WO2005055144A1 - Person face jaw detection method, jaw detection system, and jaw detection program - Google Patents

Person face jaw detection method, jaw detection system, and jaw detection program Download PDF

Info

Publication number
WO2005055144A1
WO2005055144A1 PCT/JP2004/018451 JP2004018451W WO2005055144A1 WO 2005055144 A1 WO2005055144 A1 WO 2005055144A1 JP 2004018451 W JP2004018451 W JP 2004018451W WO 2005055144 A1 WO2005055144 A1 WO 2005055144A1
Authority
WO
WIPO (PCT)
Prior art keywords
chin
face
edge
detection
image
Prior art date
Application number
PCT/JP2004/018451
Other languages
French (fr)
Japanese (ja)
Inventor
Toshinori Nagahashi
Takashi Hyuga
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Publication of WO2005055144A1 publication Critical patent/WO2005055144A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Definitions

  • TECHNICAL FIELD A chin detection method, a chin detection system, and a chin detection program for a human face
  • the present invention relates to a pattern recognition (Patternrecognition) object recognition technology, and more particularly to a chin detection method and a chin detection method for accurately detecting a chin position of a person's face from a face image in which the person's face is captured. This is related to the detection system and chin detection program.
  • the presence or absence of a flesh-color area is determined, the mosaic size is automatically determined for the flesh-color area, and the mosaic is performed.
  • the presence or absence of a human face is determined by calculating the distance between the area and the human face dictionary, and by extracting the human face, erroneous extraction due to the influence of the background etc. is reduced, and the human face is efficiently extracted from the image. The face in between is automatically found.
  • a face photograph (face image) of a person which is indispensable for a passport or an ID card, has its size, direction, size, and position of the person's face set in detail.
  • the condition of [, no background, and wearing no accessories such as hats is that the face of the person in the picture is facing the front, and that the face of the person is in the center of the photo. It is specified in detail that the position of the chin of the face in the image is within a certain range from the frame below the photo, and so on. In principle, photos (face images) that deviate from the standard are not adopted.
  • a face image of a required person can be directly obtained as digital image data by a digital still camera using an electronic imaging device such as a CCD or CMOS, or an analog photograph in which a human face has been photographed in advance.
  • an electronic imaging device such as a CCD or CMOS
  • an analog photograph in which a human face has been photographed in advance is obtained as digital image data using an electro-optical image reading device such as a scanner, and this digital image data is used using an image processing system consisting of a general-purpose computer such as a PC and general-purpose software.
  • the processing operation can be directly performed by a human using a general-purpose input / output device such as a mouse, a keyboard, or a monitor.
  • a general-purpose input / output device such as a mouse, a keyboard, or a monitor.
  • the number is huge, it is necessary to perform the processing automatically using the above-described conventional technology.
  • the outline of the chin may be unclear, depending on the facial features, a relatively strong edge between the lips and the bottom of the chin may be detected, or the clothes may be worn. A strong edge is also detected at the border between the collar and the neck. Also, depending on age and body type, a stronger edge is often generated in the neck wrinkle than in the chin contour, and these may be erroneously detected as the chin contour.
  • the present invention has been devised in order to effectively solve such a problem.
  • the purpose of the present invention is to remove a portion of a face image whose chin outline is difficult to detect as described above. It is intended to provide a new chin detection method, a chin detection system and a chin detection program capable of accurately and quickly detecting the bottom of a chin under a robust condition. Disclosure of the invention
  • the chin detection method of the human face of the invention 1 is
  • a method for detecting the lower bottom of a chin of a person's face from an image including a person's face comprising detecting a face image in a range that includes both eyes and lips of the person's face and does not include a chin.
  • the intensity distribution of the edges in the chin detection window is determined, and the edge intensity equal to or greater than the threshold value is determined from the edge intensity distribution.
  • an approximation curve is obtained so as to best fit the distribution of the detected pixels, and the lowest bottom of the approximation curve is set as the lower bottom of the chin of the person's face.
  • a component having a very high possibility of including a chin of a human face is selected, a chin detection window is set in that portion, and the intensity distribution of the edge in the chin detection window is determined.
  • the contour including the lower bottom of the chin generally changes sharply in contrast to the surrounding area, and the edge strength is increased. Therefore, by obtaining the intensity distribution of the edge in the chin detection window, it is possible to easily and surely select a candidate region serving as a contour including the lower bottom of the chin of the answer included in the chin detection window. .
  • pixels having an edge intensity equal to or higher than a threshold value are detected from this distribution. That is, since the contour including the lower and lower parts of the chin generally has a high edge strength, a pixel having an edge strength equal to or higher than a certain threshold is selected, and other pixels are excluded. Only pixels that are likely to correspond to the contour including the lower bottom of the chin can be selected.
  • a method for detecting a lower bottom portion of a chin of a person's face from an image including a person's face comprising detecting a face image in a range that includes both eyes and lips of the person's face and does not include a chin.
  • After setting a chin detection window large enough to include the chin of the person's face at the bottom of the face image obtain the intensity distribution of the first derivative type edge in the chin detection window, and obtain the threshold from the distribution of the edge intensity.
  • Pixels with edge strength are detected, and then the pixels to be used are narrowed down using the sign inversion of the edge of the second derivative type from the pixels, and then narrowed down to the pixel distribution that best matches the distribution of pixels.
  • an approximate curve is obtained by using the least squares method, and the lowest bottom of the approximate curve is set as the lower bottom of the chin of the person's face. .
  • the present invention more specifically describes the method of calculating the edge intensity distribution (first-order differential type), the method of selecting pixels (second-order differential type), and the method of calculating the approximate curve (least square method) among the methods of the first invention.
  • first-order differential type the method of calculating the edge intensity distribution
  • second-order differential type the method of selecting pixels
  • approximate curve the approximate curve
  • the chin detection window has a horizontally long rectangular shape, and has a width wider than a face width of the human face and a height thereof. Is smaller than the above-mentioned width.
  • the lower bottom of the chin of the person's face to be detected can be reliably captured in the chin detection window, and thus the lower bottom of the chin can be detected more accurately.
  • the first-order differential edge intensity distribution uses a Sobele edge detection operator.
  • the most typical method for detecting a sudden change in light and shade in an image is to find a derivative relating to light and shade. Then, since the differentiation of the digital image is substituted by the difference, the first-order differentiation of the original image in the chin detection window effectively detects the edge portion in the image where the shading changes rapidly. Can be .
  • the present invention uses this first-order differential type edge detection operator (filter) as: A known edge detection operator of Sove 1 having excellent detection performance is used, whereby an edge portion in the jaw detection window can be reliably detected.
  • the edge of the second derivative type uses a Laplace edge detection operator.
  • the least-squares method using a quadratic function is used for the approximate curve.
  • the present invention uses a least square method by a quadratic function.
  • the contour of the chin of the human face in the chin detection window can be obtained at high speed.
  • the “least squares method” is, as is generally understood, the error of the error from the function to be fitted to a set of samplings. This is a method to find a coefficient that minimizes the sum of squares.For example, if it is a phenomenon that behaves as a quadratic equation with respect to experimental data, a quadratic equation may be used, and an exponential function If expected behavior can be calculated by taking the logarithm.
  • the calculation of the approximate curve by the least squares method can be easily realized by using software (programs) that are already incorporated in many scientific calculators and spreadsheet software as they are. .
  • Invention 7 The human face chin detection system
  • An image reading means for detecting a lower bottom portion of a chin of a person's face from an image containing a person's face, wherein the image reading means reads an image containing the person's face.
  • a face detection unit configured to detect, from an image read by the image reading unit, a surrounding area including both eyes and lips of the human face and not including a chin, and to set a face detection frame in the detected range;
  • Jaw detection window setting means for setting a chin detection window having a size including the chin of the person's face at the lower part of the human face;
  • a pixel selecting means for selecting a pixel having an edge strength of ⁇ or more from the obtained edge strength distribution, and a curve approximating means for obtaining an approximate curve that best fits the distribution of each pixel selected by the pixel selecting means.
  • a chin detecting means for detecting the lowest bottom of the approximation curve obtained by the curve approximating means as the lower bottom of the chin of the person's face.
  • Invention 8 The human face chin detection system
  • the pixel selecting means obtains a threshold value from a distribution of first-order differential type edge intensities calculated by the edge calculating means, and determines a pixel having an edge intensity not less than the threshold value. It is characterized in that a pixel to be used is detected and a pixel to be used is selected from the pixels by utilizing the sign inversion of the edge of the second derivative type.
  • a plug that detects the bottom of the chin of the person's face from the image containing the person's face An image reading step of reading an image including the human face, and detecting a range that includes both eyes and lips of the human face and does not include a chin from the image read in the image reading step; A face detection step of setting a face detection frame in the detected range; a chin detection window setting step of setting a chin detection window having a size including the chin of the human face below the detection frame; and An edge calculation step for obtaining an edge intensity distribution of the edge, a pixel selection step for selecting a pixel having an edge intensity equal to or greater than a threshold from the edge intensity distribution obtained in the edge calculation step, and a pixel selection step.
  • a curve approximation step for finding an approximate curve that best fits the distribution of each pixel; and It is characterized in that to achieve a chin detecting step of detecting a lower bottom portion, to the computer.
  • Invention 10 is a human face chin detection program
  • the human face chin detection program obtains a threshold value from a distribution of first-order differential edge strength calculated in the edge calculation step, and has an edge strength not less than the threshold value.
  • the method is characterized in that a pixel is detected, and a pixel to be used is selected from the surface elements by using sign inversion of a second-order differential type edge.
  • FIG. 1 is a block diagram showing an embodiment of a jaw detection system according to the present invention.
  • FIG. 2 is a configuration diagram showing hardware constituting the chin detection system.
  • FIG. 3 is a flowchart showing an embodiment of a jaw detection method according to the present invention.
  • FIG. 4 is a graph showing the relationship between the luminance and the pixel position in the face image.
  • FIG. 5 is a graph showing the relationship between the edge intensity in the face image and the pixel position.
  • FIG. 6 is a diagram showing an example of a face image to be a chin detection target.
  • FIG. 7 is a diagram illustrating a state in which a face detection frame is set in a face image.
  • FIG. 8 is a diagram showing a state in which a chin detection window is set below the face detection frame.
  • FIG. 9 is a diagram showing a state in which the lower bottom of the chin is detected and its position is corrected.
  • FIG. 10 is a diagram showing a chin detection window displaying only pixels having edge strengths equal to or greater than a threshold value.
  • FIG. 11 is a diagram showing a chin detection window that displays only selected pixels as a result of sign inversion.
  • 'FIG. 12 is a diagram showing an edge detection filter of S obe 1.
  • FIG. 1 shows an embodiment of a human face chin detection system 100 according to the present invention.
  • the chin detection system 100 includes the face of a person.
  • An image reading means 10 for reading the face image G; a face detection means 12 for detecting a human face from the medium image G read by the image reading means 10 and setting a face detection frame F of the human face;
  • a chin detection window setting means 14 for setting a chin detection window W having a size including the chin of the person's face below the face detection frame F; and an edge calculation for obtaining an intensity distribution of edges in the chin detection window W.
  • the image reading means 10 is a visual person attached to a public identification card such as a passport or a driver's license or a private document identification card such as an employee ID card, a student ID card or a membership card.
  • a proving face photograph for identification that is, a background image G containing only a large face facing the front of the person is stored in a CCD (Charge Coupled Device) or CMO S (Co A function to acquire digital image data consisting of R (red), G (green), and B (blue) pixel data by using an imaging sensor such as an image sensor (sampler).
  • CCD Charge Coupled Device
  • CMO S Co A function to acquire digital image data consisting of R (red), G (green), and B (blue) pixel data by using an imaging sensor such as an image sensor (sampler).
  • the digital camera is a CCD such as a digital still camera or a digital video camera, a CMOS camera, a vidicon camera, an image scanner, a drum scanner, or the like.
  • the face image G read optically by the imaging sensor is subjected to AZD conversion.
  • a function of sequentially transmitting the digital image data to the face detection means 20 is provided.
  • the image reading means 10 has a data storage function, and the read face image data can be appropriately stored in a storage device such as a hard disk drive (HDD) or a storage medium such as a DVD-ROM. It has become. In addition, the face image is converted into digital image data via a network or a storage medium. When supplied, the image reading means 10 becomes unnecessary or functions as a communication means, an interface (IZF) or the like.
  • a storage device such as a hard disk drive (HDD) or a storage medium such as a DVD-ROM. It has become.
  • the face image is converted into digital image data via a network or a storage medium.
  • the image reading means 10 becomes unnecessary or functions as a communication means, an interface (IZF) or the like.
  • the face detection means 12 detects a human face from the face image G read by the image reading means 10 and sets a face detection frame F in the relevant part.
  • the face detection frame F has a size (area) including both eyes and lips around the nose of the human face and not including the chin of the human face.
  • the algorithm for detecting a human face by the face detection means 12 is not particularly limited, but, for example, a conventional method as shown in the following literature or the like can be used as it is.
  • a face image of a region including both eyes and lips of a human face and not including a chin is created, a neural network is trained using this image, and a human face is detected using the trained dual neural network.
  • a region from both eyes to the lips is detected as a face image region.
  • the size of the face detection frame F is not invariable, and is appropriately increased or decreased according to the size of the target face image.
  • the chin detection window setting means 14 sets a chin detection window W having a size including the chin of the person's face below the face detection frame F set by the face detection means 20. ing.
  • a target area for accurately detecting the contour including the lower bottom of the chin of the human face by the following means is selected from the face image G using the chin detection window W.
  • the edge calculating means 16 provides a function for obtaining the intensity distribution of the edge of the image in the chin detection window W. For example, as described later, the first derivative using the edge detection operator of Sobe 1 is used. Calculate the intensity distribution of the edge of the mold! / Puru.
  • Pixel selection means 18 ⁇ which provides a function of selecting a pixel having an edge strength equal to or greater than a threshold value from the distribution of the edge strength obtained by the edge calculation means 16, as will be described later.
  • a filter Laplacian (Lap 1 acian) filter
  • candidate images obtained by the edge detection operator of the above-mentioned Sove 1 are narrowed down by detecting the sign inversion of the edge.
  • the curve approximation means 20 provides a function of obtaining an approximate curve so as to best fit the distribution of each pixel selected by the pixel selection means 18. Specifically, as will be described later, the following equation is used.
  • the chin detection means 22 provides a function of detecting the lowermost part of the approximation curve obtained by the curve approximation means 20 as the lower part of the chin of the person's face. A noticeable mar power M or the like may be applied to the lower bottom portion of the jaw to explicitly indicate it.
  • the means 10 to 22 and the like constituting the chin detection system 100 are actually composed of hardware such as a CPU RAM and a dedicated computer program (software) as shown in FIG. It is realized by a computer system such as a personal computer (PC). That is, as shown in FIG. 2, for example, hardware for realizing this jaw detection system 100 is a CPU (Central Processing Unit) 4 which is a central processing unit that performs various controls and arithmetic processing.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • An auxiliary storage device such as a node disk drive device (HDD) or semiconductor memory (S econdary storage) 43, and an output device 44 such as a monitor (LCD (liquid crystal display) or CRT (cathode ray tube)).
  • An input device 45 consisting of an image sensor such as an image scan keypad, a mouse, a CCD (Charge Coiled Device) or a CMOS Combo (Chemical Component Device), and an input / output device for these devices.
  • This bus is connected by various internal / external buses 47 such as a processor bus, a memory bus, a system bus, and an input / output bus, such as a nos and an industrial standard architecture (ISA) bus.
  • a processor bus such as a central processing unit (CPU) bus
  • a memory bus such as a central processing unit (CPU) bus
  • a system bus such as a central processing unit (CPU) bus
  • an input / output bus such as a nos and an industrial standard architecture (ISA) bus.
  • ISA industrial standard architecture
  • a storage medium such as a CD-ROM, a DVD-ROM, a flexible disk (FD), or various control programs and data supplied via a communication network (LAN, WAN, Internet, etc.) N
  • the program and data are installed in the auxiliary storage device 43 and the like, and the programs and data are loaded into the main storage device 41 as needed.
  • the CPU 40 makes full use of various resources according to the program loaded in the main storage device 41 and performs predetermined operations. It performs control and arithmetic processing, outputs the processing results (processing data) to an output device 44 via a bus 47, and displays the data.
  • the data is also stored in a database formed by an auxiliary storage device 43 as necessary. It is designed to be stored and saved (updated).
  • FIG. 3 is a flowchart showing an example of a chin detection method for a face image G to be actually detected.
  • step S 101 a face included in the face image G from a face image G to be a chin detection target previously read by the image reading means 10 by the above-described face detection means 12. And then set the face detection frame F to identify the detected human faces.
  • the image to be detected by the chin of the present invention is limited to an image in which one person's face is shown.
  • the position of the person's face is first determined by the face detection means 12.
  • a rectangular face detection frame F is set on the person's face as shown in FIG.
  • the size (area) is such that it includes both the eyes and lips around the nose of the human face and does not include the chin of the human face.
  • the face detection frame F does not include the chin portion of the person's face, it is not always necessary to stick to the size and shape as exemplified.
  • the size of the person's face and the horizontal position of the display frame Y are within the standard, but the position of the chin is too low. This indicates a state where the standard position has not been reached.
  • step S103 As shown in FIG. A rectangular jaw detection window W is set, and the position of the jaw of the person's face is specified.
  • the size and shape of the chin detection window W are not strict, and are not particularly limited as long as the size and shape are below the lower lip of the person's face and always include the lower bottom of the chin.
  • many confusing lines and contours of the chin such as chin shadows, neck wrinkles, and shawl collars will appear in the chin detection window W, and it will take a lot of time to detect edges later. It took Conversely, if it is too small, the lower base of the chin to be detected may not be included due to individual differences.
  • the chin detection window W is set in close contact with the lower side of the face detection frame F '.
  • the chin detection window W does not necessarily need to be in close contact with the face detection frame F. In short, it is only necessary that the chin detection window W keeps a predetermined positional relationship with respect to the face detection frame F.
  • the process proceeds to the next step S105, in which the luminance of each pixel in the chin detection window W is determined.
  • the primary in the chin detection window W is calculated using a first-order differential (difference-type) edge detection operator represented by an edge detection operator j of Sobe 1 and the like. Find the edge intensity distribution of the differential type.
  • FIGS. 12 (a) and 12 (b) show this “Sobel edge detection operator”.
  • the vertical and horizontal edges are detected by adjusting the three pixel values in the upper row and lower row, respectively, and enhancing the vertical edges.
  • Figure 4 shows the relationship between the luminance (vertical axis) and the pixel position (horizontal axis) of the face image G. Since the brightness of the edge portion of the image such as the outline of the chin changes greatly, the portion where the brightness changes greatly is represented by a first-order differential type (such as “Sobel's edge detection operator”). By using the edge detection operator of (type), it can be calculated as a parabolic approximated curve as shown in Fig. 5 (a).
  • a first-order differential type
  • the process proceeds to the next step S107, and a threshold value is obtained from the edge intensity distribution. That is, as described above, since the edge strength is greatly affected by the shooting conditions (illumination conditions) and the like, it is difficult to determine the edge corresponding to the jaw contour from the edge strength including other areas. .
  • the threshold value for determining a pixel is not particularly limited, but, for example, a maximum edge intensity of 110 detected in the chin detection window W is set as the threshold value, and the threshold value is set to be stronger than this threshold value.
  • a pixel having an edge is selected as a candidate pixel for obtaining the lower part of the chin.
  • step S111 when the threshold value for selecting the pixel value is determined in this way, the process proceeds to step S111, and all pixels constituting the upper side of the chin detection window W are set as the base points as shown in FIG. While scanning in the vertical direction, only pixels having an edge intensity exceeding the threshold are selected, and pixels below the threshold are excluded.
  • Fig. 10 shows the pixel distribution selected in this way (exceeding the threshold) in an easy-to-understand manner.
  • the chin detection window W is scanned in the X direction from the upper left of the chin detection window W, and sequentially scanned in the Y direction.
  • the pixels in each row are scanned in a non-interlaced manner, such as moving the pixels to pixels, and pixels having an edge intensity equal to or higher than a threshold are identified and displayed.
  • the search from the upper left of the chin detection window W is performed in order to select the earliest appearing pixel in the Y direction that is equal to or greater than the threshold value as the effective lower-jaw catcher. It is possible to detect a pixel corresponding to the contour. In other words, the edge that is confusing with the jaw contour is more pronounced at the neck wrinkles and shirt collar below the actual jaw contour than at the top, This is to reduce the priority of those edges.
  • step S113 if a pixel having an edge strength exceeding the threshold value is selected in this way, the process proceeds to step S113, and for each pixel column (Y direction) of the selected pixels, To narrow down the pixels with the highest edge strength, the sign of the second derivative wedge is detected for each column.
  • a second-order differential type edge detection filter (Lablassian filter) as shown in FIG. 13 to detect the sign inversion of the edge, as shown in FIG.
  • One of the pixels is determined (Fig. 11). For example, as shown in FIG. 10, assuming that a plurality of pixels are selected for each row from “a” to “g” as a result of searching for pixels having an edge strength equal to or greater than the threshold as shown in FIG. As a result of detecting the sign inversion of the edge, in FIG. 11, in the “a”, “b”, “d”, “f”, and “ rg ” columns, the uppermost pixel is a candidate pixel constituting the chin outline. Selected as " c ",
  • step S115 the approximate curve as described above is added to the distribution of the searched pixels.
  • the bottom of the chin will be determined by applying it to Figure 11.
  • FIGS. 9 (a) and 9 (b) When the bottom of the chin is detected in this way, a marker M is placed on the bottom of the chin as shown in FIGS. 9 (a) and 9 (b), and the position of the marker M is set to the specified lower jaw. Move the entire human face so that it is at the same height as the bottom position.
  • Fig. 9 (a) the lower part of the chin of the person's face is located at a considerably lower position, so the lower part of the chin is moved to the specified position by moving the person's face vertically upward as shown in Fig. 9 (b). Can be matched.
  • FIG. 9 (a) and the like the image below the person's neck is cut off, but it is assumed that the image of the hidden part actually exists as it is.
  • the present invention sets the chin detection window using a known person face detection method, and then detects the lower bottom of the person face based on the intensity distribution of the edge in the chin detection window. Even in the case of a face image in which it is difficult to detect the chin outline, it is possible to detect the portion accurately and at high speed to detect a robust (robust) lower part of the chin.

Abstract

A person face is detected and a jaw detection window is set at the lower portion of the face. Edge intensity distribution in the jaw detection window is calculated. Pixels having edge intensity equal to or above a threshold value are detected from the edge intensity distribution. An approximation curve is calculated so as to match with the distribution of the detected pixels. The lowermost portion of the approximation curve is decided to be the bottom of the jaw of the person. Thus, it is possible to accurately and rapidly detect the bottom portion of a jaw of a person face.

Description

明細書 人物顔のあご検出方法及びあご検出システム並びにあご検出プログラム 技術分野  TECHNICAL FIELD A chin detection method, a chin detection system, and a chin detection program for a human face
本発明は、 パターン認識 (P a t t e r n r e c o g n i t i o n) ゃォブジェクト認識技術に係り、 特に人物の顔が写っている顔画像の中か ら当該人物顔のあごの位置を的確に検出するためのあご検出方法及ぴあご 検出システム並びにあご検出プログラムに関するものである。  The present invention relates to a pattern recognition (Patternrecognition) object recognition technology, and more particularly to a chin detection method and a chin detection method for accurately detecting a chin position of a person's face from a face image in which the person's face is captured. This is related to the detection system and chin detection program.
 ,
技術背景 Technology background
近年のパターン認識技術やコンピュータ等の情報処理装置の高性能化に 伴って文字や音声の認識精度は飛躍的に向上してきているが、 人物や物 体 ·景色等が映っている画像、 例えば、 ディジタルスチルカメラ等によつ て取り込まれた画像のパターン認識のうち、 特にその画像中に人の顔が映 つているか否かを正確かつ高速に識別するといつた点に関しては未だに極 めて困難な作業であることが知られている。 ,  The accuracy of character and voice recognition has been dramatically improved with the recent increase in the performance of information processing devices such as pattern recognition technology and computers.However, images that show people, objects, landscapes, etc. In the pattern recognition of images captured by digital still cameras, etc., it is still extremely difficult to determine whether a human face appears in the image accurately and at high speed. It is known to be work. ,
しかしながら、 このように画像中に人の顔が映っているか否か、 さらに はその人物が誰であるのかをコンピュータ等によって自動的に正確に識別 することは、 生体認識技術の確立やセキュリティの向上、 犯罪捜査の迅速 化、 画像データの整理 ·検索作業の高速化等を実現する上で極めて重要な テーマとなってきており、 このようなテーマに関しては従来から多くの提 案がなされている。  However, in this way, it is necessary to automatically and accurately identify whether a person's face appears in an image and who the person is by using a computer or the like. However, it has become a very important theme in realizing faster criminal investigations, faster image data organization and faster search operations, and many other proposals have been made on such themes.
例えば、 特開平 9一 50 5 2 8号公報等では、 ある入力画像について、 先ず、 肌色領域の有無を判定し、 その肌色領域に対して自動的にモザイク サイズを決定してモザイク化し、 そのモザィク領域と人物顔辞書との距離 を計算することにより人物顔の有無を判定し、 人物顔の切り出しを行うこ とによって、 背景等の影響による誤抽出を減らし、 効率的に画像中から人 間の顔を自動的にみつけるようにしている。 For example, in Japanese Patent Application Laid-Open No. Hei 9-501528, etc., for an input image, first, the presence or absence of a flesh-color area is determined, the mosaic size is automatically determined for the flesh-color area, and the mosaic is performed. The presence or absence of a human face is determined by calculating the distance between the area and the human face dictionary, and by extracting the human face, erroneous extraction due to the influence of the background etc. is reduced, and the human face is efficiently extracted from the image. The face in between is automatically found.
また、 特開平 8— 7 7 3 3 4号公報等では、 各個人やグループ (例えば、 人種グ /レープ) を区別するために,用いる顔画像の特徴点抽出を所定のアル ゴリズムを利用することで自動的に高速かつ簡便に実施するようにしてい る。  In Japanese Patent Application Laid-Open No. H8-773334, a predetermined algorithm is used to extract feature points of a face image to be used in order to distinguish each individual or group (for example, race / rape). As a result, it is automatically and quickly implemented.
ところで、 パスポートや身分証明書等に不可欠な人物の顔写真 (顔画 像) は、 そのサイズや人物の顔の向きや大きさ、 位置等が細かく設定され ている場合が多い。  By the way, in many cases, a face photograph (face image) of a person, which is indispensable for a passport or an ID card, has its size, direction, size, and position of the person's face set in detail.
例え【 、 無背景で、 かつ帽子等のアクセサリーを身に付けないといった 条件はレ、うまでもなく、 写っている人物の顔が正面を向いていることや、 人物顔が写真の中央にあること、 写っている顔のあごの位置が写真の下の 枠から一定の範囲にあること、 …等が事細かく規定されており、 原則とし てその規格から外れる,写真 (顔画像) は採用されない。  For example, the condition of [, no background, and wearing no accessories such as hats is that the face of the person in the picture is facing the front, and that the face of the person is in the center of the photo. It is specified in detail that the position of the chin of the face in the image is within a certain range from the frame below the photo, and so on. In principle, photos (face images) that deviate from the standard are not adopted.
しかしながら、 人物顔が正面を向いていなかったり、 帽子等のァクセサ リーを身に付けている等といった理由であればともかく、 単に写っている 顔の大き.さや位置が多少ずれているといった理由だけで、 再度撮影し直さ なけれ ならないのは不合理であり、 利用者に対して著しい労力ゃコスト を強いるといった問題点がある。  However, regardless of the reason that the person's face is not facing the front or wearing accessories such as a hat, it is simply because the size of the face in the image, because the size and position are slightly shifted. However, it is unreasonable to have to re-take the image again, and there is a problem in that the user has to pay a considerable labor / cost.
そのため、 近年発達が著しい技術分野であるディジタル画像処理技術を 利用して、 前記のような問題点を解決する方法が検討されている。  Therefore, a method for solving the above-mentioned problems by using digital image processing technology, which is a technical field that has been remarkably developed in recent years, is being studied.
例え fま'、 必要とする人物の顔画像を、 C C Dや C M O S等の電子撮像素 子を用レ、たディジタルスチルカメラ等によって直接ディジタル画像データ として取得、 あるいは予め人物顔が撮影されたアナログ写真 (銀塩写真) をスキャナ等の電子光学画像読取装置を利用してディジタル画像データと して取得し、 このディジタル画像データを P C等の汎用のコンピュータと 汎用のソフトウエアからなる画像処理システムを利用してその人物本来の 顔の特徴を損なうことなく、 適宜、 その顔画像を拡大、 縮小、 移動等の簡 単な画像処理を施すことで前記問題を解決することが考えられている。 一方、 このような処理対象となる画像の数が少なければ、 その処理操作 は、 マウスやキーボード、 モニタ等の汎用の入出力装置を用いて人間が直 接実施することも可能であるが、 その数が膨大な場合には、 前記のような 従来技術を利用してその処理を自動的に行う必要が生じてくる。 For example, a face image of a required person can be directly obtained as digital image data by a digital still camera using an electronic imaging device such as a CCD or CMOS, or an analog photograph in which a human face has been photographed in advance. (Silver-salt photography) is obtained as digital image data using an electro-optical image reading device such as a scanner, and this digital image data is used using an image processing system consisting of a general-purpose computer such as a PC and general-purpose software. Then, it is considered that the above-mentioned problem can be solved by appropriately performing simple image processing such as enlargement, reduction, or movement of the face image without impairing the characteristic of the face of the person. On the other hand, if the number of images to be processed is small, the processing operation can be directly performed by a human using a general-purpose input / output device such as a mouse, a keyboard, or a monitor. When the number is huge, it is necessary to perform the processing automatically using the above-described conventional technology.
しかしながら、 このように人物顔の画像処理の自動化を実現するために は、 顔の輪郭、 特に人物顔のあごの輪郭を正確に認識する必要があるが、 人物顔のあごの輪郭は、 その撮影時の照明条件や個人の顔の造作、 その他 の条件によって従来のエッジ検出フィルタ等のみでは明確に読み取れない ことが多い。  However, in order to realize automatic image processing of a human face in this way, it is necessary to accurately recognize the outline of the face, particularly the outline of the chin of the human face. Depending on the lighting conditions at the time, the features of the individual's face, and other conditions, it is often not possible to read clearly with conventional edge detection filters alone.
例えば、 散乱光や照明の方向によってはあごの輪郭は不鮮明となったり、 顔の造作によっては、 唇とあごの下底部との間に比較的強いェッジが検出 されたり、 また着用している服によってもその襟と首の境目に強いエッジ が検出される。 また、 年齢や体型によってはあごの輪郭よりも首の皺の方 に強いエッジが発生することも多く、 これらをあごの輪郭と誤検出してし まうことがある。  For example, depending on the direction of scattered light and lighting, the outline of the chin may be unclear, depending on the facial features, a relatively strong edge between the lips and the bottom of the chin may be detected, or the clothes may be worn. A strong edge is also detected at the border between the collar and the neck. Also, depending on age and body type, a stronger edge is often generated in the neck wrinkle than in the chin contour, and these may be erroneously detected as the chin contour.
そこで、 本発明はこのような課題を有効に解決するために案出されたも のであり、 その目的は、 前記のようにあごの輪郭の検出が困難な顔画像で あっても、 その部分を的確、 かつ高速に検出してロバスト (R o b u s t :頑健) なあご下底部の検出を行うことができる新規なあご検出方法及 びあご検出システム並びにあご検出プログラムを提供するものである。 発明の開示  Therefore, the present invention has been devised in order to effectively solve such a problem. The purpose of the present invention is to remove a portion of a face image whose chin outline is difficult to detect as described above. It is intended to provide a new chin detection method, a chin detection system and a chin detection program capable of accurately and quickly detecting the bottom of a chin under a robust condition. Disclosure of the invention
前記課題を解決するために発明 1の人物顔のあご検出方法は、  In order to solve the above-mentioned problem, the chin detection method of the human face of the invention 1 is
人物顔が含まれる画像中から当該人物顔のあごの下底部を検出する方法 であって、 前記人物顔の両目、 唇を含み、 あごを含まない範囲の顔画像を 検出して、 検出した当該顔画像の下部に前記人物顔のあごが含まれる大き さのあご検出窓を設定した後、 当該あご検出窓内のエッジの強度分布を求 め、 当該エッジ強度の分布から閾値以上のエッジ強度を持つ画素を検出し、 その後、 検出した各画素の分布に最も合うように近似曲線を求め、 当該近 似曲線の最も下底部を前記人物顔のあごの下底部とするようにしたことを 特徴とするものである。 A method for detecting the lower bottom of a chin of a person's face from an image including a person's face, comprising detecting a face image in a range that includes both eyes and lips of the person's face and does not include a chin. After setting a chin detection window large enough to include the chin of the human face at the bottom of the face image, the intensity distribution of the edges in the chin detection window is determined, and the edge intensity equal to or greater than the threshold value is determined from the edge intensity distribution. Detect the pixels that have Thereafter, an approximation curve is obtained so as to best fit the distribution of the detected pixels, and the lowest bottom of the approximation curve is set as the lower bottom of the chin of the person's face.
このように本発明は、 先ず、 人物顔のあごが含まれる可能性が極めて高 い咅分を選択し、 その部分にあご検出窓を設定した後、 このあご検出窓内 のエッジの強度分布を求める。 すなわち、 あごの下底部を含む輪郭はその 周囲に比べて濃淡が急激に変化してエッジの強度が高くなつていることが 一般的である。 そのため、 そのあご検出窓内のエッジの強度分布を求める ことでそのあご検出窓内に含まれている答のあごの下底部を含む輪郭とな る候補領域を容易かつ確 に選択することができる。  As described above, according to the present invention, first, a component having a very high possibility of including a chin of a human face is selected, a chin detection window is set in that portion, and the intensity distribution of the edge in the chin detection window is determined. Ask. In other words, the contour including the lower bottom of the chin generally changes sharply in contrast to the surrounding area, and the edge strength is increased. Therefore, by obtaining the intensity distribution of the edge in the chin detection window, it is possible to easily and surely select a candidate region serving as a contour including the lower bottom of the chin of the answer included in the chin detection window. .
次に、 このようにしてエッジの強度分布を求めたならば、 この分布から 閾値以上のエッジ強度を持つ画素を検出する。 すなわち、 一般にあごの下 底部を含む輪郭は、 エッジの強度が高いのが一般的であることから、 ある 閾値以上のエッジ強度を持つ画素を選択し、 それ以外の画素を排除するこ とで、 あごの下底部を含む輪郭に相当する可能性の高い画素のみを選択す ることができる。  Next, if the edge intensity distribution is obtained in this way, pixels having an edge intensity equal to or higher than a threshold value are detected from this distribution. That is, since the contour including the lower and lower parts of the chin generally has a high edge strength, a pixel having an edge strength equal to or higher than a certain threshold is selected, and other pixels are excluded. Only pixels that are likely to correspond to the contour including the lower bottom of the chin can be selected.
そして、 最後に、 このようにして検出した各画素の分布に最も合うよう に近似曲線を求め、 その近似曲線の最も下底部を前記人物顔のあごの下底 部と擬制してこれを検出することになる。  Finally, an approximation curve is obtained so as to best fit the distribution of each pixel detected in this manner, and the lowermost portion of the approximation curve is detected by assuming the lowermost portion of the chin of the human face. Will be.
これによつて、 人物顔のあごの輪郭の検出が困難な顔画像であっても、 その部分を的確、 かつ高速に検出してロバスト (頑健) なあご下底部の検 出を行うことができる。  As a result, even if the face image is difficult to detect the contour of the chin of a human face, it is possible to detect the portion accurately and at high speed and detect a robust (robust) bottom of the chin. .
発明 2の人物顔のあご検出方法は、  Invention 2
人物顔が含まれる画像中から当該人物顔のあごの下底部を検出する方法 であって、 前記人物顔の両目、 唇を含み、 あごを含まない範囲の顔画像を 検出して、 検出した当該顔画像の下部に前記人物顔のあごが含まれる大き さのあご検出窓を設定した後、 当該あご検出窓内の一次微分型のェッジの 強度分布を求め、 当該エッジ強度の分布から閾値を求め、 当該閾値以上の エッジ強度を持つ画素を検出し、 その後、 当該画素の中から二次微分型の エッジの符号反転を利用して使用する画素の絞り込みを行い、 しかる後、 絞り込ん广ど画素の分布に最も合うように最小自乗法を用いて近似曲線を求 め、 当該近似曲線の最も下底部を前記人物顔のあごの下底部とするように したことを特徴とするものである。 . A method for detecting a lower bottom portion of a chin of a person's face from an image including a person's face, the method comprising detecting a face image in a range that includes both eyes and lips of the person's face and does not include a chin. After setting a chin detection window large enough to include the chin of the person's face at the bottom of the face image, obtain the intensity distribution of the first derivative type edge in the chin detection window, and obtain the threshold from the distribution of the edge intensity. , Above the threshold Pixels with edge strength are detected, and then the pixels to be used are narrowed down using the sign inversion of the edge of the second derivative type from the pixels, and then narrowed down to the pixel distribution that best matches the distribution of pixels. In addition, an approximate curve is obtained by using the least squares method, and the lowest bottom of the approximate curve is set as the lower bottom of the chin of the person's face. .
すなわち、 本発明は前記発明 1の方法のうち、 エッジの強度分布を算出 方法 (一次微分型) 、 画素選択方法 (二次微分型) 、 近似曲線の算出方法 (最小自乗法) をより具体的に限定したものであり、 これによつて発明 1 よりもさらに人物顔のあごの下底部の検出を的確、 かつ高速に行うことが できる。  That is, the present invention more specifically describes the method of calculating the edge intensity distribution (first-order differential type), the method of selecting pixels (second-order differential type), and the method of calculating the approximate curve (least square method) among the methods of the first invention. Thus, the lower bottom of the chin of the human face can be detected more accurately and at higher speed than in Invention 1.
発明 3の人物顔のあご検出方法は、  Invention 3
発明 1又は 2に記載の顔画像中のあご検出方法において、 前記あご検出 窓として ίま、 横長の矩形状であって、 その幅が前記人物顔の顔幅よりも幅 広でかつその高さが前記幅よりも狭いものを用いるようにしたことを特徴 とするものである。  In the method for detecting a chin in a face image according to invention 1 or 2, the chin detection window has a horizontally long rectangular shape, and has a width wider than a face width of the human face and a height thereof. Is smaller than the above-mentioned width.
これによつて、 検出対象となる当該人物顔のあごの下底部をあご検出窓 内に確実に捉えることができるため、 あごの下底部の検出をより的確に行 うことができる。  Thus, the lower bottom of the chin of the person's face to be detected can be reliably captured in the chin detection window, and thus the lower bottom of the chin can be detected more accurately.
発明 4の人物顔のあご検出方法は、  Invention 4
発明 2又は 3に記載のあご検出方法において、 前記一次微分型のエッジ の強度分布は、 S o b e 1のエッジ検出オペレータを用いるようにしたこ とを特徴とするものである。  In the chin detection method according to the invention 2 or 3, the first-order differential edge intensity distribution uses a Sobele edge detection operator.
すなわち、 画像中の急激な濃淡変化を検出する最も代表的な方法は濃淡 に関する微分を求めることである。 そして、 ディジタル画像の微分は差分 で代用されることから前記あご検出窓内の原画像を一次微分することによ つて当該画像中の濃淡が急激に変化しているエッジ部分を効果的に検出す ることができる。 .  In other words, the most typical method for detecting a sudden change in light and shade in an image is to find a derivative relating to light and shade. Then, since the differentiation of the digital image is substituted by the difference, the first-order differentiation of the original image in the chin detection window effectively detects the edge portion in the image where the shading changes rapidly. Can be .
本発明はこの一次微分型のエッジ検出オペレータ (フィルタ) として、 検出性能に優れている公知の S o b e 1のエッジ検出オペレータを用いる ようにしたものであり、 これによつて、 前記あご検出窓内のエッジ部分を 確実に検出することができる。 The present invention uses this first-order differential type edge detection operator (filter) as: A known edge detection operator of Sove 1 having excellent detection performance is used, whereby an edge portion in the jaw detection window can be reliably detected.
発明 5の人物顔のあご検出方法は、  Invention 5
発明 2〜4のいずれかに記載のあご検出方法において、 前記二次微分型 のエッジは、 ラプラスのエッジ検出オペレータを用いるようにしたことを 特徴とするものである。  In the chin detection method according to any one of inventions 2 to 4, the edge of the second derivative type uses a Laplace edge detection operator.
これによつて、 前記二次微分型のエッジを的確に検出することができる。 発明 6の人物顔のあご検出方法は、  This makes it possible to accurately detect the second-order differential edge. Invention 6
発明 1〜 5のいずれかに記載のあご検出方法において、 前記近似曲線は、 二次関数による最小自乗法を用いるようにしたことを特徴とするものであ る。 In the chin detection method according to any one of Inventions 1 to 5, the least-squares method using a quadratic function is used for the approximate curve.
すなわち、 前記人物顔のあごの輪郭として擬制することができる前記あ ご検出窓内の近似曲線を求める方法として、 本発明は二次関数による最小 自乗法を利用したものであり、 これによつて、 前記あご検出窓内の人物顔 のあごの輪郭を高速に求めることができる。  That is, as a method for obtaining an approximate curve in the chin detection window that can be simulated as the contour of the chin of the human face, the present invention uses a least square method by a quadratic function. The contour of the chin of the human face in the chin detection window can be obtained at high speed.
ここで本発明で採用する 「最小自乗法 (最小二乗法ともいう) 」 とは、 一般的に理解されているように、 複数のサンプリングの集合に対し、 フィ ッティングしょうとした関数からの誤差の自乗和を最小にするような係数 をみつける方法であり、 例えば、 実験データに対し、 それが二次式の振る 舞いをするような現象であれば二次式を使えば良いし、 指数関数的な振る 舞いが予想されていれば対数を取って計算することができる。 なお、 この 最小自乗法による近似曲線の算出は、 既に多くの関数電卓や表計算ソフト に組み込まれて利用されているようなソフトウェア (プログラム) をその まま利用することで容易に実現することができる。  As used herein, the “least squares method (also called the least squares method)” is, as is generally understood, the error of the error from the function to be fitted to a set of samplings. This is a method to find a coefficient that minimizes the sum of squares.For example, if it is a phenomenon that behaves as a quadratic equation with respect to experimental data, a quadratic equation may be used, and an exponential function If expected behavior can be calculated by taking the logarithm. The calculation of the approximate curve by the least squares method can be easily realized by using software (programs) that are already incorporated in many scientific calculators and spreadsheet software as they are. .
発明 7の人物顔のあご検出システムは、  Invention 7 The human face chin detection system
人物顔が含まれる画像中から当該人物顔のあごの下底部を検出するシス テムであって、 前記人物顔が含まれる画像を読み取る画像読取手段と、 当 該画像読取手段で読み取った画像中から前記人物顔の両目、 唇を含み、 あ ごを含まない載囲を検出して、 検出した範囲に顔検出枠を設定する顔検出 手段と、 当該検出枠の下部に前記人物顔のあごが含まれる大きさのあご検 出窓を設定するあご検出窓設定手段と、 当該あご検出窓内のエッジの強度 分布を求めるュッジ算出手段と、 当該エッジ算出手段で得られたエッジ強 度の分布から闞値以上のェッジ強度を持つ画素を選択する画素選択手段と、 当該画素選択手段で選択した各画素の分布に最も合うように近似曲線を求 める曲線近似手段と、 当該曲線近似手段で得られた近似曲線の最も下底部 を前記人物顔のあごの下底部として検出するあご検出手段と、 を備えたこ とを特徴とするものである。 An image reading means for detecting a lower bottom portion of a chin of a person's face from an image containing a person's face, wherein the image reading means reads an image containing the person's face. A face detection unit configured to detect, from an image read by the image reading unit, a surrounding area including both eyes and lips of the human face and not including a chin, and to set a face detection frame in the detected range; Jaw detection window setting means for setting a chin detection window having a size including the chin of the person's face at the lower part of the human face; A pixel selecting means for selecting a pixel having an edge strength of 闞 or more from the obtained edge strength distribution, and a curve approximating means for obtaining an approximate curve that best fits the distribution of each pixel selected by the pixel selecting means. And a chin detecting means for detecting the lowest bottom of the approximation curve obtained by the curve approximating means as the lower bottom of the chin of the person's face.
これによつて、 発明 1と同様に人物顔のあごの輪郭の検出が困難な顔画 像であっても、 その部分を的確、 かつ高速に検出してロバス ト (頑健) な あご下底部の検出を行うことができる。  As a result, even in the case of the face image in which it is difficult to detect the contour of the chin of the human face as in the case of the first invention, it is possible to detect the portion accurately and at high speed to obtain a robust (robust) lower jaw. Detection can be performed.
また、 これら各手段を専用のハードウエアやコンピュータシステムを利 用して実現することでこれらの作用■効果を自動的に発揮することが可能 となる。  Further, by realizing each of these means by using dedicated hardware or a computer system, it is possible to automatically exert these functions and effects.
発明 8の人物顔のあご検出システムは、  Invention 8 The human face chin detection system
発明 7に記載の人物顔のあご検出システムにおいて、 前記画素選択手段 は、 前記エツジ算出手段で算出された一次微分型のエッジ強度の分布から 閾値を求め、 当該閾値以上のエッジ強度を持つ画素を検出し、 当該画素の 中から二次微分型のエッジの符号反転を利用して使用する画素を選択する ようになつていることを特徴とするものである。  In the human face chin detection system according to Invention 7, the pixel selecting means obtains a threshold value from a distribution of first-order differential type edge intensities calculated by the edge calculating means, and determines a pixel having an edge intensity not less than the threshold value. It is characterized in that a pixel to be used is detected and a pixel to be used is selected from the pixels by utilizing the sign inversion of the edge of the second derivative type.
これによつて、 発明 2、 7と同様にさらに人物顔のあごの下底部の検出 を的確、 かつ高速に行うことができると共にこれら各手段を専用のハード ウェアやコンピュータシステムを利用して実現することでこれらの作用 · 効果を自動的に発揮することが可能となる。  As a result, similarly to the inventions 2 and 7, the lower bottom of the chin of the person's face can be detected accurately and at high speed, and each of these means is realized by using dedicated hardware or a computer system. As a result, these functions and effects can be exhibited automatically.
発明 9の人物顔のあご検出プログラムは、  Invention 9 The human face chin detection program
人物顔が含まれる画像中から当該人物顔のあごの下底部を検出するプ口グ ラムであって、 前記人物顔が含まれる画像を読み取る画像読取ステップと、 当該画像読取ステップで読み取った画像中から前記人物顔の両目、 唇を含 み、 あごを含まない範囲を検出して、 検出した範囲に顔検出枠を設定する 顔検出ステップと、 当該検出枠の下部に前記人物顔のあごが含まれる大き さのあご検出窓を設定するあご検出窓設定ステップと、 当該あご検出窓内 のエツジの強度分布を求めるエッジ算出ステップと、 当該ェッジ算出ステ ップで得られたェッジ強度の分布から閾値以上のェッジ強度を持つ画素を 選択する画素選択ステツプと、 当該画素選択ステップで選択した各画素の 分布に最も合うように近似曲線を求める曲線近似ステップと、 当該曲線近 似ステップで得られた近似曲線の最も下底部を前記人物顔のあごの下底部 として検出するあご検出ステップと、 をコンピュータに実現させることを 特徴とするものである。 A plug that detects the bottom of the chin of the person's face from the image containing the person's face An image reading step of reading an image including the human face, and detecting a range that includes both eyes and lips of the human face and does not include a chin from the image read in the image reading step; A face detection step of setting a face detection frame in the detected range; a chin detection window setting step of setting a chin detection window having a size including the chin of the human face below the detection frame; and An edge calculation step for obtaining an edge intensity distribution of the edge, a pixel selection step for selecting a pixel having an edge intensity equal to or greater than a threshold from the edge intensity distribution obtained in the edge calculation step, and a pixel selection step. A curve approximation step for finding an approximate curve that best fits the distribution of each pixel; and It is characterized in that to achieve a chin detecting step of detecting a lower bottom portion, to the computer.
これによつて、 発明 1及ぴ 7と同様な効果を得られると共に、 パソコン ( P C ) 等の汎用のコンピュータ (ハードウェア) を用いてソフトウェア 上でその機能を実現することが可能となるため、 専用の装置を作成して実 現する場合 (こ比べて経済的かつ容易に実現することができる。 また、 多く の場合プログラムの書き換えだけでその機能の変更、 改良等のバージョン アップを容易に達成することができる。  As a result, the same effects as those of Inventions 1 and 7 can be obtained, and the functions can be realized on software using a general-purpose computer (hardware) such as a personal computer (PC). When creating and realizing a dedicated device (compared to this, it can be realized more economically and easily. In many cases, it is easy to change the function, upgrade, etc. simply by rewriting the program) can do.
発明 1 0の人物顔のあご検出プログラムは、  Invention 10 is a human face chin detection program,
請求項 9に記載の人物顔のあご検出プログラムにおいて、 前記画素選択 ステップは、 前記エッジ算出ステップで算出された一次微分型のエッジ強 度の分布から閾値を求め、 当該閾値以上のエッジ強度を持つ画素を検出し、 当該面素の中から二次微分型のエッジの符号反転を利用して使用する画素 を選択するようになっていることを特徴とするものである。  10. The human face chin detection program according to claim 9, wherein the pixel selection step obtains a threshold value from a distribution of first-order differential edge strength calculated in the edge calculation step, and has an edge strength not less than the threshold value. The method is characterized in that a pixel is detected, and a pixel to be used is selected from the surface elements by using sign inversion of a second-order differential type edge.
これによつて、 発明 2及び 8と同様な効果が得られると共に、 発明 9と 同様にソフトウエア上でその機能を実現することが可能となるため、 経済 的かつ容易に実現することができ、 また、 容易にその機能の変更、 改良等 のバージョンァップを達成することができる。 図面の簡単な説明 As a result, the same effects as those of the inventions 2 and 8 can be obtained, and the functions can be realized on the software as in the case of the invention 9, so that it can be realized economically and easily. In addition, it is possible to easily achieve version-up such as change or improvement of the function. Brief Description of Drawings
図 1は、 本発明に係るあご検出システムの実施の一形態を示すプロック 図である。  FIG. 1 is a block diagram showing an embodiment of a jaw detection system according to the present invention.
図 2は、 あご検出システムを構成するハードウェアを示す構成図である。 図 3は、 本発明に係るあご検出方法の実施の一形態を示すフローチヤ一 ト図である。  FIG. 2 is a configuration diagram showing hardware constituting the chin detection system. FIG. 3 is a flowchart showing an embodiment of a jaw detection method according to the present invention.
図 4は、 顔画像中の輝度と画素位置との関係を示すグラフ図である。 図 5は、 顔画像中のエッジの強度と画素位置との関係を示すグラフ図で ある。  FIG. 4 is a graph showing the relationship between the luminance and the pixel position in the face image. FIG. 5 is a graph showing the relationship between the edge intensity in the face image and the pixel position.
図 6は、 あご検出対象となる顔画像の 例を示す図である。  FIG. 6 is a diagram showing an example of a face image to be a chin detection target.
図 7は、 顔画像に顔検出枠を設定した状態を示す図である。  FIG. 7 is a diagram illustrating a state in which a face detection frame is set in a face image.
図 8は、 顔検出枠の下部にあご検出窓を設定した状態を示す図である。 図 9は、 あごの下底部を検出してその位置を修正する状態を示す図であ る。  FIG. 8 is a diagram showing a state in which a chin detection window is set below the face detection frame. FIG. 9 is a diagram showing a state in which the lower bottom of the chin is detected and its position is corrected.
図 1 0は、 閾値以上のエッジ強度を持つ画素のみを表示したあご検出窓 を示す図である。  FIG. 10 is a diagram showing a chin detection window displaying only pixels having edge strengths equal to or greater than a threshold value.
図 1 1は、 符号反転の結果、 選択された画素のみを表示したあご検出窓 を示す図である。 ' 図 1 2は、 S o b e 1のエッジ検出フィルタを示す図である。  FIG. 11 is a diagram showing a chin detection window that displays only selected pixels as a result of sign inversion. 'FIG. 12 is a diagram showing an edge detection filter of S obe 1.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施するための最良の形態を添付図面を参照しながら詳 述する。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.
図 1は、 本発明に係る人物顔のあご検出システム 1 0 0の実施の一形態 を示したものである。 , . 図示するように、 このあご検出システム 1 0 0は、 人物の顔が含まれる 顔画像 Gを読み取る画像読取手段 1 0と、 この画像読取手段 1 0で読み取 つた顔画像 G中力 ら人物顔を検出して当該人物顔の顔検出枠 Fを設定する 顔検出手段 1 2と、 この顔検出枠 Fの下部に前記人物顔のあごが含まれる 大きさのあご検出窓 Wを設定するあご検出窓設定手段 14と、 このあご検 出窓 W内のエッジの強度分布を求めるエッジ算出手段 1 6と、 このエッジ 算出手段 1 6で得られたエッジ強度の分布から閾値以上のエッジ強度を持 つ画素を選択する画素選択手段 1 8と、 この画素選択手段 1 8で選択した 各画素の分布に最も合うように近似曲線を求める曲線近似手段 20と、 こ の曲線近似手段 20で得られた近似曲線の最も下底部を前記人物顔のあご の下底部として検出するあご検出手段 22とから主に構成されている。 先ず、 画像読取手段 10は、 パスポートや運転免許証等の公的な身分証 明書、 あるいは、 社員証や学生証、 会員証等の私文書的な身分証明書等に 添付される視覚的人物特定用の証明用顔写真、 すなわち、 その人物の正面 向きの顔が唯一大きく含まれる無背景の顔画像 Gを、 CCD (C h a r g e C o u p l e d D e v i c e :電荷結合素子) や、 CMO S (C o mp l eme n t a r y Me t a l u ι d e S em i c o n d u c t o r ) 等の撮像センサを利用して、 R (赤) 、 G (緑) 、 B (青) の それぞれの画素データからなるディジタル画像データとして取得する機能 を提供するようになっている。 FIG. 1 shows an embodiment of a human face chin detection system 100 according to the present invention. As shown, the chin detection system 100 includes the face of a person. An image reading means 10 for reading the face image G; a face detection means 12 for detecting a human face from the medium image G read by the image reading means 10 and setting a face detection frame F of the human face; A chin detection window setting means 14 for setting a chin detection window W having a size including the chin of the person's face below the face detection frame F; and an edge calculation for obtaining an intensity distribution of edges in the chin detection window W. Means 16, a pixel selecting means 18 for selecting a pixel having an edge strength equal to or greater than a threshold value from the distribution of the edge strength obtained by the edge calculating means 16, and each pixel selected by the pixel selecting means 18 Curve approximation means 20 for obtaining an approximate curve so as to best fit the distribution of the human face, and a chin detecting means 22 for detecting the lowest bottom of the approximate curve obtained by the curve approximate means 20 as the lower bottom of the chin of the human face. It is mainly composed of First, the image reading means 10 is a visual person attached to a public identification card such as a passport or a driver's license or a private document identification card such as an employee ID card, a student ID card or a membership card. A proving face photograph for identification, that is, a background image G containing only a large face facing the front of the person is stored in a CCD (Charge Coupled Device) or CMO S (Co A function to acquire digital image data consisting of R (red), G (green), and B (blue) pixel data by using an imaging sensor such as an image sensor (sampler). To provide.
具体的には、 ディジタルスチルカメラゃディジタルビデオカメラ等の C CD、 CMO Sカメラゃビジコンカメラ、 イメージスキャナ、 ドラムスキ ャナ等であり、 前記撮像センサ光学的に読み込んだ顔画像 Gを AZD変換 してそのディジタル画像データを顔検出手段 20へ順次送る機能を提供す るようになってレヽる。  Specifically, the digital camera is a CCD such as a digital still camera or a digital video camera, a CMOS camera, a vidicon camera, an image scanner, a drum scanner, or the like.The face image G read optically by the imaging sensor is subjected to AZD conversion. A function of sequentially transmitting the digital image data to the face detection means 20 is provided.
なお、 この画像読取手段 1 0にはデータ保存機能が備えられており、 読 み込んだ顔画像データをハードディスクドライブ装置 (HDD) 等の記憶 装置や DVD— ROM等の記憶媒体等に適宜保存可能となっている。 また、 ネットワークや言己憶媒体等を介して顔画像がディジタル画像データとして 供給される場合には、 この画像読取手段 1 0は不要となるか、 あるいは通 信手段やインターフェース ( I ZF) 等として機能することになる。 The image reading means 10 has a data storage function, and the read face image data can be appropriately stored in a storage device such as a hard disk drive (HDD) or a storage medium such as a DVD-ROM. It has become. In addition, the face image is converted into digital image data via a network or a storage medium. When supplied, the image reading means 10 becomes unnecessary or functions as a communication means, an interface (IZF) or the like.
次に、 顔検出手段 1 2は、 この画像読取手段 1 0で読み取った顔画像 G 中から人物顔を検出して当該部分に顔検出枠 Fを設定するようになってい る。  Next, the face detection means 12 detects a human face from the face image G read by the image reading means 10 and sets a face detection frame F in the relevant part.
この顔検出枠 Fは、 後述するように、 人物顔の鼻を中心に両目と唇部分 を含み、 当該人物顔のあごの部分は含まない大きさ (領域) となっている。 なお、 このような顔検出手段 1 2による人物顔の検出アルゴリズムは、 特 に限定するものではないが、 例えば、 以下の文献等に示すような従来の手 法をそのまま利用することができる。  As will be described later, the face detection frame F has a size (area) including both eyes and lips around the nose of the human face and not including the chin of the human face. The algorithm for detecting a human face by the face detection means 12 is not particularly limited, but, for example, a conventional method as shown in the following literature or the like can be used as it is.
H. A . R o w l e y、 S . B a 1 u j a , a n d T . Ka n a d e、 'Ne u r a l n e two r k— b a s e d f a c e d e t e c t i o n"  H. A. R o w l e y, S. B a 1 uja, a n d T. Kanad e, 'Ne u r a l n e two r k — b a s e d f a c e d e t e c t i o n "
I EEE T r a n s a c t i o n s o n P a t t e r n An a l y s i s a n d Ma c h i n e . I n t e l l i g e n c e、 v o l . 20、 n o. 1、 p p. 23— 3 8、 1 9 9 8  I EEE T r a n s a c t i o n s o n P a t t e r n An a l y s i s a n d Ma c h i n e. Int e l l i g e n c e, v o l. 20, no.
この技術によれば、 人物顔の両目、 唇を含み、 あごを含まない領域の顔 画像を作成し、 この画像を用いてニューラルネットを訓練し、 訓練した二 ユーラルネットを用いて人物顔を検出する。 開示されているこの技術によ れば両目から唇までの領域を顔画像領域として検出するようになっている。 また、 この顔検出枠 Fの大きさは不変的なものではなく、 対象とする顔 画像の大きさによって適宜増減するようになっている。  According to this technology, a face image of a region including both eyes and lips of a human face and not including a chin is created, a neural network is trained using this image, and a human face is detected using the trained dual neural network. I do. According to the disclosed technique, a region from both eyes to the lips is detected as a face image region. Further, the size of the face detection frame F is not invariable, and is appropriately increased or decreased according to the size of the target face image.
あご検出窓設定手段 14は、 この顔検出手段 20で設定された顔検出枠 Fの下部に前記人物顔のあごが含まれる大きさのあご検出窓 Wを設定する. 機能を提供するようになっている。  The chin detection window setting means 14 sets a chin detection window W having a size including the chin of the person's face below the face detection frame F set by the face detection means 20. ing.
すなわち、 人物顔のあごの下底部を含む輪郭を以後の手段で正確に検出 するための対象領域をこのあご検出窓 Wを用いて前記顔画像 G中から選択 するようになっている。 エッジ算出手段 1 6は、 このあご検出窓 W内の画像のエッジの強度分布 を求める機能を提供するものであり、 例えば、 後述するように、 S o b e 1のエッジ検出オペレータ等を用いて一次微分型のエッジの強度分布を算 出するようになって!/ヽる。 That is, a target area for accurately detecting the contour including the lower bottom of the chin of the human face by the following means is selected from the face image G using the chin detection window W. The edge calculating means 16 provides a function for obtaining the intensity distribution of the edge of the image in the chin detection window W. For example, as described later, the first derivative using the edge detection operator of Sobe 1 is used. Calculate the intensity distribution of the edge of the mold! / Puru.
画素選択手段 1 8^;、 このエッジ算出手段 1 6で得られたエッジ強度の 分布から閾値以上のエッジ強度を持つ画素を選択する機能を提供するもの であり、 後述するように、 二次微分フィルタ (ラプラシアン (L a p 1 a c i a n) フィルタ) 等を用いて前記 S o b e 1のエッジ検出オペレータ 等で得られた候補画秦を、 ェッジの符号反転を検出することによって絞り 込むようになつている。  Pixel selection means 18 ^ ;, which provides a function of selecting a pixel having an edge strength equal to or greater than a threshold value from the distribution of the edge strength obtained by the edge calculation means 16, as will be described later. Using a filter (Laplacian (Lap 1 acian) filter) or the like, candidate images obtained by the edge detection operator of the above-mentioned Sove 1 are narrowed down by detecting the sign inversion of the edge.
曲線近似手段 20【ま、 この画素選択手段 1 8で選択した各画素の分布に 最も合うように近似曲線を求める機能を提供するものであり、 具体的には 後述するように、 以下の式に示すような二次関数による最小自乗法を用い て当該人物顔のあごの輪郭部分を曲線的に求めるようになっている。 y = a X (x— x。) 2+ b'" ( 1 ) The curve approximation means 20 provides a function of obtaining an approximate curve so as to best fit the distribution of each pixel selected by the pixel selection means 18. Specifically, as will be described later, the following equation is used. The outline of the chin of the person's face is obtained in a curved line using the least squares method with a quadratic function as shown. y = a X (x—x.) 2 + b '"(1)
ここで、 y :垂直方向の座標  Where y is the vertical coordinate
X :水平方向の座標  X: horizontal coordinate
X 0 :あご検出窓の水平方向の中心  X 0: The horizontal center of the chin detection window
この式 (1) を用レヽて最小自乗法により 「a」 と 「b」 を求めると、 「b」 があご下底部を表すことになる (但し、 aく 0である) 。  When “a” and “b” are obtained by the least squares method using the equation (1), “b” represents the lower part of the chin (however, a is 0).
あご検出手段 22は、 この曲線近似手段 20で得られた近似曲線の最も 下底部を前記人物顔のあごの下底部として検出する機能を提供するように なっており、 図 9に示すように検出したあごの下底部に目立ちやすいマー 力 M等を付与して明示的に示すようにしても良い。 なお、 このあご検出シ ステム 100を構成する各手段 10〜 2 2等は、 実際には、 CPU RA M等からなるハードウェアと、 図 3に示すような専用のコンピュータプロ グラム (ソフトウェア) とからなるパソコン (P C) 等のコンピュータシ ステムによって実現されるようになっている。 すなわち、 このあご検出システム 1 00を実現するためのハードウエア は、 例えば図 2に示すように、 各種制御や演算処理を担う中央演算処理装 置である C PU (C e n t r a l P r o c e s s i n g Un i t) 4 0と、 主記憶装置 (Ma i n S t o r a g e) に用いられる RAM (R a n d om Ac c e s s Memo r y) 4 1と、 読み出し専用の記'慮 装置である R OM (R e a d On l y Memo r y) 42と、 ノヽード ディスクドライブ装置 (HDD) や半導体メモリ等の補助記憶装置 (S e c o n d a r y S t o r a g e) 43、 及ぴモニタ (LCD (液晶ディ スプレイ) や CRT (陰極線管) ) 等からなる出力装置 44、 イメージス キヤナゃキーポード、 マウス、 CCD (C h a r g e C o u l e d D e v i c e ) や CMOS C omp 1 eme n t a r y Me t a 1 O i d e S em i c o n d u c t o r) 等の撮像センサ等からなる入 力装置 45と、 これらの入出力インターフェース ( IZF) 46等との間 ¾■、 PC i 、 P e r i p h e r a l C omp o n e n t I n t e r c o n n e c t ) ノ スや I SA ( I n d u s t r i a l S t a n d a r d A r c h i t e c t u r e ; アイサ) バス等からなるプロセッサバス、 メ モリバス、 システムバス、 入出力バス等の各種内外バス 47によってバス 接続したものである。 The chin detection means 22 provides a function of detecting the lowermost part of the approximation curve obtained by the curve approximation means 20 as the lower part of the chin of the person's face. A noticeable mar power M or the like may be applied to the lower bottom portion of the jaw to explicitly indicate it. The means 10 to 22 and the like constituting the chin detection system 100 are actually composed of hardware such as a CPU RAM and a dedicated computer program (software) as shown in FIG. It is realized by a computer system such as a personal computer (PC). That is, as shown in FIG. 2, for example, hardware for realizing this jaw detection system 100 is a CPU (Central Processing Unit) 4 which is a central processing unit that performs various controls and arithmetic processing. 0, RAM (R and om Access Memory) 41 used for the main storage (Ma in Storage), and ROM (Rad On Only Memory) 42, a read-only storage device. , An auxiliary storage device such as a node disk drive device (HDD) or semiconductor memory (S econdary storage) 43, and an output device 44 such as a monitor (LCD (liquid crystal display) or CRT (cathode ray tube)). An input device 45 consisting of an image sensor such as an image scan keypad, a mouse, a CCD (Charge Coiled Device) or a CMOS Combo (Chemical Component Device), and an input / output device for these devices. Interface (IZF) 46 etc. ¾ ■, PC i, Peripheral Computer Onent Interco nnect) This bus is connected by various internal / external buses 47 such as a processor bus, a memory bus, a system bus, and an input / output bus, such as a nos and an industrial standard architecture (ISA) bus.
そして、 例えば、 CD— ROMや D VD— ROM、 フレキシブルデイス ク (FD) 等の記憶媒体、 あるいは通信ネットワーク (LAN、 WAN、 インターネッ ト等) Nを介して供給される各種制御用プログラムやデータ を補助記憶装置 43等にィンストールすると共にそのプログラムやデータ を必要に応じて主記憶装置 4 1にロードし、 その主記憶装置 4 1にロード されたプログラムに従って C PU40が各種リソースを駆使して所定の制 御及び演算処理を行い、 その処理結果 (処理データ) をバス 47を介して 出力装置 44に出力して表示すると共に、 そのデータを必要に応じて補助 記憶装置 43によって形成されるデータベースに適宜記憶、 保存 (更新) 処理するようにしたものである。 次に、 このような構成をしたあご検出システム 1 0 0を用いたあご検出 方法の一例を図 3〜図 1 3を用いて説明する。 For example, a storage medium such as a CD-ROM, a DVD-ROM, a flexible disk (FD), or various control programs and data supplied via a communication network (LAN, WAN, Internet, etc.) N The program and data are installed in the auxiliary storage device 43 and the like, and the programs and data are loaded into the main storage device 41 as needed.The CPU 40 makes full use of various resources according to the program loaded in the main storage device 41 and performs predetermined operations. It performs control and arithmetic processing, outputs the processing results (processing data) to an output device 44 via a bus 47, and displays the data. The data is also stored in a database formed by an auxiliary storage device 43 as necessary. It is designed to be stored and saved (updated). Next, an example of a jaw detection method using the jaw detection system 100 having such a configuration will be described with reference to FIGS.
図 3は、 実際に検出対象となる顔画像 Gに対するあご検出方法の一例を 示すフローチヤ一トである。  FIG. 3 is a flowchart showing an example of a chin detection method for a face image G to be actually detected.
先ず、 ステップ S 1 0 1に示すように、 前述した顔検出手段 1 2によつ て予め画像読取手段 1 0で読み取ったあご検出対象となる顔画像 Gからそ の顔画像 Gに含まれる顔の検出を行ってから検出した人物顔を特定する顔 検出枠 Fを設定する。  First, as shown in step S 101, a face included in the face image G from a face image G to be a chin detection target previously read by the image reading means 10 by the above-described face detection means 12. And then set the face detection frame F to identify the detected human faces.
例えば、 本発明のあご検出対象となる画像は、 図 6に示すように、 一人 の人物顔が写っているものに限定されることから、 先ず、 顔検出手段 1 2 によってその人物顔の位置を特定し、 その後、 図 7に示すようにその人物 顔上に矩形状の顔検出枠 Fを設定する。  For example, as shown in FIG. 6, the image to be detected by the chin of the present invention is limited to an image in which one person's face is shown. First, the position of the person's face is first determined by the face detection means 12. Then, a rectangular face detection frame F is set on the person's face as shown in FIG.
, なお、 ここで図示した顔検出枠 Fの場合は、 人物顔の鼻を中心に両目と 唇部分を含み、 当該人物顔のあごの部分は含まない大きさ (領域) とした ものであるが、 この顔検出枠 Fは、 当該人物顔のあごの部分を含まないも のであれば、 必ずしも例示するような大きさ、 形状にこだわる必要はない。 また、 図 6〜図 9 ( a ) までの各顔画像 Gは、 写っている人物顔の大きさ 及び表示枠 Yの左右方向の位置は規格内であるが、 そのあごの位置が低す ぎて規格の位置に達していない状態を示したものである。  In the case of the face detection frame F shown here, the size (area) is such that it includes both the eyes and lips around the nose of the human face and does not include the chin of the human face. However, as long as the face detection frame F does not include the chin portion of the person's face, it is not always necessary to stick to the size and shape as exemplified. In each of the face images G in Figs. 6 to 9 (a), the size of the person's face and the horizontal position of the display frame Y are within the standard, but the position of the chin is too low. This indicates a state where the standard position has not been reached.
次に、 このようにして顔検出枠 Fを設定したならば、 ステップ S 1 0 3 . に移行して図 8に示すようにあご検出窓設定手段 1 4によってその顔検出 枠 Fの下部に横長矩 状のあご検出窓 Wを設定してその人物顔のあごの位 置を特定する。  Next, after the face detection frame F is set in this way, the process proceeds to step S103, and as shown in FIG. A rectangular jaw detection window W is set, and the position of the jaw of the person's face is specified.
ここでこのあご検出窓 Wの大きさや形状としては厳密なものでなく、 当 該人物顔の下唇より下方で、 必ずあごの下底部が含まれる大きさ ·形状で あれば、 特に限定されるものではないが、 あまりに大きすぎるとあごの影 や首の皺、 シャッの襟等といったあごの輪郭と紛らわしい線があご検出窓 W内に多く出現して後のエッジの検出等に多くの時間がかかってしまい、 反対に小さすぎると個人差によつて検出対象となるあごの下底部が含まれ なくなってしまうことがある。 Here, the size and shape of the chin detection window W are not strict, and are not particularly limited as long as the size and shape are below the lower lip of the person's face and always include the lower bottom of the chin. However, if it is too large, many confusing lines and contours of the chin such as chin shadows, neck wrinkles, and shawl collars will appear in the chin detection window W, and it will take a lot of time to detect edges later. It took Conversely, if it is too small, the lower base of the chin to be detected may not be included due to individual differences.
従って、 例えば、 同図に示すように横長の矩形状であってその幅が前記 人物顔の顔幅よりも幅広で、 かつその高さが前記幅よりも狭いものを用い れば、 シャツの襟等といった紛らわしい部分を排除しつつ、 あごの下底部 を含めたあごの輪郭を確実に捕捉することができるものと考えられる。 な お、 図 8の例では顔検出枠 F'の下辺部に密着させてあご検出窓 Wを設定し たものであるが、 このあご検出窓 Wは必ずしも顔検出枠 Fに密着させる必 要はなく、 要は顔検出枠 Fに対してあご検出窓 Wが所定の位置関係を保つ ていれば良い。  Therefore, for example, as shown in the figure, if a horizontal rectangular shape having a width wider than the face width of the human face and a height smaller than the width is used, a shirt collar is used. It is thought that the contour of the chin, including the lower bottom of the chin, can be reliably captured while eliminating confusing parts such as. In the example of FIG. 8, the chin detection window W is set in close contact with the lower side of the face detection frame F '. However, the chin detection window W does not necessarily need to be in close contact with the face detection frame F. In short, it is only necessary that the chin detection window W keeps a predetermined positional relationship with respect to the face detection frame F.
次に、 このようにして対象画像に対してあご検出窓 Wを設定したならば、 次のステップ S 10 5に移行して当該あご検出窓 W内の各画素の輝度  Next, when the chin detection window W is set for the target image in this way, the process proceeds to the next step S105, in which the luminance of each pixel in the chin detection window W is determined.
(Y) を算出し、 その輝度値を基に 「S o b e 1のエッジ検出オペレー タ j 等に代表される一次微分型 (差分型) のエッジ検出オペレータを用い て当該あご検出窓 W内の一次微分型のエッジ強度分布を求める。  (Y) is calculated, and based on the luminance value, the primary in the chin detection window W is calculated using a first-order differential (difference-type) edge detection operator represented by an edge detection operator j of Sobe 1 and the like. Find the edge intensity distribution of the differential type.
なお、 図 12 (a ) 、 (b) は、 この 「S o b e lのエッジ検出オペレ ータ」 を示したものであり、 同図 (a) に示すオペレータ (フィルタ) は、 注目画素を囲む 8つの画素値のうち、 左列及び右列に位置するそれぞれ 3 つの画素値を調整することで横方向のエッジを強調し、 同図 (b) に示す オペレータは、 注目画素を囲む 8つの画素値のうち、 上行及び下列に位置 するそれぞれ 3つの画素値を調整して縦方向のエッジを強調することで縦 横のエッジを検出するものである。  FIGS. 12 (a) and 12 (b) show this “Sobel edge detection operator”. The operator (filter) shown in FIG. Of the pixel values, the horizontal edge is emphasized by adjusting each of the three pixel values located in the left and right columns, and the operator shown in Fig. (B) calculates the eight pixel values surrounding the pixel of interest. Of these, the vertical and horizontal edges are detected by adjusting the three pixel values in the upper row and lower row, respectively, and enhancing the vertical edges.
そして、 このようなオペレータで生成した結果を二乗和した後、 平方根 をとることでエッジの強度を求めることができるようになっている。 なお、 前述したように、 この 「S o b e lのオペレータ」 の代えて 「R o b e r t s」 「P r e w i t t」 等の他の一次微分型のエッジ検出オペレータ 等を適用することも可能である。  Then, the sum of squares of the result generated by such an operator is calculated, and then the square root is used to determine the edge strength. As described above, it is also possible to apply another primary differential type edge detection operator such as "Roberts" or "Prewitt" instead of the "Operator of Sobeli".
図 4は、 その顔画像 Gの輝度 (縦軸) と画素位置 (横軸) との関係を示 したものであり、 あごの輪郭部分等といった画像中のエッジ部分は輝度が 大きく変化するため、 この輝度が大きく変化する部分を 「S o b e lのェ ッジ検出オペレータ」 のような一次微分型 (差分型) のエッジ検出オペレ ータを用いて検出することで、 図 5 ( a ) に示すような放物線状の近似曲 線として算出することができる。 Figure 4 shows the relationship between the luminance (vertical axis) and the pixel position (horizontal axis) of the face image G. Since the brightness of the edge portion of the image such as the outline of the chin changes greatly, the portion where the brightness changes greatly is represented by a first-order differential type (such as “Sobel's edge detection operator”). By using the edge detection operator of (type), it can be calculated as a parabolic approximated curve as shown in Fig. 5 (a).
次に、 このようにしてあご検出窓 Wのエッジ強度の分布を求めたならば、 次のステップ S 1 0 7に移行してそのエッジ強度の分布から閾値を求める。 すなわち、 前述したようにエッジの強度は撮影条件 (照明条件) 等により 大きく左右されるために、 他の領域を含めたェッジ強度からあごの輪郭に 相当するェヅジを決定することは難しいからである。  Next, after the edge intensity distribution of the chin detection window W is obtained in this manner, the process proceeds to the next step S107, and a threshold value is obtained from the edge intensity distribution. That is, as described above, since the edge strength is greatly affected by the shooting conditions (illumination conditions) and the like, it is difficult to determine the edge corresponding to the jaw contour from the edge strength including other areas. .
ここで、 画素を決定する閾値としては、 特に限定されるものではないが、 例えば、 あご検出窓 W内で検出された最大のエッジ強度の 1 1 0を閾値 と設定し、 この閾値よりも強いエッジを持つ画素をあご下底部を求めるた めの候補画素として選択する。  Here, the threshold value for determining a pixel is not particularly limited, but, for example, a maximum edge intensity of 110 detected in the chin detection window W is set as the threshold value, and the threshold value is set to be stronger than this threshold value. A pixel having an edge is selected as a candidate pixel for obtaining the lower part of the chin.
次に、 このようにして画素値を取捨選択するための閾値が決定したなら ばステップ S 1 1 1に移行して図 1 0に示すようにあご検出窓 Wの上辺を 構成する全画素を基点として垂直方向に走査しながら閾値を超えたエッジ 強度を持つ画素のみを選択し、 閾値に満たない画素を排除する。  Next, when the threshold value for selecting the pixel value is determined in this way, the process proceeds to step S111, and all pixels constituting the upper side of the chin detection window W are set as the base points as shown in FIG. While scanning in the vertical direction, only pixels having an edge intensity exceeding the threshold are selected, and pixels below the threshold are excluded.
図 1 0は、 このようにして選択された (閾値超えた) 画素分布を分かり やすく表示したものであり、 あご検出窓 Wの左上からあご検出窓 W内を X 方向にスキャンして順次 Y方向に移動させるといったノンインターレス状 に各行の画素を走査して閾値以上のェッジ強度を持つ画素を識別して表示 したものである。  Fig. 10 shows the pixel distribution selected in this way (exceeding the threshold) in an easy-to-understand manner. The chin detection window W is scanned in the X direction from the upper left of the chin detection window W, and sequentially scanned in the Y direction. The pixels in each row are scanned in a non-interlaced manner, such as moving the pixels to pixels, and pixels having an edge intensity equal to or higher than a threshold are identified and displayed.
このようにあご検出窓 Wの左上から探索するのは、 Y方向に最も早く現 れた閾値以上の候捕画素をあご下底部の有力候捕とするためであり、 これ によって効率的にあごの輪郭に相当する画素を検出することが可能となる。 すなわち、 あごの輪郭と紛らわしいエッジは、 実際のあごの輪郭の上方よ りも、 その下方の首の皺やシャツの襟の方がエッジが強く現れることから、 それらのエッジの優先度を低くするためである。 The search from the upper left of the chin detection window W is performed in order to select the earliest appearing pixel in the Y direction that is equal to or greater than the threshold value as the effective lower-jaw catcher. It is possible to detect a pixel corresponding to the contour. In other words, the edge that is confusing with the jaw contour is more pronounced at the neck wrinkles and shirt collar below the actual jaw contour than at the top, This is to reduce the priority of those edges.
次に、 このようにして閾値を超えたエッジ強度を持つ画素を選択したな らば、 ステップ S 1 1 3〖こ移行して、 選択された各画素のうち各画素列 ( Y方向) 毎に最大のエッジ強度を持つ画素を絞り込むために、 各列毎に 二次微分型ェッジの符号反転を検出する。  Next, if a pixel having an edge strength exceeding the threshold value is selected in this way, the process proceeds to step S113, and for each pixel column (Y direction) of the selected pixels, To narrow down the pixels with the highest edge strength, the sign of the second derivative wedge is detected for each column.
すなわち、 候補画素を絞り込む場合、 どの程度シャープな輝度変化を示 すかを考慮する必要があるが、 図 4に示すように穏やかな輝度変化を示す 場合、 一次微分型の S o b e 1のエッジ強度は、 図 5 ( a ) に示すように やや緩やかに変化し、 閾値以上になる幅が広く (候補画素が多く) なり、 あご下底部を決定する場合の誤差になるからである。  In other words, when narrowing down the candidate pixels, it is necessary to consider how sharp the brightness change is.However, when the brightness changes gently as shown in Fig. 4, the edge intensity of the first derivative Sobe 1 is However, as shown in Fig. 5 (a), it changes slightly and becomes wider than the threshold (the number of candidate pixels is large), which is an error in determining the lower part of the chin.
そのため、 図 1 3に示すような二次微分型のエッジ検出フィルタ (ラブ ラシアンフィルタ) を用レヽてエッジの符号反転を検出することにより、 図 1 0に示すように各列毎に複数ある侯捕画素のうち、 一つを決定すること になる (図 1 1 ) 。 例え ί 、 図 1 0に示すように閾値以上エッジ強度を有 する画素を探索した結果、 「a」 〜 「g」 までの各行毎に複数の画素が選 択されたとすると、 二次微分型のエッジの符号反転を検出した結果、 図 1 1では、 「a」 、 「b」 、 「d」 、 「 f 」 、 r g」 列では、 それぞれ最も 上方の画素があごの輪郭を構成する候補画素として選択され、 「c」 、Therefore, by using a second-order differential type edge detection filter (Lablassian filter) as shown in FIG. 13 to detect the sign inversion of the edge, as shown in FIG. One of the pixels is determined (Fig. 11). For example, as shown in FIG. 10, assuming that a plurality of pixels are selected for each row from “a” to “g” as a result of searching for pixels having an edge strength equal to or greater than the threshold as shown in FIG. As a result of detecting the sign inversion of the edge, in FIG. 11, in the “a”, “b”, “d”, “f”, and “ rg ” columns, the uppermost pixel is a candidate pixel constituting the chin outline. Selected as " c ",
「e」 列では最も下方の画素が同じく候捕画素として選択されたことを示 している。 Column “e” indicates that the bottom pixel was also selected as a catch pixel.
その後、 このようにして閾値を超えた多数の画素のうち、 最終的に選択 した候補画素を絞ったならばステップ S 1 1 5に移行して探索した画素の 分布に前述したような近似曲線を図 1 1に当てはめてあごの下底部を求め ることになる。  After that, if the finally selected candidate pixels are narrowed out of a large number of pixels exceeding the threshold value in this manner, the process proceeds to step S115, where the approximate curve as described above is added to the distribution of the searched pixels. The bottom of the chin will be determined by applying it to Figure 11.
そして、 このようにしてあご下底部が検出されたならば、 図 9 ( a ) 、 ( b ) に示すように、 そのあご下底部にマーカ Mを施し、 このマーカ Mの 位置が規定のあご下底部位置と同じ高さとなるように、 人物顔全体を移動 させる。 図 9 ( a ) は、 人物顔のあご下底部がかなり低い位置にあるため、 図 9 ( b ) に示すようにそのまま人物顔を垂直上方に移動させることでそのあ ご下底部を規定の位置に一致させることができる。 なお、 図 9 ( a ) 等で は人物の首から下側の画像が切れているが、 実際にはその隠れた部分の画 像もそのまま存在しているものとする。 When the bottom of the chin is detected in this way, a marker M is placed on the bottom of the chin as shown in FIGS. 9 (a) and 9 (b), and the position of the marker M is set to the specified lower jaw. Move the entire human face so that it is at the same height as the bottom position. In Fig. 9 (a), the lower part of the chin of the person's face is located at a considerably lower position, so the lower part of the chin is moved to the specified position by moving the person's face vertically upward as shown in Fig. 9 (b). Can be matched. In FIG. 9 (a) and the like, the image below the person's neck is cut off, but it is assumed that the image of the hidden part actually exists as it is.
このように、 本発明は公知の人物顔検出方法を用いてあご検出窓を設定 した後、 そのあご検出窓内のエッジの強度分布に基づいて人物顔の下底部 を検出するようにしたことから、 あごの輪郭の検出が困難な顔画像であつ ても、 その部分を的確、 かつ高速に検出してロバスト (頑健) なあご下底 部の検出を行うことが可能となる。  As described above, the present invention sets the chin detection window using a known person face detection method, and then detects the lower bottom of the person face based on the intensity distribution of the edge in the chin detection window. Even in the case of a face image in which it is difficult to detect the chin outline, it is possible to detect the portion accurately and at high speed to detect a robust (robust) lower part of the chin.

Claims

請求の範囲 The scope of the claims
1 . 人物顔が含まれる画像中から当該人物顔のあごの下底部を検出する方 法であって、 1. A method of detecting the bottom of the chin of a person's face from an image containing the person's face,
前記人物顔の両目、 唇を含み、 あごを含まない範囲の顔画像を検出して、 検出した当該顔画像の下部に前記人物顔のあごが含まれる大きさのあご検 出窓を設定した後、  After detecting a face image in a range that includes both eyes and lips and does not include a chin of the human face, and setting a chin detection window large enough to include the chin of the human face below the detected face image,
当該あご検出窓内のエッジの強度分布を求め、 当該エッジ強度の分布か ら閾値以上のエッジ強度を持つ画素を検出し、  The intensity distribution of the edge in the chin detection window is obtained, and a pixel having an edge intensity equal to or greater than a threshold is detected from the edge intensity distribution,
その後、 検出した各画素の分布に最も合うように近似曲線を求め、 当該 近似曲線の最も下底部を前記人物顔のあごの下底部とするようにしたこと を特徴とするあご検出方法。  Thereafter, an approximate curve is obtained so as to best fit the distribution of the detected pixels, and the lowest bottom of the approximate curve is set as the lower bottom of the chin of the human face.
2 . 人物顔が含まれる画像中から当該人物顔のあごの下底部を検出する方 法であって、  2. A method for detecting the bottom of the chin of a person's face from an image containing the person's face,
前記人物顔の両目、 唇を含み、 あごを含まない範囲の顔画像を検出して、 検出した当該顔画像の下部に前記人物顔のあごが含まれる大きさのあご検 出窓を設定した後、  After detecting a face image in a range that includes both eyes and lips and does not include a chin of the human face, and setting a chin detection window large enough to include the chin of the human face below the detected face image,
当該あご検出窓内の一次微分型のエッジの強度分布を求め、 当該エッジ 強度の分布力 ら閾値を求め、 当該閾値以上のエッジ強度を持つ画素を検出 し、  The intensity distribution of the first derivative type edge in the chin detection window is obtained, a threshold is obtained from the distribution power of the edge intensity, and a pixel having an edge intensity equal to or higher than the threshold is detected.
その後、 当該画素の中から二次微分型のエッジの符号反転を利用して使 用する画素の絞り込みを行い、  After that, the pixels to be used are narrowed down from the pixels by using the sign inversion of the second derivative type edge,
しかる後、 絞り込んだ画素の分布に最も合うように最小自乗法を用いて 近似曲線を求め、 当該近似曲線の最も下底部を前記人物顔のあごの下底部 とするよう こしたことを特徴とするあご検出方法。  Thereafter, an approximated curve is obtained using the least squares method so as to best fit the distribution of the narrowed pixels, and the lowermost portion of the approximated curve is set as the lowermost portion of the chin of the human face. Chin detection method.
3 . 請求項 1又は 2に記載のあご検出方法において、  3. In the chin detection method according to claim 1 or 2,
前記あご検出窓としては、 横長の矩形状であって、 その幅が前記人物顔 の顔幅よりも幅広でかつその高さが前記幅よりも狭いものを用いるように したことを特徴とするあご検出方法。 As the chin detection window, a horizontally long rectangular shape having a width wider than the face width of the human face and a height smaller than the width is used. Chin detection method characterized by having done.
4 . 請求項 2又は 3に記載のあご検出方法において、  4. In the chin detection method according to claim 2 or 3,
前記一次微分型のエッジの強度分布は、 S o b e 1のエッジ検出オペレ ータを用いるようにしたことを特徴とするあご検出方法。  A jaw detection method, wherein the first-order differential edge intensity distribution uses an edge detection operator of Sobele1.
5 . 請求項 2〜4のいずれか 1項に記載のあご検出方法において、 5. In the chin detection method according to any one of claims 2 to 4,
前記二次微分型のエッジは、 ラプラスのエッジ検出オペレータを用いる ようにしたことを特徴とするあご検出方法。  A jaw detection method, wherein a Laplace edge detection operator is used for the second-order differential type edge.
6 . 請求項 1〜 5のいずれか 1項に記載のあご検出方法において、 前記近似曲線は、 二次関数による最小自乗法を用いるようにしたことを特 徴とするあご検出方法。  6. The jaw detection method according to any one of claims 1 to 5, wherein the approximate curve uses a least squares method using a quadratic function.
7 . 人物顔が含まれる画像中から当該人物顔のあごの下底部を検出するシ ステムであって、  7. A system for detecting the lower bottom of the chin of a person's face from an image containing the person's face,
前記人物顔が含まれる画像を読み取る画像読取手段と、  Image reading means for reading an image including the human face,
当該画像読取手段で読み取った画像中から前記人物顔の両目、 唇を含み、 あごを含まない範囲を検出して、 検出した範囲に顔検出枠を設定する顔検 出手段と、  A face detection unit configured to detect a range including the eyes and lips of the person's face and not including the chin from the image read by the image reading unit, and to set a face detection frame in the detected range;
当該検出枠の下部に前記人物顔のあごが含まれる大きさのあご検出窓を 設定するあご検出窓設定手段と、  A chin detection window setting means for setting a chin detection window having a size including the chin of the person's face below the detection frame;
当該あご検出窓内のエッジの強度分布を求めるエッジ算出手段と、 当該ェッジ算出手段で得られたェッジ強度の分布から閾値以上のェッジ 食度を持つ画素を選択する画素選択手段と、  Edge calculation means for obtaining the intensity distribution of the edge in the chin detection window, and pixel selection means for selecting a pixel having an edge erosion greater than or equal to a threshold from the distribution of the edge strength obtained by the edge calculation means,
当該画素選択手段で選択した各画素の分布に最も合うように近似曲線を 求める曲線近似手段と、  Curve approximating means for finding an approximate curve that best fits the distribution of each pixel selected by the pixel selecting means;
当該曲線近似手段で得られた近似曲線の最も下底部を前記人物顔のあご の下底部として  The lowest bottom of the approximation curve obtained by the curve approximation means is defined as the bottom of the chin of the person's face.
検出するあご検出手段と、 を備えたことを特徴とするあご検出システム。 . A jaw detection system, comprising: a jaw detection means for detecting. .
8 . 請求項 7に記載のあご検出システムにおいて、 8. The chin detection system according to claim 7,
前記画素選択手段は、 前記エッジ算出手段で算出された一次微分型のェ ッジ強度の分布から閾値を求め、 当該閾値以上のエッジ強度を持つ画素を ■ 検出し、 当該画素の中から二次微分型のエッジの符号反転を利用して使用 する画素を選択するようになっていることを特徴とするあご検出システム。 The pixel selection means includes a first-order differential type calculated by the edge calculation means. A threshold is determined from the distribution of edge intensity, and pixels having an edge intensity equal to or higher than the threshold are detected. ■ Pixels to be used are selected from the pixels by using the sign inversion of the second derivative type edge. A chin detection system characterized in that:
9 . 人物顔が含まれる画像中から当該人物顔のあごの下底部を検出するプ ログラムであって、 9. A program that detects the lower bottom of the chin of the person's face from the image containing the person's face,
前記人物顔が含まれる画像を読み取る画像読取ステップと、  An image reading step of reading an image including the human face;
当該画像読取手段で読み取った画像中から前記人物顔の両目、 唇を含み、 あごを含まない範囲を検出して、 検出した範囲に顔検出枠を設定する顔検 出ステップと、  A face detection step of detecting, from the image read by the image reading means, a range including both eyes and lips of the human face but not including the chin, and setting a face detection frame in the detected range;
当該検出枠の下部に前記人物顔のあごが含まれる大きさのあご検出窓を 設定するあご検出窓設定ステップと、  A chin detection window setting step of setting a chin detection window having a size including the chin of the human face below the detection frame;
当該あご検出窓内のエッジの強度分布を求めるエッジ算出ステップと、 当該ェッジ算出手段で得られたェッジ強度の分布から閾値以上のェッジ 強度を持つ画素を選択する画素選択ステップと、  An edge calculating step of obtaining an intensity distribution of an edge in the chin detection window; a pixel selecting step of selecting a pixel having an edge intensity equal to or larger than a threshold from the edge intensity distribution obtained by the edge calculating means;
当該画素選択手段で選択した各画素の分布に最も合うように近似曲線を 求める曲線近似ステップと、  A curve approximation step of finding an approximation curve that best fits the distribution of each pixel selected by the pixel selection means;
当該曲線近似手段で得られた近似曲線の最も下底部を前記人物顔のあご の下底部として検出するあご検出ステップと、 をコンピュータに実現させ ることを特徴とするあご検出プログラム。  A chin detecting step of detecting the lowest bottom of the approximation curve obtained by the curve approximation means as the bottom of the chin of the person's face;
1 0 . 請求項 9に記載の人物顔のあご検出プログラムにおいて、  10. The human face chin detection program according to claim 9,
前記画素選択ステップは、 前記ェッジ算出ステップで算出された一次微 分型のェッジ強度の分布から閾値を求め、 当該閾値以上のェッジ強度を持 つ画素を検出し、 当該画素の中から二次微分型のエッジの符号反転を利用 して使用する画素を選択することを特徴とするあご検出プログラム。  In the pixel selection step, a threshold value is obtained from the distribution of the primary differential type edge intensity calculated in the edge calculation step, a pixel having an edge intensity equal to or higher than the threshold value is detected, and a second derivative is selected from the pixels. A chin detection program characterized by selecting a pixel to be used by using sign inversion of a pattern edge.
PCT/JP2004/018451 2003-12-05 2004-12-03 Person face jaw detection method, jaw detection system, and jaw detection program WO2005055144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003407911A JP2005165983A (en) 2003-12-05 2003-12-05 Method for detecting jaw of human face, jaw detection system, and jaw detection program
JP2003-407911 2003-12-05

Publications (1)

Publication Number Publication Date
WO2005055144A1 true WO2005055144A1 (en) 2005-06-16

Family

ID=34650325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018451 WO2005055144A1 (en) 2003-12-05 2004-12-03 Person face jaw detection method, jaw detection system, and jaw detection program

Country Status (4)

Country Link
US (1) US20060010582A1 (en)
JP (1) JP2005165983A (en)
TW (1) TW200527319A (en)
WO (1) WO2005055144A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095182B2 (en) * 2005-12-01 2012-12-12 株式会社 資生堂 Face classification device, face classification program, and recording medium on which the program is recorded
US7953253B2 (en) * 2005-12-31 2011-05-31 Arcsoft, Inc. Face detection on mobile devices
US7643659B2 (en) * 2005-12-31 2010-01-05 Arcsoft, Inc. Facial feature detection on mobile devices
US8417033B2 (en) * 2007-04-27 2013-04-09 Hewlett-Packard Development Company, L.P. Gradient based background segmentation and enhancement of images
JP2009239394A (en) * 2008-03-26 2009-10-15 Seiko Epson Corp Coloring image generating apparatus and method
CN102914286B (en) * 2012-09-12 2014-09-10 福建网龙计算机网络信息技术有限公司 Method for automatically detecting user sitting posture based on handheld equipment
JP6307873B2 (en) * 2013-12-24 2018-04-11 富士通株式会社 Object line detection apparatus, method, and program
CN106156692B (en) 2015-03-25 2019-12-13 阿里巴巴集团控股有限公司 method and device for positioning human face edge feature points

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151352A (en) * 1991-11-26 1993-06-18 Glory Ltd Edge detecting method and image recognizing method using the method
JPH0877334A (en) * 1994-09-09 1996-03-22 Konica Corp Automatic feature point extracting method for face image
JPH11306372A (en) * 1998-04-17 1999-11-05 Sharp Corp Method and device for picture processing and storage medium for storing the method
JP2001184512A (en) * 1999-12-24 2001-07-06 Sanyo Electric Co Ltd Device and method for processing image and recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735893B2 (en) * 1995-06-22 2006-01-18 セイコーエプソン株式会社 Face image processing method and face image processing apparatus
US5642441A (en) * 1995-10-24 1997-06-24 Neopath, Inc. Separation apparatus and method for measuring focal plane
US6330348B1 (en) * 1999-01-21 2001-12-11 Resolution Sciences Corporation Method and apparatus for measurement of microtome performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151352A (en) * 1991-11-26 1993-06-18 Glory Ltd Edge detecting method and image recognizing method using the method
JPH0877334A (en) * 1994-09-09 1996-03-22 Konica Corp Automatic feature point extracting method for face image
JPH11306372A (en) * 1998-04-17 1999-11-05 Sharp Corp Method and device for picture processing and storage medium for storing the method
JP2001184512A (en) * 1999-12-24 2001-07-06 Sanyo Electric Co Ltd Device and method for processing image and recording medium

Also Published As

Publication number Publication date
JP2005165983A (en) 2005-06-23
US20060010582A1 (en) 2006-01-19
TW200527319A (en) 2005-08-16

Similar Documents

Publication Publication Date Title
TWI550549B (en) Image processing device and image processing method
KR100480781B1 (en) Method of extracting teeth area from teeth image and personal identification method and apparatus using teeth image
JP4505362B2 (en) Red-eye detection apparatus and method, and program
JP4121026B2 (en) Imaging apparatus and method, and program
US7460705B2 (en) Head-top detecting method, head-top detecting system and a head-top detecting program for a human face
US20050196044A1 (en) Method of extracting candidate human region within image, system for extracting candidate human region, program for extracting candidate human region, method of discerning top and bottom of human image, system for discerning top and bottom, and program for discerning top and bottom
US9858680B2 (en) Image processing device and imaging apparatus
JP4739870B2 (en) Sunglasses detection device and face center position detection device
US20050220346A1 (en) Red eye detection device, red eye detection method, and recording medium with red eye detection program
CN107368806B (en) Image rectification method, image rectification device, computer-readable storage medium and computer equipment
JP2007114029A (en) Face center position detector, face center position detection method, and program
JP2007272435A (en) Face feature extraction device and face feature extraction method
JP3459950B2 (en) Face detection and face tracking method and apparatus
CN112001853A (en) Image processing apparatus, image processing method, image capturing apparatus, and storage medium
WO2005055144A1 (en) Person face jaw detection method, jaw detection system, and jaw detection program
JP2005134966A (en) Face image candidate area retrieval method, retrieval system and retrieval program
JP2014102713A (en) Face component extraction device, face component extraction method, and program
RU2329535C2 (en) Method of automatic photograph framing
JP2005316958A (en) Red eye detection device, method, and program
EP2541469A2 (en) Image recognition device, image recognition method and image recognition program
JP2007048108A (en) Image evaluation system, image evaluation method and image evaluation program
JP3963789B2 (en) Eye detection device, eye detection program, recording medium for recording the program, and eye detection method
JP2007219899A (en) Personal identification device, personal identification method, and personal identification program
JP5995610B2 (en) Subject recognition device and control method therefor, imaging device, display device, and program
JP5985327B2 (en) Display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase

Ref document number: 04819981

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 4819981

Country of ref document: EP