WO2005050665A1 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
WO2005050665A1
WO2005050665A1 PCT/JP2003/014715 JP0314715W WO2005050665A1 WO 2005050665 A1 WO2005050665 A1 WO 2005050665A1 JP 0314715 W JP0314715 W JP 0314715W WO 2005050665 A1 WO2005050665 A1 WO 2005050665A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonvolatile memory
threshold voltage
memory cells
semiconductor integrated
integrated circuit
Prior art date
Application number
PCT/JP2003/014715
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomichi Wada
Teruhiko Ito
Takeaki Wada
Tatsuya Miyake
Minoru Soma
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to PCT/JP2003/014715 priority Critical patent/WO2005050665A1/en
Publication of WO2005050665A1 publication Critical patent/WO2005050665A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory

Definitions

  • the present invention relates to a semiconductor integrated circuit having a nonvolatile memory cell whose threshold voltage can be reversibly changed by electric charge injection and charge discharge, and stores information necessary for internal operation such as trimming data.
  • the present invention relates to a technology that is effective when applied to a read access immediately after power-on to a part of the flash memory area. Background art
  • a nonvolatile memory cell whose threshold voltage can be reversibly changed by electric charge injection and charge discharge has an erased state and a written state.
  • the erased state is a state where the threshold voltage seen from the selected terminal of the memory cell is low
  • the written state is a state where the threshold voltage seen from the selected terminal of the memory cell is high.
  • the selection terminal of the above-mentioned nonvolatile memory cell is connected to a node line, and the erasing operation for lowering the threshold voltage of the above-mentioned nonvolatile memory cell is performed on all the memory cells connected to the selected node line. Done.
  • a high voltage is applied to a read line, and electrons stored in a floating gate are emitted toward a source line or a substrate (a well region).
  • the threshold voltage of the memory cell with the slowest erase characteristic reaches the erase verify level, the memory cell with the fast erase characteristic is in the debate state (over-erased state). Things are often there.
  • the threshold voltages of all memory cells connected to the selected ground line are After the level becomes lower than the level, the memory cell having a threshold voltage lower than the lower limit of the target erase distribution is selectively written, and a process of aligning the lower limit of the erase distribution (write-back process) is performed. Through this processing, the depleted state is eliminated.
  • two processes, a process of lowering the threshold voltage (erase process) and a process of aligning the lower limit of the threshold voltage distribution (write-back process) are performed. Is desirable.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-26089 discloses a technique for dealing with over-erasing as a technique for over-erasing all memory cells connected to a selected bit line after an erasing operation. A leak check is performed to detect that the sum of the leak currents is equal to or lower than a predetermined level. If the leak check result is not 0 K, the temporary erase operation is stopped, a weak write is performed to the memory cell in an over-erased state, and A control sequence is provided for returning to the erase operation. Disclosure of the invention
  • the present inventor has studied a read access immediately after power-on to a part of the flash memory area for storing information necessary for internal operation such as trimming. That is, the partial memory area replaces a conventional program circuit including a laser fuse circuit and an electric fuse circuit, and is called a flash fuse or the like. Flash fuses can be reversibly changed in threshold voltage by electric charge injection and charge discharge, similar to the non-volatile memory cells that make up a normal storage area. In the flash fuse, necessary trimming data and rescue data are written in a probe inspection process, and a part of the trimming data is rewritten. Since the trimming data and the rescue data written in the flash fuse are data necessary for internal operation, the power of the flash memory It is necessary to read at the time of ON.
  • a word line is selected using a boosted voltage obtained by boosting a power supply voltage by a booster circuit.
  • a boost voltage obtained by boosting a power supply voltage by a booster circuit.
  • the present inventor has found that the threshold voltage distribution in the erased state of the flash fuse needs to be lower than the threshold voltage distribution in the erased state of the flash memory cell for normal operation. Was found. In order to obtain such a threshold voltage distribution, it has been clarified by the present inventors that there is a problem to be solved further.
  • the first is to save time.
  • the threshold voltage distribution for erasing is lower than the threshold voltage distribution for flash memory cells in normal operation, the threshold voltage cannot be set lower than normal by the erase command for flash memory cells in normal operation. If, instead, the erasure and the erase verification are specified by individual commands and manual erasure is repeated many times, the total processing time increases, and the test time required for the probe inspection process increases.
  • the second is to suppress over-erasure of the memory cells. That is, since the write-back process is not performed in the manual erasure, over-erase may occur in some memory cells, and rewriting to the flash fuse becomes impossible due to the influence of the over-erased memory cells.
  • a non-volatile memory cell in a debit state is in a state where current can flow or is in an on state even when a read line is not selected.However, a flash fuse shares a sub-bit line to increase the reliability of information storage. Multiple non-volatile memory cells are the same In the storage state, complementary information storage is performed using two sub-bit lines, and in the read operation, the plurality of memory cells that are complementary storing information are selected in parallel, so that erasing is performed.
  • Undesired data inversion does not occur even if over-erasure occurs in some memory cells during the process.
  • the over-erased memory cells cannot be changed to the write state, and when the number of nonvolatile memory cells increases, information is stored in a complementary manner in a plurality of bits of nonvolatile memory cells.
  • information cannot be stored and read accurately.
  • An object of the present invention is to provide a semiconductor integrated circuit capable of reducing a threshold voltage setting processing time for a specific nonvolatile memory cell provided for a flash fuse or the like.
  • Another object of the present invention is to provide a semiconductor integrated circuit capable of suppressing the occurrence of an excessive charge release state such as over-erasing of a specific nonvolatile memory cell provided for a flash fuse or the like. .
  • Still another object of the present invention is to provide a semiconductor integrated circuit capable of suppressing occurrence of abnormal rewriting of stored information in a specific nonvolatile memory cell provided for a flash fuse or the like.
  • a semiconductor integrated circuit includes: a plurality of nonvolatile memory cells whose threshold voltage can be reversibly changed by electric charge injection and charge discharge; and a threshold voltage of the plurality of nonvolatile memory cells.
  • a control circuit for controlling a change in voltage wherein the control circuit is configured to perform a threshold voltage process for initializing a threshold voltage for a predetermined nonvolatile memory cell of the plurality of nonvolatile memory cells. The difference between the value voltage distribution and the threshold voltage distribution by the process of initializing the threshold voltage for the remaining nonvolatile memory cells is provided.
  • the node line selection is performed for the predetermined nonvolatile memory cells.
  • a similar read margin can be secured without using a boosted voltage for the level or before the power supply voltage is stabilized.
  • a read operation can be normally performed on a predetermined nonvolatile memory cell even if the boost operation has not been completed at power-on.
  • the initialization processing includes an erasing operation for releasing electric charges and a writing operation for injecting electric charges into an overerased nonvolatile memory cell.
  • the difference in the threshold voltage distribution due to the embedding process is defined by the difference in the verify voltage accompanying the erasing and writing. This makes it possible to suppress over-erasure of the predetermined nonvolatile memory cell, and to suppress occurrence of an abnormal rewrite of stored information in the predetermined nonvolatile memory cell.
  • the threshold voltage distribution by the initialization process for the predetermined nonvolatile memory cell is smaller than the threshold voltage distribution by the initialization process for the remaining nonvolatile memory cells.
  • the predetermined non-volatile memory cell constitutes a storage area dedicated for storing information necessary for the internal operation of the semiconductor integrated circuit. The information necessary for the internal operation is the trimming and rescue.
  • a semiconductor integrated circuit according to another aspect of the present invention includes: a first memory region including a plurality of nonvolatile memory cells each of which is capable of reversibly changing a threshold voltage by electric charge injection and charge release; A second memory area; and a control circuit for controlling a change in a threshold voltage of the nonvolatile memory cell.
  • the control circuit performs a process of initializing a threshold voltage for the nonvolatile memory cell in the first memory area in response to the first initialization command, and performs the process of initializing the second voltage in response to the second initialization command.
  • a process for initializing the threshold voltage is performed on the nonvolatile memory cells in the memory area.
  • the initialization process includes an erasing operation for releasing electric charges and a writing operation for injecting electric charges into an overerased nonvolatile memory cell, and the control circuit performs erasing and writing operations according to the first command. And a verify voltage for the erase and write by the second command.
  • the word is stored in the nonvolatile memory cells in the first memory area.
  • a similar read margin can be secured even without using a boosted voltage for the line selection level or before the power supply voltage is stabilized. Furthermore, over-erasure of the nonvolatile memory cells in the first memory area can be suppressed, and occurrence of abnormal rewriting of stored information in the nonvolatile memory cells in the first memory area can be suppressed.
  • a verify voltage according to the first command is lower than a verify voltage according to the second command.
  • a booster circuit that boosts an external power supply voltage and outputs a boosted voltage is provided, and in a read operation, a word line of the nonvolatile memory cell is set to a selected level based on a boosted output of the booster circuit.
  • the first memory area is a storage area dedicated for storing information necessary for internal operation of the semiconductor integrated circuit.
  • the information required for the internal operation is a trimming operation and a relief operation.
  • a register for reading stored information from the first memory area in response to power-on.
  • FIG. 1 is a block diagram illustrating a flash memory according to an example of the present invention.
  • FIG. 2 is a circuit diagram illustrating a circuit for generating an erase verify voltage.
  • FIG. 3 is a circuit diagram showing an example of a flash fuse circuit and a fuse latch circuit.
  • FIG. 4 is a longitudinal sectional view schematically illustrating the sectional structure of a nonvolatile memory cell having a floating gate structure.
  • FIG. 5 is a flowchart illustrating an initialization operation procedure for a nonvolatile memory cell.
  • FIG. 6 is an explanatory diagram of a threshold voltage distribution when an erase bias is applied.
  • FIG. 5 is an explanatory diagram of the threshold voltage distribution when the erase verify fails.
  • FIG. 8 is an explanatory diagram of the threshold voltage distribution when the erase verify passes.
  • FIG. 9 is an explanatory diagram of a threshold voltage distribution when performing write back.
  • FIG. 10 is an explanatory diagram illustrating an erase threshold voltage distribution according to a first initialization command, an erase threshold voltage distribution according to a second initialization command, and an erase threshold voltage distribution according to manual erasure.
  • FIG. 11 is an explanatory diagram of manual erasure. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a flash memory 1 according to an example of the present invention.
  • Flash memory 1 is formed on a single semiconductor substrate such as single crystal silicon, and has a memory array (MRY) 2, an address decoder / dryno, (DEC / D V) 3, Sense latch row (SA) 4, Column switch row (CSW) 5, Power supply circuit (POWG) 6, Interface circuit (IOIF) 7, Control circuit (CTRL) 8, Flash fuse circuit (FFS) 9, a fuse latch circuit (FLAT) 10, and a pad row 11.
  • the memory array 2 has a large number of nonvolatile memory cells MC whose threshold voltage can be reversibly changed by electrical erasing and writing.
  • erasing means lowering the threshold voltage of the nonvolatile memory cell MC
  • writing means raising the threshold voltage of the nonvolatile memory cell.
  • the non-volatile memory cell MC has, for example, a stacked gate structure having an insulating gate and a control gate which are respectively insulated on a channel region between a source and a drain.
  • the control gate of the nonvolatile memory cell MC is connected to the word line WL, the drain is connected to the bit line BL, and the source is connected to the source line SL.
  • the selection of the lead line and the selection of the bit line by the column switch column 7 are performed based on the decode signal from the decoder driver 3 which decodes the address signal.
  • One end of the bit line BL is connected to the sense latch of the sense latch train 4.
  • the data read from the non-volatile memory cells by the word line selection in the read operation is detected by using the sense latch of the sense switch row 4, and the data is read in accordance with the access unit such as the byte or pad selected by the column switch row 5.
  • the signal is transmitted to the interface circuit 7.
  • the erase operation is not particularly limited, but is performed in a unit of a single line.
  • the write data input to the interface circuit 7 is latched in the sense latch row 4 via the column switch row 5, and the write voltage is applied in accordance with the logical value of the data latched in the sense latch row 4. And the application inhibition is controlled.
  • the power supply circuit 6 charges an operating power supply such as a high voltage required for erasing and writing to the flash memory 1 and a word line boosted voltage required for reading. It is generated using a booster circuit including a pump circuit and a resistor voltage divider circuit.
  • the flash fuse circuit 9 is constituted by the same memory transistors as the nonvolatile memory cells MC of the memory array 2, and holds trimming data and relief data necessary for the internal operation of the flash memory.
  • the memory array 2 has a redundant code line and a redundant bit line used for repairing a defective address
  • the decoder / driver 3 has a switching circuit for replacing the defective address with the redundant address
  • the switching circuit is When detecting access to the specified defective address in the rescue operation, the memory cell of the redundant address is switched to the access target instead of the defective address and controlled.
  • the power supply circuit 6 generates a high voltage and a verify voltage used for writing and erasing by using a charge pump circuit and a resistor voltage divider circuit, etc., but the full scale voltage of the resistor voltage divider circuit due to process variations and the like. And the offset voltage may vary.
  • a trimming circuit is provided to compensate for such variations, and this trimming circuit selects a flip-flop designated by the trimming data and compensates for the variation.
  • Relief data and trimming data read from the flash fuse circuit 9 are held, and the held data is transmitted to a corresponding redundancy switching circuit or trimming circuit.
  • the control circuit 8 controls the timing of erasing, writing, reading, etc. of the flash memory 1 in accordance with a strobe signal and a command input from the outside, and controls selection of an operating power supply required at that time. Further, the control circuit 8 reads the relief data and the trimming data from the flash fuse circuit 9 in response to the power-on, and loads the data into the fuse latch circuit 10. Power-on detection may be performed by the power supply circuit 6 itself, or may be detected by an external strobe signal.
  • Pad 1 1 is connected to the external connection terminal. It has a bonding pad and an input / output buffer.
  • the commands include an erase command, an erase verify command, a write command, a write verify command, a read command, and an initialization command.
  • an erase command is specified by an address.
  • An erase verify command is used to erase nonvolatile memory cells in the batch erase area specified by an erase command. This command is used to determine whether or not everything is in the erased state.
  • a write command is a command for selectively applying a write voltage to a non-volatile memory cell of a write unit such as a byte specified by an address according to a write time
  • a write verify command is a write command for applying a write voltage. This is a command for determining whether or not the nonvolatile memory cell is in a write state.
  • the read command is a command for reading the storage information of the memory cell specified by the address to the outside.
  • the initialization command is a so-called automatic erase (auto erase) command, in which an erase voltage is applied to the nonvolatile memory cells in the batch erase area specified by the address, and the erase voltage is applied. Verification is performed to determine whether the non-volatile memory cell has entered the threshold voltage distribution in the erased state, and furthermore, a write voltage is applied to the over-erased non-volatile memory cell to perform a write-back operation to increase the threshold voltage. .
  • auto erase automatic erase
  • the flash fuse circuit 9 since the flash fuse circuit 9 has an initialization command (first initialization command) for nonvolatile memory cells and an initialization command for the memory array 2 (second initialization command) separately, Also in the fuse fuse circuit 9, occurrence of over-erasure can be suppressed.
  • the verify voltage (erase verify voltage) of the first initialization command is used. Voltage and write-back verify voltage) are lower than the verify voltages (erase verify voltage and write-back verify voltage) of the second initialization command. Therefore, in a read operation, a necessary read margin is secured by using a boosted voltage to a nonvolatile memory cell of the memory array 2 at a read line selection level, but the nonvolatile memory cell of the flash fuse circuit 9 is secured.
  • the same read margin can be ensured without using the boosted voltage as the read line selection level or before the power supply voltage is stabilized. This makes it impossible to boost the lead line voltage at power-on, so that a sufficient read margin can be secured even if the lead line voltage is equal to or lower than the specified boost voltage. At the same time, it is possible to prevent the relieved data that is sometimes input from the flash fuse circuit 9 to the fuse latch circuit 10 and the inversion of the undesired logic value during the trimming operation, and to improve the reliability of the loaded data. I can do it.
  • FIG. 2 illustrates an erase verify voltage generation circuit 12.
  • 13 is a band gap circuit which generates a stable voltage VBGR independent of temperature and power supply voltage.
  • Reference numeral 14 denotes a voltage level conversion circuit, which is composed of a differential amplifier 15, a P-channel MOS transistor MP1, resistors R1, R2, R3, and a switch 16, and should be erased based on the voltage VBGR. Generates the verify voltage VeVfy. Use the selection signal SEL 1 to change the position of the tap to extract the erase verify voltage V evfy.
  • the power supply circuit 6 has an erase verify voltage generation circuit 12.
  • FIG. 3 shows an example of the flash fuse circuit 9 and the latch circuit 10 for the fuse.
  • the flash fuse circuit 9 has a NOR type memory array configuration.
  • the bit line BL as a sub-bit line is connected to the main bit line MBL via a separate MOS transistor MN2.
  • Main bit line MSL is shared with memory array 2.
  • the figure typically shows a pair of bit lines BL.
  • the drains of a plurality of nonvolatile memory cells MC are connected to each bit line BL, and the sources are commonly connected to a source line SL.
  • the control gate is connected to the lead line WL.
  • a load MOS switch MN3 constituting a read load circuit is connected to the bit line BL.
  • ⁇ 3 is the switch signal of the load MOS switch MN3.
  • the fuse latch circuit 10 is connected to the bit line BL by the transfer MOS transistor MN4.
  • the pair of bit lines BL are used as complementary bit lines and are connected to the corresponding differential input terminals of the static clutch LAT.
  • the relief data and trimming data latched in the static latch LAT are supplied to the corresponding circuit in a single end.
  • ⁇ 2 is a switch signal of the transfer MOS transistor MN4, and ⁇ 3 is an activation signal of switch LAT.
  • One-bit information storage by the flash fuse circuit 9 is performed differentially using a plurality of nonvolatile memory cells MC connected to a pair of left and right bit lines.
  • non-inverted data is stored in parallel in all nonvolatile memory cells connected to one bit line
  • inverted data is stored in parallel in all nonvolatile memory cells connected to the other bit line.
  • complementarily store information In the figure, all the non-volatile memory cells on the left bit line BL are in a write state, and all the non-volatile memory cells on the right bit line BL are in an erase state. In read operation, all word lines are selected Is done.
  • the separation MOS transistor Ml is turned off, the transfer MOS transistor MN3 and the load MOS switch MN4 are turned on, the static latch LAT is activated, and the stored information read out to the bit line is scanned. ⁇ Clutch LAT launches. After latching, the transfer MOS transistor MN3 and the load MOS switch MN4 are turned off.
  • the flash fuse circuit 9 uses a nonvolatile memory cell so as to enable complementary information storage with a plurality of bits, for example, 16 bits, on one side for each one-bit data. It is possible to secure a margin against inversion of data due to data and malfunction due to noise. For example, even if a 1-bit nonvolatile memory cell in the written state changes its characteristics to the erased state, the amount of current caused by the change does not exceed the amount of current flowing to the opposite bit line. Even if one bit in the erased state is in an over-erased state, other memory cells sharing the bit line BL with the over-erased state are in the erased state, so there is no problem in reading data.
  • over-erasure does not occur, and therefore, rewriting a plurality of parallel bits in the erased state to the write state is not hindered. If over-erasure occurs in a portion of a plurality of parallel bits, the over-erased memory cell does not escape from the erased state even when rewritten to the write state, and the stored information may be undesirably inverted.
  • FIG. 4 illustrates a schematic cross-sectional structure of a nonvolatile memory cell MC having a floating gate structure.
  • a drain 21 and a source 22 are formed in the well region 2 ⁇ , and a floating gate 25 and a control gate 27 are sequentially formed on the channel region 23 therebetween through the gate insulating layers 24 and 26, respectively. Is formed. Drain 21 is connected to bit line BL, source 22 is connected to source line SL, and control gate 27 is connected to lead line WL. It is.
  • the external operating power supply voltage VDD is, for example, 3.3V.
  • Vd (drain voltage) 1 V
  • Vcg (control gate voltage) 3.8 V
  • Vs (source voltage) 0 V
  • Vsub (substrate voltage) 0 V.
  • Vd OP (floating)
  • Vcg —llV
  • Vs OP
  • Vsub 10.5 V. Due to this erase voltage relationship, electrons injected into the floating gate are emitted to the substrate (well region), and the threshold voltage seen from the control gate is lowered.
  • Vd 6V
  • Vcg 10V
  • Vs 0V
  • Vsub 0V
  • a current flows from the drain to the source, the generated photo-elect port is injected into the floating gate, and the threshold voltage seen from the control gate is increased.
  • Vd 0V
  • Vcg 10V
  • Vs 0V
  • Vsub 0V
  • electrons are injected into the floating gate by the FN tunnel phenomenon between the channel region between the drain and the source and the floating gate, and the threshold voltage seen from the control gate is increased.
  • FIG. 5 illustrates the procedure of the initialization operation.
  • the erase bias described as the erase-related voltage is applied in order to lower the threshold voltage of the nonvolatile memory cell MC.
  • the threshold voltage distribution of the plurality of nonvolatile memory cells MC sharing the selection gate line which is a unit of batch erasure, varies according to the erase speed.
  • the initial threshold voltage distribution is reduced by the application of the erase bias S1.
  • the threshold voltage is shown as V th.
  • the threshold voltage distribution after erase bias application S1 Check whether the upper limit is below the erase verify level V e V fy.
  • the upper limit of the threshold voltage distribution is higher than the erase verify eye level Vevfy, so that the state is determined as fail (Fai 1).
  • the upper limit of the threshold voltage distribution is equal to or lower than the erase verify eye level Ve V fy, so that the state becomes a pass (Pas s).
  • the lower limit of the threshold distribution may be equal to or less than the depletion level Vdprt as illustrated in FIG.
  • writing is selectively performed on the nonvolatile memory cell MC having the write-back level Vwb or lower, and the lower limit of the threshold voltage distribution is determined. To be equal to or higher than the writeback level Vwb. At this time, the non-volatile memory cell MC that has been debrided during the erasing operation is also subjected to the write-back. Therefore, if the write-back is completed normally, the non-volatile memory cell MC that has been debrided does not remain.
  • FIG. 10 illustrates an erase threshold voltage distribution by the first initialization command, an erase threshold voltage distribution by the second initialization command, and an erase threshold voltage distribution by manual erase.
  • Wrng represents a write threshold voltage distribution.
  • AErng—M is the erase threshold voltage distribution of the nonvolatile memory cells of the memory array 2 by the second initialization command
  • AErng—F is the erase threshold voltage distribution of the flash memory 9 by the first initialization command, M EWr.
  • ng-F represents the erase threshold voltage distribution of the flash fuse circuit 9 by manual erasure.
  • manual erasure erasure and erasure verification are performed by sequentially inputting commands, so that it takes a long time to process and some memory cells are not sufficiently rewritten and remain in an over-erased state.
  • the erase verify voltage V e V fy—F by the first initialization command is Erase verify voltage V evfy-M by the reset command
  • write-back verify voltage V wb- F by the first reset command is lower than the write-back verify voltage V wb-M by the second reset command. Therefore, a relatively large margin mr 3 is secured for the erase threshold voltage distribution AE rng-F by the first initialization command of the flash fuse circuit 9 with respect to the read line voltage for the flash fuse circuit 9. Can be.
  • the flash fuse circuit 9 is also initialized by the second initialization command without using the first initialization command, only a small margin mrg 1 can be secured, and the read signal amount becomes small, which may cause a data error. There is. In the case of manual erasure, a margin mrg 2 larger than mrgl can be obtained. However, as described above, there is a concern that rewriting of the flash fuse circuit 9 may be hindered by leaving overerased memory cells.
  • the manual erasing is a process of lowering the erasing threshold voltage distribution by repeating the erasing command a plurality of times after executing the second initialization command, as exemplified in FIG. 11, for example.
  • the nonvolatile memory cell is not limited to a flash memory having a flash gate structure, but may be a flash memory having a split gate structure in which a select transistor portion and a memory transistor portion are separated and arranged in series.
  • the nonvolatile memory cell may perform not only binary storage but also multi-level storage of four or more values.
  • the present invention can be applied not only to a single memory LSI but also to a microcomputer or a system LSI in which a flash memory is on-chip. Industrial applicability
  • the present invention can be applied to a semiconductor integrated circuit such as a flash memory having a storage area such as a flash fuse.

Landscapes

  • Read Only Memory (AREA)

Abstract

A semiconductor integrated circuit (1) comprising a plurality of nonvolatile memory cells (MC) in which the threshold voltage can be altered reversibly by electrically injecting/discharging charges, and a circuit (8) for controlling alteration of the threshold voltage of the plurality of nonvolatile memory cells, wherein the control circuit differentiates the threshold voltage distribution being obtained by initializing the threshold voltage of predetermined nonvolatile memory cells among the plurality of nonvolatile memory cells from the threshold voltage distribution being obtained by initializing the threshold voltage of the remaining nonvolatile memory cells. When a required read margin is ensured using a boosted voltage as the word line select level for the remaining nonvolatile memory cells, a similar read margin can be ensured for the predetermined nonvolatile memory cells without using a boosted voltage as the word line select level and a normal read operation can be carried out even if boost operation is not finished when power is turned on.

Description

明 細 書 半導体集積回路 技術分野  Description Semiconductor integrated circuit technology
本発明は、電気的な電荷注入及び電荷放出により閾値電圧を可逆的に 変更可能にされる不揮発性メモリセルを備えた半導体集積回路に関し、 例えばトリミングデータなど内部動作に必要な情報を記憶する一部の フラヅシュメモリ領域に対するパワーオン直後のリ一ドアクセスに適 用して有効な技術に関する。 背景技術  The present invention relates to a semiconductor integrated circuit having a nonvolatile memory cell whose threshold voltage can be reversibly changed by electric charge injection and charge discharge, and stores information necessary for internal operation such as trimming data. The present invention relates to a technology that is effective when applied to a read access immediately after power-on to a part of the flash memory area. Background art
電気的な電荷注入及び電荷放出により閾値電圧を可逆的に変更可能 にされる不揮発性メモリセルは消去状態と書き込み状態を有する。例え ば消去状態はメモリセルの選択端子から見た閾値電圧が低い状態であ り、書き込み状態はメモリセルの選択端子から見た閾値電圧が高い状態 である。上記不揮発性メモリセルの選択端子はヮ一ド線に接続され、 上 記不揮発性メモリセルの閾値電圧を下げる消去動作は、選択されたヮー ド線に接続されている全てのメモリセルを対象に行われる。例えばフロ 一ティングゲート構造の不揮発性メモリセルの場合、ヮード線に高電圧 を印加し、フローティングゲ一トに蓄積されている電子をソース線又は 基板 (ゥエル領域) に向けて放出させる。 このとき、 各メモリセルの消 去特性が異なるため、最も消去特性の遅いメモリセルの閾値電圧が消去 ベリファイレベルに到達する時には、消去特性の速いメモリセルはデブ リート状態 (過消去状態) にある事が往々にしてある。選択されたヮ一 ド線に接続されている全てのメモリセルの閾値電圧が消去ベリフアイ レベル以下になった後で、目標とする消去分布の下限以下に閾値電圧が あるメモリセルに対して選択的に書込みを行い、消去分布の下限をそろ える処理 (書き戻し処理) が行なわれる。 この処理を経ることによって デプリート状態が解消される。 このように、 複数の不揮発性メモリセル の閾値電圧を初期化するには、閾値電圧を下げる処理(消去処理)と閾値 電圧分布の下限をそろえる処理(書き戻し処理)の 2つの処理を行なう のが望ましい。 A nonvolatile memory cell whose threshold voltage can be reversibly changed by electric charge injection and charge discharge has an erased state and a written state. For example, the erased state is a state where the threshold voltage seen from the selected terminal of the memory cell is low, and the written state is a state where the threshold voltage seen from the selected terminal of the memory cell is high. The selection terminal of the above-mentioned nonvolatile memory cell is connected to a node line, and the erasing operation for lowering the threshold voltage of the above-mentioned nonvolatile memory cell is performed on all the memory cells connected to the selected node line. Done. For example, in the case of a non-volatile memory cell having a floating gate structure, a high voltage is applied to a read line, and electrons stored in a floating gate are emitted toward a source line or a substrate (a well region). At this time, since the erase characteristics of each memory cell are different, when the threshold voltage of the memory cell with the slowest erase characteristic reaches the erase verify level, the memory cell with the fast erase characteristic is in the debate state (over-erased state). Things are often there. The threshold voltages of all memory cells connected to the selected ground line are After the level becomes lower than the level, the memory cell having a threshold voltage lower than the lower limit of the target erase distribution is selectively written, and a process of aligning the lower limit of the erase distribution (write-back process) is performed. Through this processing, the depleted state is eliminated. As described above, in order to initialize the threshold voltages of a plurality of nonvolatile memory cells, two processes, a process of lowering the threshold voltage (erase process) and a process of aligning the lower limit of the threshold voltage distribution (write-back process), are performed. Is desirable.
特許文献 1 (特開 2 0 0 0— 2 6 0 1 8 9号公報) には過消去に対処 する技術として、 消去動作の後、 選択されたビッ ト線に接続された全て のメモリセルのリーク電流の総和が所定レベル以下であることを検出 するリークチヱヅクを行ない、 リークチェック結果が 0 Kでないとき一 時消去動作を停止して過消去状態にあるメモリセルに対する弱書き込 みを行ない、 再度消去動作に戻る制御シーケンスが提供される。 発明の開示  Patent Document 1 (Japanese Unexamined Patent Publication No. 2000-26089) discloses a technique for dealing with over-erasing as a technique for over-erasing all memory cells connected to a selected bit line after an erasing operation. A leak check is performed to detect that the sum of the leak currents is equal to or lower than a predetermined level.If the leak check result is not 0 K, the temporary erase operation is stopped, a weak write is performed to the memory cell in an over-erased state, and A control sequence is provided for returning to the erase operation. Disclosure of the invention
本発明者は、 トリミングデ一夕など内部動作に必要な情報を記憶する 一部のフラヅシュメモリ領域に対するパワーオン直後のリードァクセ スについて検討した。即ち、 前記一部のメモリ領域は従来レーザヒユー ズ回路や電気ヒューズ回路で構成されたプログラム回路に代わるもの で、 フラヅシュヒューズなどと称される。 フラヅシュヒューズは通常の 記憶領域を構成する不揮発性メモリセルと同様、電気的な電荷注入と電 荷放出により閾値電圧を可逆的に変更可能にされる。このフラッシュヒ ュ一ズには、プローブ検査工程で所要のトリ ミングデ一夕及び救済デー 夕が書込まれ、 また、 トリミングデータの書換え等も一部行なわれる。 上記フラッシュヒューズに書込まれたト リ ミングデ一夕と救済デー 夕は、 内部動作に必要なデータであるため、 フラッシュメモリのパワー オン時に読み出す必要がある。通常、読み出し動作ではビット線への読 み出し信号量を大きくするため、昇圧回路で電源電圧を昇圧した昇圧電 圧を用いてワード線選択を行なう。 しかしながら、 パワーオン時にはヮ 一ド線電圧を昇圧することが間に合わないために、ヮード線電圧は規定 の昇圧電圧以下になってしまい、通常動作のフラッシュメモリセルと同 じ閾値電圧分布では充分な読み出しマージンを確保することができな そこで、本発明者はフラッシュヒューズの消去状態の閾値電圧分布は、 通常動作向けのフラッシュメモリセルの消去状態における閾値電圧分 布よりも低い分布にする必要のあることを見出した。そして、 そのよう な閾値電圧分布を得るに当たって、更に解決すべき課題のあることが本 発明者によって明らかにされた。 The present inventor has studied a read access immediately after power-on to a part of the flash memory area for storing information necessary for internal operation such as trimming. That is, the partial memory area replaces a conventional program circuit including a laser fuse circuit and an electric fuse circuit, and is called a flash fuse or the like. Flash fuses can be reversibly changed in threshold voltage by electric charge injection and charge discharge, similar to the non-volatile memory cells that make up a normal storage area. In the flash fuse, necessary trimming data and rescue data are written in a probe inspection process, and a part of the trimming data is rewritten. Since the trimming data and the rescue data written in the flash fuse are data necessary for internal operation, the power of the flash memory It is necessary to read at the time of ON. Normally, in a read operation, in order to increase the amount of a signal read to a bit line, a word line is selected using a boosted voltage obtained by boosting a power supply voltage by a booster circuit. However, at power-on, it is not enough to boost the common line voltage, so that the common line voltage becomes lower than the specified boosted voltage. Therefore, the present inventor has found that the threshold voltage distribution in the erased state of the flash fuse needs to be lower than the threshold voltage distribution in the erased state of the flash memory cell for normal operation. Was found. In order to obtain such a threshold voltage distribution, it has been clarified by the present inventors that there is a problem to be solved further.
第 1は時間短縮である。即ち、 消去の閾値電圧分布を通常動作のフラ ッシュメモリセルの閾値電圧分布よりも低くするのに、通常動作のフラ ッシュメモリセルに対するォートイレーズコマンドでは通常よりも低 い閾値電圧にすることができないから、 これに代えて、 消去、 消去ベリ フアイを一々個別コマンドで指定して何回も繰返すマニュアル消去を 行なうと、 トータルの処理時間が増大し、 プローブ検査工程に要するテ スト時間が長くなつてしまう。  The first is to save time. In other words, although the threshold voltage distribution for erasing is lower than the threshold voltage distribution for flash memory cells in normal operation, the threshold voltage cannot be set lower than normal by the erase command for flash memory cells in normal operation. If, instead, the erasure and the erase verification are specified by individual commands and manual erasure is repeated many times, the total processing time increases, and the test time required for the probe inspection process increases.
第 2はメモリセルの過消去抑制である。即ち、 マニュアル消去では書 き戻し処理が行なわれないので一部のメモリセルで過消去を生ずる虞 があり、過消去メモリセルの影響でフラッシュヒューズに対する書き換 えが不可能になってしまう。例えば、 デブリート状態の不揮発性メモリ セルはヮード線非選択状態であっても電流を流し得る状態若しくはォ ン状態になるが、 フラッシュヒューズでは、 情報記憶の信頼性を上げる ために、サブビット線を共有する複数の不揮発性メモリセルは共に同じ 記憶状態にされ、 2本のサブビッ ト線を用いて相補的に情報記憶を行な レ、、読み出し動作では前記相補的に情報記憶を行なっている複数のメモ リセルを並列選択するので、消去の過程で一部のメモリセルに過消去が 発生しても不所望なデータ反転を生ずることはない。 しかしながら、 記 憶情報の書換えによって、過消去のメモリセルから書き込み状態になら なレ、不揮発性メモリセルが増えると、複数ビッ トの不揮発性メモリセル で相補的に情報記憶を行なう構成であっても、情報の記憶と読み出しを 正確に行なうことができなくなる。 The second is to suppress over-erasure of the memory cells. That is, since the write-back process is not performed in the manual erasure, over-erase may occur in some memory cells, and rewriting to the flash fuse becomes impossible due to the influence of the over-erased memory cells. For example, a non-volatile memory cell in a debit state is in a state where current can flow or is in an on state even when a read line is not selected.However, a flash fuse shares a sub-bit line to increase the reliability of information storage. Multiple non-volatile memory cells are the same In the storage state, complementary information storage is performed using two sub-bit lines, and in the read operation, the plurality of memory cells that are complementary storing information are selected in parallel, so that erasing is performed. Undesired data inversion does not occur even if over-erasure occurs in some memory cells during the process. However, when the memory information is rewritten, the over-erased memory cells cannot be changed to the write state, and when the number of nonvolatile memory cells increases, information is stored in a complementary manner in a plurality of bits of nonvolatile memory cells. However, information cannot be stored and read accurately.
本発明の目的は、フラッシュヒューズ等に供される特定の不揮発性メ モリセルに対する閾値電圧設定処理時間を短縮することができる半導 体集積回路を提供することにある。  An object of the present invention is to provide a semiconductor integrated circuit capable of reducing a threshold voltage setting processing time for a specific nonvolatile memory cell provided for a flash fuse or the like.
本発明の別の目的は、フラッシュヒューズ等に供される特定の不揮発 性メモリセルに対する過消去のような過剰な電荷放出状態の発生を抑 制することができる半導体集積回路を提供することにある。  Another object of the present invention is to provide a semiconductor integrated circuit capable of suppressing the occurrence of an excessive charge release state such as over-erasing of a specific nonvolatile memory cell provided for a flash fuse or the like. .
本発明の更に別の目的は、フラッシュヒューズ等に供される特定の不 揮発性メモリセルに対する記憶情報の書き換え異常の発生を抑制する ことが可能にされる半導体集積回路を提供することにある。  Still another object of the present invention is to provide a semiconductor integrated circuit capable of suppressing occurrence of abnormal rewriting of stored information in a specific nonvolatile memory cell provided for a flash fuse or the like.
本発明の上記並びにその他の目的と新規な特徴は本明細書の以下の 記述と添付図面から明らかにされるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the following description of the present specification and the accompanying drawings. Disclosure of the invention
〔 1〕本発明に係る半導体集積回路は、 電気的な電荷注入と電荷放出に より閾値電圧を可逆的に変更可能にされる複数の不揮発性メモリセル と、前記複数の不揮発性メモリセルの閾値電圧の変更を制御する制御回 路とを有し、 前記制御回路は、 前記複数の不揮発性メモリセルの内の所 定の不揮発性メモリセルに対して閾値電圧を初期化する処理による閾 値電圧分布と残りの不揮発性メモリセルに対して閾値電圧を初期化す る処理による閾値電圧分布とを相違させる。上記より、前記残りの不揮 発性メモリセルに対してヮ一ド線選択レベルに昇圧電圧を用いて必要 な読み出しマージンを確保するとき、前記所定の不揮発性メモリセルに 対してはヮード線選択レベルに昇圧電圧を用いなくても、或いは電源電 圧が安定化する前でも、同様の読み出しマージンを確保することができ る。要するに、 所定の不揮発性メモリセルに対しては、 パワーオン時に 昇圧動作が完了していなくても正常に読み出し動作を行なうことがで きる。 [1] A semiconductor integrated circuit according to the present invention includes: a plurality of nonvolatile memory cells whose threshold voltage can be reversibly changed by electric charge injection and charge discharge; and a threshold voltage of the plurality of nonvolatile memory cells. A control circuit for controlling a change in voltage, wherein the control circuit is configured to perform a threshold voltage process for initializing a threshold voltage for a predetermined nonvolatile memory cell of the plurality of nonvolatile memory cells. The difference between the value voltage distribution and the threshold voltage distribution by the process of initializing the threshold voltage for the remaining nonvolatile memory cells is provided. From the above, when a necessary read margin is secured for the remaining nonvolatile memory cells by using the boosted voltage at the node line selection level, the node line selection is performed for the predetermined nonvolatile memory cells. A similar read margin can be secured without using a boosted voltage for the level or before the power supply voltage is stabilized. In short, a read operation can be normally performed on a predetermined nonvolatile memory cell even if the boost operation has not been completed at power-on.
本発明の具体的な形態として、前記初期化する処理は、 電荷を放出す る消去と、過消去の不揮発性メモリセルに対して電荷を注入する書込み の処理を含み、前記制御回路は、初期化処理による前記閾値電圧分布の 相違を前記消去と書込みに伴うベリファイ電圧の相違によって規定す る。 これにより、 前記所定の不揮発性メモリセルの過消去が抑制可能に なり、前記所定の不揮発性メモリセルに対する記憶情報の書き換え異常 の発生を抑制することが可能にされる。  As a specific mode of the present invention, the initialization processing includes an erasing operation for releasing electric charges and a writing operation for injecting electric charges into an overerased nonvolatile memory cell. The difference in the threshold voltage distribution due to the embedding process is defined by the difference in the verify voltage accompanying the erasing and writing. This makes it possible to suppress over-erasure of the predetermined nonvolatile memory cell, and to suppress occurrence of an abnormal rewrite of stored information in the predetermined nonvolatile memory cell.
本発明の更に具体的な形態として、前記所定の不揮発性メモリセルに 対する初期化処理による閾値電圧分布は前記残りの不揮発性メモリセ ルに対する初期化処理による閾値電圧分布に比べて閾値電圧の低い分 布とされる。前記所定の不揮発性メモリセルは半導体集積回路の内部動 作に必要な情報を記憶するために専用化された記憶領域を構成する。前 記内部動作に必要な情報はトリミングデ一夕及び救済デ一夕である。 〔2〕本発明の別の観点による半導体集積回路は、 電気的な電荷注入と 電荷放出により閾値電圧を可逆的に変更可能にされる複数の不揮発性 メモリセルを夫々備えた第 1メモリ領域及び第 2メモリ領域と、前記不 揮発性メモリセルの閾値電圧の変更を制御する制御回路とをする。前記 制御回路は、第 1初期化コマンドに応答して前記第 1メモリ領域の不揮 発性メモリセルに対して閾値電圧を初期化する処理を行ない、第 2初期 化コマンドに応答して前記第 2メモリ領域の不揮発性メモリセルに対 して閾値電圧を初期化する処理を行なう。前記初期化する処理は、 電荷 を放出する消去と、過消去の不揮発性メモリセルに対して電荷を注入す る書込みの処理を含み、前記制御回路は、前記第 1コマンドによる消去 及び書込みのためのベリフアイ電圧と前記第 2コマンドによる前記消 去及び書込みのためのベリフアイ電圧とを相違させる。 As a more specific embodiment of the present invention, the threshold voltage distribution by the initialization process for the predetermined nonvolatile memory cell is smaller than the threshold voltage distribution by the initialization process for the remaining nonvolatile memory cells. Cloth. The predetermined non-volatile memory cell constitutes a storage area dedicated for storing information necessary for the internal operation of the semiconductor integrated circuit. The information necessary for the internal operation is the trimming and rescue. [2] A semiconductor integrated circuit according to another aspect of the present invention includes: a first memory region including a plurality of nonvolatile memory cells each of which is capable of reversibly changing a threshold voltage by electric charge injection and charge release; A second memory area; and a control circuit for controlling a change in a threshold voltage of the nonvolatile memory cell. Above The control circuit performs a process of initializing a threshold voltage for the nonvolatile memory cell in the first memory area in response to the first initialization command, and performs the process of initializing the second voltage in response to the second initialization command. A process for initializing the threshold voltage is performed on the nonvolatile memory cells in the memory area. The initialization process includes an erasing operation for releasing electric charges and a writing operation for injecting electric charges into an overerased nonvolatile memory cell, and the control circuit performs erasing and writing operations according to the first command. And a verify voltage for the erase and write by the second command.
上記より、前記第 2メモリ領域の不揮発性メモリセルに対してワード 線選択レベルに昇圧電圧を用いて必要な読み出しマージンを確保する とき、前記第 1メモリ領域の不揮発性メモリセルに対してはワード線選 択レベルに昇圧電圧を用いなくても、或いは電源電圧が安定化する前で も、 同様の読み出しマ一ジンを確保することができる。更に、 前記第 1 メモリ領域の不揮発性メモリセルの過消去が抑制可能になり、前記第 1 メモリ領域の不揮発性メモリセルに対する記憶情報の書き換え異常の 発生を抑制することが可能にされる。  As described above, when a necessary read margin is secured to the nonvolatile memory cells in the second memory area by using the boosted voltage at the word line selection level, the word is stored in the nonvolatile memory cells in the first memory area. A similar read margin can be secured even without using a boosted voltage for the line selection level or before the power supply voltage is stabilized. Furthermore, over-erasure of the nonvolatile memory cells in the first memory area can be suppressed, and occurrence of abnormal rewriting of stored information in the nonvolatile memory cells in the first memory area can be suppressed.
本発明の具体的な形態として、前記第 1コマンドによるべリファイ電 圧は前記第 2コマンドによるべリファイ電圧よりも低い。 また、外部電 源電圧を昇圧して昇圧電圧を出力する昇圧回路を有し、読み出し動作に おいて前記不揮発性メモリセルのワード線は前記昇圧回路の昇圧出力 に基づいて選択レベルにされる。前記第 1メモリ領域は半導体集積回路 の内部動作に必要な情報を記憶するために専用化された記憶領域であ る。前記内部動作に必要な情報はトリミングデ一夕及び救済デ一夕であ る。 また、 パワーオンに応答して前記第 1メモリ領域から記憶情報が口 ードされるレジス夕を有する。 図面の簡単な説明 As a specific mode of the present invention, a verify voltage according to the first command is lower than a verify voltage according to the second command. In addition, a booster circuit that boosts an external power supply voltage and outputs a boosted voltage is provided, and in a read operation, a word line of the nonvolatile memory cell is set to a selected level based on a boosted output of the booster circuit. The first memory area is a storage area dedicated for storing information necessary for internal operation of the semiconductor integrated circuit. The information required for the internal operation is a trimming operation and a relief operation. Further, there is provided a register for reading stored information from the first memory area in response to power-on. Brief Description of Drawings
第 1図は本発明の一例に係るフラッシュメモリを例示するプロック 図である。  FIG. 1 is a block diagram illustrating a flash memory according to an example of the present invention.
第 2図は消去べリファイ電圧の生成回路を例示する回路図である。 第 3図はフラヅシュヒューズ回路及びヒューズ用ラヅチ回路の一例 を示す回路図である。  FIG. 2 is a circuit diagram illustrating a circuit for generating an erase verify voltage. FIG. 3 is a circuit diagram showing an example of a flash fuse circuit and a fuse latch circuit.
第 4図はフローティングゲート構造を有する不揮発性メモリセルの 断面構造の概略を例示する縦断面図である。  FIG. 4 is a longitudinal sectional view schematically illustrating the sectional structure of a nonvolatile memory cell having a floating gate structure.
第 5図は不揮発性メモリセルに対する初期化動作手順を例示するフ 口一チヤ一トである。  FIG. 5 is a flowchart illustrating an initialization operation procedure for a nonvolatile memory cell.
第 6図は消去バイアスを印加したときの閾値電圧分布の説明図であ o  FIG. 6 is an explanatory diagram of a threshold voltage distribution when an erase bias is applied.
第 Ί図は消去ベリフアイがフェイルとなるときの閾値電圧分布の説 明図である。  FIG. 5 is an explanatory diagram of the threshold voltage distribution when the erase verify fails.
第 8図は消去ベリフアイがパスとなるときの閾値電圧分布の説明図 である。  FIG. 8 is an explanatory diagram of the threshold voltage distribution when the erase verify passes.
第 9図は書き戻しを行なうときの閾値電圧分布の説明図である。 第 1 0図は第 1初期化コマンドによる消去閾値電圧分布、第 2初期化 コマンドによる消去閾値電圧分布及びマニュアル消去による消去閾値 電圧分布を例示する説明図である。  FIG. 9 is an explanatory diagram of a threshold voltage distribution when performing write back. FIG. 10 is an explanatory diagram illustrating an erase threshold voltage distribution according to a first initialization command, an erase threshold voltage distribution according to a second initialization command, and an erase threshold voltage distribution according to manual erasure.
第 1 1図はマニュアル消去の説明図である。 発明を実施するための最良の形態  FIG. 11 is an explanatory diagram of manual erasure. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図には本発明の一例に係るフラッシュメモリ 1が示される。フラ ヅシュメモリ 1は単結晶シリコンなどの 1個の半導体基板に形成され、 メモリアレイ (M R Y ) 2、 ァドレスデコーダ · ドライノ、 (D E C · D V) 3、 センスラッチ列 ( S A ) 4、 カラムスィッチ列 ( C S W) 5、 電源回路 (POWG) 6、 インタフヱ一ス回路 (I O I F) 7、 制御回 路 (CTRL) 8、 フラッシュヒューズ回路 (FFS) 9、 ヒューズ用 ラッチ回路 (FLAT) 10、 及びパヅ ド列 11によって構成される。 前記メモリアレイ 2は、電気的な消去及び書き込みによって閾値電圧 が可逆的に変更可能にされる多数の不揮発性メモリセル MCを有する。 本明細書において消去とは不揮発性メモリセル MCの閾値電圧を低く することであり、書き込みとは不揮発性メモリセルの閾値電圧を高くす ることである。不揮発性メモリセル MCは例えばソースとドレインの間 のチャネル領域の上に夫々絶縁されたフ口一ティングゲ一トとコント ロールゲートを有すスタックドゲート構造を有する。不揮発性メモリセ ル MCのコント口一ルゲートはワード線 W Lに、 ドレインはビッ ト線 B Lに、 ソースはソース線 S Lに接続される。 ヮ一ド線選択とカラムスィ ヅチ列 7によるビッ ト線選択とは、ァドレス信号をデコードするデコー ダ · ドライバ 3によるデコード信号に基づいて行われる。 ビヅ ト線 BL にはその一端にセンスラッチ列 4のセンスラッチが接続される。読み出 し動作のワード線選択で不揮発性メモリセルから読み出されたデータ はセンスラヅチ列 4のセンスラツチを用いて検出され、カラムスィヅチ 列 5で選択されるバイ ト又はヮ一ドなどのアクセス単位に従ってィン 夕フェース回路 7に伝達される。 消去動作は、 特に制限されないが、 ヮ 一ド線単位で行なわれる。書き込み動作ではィン夕フェース回路 7に入 力された書き込みデータがカラムスィツチ列 5を介してセンスラッチ 列 4にラッチされ、センスラツチ列 4にラヅチされたデータの論理値に 応じて書き込み電圧の印加と印加阻止が制御される。 FIG. 1 shows a flash memory 1 according to an example of the present invention. Flash memory 1 is formed on a single semiconductor substrate such as single crystal silicon, and has a memory array (MRY) 2, an address decoder / dryno, (DEC / D V) 3, Sense latch row (SA) 4, Column switch row (CSW) 5, Power supply circuit (POWG) 6, Interface circuit (IOIF) 7, Control circuit (CTRL) 8, Flash fuse circuit (FFS) 9, a fuse latch circuit (FLAT) 10, and a pad row 11. The memory array 2 has a large number of nonvolatile memory cells MC whose threshold voltage can be reversibly changed by electrical erasing and writing. In this specification, erasing means lowering the threshold voltage of the nonvolatile memory cell MC, and writing means raising the threshold voltage of the nonvolatile memory cell. The non-volatile memory cell MC has, for example, a stacked gate structure having an insulating gate and a control gate which are respectively insulated on a channel region between a source and a drain. The control gate of the nonvolatile memory cell MC is connected to the word line WL, the drain is connected to the bit line BL, and the source is connected to the source line SL. The selection of the lead line and the selection of the bit line by the column switch column 7 are performed based on the decode signal from the decoder driver 3 which decodes the address signal. One end of the bit line BL is connected to the sense latch of the sense latch train 4. The data read from the non-volatile memory cells by the word line selection in the read operation is detected by using the sense latch of the sense switch row 4, and the data is read in accordance with the access unit such as the byte or pad selected by the column switch row 5. The signal is transmitted to the interface circuit 7. The erase operation is not particularly limited, but is performed in a unit of a single line. In the write operation, the write data input to the interface circuit 7 is latched in the sense latch row 4 via the column switch row 5, and the write voltage is applied in accordance with the logical value of the data latched in the sense latch row 4. And the application inhibition is controlled.
電源回路 6はフラッシュメモリ 1の消去及び書き込みに必要な高電 圧や読み出しに必要なワード線昇圧電圧などの動作電源をチャージポ ンプ回路及び抵抗分圧回路等から成る昇圧回路を利用して生成する。 フラッシュヒュ一ズ回路 9は、メモリアレイ 2の不揮発性メモリセル M Cと同じメモリ トランジス夕によつて構成され、フラッシュメモリの 内部動作に必要なトリミングデ一夕及び救済データを保持する。特に図 示はしないが、メモリアレイ 2は欠陥アドレスの救済に用いる冗長ヮー ド線及び冗長ビット線を有し、 デコーダ · ドライバ 3は欠陥ァドレスを 冗長ァドレスに置き換える切り換え回路を有し、切り換え回路は救済デ 一夕で指定された欠陥ァドレスに対するアクセスを検出したとき、欠陥 ァドレスに代えて冗長ァドレスのメモリセルをアクセス対象に切り換 え制御する。 また、 電源回路 6はチャージポンプ回路や抵抗分圧回路な どを利用して書込みや消去に利用する高電圧並びにベリフアイ電圧等 を生成するが、プロセスばらつきなどによって抵抗分圧回路のフルスケ ール電圧やオフセッ ト電圧にばらつきを生ずることがる。このようなば らっきを補償するのにトリ ミング回路が設けられ、このトリ ミング回路 はト リ ミングデータで指定された夕ップを選択してばらつきを補償す ヒューズ用ラヅチ回路 1 0はフラッシュヒューズ回路 9から読み出 された救済データ及びトリミングデータを保持し、保持したデータは対 応する冗長切換え回路やトリミング回路に伝達される。 The power supply circuit 6 charges an operating power supply such as a high voltage required for erasing and writing to the flash memory 1 and a word line boosted voltage required for reading. It is generated using a booster circuit including a pump circuit and a resistor voltage divider circuit. The flash fuse circuit 9 is constituted by the same memory transistors as the nonvolatile memory cells MC of the memory array 2, and holds trimming data and relief data necessary for the internal operation of the flash memory. Although not specifically shown, the memory array 2 has a redundant code line and a redundant bit line used for repairing a defective address, the decoder / driver 3 has a switching circuit for replacing the defective address with the redundant address, and the switching circuit is When detecting access to the specified defective address in the rescue operation, the memory cell of the redundant address is switched to the access target instead of the defective address and controlled. The power supply circuit 6 generates a high voltage and a verify voltage used for writing and erasing by using a charge pump circuit and a resistor voltage divider circuit, etc., but the full scale voltage of the resistor voltage divider circuit due to process variations and the like. And the offset voltage may vary. A trimming circuit is provided to compensate for such variations, and this trimming circuit selects a flip-flop designated by the trimming data and compensates for the variation. Relief data and trimming data read from the flash fuse circuit 9 are held, and the held data is transmitted to a corresponding redundancy switching circuit or trimming circuit.
制御回路 8は外部から入力されるス トローブ信号及びコマンドに従 つてフラッシュメモリ 1の消去、 書き込み、 読み出し等のタイミング制 御と、 そのとき必要な動作電源の選択制御等を行なう。更に制御回路 8 は、 パヮ一オンに応答して、 フラッシュヒューズ回路 9から救済データ 及びトリミングデ一夕を読み出して、ヒューズ用ラッチ回路 1 0にロー ドする。パワーオンの検出は電源回路 6が自ら行なってもよいし、 外部 からのストロ一ブ信号で検出してもよい。パッ ド 1 1は外部接続端子と してのボンディングパヅド及び入力 ·出力バッファを有する。 The control circuit 8 controls the timing of erasing, writing, reading, etc. of the flash memory 1 in accordance with a strobe signal and a command input from the outside, and controls selection of an operating power supply required at that time. Further, the control circuit 8 reads the relief data and the trimming data from the flash fuse circuit 9 in response to the power-on, and loads the data into the fuse latch circuit 10. Power-on detection may be performed by the power supply circuit 6 itself, or may be detected by an external strobe signal. Pad 1 1 is connected to the external connection terminal. It has a bonding pad and an input / output buffer.
前記コマンドには消去コマンド、消去ベリファイコマンド、書込みコ マンド、 書き込みベリファイコマンド、 及び読み出しコマンドの他、 初 期化コマンドがある。例えば、 消去コマンドはァドレスで指定されるヮ 一ド線単位の一括消去領域に対して消去電圧を印加するコマンド、消去 ベリファイコマンドは消去コマンドで指定された一括消去領域の不揮 発性メモリセルの全てが消去状態であるか否かを判定するコマンドで ある。書き込みコマンドはァドレスで指定されるバイ トなどの書き込み 単位の不揮発性メモリセルに対して書き込みデ一夕に従って選択的に 書き込み電圧を印加するコマンド、書き込みベリファイコマンドは書き 込みコマンドで書き込み電圧を印加した不揮発性メモリセルが書き込 み状態であるか否かを判定するコマンドである。読み出しコマンドはァ ドレスで指定されるメモリセルの記憶情報を外部に読み出すコマンド である。  The commands include an erase command, an erase verify command, a write command, a write verify command, a read command, and an initialization command. For example, an erase command is specified by an address. A command to apply an erase voltage to a batch erase area in units of a single line. An erase verify command is used to erase nonvolatile memory cells in the batch erase area specified by an erase command. This command is used to determine whether or not everything is in the erased state. A write command is a command for selectively applying a write voltage to a non-volatile memory cell of a write unit such as a byte specified by an address according to a write time, and a write verify command is a write command for applying a write voltage. This is a command for determining whether or not the nonvolatile memory cell is in a write state. The read command is a command for reading the storage information of the memory cell specified by the address to the outside.
'前記初期化コマンドは所謂自動消去(ォ一ト ·ィレ一ズ) コマンドで あり、アドレスで指定された一括消去領域の不揮発性メモリセルに対し て消去電圧を印加し、消去電圧を印加した不揮発性メモリセルが消去状 態の閾値電圧分布に入つたかをべリファイし、 更に、過消去の不揮発性 メモリセルに対して書き込み電圧を与えて閾値電圧を上げる書き戻し を行なう処理とされる。この初期化コマンドを用いることにより一部の 不揮発性メモリセルが最終的に過消去になって残るのを抑制すること ができる。特に、 フラヅシュヒューズ回路 9の不揮発性メモリセルに対 する初期化コマンド (第 1初期化コマン) と、 メモリアレイ 2に対する 初期化コマンド (第 2初期化コマンド) とを別々に持つので、 フラヅシ ュヒューズ回路 9においても過消去の発生を抑制することができる。 特に、前記第 1初期化コマンドのベリファイ電圧(消去べリファイ電 圧、 書き戻しベリフアイ電圧) は第 2初期化コマンドのベリフアイ電圧 (消去べリファイ電圧、 書き戻しべリファイ電圧) よりも低くされる。 したがって、読み出し動作ではメモリアレイ 2の不揮発性メモリセルに 対してヮード線選択レベルに昇圧電圧を用いて必要な読み出しマージ ンを確保するようになっているが、フラッシュヒューズ回路 9の不揮発 性メモリセルに対してはヮード線選択レベルに昇圧電圧を用いなくて も、 或いは電源電圧が安定化する前でも、 同様の読み出しマージンを確 保することができる。 これにより、 パワーオン時にはヮード線電圧を昇 圧することが間に合わないために、ヮ一ド線電圧が規定の昇圧電圧以下 になっていても、 充分な読み出しマージンを確保することができ、 パヮ 一オン時にフラッシュヒューズ回路 9からヒューズ用ラヅチ回路 1 0 に口一ドされる救済データ及びト リ ミングデ一夕の不所望な論理値反 転などを防止でき、ロードされるデータの信頼性を向上させることがで きる。 'The initialization command is a so-called automatic erase (auto erase) command, in which an erase voltage is applied to the nonvolatile memory cells in the batch erase area specified by the address, and the erase voltage is applied. Verification is performed to determine whether the non-volatile memory cell has entered the threshold voltage distribution in the erased state, and furthermore, a write voltage is applied to the over-erased non-volatile memory cell to perform a write-back operation to increase the threshold voltage. . By using this initialization command, it is possible to prevent some of the non-volatile memory cells from being over-erased and remaining. In particular, since the flash fuse circuit 9 has an initialization command (first initialization command) for nonvolatile memory cells and an initialization command for the memory array 2 (second initialization command) separately, Also in the fuse fuse circuit 9, occurrence of over-erasure can be suppressed. In particular, the verify voltage (erase verify voltage) of the first initialization command is used. Voltage and write-back verify voltage) are lower than the verify voltages (erase verify voltage and write-back verify voltage) of the second initialization command. Therefore, in a read operation, a necessary read margin is secured by using a boosted voltage to a nonvolatile memory cell of the memory array 2 at a read line selection level, but the nonvolatile memory cell of the flash fuse circuit 9 is secured. In contrast, the same read margin can be ensured without using the boosted voltage as the read line selection level or before the power supply voltage is stabilized. This makes it impossible to boost the lead line voltage at power-on, so that a sufficient read margin can be secured even if the lead line voltage is equal to or lower than the specified boost voltage. At the same time, it is possible to prevent the relieved data that is sometimes input from the flash fuse circuit 9 to the fuse latch circuit 10 and the inversion of the undesired logic value during the trimming operation, and to improve the reliability of the loaded data. I can do it.
第 2図には消去べリファイ電圧の生成回路 1 2が例示される。 1 3は バンドギヤップ回路であり、温度や電源電圧に依存しない安定な電圧 V B G Rを発生する。 1 4は電圧レベル変換回路であり、差動増幅器 1 5、 Pチャネル M O S トランジスタ M P 1、 抵抗 R 1、 R 2、 R 3、 および 切り替えスィ ヅチ 1 6から成り、電圧 V B G Rをもとに消去べリファイ 電圧 V e V f yを発生する。選択信号 S E L 1により消去べリファイ電 圧 V e v f yを取り出す夕ップ位置を変える。第 1初期化コマンドにお ける消去べリファイ時には R 2と R 3の接続夕ップを選択し、第 2初期 化コマンドにおける消去べリファイ時には R 1 と R 2の接続夕ヅプを 選択する。 消去べリファイ電圧の生成回路 1 2は電源回路 6が有する。 尚、図示はしないが書き戻しべリファイ電圧を生成する回路も同じよう に構成することができる。 第 3図にはフラヅシュヒューズ回路 9及びヒューズ用ラツチ回路 1 0の一例が示される。 FIG. 2 illustrates an erase verify voltage generation circuit 12. 13 is a band gap circuit which generates a stable voltage VBGR independent of temperature and power supply voltage. Reference numeral 14 denotes a voltage level conversion circuit, which is composed of a differential amplifier 15, a P-channel MOS transistor MP1, resistors R1, R2, R3, and a switch 16, and should be erased based on the voltage VBGR. Generates the verify voltage VeVfy. Use the selection signal SEL 1 to change the position of the tap to extract the erase verify voltage V evfy. At the time of erasure verification in the first initialization command, the connection between R2 and R3 is selected, and at the time of erasure verification in the second initialization command, the connection between R1 and R2 is selected. The power supply circuit 6 has an erase verify voltage generation circuit 12. Although not shown, a circuit for generating a write-back verify voltage can be similarly configured. FIG. 3 shows an example of the flash fuse circuit 9 and the latch circuit 10 for the fuse.
フラヅシュヒューズ回路 9は NOR型のメモリアレイ構成を有する。 サブビヅ ト線としてのビヅ ト線 B Lは分離 MO Sトランジス夕 MN 2 を介してメインビヅ ト線 MB Lに接続される。メインビッ ト線 MS Lは メモリアレイ 2と共用される。図には代表的に一対のビヅ ト線 B Lが示 されている。各ビッ ト線 B Lには複数の不揮発性メモリセル M Cのドレ ィンが接続され、 ソースはソース線 S Lに共通接続される。 コント口一 ルゲートはヮード線 WLに接続される。ビッ ト線 B Lには読み出し負荷 回路を構成する負荷 MO Sスィツチ MN 3が接続される。 ø 3は負荷 M OSスイッチ MN3のスィヅチ信号である。  The flash fuse circuit 9 has a NOR type memory array configuration. The bit line BL as a sub-bit line is connected to the main bit line MBL via a separate MOS transistor MN2. Main bit line MSL is shared with memory array 2. The figure typically shows a pair of bit lines BL. The drains of a plurality of nonvolatile memory cells MC are connected to each bit line BL, and the sources are commonly connected to a source line SL. The control gate is connected to the lead line WL. A load MOS switch MN3 constituting a read load circuit is connected to the bit line BL. ø3 is the switch signal of the load MOS switch MN3.
ヒューズ用ラヅチ回路 10は、 トランスファ MOSトランジスタ MN 4によってビッ ト線 B Lに接続する。一対のビッ ト線 B Lは相補ビヅ ト 線として利用され、対応するスタティ ヅクラッチ L ATの差動入力端子 に接続される。スタティ ックラッチ L ATにラッチされた救済デ一夕や トリミングデータはシングルェンドで対応する回路に供給される。 ø 2 はトランスファ MOSトランジスタ MN4のスィツチ信号、 ø 3はス夕 ティ ヅクラッチ LATの活性化信号である。  The fuse latch circuit 10 is connected to the bit line BL by the transfer MOS transistor MN4. The pair of bit lines BL are used as complementary bit lines and are connected to the corresponding differential input terminals of the static clutch LAT. The relief data and trimming data latched in the static latch LAT are supplied to the corresponding circuit in a single end. ø2 is a switch signal of the transfer MOS transistor MN4, and ø3 is an activation signal of switch LAT.
フラヅシュヒューズ回路 9による 1ビッ トの情報記憶は、左右一対の ビヅ ト線の夫々に接続する複数の不揮発性メモリセル MCを利用して 差動で行なう。要するに、 一方のビッ ト線に接続する全ての不揮発性メ モリセルに並列的に非反転データを格納し、他方のビッ ト線に接続する 全ての不揮発性メモリセルには並列的に反転データを格納し、相補的に 情報記憶を行なう。図では左側のビッ ト線 B Lの不揮発性メモリセルは 全て書き込み状態にされ、右側のビヅ ト線 B Lの不揮発性メモリセルは 全て消去状態にされる。読み出し動作では全てのワード線が選択状態に される。読み出し動作では分離 M O S トランジスタ M lがオフ状態、 ト ランスファ M O S トランジスタ M N 3及び負荷 M O Sスィ ツチ M N 4 がオン状態にされ、 ス夕ティックラヅチ L A Tが活性化され、 ビッ ト線 に読み出される記憶情報をスダティ ヅクラッチ L A Tがラヅチする。ラ ツチした後、 トランスファ M O S トランジスタ M N 3及び負荷 M O Sス イッチ M N 4はオフ状態にされる。 One-bit information storage by the flash fuse circuit 9 is performed differentially using a plurality of nonvolatile memory cells MC connected to a pair of left and right bit lines. In short, non-inverted data is stored in parallel in all nonvolatile memory cells connected to one bit line, and inverted data is stored in parallel in all nonvolatile memory cells connected to the other bit line. And complementarily store information. In the figure, all the non-volatile memory cells on the left bit line BL are in a write state, and all the non-volatile memory cells on the right bit line BL are in an erase state. In read operation, all word lines are selected Is done. In the read operation, the separation MOS transistor Ml is turned off, the transfer MOS transistor MN3 and the load MOS switch MN4 are turned on, the static latch LAT is activated, and the stored information read out to the bit line is scanned.ヅ Clutch LAT launches. After latching, the transfer MOS transistor MN3 and the load MOS switch MN4 are turned off.
フラッシュヒューズ回路 9は、 1ビヅ トのデ一夕に対して夫々片側に 複数ビッ ト例えば 1 6ビッ トで相補的な情報記憶を可能とするように 不揮発性メモリセルが用いられるから、 リテンションによるデータの反 転やノイズによる誤動作に対するマージンを確保することができる。例 えば書き込み状態の 1 ビットの不揮発性メモリセルが消去状態に特性 変化しても、それによる電流量は反対側のビッ ト線に流れる電流量を上 回ることはない。 また、 消去状態の 1ビッ トが過消去状態に陥っていて もそれとビッ ト線 B Lを共有する他のメモリセルも消去状態であるか らデータ読み出しには支障は無い。実際には第 1初期化モードを用いる ので過消去を生じないし、 それ故に、 消去状態の並列複数ビッ トを書き 込み状態に書き換えることも阻害されない。仮に、 並列複数ビッ トのー 部に過消去を生じていると、書き込み状態に書き換えても過消去のメモ リセルの状態は消去状態から抜け出せず、記憶情報が不所望に反転する 虞がある。  The flash fuse circuit 9 uses a nonvolatile memory cell so as to enable complementary information storage with a plurality of bits, for example, 16 bits, on one side for each one-bit data. It is possible to secure a margin against inversion of data due to data and malfunction due to noise. For example, even if a 1-bit nonvolatile memory cell in the written state changes its characteristics to the erased state, the amount of current caused by the change does not exceed the amount of current flowing to the opposite bit line. Even if one bit in the erased state is in an over-erased state, other memory cells sharing the bit line BL with the over-erased state are in the erased state, so there is no problem in reading data. Actually, since the first initialization mode is used, over-erasure does not occur, and therefore, rewriting a plurality of parallel bits in the erased state to the write state is not hindered. If over-erasure occurs in a portion of a plurality of parallel bits, the over-erased memory cell does not escape from the erased state even when rewritten to the write state, and the stored information may be undesirably inverted.
第 4図にはフローテイングゲート構造を有する不揮発性メモリセル M Cの断面構造の概略が例示される。ゥエル領域 2 ◦にドレイン 2 1と ソース 2 2が形成され、 その間のチャネル領域 2 3の上に、 夫々ゲート 絶縁層 2 4、 2 6を介して順次フローティングゲート 2 5とコントロー ルゲ一ト 2 7が形成される。 ドレイン 2 1はビッ ト線 B Lに、 ソース 2 2はソース線 S Lに、コントロ一ルゲート 2 7はヮ一ド線 W Lに接続さ れる。 FIG. 4 illustrates a schematic cross-sectional structure of a nonvolatile memory cell MC having a floating gate structure. A drain 21 and a source 22 are formed in the well region 2 ◦, and a floating gate 25 and a control gate 27 are sequentially formed on the channel region 23 therebetween through the gate insulating layers 24 and 26, respectively. Is formed. Drain 21 is connected to bit line BL, source 22 is connected to source line SL, and control gate 27 is connected to lead line WL. It is.
ここで、 消去、 書き込み、 読み出しのとき不揮発性メモリセル MCに 印加する電圧関係について説明する。外部動作電源電圧 VDDを例えば 3. 3Vとする。例えば、読み出しでは、 Vd (ドレイン電圧) = 1 V、 V c g (コントロールゲート電圧) =3. 8V、 V s (ソース電圧) = 0 V、 Vsub (基板電圧) =0 Vとされる。消去では、 Vd = OP (フ ローティング) 、 Vc g =— l lV、 Vs=OP、 V s u b = 10. 5 Vとされる。この消去電圧関係によってフローティングゲ一トに注入さ れている電子が基板 (ゥエル領域) に放出されて、 コントロールゲート から見た閾値電圧が低下される。書き込みでは、 Vd=6V、 V c g = 10V、 Vs = 0V、 Vsub = 0Vとされる。 この書き込み電圧関係 により、 ドレインからソースへ電流が流れ、 発生したホヅトエレクト口 ンがフローティングゲ一トに注入されて、コントロールゲートから見た 閾値電圧が上昇される。他の書き込み方法では、 Vd = 0V、 Vc g = 10V、 Vs = 0V、 Vsub = 0Vとされる。 この書き込み電圧関係 により、 ドレイン一ソース間のチヤネル領域とフローテイングゲートと の間で F Nトンネル現象により電子がフローティングゲ一トに注入さ れて、 コントロールゲートから見た閾値電圧が上昇される。  Here, the relationship between the voltages applied to the nonvolatile memory cell MC at the time of erasing, writing, and reading will be described. The external operating power supply voltage VDD is, for example, 3.3V. For example, in reading, Vd (drain voltage) = 1 V, Vcg (control gate voltage) = 3.8 V, Vs (source voltage) = 0 V, and Vsub (substrate voltage) = 0 V. In the erase operation, Vd = OP (floating), Vcg = —llV, Vs = OP, and Vsub = 10.5 V. Due to this erase voltage relationship, electrons injected into the floating gate are emitted to the substrate (well region), and the threshold voltage seen from the control gate is lowered. In writing, Vd = 6V, Vcg = 10V, Vs = 0V, and Vsub = 0V. Due to this write voltage relationship, a current flows from the drain to the source, the generated photo-elect port is injected into the floating gate, and the threshold voltage seen from the control gate is increased. In other writing methods, Vd = 0V, Vcg = 10V, Vs = 0V, and Vsub = 0V. Due to this write voltage relationship, electrons are injected into the floating gate by the FN tunnel phenomenon between the channel region between the drain and the source and the floating gate, and the threshold voltage seen from the control gate is increased.
第 5図には初期化動作の手順が例示される。消去バイァス印加 S 1で は、不揮発性メモリセル MCの閾値電圧を下げるために、 前記消去関係 電圧として説明した消去バイアスを印加する。 この時、 一括消去単位と される選択ヮ一ド線を共有する複数個の不揮発性メモリセル MCの閾 値電圧分布は消去スピードに応じたばらつきを持つ。例えば第 6図のよ うに初期閾値電圧分布は消去バイアス印加 S 1により低下される。閾値 電圧は V t hとして図示されている。  FIG. 5 illustrates the procedure of the initialization operation. In the erase bias application S1, the erase bias described as the erase-related voltage is applied in order to lower the threshold voltage of the nonvolatile memory cell MC. At this time, the threshold voltage distribution of the plurality of nonvolatile memory cells MC sharing the selection gate line, which is a unit of batch erasure, varies according to the erase speed. For example, as shown in FIG. 6, the initial threshold voltage distribution is reduced by the application of the erase bias S1. The threshold voltage is shown as V th.
消去べリファイ S 2では、消去バイアス印加 S 1後の閾値電圧分布の 上限が消去べリファイレベル V e V f y以下にあるかをチェックする。 第 7図の状態は、閾値電圧分布の上限が消去ベリフアイレベル Vevf yよりも上にあるためフェイル(Fa i 1 )とされる。第 8図の状態は、 閾値電圧分布の上限が消去ベリフアイレベル Ve V f y以下にあるた めパス (Pas s) となる。 パスとなるまで、 S 1の消去バイァス印加 と S 2の消去べリファイがを繰り返される。 この時、 閾値分布は消去特 性に応じたばらつきを持っため、第 8図に例示されるように閾値分布の 下限はデプリートレベル Vdp r t以下になる事がある。 In erase verify S2, the threshold voltage distribution after erase bias application S1 Check whether the upper limit is below the erase verify level V e V fy. In the state shown in FIG. 7, the upper limit of the threshold voltage distribution is higher than the erase verify eye level Vevfy, so that the state is determined as fail (Fai 1). In the state shown in FIG. 8, the upper limit of the threshold voltage distribution is equal to or lower than the erase verify eye level Ve V fy, so that the state becomes a pass (Pas s). Until the pass, erase bias application of S 1 and erase verify of S 2 are repeated. At this time, since the threshold distribution has a variation according to the erasing characteristics, the lower limit of the threshold distribution may be equal to or less than the depletion level Vdprt as illustrated in FIG.
書き戻し S 3では、 消去後の閾値電圧分布において、 第 9図に例示さ れるように,書き戻しレベル Vwb以下の不揮発性メモリセル MCに対 し選択的に書込みを行い、閾値電圧分布の下限を書き戻しレベル Vwb 以上に揃える。 この時、 消去動作途中でデブリートした不揮発性メモリ セル MCも書き戻しの対象にされるため、正常に書き戻しが完了されれ ば、 デブリートした不揮発性メモリセル MCは残らない。  In the write-back S3, in the threshold voltage distribution after erasing, as shown in FIG. 9, writing is selectively performed on the nonvolatile memory cell MC having the write-back level Vwb or lower, and the lower limit of the threshold voltage distribution is determined. To be equal to or higher than the writeback level Vwb. At this time, the non-volatile memory cell MC that has been debrided during the erasing operation is also subjected to the write-back. Therefore, if the write-back is completed normally, the non-volatile memory cell MC that has been debrided does not remain.
第 10図には第 1初期化コマンドによる消去閾値電圧分布、第 2初期 化コマンドによる消去閾値電圧分布及びマニュアル消去による消去閾 値電圧分布が例示される。 Wrngは書き込み閾値電圧分布を表す。 A E r ng— Mはメモリアレイ 2の不揮発性メモリセルに対する第 2初 期化コマンドによる消去閾値電圧分布、 AE rng— Fはフラヅシュヒ ユーズ回路 9に対する第 1初期化コマンドによる消去閾値電圧分布、 M EWr ng— Fはフラッシュヒューズ回路 9に対するマニュアル消去 による消去閾値電圧分布を表す。マニュアル消去では逐次コマンドを投 入して消去及び消去べリファイを行なうので、 処理時間がかかる上に、 書き戻しも充分ではなく過消去状態で残るメモリセルもある。初期化コ マンドを用いた場合には過消去状態のメモリセルは残らない。更に、 第 1初期化コマンドによる消去ベリフアイ電圧 V e V f y— Fは第 2初 期化コマンドによる消去ベリフアイ電圧 V e v f y— Mよりも低く、第 1初期化コマンドによる書き戻しべリファイ電圧 V w b— Fは第 2初 期化コマンドによる書き戻しべリファイ電圧 V w b—Mよりも低いか ら、フラッシュヒューズ回路 9に対する読み出しヮード線電圧に対して、 フラッシュヒューズ回路 9の第 1初期化コマン ドによる消去閾値電圧 分布 A E r n g— Fには比較的大きなマ一ジン m r 3を確保するこ とができる。第 1初期化コマンドを採用せずにフラッシュヒューズ回路 9も第 2初期化コマンドで初期化する場合には小さなマージン m r g 1 しか確保できず、読み出し信号量が小さくなってデータエラーを生ず る虞がある。マニュアル消去の場合には m r g lよりも大きなマージン m r g 2を得ることができるが、前述の通り過消去のメモリセルが残つ て、 フラッシュヒューズ回路 9の書き換えに支障を来す虞がある。 マ二 ュアル消去とは、 例えば第 1 1図に例示されるように、 第 2初期化コマ ンドを実行した後に、消去コマンドを複数回繰返して消去閾値電圧分布 を低くする処理である。 しかしながら、 書き戻しが全く行なわれず若し くは付随して充分に行なわれないから、 過消去 (過剰消去) ビッ トが発 生する虞がある。 一旦過消去ビッ トを生ずると、 書き換えにて、 当該過 消去ビッ トに書き込み電圧を与えても書き込み状態に戻らない場合が あり、 データエラーの原因になる。 FIG. 10 illustrates an erase threshold voltage distribution by the first initialization command, an erase threshold voltage distribution by the second initialization command, and an erase threshold voltage distribution by manual erase. Wrng represents a write threshold voltage distribution. AErng—M is the erase threshold voltage distribution of the nonvolatile memory cells of the memory array 2 by the second initialization command, and AErng—F is the erase threshold voltage distribution of the flash memory 9 by the first initialization command, M EWr. ng-F represents the erase threshold voltage distribution of the flash fuse circuit 9 by manual erasure. In manual erasure, erasure and erasure verification are performed by sequentially inputting commands, so that it takes a long time to process and some memory cells are not sufficiently rewritten and remain in an over-erased state. When the initialization command is used, no over-erased memory cells remain. Furthermore, the erase verify voltage V e V fy—F by the first initialization command is Erase verify voltage V evfy-M by the reset command, and write-back verify voltage V wb- F by the first reset command is lower than the write-back verify voltage V wb-M by the second reset command. Therefore, a relatively large margin mr 3 is secured for the erase threshold voltage distribution AE rng-F by the first initialization command of the flash fuse circuit 9 with respect to the read line voltage for the flash fuse circuit 9. Can be. If the flash fuse circuit 9 is also initialized by the second initialization command without using the first initialization command, only a small margin mrg 1 can be secured, and the read signal amount becomes small, which may cause a data error. There is. In the case of manual erasure, a margin mrg 2 larger than mrgl can be obtained. However, as described above, there is a concern that rewriting of the flash fuse circuit 9 may be hindered by leaving overerased memory cells. The manual erasing is a process of lowering the erasing threshold voltage distribution by repeating the erasing command a plurality of times after executing the second initialization command, as exemplified in FIG. 11, for example. However, there is a risk that an over-erased (over-erased) bit will occur because no re-writing is performed at all, or insufficiently accompanied. Once an over-erased bit is generated, it may not return to the written state even if a write voltage is applied to the over-erased bit during rewriting, causing a data error.
以上説明したフラッシュメモリによれば以下の作用効果を得る。  According to the flash memory described above, the following operational effects can be obtained.
〔 1〕フラッシュヒューズ回路 9に救済デ一夕やトリミングデ一夕を格 納させるとき、消去や書込みの処理を何度も個別コマンドを投入して繰 り返す必要がなくなる為、 テスト時間短縮が可能である。  [1] When the flash fuse circuit 9 stores relief data and trimming data, it is not necessary to repeat the erasing and writing processes many times by inputting individual commands. It is possible.
〔2〕 最適な書き戻しが行われ、 デブリートビッ 卜の影響が無くなる。 〔3〕フラヅシュヒューズ回路 9の閾値電圧分布が最適化されパワーォ ン時の読み出しにも充分なマージンを確保することができる。要するに、 メモリアレイ 2のヮード線選択レベルには昇圧電圧を用いて必要な読 み出しマージンを確保するとき、前記フラッシュヒューズ回路 9のヮ一 ド線選択レベルに昇圧電圧を用いなくても、或いは電源電圧が安定化す る前でも、 同様の読み出しマージンを確保することができ、 パワーオン 時に昇圧動作が完了していなくても正常に読み出し動作を行なうこと ができる。 [2] Optimal write-back is performed, and the effect of debris bits is eliminated. [3] The threshold voltage distribution of the flash fuse circuit 9 is optimized, and a sufficient margin can be secured for reading at power-on. in short, When a required read margin is secured by using a boosted voltage for the read line selection level of the memory array 2, the boost fuse voltage can be used without using the boosted voltage for the read line selection level of the flash fuse circuit 9 or the power supply voltage. A similar read margin can be secured even before the voltage is stabilized, and a normal read operation can be performed even if the boost operation has not been completed at power-on.
以上本発明者によってなされた発明を実施例に基づいて具体的に説 明したが本発明はそれに限定されるものではなく、その要旨を逸脱しな い範囲において種々変更可能である。  The invention made by the present inventor has been specifically described based on the embodiments, but the present invention is not limited thereto, and can be variously modified without departing from the gist thereof.
例えば、不揮発性メモリセルはス夕ヅク ドゲ一ト構造のフラッシュメ モリに限定されず、選択トランジスタ部とメモリ トランジスタ部を分離 して直列配置したスプリ ヅ トゲート構造のフラッシュメモリであって もよい。 また、 不揮発性メモリセルは 2値記憶だけでなく 4値以上の多 値記憶を行なってもよい。また、本発明は単体メモリ L S Iだけでなく、 フラッシュメモリをオンチヅプしたマイクロコンピュータもしくはシ ステム L S Iなどにも適用することができる。 産業上の利用可能性  For example, the nonvolatile memory cell is not limited to a flash memory having a flash gate structure, but may be a flash memory having a split gate structure in which a select transistor portion and a memory transistor portion are separated and arranged in series. In addition, the nonvolatile memory cell may perform not only binary storage but also multi-level storage of four or more values. Further, the present invention can be applied not only to a single memory LSI but also to a microcomputer or a system LSI in which a flash memory is on-chip. Industrial applicability
本発明は、.フラヅシュヒューズのような記憶領域を有するフラヅシュ メモリなどの半導体集積回路に適用することができる。  The present invention can be applied to a semiconductor integrated circuit such as a flash memory having a storage area such as a flash fuse.

Claims

請 求 の 範 囲 The scope of the claims
1 .電気的な電荷注入と電荷放出により閾値電圧を可逆的に変更可能に される複数の不揮発性メモリセルと、前記複数の不揮発性メモリセルの 閾値電圧の変更を制御する制御回路とを有し、 1. A plurality of nonvolatile memory cells whose threshold voltage can be reversibly changed by electric charge injection and charge release, and a control circuit for controlling the change of the threshold voltage of the plurality of nonvolatile memory cells. And
前記制御回路は、前記複数の不揮発性メモリセルの内の所定の不揮発 性メモリセルに対して閾値電圧を初期化する処理による閾値電圧分布 と残りの不揮発性メモリセルに対して閾値電圧を初期化する処理によ る閾値電圧分布とを相違させることを特徴とする半導体集積回路。  The control circuit initializes a threshold voltage distribution by a process of initializing a threshold voltage for a predetermined nonvolatile memory cell among the plurality of nonvolatile memory cells, and initializes a threshold voltage for the remaining nonvolatile memory cells. A semiconductor integrated circuit characterized in that the threshold voltage distribution is different from the threshold voltage distribution.
2 . 前記初期化する処理は、 電荷を放出する消去と、 過消去の不揮発性 メモリセルに対して電荷を注入する書込みの処理を含み、 2. The initialization process includes erasing to release electric charge and writing to inject electric charge into the over-erased nonvolatile memory cell,
前記制御回路は、初期化処理による前記閾値電圧分布の相違を前記消去 と書込みに伴うベリフアイ電圧の相違によって規定することを特徴と する請求項 1記載の半導体集積回路。 2. The semiconductor integrated circuit according to claim 1, wherein the control circuit defines a difference in the threshold voltage distribution due to an initialization process by a difference in a verify voltage accompanying the erasing and writing.
3 .前記所定の不揮発性メモリセルに対する初期化処理による閾値電圧 分布は前記残りの不揮発性メモリセルに対する初期化処理による閾値 電圧分布に比べて閾値電圧の低い分布とされることを特徴とする請求 項 2記載の半導体集積回路。 3. The distribution of the threshold voltage of the predetermined nonvolatile memory cell by the initialization process is lower than the distribution of the threshold voltage by the initialization process of the remaining nonvolatile memory cells. Item 2. A semiconductor integrated circuit according to item 2.
4 .前記所定の不揮発性メモリセルは半導体集積回路の内部動作に必要 な情報を記憶するために専用化された記憶領域を構成することを特徴 とする請求項 1記載の半導体集積回路。  4. The semiconductor integrated circuit according to claim 1, wherein the predetermined non-volatile memory cell forms a storage area dedicated for storing information necessary for internal operation of the semiconductor integrated circuit.
5 .前記内部動作に必要な情報はトリミングデ一夕及び救済データであ ることを特徴とする請求項 4記載の半導体集積回路。  5. The semiconductor integrated circuit according to claim 4, wherein the information necessary for the internal operation is trimming data and relief data.
6 .電気的な電荷注入と電荷放出により閾値電圧を可逆的に変更可能に される複数の不揮発性メモリセル複数の不揮発性メモリセルを夫々備 えた第 1メモリ領域及び第 2メモリ領域と、前記不揮発性メモリセルの 閾値電圧の変更を制御する制御回路とを有し、 6.A plurality of nonvolatile memory cells each having a plurality of nonvolatile memory cells whose threshold voltages can be reversibly changed by electric charge injection and charge release; and Non-volatile memory cell A control circuit for controlling the change of the threshold voltage,
前記制御回路は、第 1初期化コマンドに応答して前記第 1メモリ領域 の不揮発性メモリセルに対して閾値電圧を初期化する処理を行ない、第 The control circuit performs a process of initializing a threshold voltage for a nonvolatile memory cell in the first memory area in response to a first initialization command,
2初期化コマンドに応答して前記第 2メモリ領域の不揮発性メモリセ ルに対して閾値電圧を初期化する処理を行ない、 (2) performing a process of initializing a threshold voltage for the nonvolatile memory cell in the second memory area in response to the initialization command;
前記初期化する処理は、 電荷を放出する消去と、 過消去の不揮発性メ モリセルに対して電荷を注入する書込みの処理を含み、  The initialization process includes an erasing process for releasing electric charges, and a writing process for injecting electric charges into an overerased nonvolatile memory cell,
前記制御回路は、前記第 1コマンドによる消去及び書込みのためのベ リフアイ電圧と前記第 2コマンドによる前記消去及び書込みのための ベリフアイ電圧とを相違させることを特徴とする半導体集積回路。 2. The semiconductor integrated circuit according to claim 1, wherein the control circuit makes a verify voltage for erasing and writing by the first command different from a verify voltage for erasing and writing by the second command.
7 .前記第 1コマンドによるべリファイ電圧は前記第 2コマンドによる ベリファイ電圧よりも低いことを特徴とする請求項 6記載の半導体集 積回路。 7. The semiconductor integrated circuit according to claim 6, wherein a verify voltage according to the first command is lower than a verify voltage according to the second command.
8 .外部電源電圧を昇圧して昇圧電圧を出力する昇圧回路を有し、読み 出し動作において前記不揮発性メモリセルのヮード線は前記昇圧回路 の昇圧出力に基づいて選択レベルにされることを特徴とする請求項 6 記載の半導体集積回路。  8. A booster circuit that boosts an external power supply voltage and outputs a boosted voltage, and in a read operation, a read line of the nonvolatile memory cell is set to a selected level based on a boosted output of the booster circuit. The semiconductor integrated circuit according to claim 6, wherein
9 .前記第 1メモリ領域は半導体集積回路の内部動作に必要な情報を記 憶するために専用化された記憶領域であることを特徴とする請求項 6 記載の半導体集積回路。  9. The semiconductor integrated circuit according to claim 6, wherein the first memory area is a storage area dedicated for storing information necessary for internal operation of the semiconductor integrated circuit.
1 0 .前記内部動作に必要な情報はトリミングデータ及び救済データで あることを特徴とする請求項 9記載の半導体集積回路。  10. The semiconductor integrated circuit according to claim 9, wherein the information necessary for the internal operation is trimming data and relief data.
1 1 .パワーオンに応答して前記第 1メモリ領域から記憶情報がロード されるレジス夕を有することを特徴とする請求項 1 0記載の半導体集 積回路。  11. The semiconductor integrated circuit according to claim 10, further comprising a register for loading storage information from said first memory area in response to power-on.
PCT/JP2003/014715 2003-11-19 2003-11-19 Semiconductor integrated circuit WO2005050665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014715 WO2005050665A1 (en) 2003-11-19 2003-11-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014715 WO2005050665A1 (en) 2003-11-19 2003-11-19 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
WO2005050665A1 true WO2005050665A1 (en) 2005-06-02

Family

ID=34611305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014715 WO2005050665A1 (en) 2003-11-19 2003-11-19 Semiconductor integrated circuit

Country Status (1)

Country Link
WO (1) WO2005050665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537159A (en) * 2014-05-23 2017-03-22 美光科技公司 Threshold voltage analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180696A (en) * 1994-12-27 1996-07-12 Nkk Corp Nonvolatile semiconductor device provided with verify function
JPH0982099A (en) * 1995-09-18 1997-03-28 Nec Corp Semiconductor memory and method for replacing redundancy memory part
US5959577A (en) 1997-08-28 1999-09-28 Vectorlink, Inc. Method and structure for distribution of travel information using network
JP2002150789A (en) * 2000-11-09 2002-05-24 Hitachi Ltd Non-volatile semiconductor memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180696A (en) * 1994-12-27 1996-07-12 Nkk Corp Nonvolatile semiconductor device provided with verify function
JPH0982099A (en) * 1995-09-18 1997-03-28 Nec Corp Semiconductor memory and method for replacing redundancy memory part
US5959577A (en) 1997-08-28 1999-09-28 Vectorlink, Inc. Method and structure for distribution of travel information using network
JP2002150789A (en) * 2000-11-09 2002-05-24 Hitachi Ltd Non-volatile semiconductor memory

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KHALED MAHMUD ET AL.: "Mobility Management by Basic Access Network in MIRAI Architecture for Heterogeneous Wireless Systems", GLOBECOM, 17 November 2002 (2002-11-17)
ZUENDT M ET AL.: "Seamless Handoff in Community Based and Location Aware Heterogeneous Wireless Networks", MOMUC, 5 October 2003 (2003-10-05)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537159A (en) * 2014-05-23 2017-03-22 美光科技公司 Threshold voltage analysis

Similar Documents

Publication Publication Date Title
US7359249B2 (en) Nonvolatile semiconductor memory device and method of rewriting data thereof
JP3940544B2 (en) Method for verifying nonvolatile semiconductor memory
US5930169A (en) Nonvolatile semiconductor memory device capable of improving of chip's lifetime and method of operating the same
JP3720859B2 (en) Semiconductor integrated circuit memory device
KR102314292B1 (en) Address fault detection in flash memory systems
KR20020036697A (en) Nonvolatile Semiconductor Memory Device
JP4413306B2 (en) Semiconductor memory device
KR19990006395A (en) Nonvolatile semiconductor memory
US6947325B2 (en) Non-volatile semiconductor memory device and controlling method of the same
US5844847A (en) Method and Nonvolatile semiconductor memory for repairing over-erased cells
JP2008016112A (en) Semiconductor memory
JP3974778B2 (en) Nonvolatile semiconductor memory device and data erasing method thereof
KR100215762B1 (en) Non-volatile semiconductor memory device and method for verifying operationg of the same
US7796441B2 (en) Method of reading configuration data in flash memory device
US7164602B2 (en) Nonvolatile semiconductor memory device including high efficiency and low cost redundant structure
US6278642B1 (en) Method and apparatus for limiting bitline current
JP4040232B2 (en) Nonvolatile semiconductor memory device
JP3176827B2 (en) Integrated circuit device and method for testing integrated circuit device
US7321516B2 (en) Biasing structure for accessing semiconductor memory cell storage elements
JPH11176173A (en) Nonvolatile semiconductor storage device
JP2735498B2 (en) Non-volatile memory
US6324108B1 (en) Application of external voltage during array VT testing
US20080031070A1 (en) Power on sequence for a flash memory device
WO2005050665A1 (en) Semiconductor integrated circuit
JP4331215B2 (en) Nonvolatile semiconductor memory

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP