgerüste sind zum Beispiel Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl. Dieses Grundgerüst kann unsubstituiert sein (d. h., dass alle Kohlenstoffatome, die substituierbar sind, Wasserstoffatome tragen), oder an einer, mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind zum Beispiel Alkylreste, bevorzugt Alkylreste mit 1 bis 8 Kohlenstoffatomen, besonders bevorzugt Methyl, Ethyl, i-Propyl oder t-Butyl, Arylreste, bevorzugt C6-Arylreste, die wiederum substituiert oder unsubstituiert sein können, Heteroarylreste, bevorzugt Heteroarylreste, die mindestens ein Stickstoffatom enthalten, besonders bevorzugt Pyridylreste, Alkenylreste, bevorzugt Alkenylreste, die eine Doppelbindung tragen, besonders bevorzugt Alkenylreste mit einer Doppelbindung und 1 bis 8 Kohlenstoffatomen, oder Gruppen mit Donor- oder Akzeptorwirkung. Unter Gruppen mit Donorwirkung sind Gruppen zu verstehen, die einen +l- und/oder +M-Effekt aufweisen, und unter Gruppen mit Akzeptorwirkung sind Gruppen zu verstehen, die einen -I- und/oder -M-Effekt aufweisen. Geeignete Gruppen, mit Donor- oder Akzeptorwirkung sind Halogenreste, bevorzugt F, Cl, Br, besonders bevorzugt F. Alkoxyreste, Carbonylreste, Esterreste, Aminreste, Amidreste, CH2F-Gruppen, CHF2-Gruppen, CF3-Gruppen, CN-Gruppen, Thiogruppen oder SCN- Gruppen. Ganz besonders bevorzugt tragen die Arylreste Substituenten ausgewählt aus der Gruppe bestehend aus Methyl, F, Cl und Alkoxy, oder die Arylreste sind unsubstituiert. Bevorzugt ist der Arylrest oder die Arylgruppe ein C6-Arylrest oder ein Naphthylrest, der gegebenenfalls mit mindestens einem der vorstehend genannten Substituenten substituiert ist. Besonders bevorzugt weist der C6-Arylrest keinen, einen oder zwei der vorstehend genannten Substituenten auf, wobei der eine Substituent bevorzugt in para-Position zur weiteren Verknüpfungsstelle des Arylrestes angeordnet ist und - im Falle von zwei Substituenten - diese jeweils in meta-Position zur weiteren Verknüpfungsstelle des Arylrestes angeordnet sind oder alle H-Atome des C6- Arylrestes sind durch F substituiert, also C6F5. Ganz besonders bevorzugt ist der C6- Arylrest ein unsubstituierter Phenylrest oder C6F5. Der Naphthylrest ist bevorzugt 1- Naphthyl oder 2-Naphthyl.An aryl radical (or group) is to be understood as a radical with a backbone of 6 to 30 carbon atoms, preferably 6 to 18 carbon atoms, which is composed of an aromatic ring or several fused aromatic rings. Suitable basic structures are, for example, phenyl, naphthyl, anthracenyl or phenanthrenyl. This backbone can be unsubstituted (ie that all carbon atoms that can be substituted carry hydrogen atoms) or can be substituted at one, more or all substitutable positions of the backbone. Suitable substituents are, for example, alkyl residues, preferably alkyl residues with 1 to 8 carbon atoms, particularly preferably methyl, ethyl, i-propyl or t-butyl, aryl residues, preferably C 6 aryl residues, which in turn can be substituted or unsubstituted, heteroaryl residues, preferably heteroaryl residues, which contain at least one nitrogen atom, particularly preferably pyridyl radicals, alkenyl radicals, preferably alkenyl radicals which carry a double bond, particularly preferably alkenyl radicals with a double bond and 1 to 8 carbon atoms, or groups with donor or acceptor action. Groups with a donor effect are to be understood as groups which have a + 1 and / or + M effect and groups with an acceptor effect To understand groups that have an -I and / or -M effect. Suitable groups with donor or acceptor action are halogen residues, preferably F, Cl, Br, particularly preferably F. alkoxy residues, carbonyl residues, ester residues, amine residues, amide residues, CH 2 F groups, CHF 2 groups, CF 3 groups, CN groups Groups, thio groups or SCN groups. The aryl radicals very particularly preferably carry substituents selected from the group consisting of methyl, F, Cl and alkoxy, or the aryl radicals are unsubstituted. The aryl radical or the aryl group is preferably a C 6 aryl radical or a naphthyl radical which is optionally substituted by at least one of the abovementioned substituents. The C 6 aryl radical particularly preferably has none, one or two of the abovementioned substituents, the one substituent preferably being arranged in the para position to the further linking point of the aryl radical and - in the case of two substituents - each in the meta position further linkage point of the aryl radical are arranged or all H atoms of the C 6 aryl radical are substituted by F, that is to say C 6 F 5 . The C 6 aryl radical is very particularly preferably an unsubstituted phenyl radical or C 6 F 5 . The naphthyl radical is preferably 1-naphthyl or 2-naphthyl.
• Unter einem Heteroarylrest oder einer Heteroarylgruppe sind Reste zu verstehen, die sich von den vorstehend genannten Arylresten dadurch unterscheiden, dass in dem Grundgerüst der Arylreste mindestens ein Kohlenstoffatom durch ein Heteroatom ersetzt ist. Bevorzugte Heteroatome sind N, O und S. Ganz besonders bevorzugt sind ein oder zwei Kohlenstoffatome des Grundgerüsts der Arylreste durch Heteroatome ersetzt. Insbesondere bevorzugt ist das Grundgerüst ausgewählt aus Systemen wie Pyridyl, Imidazolyl, cyclischen Estern, cyclischen Amiden und fünfgliedrigen Heteroaromaten wie Thienyl, Pyrryl, Furyl. Das Grundgerüst kann an einer, mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind die selben, die bereits bezüglich der Arylgruppen genannt wurden. Besonders bevorzugt ist Thienyl.A heteroaryl radical or a heteroaryl group is understood to mean radicals which differ from the aryl radicals mentioned above in that at least one carbon atom in the basic structure of the aryl radicals is replaced by a hetero atom. Preferred heteroatoms are N, O and S. Very particularly preferably one or two carbon atoms of the basic structure of the aryl radicals are replaced by heteroatoms. The basic structure is particularly preferably selected from systems such as pyridyl, imidazolyl, cyclic esters, cyclic amides and five-membered heteroaromatics such as thienyl, pyrryl, furyl. The basic structure can be substituted at one, more or all substitutable positions of the basic structure. Suitable substituents are the same as those already mentioned for the aryl groups. Thienyl is particularly preferred.
Unter einem Alkylrest oder einer Alkylgruppe ist ein Rest mit 1 bis 20 Kohlenstoffatomen, bevorzugt 1 bis 10 Kohlenstoffatomen, besonders bevorzugt 1 bis 8 Kohlenstoffatomen, ganz besonders bevorzugt 1 bis 4 Kohlenstoffatomen, zu verstehen. Dieser Alkylrest kann verzweigt oder unverzweigt sein und gegebenenfalls mit einem oder mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen sein. Weiterhin kann der Alkylrest oder die Alkylgruppe ein C3- bis C8-Cycloalkylrest, bevorzugt ein C5- oder C6-Cycloalkylrest sein, der gegebenenfalls mit einem oder mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen sein kann, z.B. Cyclopentyl und Cyclohexyl. Des Weiteren kann dieser Alkylrest mit einem oder mehreren der bezüglich der Arylgruppen genannten Substituenten, insbesondere Halogenresten, bevorzugt F, Cl, Br, besonders bevorzugt F, substituiert sein. Es ist ebenfalls möglich, dass der Alkylrest eine oder mehrere Arylgruppen trägt. Dabei sind alle der vorstehend aufgeführten Arylgruppen geeignet. Besonders bevorzugt sind die Alkylreste ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl; n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i- Hexyl, sec-Hexyl, Cyclopentyl, Cyclohexyl, CF3 und C2F5. Ganz besonders bevorzugt sind Methyl, Ethyl, i-Propyl, n-Hexyl, CF3 und C2F5.An alkyl radical or an alkyl group is a radical with 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 8 carbon atoms, very particularly preferably 1 to 4 carbon atoms. This alkyl radical can be branched or unbranched and optionally interrupted by one or more heteroatoms, preferably N, O or S. Furthermore, the alkyl radical or the alkyl group can be a C 3 to C 8 cycloalkyl radical, preferably a C 5 or C 6 cycloalkyl radical, which can optionally be interrupted by one or more heteroatoms, preferably N, O or S, for example cyclopentyl and cyclohexyl. Furthermore, this alkyl radical can be substituted with one or more of the substituents mentioned in relation to the aryl groups, in particular halogen radicals, preferably F, Cl, Br, particularly preferably F. It is also possible for the alkyl radical to carry one or more aryl groups. Are all of the aryl groups listed above are suitable. The alkyl radicals are particularly preferably selected from the group consisting of methyl, ethyl, i-propyl, n-propyl, i-butyl; n-butyl, t-butyl, sec-butyl, i-pentyl, n-pentyl, sec-pentyl, neo-pentyl, n-hexyl, i-hexyl, sec-hexyl, cyclopentyl, cyclohexyl, CF 3 and C 2 F 5 . Methyl, ethyl, i-propyl, n-hexyl, CF 3 and C 2 F 5 are very particularly preferred.
Unter einem Alkenylrest oder einer Alkenylgruppe ist ein Rest zu verstehen, der den vorstehend genannten Alkylresten mit mindestens zwei Kohlenstoffatomen entspricht, mit dem Unterschied, dass mindestens eine C-C-Einfachbindung des Alkylrests durch eine C-C-Doppelbindung ersetzt ist. Bevorzugt weist der Alkenylrest eine oder zwei Doppelbindungen auf.An alkenyl radical or an alkenyl group is understood to mean a radical which corresponds to the above-mentioned alkyl radicals having at least two carbon atoms, with the difference that at least one C-C single bond of the alkyl radical is replaced by a C-C double bond. The alkenyl radical preferably has one or two double bonds.
Bevorzugte Gadolinium(IH)-Komplexe der Formel I sind solche, in denen R1 und R3 unabhängig voneinander C bis C4-AIkyI, Phenyl, Pyridyl, Imidazolyl, Furyl, Thienyl, CF3, C2F5 oder C6F5, besonders bevorzugt Methyl, Ethyl, Thienyl oder CF3, ganz besonders bevorzugt Thienyl oder CF3 bedeuten und R2, H, CrC4-Alkyl, Phenyl, bevorzugt H bedeutet, p bedeutet bevorzugt in den Gadolinium(lll)-Komplexe der Formel I 0 oder 1 , besonders bevorzugt 0.Preferred gadolinium (IH) complexes of the formula I are those in which R 1 and R 3 independently of one another are C to C 4 -alkyl, phenyl, pyridyl, imidazolyl, furyl, thienyl, CF 3 , C 2 F 5 or C 6 F 5 , particularly preferably methyl, ethyl, thienyl or CF 3 , very particularly preferably thienyl or CF 3 and R 2 , H, C r C 4 alkyl, phenyl, preferably H means, p preferably means in the gadolinium (III) - Complexes of the formula I 0 or 1, particularly preferably 0.
Bevorzugte Gadolinium(lll)-Komplexe der Formel II sind solche, worin R5 und R6 unabhängig voneinander C bis C4-AIkyl und Phenyl bedeuten und m und n 0 oder 1 , bevorzugt 0 bedeuten, wobei, wenn m und n = 0 bedeuten, die Oxinat-Gruppe unsubstituiert ist und, wenn m und n 1 bedeuten, die Oxinat-Gruppe mit den bereits vorstehend erwähnten Substituenten substituiert ist. p bedeutet bevorzugt in den Gadolinium(H])-Komplexe der Formel II 0 oder 1 , besonders bevorzugt 0.Preferred gadolinium (III) complexes of the formula II are those in which R 5 and R 6 independently of one another are C to C 4 -alkyl and phenyl and m and n are 0 or 1, preferably 0, where if m and n = 0 mean, the oxinate group is unsubstituted and, when m and n are 1, the oxinate group is substituted with the substituents already mentioned. p in the gadolinium (H]) complexes of the formula II preferably denotes 0 or 1, particularly preferably 0.
Ganz besonders bevorzugte Verbindungen der Formeln I und II sind die im Folgenden aufgeführten FormelnVery particularly preferred compounds of the formulas I and II are the formulas listed below
Figure imgf000008_0001
Figure imgf000008_0001
Gd(hfac)3
Figure imgf000009_0001
Gd (hfac) 3
Figure imgf000009_0001
Gd(qu)3 Gd (qu) 3
Darin bedeuten:Where:
hfac Hexafluoroacetylacetonat tta Thienyltrifluoroacetonat qu 8-Chinolinolat (Oxinat)hfac hexafluoroacetylacetonate tta thienyl trifluoroacetonate qu 8-quinolinolate (oxinate)
Die vorstehend genannten Übergangsmetall-Komplexe sind hervorragend als Emittermoleküle in organischen Licht-emittierenden Dioden (OLEDs) geeignet. Durch einfache Variationen der Liganden ist es möglich, Übergangsmetall-Komplexe bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie insbesondere im blauen Bereich des elektromagnetischen Spektrums zeigen. Die erfindungsgemäß verwendeten neutralen Ubergangsmetall-Komplexe eignen sich daher für den Einsatz in technisch verwendbaren Vollfarbendisplays.The transition metal complexes mentioned above are outstandingly suitable as emitter molecules in organic light-emitting diodes (OLEDs). Simple variations of the ligands make it possible to provide transition metal complexes which show electroluminescence in the red, green and in particular in the blue region of the electromagnetic spectrum. The neutral transition metal complexes used according to the invention are therefore suitable for use in technically usable full-color displays.
Die Herstellung der GadoIinium(llI)-Komplexe erfolgt nach dem Fachmann bekannten Verfahren. -The GadoIinium (III) complexes are prepared by methods known to those skilled in the art. -
Übliche Verfahren sind zum Beispiel die Deprotonierung von den den Liganden der Verbindungen der Formeln l und II entsprechenden Ligandvorläufem und anschließende, im Allgemeinen in situ, Umsetzung mit geeigneten Gd enthaltenden Metallkomplexen. Des Weiteren ist die Herstellung der Gadolinium(lll)~Komplexe der Formeln I und II durch direkte Umsetzung der neutralen, den Liganden der Gadolinium(lll)-Komplexe entsprechenden Ligandvorläufer mit den geeigneten Gadolinium(lll)-Komplexen möglich, was bevorzugt ist.Typical methods are, for example, deprotonation of the ligand precursors corresponding to the ligands of the compounds of the formulas I and II and subsequent, generally in situ, reaction with suitable metal complexes containing Gd. Furthermore, the preparation of the gadolinium (III) complexes of the formulas I and II is possible by direct reaction of the neutral ligand precursors corresponding to the ligands of the gadolinium (III) complexes with the suitable gadolinium (III) complexes, which is preferred.
Geeignete Ligandvorläufer, die zu den Liganden der GadoIinium(lll)-Komplexe der Formeln I und II führen, sind dem Fachmann bekannt.Suitable ligand precursors which lead to the ligands of the godinium (III) complexes of the formulas I and II are known to the person skilled in the art.
Erfolgt eine Deprotonierung der Liganden, so kann diese durch basische Metallsalze, basische Anionen wie Acetate, Acetylacetonate, Carbonate oder Alkoxylate oder externe Basen wie KO'Bu, NaO'Bu, LiOlBu, NaH, Silylamide sowie Phosphazenbasen erfolgen.If the ligands are deprotonated, this can be done by basic metal salts, basic anions such as acetates, acetylacetonates, carbonates or alkoxylates or external bases such as KO'Bu, NaO'Bu, LiO l Bu, NaH, silylamides and phosphazene bases.
Geeignete als Ausgangsverbindung einsetzbare Gadoliniumkomplexe sind dem Fachmann bekannt. Besonders bevorzugt wird GdCl3 x 2H20 eingesetzt.Suitable gadolinium complexes which can be used as the starting compound are known to the person skilled in the art. GdCl 3 x 2H 2 0 is particularly preferably used.
Die Umsetzung erfolgt bevorzugt in einem Lösungsmittel. Geeignete Lösungsmittel sind dem Fachmann bekannt und sind bevorzugt ausgewählt aus Wasser und Alkoholen wie Ethanol und Gemischen davon.The reaction is preferably carried out in a solvent. Suitable solvents are known to the person skilled in the art and are preferably selected from water and alcohols such as ethanol and mixtures thereof.
Das molare Verhältnis von eingesetztem Gadoliniumkomplex zu eingesetztem Ligandvorläufer beträgt bevorzugt 0,7 : 3,0 bis 1 ,5 : 3,0, besonders bevorzugt 0,9 : 3,0 bis 1 ,1 , ganz besonders bevorzugt 1 : 3.The molar ratio of gadolinium complex used to ligand precursor used is preferably 0.7: 3.0 to 1.5: 3.0, particularly preferably 0.9: 3.0 to 1.1, very particularly preferably 1: 3.
Bevorzugt werden die Gadolinium(lll)-Komplexe der Formeln l und II, durch direkte Umsetzung des entsprechenden Ligandvorläufers mit einem Gadoliniumkomplex erhalten. Diese Umsetzung erfolgt besonders bevorzugt in Wasser oder einem Alkohol oder Gemischen davon in den bereits vorstehend angegebenen molaren Verhältnissen von Gadoliniumkomplexen und eingesetzten Ligandvoriäufem.The gadolinium (III) complexes of the formulas I and II are preferably obtained by directly reacting the corresponding ligand precursor with a gadolinium complex. This reaction is particularly preferably carried out in water or an alcohol or mixtures thereof in the molar ratios of gadolinium complexes and ligand precursors already mentioned above.
Die Umsetzung erfolgt im Allgemeinen bei Temperaturen von 0 bis Rückflusstemperatur des Lösungsmittels , bevorzugt 10 bis 50 °C, besonders bevorzugt bei Raumtemperatur.The reaction is generally carried out at temperatures from 0 to the reflux temperature of the solvent, preferably 10 to 50 ° C., particularly preferably at room temperature.
Die Reaktionsdauer ist abhängig von dem gewünschten Gadolinium(lll)-Komplex und beträgt im Allgemeinen von 10 min bis 50 h, bevorzugt 20 min bis 24 h, besonders bevorzugt 0,5 h bis 12 h.The reaction time depends on the desired gadolinium (III) complex and is generally from 10 minutes to 50 hours, preferably from 20 minutes to 24 hours, particularly preferably from 0.5 hours to 12 hours.
Der erhaltene Gadolinium-Komplex der Formeln I bzw. II wird nach dem Fachmann bekannten Methoden aufgearbeitet. Beispielsweise wird das Produkt durch Zugabe von Wasser ausgefällt und das ausgefallene Produkt filtriert, gewaschen, zum Beispiel mit Wasser, und anschließend getrocknet.The gadolinium complex of the formulas I and II obtained is worked up by methods known to the person skilled in the art. For example, the product is precipitated by adding water and the precipitated product is filtered, washed, for example with water, and then dried.
Die erfindungsgemäß verwendeten Gadolinium(lll)-Komplexe der Formeln I oder II eignen sich hervorragend als Emittersubstanzen, da sie Lumineszenz (Elektrolumineszenz) im sichtbaren Bereich des elektromagnetischen Spektrums aufweisen. Mit Hilfe der erfindungsgemäß verwendeten Gadolinium(lll)-Komplexe als Emittersubstanzen ist es möglich, Verbindungen bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie im blauen Bereich des elektromagnetischen Spektrums aufweisen. Somit ist es möglich mit Hilfe der erfindungsgemäß verwendeten Gadolinium(lll)-Komplexe als Emittersubstanzen technisch einsetzbare Vollfarbendisplays bereit zu stellen.The gadolinium (III) complexes of the formulas I or II used according to the invention are outstandingly suitable as emitter substances, since they have luminescence (electroluminescence) in the visible range of the electromagnetic spectrum. With the aid of the gadolinium (III) complexes used as emitter substances according to the invention, it is possible to provide compounds which have electroluminescence in the red, green and blue regions of the electromagnetic spectrum. So it is possible with the help of To provide gadolinium (III) complexes used according to the invention as emitter substances for full-color displays which can be used technically.
Eine besondere Eigenschaft der Gadolinium(lll)-Komplexe der Formeln I und II ist, dass diese im Festkörper Lumineszenz, besonders bevorzugt Elektrolumineszenz, im sichtbaren Bereich des elektromagnetischen Spektrums zeigen. Diese im Festkörper lumineszierenden Komplexe können in Substanz, also ohne weitere Zusätze, als Emittersubstanzen in OLEDs eingesetzt werden. Dadurch kann ein OLED mit einer Licht-emittierenden Schicht hergestellt werden, wobei keine aufwendige Coverdampfung eines Matrixmaterials mit der Emittersubstanz erforderlich ist.A special property of the gadolinium (III) complexes of the formulas I and II is that they show luminescence in the solid state, particularly preferably electroluminescence, in the visible range of the electromagnetic spectrum. These complexes which are luminescent in the solid state can be used in bulk, that is to say without any further additives, as emitter substances in OLEDs. As a result, an OLED can be produced with a light-emitting layer, with no complex cover evaporation of a matrix material with the emitter substance being necessary.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher die Verwendung von Gadolinium(lll)-Komplexen der Formeln I und II als Licht-emittierende Schicht in OLEDs.Another subject of the present application is therefore the use of gadolinium (III) complexes of the formulas I and II as a light-emitting layer in OLEDs.
Organische Licht-emittierende Dioden sind grundsätzlich aus mehreren Schichten aufgebaut:Organic light-emitting diodes are basically made up of several layers:
1. Anode1. Anode
2. Löcher-transportierende Schicht 3. Licht-emittierende Schicht2. Hole-transporting layer 3. Light-emitting layer
4. Elektronen-transportierende Schicht4. Electron transporting layer
5. Kathode5. Cathode
Die Gadolinium(lll)-Komplexe der Formeln I und II werden bevorzugt in der Licht- emittierenden Schicht als Emittermoleküle eingesetzt. Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher eine Licht-emittierende Schicht enthaltend mindestens einen Gadolinium(lll)~Komplex der Formeln l und II als Emittermolekül. Bevorzugte Gadolinium(III)-Komplexe der Formeln I und II sind bereits vorstehend genannt.The gadolinium (III) complexes of the formulas I and II are preferably used in the light-emitting layer as emitter molecules. Another object of the present application is therefore a light-emitting layer containing at least one gadolinium (III) complex of the formulas I and II as an emitter molecule. Preferred gadolinium (III) complexes of the formulas I and II have already been mentioned above.
Die erfindungsgemäß verwendeten Gadolinium(lll)-Komplexe der Formeln I und II können in Substanz - ohne weitere Zusätze - in der Licht-emittierenden Schicht vorliegen. Es ist jedoch ebenfalls möglich, dass neben den erfindungsgemäß eingesetzten Gadolinium(lll)-Komplexen der Formeln I oder II weitere Verbindungen in der Licht-emittierenden Schicht vorliegen. Beispielsweise kann ein fluoreszierender Farbstoff anwesend sein, um die Emissionsfarbe des als Emittermoleküls eingesetzten Gadolinium(lll)-Komplexes zu verändern. Des Weiteren kann ein Verdünnungsmaterial eingesetzt werden. Dieses Verdünnungsmaterial kann ein Polymer sein, zum Beispiel Poly(N-vinylcarbazol) oder Polysilan. Das Verdünnungsmaterial kann jedoch ebenfalls ein kleines Molekül sein, zum Beispiel 4,4'-N,N'-Dicarbazolbiphenyl (CDP) oder tertiäre aromatische Amine. Wenn ein Verdünnungsmaterial eingesetzt wird, beträgt der Anteil der erfindungsgemäß eingesetzten Gadolinium(lll)-Komplexe in der Licht-emittierenden Schicht im Allgemeinen weniger als 20 Gew.-%, bevorzugt 3 bis 10 Gew.-%. Bevorzugt werden die Gadoliήium(lll)-Komplexe der Formeln I und II in Substanz eingesetzt, wodurch eine aufwendige Coverdampfung der Gadolinium(III)-Komplexe mit einem Matrixmaterial (Verdünnungsmaterial oder fluoreszierender Farbstoff) vermieden wird. Dafür ist es wesentlich, dass die Gadolinium(III)-Komplexe im Festkörper lumineszieren. Die Gadolinium(lll)-Komplexe der Formeln I und II zeigen im Festkörper Lumineszenz. Somit enthält die Licht-emittierende Schicht bevorzugt mindestens einen Gadolinium(lll)-Komplex der Formel I oder II und kein Matrixmaterial ausgewählt aus Verdünnungsmaterial und fluoreszierendem Farbstoff.The gadolinium (III) complexes of the formulas I and II used according to the invention can be present in substance - without further additives - in the light-emitting layer. However, it is also possible that in addition to the gadolinium (III) complexes of the formulas I or II used according to the invention, further compounds are present in the light-emitting layer. For example, a fluorescent dye can be present in order to change the emission color of the gadolinium (III) complex used as the emitter molecule. A dilution material can also be used. This dilution material can be a polymer, for example Poly (N-vinyl carbazole) or polysilane. However, the diluent can also be a small molecule, for example 4,4'-N, N'-dicarbazole biphenyl (CDP) or tertiary aromatic amines. If a dilution material is used, the proportion of the gadolinium (III) complexes used according to the invention in the light-emitting layer is generally less than 20% by weight, preferably 3 to 10% by weight. The Gadoliήium (III) complexes of the formulas I and II are preferably used in substance, as a result of which costly cover evaporation of the Gadolinium (III) complexes with a matrix material (diluent material or fluorescent dye) is avoided. It is essential for this that the gadolinium (III) complexes luminesce in the solid. The gadolinium (III) complexes of the formulas I and II show luminescence in the solid state. Thus, the light-emitting layer preferably contains at least one gadolinium (III) complex of the formula I or II and no matrix material selected from the dilution material and fluorescent dye.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist in einer bevorzugten Ausführungsform eine Licht-emittierende Schicht bestehend aus mindestens einem Gadolinium(III)-Komplex der Formeln I und/oder II als Emittermolekül. Bevorzugte Komplexe der Formeln I und II wurden bereits vorstehend genannt.Another object of the present application is, in a preferred embodiment, a light-emitting layer consisting of at least one gadolinium (III) complex of the formulas I and / or II as an emitter molecule. Preferred complexes of the formulas I and II have already been mentioned above.
Die einzelnen der vorstehend genannten Schichten des OLEDs können wiederum aus 2 oder mehreren Schichten aufgebaut sein. Beispielsweise kann die Löchertransportierende Schicht aus einer Schicht aufgebaut sein, in die aus der Elektrode Löcher injiziert werden und einer Schicht, die die Löcher von der Loch injizierenden Schicht weg in die Licht-emittierende Schicht transportiert. Die Elektronen- transportierende Schicht kann ebenfalls aus mehreren Schichten bestehen, zum Beispiel einer Schicht, worin Elektronen durch die Elektrode injiziert werden, und einer Schicht, die aus der Elektronen-injizierenden Schicht Elektronen erhält und in die Lichtemittierende Schicht transportiert. Diese genannten Schichten werden jeweils nach Faktoren wie Energieniveau, Temperaturresistenz und Ladungsträgerbeweglichkeit, sowie Energiedifferenz der genannten Schichten mit den organischen Schichten oder den Metallelektroden ausgewählt. Der Fachmann ist in der Lage, den Aufbau der OLEDs so zu wählen, dass er optimal an die erfindungsgemäß als Emittersubstanzen verwendeten Gadolinium(lll)-Komplexe angepasst ist. Each of the aforementioned layers of the OLED can be constructed again of 2 or more layers. For example, the hole-transporting layer can be constructed from a layer into which holes are injected from the electrode and a layer which transports the holes away from the hole-injecting layer into the light-emitting layer. The electron-transporting layer can also consist of several layers, for example a layer in which electrons are injected through the electrode and a layer which receives electrons from the electron-injecting layer and transports them into the light-emitting layer. These layers are selected according to factors such as energy level, temperature resistance and charge mobility, as well as the energy difference of the layers with the organic layers or the metal electrodes. The person skilled in the art is able to choose the structure of the OLEDs in such a way that it is optimally adapted to the gadolinium (III) complexes used as emitter substances according to the invention.
Um besonders effiziente OLEDs zu erhalten, sollte das HOMO (höchstes besetztes Molekülorbital) der Loch-transportierenden Schicht mit der Arbeitsfunktion der Anode angeglichen sein und das LUMO (niedrigstes unbesetztes Molekülorbital) der elektronentransportierenden Schicht sollte mit der Arbeitsfunktion der Kathode angeglichen sein.In order to obtain particularly efficient OLEDs, the HOMO (highest occupied molecular orbital) of the hole-transporting layer should match the work function of the anode and the LUMO (lowest unoccupied molecular orbital) electron transporting layer should match the work function of the cathode.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein OLED enthaltend mindestens eine erfindungsgemäße Licht-emittierende Schicht. Die weiteren Schichten in dem OLED können aus einem beliebigen Material aufgebaut sein, das üblicherweise in solchen Schichten eingesetzt wird und dem Fachmann bekannt ist.Another object of the present application is an OLED containing at least one light-emitting layer according to the invention. The further layers in the OLED can be constructed from any material that is usually used in such layers and is known to the person skilled in the art.
Die Anode (1 ) ist eine Elektrode, die positive Ladungsträger bereitstellt. Sie kann zum Beispiel aus Materialien aufgebaut sein, die ein Metall, eine Mischung verschiedener Metalle, eine Metalllegierung, ein Metalloxid oder eine Mischung verschiedener Metalloxide enthält. Alternativ kann die Anode ein leitendes Polymer sein. Geeignete Metalle umfassen die Metalle der Gruppen Ib, IVa, Va und Via des Periodensystems der Elemente sowie die Übergangsmetalle der Gruppe VIII. Wenn die Anode • lichtdurchlässig sein soll, werden im Allgemeinen gemischte Metalloxide der Gruppen Mb, Illb und IVb des Periodensystems der Elemente eingesetzt, zum Beispiel Indium- Zinn-Oxid (ITO). Es ist ebenfalls möglich, dass die Anode (1 ) ein organisches Material, zum Beispiel Polyanilin enthält, wie beispielsweise in Nature, Vol. 357, Seiten 477 bis 479 (11. Juni 1992) beschrieben ist. Zumindest entweder die Anode oder die Kathode sollten mindestens teilweise transparent sein, um das gebildete Licht auskoppeln zu können.The anode (1) is an electrode that provides positive charge carriers. For example, it can be constructed from materials that contain a metal, a mixture of different metals, a metal alloy, a metal oxide or a mixture of different metal oxides. Alternatively, the anode can be a conductive polymer. Suitable metals include the metals of Groups Ib, IVa, Va and Via of the Periodic Table of the Elements and the transition metals of Group VIII. If the anode is to be translucent, mixed metal oxides of Groups Mb, Illb and IVb of the Periodic Table of the Elements are generally used , for example indium tin oxide (ITO). It is also possible that the anode (1) contains an organic material, for example polyaniline, as described, for example, in Nature, vol. 357, pages 477 to 479 (June 11, 1992). At least either the anode or the cathode should be at least partially transparent in order to be able to couple out the light formed.
Geeignete Lochtransportmaterialien für die Schicht (2) des erfindungsgemäßen OLEDs sind zum Beispiel in Kirk-Othmer Encyclopedia of Chemical Technologie, 4. Auflage, Vol. 18, Seiten 837 bis 860, 1996 offenbart. Sowohl Löcher transportierende Moleküle als auch Polymere können als Lochtransportmaterial eingesetzt werden. Üblicherweise eingesetzte Löcher transportierende Moleküle sind ausgewählt aus der Gruppe bestehend aus 4,4'-Bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD), N,N'- Diphenyl-N, N'-bis(3-methylphenyl)-[ , 1 '-biphenyl]-4,4'-diamin (TPD), 1 , 1 -Bis[(di-4- tolylamino)phenyl]cyclohexan (TAPC), N,N'-Bis(4-methylphenyl)-N,N'-bis(4- ethylphenyl)-[1 ,1 '-(3,3'-dimethyI)biphenyl]-4,4'-diamin (ETPD), Tetrakis-(3- methylphenyl)-N,N,N',N'-2,5-phenylendiamin (PDA), α-Phenyl-4-N,N-diphenylamino- styrol (TPS), p-(Diethylamino)-benza!dehyddiphenyIhydrazon ' (DEH), Triphenylamin (TPA), Bis[4-(N,N-diethylamino)-2-methylphenyl)(4-methy)-phenyl)methan (MPMP), 1- Phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazolin (PPR oder DEASP), 1 ,2-trans-Bis(9H-carbazol-9-yl)cyclobutan (DCZB), N,N,N',N'-Tetrakis(4- methyIphenyl)-(1 ,1'-biphenyl)-4,4'-diamin (TTB) und Porphyrinverbindungen wie Kupferphthalocyanine. Üblicherweise eingesetzte Löcher transportierende Polymere sind ausgewählt aus der Gruppe bestehend aus Polyvinylcarbazolen, (Phenylmethyl)polysilanen und Polyanilinen. Es ist ebenfalls möglich, Löcher transportierende Polymere durch Dotieren Löcher transportierender Moleküle in Polymere wie Polystyrol und Polycarbonat zu erhalten. Geeignete Löcher transportierende Moleküle sind die bereits vorstehend genannten Moleküle.Suitable hole transport materials for the layer (2) of the OLED according to the invention are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technologie, 4th edition, vol. 18, pages 837 to 860, 1996. Both hole transporting molecules and polymers can be used as hole transport material. Holes used to transport holes are selected from the group consisting of 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD), N, N'-diphenyl-N, N '-bis (3-methylphenyl) - [, 1' -biphenyl] -4,4'-diamine (TPD), 1, 1-bis [(di-4-tolylamino) phenyl] cyclohexane (TAPC), N, N '-Bis (4-methylphenyl) -N, N'-bis (4-ethylphenyl) - [1, 1' - (3,3'-dimethyl) biphenyl] -4,4'-diamine (ETPD), tetrakis (3-methylphenyl) -N, N, N ', N'-2,5-phenylenediamine (PDA), α-phenyl-4-N, N-diphenylaminostyrene (TPS), p- (diethylamino) -benza! dehyddiphenyIhydrazone ' (DEH), triphenylamine (TPA), bis [4- (N, N-diethylamino) -2-methylphenyl) (4-methy) -phenyl) methane (MPMP), 1-phenyl-3- [p- ( diethylamino) styryl] -5- [p- (diethylamino) phenyl] pyrazoline (PPR or DEASP), 1, 2-trans-bis (9H-carbazol-9-yl) cyclobutane (DCZB), N, N, N ', N'-tetrakis (4-methylphenyl) - (1, 1'-biphenyl) -4,4'-diamine (TTB) and porphyrin compounds such as copper phthalocyanines. Commonly used hole transporting polymers are selected from the group consisting of polyvinyl carbazoles, (phenylmethyl) polysilanes and polyanilines. It is also possible to obtain hole transporting polymers by doping hole transporting molecules in polymers such as polystyrene and polycarbonate. Suitable molecules which transport holes are the molecules already mentioned above.
Geeignete Elektronen transportierende Materialien für die Schicht (4) der erfindungsgemäßen OLEDs umfassen mit oxinoiden Verbindungen chelatisierte Metalle wie Tris(8-chinolinato)aluminium (AIq3), Verbindungen auf Phenanthrolinbasis wie 2,9-Dimethyl,4,7-diphenyl-1 ,10-phenanthrolin (DDPA) oder 4,7-Diphenyl-1 ,10- phenanthrolin (DPA) und Azolverbindungen wie 2-(4-Biphenylyl)-5-(4-t-butylphenyl)- 1 ,3,4-oxadiazol (PBD) und 3-(4-BiphenylyI)-4-phenyl-5-(4-t-butylphenyl)-1 ,2,4-triazolSuitable electron-transporting materials for the layer (4) of the OLEDs according to the invention include metals chelated with oxinoid compounds such as tris (8-quinolinato) aluminum (AIq 3 ), compounds based on phenanthroline such as 2,9-dimethyl, 4,7-diphenyl-1, 10-phenanthroline (DDPA) or 4,7-diphenyl-1, 10-phenanthroline (DPA) and azole compounds such as 2- (4-biphenylyl) -5- (4-t-butylphenyl) - 1, 3,4-oxadiazole ( PBD) and 3- (4-biphenylyI) -4-phenyl-5- (4-t-butylphenyl) -1, 2,4-triazole
(TAZ). Dabei kann die Schicht (4) sowohl zur Erleichterung des Elektronentransports dienen als auch als Pufferschicht oder als Sperrschicht, um ein Quenchen des Excitons an den Grenzflächen der Schichten des OLEDs zu vermeiden. Vorzugsweise verbessert die Schicht (4) die Beweglichkeit der Elektronen und reduziert ein Quenchen des Excitons.(TAZ). The layer (4) can serve both to facilitate electron transport and as a buffer layer or as a barrier layer in order to avoid quenching of the exciton at the interfaces of the layers of the OLED. Preferably, the layer (4) improves the mobility of electrons and reduces quenching of the exciton.
Die Kathode (5) ist eine Elektrode, die zur Einführung von Elektronen oder negativen Ladungsträgern dient. Die Kathode kann jedes Metall oder Nichtmetall sein, das eine geringere Arbeitsfunktion aufweist als die Anode. Geeignete Materialien für die Kathode sind ausgewählt aus der Gruppe bestehend aus Alkalimetallen der Gruppe 1 , zum Beispiel Li, Cs, Erdalkalimetallen der Gruppe 2, Metallen der Gruppe 12 des Periodensystems der Elemente, umfassend die Seltenerdmetalle und die Lanthanide und Aktinide. Des Weiteren können Metalle wie Aluminium, Indium, Calcium, Barium, Samarium und Magnesium sowie Kombinationen davon eingesetzt werden. Weiterhin können Lithium enthaltende organometallische Verbindungen oder LiF zwischen der organischen Schicht und der Kathode aufgebracht werden, um die Betriebsspannung (Operating Voltage) zu vermindern.The cathode (5) is an electrode that is used to introduce electrons or negative charge carriers. The cathode can be any metal or non-metal that has a lower work function than the anode. Suitable materials for the cathode are selected from the group consisting of alkali metals of group 1, for example Li, Cs, alkaline earth metals of group 2, metals of group 12 of the periodic table of the elements, comprising the rare earth metals and the lanthanides and actinides. Metals such as aluminum, indium, calcium, barium, samarium and magnesium as well as combinations thereof can also be used. Furthermore, lithium-containing organometallic compounds or LiF can be applied between the organic layer and the cathode in order to reduce the operating voltage.
Das OLED gemäß der vorliegenden Erfindung kann zusätzlich weitere Schichten enthalten, die dem Fachmann bekannt sind. Beispielsweise kann zwischen der Schicht (2) und der Licht emittierenden Schicht (3) eine Schicht aufgebracht sein, die den Transport der positiven Ladung erleichtert und/oder die Bänderlücke der Schichten aneinander anpasst. Alternativ kann diese weitere Schicht als Schutzschicht dienen. In analoger Weise können zusätzliche Schichten zwischen der Licht emittierenden Schicht (3) und der Schicht (4) vorhanden sein, um den Transport der negativen Ladung zu erleichtern und/oder die Bänderlücke zwischen den Schichten aneinander anzupassen. Alternativ kann diese Schicht als Schutzschicht dienen. In einer bevorzugten Ausführungsform enthält das erfindungsgemäße OLED zusätzlich zu den Schichten (1 ) bis (5) mindestens eine der im Folgenden genannten weiteren Schichten: - eine Loch-Injektionsschicht zwischen der Anode (1 ) und der Löchertransportierenden Schicht (2); - eine Blockschicht für Elektronen zwischen der Löcher-transportierenden Schicht (2) und der Licht-emittierenden Schicht (3); eine Blockschicht für Löcher zwischen der Licht-emittierenden Schicht (3) und der Elektronen-transportierenden Schicht (4); eine Elektronen-Injektionsschicht zwischen der Elektronen-transportierenden Schicht (4) und der Kathode (5). Dem Fachmann ist bekannt, wie er (zum Beispiel auf Basis von elektrochemischen Untersuchungen) geeignete Materialien auswählen muss. Geeignete Materialien für die einzelnen Schichten sind dem Fachmann bekannt und z.B. in WO 00/70655 offenbart.The OLED according to the present invention can additionally contain further layers which are known to the person skilled in the art. For example, a layer can be applied between the layer (2) and the light-emitting layer (3), which facilitates the transport of the positive charge and / or adjusts the band gap of the layers to one another. Alternatively, this additional layer can serve as a protective layer. Analogously, additional layers can be present between the light-emitting layer (3) and the layer (4) in order to facilitate the transport of the negative charge and / or to match the band gap between the layers. Alternatively, this layer can serve as a protective layer. In a preferred embodiment, the OLED according to the invention contains, in addition to the layers (1) to (5), at least one of the further layers mentioned below: a hole injection layer between the anode (1) and the hole-transporting layer (2); - A block layer for electrons between the hole-transporting layer (2) and the light-emitting layer (3); a block layer for holes between the light-emitting layer (3) and the electron-transporting layer (4); an electron injection layer between the electron transporting layer (4) and the cathode (5). The person skilled in the art knows how to select suitable materials (for example on the basis of electrochemical tests). Suitable materials for the individual layers are known to the person skilled in the art and are disclosed, for example, in WO 00/70655.
Des Weiteren kann jede der genannten Schichten des erfindungsgemäßen OLEDs aus zwei oder mehreren Schichten ausgebaut sein. Des Weiteren ist es möglich, dass einige oder alle der Schichten (1 ), (2), (3), (4) und (5) oberflächenbehandelt sind, um die Effizienz des Ladungsträgertransports zu erhöhen. Die Auswahl der Materialien für jede der genannten Schichten ist bevorzugt dadurch bestimmt, ein OLED mit einer hohen Effizienz zu erhalten.Furthermore, each of the named layers of the OLED according to the invention can be made up of two or more layers. Furthermore, it is possible that some or all of the layers (1), (2), (3), (4) and (5) are surface-treated in order to increase the efficiency of the charge carrier transport. The choice of materials for each of the layers mentioned is preferably determined by obtaining an OLED with high efficiency.
Die Herstellung des erfindungsgemäßen OLEDs kann nach dem Fachmann bekannten Methoden erfolgen. Im Allgemeinen wird das OLED durch aufeinanderfolgendeThe OLED according to the invention can be produced by methods known to the person skilled in the art. Generally, the OLED is replaced by successive ones
Dampfabscheidung (Vapor deposition) der einzelnen Schichten auf ein geeignetesVapor deposition of the individual layers to a suitable one
Substrat hergestellt. Geeignete Substrate sind zum Beispiel Glas oder Polymerfilme.Substrate. Suitable substrates are, for example, glass or polymer films.
Zur Dampfabscheidung können übliche Techniken eingesetzt werden wie thermischeConventional techniques such as thermal can be used for steam separation
• Verdampfung, Chemical Vapor Deposition und andere. In einem alternativen Verfahren können die organischen Schichten aus Lösungen oder Dispersionen in geeignetenEvaporation, Chemical Vapor Deposition and others. In an alternative method, the organic layers can be made from solutions or dispersions in suitable
Losungsmitteln beschichtet werden, wobei dem Fachmann bekannteSolvents are coated, known to those skilled in the art
Beschichtungstechniken angewendet werden.Coating techniques are applied.
Im Allgemeinen haben die verschiedenen Schichten folgende Dicken: Anode (2) 500 bis 5000 Ä, bevorzugt 1000 bis 2000 Ä; Löcher-transportierende Schicht (3) 50 bis 1000 Ä, bevorzugt 200 bis 800 Ä, Licht-emittierende Schicht (4) 10 bis 1000 Ä, bevorzugt 100 bis 800 Ä, Elektronen transportierende Schicht (5) 50 bis 1000 Ä, bevorzugt 200 bis 800 Ä,' Kathode (6) 200 bis 10.000 Ä, bevorzugt 300 bis 5000 Ä. Die Lage der Rekombinationszone von Löchern und Elektronen in dem erfindungsgemäßen OLED und somit das Emissionsspektrum des OLED können durch die relative Dicke jeder Schicht beeinflusst werden. Das bedeutet, die Dicke der Elektronentransportschicht sollte bevorzugt so gewählt werden, dass die Elektronen/Löcher Rekombinationszone in der Licht-emittierenden Schicht liegt. Das Verhältnis der Schichtdicken der einzelnen Schichten in dem OLED ist von den eingesetzten Materialien abhängig. Die Schichtdicken von gegebenenfalls eingesetzten zusätzlichen Schichten sind dem Fachmann bekannt.In general, the different layers have the following thicknesses: anode (2) 500 to 5000 Å, preferably 1000 to 2000 Å; Hole-transporting layer (3) 50 to 1000 Å, preferably 200 to 800 Å, light-emitting layer (4) 10 to 1000 Å, preferably 100 to 800 Å, electron-transporting layer (5) 50 to 1000 Å, preferably 200 to 800 Ä 'cathode (6) 200 to 10,000 Å, preferably 300 to 5000 Å. The The position of the recombination zone of holes and electrons in the OLED according to the invention and thus the emission spectrum of the OLED can be influenced by the relative thickness of each layer. This means that the thickness of the electron transport layer should preferably be chosen so that the electron / hole recombination zone lies in the light-emitting layer. The ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used. The layer thicknesses of any additional layers used are known to the person skilled in the art.
Durch Einsatz der erfindungsgemäß verwendeten Gadolinium(III)-Komplexe der Formeln I oder II als Emittermoleküle in der Licht-emittierenden Schicht der erfindungsgemäßen OLEDs können OLEDs mit hoher Effizienz erhalten werden. Die Effizienz der erfindungsgemäßen OLEDs kann des Weiteren durch Optimierung der anderen Schichten verbessert werden. Beispielsweise können hoch effiziente Kathoden wie Ca, Ba oder LiF eingesetzt werden. Geformte Substrate und neue Löcher-transportierende Materialien, die eine Reduktion der Operationsspannung oder eine Erhöhung der Quanteneffizienz bewirken, sind ebenfalls in den erfindungsgemäßen OLEDs einsetzbar. Des Weiteren können zusätzliche Schichten in den OLEDs vorhanden sein, um die Energielevel der verschiedenen Schichten einzustellen und um Elektrolumineszenz zu erleichtern.By using the gadolinium (III) complexes of the formulas I or II used as emitter molecules in the light-emitting layer of the OLEDs according to the invention, OLEDs can be obtained with high efficiency. The efficiency of the OLEDs according to the invention can also be improved by optimizing the other layers. For example, highly efficient cathodes such as Ca, Ba or LiF can be used. Shaped substrates and new hole-transporting materials which reduce the operating voltage or increase the quantum efficiency can also be used in the OLEDs according to the invention. Furthermore, additional layers can be present in the OLEDs in order to adjust the energy level of the different layers and to facilitate electroluminescence.
Die erfindungsgemäßen OLEDs können in allen Vorrichtungen eingesetzt werden, worin Elektrolumineszenz nützlich ist. Geeignete Vorrichtungen sind bevorzugt ausgewählt aus stationären und mobilen Bildschirmen. Stationäre Bildschirme sind z.B. Bildschirme von Computern, Fernsehern, Bildschirme in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen und Hinweistafeln. Mobile Bildschirme sind z.B. Bildschirme in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen.The OLEDs according to the invention can be used in all devices in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile screens. Stationary screens are e.g. Screens of computers, televisions, screens in printers, kitchen appliances as well as billboards, lighting and information boards. Mobile screens are e.g. Screens in cell phones, laptops, vehicles and destination displays on buses and trains.
Weiterhin können die erfindungsgemäß eingesetzten Gadolinium(III)-Komplexe der Formeln I oder II in OLEDs mit inverser Struktur eingesetzt werden. Bevorzugt werden die Gadolinium(HI)-Komplexe in diesen inversen OLEDs wiederum in der Lichtemittierenden Schicht, besonders bevorzugt als Licht-emittierende Schicht ohne weitere Zusätze, eingesetzt. Der Aufbau von inversen OLEDs und die üblicherweise darin eingesetzten Materialien sind dem Fachmann bekannt.Furthermore, the gadolinium (III) complexes of the formulas I or II used according to the invention can be used in OLEDs with an inverse structure. The gadolinium (HI) complexes in these inverse OLEDs are in turn used in the light-emitting layer, particularly preferably as a light-emitting layer without further additives. The structure of inverse OLEDs and the materials usually used therein are known to the person skilled in the art.
Beispiele 1. Herstellung von Gadolinium(lll)-KomplexenExamples 1. Production of gadolinium (III) complexes
AllgemeinesGeneral
Alle Lösungsmittel, die für spektrometrische Messungen verwendet werden, haben die entsprechende für spektrometrische Messungen geeignete Qualität. Hhfac (Hexafluoroacetylaceton), Htta (Thienyltrifluoroaceton), Hqu (8-Chinolinol) und GdCI3 x H20 sind kommerziell erhältlich und werden ohne weitere Reinigung eingesetzt.All solvents used for spectrometric measurements have the appropriate quality suitable for spectrometric measurements. Hhfac (hexafluoroacetylacetone), Htta (thienyltrifluoroacetone), Hqu (8-quinolinol) and GdCI 3 x H 2 0 are commercially available and are used without further purification.
a) Gd(qu)3 (Gadolinium-tris-oxinat)a) Gd (qu) 3 (Gadolinium tris oxinate)
Die Herstellung von Gd(qu)3 ist in R.G. Charles et al. Spectrochim., Acta 8 (1956) 1 offenbart.The production of Gd (qu) 3 is described in RG Charles et al. Spectrochim., Acta 8 (1956) 1.
b) Gd(hfac)3 x 3H20 (Gadolinium-t s-hexafluoroacetylacetonat)b) Gd (hfac) 3 x 3H 2 0 (gadolinium-t s-hexafluoroacetylacetonate)
Zu einer Lösung von GdCI3 x 2H20 (300 mg; 1.14 mmol) und Natriumacetat (1 g) in 5 ml Wasser wird tropfenweise unter Rühren eine Lösung von 0,5 ml (3,52 mmol) Hhfac in 15 ml Ethanol hinzugefügt. Nach langsamer Zugabe von Wasser fällt ein farbloser Niederschlag aus. Der Niederschlag wird durch Filtration gesammelt, mit Wasser gewaschen und über P205 getrocknet. Es werden 100 mg Gd(hfac)3 erhalten.A solution of 0.5 ml (3.52 mmol) of Hhfac in 15 ml of ethanol is added dropwise to a solution of GdCI 3 × 2H 2 O (300 mg ; 1.14 mmol) and sodium acetate (1 g) in 5 ml of water with stirring , After slowly adding water, a colorless precipitate is formed. The precipitate is collected by filtration, washed with water and dried over P 2 0 5 . 100 mg Gd (hfac) 3 are obtained.
Elementaranalyse (C1.5H9OgF1.8Gd): C 21 ,64 %,Elemental analysis (C1 .5 H 9 OgF1. 8 Gd): C 21, 64%,
H 1 ,09 %;H 1.09%;
gefunden: C 21 ,73 %, H 1 ,04 %.found: C 21.73%, H 1.04%.
c) Gd(tta)3 x 1,5 H20 (Gadolinium-tris-thienyltrifluoroacetonat)c) Gd (tta) 3 x 1.5 H 2 0 (gadolinium tris-thienyl trifluoroacetonate)
Es wird analog zur Herstellung von Gd(hfac)3 x 3H20 verfahren. Zu einer Lösung von GdCI3 x 2H20 (300 mg, 1 ,14 mmol) und 1 g Natriumacetat in 5 ml H20. wird Htta (760 mg, 3,42 mmol) in 8 ml Ethanol hinzugefügt. Es werden 520 mg Gd(tta)3 x 1 ,5 H20 erhalten* Elementaranalyse: C: 34,00 % H: 1,78%The procedure is analogous to the production of Gd (hfac) 3 x 3H 2 0. Htta (760 mg, 3.42 mmol) in 8 ml of ethanol is added to a solution of GdCI 3 × 2H 2 O (300 mg, 1, 14 mmol) and 1 g of sodium acetate in 5 ml of H 2 O. 520 mg Gd (tta) 3 x 1.5 H 2 0 are obtained * Elemental analysis: C: 34.00% H: 1.78%
gefunden: C: 34,03 % H: 1,75%. found: C: 34.03% H: 1.75%.

Claims

Patentansprüche claims
1. Verwendung von Gadolinium(III)-Komplexen ausgewählt aus der Gruppe bestehend aus Gadolinium(III)~Diketonatokomplexen der Formel (I)1. Use of gadolinium (III) complexes selected from the group consisting of gadolinium (III) ~ diketonato complexes of the formula (I)
Figure imgf000019_0001
Figure imgf000019_0001
undand
Gadolinium(lll)-Oxinatkomplexen der Formel (II)Gadolinium (III) oxinate complexes of the formula (II)
Figure imgf000019_0002
Figure imgf000019_0002
worin die Symbole die folgenden Bedeutungen aufweisen:where the symbols have the following meanings:
R1, R3, R4, R5 unabhängig voneinander eine substituierte oder unsubstituierteR 1 , R 3 , R 4 , R 5 independently of one another are substituted or unsubstituted
Aryl-, Alkyl-, Heteroaryl- oder Alkenylgruppe; R2 H, eine substituierte oder unsubstituierte Aryl-, Alkyl-,Aryl, alkyl, heteroaryl or alkenyl group; R 2 H, a substituted or unsubstituted aryl, alkyl,
Heteroaryl- oder Alkenylgruppe; L neutraler Ligand; n, m unabhängig voneinander 0 bis 3; p 0 bis 2 als Emittermoleküle in organischen Licht-emittierenden Dioden.Heteroaryl or alkenyl group; L neutral ligand; n, m independently of one another 0 to 3; p 0 to 2 as emitter molecules in organic light-emitting diodes.
Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass die Symbole die folgenden Bedeutungen aufweisen:Use according to claim 1, characterized in that the symbols have the following meanings:
R , R3 unabhängig voneinander C bis C4-Alkyl, Phenyl, Pyridyl,R, R 3 independently of one another C to C 4 alkyl, phenyl, pyridyl,
Imidazolyl, Furyl, Thienyl, CF3, C2F5 oder C6F5; bevorzugt Methyl, Ethyl, Thienyl oder CF , besonders bevorzugt Thienyl oder CF3;Imidazolyl, furyl, thienyl, CF 3 , C 2 F 5 or C 6 F 5 ; prefers Methyl, ethyl, thienyl or CF, particularly preferably thienyl or CF 3 ;
R 44, D R5 unabhängig voneinander C bis C4-Alkyl, Phenyl, 1-Naphthyl,R 4 4 , D R5 independently of one another C to C 4 alkyl, phenyl, 1-naphthyl,
2-Naphthyl;2-naphthyl;
R^ H, Cr bis C4-Alkyl, CF3, Phenyl; ausgewählt aus der Gruppe bestehend aus Wasser, Pyridin, bevorzugt 4-N,N-Dimethylaminopyridin, 3-Cyanopyridin, 4-R ^ H, C r to C 4 alkyl, CF 3 , phenyl; selected from the group consisting of water, pyridine, preferably 4-N, N-dimethylaminopyridine, 3-cyanopyridine, 4-
Cyanopyridin, 4-Methoxypyridin, 4-Phenylpyridin und deren N-Cyanopyridine, 4-methoxypyridine, 4-phenylpyridine and their N-
Oxide, Bipyridyle, bevorzugt 2,2'-Bipyridyl, N-Methylimidazol,Oxides, bipyridyls, preferably 2,2'-bipyridyl, N-methylimidazole,
Phenanthrolin, bevorzugt 1 ,10-Diphenylphenanthrolin,Phenanthroline, preferably 1, 10-diphenylphenanthroline,
Bathophenanthrolin, Bathocuproin, Phosphinoxid, bevorzugtBathophenanthroline, bathocuproin, phosphine oxide, preferred
Triphenylphosphinoxid, Phosphonimidoligand, bevorzugtTriphenylphosphine oxide, phosphonimido ligand, preferred
Diphenylphosphonimid-trisphenylphosphoran, und Sulfoxid; n, m 0 oder 1 , bevorzugt 0; P 0 oder 1 , bevorzugt 0.Diphenylphosphonimide-trisphenylphosphorane, and sulfoxide; n, m 0 or 1, preferably 0; P 0 or 1, preferably 0.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gadolinium(III)-Diketonatokomplexe der Formel (I) ausgewählt sind aus der Gruppe bestehend aus Gadolinium(III)-Diketonatokomplexen der Formel (la) und (Ib)3. Use according to claim 1 or 2, characterized in that the gadolinium (III) diketonato complexes of the formula (I) are selected from the group consisting of gadolinium (III) diketonato complexes of the formula (Ia) and (Ib)
Figure imgf000020_0001
und der Gadolinium(lll)-Oxinatkomplex der Formel (II) die Formel (Ha) aufweist
Figure imgf000020_0001
and the gadolinium (III) oxinate complex of the formula (II) has the formula (Ha)
Figure imgf000020_0002
Figure imgf000020_0002
4. Verwendung von Gadolinium(lll)-Komplexen gemäß einem der Ansprüche 1 bis 3 als Licht-emittierende Schicht in OLEDs.4. Use of gadolinium (III) complexes according to one of claims 1 to 3 as a light-emitting layer in OLEDs.
5. Licht-emittierende Schicht enthaltend mindestens einen Gadolinium(lll)-Komplex gemäß einem der Ansprüche 1 bis 3 als Emittermolekül.5. Light-emitting layer containing at least one gadolinium (III) complex according to one of claims 1 to 3 as an emitter molecule.
6. Licht-emittierende Schicht bestehend aus mindestens einem Gadolinium(lll)- Komplex gemäß einem der Ansprüche 1 bis 3 als Emittermolekül.6. Light-emitting layer consisting of at least one gadolinium (III) complex according to one of claims 1 to 3 as an emitter molecule.
7. OLED enthaltend eine Licht-emittierende Schicht gemäß Anspruch 5 oder 6.7. OLED containing a light-emitting layer according to claim 5 or 6.
8. Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen wie Bildschirmen von Computern, Fernsehern, Bildschirmen in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen, Hinweistafeln und mobilen Bildschirmen wie Bildschirmen in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen enthaltend ein OLED gemäß Anspruch 7. 8.Device selected from the group consisting of stationary screens such as screens of computers, televisions, screens in printers, kitchen appliances as well as billboards, lighting, notice boards and mobile screens such as screens in cell phones, laptops, vehicles and destination displays on buses and trains containing an OLED according to Claim 7.
PCT/EP2004/014494 2003-12-19 2004-12-20 Use of gadolinium(iii) chelates as luminescent materials in organic light-emitting diodes (oleds) WO2005061655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360680A DE10360680A1 (en) 2003-12-19 2003-12-19 Use of gadolinium (III) chelates as luminescent materials in organic light-emitting diodes (OLEDs)
DE10360680.7 2003-12-19

Publications (1)

Publication Number Publication Date
WO2005061655A1 true WO2005061655A1 (en) 2005-07-07

Family

ID=34673044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014494 WO2005061655A1 (en) 2003-12-19 2004-12-20 Use of gadolinium(iii) chelates as luminescent materials in organic light-emitting diodes (oleds)

Country Status (2)

Country Link
DE (1) DE10360680A1 (en)
WO (1) WO2005061655A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894164A (en) * 1973-03-15 1975-07-08 Rca Corp Chemical vapor deposition of luminescent films
EP1245659A1 (en) * 2001-03-27 2002-10-02 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894164A (en) * 1973-03-15 1975-07-08 Rca Corp Chemical vapor deposition of luminescent films
EP1245659A1 (en) * 2001-03-27 2002-10-02 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same

Also Published As

Publication number Publication date
DE10360680A1 (en) 2005-07-14

Similar Documents

Publication Publication Date Title
EP1692244B1 (en) Use of platinum ii complexes as luminescent materials in organic light-emitting diodes (oleds)
EP2035526B1 (en) Use in oleds of transition metal carbene complexes that contain no cyclometallation via non-carbenes
EP2288671B1 (en) Novel transition metal complex and use thereof in organic light-emitting diodes - iii
EP2297800B1 (en) Deuterated transition metal complex and use thereof in organic light-emitting diodes
EP3216797B1 (en) Dinuclear platinum-carbene complexes and the use thereof in oleds
EP1794211B1 (en) Use of a copper (i) complexes for organic luminescent diodes
EP2195868B1 (en) Use of acridine derivatives as matrix materials and/or an electron blocker in oleds
EP1817806B1 (en) PHENOTHAZINES-S-OXIDES AND S,S-DIOXIDES AS hole and excitonblockers for OLEDs
EP1735851B1 (en) Use of metallocene complexes of metals in the 4th sub-group of the periodic table as triple emitters in organic light-emitting diodes (oleds)
WO2006100298A1 (en) Use of compounds containing aromatic or heteroaromatic rings linked via carbonyl group-containing groups, for use as matrix materials in organic light-emitting diodes
DE102013019465A1 (en) ORGANIC ELECTROLUMINESCENCE DEVICE WITH DELAYED FLUORESCENCE
DE19812259A1 (en) EL arrangement based on tertiary amines, alcohol-soluble Alq3 derivatives or mixtures and polymeric binders
DE102004057073A1 (en) Use of phenothiazine S-oxides and -S, S-dioxides as matrix materials for organic light-emitting diodes
EP2301091B1 (en) Use of cyclic phosphazene compounds in organic light emitting diodes
DE10320103A1 (en) Process for the preparation of phenylpyridine metal complexes and use of such complexes in OLEDs
EP2207865A1 (en) Use of substituted tris(diphenylamino)-triazine compounds in oleds
WO2005061654A1 (en) Use of main group metal diketonate complexes as luminescent material in organic light-emitting diodes (oleds)
EP1740673B1 (en) Triazole derivatives and use therof in organic light-emitting diodes(oleds)
WO2009150140A1 (en) Novel transition metal complexes and use thereof in organic light-emitting diodes - iv
WO2005061655A1 (en) Use of gadolinium(iii) chelates as luminescent materials in organic light-emitting diodes (oleds)
WO2011026886A1 (en) Dinuclear metal-carbene complex in oleds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase