WO2005056880A1 - Bipolar plate and production method thereof - Google Patents

Bipolar plate and production method thereof Download PDF

Info

Publication number
WO2005056880A1
WO2005056880A1 PCT/ES2003/000629 ES0300629W WO2005056880A1 WO 2005056880 A1 WO2005056880 A1 WO 2005056880A1 ES 0300629 W ES0300629 W ES 0300629W WO 2005056880 A1 WO2005056880 A1 WO 2005056880A1
Authority
WO
WIPO (PCT)
Prior art keywords
projections
bipolar plate
mixture
pressing
temperature
Prior art date
Application number
PCT/ES2003/000629
Other languages
Spanish (es)
French (fr)
Inventor
Mikhail Alexandrovich Tsypkin
Ricardo Blach Vizoso
Vladimir-Nikolaevich Fateev
Vladimir Igorevich Porembskiy
Eugeniy Akimovich Bogatchev
Original Assignee
David Systems & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by David Systems & Technology, S.L. filed Critical David Systems & Technology, S.L.
Priority to PCT/ES2003/000629 priority Critical patent/WO2005056880A1/en
Priority to AU2003288279A priority patent/AU2003288279A1/en
Publication of WO2005056880A1 publication Critical patent/WO2005056880A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a bipolar plate for application in the automotive, naval, energy, chemical and electrochemical industries, in particular it is useful in electrolysis to obtain chlorine, and may have application in the manufacture of fuel elements with membrane-electrode set.
  • Bipolar plates composed of a central part and peripheral parts located in opposite arrangement with respect to the central part are known.
  • the central part on one or both sides there are parallel longitudinal channels for the distribution of the flow of gaseous reagents that are limited by conductive projections of the current whose ends connect the peripheral parts.
  • the peripheral parts of the plates there are through holes that, once assembled the set of adjacent plates, form longitudinal channels for the improvement of the circulation and distribution of the electrolyte flows
  • bipolar plates The problem of these bipolar plates is in the uniform non-distribution of the flow, and in the limited space for the distribution of the gaseous reagent flows, determined by the large number of parallel longitudinal channels.
  • the method for obtaining bipolar plates is known, which includes the mixing of powdered graphite carbon components and a corrosion-resistant cohesion thermoplastic material, cold pressing of the powder mixture into a mold at 14500 Pa, the heating at 150 ° C, the pressure drop to 2000 kPa, the temperature rise to 205 ° C, and the pressure rise again to 14500 kPa, with a final phase of gradual pressure decrease and temperature (see description of patent RU 2187578).
  • Bipolar plates composed of a central part and peripheral parts located around the central part are known.
  • Labyrinth grooves are placed on one or two sides of the central part for the distribution of the gaseous reagent flows Longitudinal Y-shaped [, which form functional conductive projections of each other with their extremities located in the same plane, with a central hole and two diagonally arranged for the circulation and distribution of electrolyte flows.
  • holes are placed for block assembly.
  • the peripheral and central parts are separated by a cohesion element located in the perimeter of the central part.
  • the closest technical solution refers to a method of obtaining bipolar plates, which includes the preparation of a mixture of thermo-rigid resin of a certain composition in a volatile solvent, the mixing of the carbon aggregate with the prepared solution until reaching a homogeneous state , drying, pressing and thermal hardening (US patent application No. US2002 / 0037448.
  • thermal hardening is carried out not simultaneously but after pressing the piece.
  • drying the mixture at low temperature does not guarantee the removal of a large number of volatile components of the cohesion material, which prevents the pressing of microscopic amounts of the material of the bipolar plates, especially in the areas of the conductive projections. of the current, which serve to allow electrical contact and mechanical attachment of the current collector to the catalytic layer. This can lead to the formation of defective areas at the base of the projections, and to the rupture of these during the operation, assembly and exploitation of the elements of the fuel cell.
  • the objective of the proposed invention is to obtain bipolar plates with conductive projections of the free form and placement current with a height of between 0.3 to 2.0 mm by the mold pressing method of an electrically conductive composite material on a base of dispersed aggregates of carbon and thermo-rigid resin, as well as in the increase of the effectiveness in the transport of reagents and diversion of the products of the reaction.
  • the expected thermal result is an improvement in the operating properties of the bipolar plates and the fuel element as a whole.
  • the bipolar plate is composed of peripheral parts and a central part with prismatic conductive projections with a square or rectangular base or with a cylindrical or conical shape with a circular or elliptical base whose diameter or distance between more distant points of the base is between 0.5-3.0 mm, extending a height between 0.3 and 2.0 mm with variable or constant section with its free upper ends located in the same plane as the peripheral parts, and whose Distance between centers of projections is 1.0 to 4.0 mm.
  • the highlights can be placed freely and neatly on the board, in the form of chess boxes, rhombuses, circles, spirals, or labyrinth.
  • the objective pursued is achieved because between drying and pressing the mixture is subjected to an annealing at a temperature between 50 and 60 ° C lower than the thermal hardening temperature of the mixture, and the pressing is carried out with a repeated load up to 15-20 mPa pressure, while heating to the point of thermal hardening of the mixture.
  • the annealing is carried out with a gradual increase in temperature over 10 to 15 hours and the subsequent maintenance of the temperature reached for between 1 and 2 hours, and the pressing is carried out with a temperature of the active element of the Upper press 1.5-2 times at annealing temperature.
  • thermo-rigid resin acetone
  • thermo-rigid resin of any composition in the pressing mixture allows conductive projections of the current and bipolar plates to be formed without defects as a whole by the agglutination mechanism with liquid phase, which disappears just after its appearance, despite continuous heating.
  • sequence of phenomena that take place during the course of the main operations for the manufacture of bipolar plates is as follows:
  • thermo-rigid cohesive polymer Formation of a thin layer of thermo-rigid cohesive polymer on the surface of the particles of the carbon aggregate during the preparation of the mixture, its drying and subsequent annealing.
  • Annealing prior to pressing is necessary due to the presence in agglomerated mixtures of a large number of volatile components that hinder effective pressing.
  • a higher temperature during annealing can produce unwanted processes of premature hardening of the cohesive in microscopic amounts of the mixture, and a lower temperature is not effective.
  • An important parameter is the pressure during pressing.
  • the pressing pressure depends on the specific type of aggregate and must not exceed the extraction value of the liquid cohesive mixture: 20 mPa.
  • a low pressing pressure (less than 15 mPa) does not provide an effective understanding of the bipolar plate, especially in the area of the current conductors.
  • the formation of the due structure of the subsurface layer according to the proposed method takes place by the introduction of a pore forming agent (ammonium carbonate, polyethylene glycol, polyethylene) in the composition of the initial mixture for pressing, in a 0.1 -3.0% (weight) in relation to the solid components of the mixture.
  • a pore forming agent ammonium carbonate, polyethylene glycol, polyethylene
  • the pore forming agent included in the initial mixture does not hinder the hardening of the cohesive, and when decomposing during the process thermal and pressing during hardening, it forms a microporous structure of the plate, and consequently also of the subsurface layer (at a depth of 1-2 microns).
  • Figure 1. Shows a plan view of the bipolar plate.
  • Figure 2. Shows a sectional view of the bipolar plate represented in the previous figure according to A-A.
  • the bipolar plate object of this invention consists of a central part (1) and a peripheral part (2).
  • the central part has projections (3), whose upper free ends are in the same plane as the peripheral part (2), have a height a between 0.3 and 2 mm and a diameter or distance b between more points distant from its base between 0.5 and 3.0 mm.
  • the projections are spaced with a distance between centers c comprised between 1.0 and 4.0 mm and allow, with a large area and volume of passage of the gaseous reagent flows, to distribute the tensions (pressures) in all directions.
  • the projections can be shaped like a cylinder, sectioned pyramid, prism, and / or sectioned cone.
  • Bipolar plates are manufactured as described below: First, dispersed carbon components are combined to form a homogeneous mixture, with a certain amount of thermo-rigid resin solvent. As dispersed carbon components, graphite, soot, chopped fiber, powdered coke, etc. can be used.
  • the prepared mixture periodically stirred, is then placed for drying at room temperature, so that the main quantity of volatile components is eliminated.
  • a semi-finished material can be obtained, for example, from granules for a subsequent manufacturing process of bipolar plates. Subsequently, after performing a visual exam, you cover the dry mixture at a temperature between 50 and 60 ° C lower than the thermal hardening temperature.
  • the annealed mixture is then pressed at a pressure of 15-20 mPa in a mold, whose punches have channels that will shape the conductive projections of the current during pressing and hardening.
  • the heating of the mold with the mixture takes place, from annealing temperature to hardening temperature.
  • the mold After maintaining the hardening temperature of 0.5-1 hours, the mold is removed from the press and cooled in the air.
  • the suspension of the dry mixture was introduced into the mold, which was placed in the oven, heating it for 13.5-14 hours until reaching a temperature of 90 ° C, which was then maintained for 2 hours.
  • the visual control of the bipolar plate showed the absence on the surface of the bipolar plate (including the areas of the current conductors) of scratches, defects and fissures, and detachments of the material of the bipolar plate at the boundary between the zones of the conductive projections of the current and the base of the plate.
  • EXAMPLE 2 The bipolar plate was manufactured with a composition and method analogous to that of Example 1, with the difference that the projections are shaped like a truncated cone of 3.0 mm in diameter at the base, 2.5 mm at the end upper, a height of 2.0 mm, and a distance between its centers of 4.00 mm. Before and after performing the hardness test, no defects were detected on the surface or on the projections.
  • the volume resistivity value was 0.030 ⁇ -crn.
  • EXAMPLE 3 The bipolar plate was manufactured with a configuration and method analogous to that of example 1, with the difference that 31 g of epoxy-phenolic cohesive No. 560 produced by FGUP GNC "VIAM" were used as thermal hardening cohesive.
  • the volume resistivity value was 0.017 ⁇ • cm.
  • EXAMPLE 4 The bipolar plate was manufactured with a configuration and method analogous to that of Example 1, with the difference that 3.5 g (3.0% by weight) of pore-forming agent were added to the initial pressing mixture (high pressure polyethylene).
  • the volume resistivity value was 0.028 ⁇ • cm.
  • the porosity of the subsurface layer (depth up to 100 microns), measured by water absorption, was 2.8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a bipolar plate and to the production method thereof. The inventive bipolar plate comprises a central part (1) and peripheral parts (2), said central part being equipped with current conducting projections (3) having upper ends which are located in the same plane as the peripheral parts (2). According to the invention, the height of the projections is between 0.3 and 2 mm and the distance between the farthest points at the base thereof is between 0.5 and 3 mm. Moreover, the projections (3) are spaced apart such that the distance between the centres of each projection is between 1 and 4 mm. The inventive production method essentially consists in, between drying and pressing, annealing a mixture formed by thermosetting resin, carbon dust and volatile solvent to a temperature of between 50 and 60 °C lower than that of the thermosetting temperature of the mixture, the aforementioned pressing being performed at a pressure of between 15 and 20 mPa at the same time as the heating.

