明 細 書 Specification
流体圧シリンダ 技術分野 Fluid pressure cylinder technical field
[0001] 本発明は空気圧などの流体圧力によってピストンロッドを往復動させる流体圧シリン ダに関し、特に、ロック機構を備えた流体圧シリンダに適用して有効な技術に関する The present invention relates to a hydraulic cylinder that reciprocates a piston rod by a fluid pressure such as air pressure, and more particularly to a technology effective when applied to a hydraulic cylinder having a lock mechanism.
背景技術 Background art
[0002] 自動車の組立ラインには、プレス工程において成型されたパネル材をスポット溶接 などによって接合する複数の工程が設けられている。これらの工程としては、車体の 土台を形成するアンダーボディ工程、車体の側面部を形成するサイドボディ工程、ァ ンダーボディとサイドボディとを接合することにより車体の骨格を形成するメインボディ 工程、メインボディにドアやフードなどを組み付けるメタルライン工程などがある。 [0002] An assembly line of an automobile is provided with a plurality of steps of joining panel materials formed in a pressing step by spot welding or the like. These processes include an underbody process that forms the base of the vehicle body, a side body process that forms the side surface of the vehicle body, a main body process that forms the skeleton of the vehicle body by joining the underbody and the side body, There is a metal line process for assembling doors and hoods on the body.
[0003] 自動車の組立てライン上にぉ 、て各工程を行う作業ステージ間でのパネル材を移 動させる方法としては、ロボットアームなどの搬送ァクチユエータの先端に挿入クラン プなどでパネル材を固定するハンドリング装置を設置し、パネル材を固定したノヽンドリ ング装置ごとアームの作動によって移動させるものが多くある。 [0003] As a method of moving a panel material between work stages for performing various processes on an automobile assembly line, a panel material is fixed to an end of a transfer actuator such as a robot arm by an insertion clamp or the like. In many cases, a handling device is installed and the paneling material is moved together with the fixed binding device by operating the arm.
[0004] またノヽンドリング装置については、形状の異なる多種類の部材にそれぞれ対応して 固定できるよう各挿入クランプを進退移動させるシリンダァクチユエータを設置したも のがあり、特にこのシリンダァクチユエ一タには挿入クランプとパネル材が衝突しても その衝撃を吸収できるよう空気圧を利用した流体圧シリンダが多く用いられている。 発明の開示 [0004] In addition, a cylinder ring actuator for moving each insertion clamp forward and backward so as to be able to fix each of various types of members having different shapes is installed in the case of a cylinder ring apparatus. Many hydraulic cylinders that use air pressure are used for the user so that even if the insertion clamp collides with the panel material, the impact can be absorbed. Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] し力しながら上記の流体圧シリンダに備えられているロック機構は、ピストンロッドの 前進方向または後退方向のどちらか一方に向力う移動のみをロックする構成でしか なかった。そのため流体シリンダを伸長させて挿入クランプをパネル材に押し込み挿 入固定し、その際にピストンロッド位置をロックしても、ロボットアームの駆動によりハン ドリング装置ごとパネル材を移動させた場合には、ピストンロッドがロック位置カゝら移動
してパネル材の固定位置がずれてしまい、パネル材の正確な位置決めができずに精 度の高 、組立作業を行うことが困難となって!/、た。 [0005] The locking mechanism provided in the above-mentioned fluid pressure cylinder while applying force only has a configuration that locks only movement of the piston rod in one of the forward direction and the backward direction. Therefore, even if the fluid cylinder is extended and the insertion clamp is pushed into the panel material and inserted and fixed, and the piston rod position is locked at that time, even if the panel material is moved together with the handling device by driving the robot arm, Piston rod moves to lock position As a result, the fixing position of the panel material was shifted, so that accurate positioning of the panel material was not possible, and it was difficult to perform assembly work with high accuracy!
[0006] 本発明の目的はピストンロッドの軸方向位置を前進側と後退側の両方向に対し制 動力を加えることができる流体圧シリンダを提供することにある。 [0006] An object of the present invention is to provide a fluid pressure cylinder capable of applying a braking force to an axial position of a piston rod in both forward and backward directions.
課題を解決するための手段 Means for solving the problem
[0007] 本発明の流体圧シリンダは、メインピストンを備えるピストンロッドが軸方向に往復動 自在に収容され前記メインピストンにより区画される前進用圧力室と後退用圧力室と が設けられる駆動シリンダと、前記駆動シリンダに取り付けられたロックユニットハウジ ングのユニット収容室に組み込まれ、前記ピストンロッドを締結する第 1のロックスリー ブを有する第 1のロックユニットと、前記ユニット収容室に組み込まれ、前記ピストン口 ッドを締結する第 2のロックスリーブを有する第 2のロックユニットと、前記ロックユニット ノ、ウジングに取り付けられ、前記第 1のロックスリーブに形成された第 1の傾斜面に接 触する第 1の押圧面を備え前記ピストンロッドに接近する締結位置と前記ピストンロッ ドから離れる締結解除位置との間で往復動自在の第 1の締結ロッドが収容される第 1 のロックシリンダと、前記ロックユニットハウジングに取り付けられ、前記第 2のロックスリ ーブに形成された第 2の傾斜面に接触する第 2の押圧面を備え前記ピストンロッドに 接近する締結位置と前記ピストンロッドから離れる締結解除位置との間で往復動自在 の第 2の締結ロッドが収容される第 2のロックシリンダとを有することを特徴とする。 [0007] A fluid pressure cylinder according to the present invention includes a drive cylinder in which a piston rod having a main piston is reciprocally accommodated in an axial direction and is provided with a forward pressure chamber and a retreat pressure chamber defined by the main piston. A first lock unit having a first lock sleeve that is installed in a unit housing chamber of a lock unit housing attached to the drive cylinder and that fastens the piston rod, and is installed in the unit housing chamber; A second lock unit having a second lock sleeve for fastening a piston port; and a lock unit, which is attached to a housing and contacts a first inclined surface formed on the first lock sleeve. A fastening position having a first pressing surface and approaching the piston rod, and a fastening release position away from the piston rod A first lock cylinder accommodating a first fastening rod that is reciprocally movable between the first lock cylinder and a second inclined surface formed on the second lock sleeve, the second lock sleeve being attached to the lock unit housing; A second lock cylinder that has a second pressing surface and accommodates a second fastening rod that is reciprocally movable between a fastening position approaching the piston rod and a fastening release position away from the piston rod. It is characterized by.
[0008] 本発明の流体圧シリンダは、前記第 1と第 2のロックスリーブは第 1と第 2の前記傾斜 面が互いに対向する向きに設置されることを特徴とする。 [0008] A fluid pressure cylinder according to the present invention is characterized in that the first and second lock sleeves are installed so that the first and second inclined surfaces face each other.
[0009] 本発明の流体圧シリンダは、前記第 1のロックスリーブはテーパ形状の第 1の内周 面を有し、前記第 1のロックユニットは前記第 1の内周面に接触する複数の鋼球を保 持するとともに前記ピストンロッドに軸方向に移動自在に嵌合する第 1の保持器と、前 記第 1の保持器を介して前記鋼球を前記第 1の内周面に押し付ける方向のばね力を 加える第 1のばね部材とを有し、前記第 2のロックスリーブは前記第 1の内周面に対し て逆向きとなったテーパ形状の第 2の内周面を有し、前記第 2のロックユニットは前記 第 2の内周面に接触する複数の鋼球を保持するとともに前記ピストンロッドに軸方向 に移動自在に嵌合する第 2の保持器と、前記第 2の保持器を介して前記鋼球を前記
第 2の内周面に押し付ける方向のばね力を加える第 2のばね部材とを有することを特 徴とする。 [0009] In the fluid pressure cylinder of the present invention, the first lock sleeve has a first inner peripheral surface having a tapered shape, and the first lock unit includes a plurality of first inner peripheral surfaces that are in contact with the first inner peripheral surface. A first retainer that holds the steel ball and is movably fitted in the piston rod in the axial direction, and presses the steel ball against the first inner peripheral surface via the first retainer. A first spring member for applying a spring force in a direction, and the second lock sleeve has a tapered second inner peripheral surface that is opposite to the first inner peripheral surface. The second lock unit holds a plurality of steel balls in contact with the second inner peripheral surface, and a second retainer fitted to the piston rod so as to be movable in the axial direction; Hold the steel ball through the cage And a second spring member for applying a spring force in a direction of pressing the second inner peripheral surface.
[0010] 本発明の流体圧シリンダは、前記第 1と第 2のロックシリンダはそれぞれの前記締結 ロッドに対して前記ピストンロッドに向力う方向のばね力をカ卩えるばね部材を有するこ とを特徴とする。 [0010] In the fluid pressure cylinder according to the present invention, the first and second lock cylinders each include a spring member that reduces a spring force in a direction toward the piston rod with respect to each of the fastening rods. It is characterized by.
[0011] 本発明の流体圧シリンダは、前記ユニット収容室と前記後退用圧力室とを区画する 仕切り壁に前記ユニット収容室と前記後退用圧力室とを連通させる絞りを設け、流体 圧源が後退用流路を介して接続される給排ポートを前記ユニット収容室に連通させ、 前記後退用圧力室に前記ユ ット収容室を介して流体の供給と排出とを行うことを特 徴とする。 [0011] In the fluid pressure cylinder according to the present invention, a restrictor for communicating the unit storage chamber and the retreat pressure chamber is provided on a partition wall that partitions the unit storage chamber and the retreat pressure chamber, and a fluid pressure source is provided. A supply / discharge port connected via a retreat channel is communicated with the unit housing chamber, and supply and discharge of fluid to and from the retreat pressure chamber are performed via the unit housing chamber. I do.
[0012] 本発明の流体圧シリンダは、前記後退用圧力室力 前記ユニット収容室に向力う流 体の流れを許容し、逆方向の流体の流れを阻止するチェック弁を前記仕切り壁に設 けることを特徴とする。 [0012] In the fluid pressure cylinder of the present invention, a check valve for allowing the flow of the fluid toward the unit housing chamber and preventing the flow of the fluid in the opposite direction is provided on the partition wall. It is characterized by
[0013] 本発明の流体圧シリンダは、前記第 1の締結ロッドは当該第 1の締結ロッドに対して 前記ピストンロッドに向力う方向の推力を加えるロック圧力室と、前記ピストンロッドか ら離れる方向の推力を加えるロック解除圧力室とに前記第 1のロックシリンダ内を区画 する第 1のロックピストンを有し、前記第 2の締結ロッドは当該第 2の締結ロッドに対し て前記ピストンロッドに向力う方向の推力をカ卩えるロック圧力室と、前記ピストンロッド 力 離れる方向の推力を加えるロック解除圧力室とに前記第 2のロックシリンダ内を区 画する第 2のロックピストンを有することを特徴とする。 [0013] In the fluid pressure cylinder according to the present invention, the first fastening rod is separated from the piston rod by a lock pressure chamber that applies a thrust to the first fastening rod in a direction toward the piston rod. A first lock piston for partitioning the inside of the first lock cylinder and a lock release pressure chamber for applying a thrust force in the first direction, wherein the second fastening rod is connected to the piston rod with respect to the second fastening rod. A second lock piston for partitioning the inside of the second lock cylinder into a lock pressure chamber for reducing the thrust in a heading direction and a lock release pressure chamber for applying a thrust in a direction away from the piston rod force; It is characterized by.
[0014] 本発明の流体圧シリンダは、前記第 1のロック圧力室に連通する給排ポートに流体 圧源を流体導入路により接続し、前記第 1のロック圧力室と前記第 2のロック圧力室と を流体連通路により直列に接続し、前記第 2のロック圧力室に対する前記流体圧源 の流体を前記第 1のロック圧力室を介して供給することを特徴とする。 [0014] In the fluid pressure cylinder according to the present invention, a fluid pressure source is connected to a supply / discharge port communicating with the first lock pressure chamber by a fluid introduction path, and the first lock pressure chamber and the second lock pressure are connected to each other. And the chamber are connected in series by a fluid communication passage, and the fluid from the fluid pressure source to the second lock pressure chamber is supplied through the first lock pressure chamber.
[0015] 本発明の流体圧シリンダは、前記給排ポートに連通する貫通孔が形成されるととも に前記第 1の締結ロッドに形成された収容孔内に軸方向に移動自在に嵌合するビス トン部を有するプランジャを前記第 1の締結ロッドに組み込み、前記第 1の締結ロッド が前記ピストンロッドに向けて所定のストローク移動したときに前記流体導入路と前記
第 1のロック圧力室とを連通させることを特徴とする。 [0015] The fluid pressure cylinder of the present invention has a through hole communicating with the supply / discharge port, and fits movably in the axial direction into a receiving hole formed in the first fastening rod. A plunger having a piston part is incorporated into the first fastening rod, and when the first fastening rod moves a predetermined stroke toward the piston rod, the fluid introduction path and the fluid introduction path are connected to each other. It is characterized by communicating with the first lock pressure chamber.
[0016] 本発明の流体圧シリンダは、前記第 1の締結ロッドは前記第 1のロックスリーブに対 して前記ピストンロッドの先端部に向けて押圧力を加えることを特徴とする。 [0016] The fluid pressure cylinder according to the present invention is characterized in that the first fastening rod applies a pressing force to the first lock sleeve toward the tip of the piston rod.
発明の効果 The invention's effect
[0017] 本発明によれば、それぞれ締結ロッドにより作動されるロックスリーブを有する 2組の ロックユニットがロックユニットハウジングに設けられ、 2つのロックユニットは相互に逆 向きとなっているので、ピストンロッドを前進方向と後退方向の両方向に対して制動力 ないし締結力をカ卩えてピストンロッドを固定できる。 2つのロックユニットにそれぞれ蓄 えられる歪み力は相互に逆方向で相殺し合うよう蓄えることになるため、ピストンロッド に前進方向と後退方向のいずれの方向に外力が加わってもピストンロッドに確実に 固定できる。 According to the present invention, two sets of lock units each having a lock sleeve operated by a fastening rod are provided in the lock unit housing, and the two lock units are opposite to each other. The piston rod can be fixed by increasing the braking force or the fastening force in both the forward and backward directions. Since the strain forces stored in the two lock units are stored so as to cancel each other in the opposite directions, the piston rod is reliably applied to the piston rod even if external force is applied in either the forward or backward direction. Can be fixed.
[0018] 2つのロックユニットがそれぞれ締結ロッドの進退移動によりピストンロッドへの締結 とその解除を切り換えるよう作動するので、ピストンロッドを任意の軸方向位置で締結 固定することができる。 [0018] Since the two lock units operate so as to switch between fastening to and releasing from the piston rod by moving the fastening rod forward and backward, the piston rod can be fastened and fixed at an arbitrary axial position.
[0019] ロック圧力室内のロック流体による推力と、ロック用ばね部材の推力とを用いて 2つ のロックユニットを締結状態に切り換えるようにしたので、ロックユニットの締結力を低 下させることなくロック用ばね部材からのばね力を低く設定することができる。 2つの口 ック圧力室はロック流体供給路を介して直列に接続されて順に流体が供給されるの で、 2つのロックユニットの締結作動に時間差を設けることができ、 2つのロックユニット に対して順に遊びを取り除くことができる。 [0019] Since the two lock units are switched to the engaged state using the thrust of the lock fluid in the lock pressure chamber and the thrust of the lock spring member, the lock can be performed without reducing the engagement force of the lock unit. The spring force from the use spring member can be set low. Since the two mouth pressure chambers are connected in series via the lock fluid supply path and are supplied with fluid in order, a time lag can be provided for the fastening operation of the two lock units, and Play can be removed in order.
[0020] 後退用圧力室は並列に配置されたチ ック弁と絞りとを介してユニット収容室に接 続されているので、ピストンロッドの後退移動を始める際に 2つのロックユニットの締結 状態を解除することができる。ピストンロッドの後退移動が制限された時点で、 2つの ロックユニットを締結状態に切り換えてピストンロッドの軸方向位置を前進側と後退側 の両方向に対し確実に固定することができる。 [0020] Since the retraction pressure chamber is connected to the unit accommodating chamber through a tick valve and a throttle arranged in parallel, the two lock units are engaged when the piston rod starts retreating. Can be canceled. When the backward movement of the piston rod is restricted, the two lock units are switched to the fastening state, so that the axial position of the piston rod can be reliably fixed in both the forward and backward directions.
[0021] ロック圧力室内の流体による推力とロック用ばね部材のばね力は、締結状態となつ たロックユニットを介してピストンロッドに軸方向に加えられるため、ロックユニットに歪 み力を蓄えることができる。
[0022] 相互に直交する方向で往復動する締結ロッドとロックスリーブの間で押圧面と傾斜 面との摺接により締結ロッドの推力をロックスリーブに伝えるため円滑かつ確実に締 結作動させることができる。ピストンロッドの外周面に配置されたボールを、ピストン口 ッドの軸方向に往復動自在に装着されたロックスリーブによってピストンロッドの外周 面に押し付けてロックユニットの締結を行うので、ピストンロッドを円滑かつ確実に締 結させることができる。 [0021] The thrust by the fluid in the lock pressure chamber and the spring force of the lock spring member are applied to the piston rod in the axial direction via the locked lock unit, so that the lock unit can store a distortion force. it can. [0022] Between the fastening rod and the lock sleeve that reciprocate in a direction orthogonal to each other, the thrust of the fastening rod is transmitted to the lock sleeve by sliding contact between the pressing surface and the inclined surface, so that the fastening operation can be performed smoothly and reliably. it can. The ball placed on the outer peripheral surface of the piston rod is pressed against the outer peripheral surface of the piston rod by the lock sleeve mounted reciprocally in the axial direction of the piston port, and the lock unit is fastened. And it can be securely tightened.
図面の簡単な説明 Brief Description of Drawings
[0023] [図 1]ハンドリング装置を備えたロボットアームによって自動車車体を構成するパネル 材を搬送する車体組立ラインの一部を示す図である。 FIG. 1 is a diagram showing a part of a vehicle body assembly line in which a robot arm provided with a handling device conveys a panel material constituting a vehicle body.
[図 2] (A)は第 1の実施の形態の流体圧シリンダを示す平面図、(B)は図 2 (A)の右 側面図、(C)は図 2 (A)の左側面図である。 [FIG. 2] (A) is a plan view showing the fluid pressure cylinder of the first embodiment, (B) is a right side view of FIG. 2 (A), and (C) is a left side view of FIG. 2 (A). It is.
[図 3]図 2 (A)における X— X線に沿う流体圧シリンダの縦断面図である。 FIG. 3 is a longitudinal sectional view of the fluid pressure cylinder taken along line XX in FIG. 2 (A).
[図 4]駆動シリンダと 2つのロックシリンダに対して圧縮空気を供給するための流体圧 回路を示す回路図である。 FIG. 4 is a circuit diagram showing a fluid pressure circuit for supplying compressed air to a drive cylinder and two lock cylinders.
[図 5] (A)は締結ロッドが締結解除状態となっているロックシリンダを示す断面図であ り、(B)は締結ロッドが前進移動している状態におけるロックシリンダを示す断面図で ある。 [FIG. 5] (A) is a cross-sectional view showing the lock cylinder in which the fastening rod is in an unlocked state, and (B) is a cross-sectional view showing the lock cylinder in a state in which the fastening rod is moving forward. .
[図 6] (A)は締結ロッドが前進移動してロック圧力室に流体圧源の流体が流入した状 態のロックシリンダを示す断面図であり、 (B)は締結ロッドが前進限位置まで移動した 状態のロックシリンダを示す断面図である。 FIG. 6 (A) is a cross-sectional view showing the lock cylinder in a state where the fastening rod has moved forward and the fluid of the fluid pressure source has flowed into the lock pressure chamber. FIG. 4 is a sectional view showing the lock cylinder in a moved state.
[図 7]本発明の他の実施の形態である流体圧シリンダの縦断面図である。 FIG. 7 is a longitudinal sectional view of a fluid pressure cylinder according to another embodiment of the present invention.
[図 8]本発明の更に他の実施の形態である流体圧シリンダの縦断面図である。 FIG. 8 is a longitudinal sectional view of a fluid pressure cylinder according to still another embodiment of the present invention.
[図 9]図 8に示された駆動シリンダと 2つのロックシリンダに対して圧縮空気を供給する ための流体圧回路を示す回路図である。 9 is a circuit diagram showing a fluid pressure circuit for supplying compressed air to the drive cylinder and two lock cylinders shown in FIG.
[図 10]図 4,図 9に示された流体圧回路の変形例を示す回路図である。 FIG. 10 is a circuit diagram showing a modification of the fluid pressure circuit shown in FIGS. 4 and 9.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0025] 図 1はハンドリング装置を備えた産業用ロボット 1によって自動車車体を構成するパ
ネル材を搬送するようにした車体組立ラインの一部を示す図である。産業用ロボット 1 は関節 3により接続される複数のアーム 2を有し、アーム 2の先端にはハンドリング装 置 4が装着されて 、る。ハンドリング装置 4はアーム先端に取り付け可能な台座 5を有 し、パネル材 Wの固定孔に係止ピンを挿入してパネル材 Wを固定する挿入クランプ 6 が台座 5に複数個設けられており、何本かの挿入クランプ 6は流体圧シリンダ 11によ り進退移動可能となって ヽる。このように何本かの挿入クランプ 6を進退移動させるこ とにより、相互に形状の異なる多種類のパネル材 Wを 1台のハンドリング装置 4により 固定して搬送することができる。 FIG. 1 is a perspective view of an industrial robot 1 equipped with a handling device. FIG. 3 is a view showing a part of a vehicle body assembly line configured to transport a flannel material. The industrial robot 1 has a plurality of arms 2 connected by joints 3, and a handling device 4 is attached to a tip of the arm 2. The handling device 4 has a pedestal 5 that can be attached to the tip of the arm, and a plurality of insertion clamps 6 are provided on the pedestal 5 to insert the locking pins into the fixing holes of the panel material W to fix the panel material W. Some of the insertion clamps 6 can be moved forward and backward by the fluid pressure cylinder 11. By moving the insertion clamps 6 forward and backward as described above, various types of panel materials W having mutually different shapes can be fixed and transported by one handling device 4.
[0026] この産業用ロボット 1は、例えば搬送台車に支持されて搬送されるパネル材 Wを掴 んで溶接ステージにまで搬送し、パネル材に対する溶接作業が終了した後に再度搬 送台車に戻すために使用されている。産業用ロボット 1のハンドリング装置 4によりパ ネル材 Wを掴む際には、流体圧シリンダ 11を引き込ませて全ての挿入クランプ 6を後 退限位置に位置させた状態のもとで、台座 5に近い側のパネル材 Wの固定孔力 順 に挿入クランプ 6を前進移動させて挿入する。流体圧シリンダ 11を伸長させて各挿入 クランプ 6を挿入させる際には、流体圧シリンダ 11に設けられたシリンダストッパ 7がス テージ側に設けられたステージストッパ 8に当接したときに挿入クランプ 6の前進移動 を停止させるようにしている。図 1においては、ハンドリング装置 4に 2つの挿入クラン プ 6を設けてそのうちの 1つを流体圧シリンダ 11で進退移動可能に設置して ヽるが、 パネル材 Wのサイズや形状に応じて任意の数の挿入クランプをノヽンドリング装置 4に 設け、それぞれを流体圧シリンダ 11で進退移動可能とすることができる。 [0026] The industrial robot 1, for example, grasps the panel material W supported and transported by the transport trolley, transports it to the welding stage, and returns to the transport trolley again after welding work on the panel material is completed. It is used. When grasping the panel material W with the handling device 4 of the industrial robot 1, the hydraulic cylinder 11 is retracted and all the insertion clamps 6 are positioned at the retracted position. Move the insertion clamp 6 forward in the order of the fixing hole force of the panel material W on the near side and insert it. When inserting each insertion clamp 6 by extending the fluid pressure cylinder 11, insert the clamp 6 when the cylinder stopper 7 provided on the fluid pressure cylinder 11 comes into contact with the stage stopper 8 provided on the stage side. To stop the forward movement. In FIG. 1, two insertion clamps 6 are provided in the handling device 4 and one of them is installed so as to be able to move forward and backward by the hydraulic cylinder 11, but it is optional depending on the size and shape of the panel material W. The number of insertion clamps provided in the ring ring device 4 can be moved forward and backward by the hydraulic cylinder 11.
[0027] 図 2に示すように、流体圧シリンダ 11は外形がほぼ四角柱形状の駆動シリンダ 12と 、この駆動シリンダ 12の一端に取り付けられるほぼ直方体形状のロックユニットノ、ウジ ング 13とを有し、駆動シリンダ 12に装着されてこれにより軸方向に往復動自在となつ たピストンロッド 14は、ロックユニットハウジング 13を貫通してロックユニットハウジング 13の先端力も外部に突出している。ピストンロッド 14と平行となってロックユニットノヽゥ ジング 13を往復動自在に貫通する 2本のガイドロッド 15とピストンロッド 14とには連結 プレート 16が取り付けられており、これらのロッド 14, 15は連結プレート 16により連結 されている。ロックユニットハウジング 13にはピストンロッド 14に対して径方向に第 1と
第 2の 2つのロックシリンダ 17, 117が取り付けられている。図 2 (A)に示すようにロッ クユニットハウジング 13には前述のハンドリング装置 4に流体圧シリンダ 11を取り付け るためのねじ孔 19が形成されている。 As shown in FIG. 2, the fluid pressure cylinder 11 includes a drive cylinder 12 having a substantially quadrangular prism shape, and a substantially rectangular parallelepiped lock unit No. 13 mounted on one end of the drive cylinder 12. The piston rod 14 mounted on the drive cylinder 12 and thereby reciprocally movable in the axial direction penetrates through the lock unit housing 13, and the tip force of the lock unit housing 13 also protrudes to the outside. A connecting plate 16 is attached to the two guide rods 15 and the piston rods 14 which reciprocately penetrate the lock unit nosing 13 in parallel with the piston rods 14, and these rods 14, 15 They are connected by a connection plate 16. The lock unit housing 13 has the first The second two lock cylinders 17, 117 are mounted. As shown in FIG. 2 (A), the lock unit housing 13 has a screw hole 19 for mounting the fluid pressure cylinder 11 to the above-described handling device 4.
[0028] 流体圧シリンダ 11は、駆動シリンダ 12に形成された 2つの給排ポート 20, 21のどち らか一方に圧縮空気を供給し他方力 圧縮空気を排出させることによりピストンロッド 14を進退移動させる。また、ロックユニットハウジング 13に形成されている給排ポート 61に圧縮空気を供給することによりピストンロッド 14は固定される。 The fluid pressure cylinder 11 moves the piston rod 14 forward and backward by supplying compressed air to one of the two supply / discharge ports 20, 21 formed in the drive cylinder 12 and discharging the compressed air to the other. Let it. The piston rod 14 is fixed by supplying compressed air to a supply / discharge port 61 formed in the lock unit housing 13.
[0029] 図 3に示すように、ピストンロッド 14に固定されたメインピストン 23を軸方向に往復動 自在に収容するピストン収容孔 24が駆動シリンダ 12に形成されており、ロックユニット ハウジング 13とピストン収容孔 24は駆動シリンダ 12の一端部に取り付けられた仕切 り壁 25により仕切られている。駆動シリンダ 12の他端部にはヘッドカバー 26が固定さ れピストン収容孔 24は閉じられている。仕切り壁 25とヘッドカバー 26によって閉じら れたピストン収容孔 24の内部空間がシリンダ室 28を形成している。 As shown in FIG. 3, a piston housing hole 24 for housing a main piston 23 fixed to the piston rod 14 so as to be able to reciprocate in the axial direction is formed in the drive cylinder 12, and the lock unit housing 13 and the piston The housing hole 24 is partitioned by a partition wall 25 attached to one end of the drive cylinder 12. A head cover 26 is fixed to the other end of the drive cylinder 12, and the piston receiving hole 24 is closed. The internal space of the piston receiving hole 24 closed by the partition wall 25 and the head cover 26 forms a cylinder chamber 28.
[0030] ロックユニットハウジング 13には 2つのロックユニット 29, 129を収容する口ツクユ-ッ ト収容孔 30が形成されており、ロックユニットハウジング 13の先端にはロックユニット 収容孔 30を塞ぐロッドカバー 31が取り付けられている。ロッドカバー 31と仕切り壁 25 によって閉じられたロックユニット収容孔 30によりユニット収容室 33が形成されており 、ピストンロッド 14の先端部はロッドカバー 31から外部に突出している。これらの駆動 シリンダ 12とロックユニットハウジング 13、および 2つのロックシリンダ 17, 117によりシ リンダ本体が形成されて ヽる。 The lock unit housing 13 is formed with a mouthpiece housing hole 30 for housing the two lock units 29 and 129, and a rod cover for closing the lock unit housing hole 30 is provided at the end of the lock unit housing 13. 31 is installed. A unit housing chamber 33 is formed by the lock unit housing hole 30 closed by the rod cover 31 and the partition wall 25, and a distal end portion of the piston rod 14 projects from the rod cover 31 to the outside. A cylinder body is formed by the drive cylinder 12, the lock unit housing 13, and the two lock cylinders 17, 117.
[0031] 駆動シリンダ 12内に収容されるメインピストン 23によって、シリンダ室 28の内部は前 進用圧力室 34と後退用圧力室 35とに区画されている。駆動シリンダ 12には前進用 給排ポート 20と後退用給排ポート 21が形成されており、前進用給排ポート 20は前進 用圧力室 34に連通し、後退用給排ポート 21はロックユニットノ、ウジング 13内の給排 路 22を介してユニット収容室 33に連通している。仕切り壁 25にはチェック弁 59と絞り 60が設けられており、チェック弁 59は後退用圧力室 35からユニット収容室 33へ向か う空気の流れを許容し逆方向の流れを阻止し、絞り 60は後退用圧力室 35とユニット 収容室 33とを連通させる。このように、後退用圧力室 35はユニット収容室 33と連通し
ており、前進用給排ポート 20より前進用圧力室 34に流体である圧縮空気を供給する と、メインピストン 23が圧縮空気に押圧されて仕切り壁 25に向けて前進移動し、後退 用圧力室 35内の空気はチェック弁 59と絞り 60を通ってユニット収容室 33内に流入 し、給排ポート 21から排出される。一方、後退用給排ポート 21に圧縮空気を供給す ると、ユニット収容室 33内の圧力を高めつつ絞り 60を介して後退用圧力室 35に圧縮 空気が供給され、メインピストン 23がヘッドカバー 26に向けて後退移動する。 The interior of the cylinder chamber 28 is divided into a forward pressure chamber 34 and a reverse pressure chamber 35 by a main piston 23 accommodated in the drive cylinder 12. The drive cylinder 12 is formed with a forward supply / discharge port 20 and a reverse supply / discharge port 21. The forward supply / discharge port 20 communicates with the forward pressure chamber 34, and the reverse supply / discharge port 21 is connected to the lock unit. In addition, it communicates with the unit accommodation room 33 via the supply / discharge passage 22 in the housing 13. A check valve 59 and a throttle 60 are provided on the partition wall 25.The check valve 59 allows the flow of air from the retreat pressure chamber 35 to the unit storage chamber 33, and blocks the flow in the reverse direction, thus restricting the flow. 60 communicates the retreat pressure chamber 35 with the unit accommodation chamber 33. Thus, the retraction pressure chamber 35 communicates with the unit accommodation chamber 33. When compressed air, which is a fluid, is supplied to the forward pressure chamber 34 from the forward supply / discharge port 20, the main piston 23 is pressed by the compressed air and moves forward toward the partition wall 25, and the backward pressure chamber is moved. The air in 35 flows into the unit housing chamber 33 through the check valve 59 and the throttle 60, and is discharged from the supply / discharge port 21. On the other hand, when compressed air is supplied to the retraction supply / discharge port 21, the compressed air is supplied to the retraction pressure chamber 35 via the throttle 60 while increasing the pressure in the unit storage chamber 33, and the main piston 23 is moved to the head cover 26. Retreat toward.
[0032] メインピストン 23はシール材 23cが設けられた環状の第 1ディスク 23aと、第 2デイス ク 23bとを備えており、第 1ディスク 23aの内周面にはピストンロッド 14の雄ねじ 14aが ねじ結合される雌ねじ 23eが形成されている。また、第 1ディスク 23aと第 2ディスク 23 bとの間には環状の磁石 23fが挟み込まれており、駆動シリンダ 12に設けられた図示 しないセンサが磁石 23fの磁力に感応することによりメインピストン 23の位置を検出で きるようになつている。 [0032] The main piston 23 has an annular first disk 23a provided with a sealing material 23c and a second disk 23b, and an external thread 14a of the piston rod 14 is provided on an inner peripheral surface of the first disk 23a. A female screw 23e to be screwed is formed. An annular magnet 23f is interposed between the first disk 23a and the second disk 23b, and a sensor (not shown) provided on the drive cylinder 12 responds to the magnetic force of the magnet 23f, thereby causing the main piston 23f to move. Position can be detected.
[0033] ユニット収容室 33には第 1と第 2の 2つのロックユニット 29, 129が軸方向にずれて 相互に逆向きとなって組み込まれており、第 1のロックユニット 29はロッドカバー 31に 隣り合い、第 2のロックユニット 129は仕切り壁 25に隣り合つている。それぞれのロック ユニット 29, 129は、ピストンロッド 14の外周面に接触して配置される複数の鋼球 36 と、これら複数の鋼球 36を保持するとともにピストンロッド 14に相対的に軸方向に移 動自在に嵌合する筒状の保持器 37とを備えている。それぞれの保持器 37の外側に は、テーパ形状の内周面 38aが形成されたロックスリーブ 38が配置されており、ロック スリーブ 38はロックユニット収容孔 30内に往復動自在となって収容されている。この ように、ピストンロッド 14の外周面とロックスリーブ 38の内周面 38aとの間には複数の 鋼球 36が配置されており、ロックスリーブ 38を軸方向に移動させることにより、ロック ユニット 29, 129は、ロックスリーブ 38が鋼球 36をピストンロッド 14に押圧してピストン ロッド 14を固定する締結状態と、ピストンロッド 14に対する押圧を解放して締結を解 除する解除状態とに切り換えられる。 [0033] In the unit accommodating chamber 33, first and second two lock units 29, 129 are installed in the axial direction and opposite to each other, and the first lock unit 29 is provided with a rod cover 31. The second lock unit 129 is adjacent to the partition wall 25. Each of the lock units 29 and 129 holds a plurality of steel balls 36 arranged in contact with the outer peripheral surface of the piston rod 14, and holds the plurality of steel balls 36 and moves in the axial direction relative to the piston rod 14. And a cylindrical retainer 37 movably fitted. A lock sleeve 38 having a tapered inner peripheral surface 38a is disposed outside each of the retainers 37. The lock sleeve 38 is reciprocally housed in the lock unit housing hole 30. I have. As described above, a plurality of steel balls 36 are disposed between the outer peripheral surface of the piston rod 14 and the inner peripheral surface 38a of the lock sleeve 38, and the lock unit 29 is moved by moving the lock sleeve 38 in the axial direction. , 129 are switched between a fastening state in which the lock sleeve 38 presses the steel ball 36 against the piston rod 14 to fix the piston rod 14 and a release state in which the pressing on the piston rod 14 is released to release the fastening.
[0034] それぞれのロックスリーブ 38と仕切り壁 25との間およびロッドカバー 31との間には、 フランジ部 39aを備える底付き円筒状のばね受け部材 39が設けられている。それぞ れのばね受け部材 39のフランジ部 39aと仕切り壁 25との間およびロッドカバー 31と
の間には解除用ばね部材 40が設けられている。この解除用ばね部材 40は、ロックス リーブ 38に当接するフランジ部 39aを介してロックスリーブ 38を解除方向にばね力を 加える。つまりそれぞれの解除用ばね部材 40はそれぞれロックスリーブ 38を各仕切 り壁 25,ロッドカバー 31から離す方向に付勢する。また、ばね受け部材 39の底部と 保持器 37との間には保持用ばね部材 41が設けられており、これらの保持用ばね部 材 41はそれぞれの保持器 37を相互に近接させる方向にばね力を加える。 [0034] Between the respective lock sleeves 38 and the partition wall 25 and between the rod cover 31, a bottomed cylindrical spring receiving member 39 having a flange portion 39a is provided. Between the flange portion 39a of each spring receiving member 39 and the partition wall 25 and between the rod cover 31 A release spring member 40 is provided between them. The release spring member 40 applies a spring force to the lock sleeve 38 in the release direction via a flange portion 39a that contacts the lock sleeve 38. That is, each release spring member 40 urges the lock sleeve 38 in a direction away from the partition wall 25 and the rod cover 31. Further, a holding spring member 41 is provided between the bottom of the spring receiving member 39 and the holder 37, and these holding spring members 41 are arranged so that the respective holders 37 are moved in the direction of approaching each other. Apply force.
[0035] ロックユニットハウジング 13にはユニット収容室 33内に突出してストッパ 13aが設け られており、それぞれの保持器 37とストッパ 13aとの間には円筒形状の位置決めスリ ーブ 42がピストンロッド 14の外側にこれに対して相対的に軸方向に往復動自在に装 着されている。それぞれの位置決めスリーブ 42は両端がストッパ 13aとそれぞれの保 持器 37とに当接することにより 2つのロックスリーブ 38が相互に接近したときにおける それぞれのロックスリーブ 38の位置を規制する。 The lock unit housing 13 is provided with stoppers 13a protruding into the unit accommodating chamber 33, and a cylindrical positioning sleeve 42 is provided between each retainer 37 and the stopper 13a. It is mounted on the outside of the housing so as to be able to reciprocate in the axial direction relatively to this. Both ends of the positioning sleeve 42 abut the stopper 13a and the respective retainer 37, thereby regulating the position of each lock sleeve 38 when the two lock sleeves 38 approach each other.
[0036] 2つのロックシリンダ 17, 117は、図 4に示すように、それぞれシリンダ部 43とこれを 閉塞するヘッドカバー 44とにより形成されている。それぞれのロックシリンダ 17, 117 内には締結ロッド 45, 145が収容されており、両方の締結ロッド 45, 145はともにビス トンロッド 14に対して径方向に往復動自在となっている。締結ロッド 45, 145には環 状のロックピストン 45aが設けられ、ロックピストン 45a〖こよりシリンダ部 43内は、ロック 用ばね部材 46が収容されるロック圧力室 47と、ロック用ばね部材 46の推力であるば ね力に対向して流体の推力を締結ロッド 45, 145にカ卩えるロック解除圧力室 48とに 区画されている。 As shown in FIG. 4, each of the two lock cylinders 17 and 117 is formed by a cylinder portion 43 and a head cover 44 that closes the cylinder portion. Fastening rods 45, 145 are housed in the respective lock cylinders 17, 117, and both fastening rods 45, 145 are reciprocally movable in the radial direction with respect to the bistro rod 14. An annular lock piston 45a is provided on the fastening rods 45 and 145, and a thrust of a lock pressure chamber 47 for accommodating a lock spring member 46 and a lock spring member 46 is provided in the cylinder portion 43 from the lock piston 45a. A lock release pressure chamber 48 is provided which locks the thrust of the fluid to the fastening rods 45 and 145 in opposition to the spring force.
[0037] ロックピストン 45aは締結ロッド 45, 145の基端部に設けられ、内部にはばね収容孔 45bとシリンダ孔 45cとが設けられている。ばね収容孔 45bには環状のばね受け部材 49が組み込まれ、ばね受け部材 49とヘッドカバー 44との間にロック用ばね部材 46 が保持されている。一方のロックシリンダ 17に収容されている締結ロッド 45のシリンダ 孔 45cにはピストン部 50aとロッド部 50bとを備えるプランジャ 50が往復動自在に組 み込まれており、ピストン部 50aの先端面とシリンダ孔 45cの底面との間にはプランジ ャ用ばね部材 51が組み込まれて!/、る。このプランジャ用ばね部材 51のばね力によつ てプランジャ 50はヘッドカバー 44に近づく方向のばね力が加えられ、この方向の移
動はピストン部 50aがばね受け部材 49に当接することによって規制される。つまり、口 ックシリンダ 17におけるばね受け部材 49はプランジャ 50の軸方向移動を所定のスト ロークで規制するためのストッパとしても機能する。 [0037] The lock piston 45a is provided at the base end of the fastening rods 45 and 145, and has a spring accommodating hole 45b and a cylinder hole 45c therein. An annular spring receiving member 49 is incorporated in the spring receiving hole 45b, and a locking spring member 46 is held between the spring receiving member 49 and the head cover 44. A plunger 50 having a piston portion 50a and a rod portion 50b is incorporated in a cylinder hole 45c of a fastening rod 45 accommodated in one lock cylinder 17 so as to be reciprocally movable. A plunger spring member 51 is incorporated between the bottom of the cylinder hole 45c and the bottom. The spring force of the plunger spring member 51 applies a spring force to the plunger 50 in a direction approaching the head cover 44, and the plunger 50 moves in this direction. The movement is regulated by the contact of the piston portion 50a with the spring receiving member 49. That is, the spring receiving member 49 of the mouth cylinder 17 also functions as a stopper for restricting the axial movement of the plunger 50 with a predetermined stroke.
[0038] 図 4に示すように、各ロックシリンダ 17, 117のヘッドカバー 44のほぼ中央部には、 ロック圧力室 47にロック流体である圧縮空気を案内する流体導入孔 52, 152が形成 されており、ロックシリンダ 17のヘッドカバー 44にはロック圧力室 47から圧縮空気を 排出する流体排出孔 53が形成されて 、る。 As shown in FIG. 4, fluid introduction holes 52 and 152 for guiding compressed air, which is a lock fluid, to the lock pressure chamber 47 are formed substantially in the center of the head cover 44 of each of the lock cylinders 17 and 117. In addition, a fluid discharge hole 53 for discharging compressed air from the lock pressure chamber 47 is formed in the head cover 44 of the lock cylinder 17.
[0039] 図 4に示すように流体導入孔 52とプランジャ 50とはほぼ同心上に組み込まれており 、プランジャ 50が図において上方(ピストンロッド 14から離れる方向)に移動すること によってプランジャ 50がヘッドカバー 44に接触すると、流体導入孔 52とロック圧力室 47とはプランジャ 50のロッド部 50bにより遮断された状態となる。これに対し、締結口 ッド 45が図において下方(ピストンロッド 14に近づく方向)に移動することによってプ ランジャ 50がヘッドカバー 44から離れると、流体導入孔 52とロック圧力室 47とは連 通した状態となる。なお、ヘッドカバー 44に形成される流体導入孔 52の開口部には 弁座 54が組み込まれており、プランジャ 50のロッド部 50bの端面と弁座 54とを接触さ せることにより遮断状態における気密が保たれる。 As shown in FIG. 4, the fluid introduction hole 52 and the plunger 50 are substantially concentrically assembled, and the plunger 50 moves upward (in a direction away from the piston rod 14) in the figure, whereby the plunger 50 is moved. Upon contact with 44, the fluid introduction hole 52 and the lock pressure chamber 47 are shut off by the rod portion 50b of the plunger 50. On the other hand, when the fastening port 45 moves downward in the drawing (in a direction approaching the piston rod 14) and the plunger 50 moves away from the head cover 44, the fluid introduction hole 52 and the lock pressure chamber 47 communicate with each other. State. A valve seat 54 is incorporated in the opening of the fluid introduction hole 52 formed in the head cover 44, and the airtightness in the shut-off state is established by bringing the end face of the rod portion 50b of the plunger 50 into contact with the valve seat 54. Will be kept.
[0040] 各ロック解除圧力室 48はそれぞれ連通路 55を介してユニット収容室 33に連通して おり、ロック解除圧力室 48にユニット収容室 33から圧縮空気を供給すると、締結ロッ ド 45, 145はピストンロッド 14から離れる退避位置に向けて上昇移動する。特にロック シリンダ 17における締結ロッド 45の上昇移動の過程においては、ロックピストン 45a がヘッドカバー 44に接触するまではプランジャ 50のロッド部 50bがロックピストン 45a の端面より突き出た状態となっているため、ロッド部 50bがヘッドカバー 44の弁座 54 に接触した後に、ロックピストン 45aがヘッドカバー 44に接触することになる。ロックピ ストン 45aがヘッドカバー 44に接触するまで締結ロッド 45が上昇移動すると、ピストン 部 50aとばね受け部材 49との間には図 5 (A)に示すように所定のクリアランス C1が形 成される。 [0040] Each of the unlocking pressure chambers 48 communicates with the unit housing chamber 33 via a communication passage 55, and when compressed air is supplied from the unit housing chamber 33 to the unlocking pressure chamber 48, the fastening rods 45, 145 are connected. Moves upward toward the retreat position away from the piston rod 14. In particular, during the upward movement of the fastening rod 45 in the lock cylinder 17, the rod portion 50b of the plunger 50 projects from the end surface of the lock piston 45a until the lock piston 45a contacts the head cover 44. After the portion 50b contacts the valve seat 54 of the head cover 44, the lock piston 45a contacts the head cover 44. When the fastening rod 45 moves upward until the lock piston 45a contacts the head cover 44, a predetermined clearance C1 is formed between the piston portion 50a and the spring receiving member 49 as shown in FIG.
[0041] 2つの締結ロッド 45, 145をそれぞれ上昇移動させる際には、どちらもロック圧力室 47内の空気は流体導入孔 52, 152を経て排気される力 プランジャ 50を備える締結
ロッド 45においては、プランジャ 50のロッド部 50bが弁座 54に接触することにより流 体導入孔 52が閉塞される。このため、ピストン部 50aに設けられる Uパッキン 56は、 下降方向へ空気の流れを許容する向きに装着されており、ロック圧力室 47内の空気 はロッド部 50bと弁座 54とが接触した後であっても、 Uパッキン 56とシリンダ孔 45cと の間から空気を下降方向に向けて排出することができ、プランジャ 50の中心に形成 されている貫通孔 50cを介して流体導入孔 52から排気することができる。 When the two fastening rods 45 and 145 are respectively moved upward, the air in the lock pressure chamber 47 is exhausted through the fluid introduction holes 52 and 152. In the rod 45, the fluid introduction hole 52 is closed when the rod portion 50b of the plunger 50 contacts the valve seat 54. For this reason, the U packing 56 provided in the piston portion 50a is mounted in a direction that allows air flow in the downward direction, and the air in the lock pressure chamber 47 is released after the rod portion 50b and the valve seat 54 come into contact with each other. However, air can be discharged in the downward direction from between the U packing 56 and the cylinder hole 45c, and is exhausted from the fluid introduction hole 52 through the through hole 50c formed at the center of the plunger 50. can do.
[0042] 一方、各ロック解除圧力室 48の圧縮空気を連通路 55を介して排出すると、締結口 ッド 45, 145はロック用ばね部材 46からのばね力によりピストンロッド 14に接近して口 ックスリーブ 38に接触する作動位置に向けて下降移動する。プランジャ 50を備える 締結ロッド 45が下降移動する過程においては、プランジャ 50がばね力によって上昇 方向に付勢されているため、ロックピストン 45aがヘッドカバー 44力も離れた後に、プ ランジャ 50のピストン部 50aがばね受け部材 49に接触してからロッド部 50bがヘッド カバー 44から離れることになる。つまり、締結ロッド 45については下降移動を開始し ても、クリアランス C1に相当する所定のストロークだけ下降するまでは、ロッド部 50b はヘッドカバー 44の弁座 54に接触した状態を保持することになる。 On the other hand, when the compressed air in each unlocking pressure chamber 48 is discharged through the communication passage 55, the fastening ports 45, 145 approach the piston rod 14 by the spring force from the locking spring member 46, and And moves downward to the operating position where it contacts the sleeve 38. In the process of moving the fastening rod 45 having the plunger 50 downward, the plunger 50 is urged in the ascending direction by the spring force, so that the piston portion 50a of the plunger 50 is released after the lock piston 45a is also separated from the head cover 44. The rod portion 50b separates from the head cover 44 after coming into contact with the spring receiving member 49. That is, even if the fastening rod 45 starts descending movement, the rod part 50b keeps the state in contact with the valve seat 54 of the head cover 44 until it descends by a predetermined stroke corresponding to the clearance C1.
[0043] それぞれの締結ロッド 45, 145の先端には、押圧面であるロックテーパ面 45dを備 えたテーパ部 45eが形成されており、ロックテーパ面 45dのテーパ角は約 30° の鋭 角に形成されている。これらのロックテーパ面 45dに対応するように、 2つのロックスリ ーブ 38の相互に対向し合う側の端面にも傾斜面であるテーパ面 38bが形成されて おり、テーパ面 38bのテーパ角は約 150° の鈍角に形成されている。各締結ロッド 4 5, 145がロックスリーブ 38に向けて下降移動すると、ロックシリンダ 17における締結 ロッド 45のテーパ面 45dは図 3および図 4において右側のロックスリーブ 38のテーパ 面 (傾斜面) 38bに接触し、ロックシリンダ 117における締結ロッド 145のテーパ面 45 dは左側のロックスリーブ 38のテーパ面 38b (傾斜面)に接触する。これにより、それ ぞれのロックスリーブ 38は相互に離れる方向に押されて 2つのロックユニット 29, 129 が締結状態となる。一方、各締結ロッド 45, 145が上昇移動すると、解除用ばね部材 40のばね力によってそれぞれのロックスリーブ 38は互いに接近する方向に押され 2 つのロックユニット 29, 129は解除状態となる。
[0044] プランジャ 50の貫通孔 50cは、ロック圧力室 47内の空気を排出するだけでなく締 結ロッド 45を手動で動かす際にも使用される。ヘッドカバー 44に形成される流体導 入孔 52, 152には、流体導入孔 52, 152と外部とを遮断するプラグとしてねじ部材 5 7が装着されており、締結ロッド 45, 145にはシリンダ孔 45cから延びてねじ孔 45fが 形成されている。締結ロッド 45, 145を手動で動かす際には、先端部に雄ねじが形 成された図示しな!、ロッド部材を、ねじ部材 57を取り外した状態で外部より流体導入 孔 52, 152に差し込み、ねじ孔 45fとねじ結合させる。これにより、締結ロッド 45, 14 5をロッド部材を介して外部より上下に動かすことができる。 At the tip of each of the fastening rods 45 and 145, a taper portion 45e having a lock taper surface 45d as a pressing surface is formed, and the taper angle of the lock taper surface 45d is an acute angle of about 30 °. Is formed. In order to correspond to these lock taper surfaces 45d, tapered surfaces 38b, which are inclined surfaces, are also formed on the end faces of the two lock sleeves 38 facing each other, and the taper angle of the tapered surface 38b is approximately It is formed at an obtuse angle of 150 °. When each of the fastening rods 45, 145 moves downward toward the lock sleeve 38, the tapered surface 45d of the fastening rod 45 in the lock cylinder 17 becomes the tapered surface (inclined surface) 38b of the right lock sleeve 38 in FIGS. Then, the tapered surface 45 d of the fastening rod 145 of the lock cylinder 117 comes into contact with the tapered surface 38 b (inclined surface) of the left lock sleeve 38. As a result, the respective lock sleeves 38 are pushed in directions away from each other, and the two lock units 29, 129 are brought into the fastening state. On the other hand, when the fastening rods 45 and 145 move upward, the respective lock sleeves 38 are pushed in directions approaching each other by the spring force of the release spring member 40, and the two lock units 29 and 129 are released. [0044] The through hole 50c of the plunger 50 is used not only for discharging the air in the lock pressure chamber 47 but also for manually moving the fastening rod 45. The fluid introduction holes 52, 152 formed in the head cover 44 are provided with screw members 57 as plugs for shutting off the fluid introduction holes 52, 152 from the outside, and the fastening rods 45, 145 have cylinder holes 45c. And a screw hole 45f is formed. When manually moving the fastening rods 45 and 145, it is not shown that a male screw is formed at the tip end.The rod member is inserted into the fluid introduction holes 52 and 152 from the outside with the screw member 57 removed, Screw it to screw hole 45f. Thereby, the fastening rods 45, 145 can be moved up and down from outside via the rod members.
[0045] 図 3に示すようにメインピストン 23には環状のゴムダンバ 23dが取り付けられており、 メインピストン 23がそれぞれヘッドカバー 26または仕切り壁 25にゴムダンバ 23dを接 触させた状態でもそれぞれのゴムダンバ 23dの外周には隙間が形成されることになる 。前進用圧力室 34に連通する前進用給排ポート 20は、前進用圧力室 34に連通す るよう形成されており、後退用圧力室 35に連通する絞り 60は、後退用圧力室 35に連 通するよう形成されている。各給排ポート 20, 21は後述する共通の流路切換弁を介 して圧縮空気源に接続されており、流路切換弁の切換作動によって 2つの給排ポー ト 20, 21のどちらか一方に圧縮空気が供給され、かつ他方の給排ポート 20, 21から 圧縮空気が排出されるようになっている。従って、各給排ポート 20, 21を介して前進 用圧力室 34および後退用圧力室 35に対する圧縮空気の給排制御を行うことができ る。 As shown in FIG. 3, an annular rubber damper 23d is attached to the main piston 23. Even when the main piston 23 is in contact with the head cover 26 or the partition wall 25, the rubber damper 23d is provided. A gap is formed on the outer periphery. The forward supply / discharge port 20 communicating with the forward pressure chamber 34 is formed so as to communicate with the forward pressure chamber 34, and the throttle 60 communicating with the backward pressure chamber 35 is connected to the backward pressure chamber 35. It is formed to pass through. Each of the supply / discharge ports 20, 21 is connected to a compressed air source through a common flow path switching valve described later, and one of the two supply / discharge ports 20, 21 is operated by switching operation of the flow path switching valve. And compressed air is discharged from the other supply / discharge ports 20, 21. Therefore, it is possible to control the supply and discharge of the compressed air to the forward pressure chamber 34 and the backward pressure chamber 35 through the respective supply / discharge ports 20 and 21.
[0046] ピストンロッド 14が貫通している仕切り壁 25の貫通孔 25aはピストンロッド 14の外径 とほぼ同じ径であり、その内周面に装着したシール材 25bはピストンロッド 14の外周 に接触している。保持器 37、位置決めスリーブ 42およびばね受け部材 39はピストン ロッド 14の外周面との間に連通隙間 58が形成されているため、後退用給排ポート 21 はユニット収容室 33に連通しており、各連通路 55を介してそれぞれのロックシリンダ 17, 117内のロック解除圧力室 48に連通している。後退用給排ポート 21はユニット 収容室 33および絞り 60を介して後退用圧力室 35にも連通している。このように、各 ロック解除圧力室 48はそれぞれ後退用給排ポート 21および後退用圧力室 35に連 通している。
[0047] 後退用給排ポート 21に圧縮空気を供給すると、ユニット収容室 33に供給された圧 縮空気は、仕切り壁 25のチェック弁 59を介しては後退用圧力室 35に流入することな ぐ絞り 60を介して導入されることになる。絞り 60は流路断面積が狭く許容通過流量 が小さいため、ユニット収容室 33の内部は背圧が生じて圧力が上昇する。このため 各連通路 55を介して各ロックシリンダ 17, 117内のロック解除圧力室 48の方が後退 用圧力室 35よりも先に圧力上昇して締結ロッド 45, 145を退避位置まで上昇移動さ せることになる。その後、後退用圧力室 35内に圧縮空気が十分に導入されてメイン ピストン 23が後退方向に移動される。このように後退用給排ポート 21に圧縮空気を 供給すると、各締結ロッド 45, 145が退避位置まで移動した後にメインピストン 23が 後退移動することになる。 [0046] The through hole 25a of the partition wall 25 through which the piston rod 14 penetrates has substantially the same diameter as the outer diameter of the piston rod 14, and the sealing material 25b attached to the inner peripheral surface thereof contacts the outer periphery of the piston rod 14. are doing. Since a communication gap 58 is formed between the retainer 37, the positioning sleeve 42, and the spring receiving member 39 with the outer peripheral surface of the piston rod 14, the retreating supply / discharge port 21 communicates with the unit storage chamber 33. It communicates with the unlocking pressure chamber 48 in each of the lock cylinders 17 and 117 via each communication passage 55. The retraction supply / discharge port 21 also communicates with the retraction pressure chamber 35 via the unit accommodation chamber 33 and the throttle 60. Thus, each lock release pressure chamber 48 communicates with the retraction supply / discharge port 21 and the retraction pressure chamber 35, respectively. When compressed air is supplied to the retraction supply / discharge port 21, the compressed air supplied to the unit storage chamber 33 does not flow into the retraction pressure chamber 35 via the check valve 59 of the partition wall 25. It will be introduced through the squeeze 60. Since the throttle 60 has a small flow passage cross-sectional area and a small allowable passage flow rate, a back pressure is generated inside the unit accommodation chamber 33, and the pressure rises. For this reason, the pressure in the unlocking pressure chamber 48 in each of the lock cylinders 17 and 117 increases through the communication passage 55 before the pressure chamber 35 for retreating, and the fastening rods 45 and 145 are raised to the retreat position. Will be. Thereafter, the compressed air is sufficiently introduced into the retreat pressure chamber 35, and the main piston 23 is moved in the retreat direction. When compressed air is supplied to the retraction supply / discharge port 21 in this manner, the main piston 23 retreats after the fastening rods 45 and 145 have moved to the retreat position.
[0048] 図 4に示すように、コンプレッサなどの圧縮空気源 65が流路切換弁 66の入力ポート 66aに接続され、前進用給排ポート 20に接続する前進用流体流路 67および後退用 給排ポート 21に接続する後退用流体流路 68が流路切換弁 66の 2つの出力ポート 6 6b, 66cにそれぞれ接続されている。前進用流体流路 67には、流路切換弁 66から 前進用給排ポート 20に向力う空気の流れを許容し逆方向の流れを阻止するチェック 弁 67aが設けられており、チェック弁 67aには絞り 67bが並列に接続されている。 As shown in FIG. 4, a compressed air source 65 such as a compressor is connected to the input port 66 a of the flow path switching valve 66, and a forward fluid flow path 67 connected to the forward supply / discharge port 20 and a reverse supply A retreating fluid flow path 68 connected to the discharge port 21 is connected to the two output ports 66b and 66c of the flow path switching valve 66, respectively. The forward fluid flow path 67 is provided with a check valve 67a that allows the flow of air from the flow path switching valve 66 to the forward supply / discharge port 20 and prevents the flow in the reverse direction. The aperture 67b is connected in parallel with the.
[0049] ロック用給排ポート 61はロック用流体流路 69を介してチェック弁 67aより流路切換 弁 66側の前進用流体流路 67に接続されている。流路切換弁 66は 2つの切換位置 を切り換えることにより、前進用流体流路 67および後退用流体流路 68のどちらか一 方を圧縮空気源 65に接続して圧縮空気を供給し、他方を外部大気に開放して圧縮 空気を排出する。 The lock supply / discharge port 61 is connected via a lock fluid flow path 69 to a forward fluid flow path 67 on the flow path switching valve 66 side from the check valve 67a. By switching between the two switching positions, the flow path switching valve 66 connects one of the forward fluid path 67 and the backward fluid path 68 to the compressed air source 65 to supply compressed air, and supplies the other. Release to the outside air to discharge compressed air.
[0050] ロックユニットハウジング 13に形成された給排ポート 61を介して供給される圧縮空 気(ロック流体)は、図 4に示す流体導入路 62を介してロックシリンダ 17の流体導入 孔 52に供給される。ロックシリンダ 17のヘッドカバー 44に形成された流体排出孔 53 は、流体連絡路 63を介してロックシリンダ 117の流体導入孔 152に連通し、ロックシリ ンダ 17のロック圧力室 47を介して圧縮空気が供給されるようになって 、る。このように 、給排ポート 61に圧縮空気を供給すると、流体導入路 62を介してロックシリンダ 17内 のロック圧力室 47に圧縮空気が供給され締結ロッド 45を作動位置まで下降移動し、
さらにロックシリンダ 17内のロック圧力室 47から流体連絡路 63を介してロックシリンダ 117内のロック圧力室 47に圧縮空気が供給されて締結ロッド 145が作動位置まで下 降移動する。 [0050] Compressed air (lock fluid) supplied through a supply / discharge port 61 formed in the lock unit housing 13 is supplied to a fluid introduction hole 52 of the lock cylinder 17 through a fluid introduction path 62 shown in FIG. Supplied. The fluid discharge hole 53 formed in the head cover 44 of the lock cylinder 17 communicates with the fluid introduction hole 152 of the lock cylinder 117 via the fluid communication channel 63, and compressed air is supplied through the lock pressure chamber 47 of the lock cylinder 17 It is now being done. As described above, when the compressed air is supplied to the supply / discharge port 61, the compressed air is supplied to the lock pressure chamber 47 in the lock cylinder 17 via the fluid introduction path 62, and the fastening rod 45 is moved down to the operation position, Further, compressed air is supplied from the lock pressure chamber 47 in the lock cylinder 17 to the lock pressure chamber 47 in the lock cylinder 117 via the fluid communication path 63, and the fastening rod 145 moves down to the operating position.
[0051] 次に、図 3に示すようにピストンロッド 14が駆動シリンダ 12内に後退した状態から、 ピストンロッド 14を前進移動させる際の締結ロッド 45の動作について図 5および図 6 を参照して説明する。 Next, with reference to FIGS. 5 and 6, the operation of the fastening rod 45 when the piston rod 14 is moved forward from the state in which the piston rod 14 is retracted into the drive cylinder 12 as shown in FIG. 3 will be described with reference to FIGS. explain.
[0052] ピストンロッド 14が後退限位置となっている状態では、後退用給排ポート 21からュ ニット収容室 33およびロック解除圧力室 48に圧縮空気が供給された状態となってい る。ロック解除圧力室 48にカ卩えられる圧縮空気によって締結ロッド 45にはロック用ば ね部材 46を圧縮する上昇方向に押圧力が加えられ、締結ロッド 45はロックスリーブ 3 8から離れるように上昇している。なお、ロックピストン 45aの受圧面積は、ロック用ば ね部材 46からのばね力に抗する押圧力を発生させるのに十分な面積に設定されて いる。 When the piston rod 14 is at the retreat limit position, compressed air is supplied from the retreat supply / discharge port 21 to the unit housing chamber 33 and the unlocking pressure chamber 48. A pressing force is applied to the fastening rod 45 in the upward direction for compressing the locking spring member 46 by the compressed air collected in the unlocking pressure chamber 48, and the fastening rod 45 is lifted away from the lock sleeve 38. ing. The pressure receiving area of the lock piston 45a is set to a sufficient area to generate a pressing force against the spring force from the locking spring member 46.
[0053] 締結ロッド 45が上昇移動すると、締結ロッド 45とロックスリーブ 38との接触は回避さ れるため、解除用ばね部材 40のばね力によってロックスリーブ 38は解除位置に向け て後退移動する。後退移動した状態のもとでは、ロックスリーブ 38の端面とロッドカバ 一 31の端面との間に、図 5 (A)に示すように、所定のクリアランス C2が形成される。こ のように、ロックスリーブ 38が解除位置に作動すると、ロックスリーブ 38の内周面 38a と鋼球 36との間には所定のクリアランス C3が設けられるため、ロックユニット 29は鋼 球 36がピストンロッド 14に押圧されない解除状態となる。 When the fastening rod 45 moves upward, the contact between the fastening rod 45 and the lock sleeve 38 is avoided, so that the lock sleeve 38 moves backward toward the release position by the spring force of the release spring member 40. Under the retracted state, a predetermined clearance C2 is formed between the end face of the lock sleeve 38 and the end face of the rod cover 31 as shown in FIG. As described above, when the lock sleeve 38 operates to the release position, a predetermined clearance C3 is provided between the inner peripheral surface 38a of the lock sleeve 38 and the steel ball 36. It is in a released state where it is not pressed by the rod 14.
[0054] この状態のもとで、前進用給排ポート 20より前進用圧力室 34に圧縮空気を供給す るとともに、後退用圧力室 35内から圧縮空気を排出すると、メインピストン 23とピスト ンロッド 14は、図 5 (A)に矢印 aで示す前進方向に向けて移動される。このとき、後退 用圧力室 35内の空気はメインピストン 23の移動に伴ってチェック弁 59および絞り 60 を介してユニット収容室 33に流入し、給排路 22を介して後退用給排ポート 21より後 退用流体流路 68に排出される。これと同時に後退用流体流路 68に設けられた絞り 6 8bによりユニット収容室 33内の空気は圧縮されて圧力が上昇することになる。すなわ ち、ユニット収容室 33にはメインピストン 23の移動速度に応じた背圧(ロック解除流体
による押圧空気圧)力生じることになる。 In this state, when compressed air is supplied from the forward supply / discharge port 20 to the forward pressure chamber 34 and the compressed air is discharged from the backward pressure chamber 35, the main piston 23 and the piston rod 14 is moved in the forward direction indicated by the arrow a in FIG. At this time, the air in the retreat pressure chamber 35 flows into the unit housing chamber 33 through the check valve 59 and the throttle 60 with the movement of the main piston 23, and the retreat supply / discharge port 21 The fluid is further discharged to the retreating fluid channel 68. At the same time, the air in the unit storage chamber 33 is compressed by the throttle 68b provided in the retreating fluid flow channel 68, and the pressure increases. That is, the back pressure (lock release fluid) corresponding to the moving speed of the main piston 23 is stored in the unit accommodation room 33. Pressure).
[0055] ユニット収容室 33に生じる背圧は、連通路 55を介してロック解除圧力室 48に加え られるため、締結ロッド 45〖こはロック用ばね部材 46を圧縮する上昇方向に押圧力が 加えられ、締結ロッド 45は退避位置に保持されることになる。ユニット収容室 33に生 じた背圧を受けるロックピストン 45aの受圧面積は、ロック用ばね部材 46からのばね 力に抗する押圧力を発生させるのに十分な面積に設定されている。つまり、前進用 給排ポート 20より前進用圧力室 34に圧縮空気を供給することによってピストンロッド 1 4を前進方向に移動させる際には、 2つのロックユニット 29, 129は解除状態に保持 されるため、ピストンロッド 14の前進移動が可能となる。このように、ピストンロッド 14を 前後進移動させる場合には、絞り 59, 68aによって生じる背圧によりロックユニット 29 を解除状態とすることができ、ピストンロッド 14の前後進移動が許容される。一方、後 退用圧力室 35に圧縮空気を供給するとともに前進用圧力室 34内の圧縮空気を排 出することにより、ピストンロッド 14を矢印 b方向に後退移動させる場合であっても、前 述したように絞り 60によりロック解除圧力室 48に背圧が付加されるためロックユニット 29は解除状態となる。 Since the back pressure generated in the unit storage chamber 33 is applied to the unlocking pressure chamber 48 via the communication passage 55, a pressing force is applied to the fastening rod 45 in the upward direction for compressing the locking spring member 46. As a result, the fastening rod 45 is held at the retracted position. The pressure receiving area of the lock piston 45a that receives the back pressure generated in the unit housing chamber 33 is set to an area sufficient to generate a pressing force against the spring force from the locking spring member 46. That is, when the piston rod 14 is moved in the forward direction by supplying compressed air from the forward supply / discharge port 20 to the forward pressure chamber 34, the two lock units 29 and 129 are held in the released state. Therefore, the forward movement of the piston rod 14 becomes possible. As described above, when the piston rod 14 is moved forward and backward, the lock unit 29 can be released by the back pressure generated by the throttles 59 and 68a, and the piston rod 14 is allowed to move forward and backward. On the other hand, even if the piston rod 14 is moved backward in the direction of the arrow b by supplying compressed air to the retreat pressure chamber 35 and discharging compressed air in the forward pressure chamber 34, As described above, since the back pressure is applied to the unlocking pressure chamber 48 by the throttle 60, the lock unit 29 is released.
[0056] 次に、ピストンロッド 14が前進限位置となった場合や、ピストンロッド 14の前進移動 が制限されてメインピストン 23が停止する場合について説明する。まず、前進用流体 流路 67に圧縮空気源 65が接続されてピストンロッド 14が前進移動しているときには 、ロック用流体流路 69を介して給排ポート 61にも圧縮空気が供給されていることにな る。このときには、ロック圧力室 47に開口する流体導入孔 52には、締結ロッド 45が退 避位置に上昇移動して流体導入孔 52とロック圧力室 47とがプランジャ 50により遮断 された状態のもとで、流体導入路 62から圧縮空気が供給されている。このとき、ブラ ンジャ 50には貫通孔 50cが設けられているので、プランジャ 50は流体導入孔 52から の圧縮空気による圧力を下降方向に受けることがなぐ流体導入孔 52とロック圧力室 47との遮断状態は確実に保持される。 Next, the case where the piston rod 14 is at the forward limit position or the case where the forward movement of the piston rod 14 is limited and the main piston 23 stops will be described. First, when the compressed air source 65 is connected to the forward fluid channel 67 and the piston rod 14 is moving forward, compressed air is also supplied to the supply / discharge port 61 via the locking fluid channel 69. It will be. At this time, the fastening rod 45 moves upward to the retracted position in the fluid introduction hole 52 opened to the lock pressure chamber 47 under a state where the fluid introduction hole 52 and the lock pressure chamber 47 are shut off by the plunger 50. Thus, compressed air is supplied from the fluid introduction path 62. At this time, since the plunger 50 is provided with the through hole 50c, the plunger 50 does not receive the pressure of the compressed air from the fluid introduction hole 52 in the downward direction. The shut-off state is reliably maintained.
[0057] メインピストン 23が停止すると、ユニット収容室 33内の空気は圧縮されることなく流 路切換弁 66より排出されるため、ユニット収容室 33内の背圧は徐々に低下する。そ して、ロック用ばね部材 46からのばね力に対向してロックピストン 45aに加えられてい
た上昇方向の押圧力は背圧低下に伴って低下し、図 5 (B)に示すように、ロックピスト ン 45aを上昇させる押圧力が所定の押圧力を下回ると、ロックピストン 45aはロック用 ばね部材 46からのばね力によって下降方向に付勢され、ロックスリーブ 38を締結位 置に向けて押し込みながら下降移動することになる。 When the main piston 23 stops, the air in the unit storage chamber 33 is discharged from the flow path switching valve 66 without being compressed, so that the back pressure in the unit storage chamber 33 gradually decreases. Then, the spring force is applied to the lock piston 45a in opposition to the spring force from the lock spring member 46. As shown in Fig. 5 (B), when the pressing force for raising the lock piston 45a falls below a predetermined pressing force, the lock piston 45a is used for locking. It is urged in the downward direction by the spring force from the spring member 46, and moves downward while pushing the lock sleeve 38 toward the fastening position.
[0058] このとき、プランジャ 50はプランジャ用ばね部材 51によって上昇方向に付勢される ため、ロックピストン 45aが下降移動を開始してもプランジャ 50のロッド部 50bと弁座 5 4との接触状態は保たれる。つまり、流体導入路 62とロック圧力室 47との遮断状態は 継続されるため、ばね力のみによって締結ロッド 45は下降方向に付勢されることとな る。なお、ロックピストン 45aの下降移動によりロック圧力室 47内は負圧となる力 この 負圧に対抗して締結ロッド 45の下降移動を継続するように、ロック用ばね部材 46の ばね力は設定されている。 At this time, since the plunger 50 is urged in the ascending direction by the plunger spring member 51, the contact state between the rod portion 50b of the plunger 50 and the valve seat 54 even when the lock piston 45a starts moving downward. Is kept. That is, since the state of blocking between the fluid introduction path 62 and the lock pressure chamber 47 is continued, the fastening rod 45 is urged in the downward direction only by the spring force. The negative pressure is generated in the lock pressure chamber 47 by the downward movement of the lock piston 45a. The spring force of the lock spring member 46 is set so that the downward movement of the fastening rod 45 is continued against this negative pressure. ing.
[0059] ロック用ばね部材 46のばね力によって締結ロッド 45が下降方向に所定のストローク The fastening rod 45 is moved downward by a predetermined stroke by the spring force of the locking spring member 46.
(例えば 2mm)で移動すると、ロックスリーブ 38は締結ロッド 45の下降移動に伴って 前進方向に所定のストローク(例えば 0. 8mm)で移動する。図 5 (B)に示すように、口 ックスリーブ 38が前進移動すると、ロックスリーブ 38の内周面 38aと鋼球 36との間に 設けられていたクリアランス C3が無くなり、ピストンロッド 14の外周面とロックスリーブ 3 8の内周面 38aとに鋼球 36が接触して挟まれた状態となり、ロックユニット 29の締結 作動が開始される。 When the lock sleeve 38 moves at a predetermined stroke (for example, 0.8 mm) as the fastening rod 45 moves down, the lock sleeve 38 moves at a predetermined stroke (for example, 0.8 mm). As shown in FIG. 5 (B), when the lock sleeve 38 moves forward, the clearance C3 provided between the inner peripheral surface 38a of the lock sleeve 38 and the steel ball 36 is lost, and the outer peripheral surface of the piston rod 14 The steel ball 36 comes into contact with the inner peripheral surface 38a of the lock sleeve 38 to be sandwiched therebetween, and the fastening operation of the lock unit 29 is started.
[0060] 図 5 (B)に示すように、締結ロッド 45の下降移動が所定のストロークに達すると、プ ランジャ 50のピストン部 50aとばね受け部材 49との間に形成されていたクリアランス C 1がなくなり、ピストン部 50aとばね受け部材 49とが接触した状態となる。続いて、図 6 (A)に示すように、締結ロッド 45が更に下降移動すると、プランジャ 50は締結ロッド 4 5とともに下降移動する。この下降移動によりプランジャ 50のロッド部 50bが弁座 54よ り引き離されると、流体導入孔 52とロック圧力室 47とは連通状態となり、流体導入路 62からの圧縮空気がロック圧力室 47に供給される。この動作は外部切換弁を必要と せず、自動的に動作する。図 6 (A)に示す状態では、ロック用ばね部材 46からのば ね力に加えて、ロック圧力室 47に供給された圧縮空気(ロック流体)による推力が締 結ロッド 45に加えられる。
[0061] 図 6 (B)に示すように、ロック用ばね部材 46によるばね力と圧縮空気による推力とが 加えられた締結ロッド 45が更に下降移動すると、締結ロッド 45によって連結プレート 16側のロックスリーブ 38は更に前進方向に押し込まれる。そして、ロックスリーブ 38と ロッドカバー 31との間のクリアランス力 所定のクリアランス C4に縮められた状態、つ まりロックスリーブ 38が締結位置まで押し込まれた状態となると、鋼球 36がロックスリ ーブ 38とピストンロッド 14とに対して食い込んだ締結状態となる。このように、口ツクユ ニット 29が締結状態に切り換えられると、メインピストン 23およびピストンロッド 14はそ の停止位置に固定される。また、ロックユニット 29が締結状態に切り換えられると、ピ ストンロッド 14、鋼球 36およびロックスリーブ 38は互いに弾性変形した状態で保持さ れるため、ピストンロッド 14やロックユニット 29には所定の歪み力が蓄えられた状態と なっている。 As shown in FIG. 5 (B), when the downward movement of the fastening rod 45 reaches a predetermined stroke, the clearance C 1 formed between the piston portion 50a of the plunger 50 and the spring receiving member 49 Disappears, and the piston portion 50a and the spring receiving member 49 come into contact with each other. Subsequently, as shown in FIG. 6A, when the fastening rod 45 further moves down, the plunger 50 moves down together with the fastening rod 45. When the rod portion 50b of the plunger 50 is separated from the valve seat 54 by this downward movement, the fluid introduction hole 52 and the lock pressure chamber 47 are in communication with each other, and compressed air from the fluid introduction passage 62 is supplied to the lock pressure chamber 47. Is done. This operation does not require an external switching valve and operates automatically. In the state shown in FIG. 6 (A), in addition to the spring force from the lock spring member 46, a thrust by the compressed air (lock fluid) supplied to the lock pressure chamber 47 is applied to the fastening rod 45. As shown in FIG. 6B, when the fastening rod 45 to which the spring force of the locking spring member 46 and the thrust by the compressed air are further moved downward, the fastening rod 45 locks the connection plate 16. The sleeve 38 is pushed further in the forward direction. Then, when the clearance force between the lock sleeve 38 and the rod cover 31 is reduced to a predetermined clearance C4, that is, when the lock sleeve 38 is pushed to the fastening position, the steel ball 36 is connected to the lock sleeve 38. It is in a fastening state biting into the piston rod 14. As described above, when the mouth unit 29 is switched to the fastening state, the main piston 23 and the piston rod 14 are fixed at their stop positions. Further, when the lock unit 29 is switched to the fastening state, the piston rod 14, the steel ball 36 and the lock sleeve 38 are held in an elastically deformed state with respect to each other. Is stored.
[0062] なお、ロックユニット 29が締結状態に切り換えられても、ロックスリーブ 38とロッド力 バー 31との間には所定のクリアランス C4が設けられるため、ロックスリーブ 38には更 なる前進移動が許容される。そして、ピストンロッド 14と締結されたロックスリーブ 38に 伝達されるロック用ばね部材 46からのばね力とロック圧力室 47からの推力とは、弓 Iき 続きロックスリーブ 38を介してピストンロッド 14に前進方向に向けてカ卩えられることに なる。 [0062] Even if the lock unit 29 is switched to the engaged state, a predetermined clearance C4 is provided between the lock sleeve 38 and the rod force bar 31, so that the lock sleeve 38 is allowed to move further forward. Is done. The spring force from the lock spring member 46 and the thrust from the lock pressure chamber 47 transmitted to the lock sleeve 38 fastened to the piston rod 14 are applied to the piston rod 14 through the bow I and the lock sleeve 38. You will be able to move forward.
[0063] ロック用ばね部材 46からのばね力とロック圧力室 47からの推力力 鋭角に形成さ れたロックテーパ面 45dと鈍角に形成されたテーパ面 38bとを介してロックスリーブ 38 に伝達されるため、ロック用ばね部材 46からのばね力とロック圧力室 47からの推力 は増大されてピストンロッド 14に伝達される。ロックスリーブ 38が締結位置に移動する と、ロックスリーブ 38の後退方向にテーパロッド部 45eが入り込んだ状態となるため、 ロック解除圧力室 48に圧縮空気を供給するまでは、確実にロックユニット 29の締結 状態を維持することができる。 [0063] The spring force from the lock spring member 46 and the thrust force from the lock pressure chamber 47 are transmitted to the lock sleeve 38 via the lock taper surface 45d formed at an acute angle and the taper surface 38b formed at an obtuse angle. Therefore, the spring force from the lock spring member 46 and the thrust from the lock pressure chamber 47 are increased and transmitted to the piston rod 14. When the lock sleeve 38 moves to the fastening position, the taper rod portion 45e enters in the retreating direction of the lock sleeve 38, so that the lock unit 29 is securely fastened until compressed air is supplied to the unlock pressure chamber 48. The state can be maintained.
[0064] ロックスリーブ 38の移動に伴ってばね受け部材 39が前進移動した場合であっても 、鋼球 36を保持する保持器 37とばね受け部材 39の底部との間に設けられる保持用 ばね部材 41によって、保持器 37は位置決めスリーブ 42を介してストッパ 13aに当接 した状態を保つことができるため、鋼球 36の位置が移動することはなぐ確実にロック
ユニット 29を締結状態に切り換えることができる。 [0064] Even when the spring receiving member 39 moves forward with the movement of the lock sleeve 38, a retaining spring provided between the retainer 37 for retaining the steel ball 36 and the bottom of the spring receiving member 39. Since the retainer 37 can be kept in contact with the stopper 13a via the positioning sleeve 42 by the member 41, the position of the steel ball 36 can be securely locked without moving. The unit 29 can be switched to the fastening state.
[0065] 前述の説明では、ピストンロッド 14の前進移動が規制され、メインピストン 23が停止 した場合について説明したが、前進用圧力室 34に対する圧縮空気の供給を停止す ることによってメインピストン 23を停止した場合であっても、同様にロックユニット 29を 締結状態に切り換えることができる。また、連結プレート 16の押し込みなどによりビス トンロッド 14を後退移動させる場合であっても、ユニット収容室 33内の空気を後退用 圧力室 35に導入し、ロック解除圧力室 48内の圧力を下げることによって、口ツクユ二 ット 29を締結状態に切り換えることができる。 In the above description, the case where the forward movement of the piston rod 14 is restricted and the main piston 23 stops has been described. However, the supply of the compressed air to the forward pressure chamber 34 is stopped so that the main piston 23 is stopped. Even in the case of stopping, the lock unit 29 can be similarly switched to the fastening state. In addition, even when the biston rod 14 is moved backward by pushing the connecting plate 16 or the like, the air in the unit housing chamber 33 is introduced into the retreat pressure chamber 35 to reduce the pressure in the unlocking pressure chamber 48. Thus, the mouthpiece 29 can be switched to the fastening state.
[0066] このように、ピストンロッド 14の前進移動時に、ピストンロッド 14の移動を制限したり、 前進用圧力室 34に対する圧縮空気の供給を停止することによってメインピストン 23 を停止させた場合や、連結プレート 16の押し込みによりユニット収容室 33の圧力が 低下した場合などには、ロックユニット 29は締結状態に切り換えられる。 As described above, when the main piston 23 is stopped by restricting the movement of the piston rod 14 during the forward movement of the piston rod 14 or by stopping the supply of the compressed air to the forward pressure chamber 34, For example, when the pressure of the unit housing chamber 33 is reduced by pushing the connecting plate 16, the lock unit 29 is switched to the fastening state.
[0067] ロックユニット 29は、ピストンロッド 14の後退方向の移動に対して鋼球 36をロックスリ ーブ 38の内周面 38aに押し付けて締結状態をより確実にすることができる力 その逆 方向であるピストンロッド 14の前進方向の移動に対しては鋼球 36がロックスリーブ 38 の拘束力も外れて締結状態を緩めてしまう可能性がある。 [0067] The lock unit 29 presses the steel ball 36 against the inner peripheral surface 38a of the lock sleeve 38 against the movement of the piston rod 14 in the retreating direction so that the fastening state can be more surely secured. When the piston rod 14 moves in the forward direction, there is a possibility that the steel ball 36 loses the restraining force of the lock sleeve 38 and loosens the fastening state.
[0068] しかしながら、本発明の流体圧シリンダ 11は、 2つのロックユニット 29, 129を有して おり、ピストンロッド 14の前進方向の移動に対しても締結状態が確保される。それぞ れのロックユニット 29, 129のロックスリーブ 38の内周面 38aは相互に逆向きとなって おり、締結ロッド 45のテーパ面 45d (押圧面)がー方のロックユニット 29のテーパ面 3 8b (傾斜面)に接触し、締結ロッド 145のテーパ面 45d (押圧面)が他方の口ツクユ- ット 129のテーパ面 38b (傾斜面)に接触するようになっているので、ピストンロッド 14 の軸方向位置を前進側と後退側の両方向に対して固定でき、 2つのロックユニット 29 , 129にそれぞれ蓄えられる歪み力についても相互に逆方向で相殺しあうよう蓄える ことになり、ピストンロッド 14の軸方向位置を前進側と後退側の両方向に対して確実 に締結固定できるようになつている。 However, the fluid pressure cylinder 11 of the present invention has the two lock units 29 and 129, and the fastening state is ensured even when the piston rod 14 moves in the forward direction. The inner peripheral surfaces 38a of the lock sleeves 38 of the lock units 29, 129 are opposite to each other, and the tapered surface 45d (pressing surface) of the fastening rod 45 is opposite to the tapered surface 3 of the lock unit 29. 8b (inclined surface) and the tapered surface 45d (pressing surface) of the fastening rod 145 comes into contact with the tapered surface 38b (inclined surface) of the other mouthpiece 129. Can be fixed in both the forward and backward directions, and the distortion forces stored in the two lock units 29 and 129 can be stored so as to cancel each other in the opposite directions. The axial position can be securely fastened and fixed in both forward and backward directions.
[0069] 2つのロックユニット 29, 129は、ロック圧力室 47内の圧縮空気による推力とロック 用ばね部材 46の推力とを用いてピストンロッド 14を締結するので、ロックユニット 29,
129による締結力を低下させることなくロック用ばね部材 46からのばね力を低く設定 することができる。これにより、流体圧シリンダ 11の小型化や低コスト化を達成すること ができる。 [0069] The two lock units 29, 129 fasten the piston rod 14 using the thrust of the compressed air in the lock pressure chamber 47 and the thrust of the lock spring member 46. The spring force from the locking spring member 46 can be set low without reducing the fastening force by the 129. As a result, the size and cost of the fluid pressure cylinder 11 can be reduced.
[0070] 2つのロック圧力室 47はロック流体供給路を介して直列に接続されて順に圧縮空 気が供給されるので、ピストンロッド 14を締結する際には 2つの締結ロッド 45, 145の 作動に時間差を設けることができ、 2つのロックユニット 29, 129に対して順に遊びを 取り除くことから同時に作動させる場合と比較して各ロックユニット 29, 129における 遊びを良好に取り除くことができる。特に本実施の形態においてはロックユニット 29を 先に作動させてその後にロックユニット 129を作動させて 、ることから、図 1に示すよう にピストンロッド 14と連結プレート 16の前進移動を制限した状態で固定させる前進制 限型の利用形態において最も良好に各ロックユニット 29, 129における遊びを取り除 くことができ、確実な固定が可能となる。またロック圧力室 47間の流体連絡路 63の長 さを変えることにより作動の時間差を変えることもできる。 [0070] Since the two lock pressure chambers 47 are connected in series via a lock fluid supply path and are supplied with compressed air in order, when the piston rod 14 is fastened, the operation of the two fastening rods 45 and 145 is performed. A time lag can be provided between the two lock units 29 and 129, so that the play in each lock unit 29 and 129 can be removed better than in the case where the lock units 29 and 129 are operated simultaneously. In particular, in the present embodiment, since the lock unit 29 is operated first and then the lock unit 129 is operated, the forward movement of the piston rod 14 and the connection plate 16 is restricted as shown in FIG. The play in each lock unit 29, 129 can be best removed in the forward-restricted type of use mode in which the lock is fixed by the lock, and the lock can be securely performed. Further, by changing the length of the fluid communication passage 63 between the lock pressure chambers 47, the operation time difference can be changed.
[0071] ロック圧力室 47内の圧縮空気による推力とロック用ばね部材 46のばね力は、締結 状態となったロックユニット 29, 129を介してピストンロッド 14に軸方向に加えられるた め、ロックユニット 29, 129に歪み力を蓄えることができる。これによりロック圧力室 47 から圧縮空気を排出した後であつても、歪み力とばね力とにより高 、締結力を維持す ることがでさる。 [0071] The thrust by the compressed air in the lock pressure chamber 47 and the spring force of the lock spring member 46 are applied to the piston rod 14 in the axial direction via the lock units 29 and 129 in the engaged state. Units 29 and 129 can store distortion power. As a result, even after the compressed air is discharged from the lock pressure chamber 47, it is possible to maintain a high fastening force due to the distortion force and the spring force.
[0072] プランジャ 50によってロック圧力室 47に対する圧縮空気の供給と遮断とが、締結口 ッド 45のストロークに応じて切り換えられるため、ロックユニット 29の遊びを取り除いた 後に、ロック圧力室 47内の圧縮空気による強い推力をロックユニット 29を介してピスト ンロッド 14に伝達することができる。これにより、締結ロッド 45のストロークを無駄にす ることなく、ロックユニット 29に歪み力を蓄えることが可能となる。ロックシリンダ 117に おいては、締結ロッド 145が締結ロッド 45と同じタイミングでロックユニット 29, 129の 遊びを取り除くことができ、その後にロックシリンダ 17の流体排出孔 53からロックシリ ンダ 117の流体導入孔 152に圧縮空気が導入されることになるため、プランジャ 50を 備えなくともストロークに応じた圧縮空気の供給と遮断が切り換えられることができる。 The supply and cutoff of the compressed air to the lock pressure chamber 47 are switched by the plunger 50 in accordance with the stroke of the fastening port 45, so that after the play of the lock unit 29 is removed, the inside of the lock pressure chamber 47 is removed. Strong thrust by the compressed air can be transmitted to the piston rod 14 via the lock unit 29. This makes it possible to store the distortion force in the lock unit 29 without wasting the stroke of the fastening rod 45. In the lock cylinder 117, the play of the lock units 29 and 129 can be eliminated at the same timing as the fastening rod 45 with the fastening rod 145, and then the fluid discharge hole 53 of the lock cylinder 17 and the fluid introduction hole of the lock cylinder 117. Since the compressed air is introduced into the 152, the supply and cutoff of the compressed air can be switched according to the stroke without providing the plunger 50.
[0073] 締結ロッド 45が退避位置に上昇移動したときには、締結ロッド 45に組み込まれたプ
ランジャ 50によってロック圧力室 47と流体導入孔 52とは遮断状態に切り換えられる 一方、締結ロッド 45が所定のストロークで下降移動したときには、ロック圧力室 47と流 体導入孔 52とは連通状態に切り換えられる。これにより、締結ロッド 45が作動位置に 向けて下降移動を開始する前であっても、ロックユニット 29を締結状態に切り換える 際に備えて流体導入孔 52に予め圧縮空気を供給しておくことができ、圧力供給制御 の自由度を高めることができる。また、プランジャ 50を締結ロッド 45に対して往復動 自在に組み込むことにより、各部材の寸法誤差や組み付け誤差による影響を受ける ことなく、ロックユニット 29の解除状態においてロック圧力室 47に対する圧縮空気の 供給を確実に停止することができる。これにより、ロックユニット 29の解除状態におけ る誤作動を回避することができる。 When the fastening rod 45 moves upward to the retracted position, the push rod incorporated in the fastening rod 45 The lock pressure chamber 47 and the fluid introduction hole 52 are switched to the shut-off state by the lancer 50.On the other hand, when the fastening rod 45 moves down by a predetermined stroke, the lock pressure chamber 47 and the fluid introduction hole 52 are switched to the communication state. Can be Thus, even before the fastening rod 45 starts to move downward toward the operating position, compressed air can be supplied to the fluid introduction hole 52 in advance in preparation for switching the lock unit 29 to the fastening state. Pressure control can be increased. In addition, by incorporating the plunger 50 reciprocally with respect to the fastening rod 45, the compressed air is supplied to the lock pressure chamber 47 when the lock unit 29 is released without being affected by dimensional errors and assembly errors of each member. Can be reliably stopped. As a result, malfunction in the unlocked state of the lock unit 29 can be avoided.
[0074] 図 7は本発明の他の実施の形態である流体圧シリンダの縦断面図であり、図 7にお いては図 3に示された部材と共通する部材には同一の符号が付されている。図 3に 示す流体圧シリンダ 11にお 、ては 2つのロックシリンダ 17, 117が同一側面に並列と なってロックユニットハウジング 13に取り付けられているのに対し、図 7に示す流体圧 シリンダ 211は 2つのロックシリンダ 17, 117が互いに逆側に対向させ、軸方向にォ 一バーラップさせてロックユニットハウジング 213に取り付けられている。 FIG. 7 is a longitudinal sectional view of a fluid pressure cylinder according to another embodiment of the present invention. In FIG. 7, members common to the members shown in FIG. 3 are denoted by the same reference numerals. Have been. In the hydraulic cylinder 11 shown in FIG. 3, two lock cylinders 17 and 117 are mounted on the lock unit housing 13 in parallel on the same side, whereas the hydraulic cylinder 211 shown in FIG. The two lock cylinders 17 and 17 are attached to the lock unit housing 213 so as to oppose each other on the opposite side and overlap each other in the axial direction.
[0075] 図 7に示す流体圧シリンダ 211においても、ピストンロッド 14の軸方向位置を前進 側と後退側の両方向に対して締結力を加えることができる。さらに、 2つの口ツクユ- ット 29, 129を接近させることができ、流体圧シリンダ 211全体の軸方向長さを短く構 成することができる。またユニット収容室 233を備えるロックユニットハウジング 213が 円筒などの筒形状である場合には、 2つのロックシリンダ 17, 117を反対側に限らず にピストンロッド 14の軸周りに任意の角度でずらした配置で設置してもよい。 [0075] Also in the hydraulic cylinder 211 shown in Fig. 7, the fastening force can be applied to the axial position of the piston rod 14 in both the forward and backward directions. Furthermore, the two mouthpieces 29 and 129 can be made closer to each other, and the entire length of the fluid pressure cylinder 211 in the axial direction can be reduced. When the lock unit housing 213 having the unit accommodation chamber 233 has a cylindrical shape such as a cylinder, the two lock cylinders 17, 117 are not limited to the opposite sides but are shifted at any angle around the axis of the piston rod 14. It may be installed in an arrangement.
[0076] 図 8は本発明の更に他の実施の形態である流体圧シリンダの縦断面図である。図 8 において図 3に示された部材と共通する部材には同一の符号を付して、その説明を 省略する。 FIG. 8 is a longitudinal sectional view of a fluid pressure cylinder according to still another embodiment of the present invention. In FIG. 8, members common to those shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.
[0077] 図 8に示す流体圧シリンダ 311のロックユニットハウジング 313に取り付けられた 2つ のロックシリンダ 17, 117のうち左側のロックシリンダ 117にはプランジャ 50が組み込 まれている。したがって、この流体圧シリンダ 311においては、ロックシリンダ 117の締
結ロッド 145が先にピストンロッド 14に向けて前進移動し、ピストンロッド 14の後退移 動が制限された時点でピストンロッド 14を両方向に対して締結力を加えることになる。 [0077] The plunger 50 is incorporated in the left lock cylinder 117 of the two lock cylinders 17, 117 attached to the lock unit housing 313 of the fluid pressure cylinder 311 shown in FIG. Therefore, in this hydraulic cylinder 311, the lock cylinder 117 is tightened. The connecting rod 145 moves forward toward the piston rod 14 first, and when the backward movement of the piston rod 14 is restricted, a fastening force is applied to the piston rod 14 in both directions.
[0078] 図 8に示す流体圧シリンダ 311は、仕切り壁 325にチェック弁や絞りを設けていない ことから後退用圧力室 35とユニット収容室 33の間は気密的に遮断された状態となつ ており、後退用給排ポート 321は後退用圧力室 35だけに直接連通するよう形成され ている。ロックユニットノヽウジング 313には、ユニット収容室 33に連通する解除用給排 ポート 364が設けられており、この給排ポート 364はユニット収容室 33を介して各ロッ クシリンダ 17, 117内のロック解除圧力室 48に連通している。 In the fluid pressure cylinder 311 shown in FIG. 8, since the partition wall 325 is not provided with a check valve or a throttle, the space between the retreat pressure chamber 35 and the unit storage chamber 33 is airtightly shut off. The retraction supply / discharge port 321 is formed so as to directly communicate only with the retraction pressure chamber 35. The lock unit housing 313 is provided with a release supply / discharge port 364 communicating with the unit storage chamber 33, and the supply / discharge port 364 is used to release the lock in each lock cylinder 17, 117 through the unit storage chamber 33. It communicates with the pressure chamber 48.
[0079] 図 9は図 8に示された駆動シリンダと 2つのロックシリンダに対して圧縮空気を供給 するための流体圧回路を示す回路図である。図 9に示すように、コンプレッサなどの 圧縮空気源 365が流路切換弁 366の入力ポート 366aに接続されており、前進用給 排ポート 20に接続する前進用流体流路 367および後退用給排ポート 21に接続する 後退用流体流路 368が流路切換弁 366の 2つの出力ポート 366b, 366cにそれぞ れ接続されている。前進用流体流路 367および後退用流体流路 368のそれぞれの 途中位置には、流路切換弁 366から各給排ポート 20, 21に向力う空気の流れを許 容し逆方向の流れを阻止するチェック弁 367a, 368aが設けられており、各チェック 弁 367a, 368aに ίま絞り 367b, 368b力 ^並歹 IJに接続されて!/、る。 FIG. 9 is a circuit diagram showing a fluid pressure circuit for supplying compressed air to the drive cylinder and two lock cylinders shown in FIG. As shown in FIG. 9, a compressed air source 365 such as a compressor is connected to the input port 366a of the flow path switching valve 366, and the forward fluid flow path 367 connected to the forward supply / discharge port 20 and the reverse supply / discharge The retreating fluid flow path 368 connected to the port 21 is connected to the two output ports 366b and 366c of the flow path switching valve 366, respectively. At the respective intermediate positions of the forward fluid passage 367 and the backward fluid passage 368, the flow of air directed from the passage switching valve 366 to each of the supply / discharge ports 20 and 21 is allowed to allow the flow in the opposite direction. Check valves 367a and 368a are provided for blocking, and each check valve 367a and 368a is connected to a throttle 367b and 368b.
[0080] ロック用給排ポート 61がロック用流体流路 369を介してチェック弁 368aより流路切 換弁 366側の後退用流体流路 368に接続され、解除用給排ポート 364が解除用流 体流路 370を介してチェック弁 367aより前進用給排ポート 20側の前進用流体流路 3 67に接続されている。 The lock supply / discharge port 61 is connected from the check valve 368a to the retraction fluid flow path 368 on the flow path switching valve 366 side via the lock fluid flow path 369, and the release supply / discharge port 364 is connected to the release flow path. The check valve 367a is connected to the forward fluid flow path 367 on the forward supply / discharge port 20 side via the body flow path 370.
[0081] ロック用給排ポート 61を介して供給される圧縮空気は、図 9に示す流体導入路 362 を介してロックシリンダ 117の流体導入孔 152に供給される。ロックシリンダ 117のへ ッドカバー 44に形成された流体排出孔 153は、流体連絡路 363を介してロックシリン ダ 17の流体導入孔 52に連通し、ロックシリンダ 117のロック圧力室 47から圧縮空気 の供給を受けるようになつている。したがって、ロック流体はロックシリンダ 117の圧力 室 47の次にロックシリンダ 17の圧力室 47に供給されるようになっている。 The compressed air supplied via the lock supply / discharge port 61 is supplied to the fluid introduction hole 152 of the lock cylinder 117 via the fluid introduction path 362 shown in FIG. The fluid discharge hole 153 formed in the head cover 44 of the lock cylinder 117 communicates with the fluid introduction hole 52 of the lock cylinder 17 via the fluid communication path 363, and supplies compressed air from the lock pressure chamber 47 of the lock cylinder 117. I am receiving it. Therefore, the lock fluid is supplied to the pressure chamber 47 of the lock cylinder 17 next to the pressure chamber 47 of the lock cylinder 117.
[0082] 解除用給排ポート 364には解除用流体流路 370により前進用流体流路 367に接
続され、解除用給排ポート 364は前進用圧力室 34に連通している。流路切換弁 366 は 2つの切換位置を切り換えることにより、前進用流体流路 367および後退用流体流 路 368のどちらか一方を圧縮空気源 365に接続して圧縮空気を供給し、他方を外部 大気に開放して圧縮空気を排出するようになっている。 [0082] The release supply / discharge port 364 is connected to the forward fluid path 367 by the release fluid path 370. The release supply / discharge port 364 communicates with the forward pressure chamber 34. By switching the two switching positions, the flow path switching valve 366 connects one of the forward fluid flow path 367 and the reverse fluid flow path 368 to the compressed air source 365 to supply compressed air, and the other to the outside. The compressed air is released to the atmosphere.
[0083] 次に本実施の形態の動作について説明する。流路切換弁 366を切り換えて前進用 流体流路 367に圧縮空気源 365を接続して後退用流体流路 368を大気開放した場 合には、前進用圧力室 34に圧縮空気が供給されることによりその押圧力でメインビス トン 23が前進側に押圧されてピストンロッド 14が前進移動する。ここで 2つの口ツクユ ニット 29, 129が締結状態となっている場合には、メインピストン 23が移動せずに前 進用圧力室 34の容積が固定されていることから、供給される圧縮空気はロック解除 流体として解除用流体流路 370およびロック解除流体供給路を介して各ロック解除 圧力室 48に導入され、各ロックユニット 29, 129の締結が強制的に解除されることに なる。この締結の解除後には往復動自在となったメインピストン 23が圧縮空気に押圧 されて前進移動することになる。 Next, the operation of the present embodiment will be described. When the compressed air source 365 is connected to the forward fluid passage 367 by switching the passage switching valve 366 to open the retreat fluid passage 368 to the atmosphere, compressed air is supplied to the forward pressure chamber 34. As a result, the main piston 23 is pressed forward by the pressing force, and the piston rod 14 moves forward. Here, when the two port units 29 and 129 are in a fastening state, the compressed air to be supplied is supplied because the main piston 23 does not move and the volume of the forward pressure chamber 34 is fixed. Is introduced as unlocking fluid into the unlocking pressure chambers 48 via the unlocking fluid flow path 370 and the unlocking fluid supply path, and the fastening of the lock units 29 and 129 is forcibly released. After the release of the fastening, the reciprocally movable main piston 23 is pushed by the compressed air and moves forward.
[0084] 前進移動の間は後退用圧力室 35内から押し出される圧縮空気は絞り 368bを通過 して大気放出されるが、この時点でロック用流体流路 369は後退用流体流路 368に 対して絞り 368bより下流側の位置で接続して 、るため背圧の導入は行われな 、。そ して連結プレート 16が外部部材と接触したり前進限位置に到達するなどにより前進 移動が制限された場合でも、前進用流体流路 367に圧縮空気が供給されている限り 各ロックユニット 29, 129の解除状態は維持される。 [0084] During the forward movement, the compressed air pushed out of the retreat pressure chamber 35 passes through the restrictor 368b and is released to the atmosphere. At this point, the locking fluid passage 369 is displaced from the retreat fluid passage 368. The connection is made at a position downstream of the throttle 368b, so no back pressure is introduced. Even if the forward movement is restricted due to the connection plate 16 contacting the external member or reaching the forward limit position, as long as the compressed air is supplied to the forward fluid passage 367, each lock unit 29, The release state of 129 is maintained.
[0085] 次に流路切換弁 366を切り換えて後退用流体流路 368に圧縮空気源 365を接続 し前進用流体流路 367を大気開放した場合には、後退用圧力室 35に圧縮空気が供 給されることによりその押圧力でメインピストン 23が後退側に押圧されてピストンロッド 14が後退移動する。後退移動の間は前進用圧力室 34から押し出される圧縮空気は 絞り 367bを通過して大気放出されるが、この時点で解除用流体流路 370は前進用 流体流路 367に対して絞り 367bより上流側の位置で接続しているため、解除用流体 流路 370およびロック解除流体供給路を介して各ロック解除圧力室 48に背圧が導入 されることになり、各ロックユニット 29, 129は締結が解除された状態を維持する。
[0086] 図 9に示すようにシリンダストッパ 307がそれより後退側に位置するステージストッパ 308に接触するなどにより、ピストンロッド 14の後退移動が制限された場合には、各口 ック解除圧力室 48内の背圧が解除用流体流路 370を介して絞り 367bより排出され て圧力が低下する。さらにメインピストン 23が移動せずに後退用圧力室 35の容積が 固定されて ヽることから、供給される圧縮空気はロック流体としてロック用流体流路 36 9およびロック流体供給路を介して各ロック圧力室 47に導入され、各ロックユニット 29 , 129が強制的に締結されることになる。 Next, when the compressed air source 365 is connected to the retreating fluid passage 368 by switching the passage switching valve 366 and the forward fluid passage 367 is opened to the atmosphere, the compressed air is supplied to the retreating pressure chamber 35. By being supplied, the main piston 23 is pressed backward by the pressing force, and the piston rod 14 moves backward. During the backward movement, the compressed air pushed out of the forward pressure chamber 34 passes through the throttle 367b and is released to the atmosphere.At this point, the release fluid flow path 370 is moved from the throttle 367b to the forward fluid flow path 367. Since the connection is made at the upstream position, back pressure is introduced into each unlocking pressure chamber 48 via the unlocking fluid flow path 370 and the unlocking fluid supply path, and each lock unit 29, 129 Maintain the state where the fastening is released. [0086] As shown in Fig. 9, when the cylinder rod 307 contacts the stage stopper 308 located on the retreat side of the cylinder stopper 307 or the like, the retraction movement of the piston rod 14 is restricted. The back pressure in 48 is discharged from the throttle 367b through the release fluid flow path 370, and the pressure drops. Further, since the volume of the retraction pressure chamber 35 is fixed without moving the main piston 23, the supplied compressed air is supplied as lock fluid through the lock fluid flow path 369 and the lock fluid supply path. The lock units are introduced into the lock pressure chamber 47, and the lock units 29 and 129 are forcibly fastened.
[0087] このときロックシリンダ 117内のロック圧力室 47に先に圧縮空気が導入され、その後 にロックシリンダ 17内のロック圧力室 47に圧縮空気が導入される。そのため、 2つの 締結ロッド 45, 145の作動に時間差が設けられ、 2つのロックユニット 29, 129から順 に遊びを取り除くことができるためピストンロッド 14の移動位置を良好に固定すること ができるようになる。 At this time, compressed air is first introduced into the lock pressure chamber 47 in the lock cylinder 117, and then compressed air is introduced into the lock pressure chamber 47 in the lock cylinder 17. Therefore, there is a time difference between the operation of the two fastening rods 45 and 145, and the play can be sequentially removed from the two lock units 29 and 129, so that the moving position of the piston rod 14 can be fixed well. Become.
[0088] 特に本実施の形態においてはロックユニット 129を先に作動させてその後にロック ユニット 29を作動させていることから、図 9に示すようにピストンロッド 14と連結プレー ト 16の後退移動を制限した状態で固定させる後退制限型の利用形態において最も 良好に各ロックユニット 29, 129における遊びを取り除くことができ、確実な固定が可 能となる。ロック圧力室 47間の流体連絡路 363の長さを変えることにより作動の時間 差を変免ることちできる。 [0088] In particular, in the present embodiment, since lock unit 129 is operated first and lock unit 29 is subsequently operated, retreat movement of piston rod 14 and connecting plate 16 is performed as shown in FIG. The play in each of the lock units 29 and 129 can be best removed in a restricted use type in which the lock unit 29 is fixed in a limited state, and secure fixing is possible. By changing the length of the fluid communication path 363 between the lock pressure chambers 47, the operation time difference can be reduced.
[0089] また、前進用流体流路 367および後退用流体流路 368のどちらにも圧縮空気の供 給が停止されて、各ロック解除圧力室 48にロック解除流体または背圧のどちらも供給 されなくなった場合には、上記実施の形態と同様に、各締結ロッド 45, 145がロック 用ばね部材 46の推力によって作動位置まで押し下げられ、各ロックユニット 29, 129 を締結状態とし、ピストンロッド 14の軸方向位置を固定することになる。 The supply of compressed air to both the forward fluid passage 367 and the backward fluid passage 368 is stopped, and either the unlocking fluid or the back pressure is supplied to each unlocking pressure chamber 48. In the case where the piston rod 14 has been removed, the fastening rods 45 and 145 are pushed down to the operating position by the thrust of the locking spring member 46 as in the above embodiment, and the lock units 29 and 129 are engaged and the piston rod 14 is stopped. The axial position will be fixed.
[0090] 以上より本実施の形態の流体圧シリンダ 311は、シリンダストッパ 307の接触などに よりピストンロッド 14の後退移動が制限された際、または圧縮空気の供給が完全に停 止された際に、ピストンロッド 14の軸方向位置を前進側と後退側の両方向に対して確 実に固定することができる。 As described above, the fluid pressure cylinder 311 of the present embodiment operates when the backward movement of the piston rod 14 is restricted due to the contact of the cylinder stopper 307 or the like, or when the supply of the compressed air is completely stopped. Thus, the axial position of the piston rod 14 can be reliably fixed in both the forward and backward directions.
[0091] 図 10は駆動シリンダと 2つのロックシリンダとに圧縮空気を供給するための流体圧
回路の変形例を示す回路図である。この流体圧回路は図 8に示すように、後退用給 排ポート 321が後退用圧力室 35のみに連通している流体圧シリンダ 311に適用され 、図 10においては図 8および図 9に示された部材と共通する部材には同一の符号が 付されている。 [0091] Fig. 10 shows the fluid pressure for supplying compressed air to the drive cylinder and the two lock cylinders. It is a circuit diagram which shows the modification of a circuit. This fluid pressure circuit is applied to a fluid pressure cylinder 311 in which a retraction supply / discharge port 321 communicates only with the retraction pressure chamber 35 as shown in FIG. 8, and is shown in FIGS. 8 and 9 in FIG. The same reference numerals are given to members common to the above members.
[0092] 前進用給排ポート 20には前進用流体流路 367が接続され、後退用給排ポート 321 には後退用流体流路 368が接続されており、前進用圧力室 34と後退用圧力室 35に 対しては流路切換弁 366により圧縮空気が選択的に供給される。この流路切換弁 36 6は図 10に示すように両方圧力室 34, 35の圧縮空気を排出する位置と、前進用圧 力室 34に圧縮空気を供給する位置と、後退用圧力室 35に圧縮空気を供給する位 置との 3位置に切り換えられる。 [0092] The forward supply / discharge port 20 is connected to a forward fluid passage 367, and the backward supply / discharge port 321 is connected to a backward fluid passage 368. The forward pressure chamber 34 and the backward pressure are connected to each other. Compressed air is selectively supplied to the chamber 35 by the flow path switching valve 366. As shown in FIG. 10, the flow path switching valve 366 has a position for discharging the compressed air in the pressure chambers 34 and 35, a position for supplying the compressed air to the forward pressure chamber 34, and a position in the retreat pressure chamber 35. The position can be switched to the position where compressed air is supplied.
[0093] ユニット収容室 33を介してそれぞれのロックシリンダ 17, 117のロック解除圧力室 4 8に連通する給排ポート 364にはロック解除用流体流路 371が接続され、それぞれの ロック圧力室 47に連通する流体導入孔 52, 152にはロック用流体流路 372が接続さ れている。それぞれの流体流路 371, 372と圧縮空気圧源 365との間に設けられた 切換弁 373は、入力ポート 373aと出力ポート 373bとを連通する位置と、入力ポート 3 73aと出力ポート 373cとを連通する位置とに切り換えられる。したがって、ピストンロッ ド 14を前進移動させるときには、給排ポート 364を介してユニット収容室 33内に圧縮 空気を供給した状態のもとで前進用給排ポート 20から圧縮空気を供給し、ピストン口 ッド 14を後退移動させるときには、給排ポート 364を介してユニット収容室 33内に圧 縮空気を供給した状態のもとで後退用給排ポート 321から圧縮空気を供給する。 The supply / discharge port 364 communicating with the lock release pressure chamber 48 of each of the lock cylinders 17 and 117 via the unit storage chamber 33 is connected to a lock release fluid flow path 371. The lock fluid passage 372 is connected to the fluid introduction holes 52 and 152 communicating with the fluid. A switching valve 373 provided between each of the fluid flow paths 371 and 372 and the compressed air pressure source 365 communicates a position that connects the input port 373a and the output port 373b with the input port 373a and the output port 373c. Is switched to Therefore, when the piston rod 14 is moved forward, the compressed air is supplied from the forward supply / discharge port 20 while the compressed air is supplied into the unit storage chamber 33 via the supply / discharge port 364, and the piston port is closed. When the crew 14 is moved backward, compressed air is supplied from the retreating supply / discharge port 321 in a state where compressed air is supplied into the unit storage chamber 33 via the supply / discharge port 364.
[0094] ピストンロッド 14が前進限位置あるいは後退限位置となったときには、切換弁 366 により前進用圧力室 34と後退用圧力室 35内の圧縮空気を排出するとともに、流体導 入孔 52, 152からそれぞれのロック圧力室 47内に圧縮空気を供給する。図 10に示 される流体圧回路は、図 8に示すように、 2つのロックシリンダ 17, 117の一方にプラ ンジャ 50を組み込むようにした場合に適用することができるとともに、両方のロックシリ ンダ 17, 117にプランジャ 50を用いな 、ようにした場合にも適用することができる。 When the piston rod 14 reaches the forward limit position or the backward limit position, the switching valve 366 discharges the compressed air in the forward pressure chamber 34 and the reverse pressure chamber 35, and the fluid inlet holes 52, 152. To supply compressed air into the respective lock pressure chambers 47. The fluid pressure circuit shown in FIG. 10 can be applied to the case where the plunger 50 is incorporated in one of the two lock cylinders 17 and 117 as shown in FIG. , 117, the plunger 50 is not used.
[0095] 本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能である。たとえば、この流体圧シリンダ 11, 211, 311は自動車車体
を構成するパネル材 Wをノヽンドリング装置 4に固定するために使用されているが、パ ネル材以外を固定するために用いても良ぐハンドリング装置 4における固定以外の 用途に用いることもできる。 [0095] The present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof. For example, this hydraulic cylinder 11, 211, 311 Although it is used for fixing the panel material W constituting the above to the handling device 4, it can be used for fixing other than the panel material, and can be used for purposes other than fixing in the handling device 4.
[0096] さらに、ロックユニット 29, 129を作動させる際にピストンロッド 14に鋼球 36を押圧し ているが、ボールに代えて、例えば、環状の部材にスリットを形成し、弾性変形によつ て内径を縮めるようにした部材を用いるようにしても良い。なお、流体圧シリンダ 11, 2 11, 311を作動させる際の流体として空気を用いている力 他の流体を用いても良い ことはいうまでもない。 [0096] Further, when operating the lock units 29 and 129, the steel ball 36 is pressed against the piston rod 14, but instead of the ball, for example, a slit is formed in an annular member, and the slit is formed by elastic deformation. Alternatively, a member whose inner diameter is reduced by using a member may be used. It is needless to say that a force other than air may be used as the fluid for operating the fluid pressure cylinders 11, 2 11, 311.
産業上の利用可能性 Industrial applicability
[0097] この流体圧シリンダは、ワークを保持するワーク保持具をロボットアームなどの移動 部材に取り付けてワークの搬送を行う場合に適用される。
[0097] This fluid pressure cylinder is applied when a work holder for holding a work is attached to a moving member such as a robot arm to carry the work.