WO2005056858A1 - Metallic glass alloy - Google Patents

Metallic glass alloy Download PDF

Info

Publication number
WO2005056858A1
WO2005056858A1 PCT/JP2004/018547 JP2004018547W WO2005056858A1 WO 2005056858 A1 WO2005056858 A1 WO 2005056858A1 JP 2004018547 W JP2004018547 W JP 2004018547W WO 2005056858 A1 WO2005056858 A1 WO 2005056858A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
metallic glass
glass alloy
alloy
corrosion resistance
Prior art date
Application number
PCT/JP2004/018547
Other languages
French (fr)
Japanese (ja)
Inventor
Akihisa Inoue
Zhang Wei
Hideki Onishi
Original Assignee
Dynax Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynax Corporation filed Critical Dynax Corporation
Publication of WO2005056858A1 publication Critical patent/WO2005056858A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/001Amorphous alloys with Cu as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to the technical field of metallic glass alloys, and more specifically, to the technical field of metallic glass alloys for separators used as materials for separators incorporated in cells of polymer electrolyte fuel cells. Background art
  • a polymer electrolyte fuel cell (hereinafter referred to as a “fuel cell”) is a device that generates electricity by supplying a reaction gas (hydrogen and oxygen) to an electrode composed of a polymer electrolyte membrane.
  • FIG. 2 is a perspective view of a cell C which is a minimum unit constituting the fuel cell.
  • the cell C of the fuel cell includes two electrodes E 1 and E 2 (anode and force sword) composed of a catalyst layer and a porous support layer, an electrolyte D inserted between the electrodes El and E 2, and an electrode E 1 ⁇ Separator 1100 placed outside E2.
  • a voltage of slightly less than 1 V can be obtained for each cell. Therefore, as an actual fuel cell, a cell in which several tens to several hundreds of cells C are stacked in series is usually used.
  • FIG. 3 is a front view of a conventional separator 100 used for a fuel cell. As shown in FIG. 3, a large number of grooves 120 having a width and a depth of about 0.5 to 2 mm are provided on both sides of the plate-like separator 100 as shown in FIG. 20 functions as a flow path for the reaction gas and a discharge path for water generated by the reaction.
  • the above separator 100 serves not only as a partition plate between the cells C but also as an electrode E 1 (or a neighboring electrode) via a groove 120. It is provided to supply reaction gas to E 2) and to discharge water generated by the reaction to the outside.
  • Separation 100 also plays a role in transmitting the electricity generated in cell C to the outside.
  • electrodes El and E2 anode side, (Gas side)
  • the gas shielding property is high so that the reaction gas supplied to the reaction gas does not mix, and it is excellent in corrosion resistance and oxidation resistance so that it is not corroded by the reaction gas, lightweight, and conductive. Further, it is required to have a strength capable of withstanding the load of each stacked cell C and to have a groove depth of about 1 mm.
  • isotropic carbon has been used as the material of Separation 100 that satisfies the above characteristics.
  • the mechanical strength and formability were limited when the separator was thinner. Therefore, at present, the development of metal-based separators that are excellent in mechanical strength and formability even when the separators are made thinner is underway.
  • the first is the low corrosion resistance due to the properties of metals.
  • water is present during the reaction of the fuel cell, but the metal is easily corroded in such an atmosphere containing water, and when the metal corrodes, metal ions are formed in the generated water.
  • the catalyst becomes inactive due to contamination.
  • the second point is the high contact resistance (low conductivity) derived from the properties of metals. Since a passivation layer is formed on the metal surface, the contact resistance is higher than that of a carbon material, and when power is supplied to such a metal separator, the voltage drop increases, which may lead to a reduction in fuel cell performance. There is.
  • the first conventional technology is that the separator is oxidized during the reaction to generate power. Therefore, there is a problem that it is corroded during use.
  • the second conventional technique has a problem that the cost is increased due to the use of gold plating.
  • gold plating instead of gold plating, there is a method of applying a slurry mixed with a relatively inexpensive conductive oxide or graphite powder, but it may be partially damaged, and satisfactory results were not obtained.
  • the base material is made of metal, the strength can be maintained even if the thickness of the separation is reduced.
  • the conductive particles are formed by being fused and formed, the conductive particles are hardly peeled off and are formed as a porous layer. Alternatively, the contact area of the force sword is increased, and the contact resistance to the electrode is reduced.
  • the fuel cell separator since the amorphous metal is contained in at least a part of the material constituting the porous layer formed on the surface of the base material, the fuel cell separator has excellent corrosion resistance.
  • the separation method disclosed in Japanese Patent Application Laid-Open No. 2001-325966 has a problem that it takes a lot of time to manufacture since an amorphous metal must be laminated by a physical vapor deposition method.
  • the present inventors have conducted intensive studies to improve the above-mentioned drawbacks, and as a result, have found that by pressing a metal glass alloy, a separator excellent in superplasticity, strength, and conductivity can be obtained. Led to.
  • the Cu-based glass alloy in the above-mentioned application is prepared by melting an alloy having a specific composition of Zr and / or Hf and A1 and / or "or Ga and the balance of Cu, and rapidly solidifying it from a liquid state to a temperature of 45 K or more. It can be obtained by obtaining an amorphous phase rod (plate material) with a diameter (thickness) of 1 mm or more that shows the cooling liquid region ⁇ .
  • this Cu-based glass alloy was used as a material for separation, the corrosion resistance was insufficient.
  • the present invention relates to such a metallic glass alloy for separation, which is relatively inexpensive and excellent in corrosion resistance, workability, strength, and conductivity, and particularly excellent in the corrosion resistance required for the material for separation.
  • a metallic glass alloy for separation, which is relatively inexpensive and excellent in corrosion resistance, workability, strength, and conductivity, and particularly excellent in the corrosion resistance required for the material for separation.
  • a metal having a composition represented by atomic% represented by a composition formula Cu 100 — a — b Zr a A lb (where, 30 ⁇ a ⁇ 60, 0 ⁇ b ⁇ 15) is provided.
  • FIG. 1 is an illustration of a method for manufacturing a separator using the metallic glass alloy of the present invention.
  • FIG. 2 is a perspective view of a cell which is a minimum unit constituting the fuel cell.
  • Fig. 3 is a front view of the separator used for the fuel cell.
  • FIG. 4 is a chart showing power generation characteristics when the example 1 and the comparative example are used.
  • a composition by atomic% the composition formula C u 10 0 - a - b Z r a A 1 b (wherein, 3 0 ⁇ a ⁇ 6 0, 0 ⁇ b ⁇ 1 5).
  • Zr or a part of A1 may be replaced with Nb and / or Ta (each at most 10 atomic%).
  • Examples 1 and 2 are separators made of the metallic glass alloy of the composition of Claim 1
  • Example 3 is a separator made of the metallic glass alloy of the composition of Claim 2.
  • the maximum corrosion current density is the maximum value in the polarization curve in a 1 N sulfuric acid solution.
  • the hydrogen permeability was measured under the conditions of a differential pressure of 0.2 MPa and a temperature of 25.Because the hydrogen permeability of Examples 1 to 3 was below the detection limit of the measuring device, the hydrogen permeability was 7 X 1 0-below.
  • the currently used comparative example of the carponse parlay has a lower flexural strength, a larger volume resistance, a higher hydrogen permeability, and a greater thickness than the examples. However, it was inferior as fuel cell separation overnight.
  • the reason why the thickness of the comparative example is larger than that of the example is that the strength of the carpon separator itself is low, and it is easy to be damaged when it is removed from the mold after the pressure molding. This is because that.
  • the metallic glass separators of Examples 1 to 3 exhibited excellent performance in terms of volume resistance, hydrogen permeability, and thickness as a fuel cell separator, and metal was used in the fuel cell. The same level of performance as that of the carbon material was obtained with regard to corrosion, which is of the greatest concern during the process.
  • FIG. 4 shows the power generation characteristics when the embodiment 1 is incorporated into the fuel cell unit and when the comparative example is incorporated into the fuel cell unit. . From FIG. 4, it can be confirmed that Example 1 has power generation characteristics equal to or higher than the comparative example.
  • the method for producing a separator using the metallic glass alloy of the present invention comprises the following steps.
  • Step 1 The sheet 10 made of the metallic glass alloy of the present invention is placed in a mold 20 provided with groove-shaped irregularities in the chamber 30.
  • Step 2 The metal glass alloy sheet 10 and the mold 20 are heated to between the glass transition temperature and the crystallization temperature.
  • Step 3 A groove is formed in the metallic glass alloy sheet 10 by hot pressing.
  • the metallic glass alloy sheet 10 and the mold 20 are heated to a temperature between the glass transition temperature and the crystallization temperature. Requires heating.
  • the metallic glass alloy exhibits superplasticity in the temperature range between the transition temperature and the crystallization temperature, and can be easily press-formed by a mold heated to a high temperature, whereas the metallic glass alloy sheet 10 If the temperature is lower than the glass transition temperature, sufficient ductility cannot be obtained, and if the temperature is higher than the crystallization temperature, crystallization occurs, and it becomes general polycrystalline metal instead of metallic glass (metal in a liquid state by supercooling), This is because it is not possible to obtain the necessary corrosion resistance in the evening.
  • the heating and molding are preferably performed in an inert atmosphere. This is realized by filling the chamber 30 with an inert gas.
  • the thickness of the metallic glass alloy sheet 10 is desirably 50 to 250 m.
  • the metallic glass alloy of the present invention there is no grain boundary theoretically serving as a starting point of oxidation. Therefore, corrosion can be suppressed. It is also superior in strength and electrical conductivity to currently used carbon-based materials. Also, since the number of processes can be reduced as compared with the case where a carbon material is used, manufacturing costs can be reduced.
  • the metallic glass alloy of the present invention has an advantage that it can be manufactured at relatively low cost.
  • a metal that is relatively inexpensive and has excellent corrosion resistance, workability, strength, and conductivity, and in particular, has excellent corrosion resistance required for materials for separations This has the effect of obtaining a glass alloy.
  • a metal glass alloy which is relatively inexpensive and excellent in corrosion resistance, workability, strength, and conductivity, and particularly excellent in corrosion resistance required for a material for separation. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A metallic glass alloy for a separator which has a chemical composition in atomic % represented by an empirical formula: Cu100-a-bZraAlb [wherein 30 ≤ a ≤ 60 and 0 ≤ b ≤ 15]; and the metallic glass alloy wherein a part of the above Zr or the above Al is replaced by Nb and/or Ta (10 atomic % or less of each element). The above metallic glass alloy can be produced at a relatively low cost, and is excellent in corrosion resistance, formability, strength and electroconductivity, in particular, is excellent in corrosion resistance being required of a material for a separator. The metallic class alloy has theoretically no crystal grain boundary from which oxidation reaction starts and therefore can be inhibited in the occurrence of corrosion. The alloy also exhibits the strength and electroconductivity being superior to those of a conventional carbon-based material. Further, a separator using the above alloy can be produced by a process reduced in the number of steps, as compared to the case of a separator using a carbon-based material, which results in the suppression of the production cost of a separator.

Description

金属ガラス合金 技術分野  Technical field of metallic glass alloy
本発明は、 金属ガラス合金の技術分野に属し、 さらに詳しくは、 固体高分子型 燃料電池のセルに組込まれるセパレー夕の材料となるセパレー夕用金属ガラス合 金の技術分野に属する。 背景技術  The present invention belongs to the technical field of metallic glass alloys, and more specifically, to the technical field of metallic glass alloys for separators used as materials for separators incorporated in cells of polymer electrolyte fuel cells. Background art
固体高分子型燃料電池 (以下、 「燃料電池」 と呼ぶ。) は、 高分子電解質膜から なる電極に、 反応ガス (水素,酸素) を供給して発電する装置である。  A polymer electrolyte fuel cell (hereinafter referred to as a “fuel cell”) is a device that generates electricity by supplying a reaction gas (hydrogen and oxygen) to an electrode composed of a polymer electrolyte membrane.
第 2図は、 燃料電池を構成する最小ュニットであるセル Cの斜視図である。 燃料電池のセル Cは、 触媒層と多孔質支持層からなる 2つの電極 E 1 , E 2 (アノード、 及び力ソード)、 電極 E l , E 2間に挿入される電解質 D、 及び電 極 E 1, E 2の外側に配置されたセパレー夕 1 0 0からなる。  FIG. 2 is a perspective view of a cell C which is a minimum unit constituting the fuel cell. The cell C of the fuel cell includes two electrodes E 1 and E 2 (anode and force sword) composed of a catalyst layer and a porous support layer, an electrolyte D inserted between the electrodes El and E 2, and an electrode E 1 、 Separator 1100 placed outside E2.
上記構成のセル Cでは、 1つにつき 1 V弱の電圧しか得られないので、 実際の 燃料電池としては、 通常、 数十〜数百のセル Cを直列に積層したものが使用され ている。  In the cell C having the above configuration, a voltage of slightly less than 1 V can be obtained for each cell. Therefore, as an actual fuel cell, a cell in which several tens to several hundreds of cells C are stacked in series is usually used.
第 3図は、 燃料電池に使用される従来のセパレー夕 1 0 0の正面図である。 プレート状のセパレ一夕 1 0 0の両面に、 第 3図に示すように、 幅、 及び深さ が 0 . 5〜 2 mm程度の多数の溝 1 2 0が設けられており、 この溝 1 2 0は、 反 応ガスの流路、 及び反応によって発生した水の排出路として機能する。  FIG. 3 is a front view of a conventional separator 100 used for a fuel cell. As shown in FIG. 3, a large number of grooves 120 having a width and a depth of about 0.5 to 2 mm are provided on both sides of the plate-like separator 100 as shown in FIG. 20 functions as a flow path for the reaction gas and a discharge path for water generated by the reaction.
多数のセル Cが積層されてなる燃料電池において、 上記のセパレ一夕 1 0 0は、 各セル C間の仕切り板としてだけでなく、 溝 1 2 0を介して隣合う電極 E 1 (又 は E 2 ) に反応ガスを供給したり、 反応に伴って発生した水を外部に排出するた めに設けられている。  In a fuel cell in which a large number of cells C are stacked, the above separator 100 serves not only as a partition plate between the cells C but also as an electrode E 1 (or a neighboring electrode) via a groove 120. It is provided to supply reaction gas to E 2) and to discharge water generated by the reaction to the outside.
また、 セパレ一夕 1 0 0は、 セル Cで発生した電気を外部に伝達するための役 割も果たしている。  Separation 100 also plays a role in transmitting the electricity generated in cell C to the outside.
従って、 燃料電池のセパレ一夕 1 0 0としては、 電極 E l , E 2 (アノード側、 力ソード側) に供給される反応ガスが混合しないようにガス遮蔽性が高く、 反応 ガスによって腐食されることがないように耐蝕性 ·耐酸化性に優れ、 軽量で、 且 つ、 導電性を有し、 さらに、 積層した各セル Cの荷重に耐え得る強度を具え、 1 mm程度の溝深さを有していることが要求される。 Therefore, as the fuel cell separation 100, electrodes El and E2 (anode side, (Gas side) The gas shielding property is high so that the reaction gas supplied to the reaction gas does not mix, and it is excellent in corrosion resistance and oxidation resistance so that it is not corroded by the reaction gas, lightweight, and conductive. Further, it is required to have a strength capable of withstanding the load of each stacked cell C and to have a groove depth of about 1 mm.
また、 燃料電池を小型化するためには、 セパレー夕 1 0 0をできるだけ薄くす る必要がある。  In order to reduce the size of the fuel cell, it is necessary to make the separator 100 as thin as possible.
上記特性を満たすセパレ一夕 1 0 0の材料として、 従来から、 等方性カーボン が使用されている。 しかし、 より小型で高出力の燃料電池を開発するために、 セ パレー夕を薄くすると機械的強度及び成形性に限界があった。 そこで、 現在では、 セパレー夕を薄くしても機械強度、 成形性に優れた、 金属を母材とするセパレー 夕の開発が進められている。  Conventionally, isotropic carbon has been used as the material of Separation 100 that satisfies the above characteristics. However, in order to develop smaller and higher-output fuel cells, the mechanical strength and formability were limited when the separator was thinner. Therefore, at present, the development of metal-based separators that are excellent in mechanical strength and formability even when the separators are made thinner is underway.
ところが、 金属を母材とするセパレー夕を用いる場合には、 以下の 2点が問題 となる。 第 1点は、 金属の特性に由来する耐食性の低さである。 一般的な燃料電 池においては、 燃料電池の反応下においては水が存在するが、 金属はこのように 水を含む雰囲気下では腐食されやすく、 金属が腐食すると、 生成した水に金属ィ オンが混入し、 触媒が不活性になるという問題がある。  However, the following two problems arise when using a metal-based separator. The first is the low corrosion resistance due to the properties of metals. In a general fuel cell, water is present during the reaction of the fuel cell, but the metal is easily corroded in such an atmosphere containing water, and when the metal corrodes, metal ions are formed in the generated water. There is a problem that the catalyst becomes inactive due to contamination.
第 2点は、 金属の特性に由来する高い接触抵抗 (低い導電性) が挙げられる。 金属表面には不働態層が形成されるためカーボン材料に比べて接触抵抗が高く、 そのような金属セパレー夕に通電された場合には電圧降下が大きくなり、 燃料電 池の性能低下を招くおそれがある。  The second point is the high contact resistance (low conductivity) derived from the properties of metals. Since a passivation layer is formed on the metal surface, the contact resistance is higher than that of a carbon material, and when power is supplied to such a metal separator, the voltage drop increases, which may lead to a reduction in fuel cell performance. There is.
このような問題に対して、 例えば、 セパレ一夕に用いる母材の金属にステンレ ス鋼を用い、 その表面をサンドブラスト等により粗面化する技術がある (第 1の 従来技術)。 この技術によると、 母材の金属にステンレス鋼が用いられるので耐 食性に優れるとともに、 母材表面の粗面化により接触抵抗が低下する。 また、 特 開平 1 0— 2 2 8 9 1 4号公報には、 セパレ一夕の母材にステンレス鋼を用い、 その表面に金メッキを施す技術が開示されている (第 2の従来技術)。 この技術 によれば、 耐食性、 導電性に優れた金が母材表面にメツキされるので、 金の特性 により耐食性が向上するとともに、 接触抵抗を低減することができる。  In response to such problems, for example, there is a technique in which stainless steel is used as the base metal used for separation and the surface thereof is roughened by sandblasting or the like (first conventional technique). According to this technology, stainless steel is used as the base metal, so that it has excellent corrosion resistance, and the contact resistance decreases due to the roughening of the base metal surface. Japanese Patent Publication No. 10-282 914 discloses a technique in which stainless steel is used as a base material for Separete and gold plating is applied to the surface thereof (second conventional technique). According to this technology, gold having excellent corrosion resistance and conductivity is coated on the surface of the base material, so that the corrosion resistance is improved by the characteristics of gold, and the contact resistance can be reduced.
しかし、 第 1の従来技術は、 電力を発生する反応中にセパレー夕が酸化雰囲気 となるため、 使用中に腐食されてしまうという問題がある。 However, the first conventional technology is that the separator is oxidized during the reaction to generate power. Therefore, there is a problem that it is corroded during use.
また、 第 2の従来技術は、 金メッキを用いることからコスト高になってしまう という問題を有する。 また、 金メッキの替わりに、 比較的安価な導電性の酸化物 や黒鉛粉を混合したスラリーを塗布する方法があるが、 部分的に破損することが あり、 満足できる結果は得られなかった。  Further, the second conventional technique has a problem that the cost is increased due to the use of gold plating. In addition, instead of gold plating, there is a method of applying a slurry mixed with a relatively inexpensive conductive oxide or graphite powder, but it may be partially damaged, and satisfactory results were not obtained.
そこで、 ステンレス鋼からなる母材の表面に、 アモルファス金属からなる導電 性粒子を物理蒸着法により積層させて、 厚さ 1〜50 zmの多孔質層を形成する ことで、 耐食性 ·導電性を向上させた燃料電池用セパレー夕が、 特開 2001— 325966号公報に開示されている。  Therefore, corrosion resistance and conductivity are improved by forming a porous layer with a thickness of 1 to 50 zm by depositing conductive particles made of amorphous metal on the surface of a base material made of stainless steel by physical vapor deposition. The separated fuel cell separator is disclosed in JP-A-2001-325966.
このセパレ一夕は、 母材が金属からなるので、 セパレ一夕の厚みを薄くしても 強度を保つことができる。 また、 導電性粒子が融着されて形成されることにより、 導電性粒子が剥離しにくい上、 多孔質層とされているので、 アノード又はカソー ドと積層して押圧された場合には、 アノード又は力ソードの接触面積が増大し、 電極に対する接触抵抗が低減される。  Since the base material is made of metal, the strength can be maintained even if the thickness of the separation is reduced. In addition, since the conductive particles are formed by being fused and formed, the conductive particles are hardly peeled off and are formed as a porous layer. Alternatively, the contact area of the force sword is increased, and the contact resistance to the electrode is reduced.
また、 母材表面に形成された多孔質層を構成する材質の少なくとも一部にァモ ルファス金属を含むので、 前記燃料電池用セパレータは耐食性にも優れている。 しかし、 この特開 2001 -325966号公報のセパレー夕は、 物理蒸着法 により、 アモルファス金属を積層しなければならないため、 製造に手間がかかる という問題を有する。  Further, since the amorphous metal is contained in at least a part of the material constituting the porous layer formed on the surface of the base material, the fuel cell separator has excellent corrosion resistance. However, the separation method disclosed in Japanese Patent Application Laid-Open No. 2001-325966 has a problem that it takes a lot of time to manufacture since an amorphous metal must be laminated by a physical vapor deposition method.
そこで、 本発明者らは、 上記の欠点を改良すべく鋭意研究した結果、 金属ガラ ス合金をプレス成形することで、 超塑性、 強度、 及び導電性に優れたセパレー夕 が得られることを見出すに至つた。  Thus, the present inventors have conducted intensive studies to improve the above-mentioned drawbacks, and as a result, have found that by pressing a metal glass alloy, a separator excellent in superplasticity, strength, and conductivity can be obtained. Led to.
本発明者らは、 先に、 大きなガラス形成能、 優れた加工性、 優れた機械的性質 を兼備えた Cu基ガラス合金について特許出願した (特願 2002-25552 9)。  The present inventors have previously filed a patent application for a Cu-based glass alloy having high glass forming ability, excellent workability, and excellent mechanical properties (Japanese Patent Application No. 2002-255529).
前記出願における Cu基ガラス合金は、 Z r及び 又は H f と A 1及び /"又は Ga、 残部 Cuの特定組成の合金を溶融し、 液体状態から急冷凝固させることに より、 45 K以上の過冷却液体領域 ΔΤχを示す直径 (肉厚) 1mm以上の非晶 質相の棒 (板材) を得ることで、 得られるものである。 しかし、 この C u基ガラス合金をセパレ一夕の材料として使用した場合、 耐食 性が不十分であった。 The Cu-based glass alloy in the above-mentioned application is prepared by melting an alloy having a specific composition of Zr and / or Hf and A1 and / or "or Ga and the balance of Cu, and rapidly solidifying it from a liquid state to a temperature of 45 K or more. It can be obtained by obtaining an amorphous phase rod (plate material) with a diameter (thickness) of 1 mm or more that shows the cooling liquid region ΔΤχ. However, when this Cu-based glass alloy was used as a material for separation, the corrosion resistance was insufficient.
本発明は、 このようなセパレー夕用金属ガラス合金において、 比較的安価で、 且つ、 耐腐食性、 加工性、 強度、 導電性に優れ、 特に、 セパレー夕用材料に必要 な耐腐食性に優れた金属ガラス合金を提供することを目的とする。  The present invention relates to such a metallic glass alloy for separation, which is relatively inexpensive and excellent in corrosion resistance, workability, strength, and conductivity, and particularly excellent in the corrosion resistance required for the material for separation. To provide a metallic glass alloy.
発明の開示  Disclosure of the invention
本発明は、 原子%による組成が、 組成式 C u 100ab Z r aA l b (式中、 3 0 ≤a≤6 0 , 0≤b≤1 5である。) により表わされる金属ガラス合金 (請求項 1) であり、 そして前記 Z r又は前記 A 1の一部が、 N b及び Z又は T a (それ ぞれ、 最大 1 0原子%。) で置換された請求項 1の金属ガラス合金である。 According to the present invention, a metal having a composition represented by atomic% represented by a composition formula Cu 100ab Zr a A lb (where, 30 ≤ a ≤ 60, 0 ≤ b ≤ 15) is provided. 2. The glass alloy of claim 1 wherein said Zr or a portion of said A1 is replaced by Nb and Z or Ta (each up to 10 at.%). It is a metallic glass alloy.
図面の簡単な説明  Brief Description of Drawings
第 1図は本発明の金属ガラス合金を用いたセパレー夕の製造方法の説明図。 第 2図は燃料電池を構成する最小ュニットであるセルの斜視図。  FIG. 1 is an illustration of a method for manufacturing a separator using the metallic glass alloy of the present invention. FIG. 2 is a perspective view of a cell which is a minimum unit constituting the fuel cell.
第 3図は燃料電池に使用されるセパレー夕の正面図。  Fig. 3 is a front view of the separator used for the fuel cell.
第 4図は実施例 1及び比較例を使用した場合の発電特性を示す図表。  FIG. 4 is a chart showing power generation characteristics when the example 1 and the comparative example are used.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明のセパレー夕用金属ガラス合金は、 原子%による組成が、 組成式 C u 10 0 - a- b Z r aA 1 b (式中、 3 0≤a≤6 0、 0≤ b≤ 1 5である。) により表わ される。 この金属ガラス合金は、 Z r又は前記 A 1の一部を、 N b及び/又は T a (それぞれ、 最大 1 0原子%。) で置換してもよい。 Separator evening for metallic glass alloys of the present invention, a composition by atomic%, the composition formula C u 10 0 - a - b Z r a A 1 b ( wherein, 3 0≤a≤6 0, 0≤ b≤ 1 5). In this metallic glass alloy, Zr or a part of A1 may be replaced with Nb and / or Ta (each at most 10 atomic%).
次に、 実施例、 及び比較例により、 本発明をさらに具体的に説明する。  Next, the present invention will be described more specifically with reference to Examples and Comparative Examples.
(実施例 1〜 3 )  (Examples 1 to 3)
表 1に示す各種組成の金属ガラス合金シートを、 チェインバー内の溝形状の凹 ώが設けられた金型内に配置し、 ガラス遷移温度と結晶化温度の間まで、 金属ガ ラス合金シート及び金型を加熱し、 ホットプレスにより金属ガラス合金シート 1 0に溝を成形して、 金属ガラスセパレ一夕を得た。 ここで、 実施例 1及び 2は、 請求項 1の組成の金属ガラス合金からなるセパレー夕であり、 実施例 3は請求項 2の組成の金属ガラス合金からなるセパレー夕である。  The metal glass alloy sheets of various compositions shown in Table 1 were placed in a mold provided with groove-shaped recesses in the chamber, and the metal glass alloy sheets and The mold was heated, and a groove was formed in the metallic glass alloy sheet 10 by hot pressing to obtain a metallic glass separator. Here, Examples 1 and 2 are separators made of the metallic glass alloy of the composition of Claim 1, and Example 3 is a separator made of the metallic glass alloy of the composition of Claim 2.
(比較例) 黒鉛粉末に樹脂を添加し、 板状に加圧成形して、 カーポンセパレー夕を得た。 実施例 1 〜 3及び比較例について、 曲げ強度、 体積抵抗、 最大腐食電流密度、 水素透過率、 厚さを表 1に示す。 (Comparative example) The resin was added to the graphite powder and pressed into a plate to obtain a carpon separator. Table 1 shows the bending strength, volume resistance, maximum corrosion current density, hydrogen permeability, and thickness for Examples 1 to 3 and Comparative Example.
なお、 最大腐食電流密度は、 1 N硫酸液中での分極曲線における最大値である。 また、 水素透過率は、 差圧 0 . 2 M P a、 温度 2 5 の条件下で測定したもので あり、 実施例 1 〜 3の水素透過率は測定装置検出限界以下であつたので、 7 X 1 0 - 以下とした。  The maximum corrosion current density is the maximum value in the polarization curve in a 1 N sulfuric acid solution. The hydrogen permeability was measured under the conditions of a differential pressure of 0.2 MPa and a temperature of 25.Because the hydrogen permeability of Examples 1 to 3 was below the detection limit of the measuring device, the hydrogen permeability was 7 X 1 0-below.
(表 1 )  (table 1 )
Figure imgf000007_0001
Figure imgf000007_0001
表 1から明らかなように、 現在、 一般的に用いられている比較例のカーポンセ パレー夕は、 実施例と比較して、 曲げ強度が小さく、 体積抵抗、 水素透過率、 及 び厚さが大きく、 燃料電池セパレ一夕として劣るものであった。 なお、 比較例の 厚さが、 実施例と比較して大きいのは、 カーポンセパレ一夕自体の強度が低く、 加圧成形後に型から取出すときに破損しやすいので、 厚さを大きくする必要があ るからである。 As is evident from Table 1, the currently used comparative example of the carponse parlay has a lower flexural strength, a larger volume resistance, a higher hydrogen permeability, and a greater thickness than the examples. However, it was inferior as fuel cell separation overnight. The reason why the thickness of the comparative example is larger than that of the example is that the strength of the carpon separator itself is low, and it is easy to be damaged when it is removed from the mold after the pressure molding. This is because that.
これに対して、 実施例 1 〜 3の金属ガラスセパレー夕は、 体積抵抗、 水素透過 率、 及び厚さについては、 燃料電池セパレ一夕として優れた性能が得られ、 金属 を燃料電池内で使用する際に最も懸念される腐食についてもカーボン材と同程度 の性能が得られた。  On the other hand, the metallic glass separators of Examples 1 to 3 exhibited excellent performance in terms of volume resistance, hydrogen permeability, and thickness as a fuel cell separator, and metal was used in the fuel cell. The same level of performance as that of the carbon material was obtained with regard to corrosion, which is of the greatest concern during the process.
代表例として、 この実施例 1を燃料電池セルに組込んだ場合と、 比較例を燃料 電池セルに組込んだ場合の発電特性を第 4図に示す。 . 第 4図より、 実施例 1が比較例と同等以上の発電特性を有していることが確認 できる。 As a representative example, FIG. 4 shows the power generation characteristics when the embodiment 1 is incorporated into the fuel cell unit and when the comparative example is incorporated into the fuel cell unit. . From FIG. 4, it can be confirmed that Example 1 has power generation characteristics equal to or higher than the comparative example.
次に、 本発明の金属ガラス合金を用いてセパレー夕を製造する方法を、 具体的 に、 第 1図に基づいて説明する。  Next, a method for producing a separator using the metallic glass alloy of the present invention will be specifically described with reference to FIG.
本発明の金属ガラス合金を用いたセパレー夕の製造方法は、 以下の工程からな る。  The method for producing a separator using the metallic glass alloy of the present invention comprises the following steps.
(工程 1 ) 本発明の金属ガラス合金からなるシート 1 0を、 チェインバー 3 0内 の溝形状の凹凸が設けられた金型 2 0内に配置する。  (Step 1) The sheet 10 made of the metallic glass alloy of the present invention is placed in a mold 20 provided with groove-shaped irregularities in the chamber 30.
(工程 2 ) ガラス遷移温度と結晶化温度の間まで、 金属ガラス合金シート 1 0及 び金型 2 0を加熱する。  (Step 2) The metal glass alloy sheet 10 and the mold 20 are heated to between the glass transition temperature and the crystallization temperature.
(工程 3 ) ホットプレスにより、 金属ガラス合金シート 1 0.に溝を成形する。 ところで、 金属ガラス合金シート 1 0にセパレ一夕に必要な凹凸の溝形状を形 成するには、 金属ガラス合金シート 1 0及び金型 2 0をガラス遷移温度と結晶化 温度の間の温度まで加熱する必要がある。 これは、 金属ガラス合金は、 遷移温度 と結晶化温度の間の温度域にあると超塑性を示し、 高温に熱した金型により簡便 にプレス成形できるのに対し、 金属ガラス合金シート 1 0の温度がガラス遷移温 度以下であると十分な延性が得られず、 結晶化温度以上であると結晶化が起こり、 金属ガラス (過冷却による液体状態の金属) ではなく一般の多結晶金属となり、 セパレー夕に必要な耐食性が得られないためである。  (Step 3) A groove is formed in the metallic glass alloy sheet 10 by hot pressing. By the way, in order to form the concave and convex grooves required for the separation on the metallic glass alloy sheet 10, the metallic glass alloy sheet 10 and the mold 20 are heated to a temperature between the glass transition temperature and the crystallization temperature. Requires heating. This is because the metallic glass alloy exhibits superplasticity in the temperature range between the transition temperature and the crystallization temperature, and can be easily press-formed by a mold heated to a high temperature, whereas the metallic glass alloy sheet 10 If the temperature is lower than the glass transition temperature, sufficient ductility cannot be obtained, and if the temperature is higher than the crystallization temperature, crystallization occurs, and it becomes general polycrystalline metal instead of metallic glass (metal in a liquid state by supercooling), This is because it is not possible to obtain the necessary corrosion resistance in the evening.
ここで、 表面の酸化を防ぐため、 加熱 ·成形は、 不活性雰囲気中でなされるこ とが好ましい。 これは、 チェインバー 3 0内を不活性ガスで充填することで実現 される。 また、 金属ガラス合金シート 1 0の厚さは、 5 0〜2 5 0 mであるこ とが望ましい。  Here, in order to prevent the surface from being oxidized, the heating and molding are preferably performed in an inert atmosphere. This is realized by filling the chamber 30 with an inert gas. The thickness of the metallic glass alloy sheet 10 is desirably 50 to 250 m.
従来、 固体高分子型燃料電池のセパレ一夕として、 ステンレス鋼からなるもの Φステンレス鋼に金メッキをしてなるものがあるが、 ステンレス鋼の場合、 電力 を発生する反応中にセパレー夕が酸化雰囲気となるため、 使用中に腐食されてし まうという問題があり、 また、 金メッキを施すと今度はコスト高になってしまう という問題がある。  Conventionally, polymer electrolyte fuel cells have been separated from stainless steel using stainless steel Φ stainless steel plated with gold.However, in the case of stainless steel, the separator is oxidized during the reaction that generates power. Therefore, there is a problem that it is corroded during use, and there is a problem that applying gold plating increases the cost.
本発明の金属ガラス合金は、 理論的には酸化の開始点となる結晶粒界がないこ とから、 腐食を抑えることができる。 また、 強度や電気伝導性についても現在使 われているカーボン系の材料よりも優れている。 また、 カーボン材料を用いた場 合より、 工程を少なくすることができることから、 製造コストを抑えることがで さる。 In the metallic glass alloy of the present invention, there is no grain boundary theoretically serving as a starting point of oxidation. Therefore, corrosion can be suppressed. It is also superior in strength and electrical conductivity to currently used carbon-based materials. Also, since the number of processes can be reduced as compared with the case where a carbon material is used, manufacturing costs can be reduced.
さらに、 本発明の金属ガラス合金は、 比較的安価に製造できるという利点もあ る。  Further, the metallic glass alloy of the present invention has an advantage that it can be manufactured at relatively low cost.
本発明の金属ガラス合金を用いて、 セパレー夕を製造することで、 以下の比較 的大きいサイズの加工が可能となることが確認された。  It has been confirmed that the production of the separator using the metallic glass alloy of the present invention enables processing of the following relatively large size.
金属ガラス合金シート最大面積: 5 0 O mm X 5 0 0 mm  Metallic glass alloy sheet maximum area: 50 O mm X 500 mm
溝の最大高さ: 1 . O mm  Groove maximum height: 1. O mm
金属ガラス合金シートの最大厚さ: 2 5 0 m  Maximum thickness of metallic glass alloy sheet: 250 m
以上説明したように、 本発明によれば、 比較的安価で、 且つ、 耐腐食性、 加工 性、 強度、 導電性に優れ、 特に、 セパレー夕用材料に必要な耐腐食性に優れた金 属ガラス合金が得られるという効果を奏する。  As described above, according to the present invention, a metal that is relatively inexpensive and has excellent corrosion resistance, workability, strength, and conductivity, and in particular, has excellent corrosion resistance required for materials for separations This has the effect of obtaining a glass alloy.
産業上の利用可能性  Industrial applicability
本発明によれば、 比較的安価で、 且つ、 耐腐食性、 加工性、 強度、 導電性に優 れ、 特に、 セパレー夕用材料に必要な耐腐食性に優れた金属ガラス合金が得られ る。  According to the present invention, it is possible to obtain a metal glass alloy which is relatively inexpensive and excellent in corrosion resistance, workability, strength, and conductivity, and particularly excellent in corrosion resistance required for a material for separation. .