Description

PLACA BIPOLAR Y SU MÉTODO DE OBTENCIÓN BIPOLAR PLATE AND ITS METHOD OF OBTAINING
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se refiere a una placa bipolar de aplicación en las industrias automovilística, naval, energética, química y electroquímica, en particular es de utilidad en la electrólisis para la obtención de cloro, y puede tener aplicación en la fabricación de elementos de combustible con conjunto membrana-electrodos .The present invention relates to a bipolar plate for application in the automotive, naval, energy, chemical and electrochemical industries, in particular it is useful in electrolysis to obtain chlorine, and may have application in the manufacture of fuel elements with membrane-electrode set.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Son conocidas las placas bipolares compuestas por una parte central y unas partes periféricas situadas en disposición opuesta respecto a la parte central . En la parte central, por uno o por los dos lados se encuentran unos canales longitudinales paralelos para la distribución del flujo de reactivos gaseosos que están limitados por unos resaltes conductores de la corriente cuyos extremos conectan las partes periféricas. En las partes periféricas de las placas hay orificios de paso que, una vez montado el conjunto de placas contiguas, forman canales longitudinales para la mejora de la circulación y distribución de los flujos del electrolitoBipolar plates composed of a central part and peripheral parts located in opposite arrangement with respect to the central part are known. In the central part, on one or both sides there are parallel longitudinal channels for the distribution of the flow of gaseous reagents that are limited by conductive projections of the current whose ends connect the peripheral parts. In the peripheral parts of the plates there are through holes that, once assembled the set of adjacent plates, form longitudinal channels for the improvement of the circulation and distribution of the electrolyte flows
(véase la patente RU 2187578) . El problema de estas placas bipolares está en la no distribución uniforme del flujo, y en el limitado espacio para la distribución de los flujos de los reactivos gaseosos, determinado por la gran cantidad de canales longitudinales paralelos. Es conocido el método para la obtención de placas bipolares, que incluye la mezcla de componentes de carbono grafito en polvo y un material termoplástico de cohesión resistente a la corrosión, el prensado en frío de la mezcla en polvo en un molde a 14500 Pa, el calentamiento a 150°C, la disminución de la presión a 2000 kPa, el aumento de la temperatura hasta los 205°C, y el aumento de la presión de nuevo hasta los 14500 kPa, con una fase final de disminución gradual de la presión y la temperatura (véase la descripción de la patente RU 2187578) . De este modo se obtiene una placa resistente a la corrosión por la periferia, que forma una unidad con la parte central conductora de electricidad. El problema del método conocido para la obtención de placas bipolares consiste en la necesidad de preparar y unir mezclas de componentes de distinta composición. Esto complica el método e inevitablemente lleva a la acumulación de tensiones térmicas durante el enfriamiento de las piezas. La utilización del método de prensado en caliente, es decir, en condiciones de comprensión completa, conlleva también unos gastos adicionales. El uso de un material termoplástico de cohesión durante el prensado en el molde (en condiciones de presión en una dirección) no permite formar de manera efectiva resaltes conductores de la corriente en la superficie de las placas, ya que el polímero termoplástico, al formarse resaltes de forma compleja, tiene la tendencia a rezumar y no comprimirse bajo presión.(see RU 2187578). The problem of these bipolar plates is in the uniform non-distribution of the flow, and in the limited space for the distribution of the gaseous reagent flows, determined by the large number of parallel longitudinal channels. The method for obtaining bipolar plates is known, which includes the mixing of powdered graphite carbon components and a corrosion-resistant cohesion thermoplastic material, cold pressing of the powder mixture into a mold at 14500 Pa, the heating at 150 ° C, the pressure drop to 2000 kPa, the temperature rise to 205 ° C, and the pressure rise again to 14500 kPa, with a final phase of gradual pressure decrease and temperature (see description of patent RU 2187578). In this way a corrosion resistant plate is obtained by the periphery, which forms a unit with the central conductive part of electricity. The problem of the known method for obtaining bipolar plates is the need to prepare and join mixtures of components of different composition. This complicates the method and inevitably leads to the accumulation of thermal stresses during the cooling of the pieces. The use of the hot pressing method, that is, under conditions of complete understanding, also entails additional costs. The use of a thermoplastic material of cohesion during pressing in the mold (under conditions of pressure in one direction) does not allow to effectively form conductive projections of the current on the surface of the plates, since the thermoplastic polymer, when forming projections complexly, it has the tendency to ooze and not compress under pressure.
Son conocidas las placas bipolares compuestas por una parte central y partes periféricas situadas alrededor de la parte central . A uno o dos lados de la parte central se sitúan, para la distribución de los flujos de reactivos gaseosos, unas acanaladuras laberínticas longitudinales en forma de Y[, que forman entre sí resaltes funcionales conductores de la corriente con sus extremidades situadas en el mismo plano, con un orificio central y dos en disposición diagonal para la circulación y distribución de los flujos del electrolito. En las partes periféricas de las placas se sitúan orificios de paso para su montaje en bloque. Las partes periférica y central están separadas por un elemento de cohesión situado en el perímetro de la parte central. Además, para la distribución organizada de los flujos de reactivos gaseosos, las acanaladuras longitudinales en forma de ü, y los resaltes funcionales conductores de la corriente, tienen un sentido laberíntico desde el orificio central hacia los periféricos o viceversa (tal y como aparece en un catálogo publicitario de la firma Schunk KOHLENSTOFF GMBH) . Este diseño, en comparación con su análogo, permite alargar el recorrido del flujo de reactivos gaseosos y organizar una distribución relativamente uniforme de dicho flujo por la superficie de la celda del elemento de combustible, aunque presenta los siguientes inconvenientes :Bipolar plates composed of a central part and peripheral parts located around the central part are known. Labyrinth grooves are placed on one or two sides of the central part for the distribution of the gaseous reagent flows Longitudinal Y-shaped [, which form functional conductive projections of each other with their extremities located in the same plane, with a central hole and two diagonally arranged for the circulation and distribution of electrolyte flows. In the peripheral parts of the plates, holes are placed for block assembly. The peripheral and central parts are separated by a cohesion element located in the perimeter of the central part. In addition, for the organized distribution of gaseous reagent flows, the ü-shaped longitudinal grooves, and the current conductive functional projections, have a labyrinthine sense from the central orifice to the peripherals or vice versa (as it appears in a advertising catalog of the firm Schunk KOHLENSTOFF GMBH). This design, in comparison with its analogue, makes it possible to lengthen the flow path of gaseous reagents and organize a relatively uniform distribution of said flow through the cell surface of the fuel element, although it has the following drawbacks:
Apantallamiento significativo de la superficie del colector poroso de la corriente por los resaltes funcionales conductores de la corriente, que condicionan la reducción de la efectividad del transporte de reactivos y la desviación de los productos de la reacción hacia estas zonas apantalladas y, como consecuencia, la reducción de la densidad de la corriente de la celda del elemento de combustible con la tensión dada;Significant shielding of the surface of the porous collector of the current by the functional conductive projections of the current, which condition the reduction of the effectiveness of the transport of reagents and the deviation of the products of the reaction towards these screened areas and, as a consequence, the reduction of the cell current density of the fuel element with the given voltage;
- Posibilidad de que se obstruyan los canales con gotas de agua condensada por las fluctuaciones del régimen de temperatura del elemento combustible y/o en el balance hídrico del sistema, lo que conduciría también a la reducción de la efectividad del transporte de reactivos y la desviación de los productos de la reacción por estos canales, y como consecuencia a la reducción de la densidad de la corriente de la celda del elemento de combustible con la tensión dada.- Possibility of clogging the channels with drops of condensed water due to fluctuations in the temperature regime of the fuel element and / or in the water balance of the system, which would also lead to reduction of the effectiveness of the transport of reagents and the deviation of the products of the reaction through these channels, and as a consequence to the reduction of the density of the current of the cell of the fuel element with the given tension.
La solución técnica más cercana se refiere a un método de obtención de placas bipolares, que incluye la preparación de una mezcla de resina termorígida de una composición determinada en un disolvente volátil, la mezcla del agregado de carbono con la solución preparada hasta alcanzar un estado homogéneo, el secado, prensado y endurecimiento térmico (solicitud de patente USA N° US2002/0037448.The closest technical solution refers to a method of obtaining bipolar plates, which includes the preparation of a mixture of thermo-rigid resin of a certain composition in a volatile solvent, the mixing of the carbon aggregate with the prepared solution until reaching a homogeneous state , drying, pressing and thermal hardening (US patent application No. US2002 / 0037448.
El problema de este método radica en que se lleva a cabo el endurecimiento térmico no simultáneo sino después del prensado de la pieza. Además, el secado de la mezcla a baja temperatura no garantiza la eliminación de una gran cantidad de componentes volátiles del material de cohesión, lo que impide el prensado de cantidades microscópicas del material de las placas bipolares, sobre todo en las zonas de los resaltes conductores de la corriente, que sirven para permitir el contacto eléctrico y la sujeción mecánica del colector de la corriente a la capa catalítica. Esto puede llevar a la formación de zonas defectuosas en la base de los resaltes, y a la rotura de éstos durante el funcionamiento, montaje y explotación de los elementos de la pila de combustible.The problem with this method is that thermal hardening is carried out not simultaneously but after pressing the piece. In addition, drying the mixture at low temperature does not guarantee the removal of a large number of volatile components of the cohesion material, which prevents the pressing of microscopic amounts of the material of the bipolar plates, especially in the areas of the conductive projections. of the current, which serve to allow electrical contact and mechanical attachment of the current collector to the catalytic layer. This can lead to the formation of defective areas at the base of the projections, and to the rupture of these during the operation, assembly and exploitation of the elements of the fuel cell.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
El objetivo de la invención propuesta consiste en la obtención de placas bipolares con resaltes conductores de la corriente de forma y colocación libres con una altura de entre 0,3 a 2,0 mm por el método de prensado en molde de un material compuesto conductor de la electricidad sobre una base de agregados dispersos de carbono y resina termorrígida, así como en el aumento de la efectividad en el transporte de reactivos y desvío de los productos de la reacción.The objective of the proposed invention is to obtain bipolar plates with conductive projections of the free form and placement current with a height of between 0.3 to 2.0 mm by the mold pressing method of an electrically conductive composite material on a base of dispersed aggregates of carbon and thermo-rigid resin, as well as in the increase of the effectiveness in the transport of reagents and diversion of the products of the reaction.
El resultado térmico esperado consiste en una mejora de las propiedades de explotación de las placas bipolares y del elemento de combustible en su conjunto.The expected thermal result is an improvement in the operating properties of the bipolar plates and the fuel element as a whole.
El objetivo planteado se consigue debido a que la placa bipolar está compuesta por partes periféricas y una parte central con resaltes conductores de forma prismática con base cuadrada o rectangular o con forma cilindrica o cónica de base circular o elíptica cuyo diámetro o distancia entre puntos más distantes de la base está comprendida entre 0,5-3,0 mm, extendiéndose una altura comprendida entre 0,3 y 2,0 mm con sección variable o constante con sus extremos superiores libres situados en el mismo plano que las partes periféricas, y cuya distancia entre centros de resaltes es de 1,0 a 4,0 mm. Además los resaltes pueden situarse de manera libre y ordenada en la placa, en forma de cuadros de ajedrez, rombos, círculos, espirales, o de laberinto.The objective is achieved because the bipolar plate is composed of peripheral parts and a central part with prismatic conductive projections with a square or rectangular base or with a cylindrical or conical shape with a circular or elliptical base whose diameter or distance between more distant points of the base is between 0.5-3.0 mm, extending a height between 0.3 and 2.0 mm with variable or constant section with its free upper ends located in the same plane as the peripheral parts, and whose Distance between centers of projections is 1.0 to 4.0 mm. In addition, the highlights can be placed freely and neatly on the board, in the form of chess boxes, rhombuses, circles, spirals, or labyrinth.
Esto permite una distribución uniforme de los reactivos por la superficie de la celda del elemento de combustible, y una desviación efectiva de los productos de la reacción, y como consecuencia de eso, permite aumentar la densidad de la corriente en la celda del elemento de combustible con la tensión dada. En el método para la obtención de placas bipolares se incluye la preparación de una mezcla de resina termorrígida de una composición determinada en un disolvente volátil, añadiendo el agregado de polvos de carbono y mezclándolos hasta alcanzar un estado homogéneo, el secado, prensado y endurecimiento térmico. El objetivo perseguido se consigue debido a que entre el secado y el prensado se somete la mezcla a un recocido a una temperatura entre 50 y 60°C inferior a la temperatura de endurecimiento térmico de la mezcla, y el prensado se realiza con una carga reiterada de hasta 15-20 mPa de presión, a la vez que se calienta hasta el punto de endurecimiento térmico de la mezcla. El recocido se lleva a cabo con un aumento gradual de la temperatura en el transcurso de entre 10 y 15 horas y el posterior mantenimiento de la temperatura alcanzada durante entre 1 y 2 horas, y el prensado se realiza con una temperatura del elemento activo de la prensa superior en 1,5-2 veces a la temperatura de recocido. La proporción s:l''This allows a uniform distribution of the reagents across the cell surface of the fuel element, and an effective deviation of the reaction products, and as a consequence thereof, allows increasing the density of the current in the cell of the fuel element With the tension given. In the method for obtaining bipolar plates the preparation of a mixture of thermo-rigid resin of a certain composition in a volatile solvent is included, adding the aggregate of carbon powders and mixing them until reaching a homogeneous state, drying, pressing and thermal hardening. The objective pursued is achieved because between drying and pressing the mixture is subjected to an annealing at a temperature between 50 and 60 ° C lower than the thermal hardening temperature of the mixture, and the pressing is carried out with a repeated load up to 15-20 mPa pressure, while heating to the point of thermal hardening of the mixture. The annealing is carried out with a gradual increase in temperature over 10 to 15 hours and the subsequent maintenance of the temperature reached for between 1 and 2 hours, and the pressing is carried out with a temperature of the active element of the Upper press 1.5-2 times at annealing temperature. The proportion s: l ''
(fases sólida y líquida) durante la formación de la mezcla de carbono en polvo y el disolvente de la resina termorrígida (acetona) varía dentro de un intervalo de entre 1:3 y 1:5, y a la composición de la mezcla final se añade un 0,1-3,0% (peso) de un agente formador de poros. La necesidad de utilizar la resina termorrígida viene dada por el hecho, demostrado experimentalmente, de que al prensar las placas bipolares con contenido de carbono sobre un cohesionante termoplástico, no se produce la comprensión debida en la zona de los resaltes conductores de la corriente, lo que produce una débil adhesión de estos resaltes al cuerpo de la placa y su desprendimiento. La presencia de una resina termorrígida de cualquier composición en la mezcla para el prensado permite formar resaltes conductores de la corriente y placas bipolares sin defectos en su conjunto por el mecanismo de aglutinación con fase líquida, que desaparece justo después de su aparición, a pesar del calentamiento continuado. La secuencia de fenómenos que tienen lugar durante el transcurso de las principales operaciones para la fabricación de las placas bipolares es la siguiente:(solid and liquid phases) during the formation of the mixture of powdered carbon and the solvent of the thermo-rigid resin (acetone) varies within a range of between 1: 3 and 1: 5, and the composition of the final mixture is added 0.1-3.0% (weight) of a pore forming agent. The need to use the thermo-rigid resin is given by the fact, experimentally demonstrated, that when pressing the bipolar plates with carbon content on a thermoplastic cohesive, the proper understanding does not occur in the area of the conductive projections of the current, which produces a weak adhesion of these projections to the body of the plate and its detachment. The presence of a thermo-rigid resin of any composition in the pressing mixture allows conductive projections of the current and bipolar plates to be formed without defects as a whole by the agglutination mechanism with liquid phase, which disappears just after its appearance, despite continuous heating. The sequence of phenomena that take place during the course of the main operations for the manufacture of bipolar plates is as follows:
1. Formación de una fina capa de polímero cohesionante termorrígido en la superficie de las partículas del agregado de carbono durante la preparación de la mezcla, su secado y posterior recocido.1. Formation of a thin layer of thermo-rigid cohesive polymer on the surface of the particles of the carbon aggregate during the preparation of the mixture, its drying and subsequent annealing.
2. Condensación de la mezcla.2. Condensation of the mixture.
3. Aparición de una fase líquida por la aparición de una capa de cohesionante en las partículas del agregado.3. Appearance of a liquid phase due to the appearance of a cohesive layer in the aggregate particles.
4. Continuación de la condensación de la pieza por la sedimentación característica de la aglutinación de la fase líquida.4. Continuation of the condensation of the piece due to the sedimentation characteristic of the agglutination of the liquid phase.
5. Endurecimiento térmico del cohesionante y de la pieza en su conjunto.5. Thermal hardening of the cohesive and the piece as a whole.
El recocido anterior al prensado es necesario por la presencia en las mezclas aglomeradas de una gran cantidad de componentes volátiles que dificultan un prensado efectivo. Una temperatura más alta durante el recocido puede producir procesos no deseados de endurecimiento prematuro del cohesionante en cantidades microscópicas de la mezcla, y una temperatura más baja no resulta efectiva. Un parámetro importante es la presión durante el prensado. Para las mezclas de agregados dispersos de carbono y cohesionante termorrígido la presión de prensado depende del tipo concreto de agregado y no deberá superar el valor de extracción del cohesionante líquido de la mezcla: 20 mPa. Una baja presión de prensado (menos de 15 mPa) no proporciona una comprensión efectiva de la placa bipolar, sobre todo en la zona de los resaltes conductores de la corriente. Al llevar a cabo el prensado a la vez que el calentamiento del molde con la mezcla de endurecimiento térmico, se realiza la 4 a fase de la secuencia antes indicada de fenómenos que tienen lugar durante la formación de las placas. Una peculiaridad importante de la placa bipolar está en la estructura de su superficie. Para la obtención de unas mejores propiedades del elemento de combustible es necesario que la superficie, entre cuyos resaltes circulan los gases activos, tenga una aspereza y microporosidad determinada. En ese caso, el agua formada como resultado de la reacción entre los gases, se acumula parcialmente en los poros subsuperficiales, y de esa forma aumenta la humedad de los gases, lo que influye positivamente en las características energéticas específicas del elemento de combustible.Annealing prior to pressing is necessary due to the presence in agglomerated mixtures of a large number of volatile components that hinder effective pressing. A higher temperature during annealing can produce unwanted processes of premature hardening of the cohesive in microscopic amounts of the mixture, and a lower temperature is not effective. An important parameter is the pressure during pressing. For mixtures of dispersed carbon aggregates and thermo-rigid cohesive, the pressing pressure depends on the specific type of aggregate and must not exceed the extraction value of the liquid cohesive mixture: 20 mPa. A low pressing pressure (less than 15 mPa) does not provide an effective understanding of the bipolar plate, especially in the area of the current conductors. In carrying out the pressing while heating the mold with the mixture of thermal curing is performed to the four phase sequence indicated above phenomena that occur during the formation of plaques. An important peculiarity of the bipolar plate is in the structure of its surface. In order to obtain better properties of the fuel element, it is necessary that the surface, between whose projections the active gases circulate, has a certain roughness and microporosity. In that case, the water formed as a result of the reaction between the gases, partially accumulates in the subsurface pores, and thus increases the humidity of the gases, which positively influences the specific energy characteristics of the fuel element.
La formación de la estructura debida de la capa subsuperficial según el método propuesto tiene lugar por la introducción de un agente formador de poros (carbonato de amonio, polietilenglicol, polietileno) en la composición de la mezcla inicial para el prensado, en un 0,1-3,0% (peso) en relación con los componentes sólidos de la mezcla. El agente formador de poros incluido en la mezcla inicial no dificulta el endurecimiento del cohesionante, y al descomponerse durante el proceso térmico y de prensado durante el endurecimiento, forma una estructura microporosa de la placa, y consecuentemente también de la capa subsuperficial (a una profundidad de 1-2 mieras) .The formation of the due structure of the subsurface layer according to the proposed method takes place by the introduction of a pore forming agent (ammonium carbonate, polyethylene glycol, polyethylene) in the composition of the initial mixture for pressing, in a 0.1 -3.0% (weight) in relation to the solid components of the mixture. The pore forming agent included in the initial mixture does not hinder the hardening of the cohesive, and when decomposing during the process thermal and pressing during hardening, it forms a microporous structure of the plate, and consequently also of the subsurface layer (at a depth of 1-2 microns).
La disminución en el contenido de agente formador de poros en menos del 0,1% prácticamente no influye en la microporosidad y aspereza de la capa subsuperficial , y el aumento en el contenido de dicho agente por encima del 3,0% no es conveniente por la disminución de la resistencia mecánica y la posible aparición de permeabilidad en la placa.The decrease in the pore-forming agent content by less than 0.1% practically does not influence the microporosity and roughness of the subsurface layer, and the increase in the content of said agent above 3.0% is not convenient because the decrease of the mechanical resistance and the possible appearance of permeability in the plate.
DESCRIPCIÓN DE LAS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: Figura 1.- Muestra una vista en planta de la placa bipolar.To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for illustrative and non-limiting purposes, the following has been represented: Figure 1.- Shows a plan view of the bipolar plate.
Figura 2. - Muestra una vista en sección de la placa bipolar representada en la figura anterior según A- A.Figure 2. - Shows a sectional view of the bipolar plate represented in the previous figure according to A-A.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN La placa bipolar objeto de esta invención consta de una parte central (1) y una parte periférica (2) . La parte central tiene unos resaltes (3) , cuyos extremos libres superiores se encuentran en el mismo plano que la parte periférica (2) , disponen de una altura a comprendida entre 0,3 y 2 mm y un diámetro o distancia b entre puntos más distantes de su base comprendida entre 0,5 y 3,0 mm. Los resaltes se sitúan espaciados con una distancia entre centros c comprendida entre 1,0 y 4,0 mm y permiten, con una gran superficie y volumen de paso de los flujos de reactivos gaseosos, distribuir las tensiones (presiones) en todas direcciones. Es posible una disposición de los resaltes en forma de tabla de ajedrez, rombos, círculos, espirales, o laberinto. Los resaltes pueden tener forma de cilindro, pirámide seccionada, prisma, y/o cono seccionado.PREFERRED EMBODIMENT OF THE INVENTION The bipolar plate object of this invention consists of a central part (1) and a peripheral part (2). The central part has projections (3), whose upper free ends are in the same plane as the peripheral part (2), have a height a between 0.3 and 2 mm and a diameter or distance b between more points distant from its base between 0.5 and 3.0 mm. The projections are spaced with a distance between centers c comprised between 1.0 and 4.0 mm and allow, with a large area and volume of passage of the gaseous reagent flows, to distribute the tensions (pressures) in all directions. It is possible to arrange the highlights in the form of a chess board, rhombuses, circles, spirals, or labyrinth. The projections can be shaped like a cylinder, sectioned pyramid, prism, and / or sectioned cone.
Las placas bipolares se fabrican como se describe a continuación : En primer lugar se combinan componentes dispersos de carbono para formar una mezcla homogénea, con una cantidad determinada de disolvente de resina termorrígida. Como componentes dispersos de carbono se puede emplear grafito, hollín, fibra picada, coque pulverizado, etc.Bipolar plates are manufactured as described below: First, dispersed carbon components are combined to form a homogeneous mixture, with a certain amount of thermo-rigid resin solvent. As dispersed carbon components, graphite, soot, chopped fiber, powdered coke, etc. can be used.
A continuación la mezcla preparada, agitada periódicamente, se coloca para su secado a temperatura ambiente, para que se produzca la eliminación de la cantidad principal de componentes volátiles. De esta manera puede obtenerse un material semiacabado de forma, por ejemplo, de granulos para un posterior proceso de fabricación de placas bipolares. Posteriormente, tras realizar un examen visual, se recuece la mezcla seca a una temperatura entre 50 y 60 °C inferior a la temperatura de endurecimiento térmico.The prepared mixture, periodically stirred, is then placed for drying at room temperature, so that the main quantity of volatile components is eliminated. In this way, a semi-finished material can be obtained, for example, from granules for a subsequent manufacturing process of bipolar plates. Subsequently, after performing a visual exam, you cover the dry mixture at a temperature between 50 and 60 ° C lower than the thermal hardening temperature.
Después se prensa la mezcla recocida a una presión de 15-20 mPa en un molde, cuyos punzones tienen canales que darán forma a los resaltes conductores de la corriente durante el prensado y endurecimiento. A la vez que se realiza el prensado tiene lugar el calentamiento del molde con la mezcla, desde la temperatura de recocido hasta la temperatura de endurecimiento.The annealed mixture is then pressed at a pressure of 15-20 mPa in a mold, whose punches have channels that will shape the conductive projections of the current during pressing and hardening. At the same time as the pressing is carried out, the heating of the mold with the mixture takes place, from annealing temperature to hardening temperature.
Después de mantener la temperatura de endurecimiento de 0,5-1 horas se extrae el molde de la prensa y se enfría al aire.After maintaining the hardening temperature of 0.5-1 hours, the mold is removed from the press and cooled in the air.
Finalmente se desprensa por medio de un instrumento especial .Finally it is dismantled by means of a special instrument.
La relevancia de esta invención se ilustra por medio de los siguientes ejemplos:The relevance of this invention is illustrated by the following examples:
EJEMPLO 1. Para la fabricación de una placa bipolar (con resaltes conductores de la corriente de forma cilindrica de 0,5 mm de diámetro, una altura de 0,5 mm, y una distancia entre sus centros de 1,0 mm) de 100 x 100 mm, un grosor de 7mm, y un peso de 115 g se preparó una mezcla de la siguiente composición, con una proporción sólido- líquido = 1,3376:1EXAMPLE 1. For the manufacture of a bipolar plate (with conductive projections of the cylindrical current of 0.5 mm diameter, a height of 0.5 mm, and a distance between its centers of 1.0 mm) of 100 x 100 mm, a thickness of 7 mm, and a weight of 115 g, a mixture of the following composition was prepared, with a solid-liquid ratio = 1.3376: 1
- grafito marca KS-10 - 98 g.- graphite brand KS-10 - 98 g.
- Hollín marca PM-100 - 1 g.- PM-100 brand soot - 1 g.
- Baqulita laca marca LBS-1 - 34 g.- Baqulita lacquer brand LBS-1 - 34 g.
- Acetona - 380 mi. En un vaso de medida se mezclaron las cantidades indicadas de baquelita laca y acetona hasta obtener una solución de color homogéneo. La suspensión de grafito y hollín se combinó previamente en seco hasta obtener una mezcla homogénea. Después se vertió la mezcla en polvo y la solución de baquelita laca en un recipiente para ser mezclados de forma mecánica durante 5-10 minutos hasta alcanzar la homogeneidad. Luego se colocó la mezcla bajo la acción de una vitrina de extracción a temperatura ambiente durante 12-15 horas hasta alcanzar un aspecto seco, removiendo la mezcla periódicamente y deshaciendo los aglomerados de mayor tamaño (más de 2-3 mm) por medio de una rejilla metálica con celdillas de 2 mm.- Acetone - 380 mi. The quantities were mixed in a measuring glass lacquer and acetone bakelite indicated until a homogeneous color solution is obtained. The graphite and soot suspension was previously combined dry to obtain a homogeneous mixture. The powder mixture and the lacquer bakelite solution were then poured into a container to be mechanically mixed for 5-10 minutes until homogeneity was achieved. The mixture was then placed under the action of an extraction cabinet at room temperature for 12-15 hours until it reached a dry appearance, periodically stirring the mixture and breaking up the larger agglomerates (more than 2-3 mm) by means of a metal grid with 2 mm cells.
La suspensión de la mezcla seca se introdujo en el molde, que se puso en el horno, calentándola durante 13,5-14 horas hasta alcanzar una temperatura de 90°C, que se mantuvo luego durante 2 horas .The suspension of the dry mixture was introduced into the mold, which was placed in the oven, heating it for 13.5-14 hours until reaching a temperature of 90 ° C, which was then maintained for 2 hours.
A continuación se extrajo del horno y se colocó en una presa hidráulica calentada a 170 °C. Se prensó a impulsos (velocidad de carga) de 1-2 segundos hasta una fuerza de 22 Tm después de aproximadamente 5 seg. Se aumentó de nuevo la fuerza hasta 22-25 Tm manteniéndose el molde en la prensa durante 1 hora, y después se sacó para que se enfriase a temperatura ambiente.It was then removed from the oven and placed in a hydraulic dam heated to 170 ° C. Pulse (load speed) of 1-2 seconds was pressed to a force of 22 Tm after approximately 5 sec. The force was increased again to 22-25 Tm by keeping the mold in the press for 1 hour, and then removed to cool to room temperature.
Una vez enfriado se desprensó el molde en una presa manual de tornillo con la ayuda de 4 empuj adores de acero.Once cooled, the mold was released in a manual screw dam with the help of 4 steel pushers.
El control visual de la placa bipolar mostró la ausencia en la superficie de la placa bipolar (incluidas las zonas de los resaltes conductores de la corriente) de arañazos, defectos y fisuras, y de desprendimientos del material de la placa bipolar en el límite entre las zonas de los resaltes conductores de la corriente y la base de la placa.The visual control of the bipolar plate showed the absence on the surface of the bipolar plate (including the areas of the current conductors) of scratches, defects and fissures, and detachments of the material of the bipolar plate at the boundary between the zones of the conductive projections of the current and the base of the plate.
Una vez efectuada la prueba de dureza (se colocó la placa entre dos piezas de acero y se sometió a una fuerza de 5 Tm (5 mPa de presión) , equivalente al esfuerzo en funcionamiento del elemento de combustible, durante 1 hora) no se detectaron cambios o defectos. El valor de resistividad de volumen fue de 0,025Once the hardness test was carried out (the plate was placed between two pieces of steel and subjected to a force of 5 Tm (5 mPa pressure), equivalent to the operating force of the fuel element, for 1 hour) they were not detected Changes or defects. The volume resistivity value was 0.025
Ω-cm.Ω-cm
EJEMPLO 2. La placa bipolar se fabricó con una composición y un método análogo al del ejemplo 1, con la diferencia de que los resaltes tienen forma de cono truncado de 3,0 mm de diámetro en la base, 2,5 mm en el extremo superior, una altura de 2,0 mm, y una distancia entre sus centros de 4,00 mm. Antes y después de realizar la prueba de dureza no se detectaron defectos en la superficie, ni en los resaltes .EXAMPLE 2. The bipolar plate was manufactured with a composition and method analogous to that of Example 1, with the difference that the projections are shaped like a truncated cone of 3.0 mm in diameter at the base, 2.5 mm at the end upper, a height of 2.0 mm, and a distance between its centers of 4.00 mm. Before and after performing the hardness test, no defects were detected on the surface or on the projections.
El valor de resistividad de volumen fue de 0,030 Ω -crn.The volume resistivity value was 0.030 Ω -crn.
EJEMPLO 3. La placa bipolar se fabricó con una configuración y un método análogo al del ejemplo 1, con la diferencia de que se emplearon 31 g de cohesionante epoxifenólico N° 560 producido por FGUP GNC "VIAM" en calidad de cohesionante de endurecimiento térmico.EXAMPLE 3. The bipolar plate was manufactured with a configuration and method analogous to that of example 1, with the difference that 31 g of epoxy-phenolic cohesive No. 560 produced by FGUP GNC "VIAM" were used as thermal hardening cohesive.
Antes y después de realizar la prueba de dureza no se detectaron defectos en la superficie y en los resaltes .Before and after performing the hardness test, no defects were detected on the surface and in the Highlights
El valor de resistividad de volumen fue de 0,017 Ω •cm.The volume resistivity value was 0.017 Ω • cm.
EJEMPLO 4. La placa bipolar se fabricó con una configuración y un método análogo al del ejemplo 1, con la diferencia de que se añadieron a la mezcla inicial para prensado 3,5 g (3,0% del peso) de agente formador de poros (polietileno de alta presión) .EXAMPLE 4. The bipolar plate was manufactured with a configuration and method analogous to that of Example 1, with the difference that 3.5 g (3.0% by weight) of pore-forming agent were added to the initial pressing mixture (high pressure polyethylene).
Antes y después de realizar la prueba de dureza no se detectaron defectos en la superficie y en los resaltes .Before and after performing the hardness test, no defects were detected on the surface and on the projections.
El valor de resistividad de volumen fue de 0,028 Ω •cm.The volume resistivity value was 0.028 Ω • cm.
La porosidad de la capa subsuperficial (profundidad hasta 100 mieras) , medida por la absorción de agua, fue del 2,8%. The porosity of the subsurface layer (depth up to 100 microns), measured by water absorption, was 2.8%.

Claims

REIVINDICACIONES
1.- Placa bipolar del tipo de las que se constituyen por una parte central (1) y partes periféricas (2) caracterizada porque la parte central dispone de unos resaltes conductores de corriente (3) cuyas extremidades libres superiores están ubicadas en el mismo plano que las partes periféricas (2) .1.- Bipolar plate of the type that is constituted by a central part (1) and peripheral parts (2) characterized in that the central part has some current conductive projections (3) whose upper free extremities are located in the same plane than the peripheral parts (2).
2. - Placa bipolar según reivindicación 1 caracterizada porque los resaltes conductores de corriente (3) disponen de una altura comprendida entre 0,3 y 2 mm y una distancia entre puntos más distantes de su base comprendida entre 0,5 y 3,0 mm. , así como los resaltes (3) se sitúan espaciados con una distancia entre centros de resaltes (3) comprendida entre 1,0 y 4,0 mm.2. - Bipolar plate according to claim 1 characterized in that the current conductive projections (3) have a height between 0.3 and 2 mm and a distance between points more distant from its base between 0.5 and 3.0 mm . , as well as the projections (3) are spaced with a distance between centers of projections (3) between 1.0 and 4.0 mm.
3. - Placa bipolar según reivindicaciones anteriores caracterizada porque el resalte (3) muestra una configuración seleccionada entre las configuraciones : piramidal seccionada, prismática, cilindrica y cónica seccionada.3. - Bipolar plate according to previous claims characterized in that the projection (3) shows a configuration selected from the configurations: sectioned pyramidal, prismatic, cylindrical and conical sectioned.
4.- Placa bipolar según reivindicaciones anteriores caracterizada porque los resaltes se combinan en la placa con configuraciones combinadas que se seleccionan entre piramidal seccionada, prismática, cilindrica y cónica seccionada.4. Bipolar plate according to previous claims characterized in that the projections are combined in the plate with combined configurations that are selected from pyramidal sectioned, prismatic, cylindrical and conical sectioned.
5.- Placa bipolar según reivindicaciones anteriores caracterizada porque la geometría de la base del resalte (3) se selecciona entre las geometrías: circular, elíptica, cuadrada y rectangular.5. Bipolar plate according to previous claims characterized in that the geometry of the base of the shoulder (3) is selected from among the geometries: circular, elliptical, square and rectangular.
6. - Placa bipolar según reivindicaciones anteriores caracterizada porque los resaltes (3) se encuentran distribuidos de forma desigual ubicados al azar en la placa.6. - Bipolar plate according to previous claims characterized in that the projections (3) are unevenly distributed randomly located on the plate.
7. - Placa bipolar según reivindicaciones 1 a 5 caracterizada porque los resaltes (3) se encuentran ordenados en la placa de acuerdo con una distribución geométrica.7. - Bipolar plate according to claims 1 to 5 characterized in that the projections (3) are arranged in the plate according to a geometric distribution.
8. - Placa bipolar según reivindicación 7 porque la distribución geométrica de los resaltes (3) se selecciona entre las distribuciones: romboidales, circulares, en espiral, en laberinto y ajedrezada.8. - Bipolar plate according to claim 7, because the geometric distribution of the projections (3) is selected from the distributions: rhomboid, circular, spiral, labyrinth and checkered.
9.- Método de obtención de placas bipolares que incluye la preparación de una mezcla de una resina termoendurecedora en un disolvente volátil, la inclusión de polvos de carbono y su mezclado hasta un estado homogéneo, seguido de secado, prensado y termoendurecimiento, caracterizado porque entre el secado y el prensado se efectúa un recocido a una temperatura inferior entre 50 y 60 °C a la temperatura de termoendurecimiento de la mezcla, así como el prensado se efectúa hasta una presión entre 15 y 20 mPa al mismo tiempo que se efectúa el calentamiento correspondiente al endurecimiento de la mezcla.9.- Method of obtaining bipolar plates that includes the preparation of a mixture of a thermosetting resin in a volatile solvent, the inclusion of carbon powders and their mixing to a homogeneous state, followed by drying, pressing and thermosetting, characterized in that between Drying and pressing is an annealing at a temperature below 50 to 60 ° C at the temperature of the thermosetting of the mixture, as well as pressing is carried out to a pressure between 15 and 20 mPa at the same time as heating corresponding to the hardening of the mixture.
10.- Método de obtención de placas bipolares según reivindicación 9 caracterizado porque el recocido se realiza con un aumento progresivo de temperatura a lo largo de entre 10 y 15 h, seguidos de un mantenimiento a temperatura constante a lo largo de entre 1 y 2 h, y porque el prensado se realiza a una temperatura del elemento activo de la prensa entre 1.5 y 2 veces superior a la temperatura de recocido.10. Method of obtaining bipolar plates according to claim 9, characterized in that the annealing is performed with a progressive increase in temperature over 10 to 15 hours, followed by a constant temperature maintenance over 1 to 2 hours. , Y because the pressing is carried out at a temperature of the active element of the press between 1.5 and 2 times higher than the annealing temperature.
11.- Método de obtención de placas bipolares según reivindicación 9 caracterizado porque la relación sólido: líquido en la formación de la mezcla de los polvos de carbono con el disolvente de la resina termoendurecedora varía dentro de un intervalo con una relación entre 1:3 y 1:5.11. Method of obtaining bipolar plates according to claim 9, characterized in that the solid: liquid ratio in the formation of the mixture of the carbon powders with the solvent of the thermosetting resin varies within a range with a ratio between 1: 3 and 1: 5.
12. - Método de obtención de placas bipolares según reivindicación 9 caracterizado porque previamente al prensado se añade entre un 0.1 y un 3 % en peso de agentes porosos en relación con los componentes sólidos de la mezcla. 12. - Method of obtaining bipolar plates according to claim 9, characterized in that prior to pressing, between 0.1 and 3% by weight of porous agents is added in relation to the solid components of the mixture.
PCT/ES2003/000629 2003-12-12 2003-12-12 Bipolar plate and production method thereof WO2005056880A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2003/000629 WO2005056880A1 (en) 2003-12-12 2003-12-12 Bipolar plate and production method thereof
AU2003288279A AU2003288279A1 (en) 2003-12-12 2003-12-12 Bipolar plate and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2003/000629 WO2005056880A1 (en) 2003-12-12 2003-12-12 Bipolar plate and production method thereof

Publications (1)

Publication Number Publication Date
WO2005056880A1 true WO2005056880A1 (en) 2005-06-23

Family

ID=34673792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000629 WO2005056880A1 (en) 2003-12-12 2003-12-12 Bipolar plate and production method thereof

Country Status (2)

Country Link
AU (1) AU2003288279A1 (en)
WO (1) WO2005056880A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121506A1 (en) * 2016-11-10 2018-05-17 Audi Ag Bipolar plate and fuel cell with such a

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214969A (en) * 1979-01-02 1980-07-29 General Electric Company Low cost bipolar current collector-separator for electrochemical cells
US4690748A (en) * 1985-12-16 1987-09-01 The Dow Chemical Company Plastic electrochemical cell terminal unit
WO1988001310A2 (en) * 1986-08-21 1988-02-25 Hydrogen Systems N.V. Bipolar plate-system for use in electrochemical cells
US20030068542A1 (en) * 2001-09-26 2003-04-10 Dainippon Ink And Chemicals, Inc. Bipolar plate for fuel cell, method for manufacturing the bipolar plate, and fuel cell using the bipolar plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214969A (en) * 1979-01-02 1980-07-29 General Electric Company Low cost bipolar current collector-separator for electrochemical cells
US4690748A (en) * 1985-12-16 1987-09-01 The Dow Chemical Company Plastic electrochemical cell terminal unit
WO1988001310A2 (en) * 1986-08-21 1988-02-25 Hydrogen Systems N.V. Bipolar plate-system for use in electrochemical cells
US20030068542A1 (en) * 2001-09-26 2003-04-10 Dainippon Ink And Chemicals, Inc. Bipolar plate for fuel cell, method for manufacturing the bipolar plate, and fuel cell using the bipolar plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121506A1 (en) * 2016-11-10 2018-05-17 Audi Ag Bipolar plate and fuel cell with such a

Also Published As

Publication number Publication date
AU2003288279A1 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US7435494B1 (en) Electrochemical cell electrodes
US4360485A (en) Method for making improved separator plates for electrochemical cells
CA1164934A (en) Separator plate for electrochemical cells
EP1253661B1 (en) Fuel cell, fuel cell separator, and method of manufacture thereof
ES2699850T3 (en) Electrochemical device based on dry particles and manufacturing methods thereof
CN101341616B (en) Separator material for solid polymer electrolyte fuel cell and process for producing the same
KR100686783B1 (en) Anode material for secondary battery, method for producing of itself and secondary batteries using the same
KR20110122208A (en) Process for producing porous sintered aluminum, and porous sintered aluminum
Cuna et al. Biocarbon monoliths as supercapacitor electrodes: influence of wood anisotropy on their electrical and electrochemical properties
Rosenberger et al. Field-assisted sintering of Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid-state electrolyte
Torabi et al. Effects of porous support microstructure on performance of infiltrated electrodes in solid oxide fuel cells
CN106784685B (en) A kind of cathode of lithium battery pitch and cathode of lithium battery and preparation method thereof and lithium battery
US4592968A (en) Coke and graphite filled separator plate for electrochemical cells
DE102009054435A1 (en) Heatable gas sensor and method for its production
Hu et al. Free-standing compact cathodes for high volumetric and gravimetric capacity Li–S batteries
JPS5826464A (en) Battery and method of producing same
CN106486683A (en) Magnesium phosphate cement base bipolar plates composite
WO2005056880A1 (en) Bipolar plate and production method thereof
US4643956A (en) Coke filled separator plate for electrochemical cells
Xiao et al. Organic–inorganic binary nanoparticle-based composite separators for high performance lithium-ion batteries
EP3680980A1 (en) Lead storage battery
Urtekin et al. Investigation of properties of powder injection-molded steatites
Voigt et al. Impact of carbon binders and carbon fillers on mercury intrusion and extrusion porosimetry of carbon-bonded alumina
Wen et al. Studies on nanoporous glassy carbon as a new electrochemical capacitor material
KR20180121516A (en) Porous separator for fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69 (1) EPC.

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP