Circuit intégré protégé par bouclier actif La présente invention concerne un circuit intégré protégé par un bouclier actif. Le domaine de l'invention est celui des circuits intégrés programmables, notamment celui des circuits utilisés pour réaliser des transactions confidentielles. La protection physique des circuits intégrés est de plus en plus nécessaire, car ces circuits sont destinés à des applications qui doivent être sécurisées. En effet il est facile d'attaquer physiquement un circuit intégré démuni de protections spécifiques, par exemple en positionnant une sonde sur une des pistes afin d'espionner ou de forcer un signal l'empruntant à une valeur. Dans un but de protection, on procède au dépôt d'un bouclier métallique sur ce circuit intégré. Dans la fabrication des circuits intégrés, plusieurs niveaux de métal sont utilisés pour « router » les signaux, c'est-à-dire pour connecter les fonctions du circuit, les unes aux autres. Ces différents niveaux de métal sont empilés les uns sur les autres, une couche d'isolant étant insérée entre deux couches de métal successives. Le dernier niveau de métal, se trouvant à la surface supérieure de la structure sandwich multicouches ainsi réalisée, pourra être réservé au bouclier de protection. Ceci permettra entre autres d'inhiber la pose d'une sonde sur une des pistes du circuit, ces dernières n'étant plus visibles. Des détecteurs de présence du bouclier permettent de bloquer le circuit, voire de procéder à l'effacement de certaines zones de mémoire, si ce dernier a été endommagé ou détruit. En particulier, le bouclier peut subir une attaque chimique visant à dissoudre le dernier niveau de métal. Un autre type d'attaque plus récent, de type électromagnétique, consiste à positionner une sonde à proximité de la surface du circuit, à mesurer localement le champ magnétique, et à en déduire les signaux circulant dans le voisinage de cette sonde. Actuellement trois grands types d'attaques sont utilisés dans un but d'identification des données. Premièrement des analyses de type « SPA », ou Analyse de puissance seule (du terme anglais « Single Power Analysis »), dites « par la bande » (du terme anglais « Side Channel »), consistent à observer les variations de la consommation globale en puissance électrique du circuit et ensuite à identifier
les données. Ce type d'analyse donne ses meilleurs résultats si l'architecture hardware est connue. Notons à titre d'exemple qu'une augmentation de la consommation du circuit peut indiquer qu'une opération d'exponentiation modulaire est en cours. Deuxièmement les analyses de type « DPA » ou « Analyse de puissance différentielle » (pour le terme anglais « Differential Power Analysis »), également dites « par la bande », sont plus sophistiquées que les précédentes. Elles sont basées sur une analyse statistique. Plusieurs exécutions du même algorithme permettent l'extraction statistique de l'information convoitée. Troisièmement les attaques de type « DEMA » ou « Analyse électromagnétique différentielle » (pour le terme anglais « Differential Electromagnetic Analysis »), sont basées sur les mêmes techniques que les précédentes, mais les quantités physiques mesurées sont différentes. Dans le cas des attaques DEMA, ce sont les rayonnements électromagnétiques émis par les pistes du circuit qui sont visés. Le courant circulant dans un conducteur induit un rayonnement électromagnétique, il est donc naturel que le même phénomène se produise au voisinage d'un semi-conducteur. Comme la consommation d'un circuit varie pendant que les données sont traitées, l'analyse électromagnétique de ce circuit pourra permettre l'extraction de données secrètes ou du moins confidentielles. Dans certains cas l'analyse « DPA » ne permet pas l'obtention d'informations, par exemple lorsque la puissance ne varie pas ou varie peu. Il n'est alors pas possible d'isoler les différentes fonctions d'un circuit lors d'une telle analyse. Par contre, il est possible de mesurer le rayonnement électromagnétique localement sur la surface d'un circuit, ce qui permettra d'isoler les fonctions. Le gros avantage de l'analyse « DEMA » est sa capacité d'exploiter des informations locales. Ce degré de liberté géométrique va permettre de pointer directement sur la zone du circuit où circulent les informations intéressantes. Actuellement, les solutions implémentées sur certains circuits font appel à un bouclier comportant plusieurs motifs dont l'un au moins est connecté à un générateur électrique de protection. A titre d'exemple, les documents US 6 496 119, US 6 246 970 et US 5 389 738 proposent chacun un montage qui est prévu pour détecter une coupure du motif auquel le générateur de protection est raccordé.
Le document US 5 998 858 prévoit quant à lui un bloc de détection qui est en mesure de détecter une variation du rayonnement électromagnétique au moyen d'un capteur disposé à l'extérieur du circuit comportant le bouclier. Il apparaît ainsi que les mesures de protection mises en œuvre jusqu'à présent visent simplement à tenter de détecter une intrusion dans le circuit. Rien n'est entrepris pour combattre une attaque électromagnétique qui n'aurait pas été détectée. L'invention se propose de pallier à ces inconvénients en renforçant la protection assurée par un bouclier, pour combattre tout type d'attaque : attaques mécaniques, chimiques, et notamment électromagnétiques. Selon l'invention, le circuit est muni d'un bouclier de protection, ce bouclier comprenant un premier motif relié à la masse et un second motif connecté à un générateur électrique de protection ; de plus, ce bouclier comprend des moyens de brouillage pour émettre un bruit électromagnétique. On réalise donc un brouillage face aux attaques extérieures par superposition du rayonnement électromagnétique émis par le circuit intégré et du bruit émis par le bouclier. Avantageusement, ces moyens de brouillage comprennent un générateur de courant aléatoire raccordé au second motif du bouclier. De préférence, le circuit comprend un comparateur produisant en sortie la valeur maximale d'une valeur aléatoire et d'une valeur de consigne, et un convertisseur numérique analogique fournissant cette valeur maximale au générateur. Suivant une caractéristique additionnelle de l'invention, ce générateur électrique de protection est une source d'intensité variable. De plus, un capteur de courant disposé à une extrémité du second motif, opposée à celle où se trouve le générateur, détecte une atteinte au bouclier lorsque le courant qu'il reçoit est nul. Par exemple, ce capteur de courant reçoit une valeur consigne de courant provenant de la sortie du générateur électrique de protection afin de s'assurer que le circuit est alimenté correctement, lorsqu'il n'y a pas de variation entre la mesure de courant et la consigne de courant. Eventuellement, ce capteur de courant détecte un courant nul. Avantageusement, ce courant aléatoire est suffisamment faible afin de ne pas perturber le fonctionnement du circuit et de ne pas augmenter significativement sa consommation.
Par ailleurs, le premier motif est équipé de détecteurs de masse disposés sur ses conducteurs, mesurant des chutes de tension, et vérifiant ainsi que ce motif n'a pas été endommagé. En outre, un détecteur de court circuit connecté au second motif permet de générer une interruption d'alerte. La présente invention apparaîtra maintenant avec plus de détails dans le cadre de la description qui suit d'exemples de réalisation donnés à titre illustratif en se référant aux dessins joints, parmi lesquels : - la figure 1 est un synoptique général d'un bouclier statique selon un premier mode de réalisation de l'invention, - la figure 2 représente un synoptique général d'un bouclier dynamique selon un second mode de réalisation de l'invention, et - la figure 3 représente un détecteur d'endommagement des conducteurs du premier motif selon l'invention. Les éléments présents dans plusieurs figures sont affectés d'une seule et même référence. En référence à la figure 1 , le bouclier BOU, selon un premier mode de réalisation conforme à l'invention, correspond à la couche supérieure métallique du sandwich multicouches précédemment décrit, et dont la surface occulte les couches inférieures. Le bouclier BOU est qualifié de statique. Le bouclier BOU présente un premier motif MOT1 relié à la masse, et un second motif MOT2 relié à un générateur électrique de protection GEP, en l'occurrence une source de tension. Comme représenté sur la figure 1 , les motifs MOT1 et MOT2 sont constitués de conducteurs métalliques, ces conducteurs couvrant, hormis les plots de connexion, toute la surface du circuit. Le métal utilisé pour générer cette protection est le dernier métal du process, ou métal supérieur du circuit : les motifs MOT1 , MOT2 sont obtenus à partir de la couche supérieure métallique du multicouches métal/isolant lors du process de fabrication. Le bouclier métallique BOU permet de protéger le circuit contre d'éventuelles attaques physiques et de cacher les couches inférieures du composant. C'est une protection qui prévient l'analyse électrique de la surface du circuit, en posant une sonde, ce qui permettrait d'obtenir des informations. Le second motif MOT2 est imbriqué sans contact dans le premier motif MOT1. Les deux motifs MOT1 , MOT2 présentent des configurations voisines de peigne, relativement faciles à réaliser, mais peuvent présenter d'autres
géométries, du type spirales, ou fractales, ou créneaux, entre autres, du moment qu'un élément d'un motif soit compris entre deux éléments d'un autre. Le premier motif MOT1 peut être équipé de détecteurs de masse GND- DETi, GND-DETj disposés sur ses conducteurs, qui vérifient que le motif n'a pas été endommagé. En référence à la figure 3, un tel détecteur de masse consiste en un opérateur logique NON-ET dit NAND, relié en entrée à la masse et aux conducteurs du premier motif MOT1, et en sortie au reset général du circuit RES.The present invention relates to an integrated circuit protected by an active shield. The field of the invention is that of programmable integrated circuits, in particular that of the circuits used to carry out confidential transactions. The physical protection of integrated circuits is more and more necessary, because these circuits are intended for applications which must be made safe. In fact, it is easy to physically attack an integrated circuit devoid of specific protections, for example by positioning a probe on one of the tracks in order to spy on or force a signal borrowing it from a value. For the purpose of protection, a metallic shield is deposited on this integrated circuit. In the manufacture of integrated circuits, several levels of metal are used to "route" the signals, that is to say to connect the functions of the circuit, to each other. These different levels of metal are stacked on top of each other, an insulating layer being inserted between two successive layers of metal. The last level of metal, located on the upper surface of the multilayer sandwich structure thus produced, can be reserved for the protective shield. This will inter alia inhibit the installation of a probe on one of the tracks of the circuit, the latter being no longer visible. Shield presence detectors are used to block the circuit, or even erase certain memory areas, if the latter has been damaged or destroyed. In particular, the shield can undergo a chemical attack aimed at dissolving the last level of metal. Another more recent type of attack, of the electromagnetic type, consists in positioning a probe close to the surface of the circuit, in locally measuring the magnetic field, and in deducing therefrom the signals circulating in the vicinity of this probe. Currently three main types of attacks are used for the purpose of identifying data. Firstly, analyzes of the “SPA” type, or Power analysis alone (from the English term “Single Power Analysis”), called “by the band” (from the English term “Side Channel”), consist in observing the variations in the overall consumption in electrical power of the circuit and then to identify the data. This type of analysis gives its best results if the hardware architecture is known. Note, for example, that an increase in circuit consumption may indicate that a modular exponentiation operation is in progress. Secondly, analyzes of the “DPA” or “Differential Power Analysis” type (also known as “Differential Power Analysis”), also known as “by the band”, are more sophisticated than the preceding ones. They are based on a statistical analysis. Several executions of the same algorithm allow the statistical extraction of the desired information. Thirdly, attacks of the “DEMA” or “Differential Electromagnetic Analysis” type (for the English term “Differential Electromagnetic Analysis”), are based on the same techniques as the previous ones, but the physical quantities measured are different. In the case of DEMA attacks, it is the electromagnetic radiation emitted by the tracks of the circuit which are targeted. The current flowing in a conductor induces electromagnetic radiation, it is therefore natural that the same phenomenon occurs in the vicinity of a semiconductor. As the consumption of a circuit varies while the data is being processed, the electromagnetic analysis of this circuit may allow the extraction of secret or at least confidential data. In certain cases, the “DPA” analysis does not allow information to be obtained, for example when the power does not vary or varies little. It is therefore not possible to isolate the different functions of a circuit during such an analysis. On the other hand, it is possible to measure the electromagnetic radiation locally on the surface of a circuit, which will make it possible to isolate the functions. The big advantage of DEMA analysis is its ability to use local information. This geometric degree of freedom will make it possible to point directly to the area of the circuit where the information of interest flows. Currently, the solutions implemented on certain circuits use a shield comprising several patterns, at least one of which is connected to an electrical protection generator. For example, the documents US 6,496,119, US 6,246,970 and US 5,389,738 each propose a circuit which is provided for detecting a cut in the pattern to which the protection generator is connected. Document US 5 998 858 provides for its part a detection block which is able to detect a variation of the electromagnetic radiation by means of a sensor arranged outside the circuit comprising the shield. It appears that the protection measures implemented so far are simply to try to detect an intrusion into the circuit. Nothing is done to combat an electromagnetic attack that has gone undetected. The invention proposes to overcome these drawbacks by strengthening the protection provided by a shield, to combat any type of attack: mechanical, chemical, and in particular electromagnetic attacks. According to the invention, the circuit is provided with a protective shield, this shield comprising a first pattern connected to ground and a second pattern connected to an electrical protection generator; moreover, this shield comprises scrambling means for emitting electromagnetic noise. Interference is therefore achieved in the face of external attacks by superposition of the electromagnetic radiation emitted by the integrated circuit and the noise emitted by the shield. Advantageously, these scrambling means comprise a random current generator connected to the second pattern of the shield. Preferably, the circuit comprises a comparator producing at output the maximum value of a random value and a set value, and a digital analog converter supplying this maximum value to the generator. According to an additional characteristic of the invention, this electrical protection generator is a source of variable intensity. In addition, a current sensor disposed at one end of the second pattern, opposite to that where the generator is located, detects an attack on the shield when the current it receives is zero. For example, this current sensor receives a current setpoint value from the output of the electrical protection generator in order to ensure that the circuit is supplied correctly, when there is no variation between the current measurement and the current setpoint. Optionally, this current sensor detects a zero current. Advantageously, this random current is sufficiently low so as not to disturb the operation of the circuit and not to significantly increase its consumption. Furthermore, the first pattern is equipped with mass detectors placed on its conductors, measuring voltage drops, and thus verifying that this pattern has not been damaged. In addition, a short circuit detector connected to the second pattern makes it possible to generate an alert interrupt. The present invention will now appear in more detail in the context of the following description of embodiments given by way of illustration with reference to the accompanying drawings, among which: - Figure 1 is a general block diagram of a static shield according to a first embodiment of the invention, - FIG. 2 represents a general block diagram of a dynamic shield according to a second embodiment of the invention, and - FIG. 3 represents a detector for damage to the conductors of the first pattern according to the invention. The elements present in several figures are assigned a single reference. With reference to FIG. 1, the BOU shield, according to a first embodiment in accordance with the invention, corresponds to the upper metallic layer of the previously described multilayer sandwich, and the surface of which obscures the lower layers. The BOU shield is qualified as static. The BOU shield has a first pattern MOT1 connected to earth, and a second pattern MOT2 connected to an electrical protection generator GEP, in this case a voltage source. As shown in FIG. 1, the patterns MOT1 and MOT2 consist of metallic conductors, these conductors covering, apart from the connection pads, the entire surface of the circuit. The metal used to generate this protection is the last metal in the process, or upper metal in the circuit: the patterns MOT1, MOT2 are obtained from the metallic upper layer of the metal / insulator multilayer during the manufacturing process. The BOU metal shield protects the circuit against possible physical attack and hides the lower layers of the component. It is a protection which prevents the electrical analysis of the surface of the circuit, by placing a probe, which would make it possible to obtain information. The second pattern MOT2 is nested without contact in the first pattern MOT1. The two patterns MOT1, MOT2 have neighboring comb configurations, which are relatively easy to produce, but may have other geometries, such as spirals, or fractals, or slots, among others, as long as one element of a pattern is between two elements of another. The first pattern MOT1 can be equipped with GND-DETi, GND-DETj mass detectors placed on its conductors, which verify that the pattern has not been damaged. With reference to FIG. 3, such a mass detector consists of a NAND logic operator called NAND, connected at input to ground and to the conductors of the first pattern MOT1, and at output at the general reset of the circuit RES.
Ce reset est activé par l'intermédiaire d'une résistance de décharge PDOWN, connectée entre la sortie de l'opérateur et la masse. Lorsque le conducteur du premier motif MOT1 est correctement connecté à la masse, la sortie de la cellule NAND est à 1. Dans le cas contraire, le conducteur du premier motif MOT1 est flottant, la sortie de l'opérateur est également flottante, et la résistance de décharge PDOWN forcera cette sortie à la masse. Notons que les sorties des opérateurs sont connectées au reset général du circuit afin de forcer le reset RES si le connecteur du motif MOT1 est endommagé. Le générateur électrique de protection GEP peut être une source de tension constante, utilisé pour générer la tension du bouclier VBOU. En revenant à la figure 1 , un bloc de détection BLD disposé à l'extrémité du conducteur du deuxième motif MOT2 permet de générer une interruption d'alerte WAR lorsque la continuité des conducteurs est interrompue, ou lorsqu'il y a un court circuit entre le générateur électrique de protection GEP et la masse. A cet effet, le bloc de détection BLD peut se présenter sous la forme d'un comparateur de tension, disposé à une extrémité du conducteur du deuxième motif MOT2, opposée à celle reliée au générateur GEN, et utilisé pour comparer la tension du bouclier VBOU et une tension de référence VREF. Lorsque le bouclier est endommagé, le bloc de détection détectera cette anomalie et en informera le reste du système par le message d'interruption d'alerte WAR. En référence à la figure 2, le bouclier BOU, selon un second mode de réalisation de l'invention, est qualifié de dynamique. Ce bouclier BOU comporte tous les éléments précédemment énumérés relativement à la figure 1. Le bouclier BOU émet un bruit électromagnétique sur tout ou partie de la surface du circuit intégré Cl, hormis les plots de connexion. On réalise ainsi un
brouillage face aux attaques extérieures par superposition du bruit électromagnétique du circuit intégré et de celui du bouclier BOU. Ce bruit électromagnétique est généré par un courant aléatoire CA parcourant le bouclier BOU en empruntant le deuxième motif MOT2, le courant aléatoire CA étant émis par le générateur électrique de protection GEP. Comme représenté sur la figure 2, un convertisseur digital analogique DAC reçoit en entrée une valeur aléatoire VA émise par un registre numérique aléatoire RNR, la met en forme et la délivre en sortie au générateur GEP, lequel émet un courant CA dans le circuit constitué par le deuxième motif MOT2. Par conséquent, le générateur GEP est une source d'intensité variable, émettant un courant aléatoire CA. Le courant aléatoire CA est relativement faible afin de ne pas perturber le fonctionnement du circuit et de ne pas augmenter significativement sa consommation. Cependant, il sera suffisamment important, et si possible jamais nul, de façon à créer un bruit électromagnétique significatif venant brouiller celui généré par le circuit intégré Cl. Afin d'éviter que le courant CA ne soit nul, un comparateur de valeur de seuil COMP reçoit en entrée le courant sortant du convertisseur digital analogique DAC et une valeur de seuil VALMIN, et transmet en sortie la majeure des deux entrées vers le générateur GEP, ceci afin de pallier aux émissions du nombre zéro par le registre de nombre aléatoire RNR. Un capteur de courant CS permet, selon une première variante, de détecter une atteinte au bouclier si le courant qu'il reçoit est différent du courant aléatoire CA. A cet effet, le capteur CS reçoit une valeur consigne de courant CGNCS correspondant au courant en sortie du générateur électrique de protection GEP, afin de s'assurer que le circuit est bien alimenté et que l'incident provient bien du bouclier BOU. Selon une deuxième variante, le courant aléatoire CA injecté dans le deuxième motif du bouclier BOU, plus précisément dans le deuxième motifThis reset is activated via a PDOWN discharge resistor, connected between the operator output and ground. When the conductor of the first MOT1 pattern is correctly connected to ground, the output of the NAND cell is 1. Otherwise, the conductor of the first MOT1 pattern is floating, the operator's output is also floating, and the PDOWN discharge resistor will force this output to ground. Note that the operators' outputs are connected to the general reset of the circuit in order to force the RES reset if the connector of the MOT1 pattern is damaged. The GEP electrical protection generator can be a constant voltage source, used to generate the voltage of the VBOU shield. Returning to FIG. 1, a detection block BLD disposed at the end of the conductor of the second pattern MOT2 makes it possible to generate an alert interruption WAR when the continuity of the conductors is interrupted, or when there is a short circuit between the GEP electrical protection generator and the earth. For this purpose, the BLD detection block can be in the form of a voltage comparator, placed at one end of the conductor of the second pattern MOT2, opposite to that connected to the generator GEN, and used to compare the voltage of the shield VBOU and a reference voltage VREF. When the shield is damaged, the detection unit will detect this anomaly and will inform the rest of the system by the WAR alert interrupt message. Referring to Figure 2, the BOU shield, according to a second embodiment of the invention, is qualified as dynamic. This BOU shield comprises all the elements previously listed relative to FIG. 1. The BOU shield emits an electromagnetic noise over all or part of the surface of the integrated circuit C1, except for the connection pads. We thus realize a interference in the face of external attacks by superimposing the electromagnetic noise of the integrated circuit and that of the BOU shield. This electromagnetic noise is generated by a random current CA flowing through the shield BOU using the second pattern MOT2, the random current CA being emitted by the electrical protection generator GEP. As shown in FIG. 2, a digital analog converter DAC receives as input a random value VA emitted by a random digital register RNR, formats it and delivers it at output to the generator GEP, which emits a current AC in the circuit constituted by the second motif MOT2. Therefore, the GEP generator is a source of variable intensity, emitting a random AC current. The random current AC is relatively low so as not to disturb the operation of the circuit and not to significantly increase its consumption. However, it will be sufficiently large, and if possible never zero, so as to create a significant electromagnetic noise which interferes with that generated by the integrated circuit Cl. In order to prevent the AC current from being zero, a threshold value comparator COMP receives the outgoing current from the digital analog converter DAC and a threshold value VALMIN, and transmits as output the major of the two inputs to the generator GEP, this in order to offset the emissions of the number zero by the random number register RNR. A current sensor CS makes it possible, according to a first variant, to detect an attack on the shield if the current which it receives is different from the random current AC. To this end, the sensor CS receives a current setpoint value CGNCS corresponding to the current at the output of the electrical protection generator GEP, in order to ensure that the circuit is well supplied and that the incident is indeed from the BOU shield. According to a second variant, the random current CA injected into the second pattern of the BOU shield, more precisely into the second pattern
MOT2, n'étant jamais nul, même lorsque la tension d'entrée du générateur GEP est de zéro volt, ceci permet au capteur de courant CS de certifier qu'une mesure de courant nulle signifie un dommage au bouclier BOU. Il est possible de mettre en œuvre le premier mode de réalisation de l'invention seul, en référence à la figure 1 correspondant à un bouclier actif dit en mode statique ; ou également le second mode de réalisation de l'invention
seul, en référence à la figure 2 correspondant à un bouclier actif dit en mode dynamique. Il est également possible de mettre en œuvre conjointement ces deux modes, et afin de faire cohabiter la tension continue du mode statique et l'intensité variable du mode dynamique au sein de deux générateurs électriques de protection GEP, on peut prévoir des moyens de commutation pour sélectionner l'un des deux modes, par exemple sous forme d'une bascule ou switch recevant un signal d'horloge. Ceci suppose bien entendu que ce générateur soit conçu bimode. De même, afin de faire cohabiter le bloc de détection BLD chargé de détecter des variations de tension, utilisé en mode statique, et le capteur de courant CS chargé de détecter des variations de courant, utilisé en mode dynamique, on peut prévoir des moyens de commutation pour sélectionner l'un des deux modes, par exemple sous forme également d'une bascule ou switch recevant un signal d'horloge synchrone de celui concernant le générateur électrique de protection GEP. Pour des raisons de simplification, ces bascules ne figurent pas sur les figures jointes. Un tel dispositif de cohabitation dispense d'avoir à mettre en œuvre des filtres. Les exemples de réalisation de l'invention présentés ci-dessus ont été choisis en égard au caractère concret qu'ils ont en commun. Il ne serait cependant pas possible de répertorier de manière exhaustive tous les modes de réalisation que recouvre cette invention. En particulier, tout moyen décrit peut être remplacé par un moyen équivalent sans sortir du cadre de la présente invention.
MOT2, never being zero, even when the input voltage of the generator GEP is zero volts, this allows the current sensor CS to certify that a measurement of zero current means damage to the BOU shield. It is possible to implement the first embodiment of the invention alone, with reference to FIG. 1 corresponding to an active shield said in static mode; or also the second embodiment of the invention alone, with reference to FIG. 2 corresponding to an active shield known as in dynamic mode. It is also possible to jointly implement these two modes, and in order to make the DC voltage of the static mode and the variable intensity of the dynamic mode coexist within two GEP electrical protection generators, it is possible to provide switching means for select one of the two modes, for example in the form of a flip-flop or switch receiving a clock signal. This of course assumes that this generator is designed dual mode. Similarly, in order to make the BLD detection block responsible for detecting voltage variations, used in static mode, coexist with the current sensor CS responsible for detecting current variations, used in dynamic mode, it is possible to provide means for switching to select one of the two modes, for example also in the form of a flip-flop or switch receiving a synchronous clock signal from that relating to the electrical protection generator GEP. For reasons of simplification, these rockers do not appear in the attached figures. Such a cohabitation device dispenses with having to use filters. The embodiments of the invention presented above have been chosen with regard to the concrete character which they have in common. However, it would not be possible to exhaustively list all the embodiments covered by this invention. In particular, any means described can be replaced by equivalent means without departing from the scope of the present invention.