Claims

- 請求の範囲 - The scope of the claims
1. 原子%による組成が、 組成式 Cu100abZ r aA 1 b (式中、 30≤a≤6 0、 0≤b≤15である。) により表わされる、 金属ガラス合金。 1. Composition by atomic percent, the composition formula Cu 100 - a - b (. Wherein, 30≤A≤6 0, a 0≤b≤15) Z r a A 1 b is represented by, metallic glass alloys.
2. 前記 Z r又は前記 A 1の一部が、 Nb及び Z又は Ta (それぞれ、 最大 10 原子%。) で置換された、 請求項 1の金属ガラス合金。  2. The metallic glass alloy of claim 1, wherein a portion of the Zr or A1 is replaced with Nb and Z or Ta (each up to 10 atomic%).
PCT/JP2004/018547 2003-12-12 2004-12-07 Metallic glass alloy WO2005056858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003414092A JP2005171333A (en) 2003-12-12 2003-12-12 Metal glass alloy
JP2003-414092 2003-12-12

Publications (1)

Publication Number Publication Date
WO2005056858A1 true WO2005056858A1 (en) 2005-06-23

Family

ID=34675079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018547 WO2005056858A1 (en) 2003-12-12 2004-12-07 Metallic glass alloy

Country Status (2)

Country Link
JP (1) JP2005171333A (en)
WO (1) WO2005056858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210328233A1 (en) * 2020-04-21 2021-10-21 Hamilton Sundstrand Corporation Bulk metallic glass interconnect for high power density fuel cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608296A1 (en) * 2011-12-21 2013-06-26 The Swatch Group Research and Development Ltd. Amorphous-metal current collector
KR101501068B1 (en) * 2013-06-07 2015-03-17 한국생산기술연구원 Zr-based amorphous alloy composition
US20150053312A1 (en) * 2013-08-23 2015-02-26 Jinn Chu Metallic Glass Film for Medical Application
CN104498845B (en) * 2014-11-24 2017-01-25 中国科学院金属研究所 Zirconium-based amorphous alloy and preparation method thereof
CN114427068A (en) * 2022-01-24 2022-05-03 盘星新型合金材料(常州)有限公司 Copper-based amorphous alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920968A (en) * 1995-06-30 1997-01-21 Res Inst Electric Magnetic Alloys Cu-base nonmagnetic metal-glass alloy, its production and elastic working body
JP2000178700A (en) * 1998-12-15 2000-06-27 Japan Science & Technology Corp HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JP2004091868A (en) * 2002-08-30 2004-03-25 Japan Science & Technology Corp Cu-BASED AMORPHOUS ALLOY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920968A (en) * 1995-06-30 1997-01-21 Res Inst Electric Magnetic Alloys Cu-base nonmagnetic metal-glass alloy, its production and elastic working body
JP2000178700A (en) * 1998-12-15 2000-06-27 Japan Science & Technology Corp HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JP2004091868A (en) * 2002-08-30 2004-03-25 Japan Science & Technology Corp Cu-BASED AMORPHOUS ALLOY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210328233A1 (en) * 2020-04-21 2021-10-21 Hamilton Sundstrand Corporation Bulk metallic glass interconnect for high power density fuel cell

Also Published As

Publication number Publication date
JP2005171333A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4084602B2 (en) SOFC high temperature fuel cell current collector
JP5014644B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP5639003B2 (en) Conductor and device
WO2011016465A1 (en) Titanium material for solid polymer fuel cell separator, and process for production thereof
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
JP5507495B2 (en) Method for producing titanium fuel cell separator
KR101107862B1 (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
EP2168189A1 (en) Stainless steel separator for fuel cell having m/mnx and moynz layer and method for manufacturing the same
JP2011198764A (en) Metal separator plate for fuel cell and method of manufacturing same
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP5139997B2 (en) Fuel cell separator and method for producing the same
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
WO2005056858A1 (en) Metallic glass alloy
JP4134257B2 (en) Alloy film for metal separator of fuel cell, production method thereof, sputtering target material, metal separator and fuel cell
JP4967397B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
WO2003028134A1 (en) Separator for fuel cell and method for preparation thereof
JP4854992B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP2007157639A (en) Metal separator for fuel cell and its manufacturing method
WO2006059402A1 (en) Method of manufacturing metal glass separator
KR101400364B1 (en) Stack for fuelcell using polycarbonate separator
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP5532873B2 (en) Corrosion-resistant conductive film and manufacturing method thereof, corrosion-resistant conductive material, polymer electrolyte fuel cell, and separator thereof
WO2003050904A1 (en) Metal separator for fuel cell and its production method
JP6308330B2 (en) Titanium alloy, titanium material, separator, cell, and polymer electrolyte fuel cell
WO2003028133A1 (en) Separator for fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase