WO2005056268A1 - Expandierbare styrolpolymergranulate - Google Patents

Expandierbare styrolpolymergranulate Download PDF

Info

Publication number
WO2005056268A1
WO2005056268A1 PCT/EP2004/014067 EP2004014067W WO2005056268A1 WO 2005056268 A1 WO2005056268 A1 WO 2005056268A1 EP 2004014067 W EP2004014067 W EP 2004014067W WO 2005056268 A1 WO2005056268 A1 WO 2005056268A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
expandable
styrene polymer
polymer granules
melt
Prior art date
Application number
PCT/EP2004/014067
Other languages
English (en)
French (fr)
Inventor
Klaus Hahn
Gerd Ehrmann
Joachim Ruch
Markus Allmendinger
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE502004010816T priority Critical patent/DE502004010816D1/de
Priority to PL04803717T priority patent/PL1694487T3/pl
Priority to AT04803717T priority patent/ATE458598T1/de
Priority to EP04803717A priority patent/EP1694487B1/de
Publication of WO2005056268A1 publication Critical patent/WO2005056268A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene

Definitions

  • the invention relates to expandable styrene polymer granules obtainable by melt extrusion with a nearly spherical geometry and a longest extent (a) and two shorter extensions (b) and (c) perpendicular thereto, characterized in that the shorter extensions (b) and (b) c) are in the range of 0.3 to 1.8 mm and the ratio y of the shortest dimension (c) to the longest dimension (a) is in the range of 0.8 to 1.
  • expanded and expandable styrene polymers can be prepared by means of extrusion processes.
  • the propellant is e.g. via an extruder mixed into the polymer melt, conveyed through a nozzle plate and granulated into particles or strands (US 3,817,669, GB 1, 062,307, EP-B 0 126459, US 5,000,891).
  • EP-A 668 139 describes a process for the economical production of expandable polystyrene granules (EPS) wherein the blowing agent-containing melt is produced by means of static mixing elements in a dispersing, holding and cooling step and subsequently granulated. Due to the cooling of the melt to a few degrees above the solidification temperature, the removal of high amounts of heat is necessary.
  • EPS expandable polystyrene granules
  • WO 98/51735 describes graphite particle-containing expandable styrene polymers having reduced thermal conductivity, obtainable by suspension polymerization or by extrusion in a twin-screw extruder. Due to the high shear forces in a twin-screw extruder, a significant reduction in the molecular weight of the polymer used and / or partial decomposition of added additives, such as flame retardants, is generally observed. To achieve optimum insulating properties and good surfaces of the foam body, the cell number and foam structure, which occurs during expansion of the expandable styrene polymers (EPS), is of crucial importance. The EPS granules produced by extrusion often can not be foamed to form foams with optimum foam structure.
  • EPS expandable styrene polymers
  • the object of the invention was to remedy the abovementioned disadvantages and to produce almost spherical, expandable styrene polymer granules by the melt extrusion process.
  • expandable styrenic polymer granules obtainable by melt extrusion of nearly spherical geometry having a longest dimension (a) and two shorter elongations (b) and (c) perpendicular thereto have been characterized in that the shorter dimensions (b) and (b) c) are in the range of 0.3 to 1.8 mm and the ratio y of the shortest dimension (c) to the longest dimension (a) is in the range of 0.8 to 1.
  • the expansions (a), (b) and (c) are shown schematically in FIG.
  • the shorter extents (b) and (c) are in the range of 0.4 to 1.2 mm and the ratio y of the shortest extents (c) to the longest extents (a) is in the range of 0.82 to 0.95 ,
  • the styrene polymer granules of the present invention can be prepared by melt extrusion followed by underwater granulation, wherein the melt temperature and cut frequency can be varied to set the desired geometry.
  • Another way to obtain nearly spherical, expandable styrene polymer granules is to add fillers.
  • a filler for example, powdery inorganic substances such as talc, chalk, kaolin, aluminum hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, chalk, calcium sulfate, kaolin, silica. Quartz flour, Areosil, talc, alumina or wollastonite or spherical or fibrous inorganic substances such as glass beads, glass fibers or carbon fibers.
  • powdery inorganic substances such as talc, chalk, kaolin, aluminum hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, chalk, calcium sulfate, kaolin, silica.
  • quartz flour Areosil, talc, alumina or wollastonite or spherical or fibrous inorganic substances such as glass beads, glass fibers or carbon fibers.
  • the expandable styrene polymer has a molecular weight in the range of 190,000 to 400,000 g / mol, more preferably in the range of 220,000 to 300,000 g / mol. Due to the reduction in molecular weight by shear and / or temperature, the molecular weight of the expandable polystyrene is usually about 10,000 g / mol below the molecular weight of the polystyrene used.
  • the strand expansion after the nozzle exit should be as low as possible. It has been shown that the strand expansion can be influenced inter alia by the molecular weight distribution of the styrene polymer.
  • the expandable styrene polymer should therefore preferably have a molecular weight distribution with a polydispersity MJM n of at most 3.5, more preferably in the range of 1.5 to 2.8, and most preferably in the range of 1.8 to 2.6.
  • Polystyrene or impact polystyrene (A-IPS), styrene-a-methstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-acrylonitrile are preferably polymerized as styrene polymers, glass-clear polystyrene (GPPS), impact polystyrene (HIPS) (SAN) Acrylonitrile-styrene-acrylic ester (ASA), methyl acrylate-butadiene-styrene (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) - polymerizates or mixtures thereof or with polyphenylene ether (PPE).
  • GPPS glass-clear polystyrene
  • HIPS impact polystyrene
  • SAN Acrylonitrile-styrene-acrylic ester
  • ASA
  • the styrene polymers mentioned can be used to improve the mechanical properties or the temperature resistance, if appropriate by using compatibilizers with thermoplastic polymers, such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), Polycarbonate (PC), polyesters, such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyether sulfones (PES), polyether ketones or polyether sulfides (PES) or mixtures thereof, generally in proportions of not more than 30% by weight in total , preferably in the range of 1 to 10 wt .-%, based on the polymer melt, mixed.
  • thermoplastic polymers such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), Polycarbonate (PC), polyesters
  • mixtures in the above amounts ranges with z.
  • rubbers such as polyacrylates or polydienes, z.
  • Suitable compatibilizers are, for example, maleic anhydride-modified styrene copolymers, polymers or organosilanes containing epoxide groups.
  • the styrene polymer melt may also be mixed with polymer recyclates of the abovementioned thermoplastic polymers, in particular styrene polymers and expandable styrene polymers (EPS), in amounts which do not substantially impair their properties, generally in amounts of not more than 50% by weight, in particular in amounts of 1 to 20% by weight.
  • EPS expandable styrene polymers
  • the propellant-containing styrene polymer melt generally contains one or more propellants in a homogeneous distribution in a proportion of 2 to 10 wt .-%, preferably 3 to 7 wt .-%, based on the propellant-containing styrene polymer melt.
  • Suitable blowing agents are the physical blowing agents commonly used in EPS, such as aliphatic hydrocarbons having 2 to 7 carbon atoms, alcohols, ketones, ethers or halogenated hydrocarbons. Preference is given to using isobutane, n-butane, isopentane, n-pentane.
  • finely divided internal water droplets can be introduced into the styrene polymer matrix. This can be done for example by the addition of water in the molten styrene polymer matrix. The addition of the water can be done locally before, with or after the propellant dosage. A homogeneous distribution of the water can be achieved by means of dynamic or static mixers.
  • Expandable styrene polymers with at least 90% of the internal water in the form of inner water droplets with a diameter in the range of 0.5 to 15 microns form when foaming foams with sufficient cell count and homogeneous foam structure.
  • the amount of blowing agent and water added is chosen so that the expandable styrene polymers (EPS) have an expansion capacity ⁇ , defined as bulk density before foaming / bulk density after foaming, at most 125, preferably 25 to 100.
  • EPS expandable styrene polymers
  • the expandable styrene polymer pellets (EPS) according to the invention generally have a bulk density of at most 700 g / l, preferably in the range from 590 to 660 g / l.
  • bulk densities in the range of 590 to 1200 g / l may occur.
  • the styrene polymer melt may contain additives, nucleating agents, fillers, plasticizers, flame retardants, soluble and insoluble inorganic and / or inorganic compounds.
  • ganic dyes and pigments for example IR absorbers such as carbon black, graphite or aluminum powder are added together or spatially separated, for example via mixers or side extruders.
  • the dyes and pigments are added in amounts ranging from 0.01 to 30, preferably in the range of 1 to 5 wt .-%.
  • a dispersing assistant for example organosilanes, polymers containing epoxy groups or maleic anhydride-grafted styrene polymers.
  • Preferred plasticizers are mineral oils, low molecular weight styrene polymers, phthalates, which can be used in amounts of 0.05 to 10 wt .-%, based on the styrofoil polymer.
  • the blowing agent is mixed into the polymer melt.
  • the process comprises the stages a) melt production, b) mixing c) cooling d) conveying and e) granulation.
  • stages can be carried out by the apparatuses or apparatus combinations known in plastics processing.
  • static or dynamic mixers are suitable, for example extruders.
  • the polymer melt can be taken directly from a polymerization reactor or produced directly in the mixing extruder or a separate melt extruder by melting polymer granules.
  • the cooling of the melt can be done in the mixing units or in separate coolers.
  • pressurized underwater granulation, granulation with rotating knives and cooling by spray misting of tempering liquids or sputtering granulation may be considered for the granulation.
  • Apparatus arrangements suitable for carrying out the method are, for example: a) polymerization reactor-static mixer / cooler-granulator b) polymerization reactor-extruder-granulator c) extruder-static mixer-granulator d) extruder-granulator
  • the arrangement may include side extruders for incorporation of additives, e.g. of solids or thermally sensitive additives.
  • the propellant-containing styrene polymer melt is usually conveyed through the nozzle plate at a temperature in the range from 140 to 300.degree. C., preferably in the range from 160 to 240.degree. Cooling down to the range of the glass transition temperature is not necessary.
  • the nozzle plate is heated at least to the temperature of the propellant-containing Poiysty- rolschmelze.
  • the temperature of the nozzle plate is in the range of 20 to 100 ° C above the temperature of the blowing agent-containing polystyrene melt.
  • the diameter (D) of the nozzle bores at the nozzle exit should be in the range of 0.2 to 1.5 mm, preferably in the range of 0.3 to 1.2 mm, particularly preferably in the range of 0.3 to 0.8 mm.
  • D diameter of the nozzle bores at the nozzle exit
  • the strand expansion can be influenced by the geometry of the die, apart from the molecular weight distribution.
  • the nozzle plate preferably has bores with a ratio IJD of at least 2, the length (L) designating the nozzle region whose diameter corresponds at most to the diameter (D) at the nozzle exit.
  • the ratio LJD is in the range of 3 - 20.
  • the diameter (E) of the holes at the nozzle inlet of the nozzle plate should be at least twice as large as the diameter (D) at the nozzle outlet.
  • An embodiment of the nozzle plate has bores with conical inlet and an inlet angle ⁇ less than 180 °, preferably in the range of 30 to 120 °.
  • the nozzle plate has bores with conical outlet and an outlet angle ß smaller than 90 °, preferably in the range of 15 to 45 °.
  • the nozzle plate can be equipped with bores of different exit diameters (D). The various embodiments of the nozzle geometry can also be combined.
  • a particularly preferred process for the preparation of expandable styrene polymers having a molecular weight Mw of more than 160,000 g / mol comprises the steps of a) polymerization of styrene monomer and optionally copolymerizable monomers, b) degassing the resulting styrene polymer melt, c) mixing in the blowing agent and optionally additives, in the styrene polymer melt by means of static or dynamic mixer at a temperature of at least 150 ° C, preferably 180-260 ° C, d) cooling the propellant-containing styrene polymer melt to a temperature which is at least 120 ° C, preferably 150-200 ° C, e) discharge through a nozzle plate with holes whose diameter at the nozzle exit is at most 1, 5 mm and f) granulating the blowing agent-containing melt.
  • the granulation can be carried out directly behind the nozzle plate under water at a pressure in the range of 1 to 25 bar, preferably 5 to 15 bar.
  • EPS expandable styrenic polymers
  • the polymer melt can be removed by pressure pumping, e.g. Gear pumps are promoted and discharged.
  • step b) a high degassing by means of entrainers, for example water, nitrogen or carbon dioxide, or to carry out the polymerization step a) anionic.
  • entrainers for example water, nitrogen or carbon dioxide
  • anionic polymerization of styrene not only leads to styrene polymers with a low styrene monomer content, but at the same time to low styrene oligomer contents.
  • the final expandable styrenic polymer granules may be coated by glycerol esters, antistatic agents or anticaking agents.
  • the expandable styropolymer granules according to the invention have a slight deviation from the spherical shape and can therefore be conveyed very well pneumatically without abrasion.
  • they can be prefoamed by means of hot air or water vapor into foam particles having a density in the range from 8 to 100 g / l and welded in a second step in a closed mold. Examples:
  • the cutting frequency and melt temperature directly in front of the nozzle and the geometry of the granules are summarized in Table 1.
  • the dimensions (a), (b) and (c) of the granules were determined by means of a light microscope. For this purpose, the granules were first designed and the dimensions (a) and (b) determined. Subsequently, the granules were set up and the dimensions (b) and (c) were determined. These granules were prefoamed in flowing steam to foam beads at 20 g / l, stored for 12 hours and then welded in gas-tight forms with steam to foam bodies.
  • the surface finish was evaluated as summarized in Table 1.
  • Example 2 The comparative experiment was carried out as Example 2 but without talc as a filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Expandierbare Styrolpolymergranulate, erhältlich durch Schmelzeextrusion mit nahezu kugelförmiger Geometrie und einer längsten Ausdehnung (a) und zwei dazu senkrecht stehenden, kürzeren Ausdehnungen (b) und (c), dadurch gekennzeichnet, dass das die kürzeren Ausdehnungen (b) und (c) im Bereich von 0,3 bis 1,8 mm liegen und das Verhältnis y der kürzesten Ausdehnung (c) zur längsten Ausdehnung (a) im Bereich von 0,8 bis 1 liegen.

Description

Expandierbare Styrolpolymergranulate
Beschreibung
Die Erfindung betrifft expandierbare Styrolpolymergranulate erhältlich durch Schmel- zeextrusion mit nahezu kugelförmiger Geometrie und einer längsten Ausdehnung (a) und zwei dazu senkrecht stehenden, kürzeren Ausdehnungen (b) und (c), dadurch gekennzeichnet, dass das die kürzeren Ausdehnungen (b) und (c) im Bereich von 0,3 bis 1 ,8 mm liegen und das Verhältnis y der kürzesten Ausdehnung (c) zur längsten Ausdehnung (a) im Bereich von 0,8 bis 1 liegen.
Verfahren zur Herstellung von expandierbaren Styrolpolymeren, wie expandierbarem Polystyrol (EPS) durch Suspensionspolymerisation ist seit langem bekannt. Diese Verfahren haben den Nachteil, dass große Mengen Abwasser anfallen und entsorgt wer- den müssen. Die Polymerisate müssen getrocknet werden um Innenwasser zu entfernen. Außerdem führt die Suspensionspolymerisation in der Regel zu breiten Perlgrößenverteilungen, die aufwändig in verschiedene Perlfraktionen gesiebt werden müssen.
Weiterhin können expandierte und expandierbare Styrolpolymerisate mittels Extrusi- onsverfahren hergestellt werden. Hierbei wird das Treibmittel z.B. über einen Extruder in die Polymerschmelze eingemischt, durch eine Düsenplatte gefördert und zu Partikeln oder Strängen granuliert (US 3,817,669, GB 1 ,062,307, EP-B 0 126459, US 5,000,891).
Die EP-A 668 139 beschreibt ein Verfahren zur wirtschaftlichen Herstellung von expandierbarem Polystyrolgranulat (EPS) wobei die treibmittelhaltige Schmelze mittels statischer Mischelemente in einer Dispergier-, Halte- und Abkühlstufe hergestellt und anschließend granuliert wird. Aufgrund der Abkühlung der Schmelze auf wenige Grad über der Erstarrungstemperatur ist die Abführung hoher Wärmemengen notwendig.
Um das Aufschäumen nach der Extrusion weitgehend zu verhindern, wurden verschiedene Verfahren für die Granulierüng, wie Unterwassergranulierung (EP-A 305 862), Sprühnebel (WO 03/053651) oder Zerstäubung (US 6,093,750) vorgeschlagen.
Die WO 98/51735 beschreibt Graphitpartikel enthaltende expandierbare Styrolpolyme- re mit verringerter Wärmeleitfähigkeit, die durch Suspensionspolymerisation oder durch Extrusion in einem Zweischneckentextruder erhältlich sind. Aufgrund der hohen Scherkräfte in einem Zweischneckentextruder beobachtet man in der Regel einen signifikan- ten Molekulargewichtsabbau des eingesetzten Polymeren und/oder teilweise Zersetzung von zugegebenen Additiven, wie Flamm Schutzmittel. Zur Erzielung optimaler Dämmeigenschaften und guter Oberflächen der Schaumstoffkörper ist die Zellzahl und Schaumstruktur, die sich beim Verschäumen der expandierbaren Styrolpolymeren (EPS) einstellt, von entscheidender Bedeutung. Die durch Extrusion hergestellten EPS-Granulaten lassen sich häufig nicht zu Schaumstoffen mit optimaler Schaumstruktur verschäumen.
Aufgrund unterschiedlicher Granulierarten und -bedingungen können bei der Granulierung zylindrische oder ellipsoide Granulatformen auftreten. Scharfkantige Stranggranulate zeigen ein schlechtes Rieselverhalten sowie Splitterung und Abrieb beim Trans- port, was sich nachteilig bei der Verarbeitung zu Schaumstoffformteilen auswirken kann. Bei starker Abweichung von der Kugelform kann die Verschweisung der vorgeschäumten Granulate und die Oberflächenstruktur der daraus hergestellten Schaum- stoffformteile beeinträchtigt werden.
Aufgabe der Erfindung war es, den vorgenannten Nachteilen abzuhelfen, und nahezu kugelförmige, expandierbare Styrolpolymergranulate nach dem Schmelzeextrusions- verfahren herzustellen.
Demgemäß wurden expandierbare Styrolpolymergranulate, erhältlich durch Schmel- zeextrusion mit nahezu kugelförmiger Geometrie mit einer längsten Ausdehnung (a) und zwei dazu senkrecht stehenden, kürzeren Ausdehnungen (b) und (c), dadurch gekennzeichnet, dass das die kürzeren Ausdehnungen (b) und (c) im Bereich von 0,3 bis 1 ,8 mm liegen und das Verhältnis y der kürzesten Ausdehnung (c) zur längsten Ausdehnung (a) im Bereich von 0,8 bis 1 liegen. Die Ausdehnungen (a), (b) und (c) sind in Figur 1 schematisch dargestellt.
Bevorzugt liegen die kürzeren Ausdehnungen (b) und (c) im Bereich von 0,4 bis 1 ,2 mm liegen und das Verhältnis y der kürzesten Ausdehnung (c) zur längsten Ausdehnung (a) im Bereich von 0,82 bis 0,95.
Die erfindungsgemäßen Styrolpolymergranulate können durch die Schmelzeextrusion und anschließender Unterwassergranulierung hergestellt werden, wobei die Schmelzetemperatur und Schnittfrequenz zur Einstellung der gewünschten Geometrie variiert werden kann.
Eine weitere Möglichkeit, nahezu kugelförmige, expandierbare Styrolpolymergranulate zu erhalten, ist die Zugabe von Füllstoffen.
Bevorzugt gibt man 5 bis 50 Gew.-% eines Füllstoffes, zum Beispiel pulverförmige an- organische Stoffen, wie Talk, Kreide, Kaolin, Aluminiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calciumcarbonat, Kreide, Calciumsulfat, Kaolin, Kieselsäu- re, Quarzmehl, Areosil, Talk, Tonerde oder Wollastonit oder kugel- oder faserförmigen, anorganische Stoffen, wie Glaskugeln, Glasfasern oder Kohlefasern zu.
Es hat sich gezeigt, dass Styrolpolmere mit Molekulargewichten Mw von unter 160.000 bei der Granulierung zu Polymerabrieb führen. Bevorzugt weist das expandierbare Styrolpolymer ein Molekulargewicht im Bereich von 190.000 bis 400.000 g/mol, besonders bevorzugt im Bereich von 220.000 bis 300.000 g/mol auf. Aufgrund des Molekulargewichtsabbaus durch Scherung und/oder Temperatureinwirkung liegt das Molekulargewicht des expandierbaren Polystyrols in der Regel etwa 10.000 g/mol unter dem Molekulargewicht des eingesetzten Polystyrols.
Um möglichst kleine Granulatpartikel zu erhalten, sollte die Strangaufweitung nach dem Düsenaustritt möglichst gering sein. Es hat sich gezeigt, dass die Strangaufweitung unter anderem durch die Molekuargewichtsverteilung des Styrolpolymeren beein- flusst werden kann. Das expandierbare Styrolpolymer sollte daher bevorzugt eine Molekulargewichtsverteilung mit einer Uneinheitlichkeit MJMn von höchstens 3,5, besonders bevorzugt im Bereich von 1 ,5 bis 2,8 und ganz besonders bevorzugt im Bereich von 1 ,8 bis 2,6 aufweisen.
Bevorzugt werden als Styrolpolymere glasklares Polystyrol (GPPS), Schlagzähpolystyrol (HIPS), anionisch polymerisiert.es Polystyrol oder Schlagzähpolystyrol (A-IPS), Sty- rol-a-Methstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol- Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Methyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)- polymerisate oder Mi- schungen davon oder mit Polyphenylenether (PPE) eingesetzt.
Die genannten Styrolpolymeren können zur Verbesserung der mechanischen Eigenschaften oder der Temperaturbeständigkeit gegebenenfalls unter Verwendung von Verträglichkeitsvermittlern mit thermoplastischen Polymeren, wie Polyamiden (PA), Polyolefinen, wie Polypropylen (PP) oder Polyethylen (PE), Polyacrylaten, wie Poly- methylmethacrylat (PMMA), Polycarbonat (PC), Polyestern, wie Polyethylentherephta- lat (PET) oder Polybutylenterephtalat (PBT), Polyethersulfonen (PES), Polyetherketo- nen oder Polyethersulfiden (PES) oder Mischungen davon in der Regel in Anteilen von insgesamt bis maximal 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezo- gen auf die Polymerschmelze, abgemischt werden. Desweiteren sind Mischungen in den genannten Mengenbereichen auch mit z. B hydrophob modifizierten oder funktio- nalisierten Polymeren oder Oligomeren, Kautschuken, wie Polyacrylaten oder Polydie- nen, z. B. Styrol-Butadien-Blockcopolymeren oder biologisch abbaubaren aliphatischen oder aliphatisch/aromatischen Copolyestem möglich.
Als Verträglichkeitsvermittler eignen sich z.B. Maleinsäureanhydrid-modifizierte Styrol- copolymere, Epoxidgruppenhaltige Polymere oder Organosilane. Der Styrolpolymerschmelze können auch Polymerrecyklate der genannten thermoplastischen Polymeren, insbesondere Styrolpolymere und expandierbare Styrolpolymerer (EPS) in Mengen zugemischt werden, die deren Eigenschaften nicht wesentlich ver- schlechtem, in der Regel in Mengen von maximal 50 Gew.-%, insbesondere in Mengen von 1 bis 20 Gew.-%.
Die treibmittelhaltige Styrolpolymerschmelze enthält in der Regel eine oder mehrere Treibmittel in homogener Verteilung in einem Anteil von insgesamt 2 bis 10 Gew.-% bevorzugt 3 bis 7 Gew.-%, bezogen auf die treibmittelhaltige Styrolpolymerschmelze. Als Treibmittel, eigenen sich die üblicherweise in EPS eingesetzten physikalische Treibmittel, wie aliphatischen Kohlenwasserstoffe mit 2 bis 7 Kohlenstoffatomen, Alkohole, Ketone, Ether oder halogenierte Kohlenwasserstoffe. Bevorzugt wird iso-Butan, n-Butan, iso-Pentan, n-Pentan eingesetzt.
Zur Verbesserung der Verschäumbarkeit können feinverteilte Innenwassertröpfchen in die Styrolpolymermatirx eingebracht werden. Dies kann beispielsweise durch die Zugabe von Wasser in die aufgeschmolzene Styrolpolymermatrix erfolgen. Die Zugabe des Wassers kann örtlich vor, mit oder nach der Treibmitteldosierung erfolgen. Eine homogene Verteilung des Wassers kann mittels dynamischen oder statischen Mischern erreicht werden.
In der Regel sind 0 bis 2, bevorzugt 0,05 bis 1 ,5 Gew.-% Wasser, bezogen auf das Styrolpolymer, ausreichend.
Expandierbare Styrolpolymere (EPS) mit mindestens 90% des Innenwassers in Form von Innenwassertröpfchen mit einem Durchmesser im Bereich von 0,5 bis 15 μm bilden beim Verschäumen Schaumstoffe mit ausreichender Zellzahl und homogener Schaumstruktur.
Die zugesetzte Treibmittel- und Wassermenge wird so gewählt, dass die expandierbaren Styrolpolymeren (EPS) ein Expansionsvermögen α, definiert als Schüttdichte vor dem Verschäumen/Schüttdichte nach dem Verschäumen höchstens 125 bevorzugt 25 bis 100 aufweisen.
Die erfindungsgemäßen expandierbaren Styrolpolymergranulate (EPS) weisen in der Regel eine Schüttdichte von höchstens 700 g/l bevorzugt im Bereich von 590 bis 660 g/l auf. Bei Verwendung von Füllstoffen können in Abhängigkeit von der Art und Menge des Füllstoffes Schüttdichten im Bereich von 590 bis 1200 g/l auftreten.
Des weiteren können der Styrolpolymerschmelze Additive, Keimbildner, Füllstoffe, Weichmacher, Flammschutzmittel, lösliche und unlösliche anorganische und/oder or- ganische Farbstoffe und Pigmente, z.B. IR-Absorber, wie Ruß, Graphit oder Aluminiumpulver gemeinsam oder räumlich getrennt, z.B. über Mischer oder Seitenextruder zugegeben werden. In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 5 Gew.-% zugesetzt. Zur ho- mogenen und mikrodispersen Verteilung der Pigmente in dem Styrolpolymer kann es insbesondere bei polaren Pigmenten zweckmäßig sein ein Dispergierhilfsmittel, z.B. Organosilane, epoxygruppenhaltige Polymere oder Maleinsäureanhydrid-gepfropfte Styrolpolymere, einzusetzen. Bevorzugte Weichmacher sind Mineralöle, niedermolekulare Styrolpolymere, Phtalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das Styroipolymerisat, eingesetzt werden können.
Zur Herstellung der erfindungsgemäßen expandierbaren Styrolpolymerisate wird das Treibmittel in die Polymerschmelze eingemischt. Das Verfahren umfasst die Stufen a) Schmelzerzeugung, b) Mischen c) Kühlen d) Fördern und e) Granulieren. Jede dieser Stufen kann durch die in der Kunststoffverarbeitung bekannten Apparate oder Apparatekombinationen ausgeführt werden. Zur Einmischung eignen sich statische oder dynamische Mischer, beispielsweise Extruder. Die Polymerschmelze kann direkt aus einem Polymerisationsreaktor entnommen werden oder direkt in dem Mischextruder oder einem separaten Aufschmelzextruder durch Aufschmelzen von Polymergranulaten erzeugt werden. Die Kühlung der Schmelze kann in den Mischaggregaten oder in separaten Kühlern erfolgen. Für die Granulierung kommen beispielsweise die druckbeaufschlagte Unterwassergranulierung, Granulierung mit rotierenden Messern und Kühlung durch Sprühvemebelung von Temperierflüssigkeiten oder Zerstäubungsgranulation in Betracht. Zur Durchführung des Verfahrens geeignete Apparateanordnungen sind z.B.: a) Polymerisationsreaktor - statischer Mischer/Kühler - Granulator b) Polymerisationsreaktor - Extruder - Granulator c) Extruder - statischer Mischer - Granulator d) Extruder - Granulator
Weiterhin kann die Anordnung Seitenextruder zur Einbringung von Additiven, z.B. von Feststoffen oder thermisch empfindlichen Zusatzstoffen aufweisen.
Die treibmittelhaltige Styrolpolymerschmelze wird in der Regel mit einer Temperatur im Bereich von 140 bis 300°C, bevorzugt im Bereich von 160 bis 240°C durch die Düsenplatte gefördert. Eine Abkühlung bis in den Bereich der Glasübergangstemperatur ist nicht notwendig.
Die Düsenplatte wird mindestens auf die Temperatur der treibmittelhaltigen Poiysty- rolschmelze beheizt. Bevorzugt liegt die Temperatur der Düsenplatte im Bereich von 20 bis 100°C über der Temperatur der treibmittelhaltigen Polystyrolschmelze. Dadurch werden Polymerablagerungen in den Düsen verhindert und eine störungsfreie Granulierung gewährleistet.
Um marktfähige Granulatgrößen zu erhalten sollte der Durchmesser (D) der Düsen- bohrungen am Düsenaustritt im Bereich von 0,2 bis 1 ,5 mm, bevorzugt im Bereich von 0,3 bis 1,2 mm, besonders bevorzugt im Bereich von 0,3 bis 0,8 mm liegen. Damit lassen sich auch nach Strangaufweitung Granulatgrößen unter 2 mm, insbesondere im Bereich 0,4 bis 1 ,4 mm gezielt einstellen.
Die Strangaufweitung kann außer über die Molekulargewichtsverteilung durch die Düsengeometrie beeinflusst werden. Die Düsenplatte weist bevorzugt Bohrungen mit einem Verhältnis IJD von mindestens 2 auf, wobei die Länge (L) den Düsenbereich, dessen Durchmesser höchstens dem Durchmesser (D) am Düsenaustritt entspricht, bezeichnet. Bevorzugt liegt das Verhältnis LJD im Bereich von 3 - 20.
Im allgemeinen sollte der Durchmesser (E) der Bohrungen am Düseneintritt der Düsenplatte mindestens doppelt so groß wie der Durchmesser (D) am Düsenaustritt sein.
Eine Ausführungsform der Düsenplatte weist Bohrungen mit konischem Einlauf und einem Einlaufwinkel α kleiner 180°, bevorzugt im Bereich von 30 bis 120° auf. In einer weiteren Ausführungsform besitzt die Düsenplatte Bohrungen mit konischem Auslauf und einen Auslaufwinkel ß kleiner 90°, bevorzugt im Bereich von 15 bis 45°. Um gezielte Granulatgrößenverteilungen der Styrolpolymeren zu erzeugen kann die Düsenplatte mit Bohrungen unterschiedlicher Austrittsdurchmesser (D) ausgerüstet werden. Die verschiedenen Ausführungsformen der Düsengeometrie können auch miteinander kombiniert werden.
Ein besonders bevorzugtes Verfahren zur Herstellung von expandierbaren Styrolpolymeren mit einem Molekulargewicht Mw von mehr als 160.000 g/mol, umfasst die Schritte a) Polymerisation von Styrolmonomer und gegebenenfalls copolymersierbaren Monomeren, b) Entgasungung der erhaltenen Styrolpolymerschmelze, c) Einmischen des Treibmittels und gegebenenfalls Additiven, in die Styrolpolymerschmelze mittels statischen oder dynamischen Mischer bei einer Temperatur von mindestens 150°C, bevorzugt 180 - 260°C, d) Kühlen der treibmittelhaltigen Styrolpolymerschmelze auf eine Temperatur, die mindestens 120°C, bevorzugt 150 - 200°C beträgt, e) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und f) Granulieren der treibmittelhaltigen Schmelze.
In Schritt f) kann die Granulierung direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 25 bar, bevorzugt 5 bis 15 bar erfolgen.
Aufgrund der Polymerisation in Stufe a) und Entgasung in Stufe b) steht für die Treib- mittelimpägnierung in Stufe c) direkt eine Polymerschmelze zur Verfügung und ein Aufschmelzen von Styrolpolymeren ist nicht notwendig. Dies ist nicht nur wirtschaftlicher, sondern führt auch zu expandierbaren Styrolpolymeren (EPS) mit niedrigen Sty- rolmonomergehalten, da die mechanischen Schereinwirkung im Aufschmelzbereich eines Extruders, die in der Regel zu einer Rückspaltung von Monomeren führt, vermieden wird. Um den Styrolmonomerengehalt niedrig zu halten, insbesondere unter 500 ppm mit Styrolmomomergehalten, ist es ferner zweckmäßig, den mechanischen und thermischen Energieeintrag in allen folgenden Verfahrensstufen so gering wie möglich zu halten. Besonders bevorzugt werden daher Scherraten unter 50 sec, be- vorzugt 5 bis 30/sec, und Temperaturen unter 260°C sowie kurze Verweilzeiten im Bereich von 1 bis 20, bevorzugt 2 bis 10 Minuten in den Stufen c) bis e) eingehalten. Besonders bevorzugt werden ausschließlich statische Mischer und statische Kühler im gesamten Verfahren eingesetzt. Die Polymerschmelze kann durch Druckpumpen, z.B. Zahnradpumpen gefördert und ausgetragen werden.
Eine weitere Möglichkeit zur Verringerung des Styrolmonomerengehalt.es und/oder Restlösungsmittel wie Ethylbenzol besteht darin, in Stufe b) eine Hochentgasung mittels Schleppmitteln, beispielsweise Wasser, Stickstoff oder Kohlendioxid, vorzusehen oder die Polymerisationsstufe a) anionisch durchzuführen. Die anionische Polymerisa- tion von Styrol führt nicht nur zu Styrolpolymeren mit niedrigem Styrolmonomeranteil, sondern gleichzeitig zur geringen Styrololigomerenanteilen.
Zur Verbesserung der Verarbeitbarkeit können die fertigen expandierbaren Styrolpolymergranulate durch Glycerinester, Antistatika oder Antiverklebungsmittel beschichten werden.
Die erfindungsgemäßen expandierbaren Styropolymergranulate weisen eine geringe Abweichung von der Kugelform auf und lassen sich daher pneumatisch ohne Abrieb sehr gut fördern. Sie können zur Herstellung von Partikelschaumformteilen in einem ersten Schritt mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 8 bis 100 g/l vorschäumt und in einem 2. Schritt in einer geschlossenen Form verschweißt. Beispiele:
Beispiele 1 - 3
In eine Schmelze aus Standart-Polystyrol (GPPS) der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 75 ml/g ( Mw= 195000, Mw/Mn = 2,7) wurde zusätzlich 6 Gew.-% n-Pentan und die in Tabelle 1 angegebene Menge Talkum, jeweils bezogen auf die Polymerschmelze eingemischt. Die treibmittelhaltige Schmelzemischung wurde von ursprünglich 260 auf 187 °C abgekühlt und bei einem Durchsatz von 100 kg/h durch eine Düsenplatte mit 300 Bohrungen (Durchmesser der Düse 0,4 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung wurden kompakte, nahezu kugelförmige Granulate mit enger Größenverteilung hergestellt. Schnittfrequenz und Schmelzetemperatur direkt vor der Düse sowie die Geometrie der Granulate sind in Tabelle 1 zusammengefasst. Die Abmessungen (a), (b) und (c) der Granulate wurden mit Hilfe eines Lichtmikroskopes ermittelt. Hierzu wurden die Granulate zunächst ausgelegt und die Abmessungen (a) und (b) bestimmt. Anschließend wurden die Granulate aufgestellt und die Abmessung (b) und (c) ermittelt. Diese Granulate wurden in strömendem Wasserdampf zu Schaumstoffperlen mit 20 g/l vorgeschäumt, 12 Stunden zwischengelagert und anschließend in gasdichten Formen mit Wasserdampf zu Schaumstoffkörpern verschweißt.
Die Oberflächengüte wurde wie in Tabelle 1 zusammengestellt beurteilt.
Vergleichsversuch
Der Vergleichsversuch wurde wie Beispiel 2 aber ohne Talkum als Füllstoff durchgeführt.
Tabelle 1:
Figure imgf000010_0001

Claims

Patentansprüche
1. Expandierbare Styrolpolymergranulate, erhältlich durch Schmelzeextrusion mit nahezu kugelförmiger Geometrie mit einer längsten Ausdehnung (a) und zwei dazu senkrecht stehenden, kürzeren Ausdehnungen (b) und (c), dadurch gekennzeichnet, dass die kürzeren Ausdehnungen (b) und (c) im Bereich von 0,3 bis 1 ,8 mm liegen und das Verhältnis y der kürzesten Ausdehnung (c) zur längsten Ausdehnung (a) im Bereich von 0,8 bis 1 liegen.
2. Expandierbare Styrolpolymergranulate nach Anspruch 1 , dadurch gekennzeichnet, dass das die kürzeren Ausdehnungen (b) und (c) im Bereich von 0,4 bis 1 ,2 mm liegen und das Verhältnis y der kürzesten Ausdehnung (c) zur längsten Ausdehnung (a) im Bereich von 0,82 bis 0,95 liegen.
3. Expandierbare Styrolpolymergranulate nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Styrolpolymere ein gewichtsmittleres Molekulargewicht im Bereich von 160.000 bis 400.000 g/mol aufweist.
4. Expandierbare Styrolpolymergranulate nach einem der anspürhce 1 bis 3, da- durch gekennzeichnet, das die Schüttdichte der Granulate im Bereich von 700 bis 1200 g/l liegt.
5. Expandierbare Styrolpolymergranulate nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie 5 bis 50 Gew.-% eines Füllstoffes, ausgewählt aus a) pulverförmigen anorganische Stoffen, wie Talk, Kreide, Kaolin, Aluminiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calciumcarbonat, Kreide, Calciumsulfat, Kaolin, Kieselsäure, Quarzmehl, Areosil, Talk, Tonerde oder Wollastonit oder b) Kugel- oder faserförmigen, anorganische Stoffen, wie Glaskugeln, Glasfasern oder Kohlefasern enthalten.
6. Expandierbare Styrolpolymergranulate nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Expansionsvermögen α berechnet aus Schüttdichte des expandierbaren Styrolpolmergranuiates vor dem Verschäu- men/Schüttdichte nach dem Verschäumen unter 125 liegt.
7. Expandierbare Styrolpolymergranulate nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie 3 bis 7 Gew.-% eines organischen Treibmittels enthalten.
8. Verfahren zur Herstellung von expandierbaren Styrolpolymergranulaten, umfassend die Schritte a) Einmischen eines organischenTreibmittels und 5-50 Gew.-% eines Füllstoffes, in die Polymerschmelze mittels statischen oder dynamischen Mischer bei einer Temperatur von mindestens 150°C, b) Kühlen der treibmittel- und Füllstoff-haltigen Polymerschmelze auf eine Temperatur von mindestens 120°C c) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und d) Granulieren der treibmittelhaltigen Schmelze direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 20 bar.
9. Verfahren zur Herstellung von Partikelschaumformteilen, dadurch gekennzeich- net, dass man expandierdierbare Styrolpolymergranulate gemäß Anspruch 1 in einem ersten Schritt mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 8 bis 100 g/l vorschäumt und in einem 2. Schritt in einer geschlossenen Form verschweißt.
PCT/EP2004/014067 2003-12-12 2004-12-10 Expandierbare styrolpolymergranulate WO2005056268A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502004010816T DE502004010816D1 (de) 2003-12-12 2004-12-10 Verfahren zur Herstellung von expandierbare Styrolpolymergranulate
PL04803717T PL1694487T3 (pl) 2003-12-12 2004-12-10 Sposób wytwarzania spienialnych granulatów polimerów styrenu
AT04803717T ATE458598T1 (de) 2003-12-12 2004-12-10 Verfahren zur herstellung von expandierbare styrolpolymergranulate
EP04803717A EP1694487B1 (de) 2003-12-12 2004-12-10 Verfahren zur Herstellung von expandierbare Styrolpolymergranulate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10358798A DE10358798A1 (de) 2003-12-12 2003-12-12 Expandierbare Styrolpolymergranulate
DE10358798.5 2003-12-12

Publications (1)

Publication Number Publication Date
WO2005056268A1 true WO2005056268A1 (de) 2005-06-23

Family

ID=34672786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014067 WO2005056268A1 (de) 2003-12-12 2004-12-10 Expandierbare styrolpolymergranulate

Country Status (5)

Country Link
EP (1) EP1694487B1 (de)
AT (1) ATE458598T1 (de)
DE (2) DE10358798A1 (de)
PL (1) PL1694487T3 (de)
WO (1) WO2005056268A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023090A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
WO2007023089A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
WO2007023092A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
WO2007023091A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
EP2158258A1 (de) * 2007-05-30 2010-03-03 Jae-Cheon Kim Expandierbares polystyrolkügelchen mit überlegener adiabatischer wirkung und flammschutzwirkung und herstellungsverfahren dafür
WO2013009469A1 (en) * 2011-07-14 2013-01-17 Dow Global Technologies Llc Impact-modified styrenic polymers containing brominated vinyl aromatic-butadiene copolymer
CN103172997A (zh) * 2011-12-22 2013-06-26 上海杰事杰新材料(集团)股份有限公司 一种低密度聚苯醚/聚苯乙烯共混合金材料及其制备方法
CN110003582A (zh) * 2017-12-20 2019-07-12 东洋苯乙烯股份有限公司 耐热性苯乙烯系树脂组合物、成型品、挤出片材以及食品包装用容器
IT201800020404A1 (it) * 2018-12-20 2020-06-20 Versalis Spa Composizione polimerica espandibile e procedimento per la sua produzione

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035315A (en) * 1976-05-03 1977-07-12 Arco Polymers, Inc. Fire-resistant styrene polymer foams
US5114640A (en) * 1990-11-26 1992-05-19 Basf Corporation Time-efficient process for making expanded polymeric products with multipass expansion of polystyrene bead
JPH10306173A (ja) * 1997-05-06 1998-11-17 Sekisui Plastics Co Ltd 発泡成形用プロピレン系樹脂粒子、発泡性プロピレン系樹脂粒子、プロピレン系樹脂予備発泡粒子及びプロピレン系樹脂発泡成形体
WO2001091983A1 (en) * 2000-05-18 2001-12-06 Lim, Joong-Yeon Regeneration method of wasted styrene foam
DE10226749A1 (de) * 2002-06-14 2003-12-24 Basf Ag Verfahren zur Herstellung von expandierbarem Polystyrol

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1163386B (it) * 1983-05-19 1987-04-08 Montedison Spa Procedimento per la produzione di granuli espandibili di polimeri termoplastici e relativa apparecchiatura
JPS61171736A (ja) * 1985-12-09 1986-08-02 Karupu Kogyo Kk 顆粒状樹脂組成物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035315A (en) * 1976-05-03 1977-07-12 Arco Polymers, Inc. Fire-resistant styrene polymer foams
US5114640A (en) * 1990-11-26 1992-05-19 Basf Corporation Time-efficient process for making expanded polymeric products with multipass expansion of polystyrene bead
JPH10306173A (ja) * 1997-05-06 1998-11-17 Sekisui Plastics Co Ltd 発泡成形用プロピレン系樹脂粒子、発泡性プロピレン系樹脂粒子、プロピレン系樹脂予備発泡粒子及びプロピレン系樹脂発泡成形体
WO2001091983A1 (en) * 2000-05-18 2001-12-06 Lim, Joong-Yeon Regeneration method of wasted styrene foam
DE10226749A1 (de) * 2002-06-14 2003-12-24 Basf Ag Verfahren zur Herstellung von expandierbarem Polystyrol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02 26 February 1999 (1999-02-26) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023090A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
WO2007023089A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
WO2007023092A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
WO2007023091A1 (de) * 2005-08-23 2007-03-01 Basf Se Verfahren zur herstellung von schaumstoffplatten
AU2006283919B2 (en) * 2005-08-23 2011-09-08 Basf Se Method for producing foamed slabs
EP2158258A1 (de) * 2007-05-30 2010-03-03 Jae-Cheon Kim Expandierbares polystyrolkügelchen mit überlegener adiabatischer wirkung und flammschutzwirkung und herstellungsverfahren dafür
EP2158258A4 (de) * 2007-05-30 2011-10-05 Jae-Cheon Kim Expandierbares polystyrolkügelchen mit überlegener adiabatischer wirkung und flammschutzwirkung und herstellungsverfahren dafür
WO2013009469A1 (en) * 2011-07-14 2013-01-17 Dow Global Technologies Llc Impact-modified styrenic polymers containing brominated vinyl aromatic-butadiene copolymer
CN103172997A (zh) * 2011-12-22 2013-06-26 上海杰事杰新材料(集团)股份有限公司 一种低密度聚苯醚/聚苯乙烯共混合金材料及其制备方法
CN110003582A (zh) * 2017-12-20 2019-07-12 东洋苯乙烯股份有限公司 耐热性苯乙烯系树脂组合物、成型品、挤出片材以及食品包装用容器
IT201800020404A1 (it) * 2018-12-20 2020-06-20 Versalis Spa Composizione polimerica espandibile e procedimento per la sua produzione

Also Published As

Publication number Publication date
PL1694487T3 (pl) 2010-07-30
DE502004010816D1 (de) 2010-04-08
EP1694487B1 (de) 2010-02-24
ATE458598T1 (de) 2010-03-15
EP1694487A1 (de) 2006-08-30
DE10358798A1 (de) 2005-07-14

Similar Documents

Publication Publication Date Title
EP1517947B1 (de) Verfahren zur herstellung von expandierbarem polystyrol
EP1694753B1 (de) Verfahren zur herstellung von expandierbaren styrolpolymermischungen
EP2162269B1 (de) Expandierbare Polymergranulate aus Acrylnitrilcopolymeren
DE10358786A1 (de) Partikelschaumformteile aus expandierbaren, Füllstoff enthaltenden Polymergranulaten
EP2212377B1 (de) Flammgeschützte expandierbare styrolpolymere und verfahren zu ihrer herstellung
WO2006058733A1 (de) Expandierbare styrolpolymergranulate und partikelschaumstoffe mit verringerter wärmeleitfähigkeit
WO2006007995A2 (de) Verfahren zur herstellung von flammgeschütztem, expandierbarem polystyrol
EP2513209A1 (de) Flammgeschützte polymerschaumstoffe
EP1771505B1 (de) Synergistische flammschutzmischungen für polystyrolschaumstoffe
EP1771501A1 (de) Verfahren zur herstellung von expandierbaren styrolpolymeren mit verbesserter expandierbarkeit
EP1694755B1 (de) Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung
EP1694487B1 (de) Verfahren zur Herstellung von expandierbare Styrolpolymergranulate
EP1616902B1 (de) Selbstverlöschender Styrolpolymer-Partikelschaumstoff
EP1541621B1 (de) Verfahren zur Herstellung von expandierbaren, schlagzäh-modifizierten, thermoplastischen Polymergranulaten
DE112004002167B4 (de) Expandierbare Styrolpolymergranulate
EP2062935B1 (de) Verfahren zur Einbringung von Feststoffpartikeln in Polymerschmelzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004803717

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004803717

Country of ref document: EP