WO2005059573A1 - Current measuring equipment and power supply comprising it - Google Patents

Current measuring equipment and power supply comprising it Download PDF

Info

Publication number
WO2005059573A1
WO2005059573A1 PCT/JP2004/006773 JP2004006773W WO2005059573A1 WO 2005059573 A1 WO2005059573 A1 WO 2005059573A1 JP 2004006773 W JP2004006773 W JP 2004006773W WO 2005059573 A1 WO2005059573 A1 WO 2005059573A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
current measuring
current
winding
primary winding
Prior art date
Application number
PCT/JP2004/006773
Other languages
French (fr)
Japanese (ja)
Inventor
Masaji Haneda
Original Assignee
Ntt Data Ex Techno Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Ex Techno Corporation filed Critical Ntt Data Ex Techno Corporation
Publication of WO2005059573A1 publication Critical patent/WO2005059573A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core

Definitions

  • the present invention relates to a current measurement device and a power supply device having current measurement means, and more particularly to a current measurement device and a current measurement device that realize accurate current measurement with a simple configuration.
  • the present invention relates to a power supply device having current measuring means.
  • Non-Patent Document 1 When measuring the current flowing through a load connected to a commercial power supply, a CT (current transformer) or the like is often used (for example, Non-Patent Document 1).
  • CT current transformer
  • an object of the present invention is to provide a power measuring device capable of performing accurate current measurement without modifying existing equipment. It is another object of the present invention to provide a power supply device having current measuring means capable of suppressing an increase in the volume and scale of the device and enabling accurate current measurement. Disclosure of the invention In the current measuring device according to the present invention, a primary winding to which an AC input is input, and a secondary winding magnetically coupled to the primary winding and supplying a required AC output to a load connected thereto A current measuring device for measuring a load current flowing through the load, the primary winding being connected to both ends of a primary winding of the power supply transformer.
  • a secondary winding having one end connected to one end of a secondary winding of the power transformer, wherein the turns ratio of the primary winding to the secondary winding is equal to the number of turns of the power transformer.
  • a current measuring transformer having substantially the same ratio as the current measuring transformer, wherein the other end of the secondary winding of the current measuring transformer and a terminal connected to the other end of the secondary winding of the power transformer are used for measuring the current. It is a terminal.
  • a current measuring transformer having a primary winding and a secondary winding is provided in the current measuring device, and the primary winding of the current measuring transformer is connected to both ends of the primary winding of the power transformer.
  • one end of the secondary winding of the current measuring transformer is connected to one end of the secondary winding of the power transformer. If the turns ratio between the primary winding and the secondary winding of this current measuring transformer is set to be substantially the same as the turns ratio of the power transformer, the other end of the secondary winding of the current measuring transformer, By using a terminal connected to the other end of the secondary winding of the power transformer and a current measuring terminal consisting of a force, the load current flowing through the load can be measured.
  • the current measuring device is characterized in that the current measuring device further comprises a transformer inserted between the current measuring terminals.
  • the detection sensitivity can be improved by the transformer inserted between the current measuring terminals.
  • a required AC output is supplied to each of a primary winding to which an AC input is input, and a plurality of loads magnetically coupled to and connected to the primary winding.
  • a current measuring device connected to a power supply device having a plurality of secondary windings, each of which measures a load current flowing through the load.
  • Connected primary winding and the power transformer A plurality of secondary windings each having one end connected to one end of each of the plurality of secondary windings, and a turn ratio between the primary winding and the plurality of secondary windings is provided.
  • a current measuring transformer having substantially the same turns ratio as each of the power transformers; and the other end of each of the plurality of secondary windings of the current measuring transformer; and each of the secondary windings of the power transformer.
  • Each of the terminals connected to the other end of the first and second terminals is a current measuring terminal for measuring the load current.
  • a current measuring transformer having a primary winding and a plurality of secondary windings is provided in the current measuring device, and the primary winding of the current measuring transformer is provided at both ends of the primary winding of the power transformer.
  • One end of each of the plurality of secondary windings of the current measuring transformer is connected to one end of each of the plurality of secondary windings of the power transformer. If the turns ratio of the primary winding of the current measurement transformer and the plurality of secondary windings is set to be substantially the same as the turns ratio of each of the power supply transformers, a plurality of the current measurement transformers can be obtained.
  • the load current flowing through each load is measured using the current measurement terminals consisting of the other ends of the secondary windings and the terminals connected to the other ends of the secondary windings of the power transformer. can do.
  • the current measuring device is characterized in that the current measuring device further comprises a transformer inserted between the current measuring terminals.
  • the detection sensitivity can be improved by the transformer inserted between the current measuring terminals.
  • a primary winding connected in parallel to the AC input source one end is connected to one end of the AC input source while being magnetically coupled to the primary winding
  • a measurement device comprising: a primary winding connected to both ends of a primary winding of the AVR transformer; and a secondary winding having one end connected to one end of a secondary winding of the AVR transformer.
  • the turn ratio between the primary winding and the secondary winding is A current measuring transformer having substantially the same turns ratio as that of the power transformer; connected to the other end of the secondary winding of the current measuring transformer and the other end of the secondary winding of the AVR transformer;
  • the terminal is a current measurement terminal.
  • a current measuring transformer having a primary winding and a secondary winding is provided in the current measuring device, and the primary winding of the current measuring transformer is connected to both ends of the primary winding of the AVR transformer.
  • one end of the AVR transformer is connected to one end of the secondary winding of the current measuring transformer.
  • the turns ratio between the primary winding and the secondary winding of the current measuring transformer is substantially the same as the turns ratio of the AVR transformer, and the other end of the secondary winding of the current measuring transformer and the secondary winding of the AVR transformer.
  • the load current flowing through the load can be measured using the current measuring terminal including the terminal connected to the other end of the winding.
  • the current measuring device is characterized in that the current measuring device further comprises a transformer inserted between the current measuring terminals.
  • the detection sensitivity can be improved by the transformer inserted between the current measuring terminals.
  • a primary winding connected in parallel to an AC input source, one end of one end of the AC input source magnetically coupled to the primary winding and one end of the primary winding.
  • a secondary winding for supplying a step-up / step-down AC output to a load connected to the other end, magnetically coupled to the primary winding and having one end connected to one end of the secondary winding
  • An AVR transformer having a tertiary winding is provided, wherein the turns ratio between the primary winding and the secondary winding and the turns ratio between the primary winding and the tertiary winding are substantially the same.
  • the terminal connected to the other end of the secondary winding of the AVR transformer and the other end of the tertiary winding are current measurement terminals.
  • a tertiary winding that is magnetically coupled to the primary winding and that has a turns ratio to the primary winding set to be substantially the same as the turns ratio between the primary winding and the secondary winding.
  • One end of this tertiary winding is connected to one end of the secondary winding, and the load current flowing through the load is measured using the other end of the secondary winding and the current measuring terminal consisting of the other end of the tertiary winding and a force. Can be measured it can.
  • the power supply device having the current measuring means according to the next invention is characterized in that the power supply device further comprises a transformer inserted between the current measuring terminals.
  • the detection sensitivity can be improved by the transformer inserted between the current measuring terminals.
  • FIG. 1 is a diagram showing a circuit configuration of a current measuring device according to a first embodiment connected to a power supply device.
  • FIG. 2 is a diagram showing an embodiment connected to a power supply device having a plurality of power transformers.
  • FIG. 3 is a diagram illustrating a circuit configuration of a current measuring device according to the second embodiment
  • FIG. 3 is a diagram illustrating a circuit configuration of the current measuring device according to the third embodiment connected to a power supply device
  • FIG. FIG. 5 is a diagram illustrating a circuit configuration of a current measuring device according to a fourth embodiment in which an AVR power supply device having an AVR transformer is connected.
  • FIG. FIG. 6 is a diagram showing a circuit configuration of a current measuring device according to Embodiment 5
  • FIG. 6 is a diagram showing a power supply device according to Embodiment 6 including current measuring means inside an AVR power supply device having an AVR transformer.
  • FIG. 3 is a diagram illustrating a circuit configuration. BEST MODE FOR CAR
  • Embodiment 1
  • FIG. 1 is a diagram showing a circuit configuration of a current measuring device 20 according to the first embodiment connected to a power supply device 10.
  • both ends of a primary winding T 1 of a power transformer T 1 are respectively connected to input terminals IT and IT 2 to which an AC input (AC input) is applied.
  • the secondary winding T 1 2 of both ends of the power transformer T 1 the load is connected to the output terminal Omicron T There ⁇ T 2 to be connected. That is, in FIG. 1, the configuration in which the current measuring device 20 is not connected indicates a general configuration in which an AC input is supplied from a power supply device to a load.
  • Both ends of the primary winding T 2 of the current measuring transformer T 2 of the current measuring device 20 are connected to input terminals IT ⁇ and IT 2 to which an AC input is applied, respectively.
  • secondary ⁇ T 2 2 one end of current measurement transformer T 2 the secondary ⁇ T 2 2 at the other end of the force current measuring transformer T 2 which is connected to the output terminal Omicron T ⁇ is Connected to the current measurement terminal DTJ.
  • the output terminal ⁇ ⁇ 2 is also used as the current measurement terminal DT 2 .
  • the terminals drawn from the power supply 10 are connected to the AC input terminal and the load connection. This is a feature that only the output terminal for the power supply device can be added to the power supply device 10 and that there is no need to modify the existing power supply device 10 at all.
  • the black circles attached to the power source transformer T1 and the current measurement transformer T2 indicate the direction (polarity) of the induced voltage induced in each winding. Is shown. For example, if the positive and made Kino Mukai voltage black circle side of the power supply primary winding T 1 of the transformer T 1 is induced becomes positively black circle side of the power transformer T 1 of the secondary ⁇ T 1 2 Voltage is induced in the primary winding T 1 of the transformer T 1, on the black circle side. When the voltage of the orientation becomes negative it is induced shows that secondary ⁇ T 1 2 of the voltage of the orientation becomes negative in black circle side of the power transformer T 1 is induced.
  • the load current is i, the internal resistance of the power transformer T 1 of the secondary side including the ⁇ resistance of the secondary ⁇ T l 2 and r, from the primary ⁇ T two winding T 1 2 in if the magnetic resistance of a magnetic circuit for magnetically coupling a r m, the output terminal OT ⁇ , voltage generated between Omikurontau 2 becomes ⁇ V i / n- ix (r m + r) ⁇ .
  • the current measuring device 20 is wherein the voltage generated in the primary ⁇ T 2 i of the current measuring transformer T 2, the voltage generated in the secondary winding T 2 2 (V i / n). Further, even if the load current flows, since the secondary ⁇ T 2 2 almost no current flows through the output terminal OT, the voltage generated between the current measurement terminal DT remains (Vi / n).
  • the current measuring device only has a current measuring transformer.
  • each of the current measuring device includes an AC input input terminal and an AC output output terminal of the power supply device. Simply pull out the terminal and connect it to the current measurement transformer, so the load current can be measured without modifying existing equipment.
  • the current measuring device of this embodiment even when a large current flows through the load, a large current flows through the current measuring circuit including the current measuring winding of the current measuring transformer. Since there is no such problem, it is possible to suppress an increase in the volume and scale of the device. Further, since performing a current measurement depends only on the internal resistance r and the magnetic resistance r m of the power supply transformer secondary, without a child depends on the size and load of the type of the load current, accurate current measurement It can be performed.
  • the calculation was performed assuming that the turns ratio is the same as n, but this turns ratio n does not need to be the same, and when no load current is flowing, the turns are output from both turns.
  • the voltage can be adjusted evenly by dividing the voltage with a resistor, etc., and by using (comparing) this voltage, the load current can be measured with the required accuracy.
  • FIG. 2 is a diagram showing a circuit configuration of a current measuring device 20a according to a second embodiment connected to a power supply device 11 having a plurality of power supply transformers.
  • the circuit shown in the figure the primary winding T 3 of ⁇ ratio n 3, power transformer T 3 each having magnetically coupled secondary winding T 3 21 ⁇ T 3 2m to the primary ⁇ T 3 i the power supply 1 1 provided with a same configuration as the power transformer T 3, and each ⁇ ratio is the same, the primary winding T 4 and the secondary winding T 4 2 ⁇ Ding 4 2m And a current measuring transformer T 4.
  • the current measuring device 20a in the power supply device 11 having a built-in power supply circuit for generating a plurality of power supply voltages, detects a current flowing through a load connected to each of these power supply circuits. It is for individual measurement.
  • both ends of a primary winding T 3 of a power transformer T 3 are connected to input terminals IT and IT 2 to which an alternating current (AC) input is applied.
  • Each ends of the power transformer T 1 of the secondary winding T 3 21 ⁇ T 3 2m is output ⁇ the load is connected, " ⁇ _T 12 to the output terminal OT ml, is connected to each of OT m @ 2 You.
  • Both ends of the primary winding T 4 J of the current measuring transformer T 4 of the current measuring device 20 are connected to input terminals IT and IT 2 to which an AC input is applied, respectively.
  • One end of the secondary winding T 4 2 i of current measurement transformer T 4 is connected to the output terminal Omikurontau ⁇ , amperometric transformer T 4 of the secondary ⁇ T 4 2! Is connected to the current measurement terminal D ⁇ i.
  • one end of the secondary winding T 4 2m of the current measuring transformer T 4 is connected to the output terminal OT ml, and the other end of the secondary winding T 4 2m of the current measuring transformer T 4 is connected to the current Connected to the measurement terminal DT ml .
  • the connection configuration of the second embodiment is the same as the connection configuration of the first embodiment.
  • the output terminal OTU when the load between the OT ⁇ 2 is flow connected to the load current, (also used as an output terminal OT 12) current measuring terminal DT ⁇ and the current measurement terminal DT 12 and the Between them, a voltage proportional to the load current is generated.
  • This voltage is By dividing by the sum of the internal resistance of the secondary side of the lance T3 and the magnetic resistance, the load current of each of the load currents connected to the secondary winding ⁇ 3 2 1 to ⁇ 32 m of the power transformer ⁇ 3 can be calculated. The value can be determined.
  • the current measuring device is a power supply device having a built-in power supply circuit for generating a plurality of power supply voltages. Can be measured individually, so the load current can be measured without modifying existing equipment.
  • Embodiment 2 even when a large current flows through the load, a large current does not flow through each current measurement circuit including the current measurement winding of the current measurement transformer. The increase in the volume and scale of the device can be suppressed. Even when multiple loads are connected to different power transformers, current measurement can be performed only depending on the internal resistance and magnetic resistance on the secondary side of each power transformer. Accurate current measurement can be performed without depending on the magnitude of the current or the type of load.
  • the calculation was performed assuming that the turns ratio is the same as n.
  • the turns ratio n does not need to be the same, and when no load current is flowing, output is made from both windings.
  • the voltage can be adjusted evenly by dividing the voltage with a resistor, etc., and by using (comparing) this voltage, the load current can be measured with the required accuracy.
  • FIG. 3 is a diagram illustrating a circuit configuration of a current measuring device 20b according to the third embodiment connected to a power supply device 10.
  • the circuit shown in the figure has in the current measuring device 2 0 b of the first embodiment shown in FIG. 1, the primary winding T 5 i and a secondary winding T 5 2 to increase the sensitivity of the current measurement It is configured with a transformer T5.
  • Other configurations are the same or equivalent to those of the first embodiment, and the same reference numerals are given to these portions.
  • a voltage proportional to the load current is generated at both ends of the primary winding T5i of the transformer T5.
  • transformation transformer T connected across the secondary winding T 5 2 5 current measuring terminal DT ⁇ - The DT 2 can be generated k times the voltage of the voltage proportional to the load current . Therefore, the current measuring device 20b of this embodiment can realize current measurement with increased measurement sensitivity.
  • FIG. 4 is a diagram showing a circuit configuration of a current measuring device 22 according to the fourth embodiment connected to an AVR power supply device 12 having an AVR (Automatic Voltage Regulator) transformer.
  • the circuit shown in the figure turns ratio n (n: 1) of the AVR power supply 12 with a AVR transformer T6 having a primary winding T 6 and secondary winding T 6 2,
  • a VR transformer T 6 and Certificates has a structure in which current measurement transformer T 7 having a primary winding T 7 i and the secondary winding T 7 2 number ratio is the same is connected.
  • both ends of the primary winding of the AVR transformer T6 are connected to input terminals I 1 ⁇ and IT 2 to which an AC input is applied, respectively.
  • the secondary winding T 6 2 at one end of the AVR transformer T 6 is connected to the input terminal I 1, the other end is connected to the output terminal.
  • both ends of the primary winding T 7i of the current measuring transformer T 7 are connected to input terminals IT ⁇ and IT 2 to which AC input is applied, respectively.
  • secondary ⁇ T 7 2 of one end of a current measuring transformer T 2 are, AVR Secondary ⁇ T 6 2 end of transformer T 6 (or terminal end and the same potential of the secondary winding T 6 2) are connected to the secondary ⁇ T amperometric transformer T 7 7 2 of the other end is connected to the current measuring terminal DT 2.
  • the current measuring device 22 similarly to the current measuring device 20 shown in the first embodiment in FIG. 1, the current measuring device 22 according to this embodiment has the terminal force drawn from the AVR power supply 12 and the AC input terminal and the load. Since it is only an output terminal for connection and can be configured to be added to the power supply 10, it has a feature that it is not necessary to modify the existing power supply 10 at all.
  • the black circles attached to the AVR transformer T6 and the current measuring transformer T2 indicate the induced voltage of each winding as in the transformers shown in FIG. It indicates the direction (polarity).
  • connection of the AVR transformer T 6 shown in FIG. 4 shows a connection state when stepping down the AC input, the connection state of the primary winding T 6 i and a secondary winding T 6 2 positive if the state, when boosting the AC input, reverse polarity connection state, i.e., if connected to the induced voltage generated in the secondary ⁇ T 6 2 is reversed in polarity to the drawing Good.
  • This connection switching is performed by a switching element or the like.
  • the connection state of the AVR transformer T6 is not directly related to the operation of the present invention, the following description will be made for the AVR transformer T6 connected as shown in FIG. This is performed using
  • the input terminal IT are in between IT 2 AC input (Vi) is applied, OT ⁇ output terminal, consider a state in which the load is connected between the ⁇ 2.
  • the voltage of Vi is generated in the primary ⁇ T 6 1 at both ends of the AVR transformer T 6, the both ends of the secondary ⁇ T 6 2 a voltage of generated (ViZn), the load current than secondary ⁇ T 6 2 itself to a voltage drop occurs, the output terminal OT ⁇ , the voltage between the Omikurontau 2 is the load current decreases below Itoki flow.
  • the load current is i, the internal resistance of the AVR transformer T 6 including ⁇ resistance of the secondary winding T 6 2 and r, magnetically coupled from the primary ⁇ T 6 i in the secondary winding T 6 2 if the reluctance of the magnetic circuit and r m, the voltage generated between the output terminal 01 ⁇ , OT 2 becomes ⁇ ⁇ ix (r m + r) (1 - - 1 / n) ⁇ .
  • the current measuring device 20 as described above, the voltage generated in the primary ⁇ T 7 i of the current measuring transformer T 7 is Vi, the voltage generated in the secondary winding T 7 2 (Vi / n). Further, even if the load current flows, since almost no current flows through the secondary winding T 7 2, current measuring terminal DT 2, the voltage generated between the output terminal OT 2 is ⁇ Vi X (1- 1 / n) ⁇ .
  • the current measuring device only has the current measuring transformer, and also draws out each terminal from the input terminal for AC input and the output terminal for AC output. Since it is only connected to a current measurement transformer, load current can be measured without modifying existing equipment.
  • load current can be measured without modifying existing equipment.
  • the current measuring device of this embodiment even when a large current flows through the load, a large current flows through the current measuring circuit including the current measuring winding of the current measuring transformer. Since there is no such problem, it is possible to suppress an increase in the volume and scale of the device. Further, since performing a current measurement depends only on the internal resistance r and the magnetic resistance r m including winding resistance of AVR transformer secondary winding T 6 2, depends on the size and load of the type of load current It is possible to perform accurate current measurement without performing.
  • the calculation was performed assuming that the turns ratio was the same as n, but this turns ratio n does not need to be the same, and when no load current is flowing, the winding force of the two is output.
  • the load current can be measured with the required accuracy by adjusting the voltage uniformly by dividing the voltage with a resistor and using (comparing) this voltage.
  • FIG. 5 is a diagram showing a circuit configuration of a current measuring device 22 a according to the fifth embodiment connected to an AVR power supply device 12 having an AVR (Automatic Voltage Regulator) transformer.
  • Other configurations are the same as or equivalent to those of the fourth embodiment.
  • the reference numerals are attached.
  • FIG. 6 is a diagram showing a circuit configuration of a power supply device according to a sixth embodiment including a current measuring means inside an AVR power supply device 12 having an AVR transformer.
  • Power supply device shown in the figure turns ratio n (n: 1) the primary winding T 6 i and a secondary winding T 6 2 to AVR transformer T6 that Yusuke of, is magnetically coupled to the primary ⁇ T 6, and the AVR power supply 12 ⁇ ratio with substantially the same tertiary ⁇ T 6 3, having AVR transformer T 6 and the turns ratio is the same primary winding T 7 i and the secondary winding T 7 2
  • the configuration is such that the current measurement transformer # 7 is connected.
  • both ends of the primary winding T6 # of the AVR transformer T6 are connected to input terminals I 1 and IT 2 to which an AC input is applied, respectively.
  • secondary ⁇ T 6 2 at one end of the A VR transformer T 6 is connected to the input terminal I, and the other end is connected to the output terminal.
  • a VR transformer end of the tertiary ⁇ T 6 3 of T 6 is the secondary winding T 6 2 at one end of the A VR transformer T 6 (or terminal of the secondary ⁇ T 6 2 at one end and the same potential) is connected to the other end is connected to the current measuring terminal DT 2.
  • the output terminal ⁇ ⁇ ⁇ is also used as the current measurement terminal DT ⁇ .
  • the output terminal - Between OT 2 Consider the case where AC input (Vi) is applied between the IT 2 have input terminals IT in a state where a load is not connected. At this time, AVR voltage of the primary winding T 6 i of the transformer T 6 is generated, the secondary winding T 6 2 Generates a voltage of (ViZn). Further, the tertiary winding T 6 3 voltage of the secondary winding T 6 2 the same one (Vi / n) is generated.
  • a voltage of (1-1 / n) is generated between the output terminals OT ⁇ and # 2 , as in the third embodiment. Moreover, the voltage generated between the current measuring terminal DT 2 _ output terminal OT 2, the output terminal OT ⁇ , is the same as the voltage generated between ⁇ 2, ⁇ V; x ( 1 - 1 / n) ⁇ becomes .
  • the voltage between the output terminals OT ⁇ OT 2 is equal to the voltage between the current measurement terminal DT 2 and the output terminal OT 2, so the voltage between the current measurement terminals DT and DT 2 is Does not occur. That is, when the load current does not flow, voltage is not generated in the interrogation of the current measuring terminal DT have DT 2.
  • the load current is i, the internal resistance of the A VR transformer T 6 including ⁇ resistance of the secondary winding T 6 2 and r, primary ⁇ T 6, the secondary ⁇ if the magnetic resistance of a magnetic circuit magnetically coupled to the T 6 2 and r m, output terminal OT ⁇ - voltage developed between OTs is, ⁇ V ⁇ (1 - 1 / n) - ix (r m + r) ⁇ .
  • the voltage generated in the tertiary ⁇ T 6 3 of AVR transformer T 6 is (V iZn), even if the load current flows, than most current in the tertiary ⁇ T 6 3 does not flow, the current
  • the voltage generated between the measurement terminal DT 2 and the output terminal OT 2 remains ⁇ V ⁇ (1-1 / n) ⁇ .
  • the power supply device of the present embodiment merely loads the tertiary winding for current measurement on the AVR transformer, and can measure the load current with a simple configuration.
  • the power supply device even when a large current flows through the load, a large current does not flow through the circuit including the tertiary winding for measuring the current. However, an increase in scale can be suppressed. Further, since performing a current measurement that depends only on the internal resistance r and the magnetic resistance r m including ⁇ resistance of the secondary winding T 6 2 AVR Bok lance, like the size and load of the type of load current Accurate current measurement can be performed without dependence.
  • the calculation was performed assuming that the turns ratio was the same as n, but the turns ratio n need not be the same, and when no load current is flowing, the outputs from both windings are output.
  • the load current can be measured with the required accuracy by adjusting the voltage uniformly by dividing the voltage with a resistor and using (comparing) this voltage.
  • the current measurement sensitivity can be configured to ⁇ between transformer transformer T 5 to have DT terminal current measurement DT 2 for increasing, for this case The effect of can be obtained.
  • the current measuring device and the power supply device having the current measuring means according to the present invention are useful as a current measuring device which can be easily attached to existing equipment and can accurately measure current.

Abstract

Current measuring equipment (20) for measuring a load current, which is connected with a power supply (10) comprising a power supply transformer (T1) having a primary winding (T11) receiving an AC input and a secondary winding (T12) coupled magnetically with the primary winding (T11) and supplying a required AC output to a load being connected. The current measuring equipment (20) comprises a current measuring transformer (T2) having a primary winding (T21) being connected across the primary winding (T11) of the power supply transformer (T1), and a secondary winding (T22) having one end being connected with the one end of the secondary winding (T12) of the power supply transformer (T1), the turn ratio between the primary winding (T21) and the secondary winding (T22) being substantially identical to that of the power supply transformer (T1). Terminals (DT1, DT2) connected with the other end of the secondary winding (T22) of the current measuring transformer (T2) and the other end of the secondary winding (T12) of the power supply transformer (T1) serve as current measuring terminals.

Description

電流測定装置および電流測定手段を有する電源装置 Current measuring device and power supply device having current measuring means
技術分野 Technical field
この発明は、 電流測定装置および電流測定手段を有する電源装置に関するもの であり、 特に、 簡易な構成で精度のよい電流測定を実現する電流測定装置および 明  The present invention relates to a current measurement device and a power supply device having current measurement means, and more particularly to a current measurement device and a current measurement device that realize accurate current measurement with a simple configuration.
電流測定手段を有する電源装置に関す 1る糸ものである。 書 The present invention relates to a power supply device having current measuring means. book
背景技術 Background art
平成 1 0年に改正され、 平成 1 1年 4月から施行されている 「エネルギーの使 用の合理化に関する法律」 (いわゆる、 「改正省エネルギー法」 ) によって、 国 家として、 省エネルギーに対する各種施策の推進活動が活発化している。 特に、 オフィスビル、 大規模小売店、 ホテル、 病院等の施設においては、 省エネルギー 対策の届出を義務付けるなどの措置が講ぜられている。 また、 ストーブ、 自動販 売機、 変圧器などが特定機器として新たに追加され、 従来から特定機器に指定さ れているエアコン、 テレビ、 電気冷蔵庫などの家電機器とともに一定以上の基準 エネルギー消費効率が求められるなど、 省エネルギーに対する技術基準の強化が 図られている。  Promoted various energy-saving measures as a national government, pursuant to the Law Concerning the Rational Use of Energy (Revised Energy Conservation Law), which was revised in 1999 and enforced in April 2001. Activities are increasing. In particular, facilities such as office buildings, large-scale retail stores, hotels, and hospitals are taking measures such as requiring notification of energy conservation measures. In addition, stoves, vending machines, transformers, etc., have been newly added as specific equipment, and together with home appliances such as air conditioners, televisions, and electric refrigerators that have been designated as specific equipment, a standard energy consumption efficiency above a certain level has been achieved. Technical standards for energy conservation are being strengthened.
一方、 消費電力の削減効果を正しく評価するためには、 精度のよい測定に基づ いた消費電力の算出が必要であり、 負荷に供給される供給電圧と負荷に流れる負 荷電流とを正確に測定する必要がある。 特に、 変動要素が大きく、 測定精度に多 大な影響を与える負荷電流を正確に測定することが重要となってくる。  On the other hand, in order to correctly evaluate the effect of reducing power consumption, it is necessary to calculate power consumption based on accurate measurement, and to accurately measure the supply voltage supplied to the load and the load current flowing through the load. Need to measure. In particular, it is important to accurately measure the load current, which has large fluctuation factors and greatly affects measurement accuracy.
ところで、 一般的に、 商用電源に接続された負荷に流れる電流を測定する場合 に、 通常は、 C T (電流トランス) などを用いることがよく行われる (例えば、 非特許文献 1など) 。 非特許文献 1 By the way, generally, when measuring the current flowing through a load connected to a commercial power supply, a CT (current transformer) or the like is often used (for example, Non-Patent Document 1). Non-patent document 1
"電力測定用センサの活用法 (CT · PTの技術動向) 、 (p. 1、 図 1) "、 村上義介、 (株) ユー 'アール ·ディー、 「ON L I NE」 、 「平成 1 5年 4月 2 1 日検索」 、 インタ一ネットく UR L : h t t p : //www. u— r d. c om/CT PT. h t m> しかしながら、 この電流トランスを用いる手法では、 測定精度が悪いという問 題点があった。 また、 大電流を測定する場合には、 磁気飽和を防止する必要があ り、 その結果、 装置自身が大型になるという欠点があった。  "Utilization of Sensors for Electricity Measurement (Technical Trends of CT and PT)," (p.1, Fig. 1) ", Yoshisuke Murakami, U.R.D.," ON LI NE "," 2005 April 21st search ”, UR L: http: // www. U—rd.com/CT PT. Htm> However, the method using this current transformer has poor measurement accuracy. There was a title. Also, when measuring a large current, it is necessary to prevent magnetic saturation, and as a result, there is a disadvantage that the device itself becomes large.
また、 負荷に対して直列に挿入した抵抗器を用いて、 正確な負荷電流を測定す るような手法も存在するが、 抵抗器自身の抵抗損による電流損失が増大すること により、 エネルギー消費効率が悪化するという問題点があった。 さらに、 電流ト ランスを用いる場合と同様に、 大電流を測定する場合には、 機器が大型化すると いう欠点があった。  There is also a method to measure the load current accurately using a resistor inserted in series with the load.However, the current loss due to the resistance loss of the resistor itself increases, resulting in energy consumption efficiency. There was a problem that it became worse. Furthermore, as in the case of using a current transformer, when measuring a large current, there is a disadvantage that the equipment becomes large.
また、 エネルギー消費効率の改善を目的として電力消費量の管理施策を推進す るためには、 今後製造される機器だけではなく既存の機器をも対象とする必要が あり、 この管理施策に必要なコスト抑制のためには、 既存の機器に対する改修を 行うことなく、 かつ、 正確な電流測定を可能とする電流測定装置として実現する ことも重要である。  In addition, in order to promote energy consumption management measures for the purpose of improving energy consumption efficiency, it is necessary to target not only equipment to be manufactured in the future but also existing equipment, and this management measure In order to control costs, it is also important to implement a current measurement device that can accurately measure current without modifying existing equipment.
このような状況に鑑み、 本発明は、 既存の機器に対する改修を行うことなく、 かつ、 正確な電流測定を可能とする電力測定装置を提供することを目的とするも のである。 また、 装置の容積、 規模の増加を抑制し、 かつ、 正確な電流測定を可 能とする電流測定手段を有する電源装置を提供することを目的とするものである。 発明の開示 この発明にかかる電流測定装置にあっては、 交流入力が入力される一次巻線と、 該一次卷線に磁気結合され、 接続される負荷に対して所要の交流出力を供給する 二次巻線とを具備する電源トランスを備えた電源装置に接続され、 該負荷に流れ る負荷電流を測定する電流測定装置であって、 前記電源卜ランスの一次巻線の両 端に接続される一次巻線と、 該電源卜ランスの二次巻線の一端に一端が接続され る二次巻線とを具備し、 該一次卷線と該二次巻線との卷数比が前記電源トランス の卷数比と略同一である電流測定用トランスを備え、 前記電流測定用トランスの 二次巻線の他端と、 前記電源トランスの二次巻線の他端に接続された端子とを電 流測定用端子とすることを特徴とする。 In view of such a situation, an object of the present invention is to provide a power measuring device capable of performing accurate current measurement without modifying existing equipment. It is another object of the present invention to provide a power supply device having current measuring means capable of suppressing an increase in the volume and scale of the device and enabling accurate current measurement. Disclosure of the invention In the current measuring device according to the present invention, a primary winding to which an AC input is input, and a secondary winding magnetically coupled to the primary winding and supplying a required AC output to a load connected thereto A current measuring device for measuring a load current flowing through the load, the primary winding being connected to both ends of a primary winding of the power supply transformer. And a secondary winding having one end connected to one end of a secondary winding of the power transformer, wherein the turns ratio of the primary winding to the secondary winding is equal to the number of turns of the power transformer. A current measuring transformer having substantially the same ratio as the current measuring transformer, wherein the other end of the secondary winding of the current measuring transformer and a terminal connected to the other end of the secondary winding of the power transformer are used for measuring the current. It is a terminal.
この発明によれば、 一次卷線と二次巻線とを有する電流測定用トランスが電流 測定装置に備えられ、 電流測定用トランスの一次巻線が電源卜ランスの一次巻線 の両端に接続され、 一方、 電流測定用トランスの二次巻の一端が電源トランスの 二次巻線の一端に接続される。 この電流測定用トランスの一次巻線と二次巻線と の卷数比が電源トランスの巻数比と略同一であるように設定すれば、 電流測定用 トランスの二次巻線の他端と、 電源トランスの二次卷線の他端に接続された端子 と力 らなる電流測定用端子を用レ、て負荷に流れる負荷電流を測定することができ る。  According to the present invention, a current measuring transformer having a primary winding and a secondary winding is provided in the current measuring device, and the primary winding of the current measuring transformer is connected to both ends of the primary winding of the power transformer. On the other hand, one end of the secondary winding of the current measuring transformer is connected to one end of the secondary winding of the power transformer. If the turns ratio between the primary winding and the secondary winding of this current measuring transformer is set to be substantially the same as the turns ratio of the power transformer, the other end of the secondary winding of the current measuring transformer, By using a terminal connected to the other end of the secondary winding of the power transformer and a current measuring terminal consisting of a force, the load current flowing through the load can be measured.
つぎの発明にかかる電流測定装置にあっては、 前記電流測定用端子の間に挿入 される変圧トランスをさらに備えたことを特徴とする。  The current measuring device according to the next invention is characterized in that the current measuring device further comprises a transformer inserted between the current measuring terminals.
この発明によれば、 電流測定用端子の間に挿入される変圧トランスによって検 出感度を向上させることができる。  According to the present invention, the detection sensitivity can be improved by the transformer inserted between the current measuring terminals.
つぎの発明にかかる電流測定装置にあっては、 交流入力が入力される一次巻線 と、 該一次卷線に磁気結合され、 接続される複数の負荷のそれぞれに対して所要 の交流出力を供給する複数の二次卷線とを具備する電源トランスを備えた電源装 置に接続され、 該負荷に流れる負荷電流をそれぞれ測定する電流測定装置であつ て、 前記電源トランスの一次巻線の両端に接続される一次巻線と、 該電源トラン スの複数の二次卷線のそれぞれの一端にそれぞれの一端が接続される複数の二次 巻線とを具備し、 該一次卷線と該複数の二次巻線とのそれぞれの巻数比が前記電 源トランスのそれぞれの巻数比と略同一である電流測定用トランスを備え、 前記 電流測定用トランスの複数の二次巻線のそれぞれの他端と、 前記電源トランスの それぞれの二次巻線の他端に接続されたそれぞれの端子とを前記負荷電流をそれ ぞれ測定するための電流測定用端子とすることを特徴とする。 In the current measuring device according to the next invention, a required AC output is supplied to each of a primary winding to which an AC input is input, and a plurality of loads magnetically coupled to and connected to the primary winding. A current measuring device connected to a power supply device having a plurality of secondary windings, each of which measures a load current flowing through the load. Connected primary winding and the power transformer A plurality of secondary windings each having one end connected to one end of each of the plurality of secondary windings, and a turn ratio between the primary winding and the plurality of secondary windings is provided. A current measuring transformer having substantially the same turns ratio as each of the power transformers; and the other end of each of the plurality of secondary windings of the current measuring transformer; and each of the secondary windings of the power transformer. Each of the terminals connected to the other end of the first and second terminals is a current measuring terminal for measuring the load current.
この発明によれば、 一次卷線と複数の二次巻線とを有する電流測定用トランス が電流測定装置に備えられ、 電流測定用トランスの一次卷線が電源トランスの一 次卷線の両端に接続され、 一方、 電流測定用トランスの複数の二次卷線のそれぞ れの一端が電源トランスの複数の二次巻線のそれぞれの一端に接続される。 この 電流測定用トランスの一次卷線と複数の二次卷線とのそれぞれの巻数比が電源ト ランスのそれぞれの巻数比と略同一であるように設定すれば、 電流測定用トラン スの複数の二次卷線のそれぞれの他端と、 電源トランスのそれぞれの二次卷線の 他端に接続されたそれぞれの端子とからなる電流測定用端子を用いて、 それぞれ の負荷に流れる負荷電流を測定することができる。  According to the present invention, a current measuring transformer having a primary winding and a plurality of secondary windings is provided in the current measuring device, and the primary winding of the current measuring transformer is provided at both ends of the primary winding of the power transformer. One end of each of the plurality of secondary windings of the current measuring transformer is connected to one end of each of the plurality of secondary windings of the power transformer. If the turns ratio of the primary winding of the current measurement transformer and the plurality of secondary windings is set to be substantially the same as the turns ratio of each of the power supply transformers, a plurality of the current measurement transformers can be obtained. The load current flowing through each load is measured using the current measurement terminals consisting of the other ends of the secondary windings and the terminals connected to the other ends of the secondary windings of the power transformer. can do.
つぎの発明にかかる電流測定装置にあっては、 前記電流測定用端子の間に挿入 される変圧トランスをさらに備えたことを特徴とする。  The current measuring device according to the next invention is characterized in that the current measuring device further comprises a transformer inserted between the current measuring terminals.
この発明によれば、 電流測定用端子の間に挿入される変圧トランスによって検 出感度を向上させることができる。  According to the present invention, the detection sensitivity can be improved by the transformer inserted between the current measuring terminals.
つぎの発明にかかる電流測定装置にあっては、 交流入力源に並列に接続される 一次卷線と、 該一次卷線に磁気結合されるとともに前記交流入力源の一端に一端 が接続され、 他端に接続される負荷に対して昇圧 降圧された交流出力を供給す るための二次巻線とを具備する A V Rトランスを備えた電源装置に接続され、 該 負荷に流れる負荷電流を測定する電流測定装置であって、 前記 A V R トランスの 一次巻線の両端に接続される一次巻線と、 該 A V Rトランスの二次卷線の一端に 一端が接続される二次巻線とを具備し、 該一次卷線と該二次卷線との卷数比が前 記電源トランスの卷数比と略同一である電流測定用トランスを備え、 前記電流測 定用トランスの二次卷線の他端と、 前記 A V R トランスの二次巻線の他端に接続 された端子とを電流測定用端子とすることを特徴とする。 In the current measuring device according to the next invention, a primary winding connected in parallel to the AC input source, one end is connected to one end of the AC input source while being magnetically coupled to the primary winding, A current connected to a power supply device having an AVR transformer having a secondary winding for supplying a step-up / step-down AC output to a load connected to the terminal, and measuring a load current flowing through the load. A measurement device, comprising: a primary winding connected to both ends of a primary winding of the AVR transformer; and a secondary winding having one end connected to one end of a secondary winding of the AVR transformer. The turn ratio between the primary winding and the secondary winding is A current measuring transformer having substantially the same turns ratio as that of the power transformer; connected to the other end of the secondary winding of the current measuring transformer and the other end of the secondary winding of the AVR transformer; The terminal is a current measurement terminal.
この発明によれば、 一次巻線と二次卷線とを有する電流測定用トランスが電流 測定装置に備えられ、 電流測定用トランスの一次卷線が A V R 卜ランスの一次卷 線の両端に接続され、 一方、 電流測定用トランスの二次卷線の一端に A V Rトラ ンスの一端が接続される。 この電流測定用トランスの一次卷線と二次卷線との巻 数比が A V R トランスの巻数比と略同一であり、 電流測定用トランスの二次巻線 の他端と、 A V Rトランスの二次巻線の他端に接続された端子とからなる電流測 定用端子を用いて負荷に流れる負荷電流を測定することができる。  According to the present invention, a current measuring transformer having a primary winding and a secondary winding is provided in the current measuring device, and the primary winding of the current measuring transformer is connected to both ends of the primary winding of the AVR transformer. On the other hand, one end of the AVR transformer is connected to one end of the secondary winding of the current measuring transformer. The turns ratio between the primary winding and the secondary winding of the current measuring transformer is substantially the same as the turns ratio of the AVR transformer, and the other end of the secondary winding of the current measuring transformer and the secondary winding of the AVR transformer. The load current flowing through the load can be measured using the current measuring terminal including the terminal connected to the other end of the winding.
つぎの発明にかかる電流測定装置にあっては、 前記電流測定用端子の間に挿入 される変圧トランスをさらに備えたことを特徴とする。  The current measuring device according to the next invention is characterized in that the current measuring device further comprises a transformer inserted between the current measuring terminals.
この発明によれば、 電流測定用端子の間に挿入される変圧トランスによって検 出感度を向上させることができる。  According to the present invention, the detection sensitivity can be improved by the transformer inserted between the current measuring terminals.
つぎの発明にかかる電流測定手段を有する電源装置にあっては、 交流入力源に 並列に接続される一次卷線と、 前記一次卷線に磁気結合されるとともに前記交流 入力源の一端に一端が接続され、 他端に接続される負荷に対して昇圧 Z降圧され た交流出力を供給する二次卷線と、 前記一次卷線に磁気結合されるとともに前記 二次巻線の一端に一端が接続される三次巻線とを具備する A V R トランスを備え、 前記一次卷線と前記二次卷線との卷数比と、 該一次巻線と前記三次巻線との巻数 比とが略同一であり、 前記 A V R トランスの二次卷線の他端に接続された端子と、 前記三次巻線の他端とを電流測定用端子とすることを特徴とする。  In a power supply device having current measuring means according to the next invention, a primary winding connected in parallel to an AC input source, one end of one end of the AC input source magnetically coupled to the primary winding and one end of the primary winding. A secondary winding for supplying a step-up / step-down AC output to a load connected to the other end, magnetically coupled to the primary winding and having one end connected to one end of the secondary winding An AVR transformer having a tertiary winding is provided, wherein the turns ratio between the primary winding and the secondary winding and the turns ratio between the primary winding and the tertiary winding are substantially the same. The terminal connected to the other end of the secondary winding of the AVR transformer and the other end of the tertiary winding are current measurement terminals.
この発明によれば、 一次卷線に磁気結合され、 一次卷線に対する巻数比が、 一 次巻線と二次巻線との巻数比と略同一であるように設定された三次卷線を備え、 この三次巻線の一端を二次巻線の一端に接続し、 二次巻線の他端と、 三次巻線の 他端と力 らなる電流測定用端子を用いて負荷に流れる負荷電流を測定することが できる。 According to the present invention, there is provided a tertiary winding that is magnetically coupled to the primary winding and that has a turns ratio to the primary winding set to be substantially the same as the turns ratio between the primary winding and the secondary winding. One end of this tertiary winding is connected to one end of the secondary winding, and the load current flowing through the load is measured using the other end of the secondary winding and the current measuring terminal consisting of the other end of the tertiary winding and a force. Can be measured it can.
つぎの発明にかかる電流測定手段を有する電源装置にあっては、 前記電流測定 用端子の間に挿入される変圧トランスをさらに備えたことを特徴とする。  The power supply device having the current measuring means according to the next invention is characterized in that the power supply device further comprises a transformer inserted between the current measuring terminals.
この発明によれば、 電流測定用端子の間に挿入される変圧卜ランスによって検 出感度を向上させることができる。 図面の簡単な説明  According to the present invention, the detection sensitivity can be improved by the transformer inserted between the current measuring terminals. Brief Description of Drawings
第 1図は、 電源装置に接続された実施の形態 1にかかる電流測定装置の回路構 成を示す図であり、 第 2図は、 複数の電源トランスを有する電源装置に接続され た実施の形態 2にかかる電流測定装置の回路構成を示す図であり、 第 3図は、 電 源装置に接続された実施の形態 3にかかる電流測定装置の回路構成を示す図であ り、 第 4図は、 AV Rトランスを備えた A V R電源装置接続された実施の形態 4 にかかる電流測定装置の回路構成を示す図であり、 第 5図は、 AV R トランスを 備えた A V R電源装置に接続された実施の形態 5にかかる電流測定装置の回路構 成を示す図であり、 第 6図は、 AV R トランスを備えた A V R電源装置の内部に 電流測定手段を備えた実施の形態 6にかかる電源装置の回路構成を示す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a circuit configuration of a current measuring device according to a first embodiment connected to a power supply device. FIG. 2 is a diagram showing an embodiment connected to a power supply device having a plurality of power transformers. FIG. 3 is a diagram illustrating a circuit configuration of a current measuring device according to the second embodiment, FIG. 3 is a diagram illustrating a circuit configuration of the current measuring device according to the third embodiment connected to a power supply device, and FIG. FIG. 5 is a diagram illustrating a circuit configuration of a current measuring device according to a fourth embodiment in which an AVR power supply device having an AVR transformer is connected. FIG. FIG. 6 is a diagram showing a circuit configuration of a current measuring device according to Embodiment 5; and FIG. 6 is a diagram showing a power supply device according to Embodiment 6 including current measuring means inside an AVR power supply device having an AVR transformer. FIG. 3 is a diagram illustrating a circuit configuration. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照して、 本発明にかかる電流測定装置および電流測定手段 を有する電源装置の好適な実施の形態を詳細に説明する。 なお、 この実施の形態 により本発明が限定されるものではない。 実施の形態 1 .  Hereinafter, preferred embodiments of a current measuring device and a power supply device having current measuring means according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited by the embodiment. Embodiment 1
第 1図は、 電源装置 1 0に接続された実施の形態 1にかかる電流測定装置 2 0 の回路構成を示す図である。 同図に示す回路は、 巻数比 n ( n : 1 ) の一次卷線 T 1 iおよび二次巻線 T 1 2を有する電源トランス T 1を備えた電源装置 1 0に、 電源トランス T 1と巻数比が同一である一次巻線 Τ 2 iおよび二次卷線 Τ 2 2を 有する電流測定用トランス T 2が接続される構成となっている。 FIG. 1 is a diagram showing a circuit configuration of a current measuring device 20 according to the first embodiment connected to a power supply device 10. The circuit shown in the figure, turns ratio n: the power supply device 1 0 that includes the power transformer T 1 having (n 1) of the primary卷線T 1 i and a secondary winding T 1 2, Power transformer T 1 and the turns ratio has a structure in which the current measuring transformer T 2 having a primary winding T 2 i and the secondary卷線T 2 2 are identical are connected.
第 1図において、 電源トランス T 1の一次巻線 T 1 の両端は、 交流入力 (A C入力) が印加される入力端子 I Tい I T 2にそれぞれ接続される。 また、 電 源トランス Τ 1の二次巻線 Τ 1 2の両端は、 負荷が接続される出力端子 Ο Τい ◦ Τ 2にそれぞれ接続される。 すなわち、 第 1図において、 電流測定装置 2 0が 接続されていない構成は、 電源装置から負荷に対して A C入力が供給される一般 的な構成を示している。 In FIG. 1, both ends of a primary winding T 1 of a power transformer T 1 are respectively connected to input terminals IT and IT 2 to which an AC input (AC input) is applied. The secondary winding T 1 2 of both ends of the power transformer T 1, the load is connected to the output terminal Omicron T There ◦ T 2 to be connected. That is, in FIG. 1, the configuration in which the current measuring device 20 is not connected indicates a general configuration in which an AC input is supplied from a power supply device to a load.
また、 電流測定装置 2 0の電流測定用トランス T 2の一次巻線 T 2 ,の両端は、 A C入力が印加された入力端子 I T\、 I T 2にそれぞれ接続される。 一方、 電 流測定用トランス Τ 2の二次卷線 Τ 2 2の一端は、 出力端子 Ο Τ\に接続される 力 電流測定用トランス Τ 2の二次卷線 Τ 2 2の他端は、 電流測定用端子 D T J に接続される。 詳細な原理については後述するが、 出力端子 と Ο Τ 2との 間に負荷が接続されて負荷電流が流れたとき、 電流測定用端子 と出力端子 Ο Τ 2との間には、 負荷電流に比例した電圧が発生する。 したがって、 出力端子 Ο Τ 2は電流測定用端子 D T 2も兼用して用いられることになる。 Both ends of the primary winding T 2 of the current measuring transformer T 2 of the current measuring device 20 are connected to input terminals IT \ and IT 2 to which an AC input is applied, respectively. On the other hand, secondary卷線T 2 2 one end of current measurement transformer T 2, the secondary卷線T 2 2 at the other end of the force current measuring transformer T 2 which is connected to the output terminal Omicron T \ is Connected to the current measurement terminal DTJ. Although the detailed principle will be described later, when a load is connected between the output terminal and Ο Τ 2 and the load current flows, the load current is connected between the current measurement terminal and the output terminal Ο Τ 2. A proportional voltage is generated. Therefore, the output terminal Ο Τ 2 is also used as the current measurement terminal DT 2 .
このように、 実施の形態 1にかかる電流測定装置 2◦は、 第 1図に示す構成か ら明らかなように、 電源装置 1 0から引き出される端子が、 A C入力用の端子お よび負荷接続のための出力用端子のみであり、 電源装置 1 0に付加する形で構成 することができ、 既存の電源装置 1 0に改修を加える必要が全くないという特徴 を有している。  As described above, in the current measuring device 2◦ according to the first embodiment, as is apparent from the configuration shown in FIG. 1, the terminals drawn from the power supply 10 are connected to the AC input terminal and the load connection. This is a feature that only the output terminal for the power supply device can be added to the power supply device 10 and that there is no need to modify the existing power supply device 10 at all.
なお、 第 1図におレ、て、 電'源トランス T 1および電流測定用トランス T 2に付 けられている黒丸印は、 それぞれの巻線に誘起される誘起電圧の向き (極性) を 示している。 例えば、 電源トランス T 1の一次巻線 T 1 の黒丸側に正となる向 きの電圧が誘起された場合には、 電源トランス T 1の二次卷線 T 1 2の黒丸側に 正となる向きの電圧が誘起され、 電¾¾トランス T 1の一次卷線 T 1 ,の黒丸側に 負となる向きの電圧が誘起された場合には、 電源トランス T 1の二次卷線 T 12 の黒丸側にも負となる向きの電圧が誘起されることを示している。 In FIG. 1, the black circles attached to the power source transformer T1 and the current measurement transformer T2 indicate the direction (polarity) of the induced voltage induced in each winding. Is shown. For example, if the positive and made Kino Mukai voltage black circle side of the power supply primary winding T 1 of the transformer T 1 is induced becomes positively black circle side of the power transformer T 1 of the secondary卷線T 1 2 Voltage is induced in the primary winding T 1 of the transformer T 1, on the black circle side. When the voltage of the orientation becomes negative it is induced shows that secondary卷線T 1 2 of the voltage of the orientation becomes negative in black circle side of the power transformer T 1 is induced.
つぎに、 第 1図を用いて電流測定装置 20の動作について説明する。 まず、 出 力端子 OT2の間には負荷が接続されない状態で入力端子 I Tい I Τ2 の間に AC入力 (V i ) が印加された場合を考える。 このとき、 電源トランス T 1の一次巻線 T 1 1には Viの電圧が発生し、 二次卷線 T l 2には (V iZn) の 電圧が発生する。 同様に、 電流測定装置 20の電流測定用トランス T 2の一次卷 線 T 2 には V iの電圧が発生し、 二次卷線 T 22には (ViZn) の電圧が発生 する。 Next, the operation of the current measuring device 20 will be described with reference to FIG. First, between the output terminal OT 2 Consider the case where AC input (V i) is applied between the input terminals IT There I T 2 in a state where a load is not connected. In this case, the primary winding T 1 1 power transformer T 1 the voltage is generated in Vi, the secondary卷線T l 2 voltage is generated (V iZn). Similarly, the voltage of V i is generated in the primary Certificates line T 2 of the current measuring transformer T 2 of the current measuring device 20, the secondary卷線T 2 2 voltage is generated (ViZn).
このように、 出力端子 οτ^、 οτ2の間の電圧と、 出力端子 οτ\、 電流測定 用端子 DT の間の電圧とが等しいので、 電流測定用端子 DTい DT2の間には 電圧が発生しない。 すなわち、 負荷電流が流れないときには、 電流測定用端子 D Τ DT2の間には電圧が発生しない。 Thus, the output terminal Omikurontau ^, the voltage between Omikurontau 2, the output terminal Omikurontau \, since the voltage between the current measurement terminal DT equal, the voltage between the current measurement terminal DT have DT 2 is Does not occur. That is, when the load current does not flow, voltage is not generated between the current measuring terminal D Τ 1Λ DT 2.
なお、 電流測定用端子 DTい DT 2間の電圧測定を行う場合、 入力インピー ダンスの高い電圧測定手段を用いることが一般的であり、 この場合電流測定用ト ランス T 2の二次卷線 T 22には僅かな電流しか流さないので、 所定の測定精度 を維持した電圧測定を行うことができる。 When measuring the voltage between the current measuring terminals DT and DT 2, it is common to use voltage measuring means having a high input impedance. In this case, the secondary winding T of the current measuring transformer T 2 is used. since 2 2 only flow a small current, it is possible to perform a voltage measurement while maintaining the predetermined measurement accuracy.
つぎに、 入力端子 I Tい I T2の間に AC入力 (Vj) が印加され、 出力端子 の ΟΤ\、 ΟΤ2の間に負荷が接続された状態を考える。 このとき、 電源トラン ス Τ 1の一次巻線 Τ 1 ,の両端には V iの電圧が発生する。 一方、 二次巻線 T 12 には負荷電流が流れ、 二次卷線 T 12自身の内部抵抗と磁気抵抗とによって電圧 降下が生ずる。 したがって、 出力端子 ΟΤ 、 ΟΤ2の間の電圧は負荷電流が流 れないときよりも低下する。 いま、 負荷電流を i とし、 二次卷線 T l 2の卷線抵 抗を含む電源トランス Τ 1の二次側の内部抵抗を rとし、 一次卷線 T から二 次巻線 T 12に磁気結合する磁気回路の磁気抵抗を r mとすれば、 出力端子 OT\、 ΟΤ 2の間に生ずる電圧は、 {V i/n— i x (r m+ r) } となる。 一方、 電流測定装置 20では、 上記のように、 電流測定用トランス T 2の一次 卷線 T 2 iに発生する電圧は であり、 二次巻線 T 22に発生する電圧は (V i /n) である。 また、 負荷電流が流れても、 二次卷線 T 22にはほとんど電流が 流れないので、 出力端子 OT 、 電流測定用端子 DT の間に生ずる電圧は (Vi /n) のままである。 Then, AC input (Vj) is applied between the input terminals IT There IT 2, consider ΟΤ \, condition the load is connected between the Omikurontau 2 output terminals. At this time, a voltage of Vi is generated across the primary winding # 1 of the power transformer # 1. On the other hand, the secondary winding T 1 2 load current flows, a voltage drop is caused by a secondary卷線T 1 2 own internal resistance and the magnetic resistor. Accordingly, the output terminal Omikurontau, the voltage between the Omikurontau 2 drops than when the load current is not flow. Now, the load current is i, the internal resistance of the power transformer T 1 of the secondary side including the卷線resistance of the secondary卷線T l 2 and r, from the primary卷線T two winding T 1 2 in if the magnetic resistance of a magnetic circuit for magnetically coupling a r m, the output terminal OT \, voltage generated between Omikurontau 2 becomes {V i / n- ix (r m + r)}. On the other hand, the current measuring device 20, as described above, is wherein the voltage generated in the primary卷線T 2 i of the current measuring transformer T 2, the voltage generated in the secondary winding T 2 2 (V i / n). Further, even if the load current flows, since the secondary卷線T 2 2 almost no current flows through the output terminal OT, the voltage generated between the current measurement terminal DT remains (Vi / n).
その結果、 電流測定用端子 DT,、 DT2の間には、 DT2を基準として、 {V i/n - i x ( r m+ r ) } 一 (V ,/η) =- i x ( r m+ r ) の電圧が発生する。 すなわち、 電流測定用端子 DT ,— DT2と間には、 負荷電流に比例した電圧が 発生する。 したがって、 この電圧を既知の内部抵抗 rと磁気抵抗 ι· ,„の和で除す ることにより、 負荷電流 iの値を求めることができる。 As a result, during the current measurement terminal DT ,, DT 2, based on the DT 2, {V i / n - ix (r m + r)} one (V, / η) = - ix (r m + r) voltage is generated. In other words, the current measuring terminal DT, - DT 2 and between the voltage proportional to the load current. Therefore, the value of the load current i can be obtained by dividing this voltage by the sum of the known internal resistance r and the magnetic resistance ι ·, „.
以上説明したように、 この実施の形態の電流測定装置は、 電流測定用トランス を有するだけであり、 また、 電源装置の AC入力用の入力端子と AC出力用の出 力端子とから、 それぞれの端子を引き出して電流測定用トランスに接続するだけ なので、 既存の機器に対する改修を行うことなく、 負荷電流を測定することがで きる。  As described above, the current measuring device according to the present embodiment only has a current measuring transformer. In addition, each of the current measuring device includes an AC input input terminal and an AC output output terminal of the power supply device. Simply pull out the terminal and connect it to the current measurement transformer, so the load current can be measured without modifying existing equipment.
また、 この実施の形態の電流測定装置では、 負荷に大きな電流が流れた場合で あっても、 電流測定用トランスの電流測定用卷線を含む電流測定用回路には、 大 きな電流を流すことがないので、 装置の容積、 規模の増加を抑制することができ る。 また、 電源トランスの二次側の内部抵抗 rおよび磁気抵抗 r mのみに依存し た電流測定を行っているので、 負荷電流の大きさや負荷の種類などに依存するこ となく、 正確な電流測定を行うことができる。 Also, in the current measuring device of this embodiment, even when a large current flows through the load, a large current flows through the current measuring circuit including the current measuring winding of the current measuring transformer. Since there is no such problem, it is possible to suppress an increase in the volume and scale of the device. Further, since performing a current measurement depends only on the internal resistance r and the magnetic resistance r m of the power supply transformer secondary, without a child depends on the size and load of the type of the load current, accurate current measurement It can be performed.
また、 以上の説明では、 卷数比を nとして同一のものとして計算したが、 この 巻数比 nは同一である必要はなく、 負荷電流が流れていないとき、 該両者の卷線 から出力される電圧を抵抗等により分圧することにより均等に調整し、 この電圧 を使用 (比較) することにより、 所要の精度で負荷電流の測定を行うことができ る。 実施の形態 2. Further, in the above description, the calculation was performed assuming that the turns ratio is the same as n, but this turns ratio n does not need to be the same, and when no load current is flowing, the turns are output from both turns. The voltage can be adjusted evenly by dividing the voltage with a resistor, etc., and by using (comparing) this voltage, the load current can be measured with the required accuracy. Embodiment 2.
第 2図は、 複数の電源トランスを有する電源装置 1 1に接続された実施の形態 2にかかる電流測定装置 20 aの回路構成を示す図である。 同図に示す回路は、 卷数比 n 3の一次巻線 T 3 と、 この一次卷線 T 3 iに磁気結合された二次巻線 T 321〜T 32mをそれぞれ有する電源トランス Τ 3を備えた電源装置 1 1に、 電源トランス T 3と構成が同一であり、 かつ、 それぞれの卷数比が同一である、 一次巻線 T 4 および二次巻線 T 42 〜丁 42mを有する電流測定用トランス T 4 が接続される構成となっている。 すなわち、 この実施の形態の電流測定装置 20 aは、 複数の電源電圧を発生する電源回路が内蔵されている電源装置 1 1におい て、 これらの電源回路にそれぞれ接続された負荷に流れる電流を、 個々に測定す るためのものである。 FIG. 2 is a diagram showing a circuit configuration of a current measuring device 20a according to a second embodiment connected to a power supply device 11 having a plurality of power supply transformers. The circuit shown in the figure, the primary winding T 3 of卷数ratio n 3, power transformer T 3 each having magnetically coupled secondary winding T 3 21 ~T 3 2m to the primary卷線T 3 i the power supply 1 1 provided with a same configuration as the power transformer T 3, and each卷数ratio is the same, the primary winding T 4 and the secondary winding T 4 2 ~ Ding 4 2m And a current measuring transformer T 4. That is, the current measuring device 20a according to the present embodiment, in the power supply device 11 having a built-in power supply circuit for generating a plurality of power supply voltages, detects a current flowing through a load connected to each of these power supply circuits. It is for individual measurement.
第 2図において、 電源トランス T 3の一次卷線 T 3 の両端は、 交流 (AC) 入力が印加される入力端子 I T および I T2にそれぞれ接続される。 また、 電 源トランス Τ 1の二次巻線 T 321〜T 32mの各両端は、 負荷が接続される出力 端子 ΟΤ„、 〇T12〜出力端子 OTml、 OTm2のそれぞれに接続される。 In FIG. 2, both ends of a primary winding T 3 of a power transformer T 3 are connected to input terminals IT and IT 2 to which an alternating current (AC) input is applied. Each ends of the power transformer T 1 of the secondary winding T 3 21 ~T 3 2m is output ΟΤ the load is connected, "〇_T 12 to the output terminal OT ml, is connected to each of OT m @ 2 You.
電流測定装置 20の電流測定用トランス T 4の一次卷線 T 4 Jの両端は、 A C 入力が印加された入力端子 I T および I T2にそれぞれ接続される。 また、 電 流測定用トランス Τ 4の二次巻線 Τ 42 iの一端は、 出力端子 ΟΤ^に接続され、 電流測定用トランス Τ 4の二次卷線 Τ 42!の他端は、 電流測定用端子 D Τ iに 接続される。 同様に、 電流測定用トランス T 4の二次卷線 T 42mの一端は、 出 力端子 OTmlに接続され、 電流測定用トランス T 4の二次卷線 T 42mの他端は、 電流測定用端子 DTmlに接続される。 このように、 個々の電源トランスで見れ ば、 実施の形態 2の接続形態は、 実施の形態 1の接続形態と同一である。 Both ends of the primary winding T 4 J of the current measuring transformer T 4 of the current measuring device 20 are connected to input terminals IT and IT 2 to which an AC input is applied, respectively. One end of the secondary winding T 4 2 i of current measurement transformer T 4 is connected to the output terminal Omikurontau ^, amperometric transformer T 4 of the secondary卷線T 4 2! Is connected to the current measurement terminal D Τ i. Similarly, one end of the secondary winding T 4 2m of the current measuring transformer T 4 is connected to the output terminal OT ml, and the other end of the secondary winding T 4 2m of the current measuring transformer T 4 is connected to the current Connected to the measurement terminal DT ml . Thus, from the viewpoint of individual power transformers, the connection configuration of the second embodiment is the same as the connection configuration of the first embodiment.
したがって、 出力端子 OTu、 OT\ 2の間に負荷が接続されて負荷電流が流 れたとき、 電流測定用端子 DT^と電流測定用端子 DT12 (出力端子 OT12と して兼用) との間には、 負荷電流に比例した電圧が発生する。 この電圧を電源ト ランス T 3の二次側の内部抵抗と磁気抵抗の和で除することにより、 電源トラン ス Τ 3の二次卷線 Τ 3 2 1〜Τ 3 2 mにそれぞれ接続された個々の負荷電流の値を 求めることができる。 Accordingly, the output terminal OTU, when the load between the OT \ 2 is flow connected to the load current, (also used as an output terminal OT 12) current measuring terminal DT ^ and the current measurement terminal DT 12 and the Between them, a voltage proportional to the load current is generated. This voltage is By dividing by the sum of the internal resistance of the secondary side of the lance T3 and the magnetic resistance, the load current of each of the load currents connected to the secondary winding Τ3 2 1 to Τ32 m of the power transformer Τ3 can be calculated. The value can be determined.
以上説明したように、 この実施の形態の電流測定装置は、 複数の電源電圧を発 生する電源回路が内蔵されている電源装置において、 これらの電源回路にそれぞ れ接続された負荷に流れる電流を個々に測定することができるので、 既存の機器 に対する改修を行うことなく、 負荷電流を測定することができる。  As described above, the current measuring device according to the present embodiment is a power supply device having a built-in power supply circuit for generating a plurality of power supply voltages. Can be measured individually, so the load current can be measured without modifying existing equipment.
また、 実施の形態 2同様に、 負荷に大きな電流が流れた場合であっても、 電流 測定用トランスの電流測定用巻線を含むそれぞれの電流測定用回路に大電流を流 すことがないので、 装置の容積、 規模の増加を抑制することができる。 また、 複 数の負荷が異なる電源トランスに接続された場合であつても、 それぞれの電源ト ランスの二次側の内部抵抗と磁気抵抗のみに依存した電流測定を行うことができ るので、 負荷電流の大きさや負荷の種類などに依存することのない正確な電流測 定を行うことができる。  Similarly to Embodiment 2, even when a large current flows through the load, a large current does not flow through each current measurement circuit including the current measurement winding of the current measurement transformer. The increase in the volume and scale of the device can be suppressed. Even when multiple loads are connected to different power transformers, current measurement can be performed only depending on the internal resistance and magnetic resistance on the secondary side of each power transformer. Accurate current measurement can be performed without depending on the magnitude of the current or the type of load.
また、 以上の説明では、 巻数比を nとして同一のものとして計算したが、 この 卷数比 nは同一である必要はなく、 負荷電流が流れていないとき、 該両者の巻線 から出力される電圧を抵抗等により分圧することにより均等に調整し、 この電圧 を使用 (比較) することにより、 所要の精度で負荷電流の測定を行うことができ る。  Further, in the above description, the calculation was performed assuming that the turns ratio is the same as n. However, the turns ratio n does not need to be the same, and when no load current is flowing, output is made from both windings. The voltage can be adjusted evenly by dividing the voltage with a resistor, etc., and by using (comparing) this voltage, the load current can be measured with the required accuracy.
実施の形態 3 . Embodiment 3.
第 3図は、 電源装置 1 0に接続された実施の形態 3にかかる電流測定装置 2 0 bの回路構成を示す図である。 同図に示す回路は、 第 1図に示す実施の形態 1の 電流測定装置 2 0 bにおいて、 電流測定の感度を増加させるための一次巻線 T 5 iおよび二次巻線 T 5 2を有する変圧トランス T 5を備えた構成としている。 そ の他の構成については、 実施の形態 1と同一あるいは同等の構成であり、 これら の箇所には同一符号を付して示している。 第 3図の電流測定装置 20 bにおいて、 上述してきたように、 変圧トランス T 5の一次卷線 T 5 iの両端には、 負荷電流に比例した電圧が発生する。 その結果、 変圧トランス T 5の二次巻線 T 52の両端に接続された電流測定用端子 DT\— D T 2には、 負荷電流に比例する電圧の k倍の電圧を発生させることができる。 したがって、 この実施の形態の電流測定装置 20 bは、 測定感度を増大させた電 流測定を実現することができる。 FIG. 3 is a diagram illustrating a circuit configuration of a current measuring device 20b according to the third embodiment connected to a power supply device 10. The circuit shown in the figure, has in the current measuring device 2 0 b of the first embodiment shown in FIG. 1, the primary winding T 5 i and a secondary winding T 5 2 to increase the sensitivity of the current measurement It is configured with a transformer T5. Other configurations are the same or equivalent to those of the first embodiment, and the same reference numerals are given to these portions. In the current measuring device 20b of FIG. 3, as described above, a voltage proportional to the load current is generated at both ends of the primary winding T5i of the transformer T5. As a result, transformation transformer T connected across the secondary winding T 5 2 5 current measuring terminal DT \ - The DT 2, can be generated k times the voltage of the voltage proportional to the load current . Therefore, the current measuring device 20b of this embodiment can realize current measurement with increased measurement sensitivity.
なお、 この実施の形態では、 電流測定感度を増大させるための変圧トランス T 5を実施の形態 1の電流測定装置 20の電流測定用端子 D T i一 D T 2間に挿入 する構成としているが、 この変圧トランス T 5を実施の形態 2に示す電流測定装 置 20 aの電流測定用端子 DTiい DT12〜電流測定用端子 DTml、 DTm2の それぞれの間に挿入し、 あるいは一部の間に揷入する構成とすることができ、 こ の場合についても同様の効果を得ることができる。 In this embodiment, although a configuration of inserting a transformer transformer T 5 to increase the current measurement sensitivity between current measuring terminal DT i one DT 2 of the current measuring device 20 of the first embodiment, the transformation transformer T 5 to have current measuring terminal DTi of the current measurement equipment 20 a shown in the second embodiment DT 12 ~ current measuring terminal DT ml, was inserted between the respective DT m @ 2, or during a portion In this case, a similar effect can be obtained.
実施の形態 4. Embodiment 4.
第 4図は、 AVR (Automatic Voltage Regulator) トランスを備えた AVR 電源装置 12に接続された実施の形態 4にかかる電流測定装置 22の回路構成を 示す図である。 同図に示す回路は、 巻数比 n (n : 1) の一次巻線 T 6 および 二次巻線 T 62を有する AVRトランス T6を備えた AVR電源装置 12に、 A VRトランス T 6と卷数比が同一である一次巻線 T 7 iおよび二次巻線 T 72を 有する電流測定用トランス T 7が接続される構成となっている。 FIG. 4 is a diagram showing a circuit configuration of a current measuring device 22 according to the fourth embodiment connected to an AVR power supply device 12 having an AVR (Automatic Voltage Regulator) transformer. The circuit shown in the figure, turns ratio n (n: 1) of the AVR power supply 12 with a AVR transformer T6 having a primary winding T 6 and secondary winding T 6 2, A VR transformer T 6 and Certificates has a structure in which current measurement transformer T 7 having a primary winding T 7 i and the secondary winding T 7 2 number ratio is the same is connected.
第 4図の A VR電源装置 1 2において、 AVRトランス T6の一次卷線 の両端は、 AC入力が印加される入力端子 I 1\および I T2にそれぞれ接続さ れる。 一方、 AVRトランス Τ 6の二次巻線 Τ 62の一端は入力端子 I 1 に接 続され、 他端は出力端子 に接続される。 In the AVR power supply device 12 of FIG. 4, both ends of the primary winding of the AVR transformer T6 are connected to input terminals I 1 \ and IT 2 to which an AC input is applied, respectively. On the other hand, the secondary winding T 6 2 at one end of the AVR transformer T 6 is connected to the input terminal I 1, the other end is connected to the output terminal.
また、 第 4図の電流測定装置 22におレ、て、 電流測定用卜ランス T 7の一次巻 線 T 7iの両端は、 AC入力が印加された入力端子 I T\および I T2にそれぞれ 接続される。 一方、 電流測定用トランス Τ 2の二次卷線 Τ 72の一端は、 AVR トランス T 6の二次卷線 T 62の一端 (もしくは、 二次巻線 T 62の一端と同電 位の端子) に接続されるが、 電流測定用トランス T 7の二次卷線 T 72の他端は、 電流測定用端子 DT2に接続される。 詳細な原理については後述するが、 出力端 子 OT と OT2との間に負荷が接続されて負荷電流が流れたとき、 出力端子 Ο Τ と電流測定用端子 D Τ 2との間には、 負荷電流に比例した電圧が発生する。 したがって、 出力端子 Ο Τ!は電流測定用端子 D Τ ,も兼用して用いられること になる。 In the current measuring device 22 shown in FIG. 4, both ends of the primary winding T 7i of the current measuring transformer T 7 are connected to input terminals IT \ and IT 2 to which AC input is applied, respectively. You. On the other hand, secondary卷線T 7 2 of one end of a current measuring transformer T 2 are, AVR Secondary卷線T 6 2 end of transformer T 6 (or terminal end and the same potential of the secondary winding T 6 2) are connected to the secondary卷線T amperometric transformer T 7 7 2 of the other end is connected to the current measuring terminal DT 2. Although details will be described later principle, when the load between the output terminal OT and OT 2 are load current flows is connected, between the output terminal Omicron T and the current measuring terminal D T 2, A voltage proportional to the load current is generated. Therefore, the output terminal Ο Τ! Is also used as the current measurement terminal D Τ.
このように、 この実施の形態の電流測定装置 22は、 第 1図の実施の形態 1で 示した電流測定装置 20と同様に、 AVR電源装置 12から引き出される端子力 AC入力用の端子および負荷接続のための出力用端子のみであり、 電源装置 10 に付加する形で構成することができるので、 既存の電源装置 10に改修を加える 必要が全くないという特徴を有している。  Thus, similarly to the current measuring device 20 shown in the first embodiment in FIG. 1, the current measuring device 22 according to this embodiment has the terminal force drawn from the AVR power supply 12 and the AC input terminal and the load. Since it is only an output terminal for connection and can be configured to be added to the power supply 10, it has a feature that it is not necessary to modify the existing power supply 10 at all.
なお、 第 4図において、 AVRトランス T 6および電流測定用トランス T 2に 付けられている黒丸印は、 第 1図に示した各トランスと同様に、 それぞれの卷線 に誘起される誘起電圧の向き (極性) を示すものである。  In FIG. 4, the black circles attached to the AVR transformer T6 and the current measuring transformer T2 indicate the induced voltage of each winding as in the transformers shown in FIG. It indicates the direction (polarity).
また、 第 4図に示す AVRトランス T 6の接続は、 AC入力を降圧させる場合 の接続状態を示しており、 一次巻線 T 6 iおよび二次巻線 T 62のこの接続状態 を正極性の状態とすれば、 AC入力を昇圧させる場合には、 逆極性の接続状態、 すなわち、 二次卷線 T 62に発生する誘起電圧が同図とは逆極性になるように接 続すればよい。 この接続切替はスイッチング素子などによって行われるが、 AV Rトランス T 6の接続状態は本願発明の動作とは直接関係ないので、 これ以降の 説明は、 同図のように接続された AVRトランス T 6を用いて行う。 The connection of the AVR transformer T 6 shown in FIG. 4 shows a connection state when stepping down the AC input, the connection state of the primary winding T 6 i and a secondary winding T 6 2 positive if the state, when boosting the AC input, reverse polarity connection state, i.e., if connected to the induced voltage generated in the secondary卷線T 6 2 is reversed in polarity to the drawing Good. This connection switching is performed by a switching element or the like. However, since the connection state of the AVR transformer T6 is not directly related to the operation of the present invention, the following description will be made for the AVR transformer T6 connected as shown in FIG. This is performed using
つぎに、 第 4図を用いて電流測定装置 22の動作について説明する。 まず、 出 力端子 ΟΤ\、 ΟΤ2の間には負荷が接続されない状態で入力端子 I Τい I Τ2 の間に AC入力 (Vi) が印加された場合を考える。 このとき、 AVRトランス T 6の一次卷線 T 6 には の電圧が発生し、 二次卷線 T l 2には (ViZn) の電圧が発生する。 したがって、 出力端子〇Tい ΟΤ2の間には、 (Vi—Vi /n) = {Vsx (1 - 1/n) } の電圧が発生する。 Next, the operation of the current measuring device 22 will be described with reference to FIG. First, the output terminal Omikurontau \, between Omikurontau 2 Consider the case where AC input (Vi) is applied between the input terminals I T have I T 2 in a state where a load is not connected. At this time, a voltage of appears on the primary winding T 6 of the AVR transformer T 6, and (ViZn) appears on the secondary winding T l 2. Voltage is generated. Thus, between the output terminal 〇_T have ΟΤ 2, (Vi-Vi / n) = {V s x (1 - 1 / n)} voltage is generated in.
同様に、 電流測定装置 20の電流測定用トランス T 7の一次巻線 T 7!には V iの電圧が発生し、 二次卷線 T 72には (Vi/n) の電圧が発生する。 したがつ て、 電流測定用端子 DT2、 出力端子 OT2の間に生ずる電圧は、 出力端子 OT 〇T2の間に生ずる電圧と同一であり、 {ViX (1 - 1/n) } となる。 Similarly, the primary winding T 7! Of the current measuring transformer T 7 of the current measuring device 20. Voltage V i is generated in, the secondary卷線T 7 2 generates the voltage (Vi / n). Therefore, the voltage generated between the current measurement terminal DT 2 and the output terminal OT 2 is the same as the voltage generated between the output terminal OT 〇T 2 and {ViX (1-1 / n)} Become.
このように、 出力端子 OT\、 ΟΤ2の間の電圧と、 電流測定用端子 DT2と出 力端子 OT2との間の電圧とが等しいので、 電流測定用端子 DTい DT2の間に は電圧が発生しない。 すなわち、 負荷電流が流れないときには、 電流測定用端子 DT1N DT2の問には電圧が発生しない。 Thus, the output terminal OT \, and the voltage between Omikurontau 2, since the voltage between the output terminal OT 2 and current measuring terminal DT 2 equal, during the current measurement terminal DT have DT 2 Does not generate voltage. That is, when the load current does not flow, voltage is not generated in the interrogation of the current measuring terminal DT 1N DT 2.
つぎに、 入力端子 I Tい I T2の間に AC入力 (Vi) が印加され、 出力端子 の OT\、 ΟΤ2の間に負荷が接続された状態を考える。 このとき、 AVRトラ ンス Τ 6の一次卷線 Τ 61の両端には Viの電圧が発生し、 二次卷線 T 62の両端 には (ViZn) の電圧が発生するが、 負荷電流によって二次卷線 T 62自身に 電圧降下が生ずるので、 出力端子 OT\、 ΟΤ2の間の電圧は負荷電流が流れな いときよりも低下する。 いま、 負荷電流を iとし、 二次巻線 T 62の卷線抵抗を 含む AVRトランス T 6の内部抵抗を rとし、 一次卷線 T 6 iから二次巻線 T 6 2に磁気結合する磁気回路の磁気抵抗を rmとすれば、 出力端子 01\、 OT2の 間に生ずる電圧は、 {ν^ (1 - 1/n) - i x (r m+ r) } となる。 Then, the input terminal IT are in between IT 2 AC input (Vi) is applied, OT \ output terminal, consider a state in which the load is connected between the ΟΤ 2. At this time, the voltage of Vi is generated in the primary卷線T 6 1 at both ends of the AVR transformer T 6, the both ends of the secondary卷線T 6 2 a voltage of generated (ViZn), the load current than secondary卷線T 6 2 itself to a voltage drop occurs, the output terminal OT \, the voltage between the Omikurontau 2 is the load current decreases below Itoki flow. Now, the load current is i, the internal resistance of the AVR transformer T 6 including卷線resistance of the secondary winding T 6 2 and r, magnetically coupled from the primary卷線T 6 i in the secondary winding T 6 2 if the reluctance of the magnetic circuit and r m, the voltage generated between the output terminal 01 \, OT 2 becomes {ν ^ ix (r m + r) (1 - - 1 / n)}.
一方、 電流測定装置 20では、 上記のように、 電流測定用トランス T 7の一次 卷線 T 7 iに発生する電圧は Viであり、 二次巻線 T 72に発生する電圧は (Vi /n) である。 また、 負荷電流が流れても、 二次巻線 T 72にはほとんど電流が 流れないので、 電流測定用端子 DT 2、 出力端子 OT 2の間に生ずる電圧は {Vi X (1- 1/n) } のままである。 On the other hand, the current measuring device 20, as described above, the voltage generated in the primary卷線T 7 i of the current measuring transformer T 7 is Vi, the voltage generated in the secondary winding T 7 2 (Vi / n). Further, even if the load current flows, since almost no current flows through the secondary winding T 7 2, current measuring terminal DT 2, the voltage generated between the output terminal OT 2 is {Vi X (1- 1 / n)}.
その結果、 電流測定用端子 DTい DT2の間には、 DT2を基準として、 {V iX (1 - 1/n) } 一 {ViX (1 - 1/n) - i x (rm+r) } = i x (rm + r ) の電圧が発生する。 すなわち、 電流測定用端子 D T — D T 2と間には、 負 荷電流に比例した電圧が発生する。 したがって、 実施の形態 1と同様に、 この電 圧を既知の内部抵抗 rと磁気抵抗 r mの和で除することにより、 負荷電流 iの値 を求めることができる。 As a result, during the current measurement terminal DT have DT 2, based on the DT 2, {V iX (1 - 1 / n)} one {ViX (1 - 1 / n ) - ix (r m + r )} = ix (r m + r) voltage is generated. In other words, the current measuring terminal DT - DT 2 and between a voltage proportional to the load current is generated. Therefore, as in the first embodiment, by dividing the voltage by the sum of the known internal resistance r and the magnetic resistance r m, it is possible to determine the value of the load current i.
以上説明したように、 この実施の形態の電流測定装置は、 電流測定用トランス を有するだけであり、 また、 A C入力用の入力端子と A C出力用の出力端子とか ら、 それぞれの端子を引き出して電流測定用トランスに接続するだけなので、 既 存の機器に対する改修を行うことなく、 負荷電流を測定することができる。 また、 この実施の形態の電流測定装置では、 負荷に大きな電流が流れた場合で あっても、 電流測定用トランスの電流測定用巻線を含む電流測定用回路には、 大 きな電流を流すことがないので、 装置の容積、 規模の増加を抑制することができ る。 また、 A V R トランスの二次巻線 T 6 2の巻線抵抗を含む内部抵抗 rおよび 磁気抵抗 r mのみに依存した電流測定を行っているので、 負荷電流の大きさや負 荷の種類などに依存することなく、 正確な電流測定を行うことができる。 As described above, the current measuring device according to the present embodiment only has the current measuring transformer, and also draws out each terminal from the input terminal for AC input and the output terminal for AC output. Since it is only connected to a current measurement transformer, load current can be measured without modifying existing equipment. In the current measuring device of this embodiment, even when a large current flows through the load, a large current flows through the current measuring circuit including the current measuring winding of the current measuring transformer. Since there is no such problem, it is possible to suppress an increase in the volume and scale of the device. Further, since performing a current measurement depends only on the internal resistance r and the magnetic resistance r m including winding resistance of AVR transformer secondary winding T 6 2, depends on the size and load of the type of load current It is possible to perform accurate current measurement without performing.
また、 以上の説明では、 巻数比を nとして同一のものとして計算したが、 この 卷数比 nは同一である必要はなく、 負荷電流が流れていないとき、 該両者の卷線 力^出力される電圧を抵抗等により分圧することにより均等に調整し、 この電圧 を使用 (比較) することにより、 所要の精度で負荷電流の測定を行うことができ る。  Also, in the above description, the calculation was performed assuming that the turns ratio was the same as n, but this turns ratio n does not need to be the same, and when no load current is flowing, the winding force of the two is output. The load current can be measured with the required accuracy by adjusting the voltage uniformly by dividing the voltage with a resistor and using (comparing) this voltage.
実施の形態 5 . Embodiment 5
第 5図は、 A V R (Automatic Voltage Regulator) 卜ランスを備えた A V R 電源装置 1 2に接続された実施の形態 5にかかる電流測定装置 2 2 aの回路構成 を示す図である。 同図に示す回路は、 第 4図に示す実施の形態 4の電流測定装置 2 2において、 電流測定の感度を増加させるための一次巻線 T 5 および二次卷 線 T 5 2を有する変圧トランス T 5を備えた構成としている。 その他の構成につ いては、 実施の形態 4と同一あるいは同等の構成であり、 これらの箇所には同一 符号を付して示している。 FIG. 5 is a diagram showing a circuit configuration of a current measuring device 22 a according to the fifth embodiment connected to an AVR power supply device 12 having an AVR (Automatic Voltage Regulator) transformer. The circuit shown in the figure, the current measuring device 2 2 according to the fourth embodiment shown in FIG. 4, a transformer transformer having a primary winding T 5 and secondary Certificates line T 5 2 to increase the sensitivity of the current measurement It has a configuration with T5. Other configurations are the same as or equivalent to those of the fourth embodiment. The reference numerals are attached.
第 5図の電流測定装置 22 aにおいて、 実施の形態 3においても述べてきたよ うに、 変圧トランス T 5の一次巻線 T 5 iの両端には、 負荷電流に比例した電圧 が発生する。 その結果、 変圧トランス T 5の二次巻線 T 52の両端に接続された 電流測定用端子 DT\— DT2には、 負荷電流に比例する電圧の k倍の電圧を発 生させることができ、 測定感度を増大させた電流測定を実現することができる。 実施の形態 6. In the current measuring device 22a in FIG. 5, as described in the third embodiment, a voltage proportional to the load current is generated across the primary winding T5i of the transformer T5. As a result, the secondary winding T 5 2 at both ends connected current measuring terminal DT \ of the transformer the transformer T 5 - The DT 2, be Generating an k times the voltage of the voltage proportional to the load current It is possible to realize current measurement with increased measurement sensitivity. Embodiment 6.
第 6図は、 AVRトランスを備えた AVR電源装置 12の内部に電流測定手段 を備えた実施の形態 6にかかる電源装置の回路構成を示す図である。 同図に示す 電源装置は、 巻数比 n (n : 1) の一次巻線 T 6 iおよび二次巻線 T 62を有す る AVRトランス T6に、 一次卷線 T 6 に磁気結合され、 かつ卷数比が略同一 の三次卷線 T 63を備えた AVR電源装置 12に、 AVRトランス T 6と巻数比 が同一である一次巻線 T 7 iおよび二次巻線 T 72を有する電流測定用トランス Τ 7が接続される構成となっている。 FIG. 6 is a diagram showing a circuit configuration of a power supply device according to a sixth embodiment including a current measuring means inside an AVR power supply device 12 having an AVR transformer. Power supply device shown in the figure, turns ratio n (n: 1) the primary winding T 6 i and a secondary winding T 6 2 to AVR transformer T6 that Yusuke of, is magnetically coupled to the primary卷線T 6, and the AVR power supply 12卷数ratio with substantially the same tertiary卷線T 6 3, having AVR transformer T 6 and the turns ratio is the same primary winding T 7 i and the secondary winding T 7 2 The configuration is such that the current measurement transformer # 7 is connected.
第 6図の電源装置 12 aにおいて、 AVRトランス T 6の一次卷線 T6丄の両 端は、 AC入力が印加される入力端子 I 1 、 I T2にそれぞれ接続される。 一 方、 A VRトランス Τ 6の二次卷線 Τ 62の一端は入力端子 I に接続され、 他端は出力端子 に接続される。 また、 A VRトランス T 6の三次卷線 T 6 3の一端は A VRトランス T 6の二次巻線 T 62の一端 (もしくは、 二次卷線 T 62の一端と同電位の端子) に接続され、 他端は電流測定用端子 DT2に接続さ れる。 なお、 実施の形態 4と同様に、 出力端子 ΟΤ\は電流測定用端子 DT\も 兼用して用いられる。 In the power supply device 12a of FIG. 6, both ends of the primary winding T6 # of the AVR transformer T6 are connected to input terminals I 1 and IT 2 to which an AC input is applied, respectively. Hand, secondary卷線T 6 2 at one end of the A VR transformer T 6 is connected to the input terminal I, and the other end is connected to the output terminal. Also, A VR transformer end of the tertiary卷線T 6 3 of T 6 is the secondary winding T 6 2 at one end of the A VR transformer T 6 (or terminal of the secondary卷線T 6 2 at one end and the same potential) is connected to the other end is connected to the current measuring terminal DT 2. As in the fourth embodiment, the output terminal し て \ is also used as the current measurement terminal DT \.
つぎに、 第 6図を用いて電流測定手段を有する電源装置 1 2 aの動作について 説明する。 まず、 出力端子 — OT2間には負荷が接続されない状態で入力 端子 I Tい I T2の間に AC入力 (Vi) が印加された場合を考える。 このとき、 AVRトランス T 6の一次巻線 T 6 iには の電圧が発生し、 二次巻線 T 62に は (ViZn) の電圧が発生する。 また、 三次巻線 T 63には二次巻線 T 62と同 一の (Vi/n) の電圧が発生する。 Next, the operation of the power supply device 12a having current measuring means will be described with reference to FIG. First, the output terminal - Between OT 2 Consider the case where AC input (Vi) is applied between the IT 2 have input terminals IT in a state where a load is not connected. At this time, AVR voltage of the primary winding T 6 i of the transformer T 6 is generated, the secondary winding T 6 2 Generates a voltage of (ViZn). Further, the tertiary winding T 6 3 voltage of the secondary winding T 6 2 the same one (Vi / n) is generated.
したがって、 出力端子 OT\、 ΟΤ2の間には、 実施の形態 3と同様に、 ( 1 - 1/n) の電圧が発生する。 また、 電流測定用端子 DT2_出力端子 OT 2間に生ずる電圧は、 出力端子 OT\、 ΟΤ2の間に生ずる電圧と同一であり、 { V;x (1 - 1/n) } となる。 Therefore, a voltage of (1-1 / n) is generated between the output terminals OT \ and # 2 , as in the third embodiment. Moreover, the voltage generated between the current measuring terminal DT 2 _ output terminal OT 2, the output terminal OT \, is the same as the voltage generated between ΟΤ 2, {V; x ( 1 - 1 / n)} becomes .
このように、 出力端子 OT ^ OT2の間の電圧と、 電流測定用端子 DT2—出 力端子 OT2間の電圧とが等しいので、 電流測定用端子 DTい DT2の間には電 圧が発生しない。 すなわち、 負荷電流が流れないときには、 電流測定用端子 DT い DT2の問には電圧が発生しない。 In this way, the voltage between the output terminals OT ^ OT 2 is equal to the voltage between the current measurement terminal DT 2 and the output terminal OT 2, so the voltage between the current measurement terminals DT and DT 2 is Does not occur. That is, when the load current does not flow, voltage is not generated in the interrogation of the current measuring terminal DT have DT 2.
つぎに、 入力端子 1丁ぃ I T2の間に AC入力 (Vi) が印加され、 出力端子 の OT\、 ΟΤ2の間に負荷が接続された状態を考える。 このとき、 AVRトラ ンス Τ 6の一次卷線 Τ 6 の両端には Viの電圧が発生し、 二次卷線 T 62の両端 には (ViZn) の電圧が発生するが、 負荷電流によって二次卷線 T 62自身に 電圧降下が生ずるので、 出力端子 OT 、 ΟΤ2の間の電圧は負荷電流が流れな いときよりも低下する。 実施の形態 4と同様に、 負荷電流を i とし、 二次巻線 T 62の卷線抵抗を含む A VRトランス T 6の内部抵抗を rとし、 一次卷線 T 6 , から二次卷線 T 62に磁気結合する磁気回路の磁気抵抗を r mとすれば、 出力端 子 OT^— OTs間に生ずる電圧は、 {V ^ ( 1 - 1/n) - i x (r m+ r ) } となる。 Then, AC input (Vi) is applied between the input terminals 1 Choi IT 2, OT \ output terminal, consider a state in which the load is connected between the ΟΤ 2. At this time, the voltage of Vi is generated in the primary卷線T 6 ends of the AVR transformer T 6, the both ends of the secondary卷線T 6 2 a voltage of generated (ViZn), two by the load current than following卷線T 6 2 itself to a voltage drop occurs, the output terminal OT, the voltage between the Omikurontau 2 load current falls below Itoki flow. Like the fourth embodiment, the load current is i, the internal resistance of the A VR transformer T 6 including卷線resistance of the secondary winding T 6 2 and r, primary卷線T 6, the secondary卷線if the magnetic resistance of a magnetic circuit magnetically coupled to the T 6 2 and r m, output terminal OT ^ - voltage developed between OTs is, {V ^ (1 - 1 / n) - ix (r m + r) }.
一方、 AVRトランス T 6の三次卷線 T 63に発生する電圧は (V iZn) で あり、 負荷電流が流れても、 この三次卷線 T 63にはほとんど電流が流れないの で、 電流測定用端子 DT2—出力端子 OT2間に生ずる電圧は {V ^ ( 1 - 1 / n) } のままである。 Meanwhile, the voltage generated in the tertiary卷線T 6 3 of AVR transformer T 6 is (V iZn), even if the load current flows, than most current in the tertiary卷線T 6 3 does not flow, the current The voltage generated between the measurement terminal DT 2 and the output terminal OT 2 remains {V ^ (1-1 / n)}.
その結果、 電流測定用端子 DTい DT2の間には、 DT2を基準として、 {V i ( 1 - 1/n) } 一 {ViX ( 1 - 1 /n) - i x ( r m+ r ) } = i x ( r rn + r ) の電圧が発生する。 すなわち、 電流測定用端子 D Tい D T 2の間には、 負 荷電流に比例した電圧が発生する。 したがって、 実施の形態 3と同様に、 この電 圧を既知の内部抵抗 rと磁気抵抗 r mの和で除することにより、 負荷電流 iの値 を求めることができる。 As a result, during the current measurement terminal DT have DT 2, based on the DT 2, {V i (1 - 1 / n)} one {ViX (1 - 1 / n ) - ix (r m + r )} = ix (r rn + r) voltage is generated. That is, during the current measurement terminal DT have DT 2, a voltage proportional to the load current is generated. Therefore, as in the third embodiment, by dividing the voltage by the sum of the known internal resistance r and the magnetic resistance r m, it is possible to determine the value of the load current i.
以上説明したように、 この実施の形態の電源装置は、 電流測定用の三次巻線を AV R トランスに負荷するだけであり、 簡易な構成により、 負荷電流を測定する ことができる。  As described above, the power supply device of the present embodiment merely loads the tertiary winding for current measurement on the AVR transformer, and can measure the load current with a simple configuration.
また、 この実施の形態の電源装置では、 負荷に大きな電流が流れた場合であつ ても、 電流測定用の三次卷線を含む回路には、 大電流を流すことがないので、 装 置の容積、 規模の増加を抑制することができる。 また、 A V R卜ランスの二次巻 線 T 6 2の卷線抵抗を含む内部抵抗 rおよび磁気抵抗 r mのみに依存した電流測 定を行っているので、 負荷電流の大きさや負荷の種類などに依存することなく、 正確な電流測定を行うことができる。 Further, in the power supply device according to this embodiment, even when a large current flows through the load, a large current does not flow through the circuit including the tertiary winding for measuring the current. However, an increase in scale can be suppressed. Further, since performing a current measurement that depends only on the internal resistance r and the magnetic resistance r m including卷線resistance of the secondary winding T 6 2 AVR Bok lance, like the size and load of the type of load current Accurate current measurement can be performed without dependence.
また、 以上の説明では、 卷数比を nとして同一のものとして計算したが、 この 卷数比 nは同一である必要はなく、 負荷電流が流れていないとき、 該両者の巻線 から出力される電圧を抵抗等により分圧することにより均等に調整し、 この電圧 を使用 (比較) することにより、 所要の精度で負荷電流の測定を行うことができ る。  Further, in the above description, the calculation was performed assuming that the turns ratio was the same as n, but the turns ratio n need not be the same, and when no load current is flowing, the outputs from both windings are output. The load current can be measured with the required accuracy by adjusting the voltage uniformly by dividing the voltage with a resistor and using (comparing) this voltage.
さらに、 実施の形態 5と同様に、 電流測定感度を増大させるための変圧トラン ス T 5を電流測定用端子 D Tい D T 2の間に揷入する構成とすることができ、 この場合についても同様の効果を得ることができる。 産業上の利用可能性 Similarly Furthermore, as in the fifth embodiment, the current measurement sensitivity can be configured to揷入between transformer transformer T 5 to have DT terminal current measurement DT 2 for increasing, for this case The effect of can be obtained. Industrial applicability
以上のように、 この発明にかかる電流測定装置および電流測定手段を有する電 源装置は、 既存の機器に軽易に付カ卩した正確な電流測定が可能な電流測定装置と して有用である。  As described above, the current measuring device and the power supply device having the current measuring means according to the present invention are useful as a current measuring device which can be easily attached to existing equipment and can accurately measure current.

Claims

求 の 範 Scope of request
1 . 交流入力が入力される一次巻線と、 該一次巻線に磁気結合され、 接続され る負荷に対して所要の交流出力を供給する二次卷線とを具備する電源トランスを 備えた電源装置に接続され、 該負荷に流れる負荷電流を測定する電流測定装置で あって、 1. A power supply including a power transformer having a primary winding to which an AC input is input, and a secondary winding magnetically coupled to the primary winding and supplying a required AC output to a connected load. A current measuring device connected to the device for measuring a load current flowing through the load,
前記電源トランスの一次卷線の両端に接続される一次巻線と、 該電源、トランス の二次巻線の一端に一端が接続される二次巻線とを具備し、 該一次卷線と該二次 巻線との巻数比が前記電源トランスの卷数比と略同一である電流測定用トランス を備え、  A primary winding connected to both ends of a primary winding of the power transformer; and a secondary winding having one end connected to one end of a secondary winding of the power supply and the transformer. A current measuring transformer having a turns ratio to a secondary winding substantially equal to a turns ratio of the power transformer;
前記電流測定用トランスの二次巻線の他端と、 前記電源トランスの二次卷線の 他端に接続された端子とを電流測定用端子とすることを特徴とする電流測定装置。  A current measuring device, wherein the other end of the secondary winding of the current measuring transformer and the terminal connected to the other end of the secondary winding of the power transformer are current measuring terminals.
2 . 前記電流測定用端子の間に挿入される変圧トランスをさらに備えたことを 特徴とする請求の範囲第 1項に記載の電流測定装置。 2. The current measurement device according to claim 1, further comprising a transformer inserted between the current measurement terminals.
3 . 交流入力が入力される一次卷線と、 該一次巻線に磁気結合され、 接続され る複数の負荷のそれぞれに対して所要の交流出力を供給する複数の二次卷線とを 具備する電源トランスを備えた電源装置に接続され、 該負荷に流れる負荷電流を それぞれ測定する電流測定装置であって、 3. A primary winding to which an AC input is input, and a plurality of secondary windings magnetically coupled to the primary winding and supplying a required AC output to each of a plurality of loads connected thereto. A current measuring device connected to a power supply device having a power transformer and for measuring a load current flowing through the load,
前記電源トランスの一次卷線の両端に接続される一次巻線と、 該電源トランス の複数の二次巻線のそれぞれの一端にそれぞれの一端が接続される複数の二次卷 線とを具備し、 該一次卷線と該複数の二次巻線とのそれぞれの巻数比が前記電源 トランスのそれぞれの卷数比と略同一である電流測定用トランスを備え、  A primary winding connected to both ends of a primary winding of the power transformer; and a plurality of secondary windings each having one end connected to one end of each of a plurality of secondary windings of the power transformer. A current measuring transformer having a turn ratio of each of the primary winding and the plurality of secondary windings substantially equal to a turn ratio of each of the power transformers;
前記電流測定用トランスの複数の二次卷線のそれぞれの他端と、 前記電源トラ ンスのそれぞれの二次巻線の他端に接続されたそれぞれの端子とを前記負荷電流 をそれぞれ測定するための電流測定用端子とすることを特徴と +る電流測定装置, The other end of each of the plurality of secondary windings of the current measuring transformer and the respective terminal connected to the other end of each of the secondary windings of the power transformer are connected to the load current. Current measuring terminals for measuring the
4 . 前記電流測定用端子の間に挿入される変圧トランスをさらに備えたことを 特徴とする請求の範囲第 3項に記載の電流測定装置。 4. The current measuring device according to claim 3, further comprising a transformer inserted between the current measuring terminals.
5 . 交流入力源に並列に接続される一次巻線と、 該一次巻線に磁気結合される とともに前記交流入力源の一端に一端が接続され、 他端に接続される負荷に対し て昇圧 降圧された交流出力を供給するための二次卷線とを具備する A V Rトラ ンスを備えた電源装置に接続され、 該負荷に流れる負荷電流を測定する電流測定 装置であって、 5. A primary winding connected in parallel to the AC input source, and one end connected to one end of the AC input source, which is magnetically coupled to the primary winding, and stepped up / down with respect to a load connected to the other end. A current measuring device connected to a power supply device having an AVR transformer having a secondary winding for supplying the obtained AC output, and measuring a load current flowing through the load;
前記 AV Rトランスの一次卷線の両端に接続される一次巻線と、 該 A V Rトラ ンスの二次巻線の一端に一端が接続される二次卷線とを具備し、 該一次巻線と該 二次巻線との巻数比が前記電源トランスの巻数比と略同一である電流測定用トラ ンスを備え、  A primary winding connected to both ends of a primary winding of the AVR transformer; and a secondary winding having one end connected to one end of a secondary winding of the AVR transformer. A current measuring transformer having a turns ratio with respect to the secondary winding substantially equal to a turns ratio of the power transformer;
前記電流測定用トランスの二次卷線の他端と、 前記 AV Rトランスの二次巻線 の他端に接続された端子とを電流測定用端子とすることを特徴とする電流測定装 置。  A current measuring device, wherein the other end of the secondary winding of the current measuring transformer and the terminal connected to the other end of the secondary winding of the AVR transformer are current measuring terminals.
6 . 前記電流測定用端子の間に挿入される変圧トランスをさらに備えたことを 特徴とする請求の範囲第 5項に記載の電流測定装置。 6. The current measuring device according to claim 5, further comprising a transformer inserted between the current measuring terminals.
7 . 交流入力源に並列に接続される一次卷線と、 7. A primary winding connected in parallel to the AC input source,
前記一次巻線に磁気結合されるとともに前記交流入力源の一端に一端が接続さ れ、 他端に接続される負荷に対して昇圧 降圧された交流出力を供給する二次巻 線と、  A secondary winding that is magnetically coupled to the primary winding, has one end connected to one end of the AC input source, and supplies a step-up / step-down AC output to a load connected to the other end;
前記一次巻線に磁気結合されるとともに前記二次卷線の一端に一端が接続され る三次卷線と、 One end is connected to one end of the secondary winding while being magnetically coupled to the primary winding. Tertiary winding,
を具備する A V Rトランスを備え、  With an AVR transformer with
前記一次卷線と前! ¾二次卷線との巻数比と、 該一次卷線と前記三次巻線との卷 数比とが略同一であり、  The turns ratio between the primary winding and the secondary winding is substantially the same as the turns ratio between the primary winding and the tertiary winding;
前記 AV R トランスの二次巻線の他端に接続された端子と、 前記三次巻線の他 端とを電流測定用端子とすることを特徴とする電流測定手段を有する電源装置。  A power supply device having current measuring means, wherein a terminal connected to the other end of the secondary winding of the AVR transformer and the other end of the tertiary winding are terminals for current measurement.
8 . 前記電流測定用端子の間に挿入される変圧トランスをさらに備えたことを 特徴とする請求の範囲第 7項に記載の電流測定手段を有する電源装置。 8. The power supply device having current measuring means according to claim 7, further comprising a transformer inserted between the current measuring terminals.
PCT/JP2004/006773 2003-12-17 2004-05-13 Current measuring equipment and power supply comprising it WO2005059573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-420097 2003-12-17
JP2003420097A JP2005181021A (en) 2003-12-17 2003-12-17 Current-measuring device and power supply device having current-measuring means

Publications (1)

Publication Number Publication Date
WO2005059573A1 true WO2005059573A1 (en) 2005-06-30

Family

ID=34697206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006773 WO2005059573A1 (en) 2003-12-17 2004-05-13 Current measuring equipment and power supply comprising it

Country Status (2)

Country Link
JP (1) JP2005181021A (en)
WO (1) WO2005059573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316750A (en) * 2014-11-13 2015-01-28 云南电网公司电力科学研究院 Semi-insulating voltage transformer primary winding current monitoring device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212441A (en) 2006-01-12 2007-08-23 Nissan Motor Co Ltd Voltage detecting apparatus
CN101371146B (en) * 2006-01-12 2011-09-14 日产自动车株式会社 Voltage detection device and voltage detection method
JP4831010B2 (en) * 2007-07-30 2011-12-07 富士電機株式会社 Transformer current detection circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694966U (en) * 1979-12-21 1981-07-28
JPS5764672U (en) * 1980-09-29 1982-04-17
JPS62170570U (en) * 1986-04-21 1987-10-29
JPH0477676A (en) * 1990-07-20 1992-03-11 Fujitsu Kiden Ltd Overcurrent detection system
JPH05232153A (en) * 1992-02-21 1993-09-07 Hitachi Ltd Voltage detecting apparatus
JPH11211758A (en) * 1998-01-28 1999-08-06 Ntt Data Corp Load current detector and transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694966U (en) * 1979-12-21 1981-07-28
JPS5764672U (en) * 1980-09-29 1982-04-17
JPS62170570U (en) * 1986-04-21 1987-10-29
JPH0477676A (en) * 1990-07-20 1992-03-11 Fujitsu Kiden Ltd Overcurrent detection system
JPH05232153A (en) * 1992-02-21 1993-09-07 Hitachi Ltd Voltage detecting apparatus
JPH11211758A (en) * 1998-01-28 1999-08-06 Ntt Data Corp Load current detector and transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316750A (en) * 2014-11-13 2015-01-28 云南电网公司电力科学研究院 Semi-insulating voltage transformer primary winding current monitoring device

Also Published As

Publication number Publication date
JP2005181021A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
CN1988071A (en) Transformer with current sensing means
US9735701B2 (en) Circuit and method for measuring available power in a wireless power system
JP4937401B1 (en) Electronic device and method for calculating input power value of power supply module in the same device
JP2015122946A (en) Synchronous rectifier and method for controlling the same
JP2009513094A (en) Power factor correction boost circuit
JP4850212B2 (en) Coil voltage sampling control power converter
CN102308348A (en) Current transformer and current detection circuit and detection method
US9425699B2 (en) Multi-output power supply apparatus enhancing a power imbalance between multiple outputs
WO2005059573A1 (en) Current measuring equipment and power supply comprising it
JP2016178800A (en) Switching power supply device
Moon et al. Power loss analysis with high primary current in magnetic energy harvesters
JP2014206521A (en) Current detection device
JP2014033501A (en) Switching power supply
US20170126141A1 (en) Switched-Mode Power Supply Unit
RU46890U1 (en) DC VOLTAGE SOURCE WITH 8X PULSATION FREQUENCY
CN105706350B (en) Power supply device and consumption power projectional technique
CN103299527A (en) Switching power supply circuit
CN109557356B (en) Current sampling circuit of isolated electric energy converter
JP5855070B2 (en) Measuring apparatus and current transformer installation state determination method
JP4081327B2 (en) Resonant switching power supply
CN216310104U (en) Transformer and electric equipment
CN215646627U (en) Power supply
JP2013040905A (en) Current detection device
RU2629905C1 (en) Method of measuring the economy of electric power in energy saving devices
RU39760U1 (en) DC VOLTAGE SOURCE WITH 8X PULSATION FREQUENCY

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase