WO2005059600A1 - Antifogging element - Google Patents

Antifogging element Download PDF

Info

Publication number
WO2005059600A1
WO2005059600A1 PCT/JP2003/016109 JP0316109W WO2005059600A1 WO 2005059600 A1 WO2005059600 A1 WO 2005059600A1 JP 0316109 W JP0316109 W JP 0316109W WO 2005059600 A1 WO2005059600 A1 WO 2005059600A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film
transparent
hydrophilic
substrate member
Prior art date
Application number
PCT/JP2003/016109
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Kikuchi
Original Assignee
Murakami Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corporation filed Critical Murakami Corporation
Priority to PCT/JP2003/016109 priority Critical patent/WO2005059600A1/en
Publication of WO2005059600A1 publication Critical patent/WO2005059600A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation

Definitions

  • the present invention relates to an antifogging element having an antifogging property on the surface side of a substrate member such as a glass plate, and particularly to an antifogging element configured as a hood glass for a camera.
  • the dew condensation panel 101 as an anti-fog element is formed on the back side of the glass plate 102 in a shape suitable for the heat generating area suitable for preventing dew condensation.
  • Thin-film layer 103 made of tin oxide, zinc oxide, etc.
  • an electrode film 105 connected to this thin-film layer 103 for energization, and a power supply terminal 100 to which a power supply wire 107 is connected.
  • a protective glass plate 104 provided on the thin film layer 103, the electrode film 105, and the like for preventing and protecting from electric shock.
  • the thin film layer 103 is energized, and the heat generated raises the temperature of the surface of the glass plate 102 to prevent dew condensation.
  • the window glass for automobiles as an anti-fog element 201 is made of a transparent electrode such as ITO on the front side of a transparent glass substrate 202 constituting the window glass body.
  • film 2 0 4, Ding 1 0 2 film 2 0 3 and, overall sequentially deposited porous S i ⁇ 2 film 2 0 3 b has been configured transparent.
  • the porous SiO 2 film 203b exhibits hydrophilicity, and the attached water droplets are spread not in a ball shape but in a thin film shape (the contact area with air is reduced).
  • clip electrodes 205 and 206 are mounted on the upper side and lower side of the laminated body of the transparent glass substrate 202 and the transparent electrode film 204, and the transparent electrode is supplied from the power supply 2007.
  • Ri by the energizing the membrane 2 0 4, and the transparent electrode film 2 0 4 fever, effectively removing the spread water droplets into a thin film shape with porous S i 0 2 film 2 0 3 b surface ing.
  • T i 0 2 film 2 O 3 a photoexcited Ri by the porous S i 0 2 film 2 0 3 b the transmitted sunlight other rays, electrons and holes pairs are generated. Then, the electron-positive:?
  • the porous SiO 2 film exhibiting hydrophilicity and the transparent electrode film serving as a heating element are provided on the surface side of the transparent glass substrate.
  • the anti-fog element is a camera hood glass
  • the temperature of the inside and outside air of the storage container tends to be different, so the air inside the storage container will be on the back side (inside air side) of the hood glass.
  • the water vapor will condense and cause fogging I'm sorry.
  • the above phenomenon is particularly remarkable.
  • the transparent electrode film is disposed on the back side of the transparent glass substrate.However, since ITO or the like used for the transparent electrode film has a large refractive index, light is not reflected on the transparent electrode film. appear. Therefore, when the anti-fog element is a camera hood glass, the reflected image of the transparent electrode film appears in the camera image transmitted through the anti-fog element, and a good image cannot be obtained. Was.
  • the transparent electrode film or the like as a heating element is disposed on the surface side of the transparent glass substrate, the heating element is exposed to the outside air. As a result, it is necessary to consider the durability of the heating element, for example, acid resistance, etc., and there is a problem that the materials and the like constituting the heating element are limited, and the manufacturing cost is increased.
  • JP-A-10-364144 a thin film layer made of tin oxide, indium oxide or the like is used.
  • the reflected image appears in the camera image, and there is a problem that a good image cannot be obtained.
  • the present invention solves the above-mentioned problem, has excellent anti-fog properties, suppresses reflection of the heating element, and obtains a good image without reflection of the reflection image of the heating element.
  • the purpose is to provide an antifogging element that can be manufactured at low cost. Disclosure of the invention
  • a first invention is a transparent substrate member, a transparent hydrophilic thin film provided on the surface side of the transparent substrate member and containing a photocatalytic reaction substance and a hydrophilic substance, A transparent conductive thin film provided on the back surface side of the transparent substrate member and containing a conductive substance; and a further back surface of the conductive thin film And a transparent anti-reflection thin film containing a low-refractive-index substance.
  • front side means a side of the anti-fogging element that comes into contact with the outside air
  • back side means a side of the anti-fogging element that does not come into contact with the outside air
  • the hydrophilic substance of the hydrophilic thin film imparts hydrophilicity to the surface side of the transparent substrate member, and water droplets attached to the surface side of the transparent substrate member evaporate in a thin film form.
  • the hydrophilic thin film contains the photocatalytic reactant, electron-hole pairs are generated from the photocatalytic reactant by photoexcitation. The electron and hole pairs react with air and water to produce o 2 — (superoxide ion) and ⁇ OH (hydroxyl radical), which are attached to the hydrophilic thin film by the O and ⁇ OH. Organic matter is decomposed and removed. As a result, the hydrophilicity of the hydrophilic thin film does not decrease.
  • a transparent first intermediate thin film is provided between the transparent substrate member and the hydrophilic thin film, and the refractive index of the first intermediate thin film is different from the refractive index of the hydrophilic thin film and the transparent thin film. This is configured as an anti-fog element having an intermediate value of the refractive index of the substrate member.
  • the first intermediate thin film fills a large difference in refractive index between the hydrophilic thin film and the transparent substrate member.
  • the antireflection thin film is configured as an antifogging element having a laminated structure in which two or more thin films are laminated.
  • a fourth invention provides a transparent substrate member, provided on a front surface side of the transparent substrate member, a transparent hydrophilic thin film containing a photocatalytic reactant and a hydrophilic substance, provided on a back surface side of the transparent substrate member.
  • a transparent second intermediate thin film further provided on the back side of the second intermediate thin film, and a transparent conductive thin film containing a conductive material, wherein the refractive index of the second intermediate thin film is
  • the antifogging element has an intermediate value between the refractive index of the substrate member and the refractive index of the conductive thin film.
  • the hydrophilicity of the hydrophilic thin film due to the hydrophilicity of the hydrophilic thin film, water droplets adhered to the surface side of the transparent substrate member evaporate in a thin film shape.
  • the hydrophilic thin film contains the photocatalytic reactant, organic substances attached to the hydrophilic thin film are decomposed and removed by electrons and holes generated from the photocatalytic reactant by photoexcitation, and the hydrophilic thin film is removed. Does not decrease in hydrophilicity.
  • the heat generated by the conductive thin film water droplets attached to the back surface of the transparent substrate member evaporate.
  • the second intermediate thin film fills a large difference in refractive index between the transparent substrate member and the conductive thin film.
  • FIG. 1 (a) is a perspective view showing the configuration of a camera hood, and (b) is a cross-sectional view taken along the line X-X of (a) of the first embodiment of the anti-fog element according to the present invention.
  • FIG. 7C is a schematic diagram showing the configuration of the cross section of the modification of FIG. 5B in an enlarged manner in the width direction.
  • FIG. 2 (a) is a second embodiment of the anti-fogging element according to the present invention, (b) is a third embodiment, and (c) is an enlarged cross-sectional configuration of the fourth embodiment in the width direction.
  • FIG. 1 is a perspective view showing the configuration of a camera hood
  • FIG. 7C is a schematic diagram showing the configuration of the cross section of the modification of FIG. 5B in an enlarged manner in the width direction.
  • FIG. 2 (a) is a second embodiment of the anti-fogging element according to the present invention, (b) is a third embodiment, and (c)
  • FIG. 3 is a spectral transmittance characteristic diagram of the first embodiment of the anti-fog element according to the present invention.
  • FIG. 4 is a spectral transmittance characteristic diagram of the first embodiment of the antifogging element according to the present invention.
  • FIG. 5 is a spectral transmittance characteristic diagram of the first embodiment of the anti-fogging element according to the present invention.
  • FIG. 6 is a spectral transmittance characteristic diagram of a third embodiment of the anti-fogging element according to the present invention.
  • FIG. 7 is a spectral transmittance characteristic diagram of a third embodiment of the anti-fogging element according to the present invention.
  • FIG. 8 is a spectral transmittance characteristic diagram of a third embodiment of the antifogging element according to the present invention.
  • FIG. 9 is a spectral transmittance characteristic diagram of the third embodiment of the antifogging element according to the present invention.
  • FIG. 10 is a spectral transmittance characteristic diagram of a fourth embodiment of the antifogging element according to the present invention.
  • FIGS. 11 (a) and (b) are schematic diagrams showing the cross-sectional configuration of a conventional anti-fog element enlarged in the width direction.
  • FIG. 1 (a) is a perspective view showing the configuration of a camera hood, and (b) is an enlarged cross-sectional view of the configuration of (a) of the first embodiment of the antifogging element, taken along the line X-X-ray.
  • (C) is a schematic diagram showing the cross-sectional configuration of the modification of (b) enlarged in the width direction
  • FIG. 2 (a) is the second embodiment, and (b) is the third embodiment Form
  • (c) is a schematic diagram showing a cross-sectional configuration of the fourth embodiment enlarged in the width direction
  • FIG. 1 (b) shows a first embodiment of the present invention.
  • the anti-fogging element 1 includes a transparent substrate member 2, a hydrophilic thin film 3, a conductive thin film 4, and an anti-reflection thin film 5.
  • the transparent substrate member 2 is a plate-like substrate containing transparent glass or acrylic resin.
  • the anti-fogging element can take various shapes according to the use status and application, and for example, may be a thin film.
  • plastics other than acrylic resin can be used as long as the material has transparency, and more preferably, it has heat resistance and insulating properties.
  • the thickness of the transparent substrate member 2 is preferably 1 to 1 Omm.
  • the hydrophilic thin film 3 is a transparent thin film containing a photocatalytic reaction substance and a hydrophilic substance.
  • the hydrophilic property of this hydrophilic substance imparts hydrophilicity to the hydrophilic thin film 3
  • the hydrophilic thin film 3 is formed in a porous shape. Due to this porous shape, the wettability of the surface of the hydrophilic thin film 3 is improved by capillary action, and the hydrophilicity is enhanced.
  • the hydrophilic substance is preferably an inorganic oxide, and more preferably a metal oxide.
  • Metal oxides for example, an S i 0 2, A 1 2 0 3 or mixtures thereof, these metal oxides show a hydrophilic since it has a hydrophilic OH groups on the surface.
  • the photocatalytic reaction substance, T i O have Z n O, S N_ ⁇ 2, Z n S
  • the semiconductor is preferably composed mainly of C d S or mixtures thereof, T i 0 2 reactivity, sustained Most preferred in terms of safety and safety.
  • the photocatalytic reactant is photoexcited by irradiation with sunlight or the like (light having energy equal to or greater than the band gap of the semiconductor), and electron-hole pairs are generated in the photocatalytic reactant.
  • the electron-hole pairs react with air and water in the hydrophilic thin film 3 to generate oxidizing O 2 (superoxide ion) and ' ⁇ H (hydroxyl radical).
  • the hydrophilic thin film 3 in FIG. 1 (b) is formed by dispersing (mixing) a photocatalytic reactant in a hydrophilic substance to form a porous film.
  • a laminate in which a porous hydrophilic functional thin film 3b containing a hydrophilic substance is laminated on the surface side of a reactive thin film 3a containing a photocatalytic reactant may be used.
  • the porous opening of the hydrophilic functional thin film 3b of this laminate is reactive It is more advantageous to reach the surface of the thin film 3a for the decomposition and removal of the organic matter by the electron-pair.
  • the hydrophilic thin film 3, the reactive thin film 3a, and the hydrophilic functional thin film 3b may be formed by physical vapor deposition (PVD) such as ion plating and sputtering, thermal CVD, and plasma CVD. It is preferable to carry out by a conventionally known thin film forming method such as a chemical vapor deposition (CVD) method such as VD.
  • the thickness of each thin film is preferably 50 to 100 nm in the case of a single-layer hydrophilic thin film 3 in consideration of the hydrophilicity, photocatalytic reactivity, thin film strength and the like of the hydrophilic thin film 3.
  • the reactive thin film 3a preferably has a thickness of 50 to 100 nm
  • the hydrophilic thin film 3b has a thickness of 5 to 100 nm.
  • Electroconductive thin film 4 a transparent conductive material, e.g., ITO, I n 2 0 3 , S N_ ⁇ 2, T a 2 0 5 or including a material which generates heat by energization, such as a mixture thereof. Further, since the conductive thin film 4 is provided on the back side of the transparent substrate member 2, water droplets (fogging) generated on the back side of the transparent substrate member can be removed, and the anti-fogging property is excellent. In particular, as shown in FIG. 1 (a), when the anti-fog element 1 is used for a camera hood 10 in which the temperature of the inside and outside air tends to be different (the transparent substrate member 2 tends to be fogged). It is advantageous.
  • the conductive thin film 4 is housed in the camera hood 10, so that the conductive thin film 4 is not exposed to the outside air. Therefore, the material constituting the conductive thin film 4 only needs to consider the above-described electrical conductivity (heat generation), and the durability due to exposure to the outside air, For example, there is no need to consider chemical resistance. As a result, the range of selection as a constituent material is expanded, the conductive thin film 4 can be formed with an inexpensive material, and the manufacturing cost of the anti-fog element 1 can be reduced.
  • the hydrophilic thin film 3 prevents the front side of the transparent substrate member 2 from fogging, and only when the rear side of the transparent substrate member 2 becomes fogged, By causing the conductive thin film 4 to generate heat when energized to prevent fogging on the rear surface side, the amount of energization can be reduced, and the running cost of the anti-fogging element 1 can be reduced.
  • the conductive thin film 4 is preferably formed by a PVD method, a CVD method, a printing method, a coating method, or the like, similar to the method for forming the hydrophilic thin film 3.
  • the thickness of the conductive thin film 4 is preferably 10 to 100 nm in consideration of heat generation, thin film strength, reflection characteristics and the like.
  • the conductive thin film 4 is connected to an electrode (electrode film) for conducting electricity.
  • Antireflection film 5 the transparent low refractive index material, for example, S i 0 2, A 1 2 0 3, C e F 3, L a F 3, B a F 2, C a F 2, L i F, N including a 3 a l F 6, N a F, M g F 2, a 1 2 0 3 and Z r 0 mixture of 2 or the like is also a combination of these.
  • the method for forming the anti-reflection thin film 5 is preferably performed by the same PVD method, CVD method, or the like as the hydrophilic thin film 3.
  • the thickness of the antireflection thin film 5 is preferably 50 to 150 nm in consideration of antireflection characteristics, light interference suppression characteristics, and the like. If it is less than 50 nm, the effect of preventing reflection and the effect of suppressing light interference are small, and light transmitted through the anti-fog element tends to have an interference color. In addition, the strength of the thin film is small and it is easy to be ruptured, and the film thickness is too thin to control the film formation. If the thickness exceeds 15 O nm, the antireflection effect tends to decrease, and the conductive thin film 4 Reflection is not suppressed, and the reflection image of the conductive thin film 4 easily appears in the image transmitted through the anti-fog element 1.
  • FIGS. 3 to 5 show spectral transmittance characteristics of the anti-fog element.
  • (A) is a spectral transmittance characteristic diagram of the anti-fogging element having no anti-reflection thin film
  • (B 1) to (B 6) are anti-fogging elements of the present invention having an anti-reflection thin film (single layer).
  • FIG. 4 is a spectral transmittance characteristic diagram of FIG.
  • FIG. 3 shows an example in which a SiO 2 film (Si i 2 has a refractive index of 1.46) is used as an anti-reflection thin film (single layer).
  • Transparent glass 1 9 mm (hereinafter, simply referred to as a transparent glass.) T i ⁇ on the surface of 2 film 2 0 0 nm, are sequentially deposited S i ⁇ 2 film 2 0 nm, ITO on the back surface of the transparent glass An anti-fog element with a thickness of 200 nm.
  • the refractive index, S i O 2 force SI. 4 6 T i 0 2 is 2.3 5
  • glass is 1. 5
  • FIG. 4 shows an example in which a MgF 2 film (the refractive index of MgF 2 is 1.38) is used as an anti-reflection thin film (single layer).
  • Antifogging element having the same configuration as (A) in Fig. 3.
  • (B 3) S i 0 2 ZT i 0 2 / Garasuno ITO / M g F 2 5 T i 0 on the surface of the 0 nm transparent glass 2 film 2 0 0 nm, S i 0 2 film sequentially formed 2 0 nm and, ITO film 2 0 0 nm on the back surface of the transparent glass, M g F 2 film 5 0 nm sequentially deposited anti-fog element.
  • Figure 5 is a anti-reflection film (single layer)
  • a 1 2 0 3 film (refractive index of A l 2 ⁇ 3 1.6 7) is an example of using,
  • Antifogging element having the same configuration as (A) in Fig. 3.
  • the anti-fog element 1 is composed of a transparent substrate member 2 and a hydrophilic thin film. 3, a conductive thin film 4, and an anti-reflection thin film 5, and a first intermediate thin film 6 provided between the transparent substrate member 2 and the hydrophilic thin film 3.
  • the transparent substrate member 2, the hydrophilic thin film 3, the conductive thin film 4, and the anti-reflection thin film 5 have the same configurations as in the above (1) to (4), and thus the description is omitted.
  • the refractive index of the first intermediate thin film 6 has an intermediate value between the refractive index of the hydrophilic thin film 3 and the refractive index of the transparent substrate member 2. Then, its refractive index is smaller than the refractive index of the hydrophilic thin film 3, and larger structure is preferably made than the refractive index of the transparent substrate member 2, for example, ITO, I n 2 0 3 , S n 0 2, Z n O, W0 3 , T a 2 0 5, Z r ⁇ inorganic oxides such as 2, composite inorganic oxides such as a mixture of a 1 2 0 3 and L a, or transparency of a combination of these Including.
  • This first intermediate thin film 6 is preferably formed by a PVD method, a CVD method, or the like, similar to the method for forming the hydrophilic thin film 3. Further, the first intermediate thin film 6 is formed by laminating a plurality of thin films containing the above-mentioned inorganic oxide, composite inorganic oxide, or a combination thereof.
  • the refractive index of the hydrophilic thin film 3 and the transparent substrate 2 It may have a refractive index between the above and a single-layer thin film.
  • the thickness of the first intermediate thin film 6 is preferably 5 to 200 nm in consideration of antireflection characteristics, light interference suppression characteristics, and the like. If it is less than 5 nm, the effect of preventing reflection and the effect of suppressing light interference are small, and light transmitted through the anti-fog element tends to have an interference color. In addition, the film thickness is too thin, and it is easy to control the film formation. If it exceeds 200 nm, the antireflection effect tends to be small, the reflection on the hydrophilic thin film 3 is not suppressed, and the reflection image of the hydrophilic thin film 3 is easily reflected on the image transmitted through the anti-fog element 1.
  • FIG. 2 (b) shows a third embodiment of the present invention. As shown in FIG.
  • the anti-fogging element 1 includes a transparent substrate member 2, a hydrophilic thin film 3, a conductive thin film 4, and an anti-reflective thin film 5a. It has a laminated structure where two or more thin films are laminated (a thin film 51 and a thin film 52 in FIG. 2 (b)).
  • a transparent substrate member 2 the hydrophilic thin film 3, and the conductive thin film 4 have the same configurations as in the above (1) to (3), and thus description thereof will be omitted.
  • the anti-reflection thin film 5a is formed by laminating two or more transparent thin films containing substances having different refractive indexes.
  • the thin film 52 is formed of a low-refractive index substance, for example, S i 0 2 , A 1 2 ⁇ 3 , C e F or L a F or B a F 2 ⁇ C a F 2 , L i F, N a 3 A l F 6 , N a F, M g F 2 , A 1 2 0 3 and Z r 0 mixture of 2 or consists like a combination of these, a thin film 5 1, sea urchin by which the refractive index is larger than the refractive index of the thin film 5 2, for example, T i O 2, Z r O 2 , Ta 2 ⁇ 5 etc.
  • the refractive index of the entire antireflection thin film 5 a is set to be smaller than the refractive index of the conductive thin film 4.
  • This anti-reflection thin film 5a is preferably formed by the same PVD method, C VD method or the like as in the case of the hydrophilic thin film 3.
  • the thickness of the antireflection thin film 5a (thin film 51, 52) is appropriately set in consideration of antireflection characteristics and the like.
  • FIG. 6 to 9 show spectral transmittance characteristics of the anti-fog element.
  • (A) is a spectral transmittance characteristic diagram of the antifogging element having no antireflection thin film (lamination)
  • (B7;) to (B10) are the present invention having an antireflection thin film (lamination)
  • FIG. 5 is a spectral transmittance characteristic diagram of the anti-fog element of FIG. Figure 6 is an example using the T i ⁇ 2 film and the S i ⁇ 2 film as an antireflection film (laminate),
  • Antifogging element having the same configuration as (A) in Fig. 3.
  • T i 0 2 film 2 0 0 nm on a surface of a transparent glass S i 0 2 film 2 0 nm are sequentially deposited, ITO layer 2 0 O nm on the back surface of the transparent glass, T i 0 2 film 2 5 nm, S i 0 2 film 4 5 nm, T i ⁇ 2 film 2 7 0 nm, 3 1 ⁇ 2 film 1 3 0 11 111 sequentially deposited anti-fog element.
  • Figure 7 is an example of using the Z r ⁇ 2 film and the S i ⁇ 2 film as an antireflection film (laminate),
  • Antifogging element having the same configuration as (A) in Fig. 3.
  • S i ⁇ 2 film 2 are sequentially deposited 0 nm, ITO film 2 0 0 nm on the back surface of the transparent glass, S i ⁇ 2 film 4 5 nm, Z r ⁇ 2 film 2 5 nm, S i ⁇ 2 film 4 5 nm, Z R_ ⁇ 2 film 2 7 0 nm, S i 0 2 film 1 3 0 nm sequentially deposited anti-fog element.
  • Figure 8 is an example of using the T a 2 0 5 film and S i ⁇ 2 film as an antireflection film (laminate),
  • Antifogging element having the same configuration as (A) in Fig. 3.
  • T i 0 2 film 2 0 0 nm on a surface of a transparent glass S i 0 2 film 2 are sequentially deposited 0 nm, ITO film 2 0 0 nm on the back surface of the transparent glass, T a 2 0 5 film 2 5 nm , S i ⁇ 2 film 2 5 nm, T a 2 0 5 film 1 6 0 nm, S i ⁇ 2 film 3 0 nm, T a 2 0 5 film 1 2 0 nm, S i 0 2 film 1 3 0 nm , Anti-fog element 0
  • Figure 9 is an example of using the T a 2 0 5 film and M g F 2 film as an antireflection film (laminate),
  • Antifogging element having the same configuration as (A) in Fig. 3. .
  • FIG. 2 (c) shows a fourth embodiment of the present invention.
  • the anti-fogging element 1 has a transparent substrate member 2, a hydrophilic thin film 3, and a conductive thin film 4, and has a structure between the transparent substrate member 2 and the conductive thin film 4. It has a second intermediate thin film 7 provided on the substrate.
  • the transparent substrate member 2, the hydrophilic thin film 3, and the conductive thin film 4 have the same configurations as in the above (1) to (3), and thus description thereof will be omitted.
  • the refractive index of the second intermediate thin film 7 has an intermediate value between the refractive index of the transparent substrate member 2 and the refractive index of the conductive thin film 4.
  • the refractive index of the transparent substrate member Greater than 2 of the refractive index, and is preferably is also smaller configuration Ri by the refractive index of the conductive thin film 4, for example, A 1 2 0 3, WO M g inorganic oxides such as O, A 1 2 0 Includes composite inorganic oxides such as a mixture of 3 and La, or transparent materials combining these.
  • This second intermediate thin film 7 is preferably formed by a PVD method, a CVD method, or the like, similar to the method for forming the hydrophilic thin film 3.
  • the second intermediate thin film 7 is formed by laminating a plurality of thin films containing the above-described inorganic oxide, composite inorganic oxide, or a combination thereof, and the refractive index of the transparent substrate member 2 and the conductive thin film 4 It may have a refractive index intermediate between the refractive index of the film and a single-layer thin film.
  • the thickness of the second intermediate thin film 7 is preferably 5 to 200 nm in consideration of the antireflection effect. If the film thickness is outside the above range, the effect of suppressing reflection at the conductive thin film 4 tends to be small, and the reflection image of the conductive thin film 4 tends to be reflected on the image transmitted through the anti-fog element 1.
  • FIG. 10 shows a spectral transmittance characteristic diagram of the anti-fog element.
  • (A) is a spectral transmittance characteristic diagram of the anti-fogging element without the second intermediate thin film
  • (B 11) is a spectral transmittance characteristic diagram of the anti-fogging element of the present invention having the second intermediate thin film. It is.
  • the first 0 figure as the second intermediate thin an example using A 1 2 ⁇ 3 film
  • Antifogging element having the same configuration as (A) in Fig. 3.
  • the refractive index, S i 0 2 is 1. 4
  • T i O 2 is 2.3 5, glass 1. 5 2
  • ITO is 2.0 6 It is.
  • FIG. 10 it was found that the presence of the second intermediate thin film increased the transmittance in the visible light region and prevented reflection on the conductive thin film (see B11). ).
  • the present invention is not limited to the first to fourth embodiments.
  • a configuration in which a second intermediate thin film 7 is added to the second embodiment (FIG. 2A)
  • a third embodiment (FIG. 2 (b)) in which at least one of first intermediate thin film 6 and second intermediate thin film 7 is added.
  • First intermediate thin film 6 is added in the fourth embodiment (FIG. 2 (c)).
  • the configuration may be as follows. Industrial applicability
  • the hydrophilic thin film evaporates water droplets adhered to the surface side of the transparent substrate member, thereby preventing clouding. Further, the photocatalytic reaction substance of the hydrophilic thin film does not decrease the hydrophilicity of the hydrophilic thin film, and maintains the anti-fogging property.
  • the conductive thin film prevents water droplets adhering to the back surface of the transparent substrate member from evaporating, thereby preventing fogging.
  • the present invention can be applied to an anti-fog element typified by a hood glass for a camera which requires excellent anti-fog properties.
  • the anti-reflection thin film suppresses reflection at the conductive thin film caused by a difference in refractive index, and prevents a reflected image of the conductive thin film from being reflected on an image transmitted through the anti-fog element, thereby providing a good image. It can be applied to anti-fog elements such as required camera hood glass. Furthermore, since there is no need to consider the durability of the conductive thin film and anti-reflective thin film, there are no restrictions on the constituent materials, and the anti-fog element represented by camera hood glass, which requires low cost, is required. Can be applied. Further, according to the second invention, the difference in the refractive index can be reduced by the first intermediate thin film.
  • the laminated structure of the anti-reflection thin film enhances the anti-reflection effect in the visible ray region, and the image transmitted through the anti-fog element becomes closer to the real image.
  • the present invention can be applied to an anti-fog element typified by a camera hood glass requiring a good image.
  • the reflection of the conductive thin film caused by the difference in the refractive index is suppressed by the second intermediate thin film, and the reflected image of the conductive thin film is displayed on the image transmitted through the anti-fog element.
  • This can be applied to an anti-fog element typified by a hood glass for a camera that requires no good image.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

An antifogging element which has excellent antifogging properties and can suppress exothermic body reflection, enabling obtaining excellent images free of catching of exothermic body reflection images and which can be produced with low cost. In particular, antifogging element (1) characterized by comprising transparent substrate member (2); transparent hydrophilic thin film (3) disposed on the front surface side of the transparent substrate member (2) and comprising a photocatalyst reactant and a hydrophilic substance; transparent conductive thin film (4) disposed on the back side of the transparent substrate member (2) and comprising a conductive substance; and transparent reflection preventive thin film (5) disposed on the back side of the transparent conductive thin film (4) and comprising a low refractive index substance.

Description

明 細 書 防曇素子 技術分野  Description Anti-fog element Technical field
本発明は、 ガラス板等の基板部材の表面側に防曇性を持たせた防曇素 子に関し、 特にカメラ用フードガラスとして構成された防曇素子に関す る。  The present invention relates to an antifogging element having an antifogging property on the surface side of a substrate member such as a glass plate, and particularly to an antifogging element configured as a hood glass for a camera.
背景技術 Background art
ガラス板等の基板部材の表面側に防曇性を持たせた防曇素子が特開平 0 7— 2 6 3 2 0 1号 (段落番号 [ 0 0 0 2 ] 、 [ 0 0 0 3 ] 、 図 5、 図 6 ) で提案されている。 第 1 1図 ( a ) に示すように、 防曇素子と し ての結露パネル 1 0 1は、 ガラス板 1 0 2の裏面側に結露防止に適した 発熱箇所に合わせた形状に成膜された酸化錫、 酸化ィンジゥム等からな る薄膜層 1 0 3 と、 この薄膜層 1 0 3に接続し通電する電極膜 1 0 5お よび給電用の電線 1 0 7が接続される給電端子 1 0 6 と、 感電防止と保 護のために前記薄膜層 1 0 3、 電極膜 1 0 5などの上に設けられている 保護用ガラス板 1 0 4 とを有する。 この結露防止パネル 1 0 1 において は、 薄膜層 1 0 3に通電し、 その発熱によりガラス板 1 0 2表面の温度 を上げ、 結露を防止おょぴ除去している。  Japanese Patent Application Laid-Open No. H07-2632201 (paragraph numbers [00002], [00003], It is proposed in Figure 5 and Figure 6). As shown in Fig. 11 (a), the dew condensation panel 101 as an anti-fog element is formed on the back side of the glass plate 102 in a shape suitable for the heat generating area suitable for preventing dew condensation. Thin-film layer 103 made of tin oxide, zinc oxide, etc., an electrode film 105 connected to this thin-film layer 103 for energization, and a power supply terminal 100 to which a power supply wire 107 is connected. And a protective glass plate 104 provided on the thin film layer 103, the electrode film 105, and the like for preventing and protecting from electric shock. In the dew condensation preventing panel 101, the thin film layer 103 is energized, and the heat generated raises the temperature of the surface of the glass plate 102 to prevent dew condensation.
しかしながら、 前記結露パネル 1 0 1においては、 ガラス板 1 0 2の 撥水性により、 ガラス板 1 0 2表面に付着する水滴は玉状となる。 この ため、 薄膜層 1 0 3に通電しても、 水滴が蒸発しにく く、 防曇性と して は不十分であつた。  However, in the dew condensation panel 101, water droplets adhering to the surface of the glass plate 102 have a ball shape due to the water repellency of the glass plate 102. For this reason, even when the thin film layer 103 was energized, the water droplets did not easily evaporate, and the antifogging property was insufficient.
そして、 このよ うな問題を解決した防曇素子が特開平 1 0— 3 6 1 4 4号 (段落番号 [ 0 0 1 7] 、 [ 0 0 3 6 ] 、 図 1 2 ) で提案されてい る。 第 1 1図 ( b ) に示すよ うに、 防曇素子と しての自動車用ウィンド ゥガラス 2 0 1は、 ウィンドウガラス本体を構成する透明ガラス基板 2 0 2の表面側に、 I T O等の透明電極膜 2 0 4、 丁 1 02膜2 0 3 &、 多孔質状 S i 〇2膜 2 0 3 bを順次成膜して全体が透明に構成されてい る。 この自動車用ウィンドウガラス 2 0 1 においては、 多孔質状 S i O 2膜 2 0 3 bが親水性を呈し、 付着した水滴を玉状ではなく薄い膜状に 広げて (空気との接触面積が広がり、 蒸発しやすくなる) 防曇性を発揮 する。 また、 透明ガラス基板 2 0 2 と透明電極膜 2 0 4の積層体の上辺 およぴ下辺にはク リ ップ電極 2 0 5、 2 0 6が装着され、 電源 2 0 7か ら透明電極膜 2 0 4に通電することによ り、 透明電極膜 2 0 4が発熱し 、 多孔質状 S i 02膜 2 0 3 bの表面で薄い膜状に広がった水滴を効果 的に除去している。 また、 T i 02膜 2 O 3 aでは、 多孔質状 S i 02膜 2 0 3 bを透過した太陽光その他の光線によ り光励起され、 電子 · 正孔 対が発生する。 そして、 この電子 · 正:?し対によ り、 多孔質状 S i 02膜 2 0 3 bの開口内に付着した有機物が分解、 除去される。 したがって、 多孔質状 S i 02膜 2 0 3 bの親水性の低下が防止され、 長期間にわた り防曇性を維持することができる。 An anti-fog element that has solved such a problem is disclosed in No. 4 (paragraph numbers [0 17], [0 36], Figure 12). As shown in Fig. 11 (b), the window glass for automobiles as an anti-fog element 201 is made of a transparent electrode such as ITO on the front side of a transparent glass substrate 202 constituting the window glass body. film 2 0 4, Ding 1 0 2 film 2 0 3 and, overall sequentially deposited porous S i 〇 2 film 2 0 3 b has been configured transparent. In this automotive window glass 201, the porous SiO 2 film 203b exhibits hydrophilicity, and the attached water droplets are spread not in a ball shape but in a thin film shape (the contact area with air is reduced). (It spreads and evaporates easily.) In addition, clip electrodes 205 and 206 are mounted on the upper side and lower side of the laminated body of the transparent glass substrate 202 and the transparent electrode film 204, and the transparent electrode is supplied from the power supply 2007. Ri by the energizing the membrane 2 0 4, and the transparent electrode film 2 0 4 fever, effectively removing the spread water droplets into a thin film shape with porous S i 0 2 film 2 0 3 b surface ing. Also, in T i 0 2 film 2 O 3 a, photoexcited Ri by the porous S i 0 2 film 2 0 3 b the transmitted sunlight other rays, electrons and holes pairs are generated. Then, the electron-positive:? Ri by the tooth pair, organic substances adhering to the porous S i 0 2 film 2 0 3 b of the opening is decomposed and removed. Therefore, the hydrophilicity of the porous SiO 2 film 203 b is prevented from lowering, and the anti-fogging property can be maintained for a long period of time.
しかしながら、 特開平 1 0 _ 3 6 1 4 4号の防曇素子においては、 親 水性を呈する多孔質状 S i 02膜およぴ努熱体である透明電極膜が透明 ガラス基板の表面側に配置されているため、 透明ガラス基板の表面側に 発生した曇りを除去することは可能であるが、 透明ガラス基板の裏面側 に発生した曇りを除去できず、 防曇性において不十分であるという問題 があった。 特に、 防曇素子がカメラ用フードガラスである場合には、 力 メラ収納容器の内外気の温度に差が生じやすいため、 フードガラスの裏 面側 (内気側) に、 収納容器内の空気の水蒸気が結露し、 曇りが生じや すい。 また、 寒冷地または高地で使用される場合には、 前記現象が特に 顕著である。 However, in the anti-fog element disclosed in Japanese Patent Application Laid-Open No. 10-36144, the porous SiO 2 film exhibiting hydrophilicity and the transparent electrode film serving as a heating element are provided on the surface side of the transparent glass substrate. , It is possible to remove the fogging generated on the front side of the transparent glass substrate, but it is not possible to remove the fogging generated on the back side of the transparent glass substrate, and the antifogging property is insufficient. There was a problem. In particular, if the anti-fog element is a camera hood glass, the temperature of the inside and outside air of the storage container tends to be different, so the air inside the storage container will be on the back side (inside air side) of the hood glass. The water vapor will condense and cause fogging I'm sorry. In addition, when used in cold regions or high altitudes, the above phenomenon is particularly remarkable.
また、 透明電極膜を透明ガラス基板の裏面側に配置することも記載さ れているが、 透明電極膜に使用されている I T O等は屈折率が大きいた め、 透明電極膜では光の反射が発生する。 そのため、 防曇素子がカメ ラ 用フードガラスである場合には、 防曇素子を透過したカメラ画像に透明 電極膜の反射像が写り込んでしまい、 良好な画像が得られないという問 題があった。  It is also described that the transparent electrode film is disposed on the back side of the transparent glass substrate.However, since ITO or the like used for the transparent electrode film has a large refractive index, light is not reflected on the transparent electrode film. appear. Therefore, when the anti-fog element is a camera hood glass, the reflected image of the transparent electrode film appears in the camera image transmitted through the anti-fog element, and a good image cannot be obtained. Was.
また、 発熱体である透明電極膜等が透明ガラス基板の表面側に配置さ れているため、 発熱体が外気にさ らされることになる。 その結果、 発熱 体の耐久性、 例えば耐酸性等を考慮する必要が生じ、 発熱体を構成する 材料等が制限され、 製造コス トが高くなるという問題もあった。  Further, since the transparent electrode film or the like as a heating element is disposed on the surface side of the transparent glass substrate, the heating element is exposed to the outside air. As a result, it is necessary to consider the durability of the heating element, for example, acid resistance, etc., and there is a problem that the materials and the like constituting the heating element are limited, and the manufacturing cost is increased.
さらに、 特開平 0 7— 2 6 3 2 0 1号 1の防曇素子においても、 特開 平 1 0— 3 6 1 4 4号と同様に、 酸化錫、 酸化ィンジゥム等からなる薄 膜層では光が反射し、 カメラ用途と した場合には反射像がカメラ画像に 写り こみ、 良好な画像が得られないという問題もあった。  Further, in the anti-fog element of JP-A-07-263210, as in JP-A-10-364144, a thin film layer made of tin oxide, indium oxide or the like is used. When the light is reflected and used for a camera, the reflected image appears in the camera image, and there is a problem that a good image cannot be obtained.
そこで、 本発明では、 前記した問題を解決し、 優れた防曇性を有する と共に、 発熱体の反射を抑制し、 発熱体の反射像の写り こみのない良好 な画像が得られ、 かつ、 低コス トで製造することが可能な防曇素子を提 供することを目的とする。 発明の開示  In view of the above, the present invention solves the above-mentioned problem, has excellent anti-fog properties, suppresses reflection of the heating element, and obtains a good image without reflection of the reflection image of the heating element. The purpose is to provide an antifogging element that can be manufactured at low cost. Disclosure of the invention
前記問題を解決する本発明において、 第 1の発明は、 透明基板部材と 、 前記透明基板部材の表面側に設けられ、 光触媒反応物質おょぴ親水性 物質を含む透明な親水性薄膜と、 前記透明基板部材の裏面側に設けられ 、 導電性物質を含む透明な導電性薄膜と、 前記導電性薄膜のさらに裏面 側に設けられ、 低屈折率物質を含む透明な反射防止薄膜とを有する防曇 素子と して構成したものである。 In the present invention that solves the above problems, a first invention is a transparent substrate member, a transparent hydrophilic thin film provided on the surface side of the transparent substrate member and containing a photocatalytic reaction substance and a hydrophilic substance, A transparent conductive thin film provided on the back surface side of the transparent substrate member and containing a conductive substance; and a further back surface of the conductive thin film And a transparent anti-reflection thin film containing a low-refractive-index substance.
なお、 本発明において、 「表面側」 とは、 防曇素子において外気と接 する側を意味し、 「裏面側」 とは、 防曇素子において外気と接しない側 を意味する。  In the present invention, “front side” means a side of the anti-fogging element that comes into contact with the outside air, and “back side” means a side of the anti-fogging element that does not come into contact with the outside air.
前記構成によれば、 親水性薄膜の親水性物質により、 透明基板部材の 表面側に親水性が付与され、 透明基板部材の表面側に付着した水滴が薄 い膜状となって蒸発する。 また、 親水性薄膜が光触媒反応物質を含むこ とにより、 光励起によって光触媒反応物質か ら電子 · 正孔対が発生する 。 この電子 · 正孔対が空気および水と反応して o 2— (スーパーォキサイ ドア二オン) および · O H (ヒ ドロキシラジカル) を生成し、 この O および · O Hによって親水性薄膜に付着した有機物が分解、 除去される 。 その結果、 親水性薄膜の親水性が低下しない。 また、 導電性薄膜の発 熱により、 透明基板部材の裏面側に付着した水滴が蒸発する。 また、 反 射防止膜により、 導電性薄膜と空気との間の大きな屈折率の差が埋めら れる。 さらに、 導電性薄膜および反射防止膜が透明基板部材の裏面側に 設けられていることにより、 外気にさらされることがなく なり、 耐久性 を考慮する必要がなくなる。 また、 第 2の発明は、 前記透明基板部材と 前記親水性薄膜の間に透明 な第 1 中間薄膜が設けられ、 その第 1中間薄膜の屈折率が前記親水性薄 膜の屈折率と前記透明基板部材の屈折率の中間の値を有する防曇素子と して構成したものである。 According to the configuration, the hydrophilic substance of the hydrophilic thin film imparts hydrophilicity to the surface side of the transparent substrate member, and water droplets attached to the surface side of the transparent substrate member evaporate in a thin film form. Further, when the hydrophilic thin film contains the photocatalytic reactant, electron-hole pairs are generated from the photocatalytic reactant by photoexcitation. The electron and hole pairs react with air and water to produce o 2 — (superoxide ion) and · OH (hydroxyl radical), which are attached to the hydrophilic thin film by the O and · OH. Organic matter is decomposed and removed. As a result, the hydrophilicity of the hydrophilic thin film does not decrease. In addition, due to the heat generated by the conductive thin film, water droplets attached to the back surface of the transparent substrate member evaporate. In addition, the antireflection film bridges a large difference in refractive index between the conductive thin film and air. Further, since the conductive thin film and the antireflection film are provided on the back surface side of the transparent substrate member, it is not exposed to the outside air, and it is not necessary to consider durability. Further, in the second invention, a transparent first intermediate thin film is provided between the transparent substrate member and the hydrophilic thin film, and the refractive index of the first intermediate thin film is different from the refractive index of the hydrophilic thin film and the transparent thin film. This is configured as an anti-fog element having an intermediate value of the refractive index of the substrate member.
前記構成によれば、 第 1中間薄膜により、 親水性薄膜と透明基板部材 との間の大きな屈折率の差が埋められる。 また、 第 3の発明は、 前記反射防止薄膜が 2つ以上の薄膜を積層した 積層構造を有する防曇素子として構成したものである。 According to the configuration, the first intermediate thin film fills a large difference in refractive index between the hydrophilic thin film and the transparent substrate member. In a third aspect of the present invention, the antireflection thin film is configured as an antifogging element having a laminated structure in which two or more thin films are laminated.
前記構成によれば、 反射防止薄膜の積層構造により、 導電性薄膜と空 気との間の大きな屈折率の差が埋められる。 また、 第 4の発明は、 透明基板部材と 、 前記透明基板部材の表面側に 設けられ、 光触媒反応物質および親水性物質を含む透明な親水性薄膜と 、 前記透明基板部材の裏面側に設けられた透明な第 2中間薄膜と、 .前記 第 2中間薄膜のさらに裏面側に設けられ、 導電性物質を含む透明な導電 性薄膜とを有し、 前記第 2中間薄膜の屈折率が、 前記透明基板部材の屈 折率と前記導電性薄膜の屈折率の中間の値を有する防曇素子と して構成 したものである。  According to the configuration, the large refractive index difference between the conductive thin film and the air is filled by the laminated structure of the antireflection thin film. Further, a fourth invention provides a transparent substrate member, provided on a front surface side of the transparent substrate member, a transparent hydrophilic thin film containing a photocatalytic reactant and a hydrophilic substance, provided on a back surface side of the transparent substrate member. A transparent second intermediate thin film, further provided on the back side of the second intermediate thin film, and a transparent conductive thin film containing a conductive material, wherein the refractive index of the second intermediate thin film is The antifogging element has an intermediate value between the refractive index of the substrate member and the refractive index of the conductive thin film.
前記構成によれば、 親水性薄膜の親水性により、 透明基板部材の表面 側に付着した水滴が薄い膜状となって蒸発する。 また、 親水性薄膜が光 触媒反応物質を含むことにより、 親水性薄膜に付着した有機物が光励起 によつて光触媒反応物質から発生した電子 ' ·正孔対によつて分解、 除去 され、 親水性薄膜の親水性が低下しない。 また、 導電性薄膜の発熱によ り、 透明基板部材の裏面側に付着した水滴が蒸発する。 また、 第 2中間 薄膜により、 透明基板部材と導電性薄膜との間の大きな屈折率の差が埋 められる。 図面の簡単な説明  According to the above configuration, due to the hydrophilicity of the hydrophilic thin film, water droplets adhered to the surface side of the transparent substrate member evaporate in a thin film shape. In addition, since the hydrophilic thin film contains the photocatalytic reactant, organic substances attached to the hydrophilic thin film are decomposed and removed by electrons and holes generated from the photocatalytic reactant by photoexcitation, and the hydrophilic thin film is removed. Does not decrease in hydrophilicity. In addition, due to the heat generated by the conductive thin film, water droplets attached to the back surface of the transparent substrate member evaporate. In addition, the second intermediate thin film fills a large difference in refractive index between the transparent substrate member and the conductive thin film. Brief Description of Drawings
第 1図 ( a ) は、 カメラ用フードの構成を示す斜視図、 ( b ) は本発 明に係る防曇素子の第 1の実施形態の ( a ) の X— X線断面の構成を幅 方向に拡大して示す模式図、 ( c ) は ( b ) の変形例の断面の構成を幅 方向に拡大して示す模式図である。 第 2図 ( a ) は本発明に係る防曇素子の第 2の実施形態、 ( b ) は第 3の実施形態、 ( c ) は第 4の実施形態の断面の構成を幅方向に拡大し て示す模式図である。 FIG. 1 (a) is a perspective view showing the configuration of a camera hood, and (b) is a cross-sectional view taken along the line X-X of (a) of the first embodiment of the anti-fog element according to the present invention. FIG. 7C is a schematic diagram showing the configuration of the cross section of the modification of FIG. 5B in an enlarged manner in the width direction. FIG. 2 (a) is a second embodiment of the anti-fogging element according to the present invention, (b) is a third embodiment, and (c) is an enlarged cross-sectional configuration of the fourth embodiment in the width direction. FIG.
第 3図は、 本発明に係る防曇素子の第 1の実施形態の分光透過率特性 図である。  FIG. 3 is a spectral transmittance characteristic diagram of the first embodiment of the anti-fog element according to the present invention.
第 4図は、 本発明に係る防曇素子の第 1の実施形態の分光透過率特性 図である。  FIG. 4 is a spectral transmittance characteristic diagram of the first embodiment of the antifogging element according to the present invention.
第 5図は、 本発明に係る防曇素子の第 1の実施形態の分光透過率特性 図である。  FIG. 5 is a spectral transmittance characteristic diagram of the first embodiment of the anti-fogging element according to the present invention.
第 6図は、 本発明に係る防曇素子の第 3の実施形態の分光透過率特性 図である。  FIG. 6 is a spectral transmittance characteristic diagram of a third embodiment of the anti-fogging element according to the present invention.
第 7図は、 本発明に係る防曇素子の第 3の実施形態の分光透過率特性 図である。  FIG. 7 is a spectral transmittance characteristic diagram of a third embodiment of the anti-fogging element according to the present invention.
第 8図は、 本発明に係る防曇素子の第 3の実施形態の分光透過率特性 図である。  FIG. 8 is a spectral transmittance characteristic diagram of a third embodiment of the antifogging element according to the present invention.
第 9図は、 本発明に係る防曇素子の第 3の実施形態の分光透過率特性 図である。  FIG. 9 is a spectral transmittance characteristic diagram of the third embodiment of the antifogging element according to the present invention.
第 1 0図は、 本発明に係る防曇素子の第 4の実施形態の分光透過率特 性図である。  FIG. 10 is a spectral transmittance characteristic diagram of a fourth embodiment of the antifogging element according to the present invention.
第 1 1図 ( a ) 、 ( b ) は、 従来の防曇素子の断面の構成を幅方向に 拡大して示す模式図である。 発明を実施するための最良の形態  FIGS. 11 (a) and (b) are schematic diagrams showing the cross-sectional configuration of a conventional anti-fog element enlarged in the width direction. BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、 本発明の実施形態について、 図面を参照して詳細に説明する 。 第 1図 ( a ) はカメラ用フー ドの構成を示す斜視図、 ( b ) は防曇素 子の第 1の実施形態の ( a ) の X— X線断面の構成を幅方向に拡大して 示す模式図、 ( c ) は (b ) の変形例の断面の構成を幅方向に拡大して 示す模式図、 第 2図 ( a ) は第 2の実施形態、 (b ) は第 3の実施形態 、 ( c ) は第 4の実施形態の断面の構成を幅方向に拡大して示す模式図 、 第 3図〜第 5図は防曇素子の第 1の実施形態の分光透過率特性図、 第 6図〜第 9図は防曇素子の第 3の実施形態の分光透過率特性図、 第 1 0 図は防曇素子の第 4の実施形態の分光透過率特性図である。 本発明の防曇素子は、 第 1図 ( a ) に示すように、 カメラ用フードガ ラスと して使用される。 しかしながら、 本発明の防曇素子は、 カメ ラ用 フードガラスに限定されるものではなく、 防曇性が必要とされる素子、 例えば、 自動車用ウィンドウガラスなどでもよい。 本発明の第 1の実施形態を第 1図 (b ) に示す。 第 1図 ( b ) に示す よ うに、 防曇素子 1は、 透明基板部材 2 と、 親水性薄膜 3 と、 導電性薄 膜 4と、 反射防止薄膜 5 とを有する。 以下、 各構成について詳細に説明 する。 Next, embodiments of the present invention will be described in detail with reference to the drawings. Fig. 1 (a) is a perspective view showing the configuration of a camera hood, and (b) is an enlarged cross-sectional view of the configuration of (a) of the first embodiment of the antifogging element, taken along the line X-X-ray. hand (C) is a schematic diagram showing the cross-sectional configuration of the modification of (b) enlarged in the width direction, FIG. 2 (a) is the second embodiment, and (b) is the third embodiment Form, (c) is a schematic diagram showing a cross-sectional configuration of the fourth embodiment enlarged in the width direction, FIGS. 3 to 5 are spectral transmittance characteristic diagrams of the first embodiment of the anti-fog element, 6 to 9 are spectral transmittance characteristic diagrams of the third embodiment of the anti-fog element, and FIG. 10 is a spectral transmittance characteristic diagram of the fourth embodiment of the anti-fog element. The anti-fog element of the present invention is used as a hood glass for a camera as shown in FIG. 1 (a). However, the anti-fog element of the present invention is not limited to camera hood glass, but may be an element requiring anti-fog properties, for example, window glass for automobiles. FIG. 1 (b) shows a first embodiment of the present invention. As shown in FIG. 1 (b), the anti-fogging element 1 includes a transparent substrate member 2, a hydrophilic thin film 3, a conductive thin film 4, and an anti-reflection thin film 5. Hereinafter, each configuration will be described in detail.
( 1 ) 透明基板部材  (1) Transparent substrate member
透明基板部材 2は、 透明性を有するガラス、 またはアク リル樹脂を含 む板状の基板である。 防曇素子の利用状況、 用途に応じて諸形状をとる ことができ、 例えば、 薄膜状でもよい。 また、 材質も透明性を有してい れば、 アク リル樹脂以外のプラスチックを使用することができ、 より好 ましくは、 耐熱性、 絶縁性を有するものである。 また、 透明基板部材 2 の厚みは 1〜 1 O m mが好ましい。  The transparent substrate member 2 is a plate-like substrate containing transparent glass or acrylic resin. The anti-fogging element can take various shapes according to the use status and application, and for example, may be a thin film. In addition, plastics other than acrylic resin can be used as long as the material has transparency, and more preferably, it has heat resistance and insulating properties. Further, the thickness of the transparent substrate member 2 is preferably 1 to 1 Omm.
( 2 ) 親水性薄膜  (2) Hydrophilic thin film
親水性薄膜 3は、 光触媒反応物質および親水性物質を含む透明な薄膜 である。 この親水性物質の親水性により、 親水性薄膜 3に親水性が付与 され、 親水性薄膜 3に付着した水滴が玉状にならずに薄い膜状となり、 防曇素子 1が防曇性を有することとなる。 そして、 親水性薄膜 3が多孔 質状に形成されていることが好ましい。 この多孔質の形状により、 毛細 管現象により、 親水性薄膜 3の表面の濡れ性が向上し、 親水性が高めら れる。 The hydrophilic thin film 3 is a transparent thin film containing a photocatalytic reaction substance and a hydrophilic substance. The hydrophilic property of this hydrophilic substance imparts hydrophilicity to the hydrophilic thin film 3 As a result, the water droplets adhering to the hydrophilic thin film 3 do not become beads but become a thin film, and the anti-fog element 1 has anti-fog properties. Further, it is preferable that the hydrophilic thin film 3 is formed in a porous shape. Due to this porous shape, the wettability of the surface of the hydrophilic thin film 3 is improved by capillary action, and the hydrophilicity is enhanced.
また、 親水性物質は、 無機酸化物が好ましく 、 金属酸化物がより好ま しい。 金属酸化物は、 例えば、 S i 0 2、 A 1 2 0 3 またはこれらの混合 物等であり、 これらの金属酸化物は表面に親水性の O H基を有している ため親水性を示す。 Further, the hydrophilic substance is preferably an inorganic oxide, and more preferably a metal oxide. Metal oxides, for example, an S i 0 2, A 1 2 0 3 or mixtures thereof, these metal oxides show a hydrophilic since it has a hydrophilic OH groups on the surface.
また、 光触媒反応物質は、 T i Oい Z n O、 S n〇2、 Z n S、 C d Sまたはこれらの混合物等を主成分とする半導体が好ましく 、 T i 0 2 が反応性、 持続性、 安全性等の点で最も好ましい。 この光触媒反応物質 は、 太陽光等 (半導体のバンドギャップ以上のエネルギーを持つ光) の 照射により光励起し、 光触媒反応物質内に電子 · 正孔対が発生する。 こ の電子 ·正孔対は、 親水性薄膜 3における空気および水と反応して、 酸 化力に富む O 2 (スーパーォキサイ ドア二オン) および ' 〇 H (ヒ ドロ キシラジカル) を生成させる。 この 0 2—および · O Hは、 親水性薄膜 3 の多孔質の表面、 開口に付着した汚染物、 例えば、 ワックス等の有機物 または大気中の N O X等を効率的に分解して除去する (光触媒反応) 。 その結果、 親水性薄膜 3の親水性の低下が防止され、 長時間にわたり防 曇性を維持することができる。 Further, the photocatalytic reaction substance, T i O have Z n O, S N_〇 2, Z n S, the semiconductor is preferably composed mainly of C d S or mixtures thereof, T i 0 2 reactivity, sustained Most preferred in terms of safety and safety. The photocatalytic reactant is photoexcited by irradiation with sunlight or the like (light having energy equal to or greater than the band gap of the semiconductor), and electron-hole pairs are generated in the photocatalytic reactant. The electron-hole pairs react with air and water in the hydrophilic thin film 3 to generate oxidizing O 2 (superoxide ion) and '〇H (hydroxyl radical). These 0 2 -and · OH efficiently decompose and remove contaminants attached to the porous surface and openings of the hydrophilic thin film 3, such as organic substances such as wax or NOX in the atmosphere (photocatalytic reaction). ). As a result, a decrease in hydrophilicity of the hydrophilic thin film 3 is prevented, and the antifogging property can be maintained for a long time.
また、 第 1図 ( b ) の親水性薄膜 3は、 親水性物質内に光触媒反応物 質を分散 (混合) して、 多孔質状に形成したものであるが、 第 1図 ( c ) に示すよ うに、 光触媒反応物質を含む反応性薄膜 3 a の表面側に、 親 水性物質を含む多孔質状の親水機能性薄膜 3 b を積層した積層体であつ てもよい。 この積層体の親水機能性薄膜 3 bの多孔質の開口は、 反応性 薄膜 3 aの表面にまで達するようにした方が、 前記電子 ·正 し対による 有機物の分解、 除去に有利である。 しかしながら、 多孔質の開口が反応 性薄膜 3 aの表面にまで達していなくても (すなわち、 反応'性薄膜 3 a の表面に達する途中で塞がれていても) 、 前記電子 ·正孔対【ま透明な親 水機能性薄膜 3 bを透過するため、 光触媒反応が十分進行し、 有機物を 分解、 除去できる。 The hydrophilic thin film 3 in FIG. 1 (b) is formed by dispersing (mixing) a photocatalytic reactant in a hydrophilic substance to form a porous film. As shown in the figure, a laminate in which a porous hydrophilic functional thin film 3b containing a hydrophilic substance is laminated on the surface side of a reactive thin film 3a containing a photocatalytic reactant may be used. The porous opening of the hydrophilic functional thin film 3b of this laminate is reactive It is more advantageous to reach the surface of the thin film 3a for the decomposition and removal of the organic matter by the electron-pair. However, even if the porous opening does not reach the surface of the reactive thin film 3a (that is, is closed on the way to the surface of the reactive thin film 3a), the electron-hole pair does not [Because it passes through the transparent hydrophilic functional thin film 3b, the photocatalytic reaction proceeds sufficiently, and organic matter can be decomposed and removed.
また、 前記親水性薄膜 3、 反応性薄膜 3 a、 親水機能性薄膜 3 bの成 膜方法としては、 イオンプレーティング、 スパッタリング等の物理的蒸 着 (P VD) 法、 熱 C VD、 プラズマ C VD等の化学的蒸着 (C VD) 法等の従来公知の薄膜形成方法で行うのが好ましい。 そして、 各薄膜の 膜厚は、 親水性薄膜 3の親水性、 光触媒反応性、 薄膜強度等を考慮して 、 単層の親水性薄膜 3の場合には 5 0〜 1 0 0 0 n mが好ましく、 積層 体の親水性薄膜 3の場合には反応性薄膜 3 aが 5 0〜 1 0 0 O n m、 親 水機能性薄膜 3 bが 5〜 1 0 0 n mが好ましい。  The hydrophilic thin film 3, the reactive thin film 3a, and the hydrophilic functional thin film 3b may be formed by physical vapor deposition (PVD) such as ion plating and sputtering, thermal CVD, and plasma CVD. It is preferable to carry out by a conventionally known thin film forming method such as a chemical vapor deposition (CVD) method such as VD. The thickness of each thin film is preferably 50 to 100 nm in the case of a single-layer hydrophilic thin film 3 in consideration of the hydrophilicity, photocatalytic reactivity, thin film strength and the like of the hydrophilic thin film 3. In the case of the hydrophilic thin film 3 of the laminate, the reactive thin film 3a preferably has a thickness of 50 to 100 nm, and the hydrophilic thin film 3b has a thickness of 5 to 100 nm.
( 3 ) 導電性薄膜  (3) Conductive thin film
導電性薄膜 4は、 透明な導電性物質、 例えば、 I T O、 I n 203、 S n〇2、 T a 205、 またはこれらの混合物等の通電して発熱する物質を含 む。 また、 この導電性薄膜 4は、 透明基板部材 2の裏側に設けられてい るため、 透明基板部材の裏面側に発生する水滴 (曇り) を除去すること ができ、 防曇性に優れる。 特に、 第 1図 ( a ) に示すよ うに、 防曇素子 1を、 内外気の温度に差が生じ易い (透明基板部材 2に曇りが生じやす い) カメラ用フード 1 0に使用した場合に有利である。 そして、 防曇素 子 (カメラ用フードガラス) 1では、 導電性薄膜 4がカメラ用フード 1 0内に収納される構成となり、 導電性薄膜 4が外気にさらされることが ない。 したがって、 導電性薄膜 4を構成する材料は、 前記した通電性 ( 発熱性) のみを考慮すればよく、 外気にさらされることによる耐久性、 例えば、 耐薬品性等を考慮する必要がなくなる。 その結果、 構成材料と しての選択範囲が広がり、 安価な材料で導電性薄膜 4 を構成でき、 防曇 素子 1 の製造コス トを下げることができる。 また、 前記親水性薄膜 3 と の組合せにより、 通常は、 親水性薄膜 3で透明基板部材 2の表面側の曇 り を防止し、 透明基板部材 2の裏面側に曇りが発生した場合にのみ、 導 電性薄膜 4を通電により発熱させて、 裏面側の曇りを防止するよ うにす れば、 通電量を削減することができ、 防曇素子 1 のラ ンニングコス トを 低下することができる。 Electroconductive thin film 4, a transparent conductive material, e.g., ITO, I n 2 0 3 , S N_〇 2, T a 2 0 5 or including a material which generates heat by energization, such as a mixture thereof. Further, since the conductive thin film 4 is provided on the back side of the transparent substrate member 2, water droplets (fogging) generated on the back side of the transparent substrate member can be removed, and the anti-fogging property is excellent. In particular, as shown in FIG. 1 (a), when the anti-fog element 1 is used for a camera hood 10 in which the temperature of the inside and outside air tends to be different (the transparent substrate member 2 tends to be fogged). It is advantageous. In the anti-fog element (camera hood glass) 1, the conductive thin film 4 is housed in the camera hood 10, so that the conductive thin film 4 is not exposed to the outside air. Therefore, the material constituting the conductive thin film 4 only needs to consider the above-described electrical conductivity (heat generation), and the durability due to exposure to the outside air, For example, there is no need to consider chemical resistance. As a result, the range of selection as a constituent material is expanded, the conductive thin film 4 can be formed with an inexpensive material, and the manufacturing cost of the anti-fog element 1 can be reduced. In addition, in combination with the hydrophilic thin film 3, usually, the hydrophilic thin film 3 prevents the front side of the transparent substrate member 2 from fogging, and only when the rear side of the transparent substrate member 2 becomes fogged, By causing the conductive thin film 4 to generate heat when energized to prevent fogging on the rear surface side, the amount of energization can be reduced, and the running cost of the anti-fogging element 1 can be reduced.
この導電性薄膜 4の成膜方法は、 前記親水性薄膜 3 と同様な P VD法 、 C VD法または印刷法、 塗布法等で行う ことが好ま しい。 そして、 導 電性薄膜 4の膜厚は、 発熱性、 薄膜強度、 反射特性等を考慮して、 1 0 〜 1 0 0 0 n mが好ましい。 また、 図示しないが、 導電性薄膜 4には通 電のための電極 (電極膜) 等が接続されている。  The conductive thin film 4 is preferably formed by a PVD method, a CVD method, a printing method, a coating method, or the like, similar to the method for forming the hydrophilic thin film 3. The thickness of the conductive thin film 4 is preferably 10 to 100 nm in consideration of heat generation, thin film strength, reflection characteristics and the like. Although not shown, the conductive thin film 4 is connected to an electrode (electrode film) for conducting electricity.
( 4 ) 反射防止薄膜 (単層)  (4) Anti-reflective thin film (single layer)
反射防止薄膜 5は、 透明な低屈折率物質、 例えば、 S i 02、 A 1 203 、 C e F3、 L a F3、 B a F2、 C a F2、 L i F、 N a 3A l F6、 N a F 、 M g F2、 A 1 203 と Z r 02の混合物またはこれらを組み合わせたも の等を含む。 この反射防止薄膜 5を設けることによ り 、 前記 ( 3 ) の導 電性薄膜 4での反射を抑制することができる。 この反射防止薄膜 5の成 膜方法は、 前記親水性薄膜 3 と同様な P VD法、 C V D法等で行う こと が好ましい。 そして、 この反射防止薄膜 5の膜厚は、 反射防止特性、 光 干渉抑制特性等を考慮して、 5 0〜 1 5 0 n mが好ましい。 5 0 n m未 満では反射を防止する効果、 光干渉を抑制する効果が小さく、 防曇素子 を透過した光に干渉色がつきやすい。 また、 薄膜強度が小さく破壌され やすく なると共に、 膜厚が薄すぎて成膜制御が難しく なりやすい。 1 5 O n mを超えると反射防止効果が小さくなりやすく、 前記導電性薄膜 4 での反射が抑制されず、 導電性薄膜 4の反射像が防曇素子 1を透過した 画像に写り込みやすくなる。 Antireflection film 5, the transparent low refractive index material, for example, S i 0 2, A 1 2 0 3, C e F 3, L a F 3, B a F 2, C a F 2, L i F, N including a 3 a l F 6, N a F, M g F 2, a 1 2 0 3 and Z r 0 mixture of 2 or the like is also a combination of these. By providing the anti-reflection thin film 5, the reflection at the conductive thin film 4 of (3) can be suppressed. The method for forming the anti-reflection thin film 5 is preferably performed by the same PVD method, CVD method, or the like as the hydrophilic thin film 3. The thickness of the antireflection thin film 5 is preferably 50 to 150 nm in consideration of antireflection characteristics, light interference suppression characteristics, and the like. If it is less than 50 nm, the effect of preventing reflection and the effect of suppressing light interference are small, and light transmitted through the anti-fog element tends to have an interference color. In addition, the strength of the thin film is small and it is easy to be ruptured, and the film thickness is too thin to control the film formation. If the thickness exceeds 15 O nm, the antireflection effect tends to decrease, and the conductive thin film 4 Reflection is not suppressed, and the reflection image of the conductive thin film 4 easily appears in the image transmitted through the anti-fog element 1.
第 3図〜第 5図に防曇素子の分光透過率特性図を示した。 図中の (A ) は反射防止薄膜を有していない防曇素子の分光透過率特性図、 (B 1 ) 〜 (B 6 ) は反射防止薄膜 (単層) を有する本発明の防曇素子の分光 透過率特性図である。  FIGS. 3 to 5 show spectral transmittance characteristics of the anti-fog element. In the figure, (A) is a spectral transmittance characteristic diagram of the anti-fogging element having no anti-reflection thin film, and (B 1) to (B 6) are anti-fogging elements of the present invention having an anti-reflection thin film (single layer). FIG. 4 is a spectral transmittance characteristic diagram of FIG.
第 3図は、 反射防止薄膜 (単層) として S i 02膜 ( S i 〇2の屈折率 は 1 . 4 6 ) を使用した例であり、 FIG. 3 shows an example in which a SiO 2 film (Si i 2 has a refractive index of 1.46) is used as an anti-reflection thin film (single layer).
( A) S i 02/T i 〇2Zガラス / I T O (A) S i 0 2 / T i 〇 2 Z glass / ITO
透明ガラス 1. 9 mm (以下、 単に透明ガラスと称す。 ) の表面に T i 〇2膜 2 0 0 n m、 S i 〇2膜 2 0 n mを順次成膜し、 透明ガラスの裏 面に I T O膜 2 0 0 n mを成膜した防曇素子。 なお、 屈折率は、 S i O 2力 S I . 4 6、 T i 02が 2. 3 5、 ガラスが 1 . 5 2、 I T Oが 2. 0 6である。 Transparent glass 1. 9 mm (hereinafter, simply referred to as a transparent glass.) T i 〇 on the surface of 2 film 2 0 0 nm, are sequentially deposited S i 〇 2 film 2 0 nm, ITO on the back surface of the transparent glass An anti-fog element with a thickness of 200 nm. Incidentally, the refractive index, S i O 2 force SI. 4 6, T i 0 2 is 2.3 5, glass is 1. 5 2, ITO 2. 0 6.
( B 1 ) S i 02/T i 〇2/ガラス / I T O/ S i 025 0 n m (B 1) S i 0 2 / T i 〇 2 / Glass / ITO / S i 0 2 5 0 nm
透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 02膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n m、 S i 〇2膜 5 0 n m を順次成膜した防曇素子。 T i 0 2 film 2 0 0 nm on a surface of a transparent glass, sequentially deposited S i 0 2 film 2 0 nm, ITO film 2 0 0 nm on the back surface of the transparent glass, the S i 〇 2 film 5 0 nm Antifogging elements formed sequentially.
( B 2 ) S i 02/T i 02/ガラス / I T O/ S i 〇21 5 0 n m 透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 〇2膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 O n m、 S i 02膜 1 5 0 n mを順次成膜した防曇素子。 (B 2) S i 0 2 / T i 0 2 / Glass / ITO / S i 〇 2 1 5 0 nm T i on the surface of the transparent glass 0 2 film 2 0 0 nm, the S i 〇 2 film 2 0 nm sequentially deposited, ITO layer 2 0 O nm on the back surface of the transparent glass, S i 0 2 film 1 5 0 nm sequentially deposited anti-fog element.
第 4図は、 反射防止薄膜 (単層) として M g F2膜 (M g F2の屈折率 は 1 . 3 8 ) を使用した例であり、 FIG. 4 shows an example in which a MgF 2 film (the refractive index of MgF 2 is 1.38) is used as an anti-reflection thin film (single layer).
( A) S i 02/T i 〇2/ガラス / I T O (A) S i 0 2 / T i 〇 2 / glass / ITO
第 3図の (A) と同様な構成の防曇素子。 ( B 3 ) S i 02ZT i 02 /ガラスノ I T O/M g F 25 0 n m 透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 02膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n m、 M g F 2膜 5 0 n m を順次成膜した防曇素子。 Antifogging element having the same configuration as (A) in Fig. 3. (B 3) S i 0 2 ZT i 0 2 / Garasuno ITO / M g F 2 5 T i 0 on the surface of the 0 nm transparent glass 2 film 2 0 0 nm, S i 0 2 film sequentially formed 2 0 nm and, ITO film 2 0 0 nm on the back surface of the transparent glass, M g F 2 film 5 0 nm sequentially deposited anti-fog element.
( B 4 ) S i 02ノ T i 〇2Zガラス/ I T O/M g F 2 l 5 0 n m 透明ガラスの表面に T i 〇2膜 2 0 0 n m、 S i 〇2膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n m、 M g F 2膜 1 5 0 η mを順次成膜した防曇素子。 (B 4) S i 0 2 T i 〇 2 Z glass / ITO / M g F 2 l 50 nm T i 〇 2 film 200 nm, S i 〇 2 film 20 nm on transparent glass surface sequentially deposited, ITO layer 2 0 0 nm on the back surface of the transparent glass, M g F 2 film 1 5 0 eta sequentially deposited anti-fog element m.
第 5図は、 反射防止薄膜 (単層) と して A 1203膜 (A l 23 の屈折 率は 1 . 6 7 ) を使用した例であり、 Figure 5 is a anti-reflection film (single layer) A 1 2 0 3 film (refractive index of A l 23 1.6 7) is an example of using,
( A) S i 02/T i O 2/ガラス Ϊ T O (A) S i 0 2 / T i O 2 / glass Ϊ TO
第 3図の (A) と同様な構成の防曇素子。  Antifogging element having the same configuration as (A) in Fig. 3.
( B 5 ) S i 02ZT i 02 /ガラス I T O/ A 1 2035 0 n m 透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 〇2膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n,im、 A 1 203 膜 5 0 n m を順次成膜した防曇素子。 (B 5) S i 0 2 ZT i 0 2 / Glass ITO / A 1 2 3 0 0 5 0 nm A Ti 0 2 film 200 nm and a S i 〇 2 film 20 nm are sequentially formed on the surface of the transparent glass. film, ITO film 2 0 0 n on the underside of a transparent glass, im, a 1 2 0 3 film 5 0 nm sequentially deposited anti-fog element.
( B 6 ) S i 02ZT i 02Zガラス/ I T O/A 1 2031 5 0 n m 透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 02膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n m、 A 1 203 膜 1 5 0 η mを順次成膜した防曇素子。 (B 6) S i 0 2 ZT i 0 2 Z glass / ITO / A 1 2 0 3 1 5 0 nm T i on the surface of the transparent glass 0 2 film 2 0 0 nm, the S i 0 2 film 2 0 nm sequentially deposited, ITO layer 2 0 0 nm on the back surface of the transparent glass, a 1 2 0 3 film 1 5 0 eta sequentially deposited anti-fog element m.
第 3図〜第 5図に示すように、 反射防止薄膜を有すること により、 可 視光線領域における透過率が高く なり、 導電性薄膜での反射が防止され ていることが見出された (B 1〜B 6参照) 。 つぎに、 本発明の第 2の実施形態について第 2図 ( a ) に示す。 第 2 図 ( a ) に示すよ うに、 防曇素子 1は、 透明基板部材 2 と、 親水性薄膜 3 と、 導電性薄膜 4 と、 反射防止薄膜 5 とを有すると共に、 透明基板部 材 2と親水性薄膜 3の間に設けられた第 1 中間薄膜 6を有する。 以下、 各構成について詳細に説明する。 なお、 透明基板部材 2、 親水性薄膜 3 、 導電性薄膜 4、 反射防止薄膜 5は前記 ( 1 ) 〜 (4 ) と同様の構成で あるので説明を省略する。 As shown in FIGS. 3 to 5, it was found that the presence of the anti-reflection thin film increased the transmittance in the visible light region, and prevented reflection on the conductive thin film (B 1 to B6). Next, a second embodiment of the present invention is shown in FIG. 2 (a). As shown in FIG. 2 (a), the anti-fog element 1 is composed of a transparent substrate member 2 and a hydrophilic thin film. 3, a conductive thin film 4, and an anti-reflection thin film 5, and a first intermediate thin film 6 provided between the transparent substrate member 2 and the hydrophilic thin film 3. Hereinafter, each configuration will be described in detail. The transparent substrate member 2, the hydrophilic thin film 3, the conductive thin film 4, and the anti-reflection thin film 5 have the same configurations as in the above (1) to (4), and thus the description is omitted.
( 5 ) 第 1中間薄膜  (5) First intermediate thin film
第 1中間薄膜 6は、 その屈折率が親水性薄膜 3の屈折率と透明基板部 材 2の屈折率の中間の値を有する。 そして、 その屈折率が、 親水性薄膜 3の屈折率より も小さく、 かつ透明基板部材 2の屈折率よりも大きく構 成されることが好ましく、 例えば、 I T O、 I n 203、 S n 02、 Z n O 、 W03、 T a 205、 Z r 〇2等の無機酸化物、 A 1 203 と L a の混合物 等の複合無機酸化物、 またはこれらを組み合わせた透明物を含む。 この 第 1中間薄膜 6を設けることによ り、 前記 ( 2 ) の親水性薄膜 3での反 射を抑制することができる。 この第 1中間薄膜 6の成膜方法は、 前記親 水性薄膜 3 と同様な P VD法、 C VD法等で行う ことが好ましい。 また 、 第 1 中間薄膜 6は前記の無機酸化物、 複合無機酸化物、 またはこれら を組み合わせたものを含む薄膜を複数積層し、 積層の薄膜全体で親水性 薄膜 3の屈折率と透明基板部材 2の屈折率との間の屈折率を持つもので も、 単層の薄膜であってもよい。 The refractive index of the first intermediate thin film 6 has an intermediate value between the refractive index of the hydrophilic thin film 3 and the refractive index of the transparent substrate member 2. Then, its refractive index is smaller than the refractive index of the hydrophilic thin film 3, and larger structure is preferably made than the refractive index of the transparent substrate member 2, for example, ITO, I n 2 0 3 , S n 0 2, Z n O, W0 3 , T a 2 0 5, Z r 〇 inorganic oxides such as 2, composite inorganic oxides such as a mixture of a 1 2 0 3 and L a, or transparency of a combination of these Including. By providing the first intermediate thin film 6, it is possible to suppress the reflection at the hydrophilic thin film 3 of the above (2). This first intermediate thin film 6 is preferably formed by a PVD method, a CVD method, or the like, similar to the method for forming the hydrophilic thin film 3. Further, the first intermediate thin film 6 is formed by laminating a plurality of thin films containing the above-mentioned inorganic oxide, composite inorganic oxide, or a combination thereof. The refractive index of the hydrophilic thin film 3 and the transparent substrate 2 It may have a refractive index between the above and a single-layer thin film.
そして、 この第 1中間薄膜 6の膜厚は、 反射防止特性、 光干渉抑制特 性等を考慮して、 5〜 2 0 0 n mが好ましい。 5 n m未満では反射を防 止する効果、 光干渉を抑制する効果が小さく、 防曇素子を透過した光に 干渉色がつきやすい。 また、 膜厚が薄すぎて成膜制御が難しく なりやす い。 2 0 0 n mを超えると反射防止効果が小さくなりやすく、 前記親水 性薄膜 3での反射が抑制されず、 親水性薄膜 3の反射像が防曇素子 1 を 透過した画像に写り込みやすくなる。 また、 本発明の第 3の実施形態を第 2図 (b ) に示す。 第 2図 ( b ) に示すように、 防曇素子 1は、 透明基板部材 2 と、 親水性薄膜 3 と、 導 電性薄膜 4 と、 反射防止薄膜 5 a とを有し、 反射防止薄膜 5 aが 2っ以 上の薄膜を積層した積層構造を有する (第 2図 ( b ) では、 薄膜 5 1 、 薄膜 5 2の 2層) 。 以下、 各構成について詳細に説明する。 なお、 透明 基板部材 2、 親水性薄膜 3、 導電性薄膜 4は前記 ( 1 ) 〜 ( 3 ) と同様 の構成であるので説明を省略する。 The thickness of the first intermediate thin film 6 is preferably 5 to 200 nm in consideration of antireflection characteristics, light interference suppression characteristics, and the like. If it is less than 5 nm, the effect of preventing reflection and the effect of suppressing light interference are small, and light transmitted through the anti-fog element tends to have an interference color. In addition, the film thickness is too thin, and it is easy to control the film formation. If it exceeds 200 nm, the antireflection effect tends to be small, the reflection on the hydrophilic thin film 3 is not suppressed, and the reflection image of the hydrophilic thin film 3 is easily reflected on the image transmitted through the anti-fog element 1. FIG. 2 (b) shows a third embodiment of the present invention. As shown in FIG. 2 (b), the anti-fogging element 1 includes a transparent substrate member 2, a hydrophilic thin film 3, a conductive thin film 4, and an anti-reflective thin film 5a. It has a laminated structure where two or more thin films are laminated (a thin film 51 and a thin film 52 in FIG. 2 (b)). Hereinafter, each configuration will be described in detail. Note that the transparent substrate member 2, the hydrophilic thin film 3, and the conductive thin film 4 have the same configurations as in the above (1) to (3), and thus description thereof will be omitted.
( 6 ) 反射防止薄膜 (積層)  (6) Anti-reflective thin film (laminated)
反射防止薄膜 5 aは、 屈折率の異なる物質を含む 2つ以上の透明な薄 膜を積層したもので、 例えば、 薄膜 5 2を、 低屈折率物質である、 例え ば、 S i 02、 A 1 23、 C e Fい L a Fい B a F 2ヽ C a F 2、 L i F 、 N a 3A l F6、 N a F、 M g F2、 A 1 203 と Z r 02 の混合物または これらを組み合わせたもの等から構成し、 薄膜 5 1を、 その屈折率が薄 膜 5 2の屈折率より大きくなるよ うに、 例えば、 T i O 2、 Z r O 2、 T a 25等で構成する。 そして、 この反射防止薄膜 5 a全体の屈折率が、 導電性薄膜 4の屈折率より小さく なるようにする。 この反射防止膜 5 a (薄膜 5 1、 5 2 ) を設けることにより、 前記 ( 3 ) の導電性薄膜 4で の反射を抑制できる。 この反射防止薄膜 5 aの成膜方法は、 前記親水性 薄膜 3 と同様な P VD法、 C VD法等で行う ことが好ましい。 そして、 この反射防止薄膜 5 a (薄膜 5 1、 5 2 ) の膜厚は、 反射防止特 f生等を 考慮して、 適宜設定する。 The anti-reflection thin film 5a is formed by laminating two or more transparent thin films containing substances having different refractive indexes. For example, the thin film 52 is formed of a low-refractive index substance, for example, S i 0 2 , A 1 23 , C e F or L a F or B a F 2ヽ C a F 2 , L i F, N a 3 A l F 6 , N a F, M g F 2 , A 1 2 0 3 and Z r 0 mixture of 2 or consists like a combination of these, a thin film 5 1, sea urchin by which the refractive index is larger than the refractive index of the thin film 5 2, for example, T i O 2, Z r O 2 , Ta 25 etc. Then, the refractive index of the entire antireflection thin film 5 a is set to be smaller than the refractive index of the conductive thin film 4. By providing the antireflection film 5a (thin films 51, 52), reflection at the conductive thin film 4 of (3) can be suppressed. This anti-reflection thin film 5a is preferably formed by the same PVD method, C VD method or the like as in the case of the hydrophilic thin film 3. The thickness of the antireflection thin film 5a (thin film 51, 52) is appropriately set in consideration of antireflection characteristics and the like.
第 6図〜第 9図に防曇素子の分光透過率特性図を示した。 図中の (A ) は反射防止薄膜 (積層) を有していない防曇素子の分光透過率特性図 、 (B 7;) 〜 (B 1 0 ) は反射防止薄膜 (積層) を有する本発明の防曇 素子の分光透過率特性図である。 第 6図は、 反射防止薄膜 (積層) として T i 〇2膜と S i 〇2膜を使用 した例であり、 6 to 9 show spectral transmittance characteristics of the anti-fog element. In the figure, (A) is a spectral transmittance characteristic diagram of the antifogging element having no antireflection thin film (lamination), and (B7;) to (B10) are the present invention having an antireflection thin film (lamination). FIG. 5 is a spectral transmittance characteristic diagram of the anti-fog element of FIG. Figure 6 is an example using the T i 〇 2 film and the S i 〇 2 film as an antireflection film (laminate),
( A) S i 02/T i 02/ガラス / I T O (A) S i 0 2 / T i 0 2 / Glass / ITO
第 3図の (A) と同様な構成の防曇素子。  Antifogging element having the same configuration as (A) in Fig. 3.
( B 7 ) S i 02/T i 02Zガラス/ I T O/ 2層 (T i Oノ S i 02 (B 7) S i 0 2 / T i 0 2 Z glass / ITO / two layers (T i O no S i 0 2
) )
透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 02膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 O n m、 T i 02膜 2 5 n m 、 S i 02膜 4 5 n m、 T i 〇2膜 2 7 0 n m、 3 1 〇2膜 1 3 0 11 111を 順次成膜した防曇素子。 T i 0 2 film 2 0 0 nm on a surface of a transparent glass, S i 0 2 film 2 0 nm are sequentially deposited, ITO layer 2 0 O nm on the back surface of the transparent glass, T i 0 2 film 2 5 nm, S i 0 2 film 4 5 nm, T i 〇 2 film 2 7 0 nm, 3 1 〇 2 film 1 3 0 11 111 sequentially deposited anti-fog element.
第 7図は、 反射防止薄膜 (積層) として Z r 〇2膜と S i 〇2膜を使用 した例であり、 Figure 7 is an example of using the Z r 〇 2 film and the S i 〇 2 film as an antireflection film (laminate),
( A) S i 02/T i O 2Zガラス / I T O (A) S i 0 2 / T i O 2 Z glass / ITO
第 3図の (A) と同様な構成の防曇素子。  Antifogging element having the same configuration as (A) in Fig. 3.
( B 8 ) S i O 2/ T i 02 ガラス 1 T O / S i 〇2 2層 ( Z r O 2 (B 8) S i O 2 / T i 0 2 Glass 1 TO / S i 〇 2 2 layers (Z r O 2
/s i o2) / sio 2 )
透明ガラスの表面に T i 02膜 2 0 O n m、 S i 〇2膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n m、 S i 〇2膜 4 5 n m 、 Z r 〇2膜 2 5 n m、 S i 〇2膜 4 5 n m、 Z r〇2 膜 2 7 0 n m、 S i 02膜 1 3 0 n mを順次成膜した防曇素子。 T i 0 2 film 2 0 O nm on the surface of the transparent glass, S i 〇 2 film 2 are sequentially deposited 0 nm, ITO film 2 0 0 nm on the back surface of the transparent glass, S i 〇 2 film 4 5 nm, Z r 〇 2 film 2 5 nm, S i 〇 2 film 4 5 nm, Z R_〇 2 film 2 7 0 nm, S i 0 2 film 1 3 0 nm sequentially deposited anti-fog element.
第 8図は、 反射防止薄膜 (積層) と して T a 205膜と S i 〇2膜を使 用した例であり、 Figure 8 is an example of using the T a 2 0 5 film and S i 〇 2 film as an antireflection film (laminate),
( A) S i 02/T i 02/ガラス / I T O (A) S i 0 2 / T i 0 2 / Glass / ITO
第 3図の (A) と同様な構成の防曇素子。  Antifogging element having the same configuration as (A) in Fig. 3.
( B 9 ) S i 02ZT i 02Zガラス/ I T O/ 3層 ( T a 20ノ S i 02 (B 9) S i 0 2 ZT i 0 2 Z glass / ITO / 3 layer (T a 20 o S i 0 2
) 透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 02膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n m、 T a 205膜 2 5 n m 、 S i 〇2膜 2 5 n m、 T a 205膜 1 6 0 n m、 S i 〇2膜 3 0 n m、 T a 205膜 1 2 0 n m、 S i 02膜 1 3 0 n m、 を順次成膜した防曇素子 0 ) T i 0 2 film 2 0 0 nm on a surface of a transparent glass, S i 0 2 film 2 are sequentially deposited 0 nm, ITO film 2 0 0 nm on the back surface of the transparent glass, T a 2 0 5 film 2 5 nm , S i 〇 2 film 2 5 nm, T a 2 0 5 film 1 6 0 nm, S i 〇 2 film 3 0 nm, T a 2 0 5 film 1 2 0 nm, S i 0 2 film 1 3 0 nm , Anti-fog element 0
第 9図は、 反射防止薄膜 (積層) と して T a 205膜と M g F2膜を使 用した例であり、 Figure 9 is an example of using the T a 2 0 5 film and M g F 2 film as an antireflection film (laminate),
( A) S i 02/T i 〇2/ガラス / I T O (A) S i 0 2 / T i 〇 2 / glass / ITO
第 3図の (A) と同様な構成の防曇素子。 .  Antifogging element having the same configuration as (A) in Fig. 3. .
( B 1 0 ) S i Ο,/Ύ i 02/ガラス Z I T O/T a ,Os/M g F 2 透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 02膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に I T O膜 2 0 0 n m、 T a 25膜 2 7 0 η m、 M g F2膜 1 3 0 n mを順次成膜した防曇素子。 (B1 0) S i Ο, / Ύ i 0 2 / glass ZITO / T a, O s / M g F 2 T i 0 2 film 200 nm, S i 0 2 film 20 on transparent glass surface nm are sequentially deposited, ITO layer 2 0 0 nm on the back surface of the transparent glass, T a 25 film 2 7 0 η m, M g F 2 film 1 3 0 nm sequentially deposited anti-fog element.
第 6図〜第 9図に示すように、 反射防止薄膜 (積層) を有することに より、 可視光線領域における透過率が高く なり、 導電性薄膜における反 射が防止されていることが見出された (B 7〜: B 1 0 参照) 。 また、 本発明の第 4の実施形態を第 2図 ( c ) に示す。 第 2図 ( c ) に示すように、 防曇素子 1は、 透明基板部材 2 と、 親水性薄膜 3 と、 導 電性薄膜 4 とを有すると共に、 透明基板部材 2 と導電性薄膜 4の間に設 けられた第 2中間薄膜 7を有する。 以下、 各構成について詳細に説明す る。 なお、 透明基板部材 2、 親水性薄膜 3、 導電性薄膜 4は前記 ( 1 ) 〜 ( 3 ) と同様の構成であるので説明を省略する。  As shown in FIGS. 6 to 9, it was found that the presence of the anti-reflection thin film (lamination) increased the transmittance in the visible light region, and prevented reflection in the conductive thin film. (See B7-: B10). FIG. 2 (c) shows a fourth embodiment of the present invention. As shown in FIG. 2 (c), the anti-fogging element 1 has a transparent substrate member 2, a hydrophilic thin film 3, and a conductive thin film 4, and has a structure between the transparent substrate member 2 and the conductive thin film 4. It has a second intermediate thin film 7 provided on the substrate. Hereinafter, each configuration will be described in detail. Note that the transparent substrate member 2, the hydrophilic thin film 3, and the conductive thin film 4 have the same configurations as in the above (1) to (3), and thus description thereof will be omitted.
( 7 ) 第 2中間薄膜  (7) Second intermediate thin film
第 2中間薄膜 7は、 その屈折率が透明基板部材 2の屈折率と導電性薄 膜 4の屈折率の中間の値を有する。 そして、 その屈折率が透明基板部材 2の屈折率より も大きく、 かつ導電性薄膜 4の屈折率よ り も小さく構成 されていることが好ましく、 例えば、 A 1 203、 WO M g O等の無機 酸化物、 A 1203 と L a との混合物等の複合無機酸化物またはこれらを 組み合わせた透明物を含む。 この第 2中間薄膜 7を設けることによ り、 前記 ( 3 ) の導電性薄膜 4での反射を抑制することができる。 この第 2 中間薄膜 7の成膜方法は、 前記親水性薄膜 3 と同様な P VD法、 C VD 法等で行う ことが好ましい。 また、 第 2中間薄膜 7は前記の無機酸化物 、 複合無機酸化物、 またはこれらを組み合わせたものを含む薄膜を複数 積層し、 積層の薄膜全体で透明基板部材 2 の屈折率と導電性薄膜 4の屈 折率との中間の屈折率を持つものでも、 単層の薄膜であってもよい。 The refractive index of the second intermediate thin film 7 has an intermediate value between the refractive index of the transparent substrate member 2 and the refractive index of the conductive thin film 4. And the refractive index of the transparent substrate member Greater than 2 of the refractive index, and is preferably is also smaller configuration Ri by the refractive index of the conductive thin film 4, for example, A 1 2 0 3, WO M g inorganic oxides such as O, A 1 2 0 Includes composite inorganic oxides such as a mixture of 3 and La, or transparent materials combining these. By providing the second intermediate thin film 7, the reflection at the conductive thin film 4 of (3) can be suppressed. This second intermediate thin film 7 is preferably formed by a PVD method, a CVD method, or the like, similar to the method for forming the hydrophilic thin film 3. The second intermediate thin film 7 is formed by laminating a plurality of thin films containing the above-described inorganic oxide, composite inorganic oxide, or a combination thereof, and the refractive index of the transparent substrate member 2 and the conductive thin film 4 It may have a refractive index intermediate between the refractive index of the film and a single-layer thin film.
そして、 この第 2中間薄膜 7の膜厚は、 反射防止効果を考慮して 5〜 2 0 0 n mが好ましい。 膜厚が前記範囲外であると、 導電性薄膜 4での 反射抑制効果が小さくなりやすく、 導電性薄膜 4の反射像が防曇素子 1 を透過した画像に写り込みやすくなる。  The thickness of the second intermediate thin film 7 is preferably 5 to 200 nm in consideration of the antireflection effect. If the film thickness is outside the above range, the effect of suppressing reflection at the conductive thin film 4 tends to be small, and the reflection image of the conductive thin film 4 tends to be reflected on the image transmitted through the anti-fog element 1.
第 1 0図に防曇素子の分光透過率特性図を示した。 図中の (A) は第 2中間薄膜を有していない防曇素子の分光透過率特性図、 (B 1 1 ) は 第 2中間薄膜を有する本発明の防曇素子の分光透過率特性図である。 第 1 0図は、 第 2中間薄膜と して A 123膜を使用した例であり、 ( A) S i 02ZT i 02 ガラス / I TO FIG. 10 shows a spectral transmittance characteristic diagram of the anti-fog element. In the figure, (A) is a spectral transmittance characteristic diagram of the anti-fogging element without the second intermediate thin film, and (B 11) is a spectral transmittance characteristic diagram of the anti-fogging element of the present invention having the second intermediate thin film. It is. The first 0 figure as the second intermediate thin an example using A 1 23 film, (A) S i 0 2 ZT i 0 2 glass / I TO
第 3図の (A) と同様な構成の防曇素子。  Antifogging element having the same configuration as (A) in Fig. 3.
( B 1 1 ) S i ο2/τ i 〇2Zガラス Z A 12o3Z I T O (B 1 1) S i ο 2 / τ i 〇 2 Z glass ZA 1 2 o 3 ZITO
透明ガラスの表面に T i 02膜 2 0 0 n m、 S i 02膜 2 0 n mを順次 成膜し、 透明ガラスの裏面に A 1203膜 5 O n m、 1 丁〇膜 2 0 0 11 111 を順次成膜した防曇素子。 なお、 屈折率は、 S i 02 が 1 . 4 6、 T i O 2 が 2. 3 5、 ガラスが 1. 5 2、 A 1 203 力 1 . 6 7、 I T Oが 2 . 0 6である。 第 1 0図に示すように、 第 2中間薄膜を有することにより、 可視光線 領域における透過率が高くなり、 導電性薄膜での反射が防止されている ことが見出された (B 1 1参照) 。 なお、 本発明は前記第 1〜第 4 の実施形態に限定されず、 例えば、 第 2の実施形態 (第 2図 ( a ) ) に第 2中間薄膜 7を追加した構成、 第 3 の実施形態 (第 2図 (b ) ) に第 1 中間薄膜 6および第 2中間薄膜 7の 少なく とも一方を追加した構成、 第 4の実施形態 (第 2図 ( c ) ) に第 1中間薄膜 6を追加した構成であってもよい。 産業上の利用可能性 T i 0 2 film 2 0 0 nm on a surface of a transparent glass, S i 0 2 film successively deposited 2 0 nm, A 1 2 0 3 film 5 O nm on the back surface of the transparent glass, 1 chome 〇 film 2 0 An antifogging element in which 0 11 111 is sequentially formed. The refractive index, S i 0 2 is 1. 4 6, T i O 2 is 2.3 5, glass 1. 5 2, A 1 2 0 3 force 1. 6 7, ITO is 2.0 6 It is. As shown in FIG. 10, it was found that the presence of the second intermediate thin film increased the transmittance in the visible light region and prevented reflection on the conductive thin film (see B11). ). The present invention is not limited to the first to fourth embodiments. For example, a configuration in which a second intermediate thin film 7 is added to the second embodiment (FIG. 2A), a third embodiment (FIG. 2 (b)) in which at least one of first intermediate thin film 6 and second intermediate thin film 7 is added. First intermediate thin film 6 is added in the fourth embodiment (FIG. 2 (c)). The configuration may be as follows. Industrial applicability
この第 1の発明によれば、 親水性薄膜により、 透明基板部材の表面側 に付着した水滴が蒸発し、 曇りの発生が防止される。 また、 親水性薄膜 の光触媒反応物質により、 親水性薄膜の親水性が低下せず、 防曇性が維 持される。 また、 導電性薄膜によ り、 透明基板部材の裏面側に付着した 水滴が蒸発し、 曇りの発生が防止される。 その結果、 優れた防曇性が要 求されるカメラ用フードガラスに代表される防曇素子に適用することが できる。 また、 反射防止薄膜によ り、 屈折率の差から生じる導電性薄膜 での反射が抑制され、 防曇素子を透過した画像に導電性薄膜の反射像が 写り こむことがなくなり、 良好な画像が要求されるカメラ用フードガラ スに代表される防曇素子に適用することができる。 さ らに、 導電性薄膜 および反射防止薄膜の耐久性を考慮する必要がないことにより、 構成材 料の制限がなくなり、 低いコス トが要求されるカメラ用フードガラスに 代表される防曇素子に適用するこ とができる。 また、 この第 2の発明によれば、 第 1 中間薄膜によ り、 屈折率の差か ら生じる親水性薄膜での反射が抑制され、 防曇素子を透過した画像に親 水性薄膜の反射像が写り こむことがなくなり、 良好な画像が要求される カメラ用フードガラスに代表される防曇素子に適用することができる。 また、 この第 3の発明によれぱ、 反射防止薄膜の積層構造によ り、 可 視光線領域の反射防止効果が大きく なり、 防曇素子を透過した画像が現 実の画像に近くなる。 その結果、 良好な画像が要求されるカメラ用フー ドガラスに代表される防曇素子に適用することができる。 また、 この第 4の発明によれば、 第 2中間薄膜によ り、 屈折率の差か ら生じる導電性薄膜の反射が抑 jされ、 防曇素子を透過した画像に導電 性薄膜の反射像が写り こむことがなくなり、 良好な画像が要求される力 メラ用フードガラスに代表される防曇素子に適用することができる。 According to the first aspect, the hydrophilic thin film evaporates water droplets adhered to the surface side of the transparent substrate member, thereby preventing clouding. Further, the photocatalytic reaction substance of the hydrophilic thin film does not decrease the hydrophilicity of the hydrophilic thin film, and maintains the anti-fogging property. In addition, the conductive thin film prevents water droplets adhering to the back surface of the transparent substrate member from evaporating, thereby preventing fogging. As a result, the present invention can be applied to an anti-fog element typified by a hood glass for a camera which requires excellent anti-fog properties. In addition, the anti-reflection thin film suppresses reflection at the conductive thin film caused by a difference in refractive index, and prevents a reflected image of the conductive thin film from being reflected on an image transmitted through the anti-fog element, thereby providing a good image. It can be applied to anti-fog elements such as required camera hood glass. Furthermore, since there is no need to consider the durability of the conductive thin film and anti-reflective thin film, there are no restrictions on the constituent materials, and the anti-fog element represented by camera hood glass, which requires low cost, is required. Can be applied. Further, according to the second invention, the difference in the refractive index can be reduced by the first intermediate thin film. Reflection of the hydrophilic thin film that occurs is suppressed, and the reflected image of the hydrophilic thin film does not appear in the image transmitted through the anti-fog element, and a good image is required. It can be applied to devices. According to the third aspect of the present invention, the laminated structure of the anti-reflection thin film enhances the anti-reflection effect in the visible ray region, and the image transmitted through the anti-fog element becomes closer to the real image. As a result, the present invention can be applied to an anti-fog element typified by a camera hood glass requiring a good image. According to the fourth aspect, the reflection of the conductive thin film caused by the difference in the refractive index is suppressed by the second intermediate thin film, and the reflected image of the conductive thin film is displayed on the image transmitted through the anti-fog element. This can be applied to an anti-fog element typified by a hood glass for a camera that requires no good image.

Claims

請 求 の 範 囲 The scope of the claims
1 . 透明基板部材と、 1. A transparent substrate member,
前記透明基板部材の表面側に設けられ、 光触媒反応物質および親水性 物質を含む透明な親水性薄膜と、  A transparent hydrophilic thin film provided on the surface side of the transparent substrate member and containing a photocatalytic reactant and a hydrophilic substance;
前記透明基板部材の裏面側に設けられ、 導電性物質を含む透明な導電 性薄膜と、  A transparent conductive thin film provided on the back side of the transparent substrate member and containing a conductive substance;
前記導電性薄膜のさらに裏面側に設けられ、 低屈折率物質を含む透明 な反射防止薄膜とを有することを特徴とする防曇素子。  An anti-fog element comprising: a transparent anti-reflection thin film further provided on the back side of the conductive thin film and containing a low refractive index substance.
2 . 前記透明基板部材と前記親水性薄膜の間に透明な第 1中間薄膜が 設けられ、 その第 1中間薄膜の屈折率が、 前記親水性薄膜の屈折率と前 記透明基板部材の屈折率の中間の値を有することを特徴とする請求の範 囲第 1項に記載の防曇素子。  2. A transparent first intermediate thin film is provided between the transparent substrate member and the hydrophilic thin film, and the refractive index of the first intermediate thin film is determined by the refractive index of the hydrophilic thin film and the refractive index of the transparent substrate member. The anti-fogging element according to claim 1, wherein the anti-fogging element has an intermediate value of the following.
3 . 前記反射防止薄膜が 2つ以上の薄膜を積層した積層構造を有する ものであることを特徴とする請求の範囲第 1項に記載の防曇素子。  3. The anti-fogging element according to claim 1, wherein the anti-reflection thin film has a laminated structure in which two or more thin films are laminated.
4 . 透明基板部材と、 4. A transparent substrate member,
前記透明基板部材の表面側に設けられ、 光触媒反応物質および親水性 物質を含む透明な親水性薄膜と、  A transparent hydrophilic thin film provided on the surface side of the transparent substrate member and containing a photocatalytic reactant and a hydrophilic substance;
前記透明基板部材の裏面側に設けられた透明な第 2中間薄膜と、 前記第 2中間薄膜のさらに裏面側に設けられ、 導電性物質を含む透明 な導電性薄膜とを有し、  A transparent second intermediate thin film provided on the back side of the transparent substrate member, and a transparent conductive thin film further provided on the back side of the second intermediate thin film and containing a conductive substance,
前記第 2中間薄膜の屈折率が、 前記透明基板部材の屈折率と前記導電 性薄膜の屈折率の中間の値を有することを特徴とする防曇素子。  The anti-fogging element, wherein a refractive index of the second intermediate thin film has an intermediate value between a refractive index of the transparent substrate member and a refractive index of the conductive thin film.
PCT/JP2003/016109 2003-12-16 2003-12-16 Antifogging element WO2005059600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016109 WO2005059600A1 (en) 2003-12-16 2003-12-16 Antifogging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016109 WO2005059600A1 (en) 2003-12-16 2003-12-16 Antifogging element

Publications (1)

Publication Number Publication Date
WO2005059600A1 true WO2005059600A1 (en) 2005-06-30

Family

ID=34685694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016109 WO2005059600A1 (en) 2003-12-16 2003-12-16 Antifogging element

Country Status (1)

Country Link
WO (1) WO2005059600A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443663A (en) * 2011-03-25 2013-12-11 Hoya株式会社 Plastic lens
CN108419005A (en) * 2018-05-15 2018-08-17 深圳云行智能科技有限公司 Antifog photographic device and vending equipment based on graphene heating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957358A (en) * 1988-01-19 1990-09-18 Canon Kabushiki Kaisha Antifogging film and optical element using the same
US5854708A (en) * 1996-07-26 1998-12-29 Murakami Corporation Anti-fog element
US20020187371A1 (en) * 1999-03-23 2002-12-12 Tatsuji Nakajima Process for producing laminated film and reflection reducing film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957358A (en) * 1988-01-19 1990-09-18 Canon Kabushiki Kaisha Antifogging film and optical element using the same
US5854708A (en) * 1996-07-26 1998-12-29 Murakami Corporation Anti-fog element
US20020187371A1 (en) * 1999-03-23 2002-12-12 Tatsuji Nakajima Process for producing laminated film and reflection reducing film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443663A (en) * 2011-03-25 2013-12-11 Hoya株式会社 Plastic lens
US9022585B2 (en) 2011-03-25 2015-05-05 Hoya Corporation Plastic lens
CN108419005A (en) * 2018-05-15 2018-08-17 深圳云行智能科技有限公司 Antifog photographic device and vending equipment based on graphene heating

Similar Documents

Publication Publication Date Title
JP3593682B2 (en) Driver's side mirror and car outer mirror
JP6157623B2 (en) Laminated glass with optically switchable optical properties
JP4837654B2 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
JP5247695B2 (en) Glazing-type electrochemical and / or electrically controllable element with variable optical and / or energy characteristics
JP4782283B2 (en) Glazing with optically / optically controllable optical / energy properties
US8187682B2 (en) Protective glass against ionizing radiation
JP3622585B2 (en) Articles having photocatalytic activity
JP5105140B2 (en) All-solid-state reflective dimming electrochromic device and dimming member using the same
ES2573934T3 (en) A sunscreen film
TWI276613B (en) Composite material
JPH0380100B2 (en)
EP1003067A2 (en) Electrochromic device
WO2011083734A1 (en) All-solid-state reflective dimming electrochromic element sealed with protective layer, and dimming member comprising same
JP2009516226A (en) Electrochemical system on plastic substrate
TW201003270A (en) A light weight electrochromic mirror stack
JP2009544987A (en) Glass-type electrochemical / electrically controllable element with variable optical and / or energy characteristics
US9112076B2 (en) Glass substrate manufacturing method and glass thereof
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
JPWO2002100634A1 (en) Anti-fog element and method for forming the same
CN103635756A (en) Corrosion resistant solar mirror
JP2008506998A (en) Non-oxidizing electrolyte electrochemical system
WO2008075695A1 (en) All solid state type reflection light control electrochromic element employing magnesium/titanium alloy and light control member
CN101379224A (en) Optical coatings with narrow conductive lines
WO2011125949A1 (en) Coating liquid and substrate
JPWO2002100633A1 (en) Anti-fog element and method for forming the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP