WO2005061267A1 - Vehicle integrated control system - Google Patents
Vehicle integrated control system Download PDFInfo
- Publication number
- WO2005061267A1 WO2005061267A1 PCT/JP2004/018226 JP2004018226W WO2005061267A1 WO 2005061267 A1 WO2005061267 A1 WO 2005061267A1 JP 2004018226 W JP2004018226 W JP 2004018226W WO 2005061267 A1 WO2005061267 A1 WO 2005061267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ecb
- str
- unit
- information
- vehicle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/06—Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/14—Yaw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/28—Wheel speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/12—Brake pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
Definitions
- the present invention relates to a system controlling a plurality of actuators incorporated in a vehicle, and more particularly, a system controlling in an integrated manner a plurality of actuators with the possibility of mutual interference.
- Japanese Patent Laying-Open No. 5-85228 discloses an electronic control system of a vehicle that can reduce the time required for development, and that can improve the reliability, usability, and maintenance feasibility of the vehicle.
- This electronic control system for a vehicle includes elements coacting for carrying out control tasks with reference to engine power, drive power and braking operation, and elements for coordinating the coaction of the elements to effect a control of operating performance of the motor vehicle in correspondence to a request of the driver.
- Respective elements are arranged in the form of a plurality of hierarchical levels. At least one of the coordinating elements of the hierarchical level is adapted for acting on the element of the next hierarchical level when translating the request of the driver into a corresponding operating performance of the motor vehicle thereby acting on a pre-given subordinate system of the driver- vehicle system while providing the performance required from the hierarchical level for this subordinate system.
- an instruction can be conveyed only in the direction from an upper level to a lower level.
- the instruction to execute the driver's request is transmitted in this direction. Accordingly, a comprehensible structure of elements independent of each other is achieved.
- the linkage of individual systems can be reduced to a considerable level.
- the independency of respective elements allows the individual elements to be developed concurrently at the same time. Therefore, each element can be developed in accordance with a predetermined object. Only a few interfaces with respect to the higher hierarchical level and a small number of interfaces for the lower hierarchical level have to be taken into account.
- Japanese Patent Laying-Open No. 2003-191774 discloses a integrated type vehicle motion control device adapting in a hierarchy manner a software configuration for a device that controls a plurality of actuators in an integrated manner to execute motion control of a plurality of different types in a vehicle, whereby the hierarchy structure is optimized from the standpoint of practical usage.
- This integrated vehicle motion control device controls a plurality of actuators in an integrated manner through a computer based on information related to driving a vehicle by a driver to execute a plurality of types of vehicle motion control for the vehicle.
- At least the software configuration among the hardware configuration and software configuration includes a plurality of elements organized in hierarchy in a direction from the driver towards the plurality of actuators.
- the plurality of elements include: (a) a control unit determining the target vehicle state quantity based on the driving-related information at the higher level; and (b) an execution unit receiving the determined target vehicle state quantity as an instruction from the control unit to execute the received instruction via at least one of the plurality of actuators at the lower level.
- the control unit includes an upper level control unit and a lower level control unit, each issuing an instruction to control the plurality of actuators in an integrated manner.
- the upper level control unit determines a first target vehicle state quantity based on the driving-related information without taking into account the dynamic behavior of the vehicle, and supplies the determined first target vehicle state quantity to the lower level control unit.
- the lower level control unit determines the second target vehicle state quantity based on the first target vehicle state quantity received from the upper level control unit, taking into account the dynamic behavior of the vehicle, and supplies the determined second target vehicle state quantity to the execution unit.
- Each of the upper level control unit, the lower level control unit, and the execution unit causes the computer to execute a plurality of modules independent of each other on the software configuration to realize unique functions thereof.
- At least the software configuration among the hardware configuration and software configuration is organized in a hierarchy structure so as to include: (a) a control unit determining a target vehicle state quantity based on driving-related information at the higher level in the direction from the driver to the plurality of actuators; and (b) an execution unit receiving the determined target vehicle state quantity as an instruction from the control unit to execute the received instruction via at least one of the plurality of actuators at the lower level.
- at least the software configuration is organized in hierarchal levels such that the control unit and the execution unit are separated from each other in this vehicle motion control device.
- the electronic control system for a vehicle disclosed in Document 1 is disadvantageous in that the entire controllability of the vehicle is degraded when in the event of system failure at the upper hierarchical level since the entire system employs a hierarchy structure.
- the integrated type vehicle motion control device disclosed in Document 2 specifically discloses the hierarchy structure of Document 1, and is directed to optimization of the hierarchy structure from the standpoint of practical usage.
- the software configuration is divided into at least a control unit and an execution unit, independent of each other in the hierarchy level.
- this integrated type vehicle motion control device is advantageous from the standpoint of concurrent processing of development by virtue of independency thereof, the issue of depending upon the basic concept of hierarchy is not yet resolved.
- an object of the present invention is to provide a vehicle integrated control system having the fail-safe faculty improved and capable of readily accommodating addition of a vehicle control function, based on integrated control, without realizing the entire control of the vehicle by, for example, one master
- a vehicle integrated control system includes a plurality of control units operating autonomously for controlling the running state of a vehicle based on a manipulation request.
- Each control unit includes a sensing unit for sensing an operation request with respect to at least one control unit, and a controller generating a control target based on the sensed request for controlling the vehicle by manipulating an actuator set in correspondence with each unit using the control target.
- the system further includes a processing unit operating parallel to respective control units to generate information used to modify, as necessary, the operation request or control target at each control unit and provide the generated information to respective control units.
- the plurality of control units include, for example, one of a driving system control unit, a brake system control unit, and a steering system control unit.
- the driving system control unit senses an accelerator pedal manipulation that is a request of a driver through the sensing unit to generate a control target of the driving system corresponding to the accelerator pedal manipulation using a driving basic driver model, whereby a power train that is an actuator is controlled by the controller.
- the brake system control unit senses a brake pedal manipulation that is a request of the driver through the sensing unit to generate a control target of the control system corresponding to the brake pedal manipulation using a brake basic driver model, whereby a brake device that is an actuator is controlled by the controller.
- the steering system control unit senses a steering manipulation that is a request of the driver through the sensing unit to generate a control target of the steering system corresponding to the steering manipulation using a steering basic driver model, whereby a steering device that is an actuator is controlled by the controller.
- the vehicle integrated control system includes a processing unit that operates parallel to the driving system control unit, brake system control unit and steering system control unit that operate autonomously.
- the processing unit generates: 1) information to be used at respective controllers based on the environmental information around the vehicle or information related to the driver, and provides the generated information to respective control units; 2) information to be used at respective controllers to cause the vehicle to realize a predetermined behavior, and provides the generated information to respective control units; and 3) information to be used at respective controllers based on the current dynamic state of the vehicle, and provides the generated information to respective control units.
- Each control unit determines as to whether or not such input information, in addition to the driver's request from the processing unit, is to be reflected in the motion control of the vehicle, and to what extent, if to be reflected.
- Each control unit also corrects the control target, and transmits the information among respective control units.
- each control unit operates autonomously, the power train, brake device and steering device are controlled eventually at respective control units based on the eventual driving target, braking target and steering target calculated from the driver's manipulation information sensed by the sensing unit, the information input from the processing unit, and information transmitted among respective control units.
- the driving system control unit corresponding to a "running" operation that is the basic operation of the vehicle
- the processing unit is applied with respect to these control units such that the driving operation corresponding to the vehicle environment, driving support for the driver, and vehicle dynamic motion control can be conducted automatically in a parallel manner.
- a vehicle integrated control system includes a plurality of control units controlling a running state of a vehicle based on a manipulation request, and a processing unit generating information to be used at respective control units based on environmental information around the vehicle or information related to the driver, and providing the generated information to respective control units.
- Each control unit includes a sensing unit for sensing an operation request with respect to at least one control unit, and a calculation unit for calculating information related to a control target to operate an actuator set in correspondence with each unit using at least one of the information generated by the processing unit and the sensed operation request.
- the driving system control unit senses an accelerator pedal manipulation that is a request of a driver through the sensing unit to generate a control target of the driving system corresponding to the accelerator pedal manipulation using a driving basic driver model, whereby the power train that is an actuator is controlled by the controller.
- the brake system control unit senses a brake pedal mampulation that is a request of the driver through the sensing unit to generate a control target of the brake system corresponding to the brake pedal manipulation using a brake basic driver model, whereby the brake device that is an actuator is controlled by the controller.
- the steering system control unit senses a steering manipulation that is a request of the driver through the sensing unit to generate a control target of the steering system corresponding to the steering manipulation using a steering basic driver model, whereby a steering device that is an actuator is controlled by the controller.
- a vehicle integrated control system that operates autonomously includes a processing unit that operates parallel to the driving system control unit, brake system control unit and steering system control unit that operate autonomously. This processing unit generates information to be used at respective controllers based on the environmental information around the vehicle or information related to the driver, and provides the generated information to respective control units.
- the processing unit generates information representing the degree of risk with respect to the vehicle operation property based on the frictional resistance ( ⁇ value) of the road on which the vehicle is running, the outdoor temperature and the like as the environmental information around the vehicle, and/or generates information representing the degree of risk with respect to the manipulation of the driver based on the fatigue level of the driver upon shooting a picture of the driver.
- Information representing the degree of risk is output to respective control units.
- Each control unit determines as to whether or not such input information, in addition to the driver's request from the processing unit, is to be reflected in the motion control of the vehicle, and to what extent, if to be reflected. At this stage, the control target is corrected, and information is transmitted among respective control units.
- each control unit operates autonomously, the power train, brake device and steering device are controlled eventually at respective control units based on the eventual driving target, braking target and steering target calculated from the driver's manipulation information sensed by the sensing unit, the information input from the processing unit, and information transmitted among respective control units.
- the driving system control unit corresponding to a "running" operation that is the basic operation of the vehicle
- the processing unit is applied with respect to these control units such that information related to risk and stability of environmental information around the vehicle and information related to the driver is generated and provided to respective control units.
- a vehicle integrated control system can be provided that can readily accommodate motion control of high level based on the addition of environmental information around the vehicle and information of the driver.
- a vehicle integrated control system includes a plurality of control units controlling a running state of a vehicle based on a manipulation request, and a processing unit generating information to be used at respective control units to cause the vehicle to realize a predetermined behavior and providing the generated information to respective control units.
- Each control unit includes a sensing unit for sensing an operation request with respect to at least one control unit, and a calculation unit for calculating information related to a control target to manipulate an actuator set in correspondence with each unit using at least one of the information generated by the processing unit and the sensed operation request.
- the invention of the present aspect includes, likewise the invention of the previous aspect, a driving system control unit, a brake system control unit, and a steering system control unit.
- the vehicle integrated control system includes a processing unit that operates parallel to the driving system control unit, brake system control unit, and steering system control unit, operating autonomously.
- the processing unit generates and provides to respective control units information to be used at respective controllers to cause the vehicle to realize a predetermined behavior. For example, the processing unit generates information to implement an automatic cruise function for automatic driving of the vehicle.
- the information to implement such an automatic cruise function is output to respective control units.
- Each control unit determines as to whether or not such input information for implementation of an automatic cruise function, in addition to the driver's request from the processing unit, is to be reflected in the motion control of the vehicle, and to what extent, if to be reflected.
- Each control unit also corrects the control target, and transmits the information among respective control units. Since each control unit operates autonomously, the power train, brake device and steering device are controlled eventually at respective control units based on the eventual driving target, braking target and steering target calculated from the driver's manipulation information sensed by the sensing unit, the information input from the processing unit, and information transmitted among respective control units.
- the driving system control unit corresponding to a "running" operation that is the basic operation of the vehicle, the brake system control unit corresponding to a “stop” operation, and the steering system control unit corresponding to a “turning” operation are provided operable in a manner independent of each other.
- the processing unit is applied with respect to these control units such that information to implement an automatic cruise function for automatic driving of the vehicle is generated and provided to respective control units. Therefore, a vehicle integrated control system can be provided, readily capable of accommodating an event of applying information to implement an automatic cruise function and adding a vehicle automatic cruise function.
- a vehicle integrated control system includes a plurality of control units controlling a running state of a vehicle based on a manipulation request, and a processing unit generating information to be used at respective control units based on the current dynamic state of the vehicle and providing the generated information to respective control units.
- Each control unit includes a sensing unit for sensing an operation request with respect to at least one control unit, and a calculation unit for calculating information related to a control target to operate an actuator set in correspondence with each unit using at least one of the information generated by the processing unit and the sensed operation request.
- the invention of the present aspect includes, likewise the invention of the previous aspect, a driving system control unit, a brake system control unit, and a steering system control unit.
- the vehicle integrated control system includes a processing unit that operates parallel to the driving system control unit, brake system control unit, and steering system control unit, operating autonomously.
- the processing unit generates information to be used at respective controllers based on the current dynamic state of the vehicle and provides the generated information to respective control units. For example, the processing unit identifies the current dynamic state of the vehicle, and generates information to modify the target value at respective control units. The information to modify the target value is output to respective control units.
- Each control unit determines as to whether or not such input information to modify the target value based on the current dynamic state, in addition to the driver's request from the processing unit, is to be reflected in the motion control of the vehicle, and to what extent, if to be reflected. Each control unit also corrects the control target.
- the driving system control unit functions to correct the driving torque to a smaller value, even if a large value is calculated as the target value, to avoid further slipping. Since each control unit operates autonomously, the power train, brake device and steering device are controlled eventually at respective control units based on the eventual driving target, braking target and steering target calculated from the driver's manipulation information sensed by the sensing unit, the information input from the processing unit, and information transmitted among respective control units.
- the driving system control unit corresponding to a "running" operation that is the basic operation of the vehicle, the brake system control unit corresponding to a "stop” operation, and the steering system control unit corresponding to a "turning" operation are provided operable in a manner independent of each other.
- the processing unit is applied with respect to these control units such that information to modify the target value of respective control units is generated and provided to respective control units. Therefore, a vehicle integrated control system can be provided, readily capable of accommodating an event of identifying the dynamic state of the vehicle and add a vehicle dynamic compensation function that stabilizes the behavior of the vehicle based on the dynamic state of the vehicle.
- a vehicle integrated control system includes a plurality of control units controlling a running state of a vehicle based on a manipulation request, a first processing unit generating information to be used at respective control units based on environmental information around the vehicle or information related to the driver and providing the generated information to respective control units, a second processing unit generating information to be used at respective control units to cause the vehicle to realize a predetermined behavior and providing the generated information to respective control units, and a third processing unit generating information to be used at respective control units based on the current dynamic state of the vehicle and providing the generated information to respective control units.
- Each control unit includes a sensing unit for sensing an operation request with respect to at least one control unit, a first calculation unit for calculating first information related to a control target to operate an actuator set in correspondence with each unit using at least one of the information generated by the first processing unit and the sensed operation request, a second calculation unit for calculating second information related to a control target to operate an actuator set in correspondence with each unit using at least one of the information generated by the second processing unit and the calculated first information, and a third calculation unit for calculating third information related to a control target to operate an actuator set in correspondence with each unit using at least one of the information generated by the third processing unit and the calculated second information.
- the invention of the present aspect includes a driving system control unit, a brake system control unit and a steering system control unit.
- the vehicle integrated control system includes first, second and third processing units operating parallel to the driving system control unit, brake system control unit and steering system control unit that operate autonomously.
- the first processing unit generates information to be used at respective control units based on environmental information around the vehicle or information related to the driver and provides the generated information to respective control units.
- the first processing unit generates information representing the degree of risk with respect to the operation property of the vehicle based on the frictional resistance of the road on which the vehicle is running, the outdoor temperature and the like as the environmental information around the vehicle, and/or generates information representing the degree of risk with respect to the manipulation of the driver based on the fatigue level of the driver upon shooting a picture of the driver.
- the information representing the degree of risk is output to respective control units.
- the second processing unit generates and provides to respective control unit information to be used at respective control units to cause the vehicle to realize a predetermined behavior.
- the second processing unit generates information for implementation of an automatic cruise function of the vehicle. Information to realize the automatic cruise function is output to respective control units.
- the third processing unit generates and provides to respective control units information to be used at respective controllers based on the current dynamic state of the vehicle. For example, the third processing unit identifies the current dynamic state of the vehicle to generate information required to modify the target value at respective control units. The information to modify the target value is output to respective control units.
- Each control unit determines as to whether or not such input information from the processing units, in addition to the driver's request from the processing unit, is to be reflected in the motion control of the vehicle, and to what extent, if to be reflected. At this stage, the control target is corrected, and information is transmitted among respective control units.
- each control unit operates autonomously, the power train, brake device and steering device are controlled eventually at respective control units based on the eventual driving target, braking target and steering target calculated from the driver's manipulation information sensed by the sensing unit, the information input from the processing unit, and information transmitted among respective control units.
- the driving system control unit corresponding to a "running" operation that is the basic operation of the vehicle
- the processing unit is applied with respect to these control units such that information related to risk and stability of environmental information around the vehicle and information related to the driver, information to implement an automatic cruise function for automatic driving of the vehicle, and information to modify the target value for respective control units are generated and provided to respective control units. Therefore, a vehicle integrated control system can be provided that can readily accommodate automatic cruising control of high level. Further preferably, each unit operates autonomously and in parallel in the vehicle integrated control system.
- the driving system control unit corresponding to a "running" operation that is the basic operation of the vehicle, the brake system control unit corresponding to a "stop” operation, and the steering system control unit corresponding to a "turning" operation are provided operable in a manner autonomous and in parallel.
- the processing unit is applied with respect to these control units in an autonomous and parallel manner. Therefore, decentralized control is allowed without having a master control unit, and fail safe faculty can be improved. Furthermore, by virtue of autonomous operation, development is allowed on the basis of each control unit or each processing unit. In the case where a new driving support function is to be added, the new function can be implemented by just adding a processing unit or modifying an existing processing unit. Further preferably, the processing unit or the first processing unit includes a sensing unit for sensing environmental information around the vehicle, a sensing unit for sensing information related to the driver of the vehicle, and a processing unit generating information processed such that the sensed information is shared among respective controllers.
- the processing unit or the first processing unit in accordance with the present invention senses the environmental information around the vehicle or information related to the driver of the vehicle, and processes the information into labels (abstraction), for example, representing the degree or risk so as to be shared among respective controllers (the controller in the driving unit, the controller in the brake unit, and the controller in the steering unit). Accordingly, the information can be used in common among the basic control units, eliminating the need to change the data at the control unit. Further preferably, the processing unit generates information representing the degree of correction with respect to the request from the driver at each controller. In accordance with the present invention, the processing unit generates information representing the degree of risk, for example, representing the degree of correction with respect to a request from a driver such that the information can be shared among respective controllers.
- the processing unit or second processing unit includes a processing unit generating information processed so as to be shared among respective controllers based on information for implementation of automatic cruising or pseudo automatic cruising of the vehicle.
- the processing unit or second processing unit senses information for implementation of automatic cruising or pseudo automatic cruising of a vehicle, and provides a flag to render the automatic cruise function valid such that information is shared among respective controllers (the controller in the driving unit, the controller in the brake unit, and the controller in the steering unit) and manipulates a target value for automatic cruising.
- the information required for automatic cruising or pseudo automatic cruising can be used common to the basic control units, eliminating the need of data conversion at the control unit.
- the pseudo automatic cruise function includes functions in conformance with automatic cruising such as the cruise control function, lane keep assist function, and the like. Further preferably, the processing unit generates information representing the degree of arbitration with respect to a control target at respective controllers.
- arbitration is established between a target value (driving, braking and steering) based on the accelerator pedal manipulation, brake pedal manipulation, and steering manipulation of a driver, and a target value (driving, braking and steering) for automatic cruising or pseudo automatic cruising to determine a target value.
- a coordinating operation between driving based on the operation of a driver and automatic cruising can be realized.
- the driving system control unit and brake system control unit controlling these actuators autonomously have their driving force and braking force distributed with respect to the requested driving force such that the desired behavior of the vehicle can be realized in cooperation, Since each control unit operates autonomously and in a distributed manner, communication is effected between the driving system control unit and brake system control unit to distribute the driving force and the braking force. Further preferably, each control unit provides control such that reflection of information from the processing unit is rejected. For example, in the control unit of the present invention, correction of a control target value, carried out based on information from an external processing unit other than itself, can be nullified. Accordingly, the target value can be corrected based on information input from a processing unit, only when reflection is intended.
- each control unit outputs information to the processing unit, the second processing unit, or the third processing unit.
- each control unit can output a request to assign driving support to, for example, the automatic cruise function unit, identified as the processing unit or second processing unit, to allow automatic cruising or pseudo automatic cruising.
- each control unit is realized by each ECU (Electronic Control Unit). At each ECU, operation is executed from an upper control hierarchy corresponding to the request of the driver towards a lower control hierarchy corresponding to respective actuators. In accordance with the present invention, each control unit has the operation executed autonomously and in parallel by each ECU.
- operation is conducted independently from the higher control hierarchy corresponding to the request of the driver (accelerator pedal manipulation level, brake pedal manipulation level, steering manipulation level) towards a lower control hierarchy corresponding to respective actuators at each of the driving system, brake system and steering system.
- ECU refers to a computer in general.
- the driving system control unit is realized by a first ECU.
- the brake system control unit is realized by a second ECU.
- the steering system control unit is realized by a third ECU.
- operation is executed from the higher control hierarchy corresponding to the request of a driver towards a lower control hierarchy corresponding to respective actuators.
- the processing unit is realized by a fourth ECU differing from the first to third ECUs.
- the first to third ECUs have their operation controlled in a parallel manner.
- the fourth ECU is connected to the higher control hierarchy side of the first to third ECUs via an interface.
- input of information from a processing unit to the upper hierarchy side of respective control units allows the environmental information around the vehicle and information related to the driver to be applied to the hierarchical level of the request of the driver sensed by the sensing unit, which can be readily reflected in the control target value to be calculated.
- Fig. 1 is a block diagram of a vehicle in which the vehicle integrated control system of the present embodiment is incorporated.
- Fig. 2 is a schematic diagram of a configuration of the vehicle integrated control system according to the present embodiment.
- Fig. 3 is a schematic diagram of a configuration of a main control system (1).
- Fig. 4 is a diagram representing the input and output of signals in a main control system (1).
- Fig. 5 is a diagram representing the input and output of signals in a main control system (2).
- Fig. 6 is a diagram representing the input and output of signals in a main control system (3).
- Figs. 7-10 are schematic diagrams of a configuration of a vehicle integrated control system according to modifications of the present embodiment.
- a vehicle integrated control system has an internal combustion engine incorporated in a vehicle as a driving power source.
- the driving power source is not restricted to an internal combustion engine, and may be an electric motor alone, or a combination of an engine and an electric motor.
- the power source of the electric motor may be a secondary battery or a cell.
- the vehicle includes wheels 100 at the front and back of respective sides.
- the vehicle incorporates an engine 140 as a power source.
- the operating state of engine 140 is electrically controlled in accordance with the amount or level by which the accelerator pedal (which is one example of a member operated by the driver related to the vehicle drive) is manipulated by the driver.
- the operating state of engine 140 is controlled automatically, as necessary, irrespective of the manipulation of accelerator pedal 200 by the driver (hereinafter referred to as “driving operation” or "accelerating operation”).
- the electric control of engine 140 may be implemented by, for example, electrically controlling an opening angle (that is, a throttle opening) of a throttle valve disposed in an intake manifold of engine 140, or by electrically controlling the amount of fuel injected into the combustion chamber of engine 140.
- the vehicle of the present embodiment is a rear- wheel-drive vehicle in which the right and left front wheels are driven wheels, and the right and left rear wheels are driving wheels.
- Engine 140 is connected to each of the rear wheels via a torque converter 220, a transmission 240, a propeller shaft 260 and a differential gear unit 280 as well as a drive shaft 300 that rotates with each rear wheel, all arranged in the order of description.
- Torque converter 220, transmission 240, propeller shaft 260 and differential gear 280 are power transmitting elements that are common to the right and left rear wheels.
- Transmission 240 includes an automatic transmission that is not shown. This automatic transmission electrically controls the gear ratio at which the revolution speed of engine 140 is changed to the speed of rotation of an output shaft of transmission 240.
- the vehicle further includes a steering wheel 440 adapted to be turned by the driver.
- a steering reaction force applying device 480 electrically applies a steering reaction force corresponding to a turning manipulation by the driver (hereinafter, referred to as "steering") to steering wheel 440.
- the level of the steering reaction force is electrically controllable.
- Front steering device 50 controls the front-wheel steering angle based on the angle, or steering wheel angle, by which steering wheel 440 is turned by the driver.
- the front-rear steering angle is controlled automatically, as necessary, irrespective of the turning operation.
- steering wheel 440 is mechanically insulated from the right and left front wheels.
- the direction of the left and right wheels, i.e., the rear-wheel steering angle is electrically altered by a rear steering device 520, likewise the front-wheel steering angle.
- Each wheel 100 is provided with a brake 560 that is actuated so as to restrict its rotation.
- Each brake 560 is electrically controlled in accordance with the operated amount of a brake pedal 580 (which is one example of a member operated by the driver related to vehicle braking), and also controlled individually for each wheel 100 automatically.
- each wheel 100 is suspended to the vehicle body (not shown) via each suspension 620.
- the suspending characteristics of respective suspension 620 is electrically controllable individually.
- the constituent elements of the vehicle set forth above include an actuator adapted to be operated so as to electrically actuate respective elements as follows: (1) An actuator to electrically control engine 140; (2) An actuator to electrically control transmission 240; (3) An actuator to electrically control steering reaction force applying device 480; (4) An actuator to electrically control front steering device 500; (5) An actuator to electrically control rear steering device 520; (6) A plurality of actuators provided in association with respective brakes 560 to electrically control the braking torque applied to each wheel by a corresponding brake
- FIG. 1 is a schematic diagram of a configuration of the vehicle integrated control system.
- the vehicle integrated control system is formed of three basic control units, i.e.
- a main control system (1) as the driving system control unit
- a main control system (2) as the brake system control unit
- a main control system (3) as the steering system control unit.
- main control system (1) identified as the driving system control unit a control target of the driving system corresponding to accelerator pedal manipulation is generated using the driving basic driver model, based on the accelerator pedal manipulation that is the sensed request of the driver, whereby the actuator is controlled.
- main control system (1) the input signal from the sensor to sense the accelerator pedal operated level of the driver (stroke) is analyzed using the drive basic model to calculate a target longitudinal acceleration Gx* (DRN0).
- the target longitudinal acceleration Gx* (DRNO) is corrected by a correction functional block based on the information from an adviser unit.
- target longitudinal acceleration Gx* is arbitrated by the arbitration functional block based on the information from an agent unit. Further, the driving torque and braking torque is distributed with main control system (2), and the target driving torque ⁇ x* (DRNO) of the driving side is calculated. Further, the target driving torque ⁇ x* (DRNO) is arbitrated by the arbitration functional block based on information from a supporter unit, and a target driving torque ⁇ x* (DRN) is calculated.
- the power train (140, 220, 240) is controlled so as to develop this target drive torque ⁇ x* (DRN).
- a control target of the brake system corresponding to the brake pedal manipulation is generated using the brake basic driver model based on the brake pedal manipulation that is the sensed request of the driver, whereby the actuator is controlled.
- the input signal from a sensor to sense the brake pedal manipulated level (depression) of the driver is analyzed using a brake basic model to calculate a target longitudinal acceleration Gx* (BRKO).
- the target longitudinal acceleration Gx* (BRKO) is corrected by a correction functional block based on the information from the adviser unit.
- the target longitudinal acceleration Gx* (BRKO) is arbitrated by the arbitration functional block based on the information from the agent unit.
- main control system (2) the driving torque and the braking torque are distributed with main control system (1), and the target braking torque ⁇ x* (BRKO) of the braking side is calculated. Further, the target braking torque ⁇ x* (BRKO) is arbitrated by the arbitration functional block based on the information from the support unit, and target braking torque ⁇ x* (BRK) is calculated. The actuator of brake 560 is controlled so as to develop this target braking torque ⁇ x* (BRK).
- main control system (3) identified as the steering system control unit, a control target of the steering system corresponding to the steering manipulation is generated using the steering brake basic driver model based on the steering manipulation that is the sensed request of the driver, whereby the actuator is controlled.
- an input signal from the sensor to sense the steering angle of the driver is analyzed using a steering basic model to calculate a target tire angle.
- the target tire angle is corrected by the correction functional block based on the information from the adviser unit. Further, the target tire angle is arbitrated by the arbitration functional block based on the information from the agent unit. Further, the target tire angle is arbitrated by the arbitration functional block based on the information from the supporter unit to calculate the target tire angle.
- the actuators of front steering device 500 and rear steering device 520 are controlled so as to develop the target tire angle.
- the present vehicle integrated control system includes a plurality of processing units parallel to main control system (1) (driving system control unit), main control system (2) (brake system unit) and main control system (3) (steering system control unit), operating autonomously.
- the first processing unit is an adviser unit with an adviser function.
- the second processing unit is an agent unit with an agent function.
- the third processing unit is a support unit with a supporter function.
- the adviser unit generates and provides to respective main control systems information to be used at respective main control systems based on the environmental information around the vehicle or information related to the driver.
- the agent unit generates and provides to respective main control systems information to be used at respective main control systems to cause the vehicle to realize a predetermined behavior.
- the supporter unit generates and provides to respective main control systems information to be used at respective main control systems based on the current dynamic state of the vehicle.
- determination is made as to whether or not such information input from the adviser unit, the agent unit and the supporter unit (information other than the request of the driver) is to be reflected in the motion control of the vehicle, and to what extent, if to be reflected.
- the control target is corrected, and/or information is transmitted among respective control units.
- each main control system operates autonomously, the actuator of the power train, the actuator of brake device and the actuator of steering device are controlled eventually at respective control units based on the eventual driving target, braking target and steering target calculated by the sensed manipulation information of the driver, information input from the adviser unit, agent unit and supporter unit, and information transmitted among respective main control systems.
- the adviser unit generates information representing the degree of risk with respect to the vehicle operation property based on the frictional resistance ( ⁇ value) of the road on which the vehicle is running, the outdoor temperature and the like as the environmental information around the vehicle, and/or generates information representing the degree of risk with respect to the manipulation of the driver based on the fatigue level of the driver upon shooting a picture of the driver.
- Information representing the degree of risk is output to each main control system.
- This information representing the degree of risk is processed at the adviser unit so the information can be used at any of the main control systems.
- the process is carried out as to whether or not to reflect the information related to the input risk for the vehicle motion control, in addition to the request of the driver from the adviser unit, and to what extent the information is to be reflected, and the like.
- the agent unit generates information to implement an automatic cruise function for the automatic drive of vehicle.
- the information to implement the automatic cruise function is output to each main control system.
- the process is carried out as to whether or not to reflect the input information to implement the automatic cruise function, in addition to the request of the driver from the processing unit, and to what extent the information is to be reflected, and the like.
- the supporter unit identifies the current dynamic state of the vehicle, and generates information to modify the target value at each main control system.
- the information to modify the target value is output to each main control system.
- the process is carried out as to whether or not to reflect the input information to modify the target value based on the dynamic state for the vehicle motion control, in addition to the request of the driver from the processing unit, and to what extent the information is to be reflected, and the like.
- Main control system (1) is designated as the PT (Power Train) system.
- Main control system (2) is designated as the ECB (Electronic Controlled Brake) system.
- Main control system (3) is designated as the STR (Steering) system.
- a portion of the adviser unit and the portion of the agent unit are designated as the DSS (Driving Support System).
- a portion of the adviser unit, a portion of the agent unit, and a portion of the supporter unit are designated as the NDM (Nehicle Dynamics Management) system.
- Interruption control for intervention of control executed at main control system (1), main control system (2) and main control system (3) from the agent unit (automatic cruise function) is conducted in the control shown in Fig. 2.
- Main control system (1) driving system control unit
- Fig. 3 Although the designation of the variable labels may differ in Figs.
- the interface is designated as Gx* (acceleration) in Fig. 2 whereas the interface is designated as Fx (driving force) in Figs. 3 and et seq.
- F (force) m (mass) ⁇ ⁇ (acceleration), where the vehicle mass (m) is not the subject of control, and is not envisaged of being variable. Therefore, there is no essential difference between Gx* (acceleration) of Fig. 2 and Fx (driving force) of Figs. 3 and et seq.
- Main control system (1) that is the unit to control the driving system receives information such as the vehicle velocity, gear ratio of the transmission and the like identified as shared information (9). Using such information and the driving basic driver model, FxpO representing the target longitudinal direction acceleration is calculated as the output of the driving basic driver model. The calculated FxpO is corrected to Fxpl by a correction functional unit (2) using environmental state (6) that is the risk degree information (index) as an abstraction of risk and the like, input from the adviser unit. Information representing the intention of assignment with respect to realizing an automatic cruise function is output from correction functional unit (2) to agent unit (7).
- Fxpl corrected by correction functional unit (2) and information for implementation of automatic cruise functional unit (7) input from the agent unit, the information (Fxpl, Fxa) is arbitrated by arbitration functional unit (3) to Fxp2.
- the dividing ratio of the driving torque and braking torque is calculated between main control system (1) that is the unit controlling the driving system and main control system (2) that is the unit driving the brake system.
- Fxp3 of the driving system is calculated.
- FxB is output from distribution functional unit (4) to main control system (2), and the driving availability and target value are output to agent unit (7) and dynamic (8) that is the supporter unit, respectively.
- Fig. 3 The elements shown in Fig. 3 are also present in main control system (2) and main control system (3). Since main control system (2) and main control system (3) will be described in further detail with reference to Figs. 5-6, description on main control system (2) and main control system (3) based on drawings corresponding to main control system (1) of Fig. 3 will not be repeated.
- Figs. 4-6 represent the control configuration of main control system (1), main control system (2) and main control system (3).
- Fig. 4 shows a control configuration of main control system (1).
- Main control system (1) that covers control of the driving system is adapted by the procedures set forth below.
- the basic drive driver model output (FxpO) is calculated based on HMI (Human Machine Interface) input information such as the accelerator pedal opening angle (pa), vehicle speed (spd) and gear ratio (ig) of the transmission that are shared information (9), and the like.
- FxpO is corrected to output Fxpl based on Risk_Idx [n] that is the environmental information (6) from the advisor unit (for example, information transformed into the concept of risk or the like).
- a smaller value of these Fxp 11 and Fxp 12 may be selected to be output as Fxp 1.
- assignment intention information can be output to automatic cruise functional unit (7) that is an agent function when the driver depresses the cruise control switch.
- the accelerator pedal is a reaction force controllable type here
- the automatic cruise intention of the driver is identified based on the driver's manipulation with respect to the accelerator pedal to output assignment intention information to automatic cruise functional unit (7).
- arbitration functional unit (3) arbitration between Fxpl output from correction functional unit (2) and Fxa output from automatic cruise functional unit (7) of the agent unit is executed to output Fxp2 to distribution unit (4).
- additional information flag indicative of output Fxa from automatic cruise functional unit (7) being valid
- the arbitration function selects Fxa that is the output from automatic cruise functional unit (7) with highest priority to calculate Fxp2.
- Fxpl that is the output from correction functional unit (2) may be selected to calculate Fxp2, or Fxpl output from correction function unit (2) may have Fxa reflected at a predetermined degree of reflection to calculate Fxp2.
- distribution functional unit (4) functions to output Fxp3 to arbitration functional unit (5) for the distribution towards the driving system that is the calculated result, and outputs FxB -to main control system (2) for the distribution towards the brake system that is the calculated result.
- drive availability Fxp_avail identified as the information of the driving power source that can be output from the power train which is the subject of control of main control system (1) is provided to automatic cruise functional unit (7) identified as the agent unit and dynamics compensation functional unit (8) identified as the supporter unit.
- arbitration functional unit (5) arbitration is executed between Fxp3 output from distribution functional unit (4) and Fxp_vdm output from dynamics compensation functional unit (8) to output Fxp4 to the power train controller.
- the arbitration function selects Fxp_vdm that is the output from dynamics compensation functional unit (8) with highest priority to calculate Fxp4.
- Fxp3 that is the output from distribution functional unit (4) can be selected to calculate Fxp4, or Fxp3 output from distribution functional unit (4) may have Fxp_vdm reflected by a predetermined degree of reflection to calculate Fxp4.
- Fig. 5 represents the control configuration of main control system (2).
- Main control system (2) covering the control of the brake system is adapted by the procedure set forth below.
- the basic braking driver model output (FxpO) is calculated based on the HMI input information such as the brake pedal depression (ba), as well as vehicle speed (spd), that is the shared information (9), the lateral G acting on the vehicle (Gy), and the like.
- FxbO is corrected to output Fxbl based on Riskjdx [n] that is the environmental information (6) from the advisor unit (for example, information transformed into the concept of risk and the like).
- Stable dx [1] 0.8
- Stable dx [2] 0.6
- the larger of these Fxbll and Fxbl2 may be selected to be output as Fxbl.
- the output may be corrected in accordance with the distance from the preceding running vehicle sensed by a millimeter wave radar, the distance to the next corner sensed by the navigation device, or the like.
- arbitration functional unit (3)' arbitration is executed between Fxbl output from correction functional unit (2)' and Fxba output from automatic cruise functional unit (7) that is the agent unit to output Fxb2 to distribution unit (4)'.
- the arbitration function selects Fxba that is the output from automatic cruise functional unit (7) with highest priority to calculate Fxb2.
- Fxbl that is the output from correction functional unit (2)' may be selected to calculate Fxb2, or Fxbl that is the output from correction functional unit (2)' may have Fxba reflected by a predetermined degree of reflection to calculate Fxb2.
- Distribution functional unit (4)' distribution operation is conducted between main control system (1) that is the driving system control unit and main control system (2) that is the brake system control unit.
- Functional distribution unit (4)' corresponds to distribution functional unit (4) of main control system (1).
- Distribution functional unit (4)' outputs Fxb3 to arbitration functional unit (5)' for distribution towards the brake system that is the calculated result, and outputs FxP to main control system (1) for distribution towards the driving system that is the calculated result.
- brake availability Fxb_avail identified as information that can be output from the brake that is the subject of control of main control system (2) is provided to automatic cruise functional unit (7) identified as the agent unit and dynamics compensation functional unit (8) identified as the supporter unit.
- Fxb3 that is the output from distribution functional unit (4)' may be selected to calculate Fxb4, or Fxb3 output from distribution functional unit (4)' may have Fxb_vdm reflected by a predetermined degree of reflection to calculate Fxb4.
- Fig. 6 shows a control configuration of main control system (3).
- Main control system (3) covering control of the steering system is adapted to control by the procedure set forth below.
- basic steering driver model output ( ⁇ 0) is calculated based on HMI input information such as the steering angle (sa), vehicle speed (spd) that is shared information (9), lateral G acting on the vehicle (Gy), and the like.
- ⁇ 0 is corrected to output ⁇ l based on Risk_Idx [n] that is environmental information (6) from the adviser unit (for example, information transformed into the concept of risk, and the like).
- ⁇ l 1 ⁇ 0 x Riskjdx [n].
- the smaller of these ⁇ l 1 and ⁇ 12 may be selected to be output as ⁇ l .
- assignment intention information to automatic cruise functional unit (7) that is the agent function can be output when the driver has depressed the lane keep assist switch. Furthermore, the output may be corrected in accordance with an external disturbance such as the side wind at correction functional unit (2)”.
- arbitration functional unit (3) arbitration is executed between ⁇ l output from coorrrreeccttiioonn functional unit (2)" and ⁇ a output from automatic cruise functional unit (7) that is the agent unit to output ⁇ 2 to arbitration unit (5)".
- the arbitration function selects ⁇ a that is the output from automatic cruise functional unit (7) with the highest priority to calculate ⁇ 2.
- ⁇ l that is the output from correction functional unit (2)" may be selected to calculate ⁇ 2, or ⁇ l that is the output from correction functional unit
- arbitration functional unit (5) arbitration is executed between ⁇ 2 output from arbitration functional unit (3)” and ⁇ _vdm output from dynamics compensation function unit (8) that is the supporter unit to provide ⁇ 4 to the steering controller.
- the arbitration function selects ⁇ _vdm that is the output from dynamics compensation functional unit (8) with highest priority to calculate ⁇ 4.
- ⁇ 2 may be selected that is the output from arbitration functional unit (3)" to calculate ⁇ 4, or ⁇ 2 that is the output from arbitration functional unit (3)” may have ⁇ _vdm reflected by a predetermined degree of reflection to calculate ⁇ 4.
- the driver manipulates accelerator pedal 200, brake pedal 580 and steering wheel 440 to control the driving system control unit corresponding to the "running" operation that is the basic operation of a vehicle, the brake system control unit corresponding to the "stop” operation, and the steering system control unit corresponding to a "turning" operation, based on information obtained by the driver through his/her own sensory organs (mainly through sight).
- the driver controls the vehicle through HTM input therefrom.
- the driver manipulates the shift lever of the automatic transmission to modify the gear ratio of transmission 240 in an auxiliary manner.
- various environmental information around the vehicle is sensed by various devices incorporated in the vehicle, in addition to the information obtained by the driver through his/her own sensory organs.
- the information includes, by way of example, the distance from the vehicle running ahead, sensed by a millimeter wave radar, the current vehicle position and the road state ahead (corner, traffic jam, and the like) sensed by the navigation device, the road inclination state sensed by a G sensor (level road, up-climbing road, down-climbing road), the outdoor temperature of vehicle sensed by an outdoor temperature sensor, local weather information of the current runmng site received from a navigation device equipped with a receiver, the road resistance coefficient (low ⁇ road state and the like by road surface freezing state), the running state of the vehicle ahead sensed by a blind corner sensor, a lane-keep state sensed based upon an image-processed picture taken by an outdoor camera, the driving state of the driver sensed based upon an image-processed picture taken by an indoor camera (driver posture, wakeful state, nod-off state), the dosing state of a driver sensed by sensing and analyzing the grip of the driver's hand by a pressure sensor provided at the steering wheel
- the vehicle dynamic state is sensed by a sensor provided at the vehicle.
- the information includes, by way of example, wheel speed Nw, vehicle speed in the longitudinal direction Nx, longitudinal acceleration Gx, lateral acceleration Gy, yaw rate ⁇ , and the like.
- the present vehicle incorporates a cruise control system and a lane-keep assist system as the driving support system to support the driver's drive. These systems are under control of the agent unit. It is expected that a further development of the agent unit will lead to implementation of a complete automatic cruising operation, exceeding the pseudo automatic cruising.
- the integrated control system of the present embodiment is applicable to such cases.
- implementation of such an automatic cruising system is allowed by just modifying the automatic cruise function of the agent unit to an automatic cruise function of a higher level without modifying the driving system control unit corresponding to main control system (1), the brake system control unit corresponding to main control system (2), the steering system control unit corresponding to main control system (3), the adviser unit, and the supporter unit.
- the adviser unit of the vehicle senses the presence of such a corner based on information from a navigation device.
- FxpO f (pa, spd, ig)
- pa accelerator pedal opening angle
- spd vehicle speed
- gear ratio of the transmission ig
- a large request driving torque value will be calculated based on this FxPO to cause opening of the throttle valve of engine 140, and/or reducing the gear ratio of transmission 240 to cause vehicle acceleration.
- the adviser unit calculates the degree of risk Riskjdx [n] based on the presence of the corner ahead and outputs this information to correction functional unit (2).
- Correction functional unit (2) performs correction such that acceleration is not exhibited as the driver will expect from his/her depression on accelerator pedal 200.
- Stablejdx [n] that is the degree of risk related to stability is calculated and output to correction functional unit (2).
- correction functional unit (2) performs correction such that acceleration is not exhibited as the driver will expect from his/her depression on accelerator pedal 200.
- the supporter unit When slippage of the vehicle is sensed, the supporter unit outputs to arbitration functional unit (5) a signal that will reduce the driving torque.
- Fxp_vdm from the supporter unit is employed with priority such that the power train is controlled to suppress further slippage of the vehicle. Therefore, even if the driver steps on accelerator pedal 200 greatly, arbitration is established such that the acceleration is not exhibited as the driver will expect from his/her depression on accelerator pedal 200.
- the vehicle integrated control system of the present embodiment operates as follows: at main control system (1) identified as the driving system control unit, accelerator pedal manipulation that is a request of a driver is sensed, and a control target of the driving system corresponding to the accelerator pedal manipulation is generated using a driving basic driver model, whereby the power train that is a drive actuator is controlled.
- main control system (2) identified as the brake system control unit
- brake pedal manipulation that is a request of the driver is sensed, and a control target of the brake system corresponding to the brake pedal manipulation is generated using a brake basic driver model, whereby the brake device that is the braking actuator is controlled.
- main control system (3) identified as the steering system control unit, steering mampulation that is a request of the driver is sensed, and a control target of the steering system corresponding to the steering manipulation is generated using a steering basic driver model, whereby the steering device that is an actuator is controlled.
- These control units operate autonomously.
- an adviser unit an agent unit, and a supporter unit.
- the adviser unit generates and provides to respective control units information to be used at respective control units based on environmental information around the vehicle or information related to the driver.
- the adviser unit processes information representing the degree of risk with respect to operation characteristics of the vehicle based on the frictional resistance of the running road, outer temperature and the like as environmental information around the vehicle, and/or information representing the degree of risk with respect to the manipulation of a driver based on the fatigue level of the driver upon shooting a picture of the driver so as to be shared among respective control units.
- the agent unit generates and provides to respective control units information to be used at respective control units to cause the vehicle to implement a predetermined behavior.
- the agent unit generates information to implement an automatic cruise functions for automatic cruising of vehicle. Information to implement the automatic cruise function is output to respective control units.
- the supporter unit generates and provides to respective control units information to be used at respective control unit based on the current dynamic state of the vehicle.
- the supporter unit identifies the current dynamic state of the vehicle to generate information required to modify the target value at respective control units.
- arbitration processing is conducted as to whether information output from the adviser unit, agent unit and supporter unit is to be reflected in the motion control of the vehicle, and if to be reflected, the degree of reflection thereof.
- control unit, adviser unit, agent unit and supporter unit operate autonomously.
- the power train, brake device, and steering device are controlled based on the eventual drive target, braking target, and steering target calculated by information input from the adviser unit, agent unit and supporter unit, as well as information communicated among respective control units.
- the driving system control unit corresponding to a "running" operation that is the basic operation of the vehicle
- the brake system control unit corresponding to a "stop” operation and the steering system control unit corresponding to a "turning” operation are provided operable in a manner independent of each other.
- the adviser unit, agent unit and supporter unit are provided, that can generate and output to respective control units information related to the risk and stability with respect to environmental information around the vehicle and information related to the driver, information to implement automatic cruise function for automatic cruising of the vehicle, and information required to modify the target value of respective control units to these control units. Therefore, a vehicle integrated control system that can readily accommodate automatic cruising control of high level can be provided.
- Fig. 8 corresponding to a second modification, availability is output from the supporter unit, in addition to the aggregated disposition of the supporter unit of main control system (1) and main control system (2), likewise the first modification. Therefore, the supporter unit executes the dynamics compensation function and distribution function together, and the driving availability, braking availability and steering availability are output to the agent unit.
- Fig. 9 corresponding to a third modification, the arbitration function of main control system (1) and main control system (2) is gathered at the supporter unit, in addition to providing the availability to the agent function. Furthermore, the arbitration function is gathered at the supporter unit. Therefore, at the supporter unit, the dynamics compensation function and distribution function are executed together, and the drive availability, braking availability and steering availability are provided to the agent unit to implement the arbitration function.
- the adviser unit and agent unit of the embodiment shown in Fig. 2 are assembled into one unit. Therefore, the adviser and agent unit can execute the adviser function and agent function together.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Regulating Braking Force (AREA)
- Control Of Transmission Device (AREA)
- Controls For Constant Speed Travelling (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0417795A BRPI0417795B8 (en) | 2003-12-19 | 2004-11-30 | INTEGRATED VEHICLE CONTROL SYSTEM |
CA002549654A CA2549654C (en) | 2003-12-19 | 2004-11-30 | Vehicle integrated control system |
US10/583,156 US8442699B2 (en) | 2003-12-19 | 2004-11-30 | Vehicle integrated control system |
CN2004800380842A CN1898116B (en) | 2003-12-19 | 2004-11-30 | Vehicle integrated control system |
EP04799964A EP1708913B1 (en) | 2003-12-19 | 2004-11-30 | Vehicle integrated control system |
ES04799964T ES2374921T3 (en) | 2003-12-19 | 2004-11-30 | INTEGRATED VEHICLE CONTROL SYSTEM. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-423510 | 2003-12-19 | ||
JP2003423510A JP2005178628A (en) | 2003-12-19 | 2003-12-19 | Integrated control system for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005061267A1 true WO2005061267A1 (en) | 2005-07-07 |
Family
ID=34708760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/018226 WO2005061267A1 (en) | 2003-12-19 | 2004-11-30 | Vehicle integrated control system |
Country Status (10)
Country | Link |
---|---|
US (1) | US8442699B2 (en) |
EP (1) | EP1708913B1 (en) |
JP (1) | JP2005178628A (en) |
KR (1) | KR100838280B1 (en) |
CN (1) | CN1898116B (en) |
BR (1) | BRPI0417795B8 (en) |
CA (1) | CA2549654C (en) |
ES (1) | ES2374921T3 (en) |
RU (1) | RU2338653C2 (en) |
WO (1) | WO2005061267A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2182501A1 (en) * | 2008-10-30 | 2010-05-05 | Aisin Aw Co., Ltd. | Safe driving evaluation system and safe driving evaluation program |
CN101885334A (en) * | 2010-07-21 | 2010-11-17 | 奇瑞汽车股份有限公司 | Top connecting assembly and method for improving vehicle performance by using same |
RU2582317C2 (en) * | 2013-05-28 | 2016-04-20 | Форд Глобал Технолоджис, ЛЛК | Adaptive cruise control of vehicle |
EP2829424B1 (en) * | 2012-03-23 | 2018-05-23 | Nissan Motor Co., Ltd | Vehicle control device and vehicle control method |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1742838B1 (en) * | 2004-04-26 | 2012-06-13 | Ab Volvo Penta | Boat and control system for a boat |
JP4969833B2 (en) * | 2005-11-08 | 2012-07-04 | 富士重工業株式会社 | Vehicle behavior control device |
JP4791874B2 (en) * | 2006-03-31 | 2011-10-12 | 株式会社エクォス・リサーチ | Driving support device and driving action determination device |
WO2007077867A1 (en) * | 2005-12-28 | 2007-07-12 | National University Corporation Nagoya University | Drive behavior estimating device, drive supporting device, vehicle evaluating system, driver model making device, and drive behavior judging device |
JP4781104B2 (en) * | 2005-12-28 | 2011-09-28 | 国立大学法人名古屋大学 | Driving action estimation device and driving support device |
KR100748837B1 (en) * | 2006-05-09 | 2007-08-13 | 주식회사 만도 | System for controlling a vehicle electronically and method therefor |
KR100808422B1 (en) * | 2007-06-19 | 2008-02-29 | 주식회사 만도 | Apparatus for controlling a vehicle electronically and method therefor |
KR100914007B1 (en) * | 2007-11-06 | 2009-08-28 | 자동차부품연구원 | Apparatus for active electronic stability program |
JP2009129083A (en) * | 2007-11-21 | 2009-06-11 | Denso Corp | Vehicle control device and vehicle control system using the same |
US8155829B2 (en) * | 2007-11-21 | 2012-04-10 | Denso Corporation | Common control apparatus and vehicle control system |
JP5120049B2 (en) * | 2008-04-25 | 2013-01-16 | トヨタ自動車株式会社 | Vehicle travel control device |
SE533965C2 (en) * | 2009-06-10 | 2011-03-15 | Scania Cv Ab | Module in a control system for a vehicle |
SE534187C2 (en) * | 2009-06-10 | 2011-05-24 | Scania Cv Ab | Module for determining setpoints for a control system in a vehicle |
WO2011021089A2 (en) | 2009-08-18 | 2011-02-24 | Toyota Jidosha Kabushiki Kaisha | Control device for vehicle |
JP5229265B2 (en) * | 2010-04-13 | 2013-07-03 | 日産自動車株式会社 | Output control device for internal combustion engine |
JP5282760B2 (en) | 2010-04-13 | 2013-09-04 | 日産自動車株式会社 | Output control device for internal combustion engine |
JP5560895B2 (en) * | 2010-05-18 | 2014-07-30 | 日産自動車株式会社 | Vehicle steering feeling improvement device |
DE102010017652A1 (en) * | 2010-06-30 | 2012-01-05 | Ford Global Technologies, Llc | Modular control system for e.g. power steering system, of motor car, has data bus for communicating modules of assistance system and/or control system for data transfer and comprising regions that are assigned to various system functions |
JP5706130B2 (en) * | 2010-10-29 | 2015-04-22 | 株式会社アドヴィックス | Vehicle behavior control apparatus and vehicle behavior control method |
US8892309B2 (en) * | 2010-12-20 | 2014-11-18 | Toyota Jidosha Kabushiki Kaisha | Vehicle steering control apparatus |
JP5617615B2 (en) | 2010-12-27 | 2014-11-05 | 株式会社デンソー | In-vehicle control device |
DE102011012187A1 (en) * | 2011-02-23 | 2012-08-23 | Continental Automotive Gmbh | A method of configuring a control device for a motor vehicle, computer program and control device |
MX2013009854A (en) * | 2011-05-16 | 2013-10-25 | Nissan Motor | Control device for internal combustion engine. |
CN103718221B (en) * | 2011-08-04 | 2016-08-17 | 丰田自动车株式会社 | Vehicular information processing device and Vehicular information processing method |
US9073555B2 (en) * | 2012-01-26 | 2015-07-07 | GM Global Technology Operations LLC | Controlling operation of a vehicle based on parameters learned during driver's operation of another vehicle |
US9199574B2 (en) * | 2012-09-11 | 2015-12-01 | Gentex Corporation | System and method for detecting a blocked imager |
RU2605812C2 (en) * | 2012-10-26 | 2016-12-27 | Тойота Дзидося Кабусики Кайся | Driving aid device and method of driving assistance |
US20140214256A1 (en) * | 2013-01-25 | 2014-07-31 | GM Global Technology Operations LLC | Steering system for an autonomously driven vehicle and methods of steering the same |
DE102014201100B4 (en) * | 2013-02-14 | 2016-01-14 | Ford Global Technologies, Llc | Determination procedure and motor vehicle |
US8886412B2 (en) | 2013-03-14 | 2014-11-11 | GM Global Technology Operations LLC | Steering system for an autonomously driven vehicle and methods of steering the same |
GB2516933B (en) | 2013-08-07 | 2017-06-28 | Jaguar Land Rover Ltd | Vehicle speed control system and method |
JP5898746B1 (en) * | 2014-09-29 | 2016-04-06 | 富士重工業株式会社 | Vehicle travel control device |
US9629189B2 (en) | 2014-11-17 | 2017-04-18 | GM Global Technology Operations LLC | System and method for enabling a user to adjust the operation of a powertrain in a vehicle, to adjust the appearance of a user interface device in the vehicle, and/or to adjust vehicle noise |
US10099705B2 (en) * | 2015-08-31 | 2018-10-16 | Uber Technologies, Inc. | Control system for autonomous-capable vehicles |
CN105459987B (en) * | 2015-12-31 | 2018-05-04 | 天津所托瑞安汽车科技有限公司 | A kind of Intelligent brake system and its control method for oversize vehicle |
KR102494255B1 (en) * | 2016-01-04 | 2023-02-03 | 에이치엘만도 주식회사 | Steering Arbitration Apparatus and Method of Vehicle, and Steering Arbitration System having the same |
US20180052470A1 (en) * | 2016-08-18 | 2018-02-22 | GM Global Technology Operations LLC | Obstacle Avoidance Co-Pilot For Autonomous Vehicles |
JP6365608B2 (en) * | 2016-08-26 | 2018-08-01 | マツダ株式会社 | Vehicle control device |
CN106394560B (en) * | 2016-09-09 | 2018-08-28 | 山东理工大学 | A kind of wheel hub driving electric automobile chassis coordinated control system |
JP6787027B2 (en) * | 2016-10-14 | 2020-11-18 | トヨタ自動車株式会社 | Vehicle travel control device |
WO2018154859A1 (en) | 2017-02-23 | 2018-08-30 | 本田技研工業株式会社 | Vehicle control system and control method |
WO2018154862A1 (en) | 2017-02-23 | 2018-08-30 | 本田技研工業株式会社 | Vehicle control system, and control method |
US10509692B2 (en) | 2017-05-31 | 2019-12-17 | 2236008 Ontario Inc. | Loosely-coupled lock-step chaining |
DE102017126513A1 (en) * | 2017-11-12 | 2019-05-16 | Zf Friedrichshafen Ag | Emergency stop system for a vehicle |
JP6937256B2 (en) * | 2018-03-12 | 2021-09-22 | 日立Astemo株式会社 | Vehicle control device, vehicle control method and vehicle control system |
JP7087836B2 (en) * | 2018-08-29 | 2022-06-21 | トヨタ自動車株式会社 | Vehicle control systems, controls, managers, methods, programs, actuator systems, and vehicles |
JP7384554B2 (en) | 2018-08-30 | 2023-11-21 | トヨタ自動車株式会社 | Brake ECU, system, control method and vehicle |
JP7172295B2 (en) * | 2018-08-30 | 2022-11-16 | トヨタ自動車株式会社 | Control device, manager, control system, control method, control program and vehicle |
JP7201381B2 (en) * | 2018-10-05 | 2023-01-10 | 日立Astemo株式会社 | Electronic controller, parallel processing method |
US11338816B2 (en) * | 2019-02-02 | 2022-05-24 | Ford Global Technologies, Llc | Over-the-air flashing and reproduction of calibration data using data regression techniques |
GB2624317B (en) * | 2020-01-02 | 2024-09-04 | Ree Automotive Ltd | Testing and storage of vehicle corner modules |
JP7226360B2 (en) * | 2020-02-05 | 2023-02-21 | トヨタ自動車株式会社 | Vehicle controller, controller, manager, method, program, and vehicle |
CN111332227B (en) * | 2020-03-20 | 2021-10-08 | 大陆汽车电子(连云港)有限公司 | Integrated sensor device for a motor vehicle |
FR3125003B1 (en) * | 2021-07-08 | 2024-08-30 | Jtekt Europe Sas | METHOD FOR DETERMINING FRICTION TORQUE |
JP2023013808A (en) * | 2021-07-16 | 2023-01-26 | 株式会社Subaru | Driving support device |
CN113665581A (en) * | 2021-09-07 | 2021-11-19 | 湖北惠诚共创科技有限公司 | Safe driving management and control system based on driver |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0507072A2 (en) * | 1991-04-05 | 1992-10-07 | Robert Bosch Gmbh | Electronic system for a vehicle |
GB2318106A (en) * | 1996-09-12 | 1998-04-15 | Siemens Ag | Controlling the drive train of a motor vehicle in response to environmental conditions |
US5991669A (en) * | 1997-03-07 | 1999-11-23 | Robert Bosch Gmbh | Method and arrangement for controlling a vehicle |
US20020016659A1 (en) * | 2000-07-26 | 2002-02-07 | Tsutomu Tashiro | Integrated vehicle control system |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408411A (en) * | 1991-01-18 | 1995-04-18 | Hitachi, Ltd. | System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon |
JP3647538B2 (en) * | 1996-02-12 | 2005-05-11 | 本田技研工業株式会社 | Vehicle steering device |
RU2117976C1 (en) | 1997-02-25 | 1998-08-20 | Александр Николаевич Вознесенский | Check and control method for equipment installed mainly on transport facility |
DE19709319A1 (en) * | 1997-03-07 | 1998-09-10 | Bosch Gmbh Robert | Motor vehicle controlling method |
US6275231B1 (en) * | 1997-08-01 | 2001-08-14 | American Calcar Inc. | Centralized control and management system for automobiles |
US6397282B1 (en) * | 1998-04-07 | 2002-05-28 | Honda Giken Kogyo Kabushikikaisha | Communication controller for transferring data in accordance with the data type |
US6161071A (en) * | 1999-03-12 | 2000-12-12 | Navigation Technologies Corporation | Method and system for an in-vehicle computing architecture |
JP3844904B2 (en) * | 1999-03-31 | 2006-11-15 | 三菱電機株式会社 | Vehicle control communication system |
EP1792799A3 (en) * | 1999-07-01 | 2008-10-22 | Hitachi, Ltd. | Apparatus for controlling run of a car, and car using the apparatus |
JP2004530088A (en) * | 2001-05-11 | 2004-09-30 | リカルド エムティーシー リミテッド | Switching characteristics of automotive transmissions |
JP2002347479A (en) | 2001-05-29 | 2002-12-04 | Denso Corp | Vehicle integrated control system |
US20040090195A1 (en) * | 2001-06-11 | 2004-05-13 | Motsenbocker Marvin A. | Efficient control, monitoring and energy devices for vehicles such as watercraft |
JP3956693B2 (en) | 2001-12-27 | 2007-08-08 | トヨタ自動車株式会社 | Integrated vehicle motion controller |
US7212896B2 (en) * | 2002-05-29 | 2007-05-01 | Ford Global Technologies, Llc | Vehicle control |
EP1911653B1 (en) * | 2002-06-24 | 2012-05-02 | Denso Corporation | Vehicle control information transmission structure, vehicle control device using the transmission structure, and vehicle control simulator using the transmission structure |
JP4397574B2 (en) * | 2002-10-18 | 2010-01-13 | 株式会社デンソー | Vehicle communication system |
JP2005178626A (en) * | 2003-12-19 | 2005-07-07 | Toyota Motor Corp | Vehicular integrated control system |
JP2005178627A (en) * | 2003-12-19 | 2005-07-07 | Toyota Motor Corp | Integrated control system for vehicle |
JP4244804B2 (en) * | 2003-12-25 | 2009-03-25 | トヨタ自動車株式会社 | Integrated control system for vehicles |
JP2005186831A (en) * | 2003-12-26 | 2005-07-14 | Toyota Motor Corp | Integrated control system of vehicle |
JP2005193811A (en) * | 2004-01-08 | 2005-07-21 | Toyota Motor Corp | Vehicular integrated control system |
EP1742838B1 (en) * | 2004-04-26 | 2012-06-13 | Ab Volvo Penta | Boat and control system for a boat |
-
2003
- 2003-12-19 JP JP2003423510A patent/JP2005178628A/en active Pending
-
2004
- 2004-11-30 BR BRPI0417795A patent/BRPI0417795B8/en not_active IP Right Cessation
- 2004-11-30 EP EP04799964A patent/EP1708913B1/en not_active Not-in-force
- 2004-11-30 RU RU2006126053/11A patent/RU2338653C2/en not_active IP Right Cessation
- 2004-11-30 US US10/583,156 patent/US8442699B2/en not_active Expired - Fee Related
- 2004-11-30 WO PCT/JP2004/018226 patent/WO2005061267A1/en active Application Filing
- 2004-11-30 CN CN2004800380842A patent/CN1898116B/en not_active Expired - Fee Related
- 2004-11-30 KR KR1020067014445A patent/KR100838280B1/en active IP Right Grant
- 2004-11-30 CA CA002549654A patent/CA2549654C/en not_active Expired - Fee Related
- 2004-11-30 ES ES04799964T patent/ES2374921T3/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0507072A2 (en) * | 1991-04-05 | 1992-10-07 | Robert Bosch Gmbh | Electronic system for a vehicle |
GB2318106A (en) * | 1996-09-12 | 1998-04-15 | Siemens Ag | Controlling the drive train of a motor vehicle in response to environmental conditions |
US5991669A (en) * | 1997-03-07 | 1999-11-23 | Robert Bosch Gmbh | Method and arrangement for controlling a vehicle |
US20020016659A1 (en) * | 2000-07-26 | 2002-02-07 | Tsutomu Tashiro | Integrated vehicle control system |
Non-Patent Citations (1)
Title |
---|
HARATA Y ET AL: "A simplified serial communication network within a vehicle", IEEE, 1 May 1989 (1989-05-01), pages 437 - 442, XP010086161 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2182501A1 (en) * | 2008-10-30 | 2010-05-05 | Aisin Aw Co., Ltd. | Safe driving evaluation system and safe driving evaluation program |
US8258982B2 (en) | 2008-10-30 | 2012-09-04 | Aisin Aw Co., Ltd. | Safe driving evaluation system and safe driving evaluation program |
CN101885334A (en) * | 2010-07-21 | 2010-11-17 | 奇瑞汽车股份有限公司 | Top connecting assembly and method for improving vehicle performance by using same |
EP2829424B1 (en) * | 2012-03-23 | 2018-05-23 | Nissan Motor Co., Ltd | Vehicle control device and vehicle control method |
RU2582317C2 (en) * | 2013-05-28 | 2016-04-20 | Форд Глобал Технолоджис, ЛЛК | Adaptive cruise control of vehicle |
Also Published As
Publication number | Publication date |
---|---|
CA2549654A1 (en) | 2005-07-07 |
BRPI0417795A (en) | 2007-03-20 |
JP2005178628A (en) | 2005-07-07 |
RU2006126053A (en) | 2008-01-27 |
CN1898116A (en) | 2007-01-17 |
EP1708913A1 (en) | 2006-10-11 |
US20070150118A1 (en) | 2007-06-28 |
BRPI0417795B8 (en) | 2022-11-22 |
BRPI0417795B1 (en) | 2022-04-05 |
CA2549654C (en) | 2008-12-30 |
ES2374921T3 (en) | 2012-02-23 |
CN1898116B (en) | 2010-04-21 |
RU2338653C2 (en) | 2008-11-20 |
US8442699B2 (en) | 2013-05-14 |
KR20070012790A (en) | 2007-01-29 |
KR100838280B1 (en) | 2008-06-17 |
EP1708913B1 (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8442699B2 (en) | Vehicle integrated control system | |
US7243014B2 (en) | Vehicle integrated control system | |
US7522983B2 (en) | Vehicle integrated control system | |
US20070142987A1 (en) | Vehicle integrated control system | |
US7412317B2 (en) | Vehicle integrated control system | |
US20050137766A1 (en) | Vehicle integrated control system | |
US20050154506A1 (en) | Vehicle integrated control system | |
US6154688A (en) | Method and arrangement for controlling a vehicle | |
CA2471841C (en) | Integrated vehicle motion control system | |
JP2009137582A (en) | Integrated control system for vehicle | |
JP6504065B2 (en) | Vehicle control system | |
JP2024009286A (en) | Control device, braking/driving force control system, method and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480038084.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2549654 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007150118 Country of ref document: US Ref document number: 10583156 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3909/DELNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004799964 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067014445 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006126053 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004799964 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067014445 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0417795 Country of ref document: BR |
|
WWP | Wipo information: published in national office |
Ref document number: 10583156 Country of ref document: US |