明 細 書 Specification
燃料噴射弁 技術分野 Fuel injection valve technical field
本発明は燃料噴射弁に関し、特に内燃機関に搭載され、 燃料を供給するための 燃料噴射弁に関する。 本発明は単結晶シリコン等の脆性材料で形成される旋回 素子 (スワラ構造) を備えた内燃機関用燃料噴射弁に関する。 背景技術 The present invention relates to a fuel injection valve, and more particularly to a fuel injection valve mounted on an internal combustion engine for supplying fuel. The present invention relates to a fuel injection valve for an internal combustion engine having a swirl element (swirler structure) formed of a brittle material such as single crystal silicon. Background art
内燃機関用燃料噴射弁は、 一般的に、 燃料噴射孔と、 この燃料噴射孔の近傍に 配設される弁座と、 供給された燃料に旋回力を与える旋回素子 (スワラ構造) と、 弁座と対向する位置に、 軸方向に摺動可能に支持された弁体と、 この弁体 を軸方向に駆動するための駆動力発生部と、 弁体を弁座に押し付けるスプリン グとを備える。 In general, a fuel injection valve for an internal combustion engine includes a fuel injection hole, a valve seat disposed near the fuel injection hole, a swirling element (swirler structure) for applying a swirling force to the supplied fuel, and a valve. A valve body slidably supported in the axial direction at a position facing the seat, a driving force generating unit for driving the valve body in the axial direction, and a spring for pressing the valve body against the valve seat are provided. .
燃料噴射弁に供給された燃料は、 燃料噴射弁内部の燃料通路を通って、 燃料噴 射孔付近に導かれる。 スプリングの押圧力によって、 弁体が弁座に押し付けら れている状態では、 燃料噴射孔が閉じているため、 燃料の噴射は行われない。 駆動力発生部が、 弁体に対し、 上記スプリングの押圧力と反対方向の力を発生 すると、 弁体は弁座から離れた状態となる。 この状態では、 燃料噴射孔が開か れるため、 燃料の噴射が行われる。 このとき、 燃料噴射孔の近傍に配設された 旋回素子に設けられた燃料旋回流路のはたらきにより、 燃料に旋回力が付与さ れる。 旋回力をもった状態で燃料噴射孔から噴射された燃料は、 厚さの薄い液 膜となり、 粒径の小さい液滴へと分裂させていくことができる。 The fuel supplied to the fuel injection valve passes through the fuel passage inside the fuel injection valve and is guided to the vicinity of the fuel injection hole. When the valve is pressed against the valve seat by the spring pressing force, fuel is not injected because the fuel injection hole is closed. When the driving force generating section generates a force on the valve body in a direction opposite to the pressing force of the spring, the valve body is separated from the valve seat. In this state, the fuel injection hole is opened, so that the fuel is injected. At this time, the swirling force is applied to the fuel by the action of the fuel swirl flow path provided in the swirl element arranged near the fuel injection hole. The fuel injected from the fuel injection hole with the swirling force forms a thin liquid film, which can be broken up into small droplets.
内燃機関の燃焼を安定ィ匕するためまたは、 内燃機関から排出される排気に含 まれる有害成分を低減するためには、 粒径の小さい燃料噴霧を供給できる燃料 噴射弁が必要である。 In order to stabilize combustion of the internal combustion engine or reduce harmful components contained in exhaust gas discharged from the internal combustion engine, a fuel injection valve capable of supplying a fuel spray having a small particle size is required.
このための従来技術として特許文献 (特開平 1 0— 1 2 2 0 9 5号公報の図 2 , 4 , 5, 及び図 7 ) が挙げられる。 この特許文献では、 燃料噴射弁のオリ
フィスプレートを単結晶シリコン製として、 この単結晶シリコン製ォリフィス プレートに旋回室とオリフィスを形成するものである。 Patent documents (FIGS. 2, 4, 5, and 7 of Japanese Patent Application Laid-Open No. 10-122,955) are cited as prior art for this purpose. In this patent document, the orientation of the fuel injection valve is described. The swirl chamber and the orifice are formed in the orifice plate made of single crystal silicon by using a single crystal silicon as the plate.
上記の従来技術では、 燃料噴射弁の単結晶シリコン製ォリフィスプレートに、 凹部である旋回室と、 貫通孔であるオリフィスを設けている。 In the above prior art, a single crystal silicon orifice plate of a fuel injection valve is provided with a swirling chamber as a concave portion and an orifice as a through hole.
しかしながら、 上記従来技術では、 貫通孔であるオリフィスの形状や成形方 法について配慮がされていない。 However, in the above prior art, no consideration is given to the shape of the orifice, which is a through-hole, and the molding method.
また、 従来技術である燃料噴射弁の上記オリフィスプレートでは、 旋回室は 単結晶シリコンで形成されているが、 この旋回室の中央部に小径のオリフィス が設けられているのみである。 旋回室が弁座の下流に設けられているので、 単 結晶シリコン製ォリフィスプレートに弁体を挿入する構成ではない。 In the orifice plate of the fuel injection valve according to the prior art, the swirl chamber is formed of single-crystal silicon, but only a small-diameter orifice is provided at the center of the swirl chamber. Since the swirl chamber is provided downstream of the valve seat, it does not have a configuration in which the valve element is inserted into a single-crystal silicon orifice plate.
従って、 旋回素子が弁座の上流にある形式、 即ち上流旋回型の燃料噴射弁の 微粒化性能を向上するために、 旋回素子を単結晶シリコン等の脆性材料で形成 して、 旋回力の強い旋回流路形状を形成しょうとすると、 以下のような課題を 解決する必要がある。 Therefore, in order to improve the atomization performance of a fuel injection valve of the type in which the swirling element is located upstream of the valve seat, that is, the upstream swirling type fuel injection valve, the swirling element is formed of a brittle material such as single crystal silicon and has a strong swirling force. To form a swirl channel, the following issues must be solved.
上流旋回型の燃料噴射弁では、 旋回素子の中央部に設けた貫通孔に、 弁体が 挿入される構成となる。 よって、 旋回素子の中央部には、 弁体が挿入されるた めの中央部流路 (貫通孔) が必要となる。 この旋回素子に形成された中央部流 路と弁体の外周部との間には、 わずかな隙間を設けることが必要であるが、 こ の隙間は極力小さくすることが必要である。 The upstream swirl type fuel injection valve has a configuration in which a valve body is inserted into a through hole provided in the center of the swirl element. Therefore, a central flow path (through hole) for inserting the valve element is required in the center of the turning element. It is necessary to provide a slight gap between the central channel formed in the swirl element and the outer peripheral portion of the valve element, and this gap needs to be as small as possible.
隙間が大きい場合には、 この隙間を通る燃料、 すなわち旋回素子の旋回流路 を通らない旋回力のかからない燃料の流量が増加するため、 燃料噴射弁の微粒 化特性を悪化させてしまう可能性があるからである。 よって、 燃料噴射弁の旋 回素子を単結晶シリコンで形成する場合において、 旋回力のかからない燃料の 流量を減らすことが課題となる。 If the gap is large, the flow rate of the fuel passing through the gap, that is, the fuel that does not pass through the swirl flow path of the swirl element and does not receive a swirling force increases, which may deteriorate the atomization characteristics of the fuel injection valve. Because there is. Therefore, when the swirling element of the fuel injection valve is formed of single crystal silicon, it is an issue to reduce the flow rate of the fuel that does not exert swirling force.
また、 上流旋回型の燃料噴射弁では、 旋回素子の中央部流路の内側壁を弁体 の摺動案内として用いることが多い。 旋回素子を単結晶シリコンで形成する場 合には、 耐久性の問題から、 旋回素子の中央部流路の内側壁を摺動案内とする ことができない可能性がある。 よって、 燃料噴射弁の旋回素子を単結晶シリコ
ン等の脆性材料で形成する場合において、 旋回素子の中央部流路の内側壁に適 切な摺動案内を設けることが課題となる。 In the case of an upstream-swirl type fuel injection valve, the inner wall of the central passage of the swirling element is often used as a sliding guide for the valve element. When the swivel element is formed of single crystal silicon, there is a possibility that the inner wall of the central flow path of the swivel element cannot be used as a sliding guide due to durability problems. Therefore, the swirl element of the fuel injection valve is a single crystal silicon In the case of using a brittle material such as a rotating element, it is a problem to provide an appropriate sliding guide on the inner side wall of the central flow path of the turning element.
さらに、 旋回素子を単結晶シリコン等の脆性材料で形成する場合には、 組立 て時に作用する応力により、 旋回素子が破損しないようにすることが課題とな -S o Furthermore, when the swivel element is formed from a brittle material such as single crystal silicon, it is an issue to prevent the swivel element from being damaged by the stress applied during assembly.
さらに、 旋回素子を単結晶シリコンのみで形成する場合、 燃料が直接シリコ ンに接触する構造となる。 このため、 微量のシリコンが燃料中に溶け出す場合 には、 内燃機関の補機類にシリコンが付着し、 補機類の性能を劣化させる可能 性がある。 よって、 燃料が単結晶シリコンの旋回素子に直接接触しないように することが課題となる。 発明の開示 Furthermore, when the swirling element is formed only of single-crystal silicon, the structure is such that the fuel directly contacts the silicon. For this reason, if a small amount of silicon dissolves into the fuel, the silicon may adhere to the auxiliary components of the internal combustion engine and deteriorate the performance of the auxiliary components. Therefore, it is an issue to prevent the fuel from directly contacting the single crystal silicon swirl element. Disclosure of the invention
本発明の目的は、 上記課題を解決し、 脆性材料からなる旋回素子を搭載するこ とを可能とし、 旋回流路の形状成形自由度を向上し、 微粒化特性の良好な燃料 噴射弁を得ることにある。 An object of the present invention is to solve the above-mentioned problems, to enable mounting of a swirl element made of a brittle material, to improve the degree of freedom in shaping the swirl flow path, and to obtain a fuel injection valve having good atomization characteristics. It is in.
そのため本発明では、 燃料に旋回力を付与する旋回素子を備え、 前記旋回素子 を脆性材料で形成する燃料噴射弁において、 前記旋回素子の中央部に設ける中 央部流路は、 前記旋回素子の上流側から中央部流路を形成する工程と、 前記旋 回素子の下流側から中央部流路を形成する工程とを組み合わせた工程により形 成する。 Therefore, in the present invention, the fuel injection valve includes a swirl element for imparting a swirl force to fuel, and the swirl element is formed of a brittle material. It is formed by a combination of a step of forming a central flow path from the upstream side and a step of forming a central flow path from the downstream side of the swirling element.
さらに本発明では、 燃料に旋回力を付与する旋回素子を備え、 前記旋回素子 を脆性材料で形成する燃料噴射弁において、 前記旋回素子の中央部に設ける中 央部流路の側壁部の軸方向略中央部に凸部を形成する。 Further, according to the present invention, the fuel injection valve includes a swirl element that applies a swirl force to the fuel, and the swirl element is formed of a brittle material. A convex portion is formed substantially at the center.
さらに本発明では、 燃料に旋回力を付与する旋回素子を備え、 前記旋回素子 を脆性材料で形成し、 前記旋回素子の中央部に略円形の中央部流路を有する燃 料噴射弁において、 前記中央部流路の、 前記旋回素子の旋回流路を有する面側 の流路直径は、 前記旋回素子の旋回流路を有する面と反対側の流路直径よりも 小さくする。
さらに本発明では、 燃料に旋回力を付与する旋回素子を備える燃料噴射弁に おいて、 前記旋回素子の旋回流路の側壁と、 前記旋回素子の内径部に設けられ る中央部流路の側壁とによつて形成される鋭角形状部の先端部角アールが 0〜 0 . 0 l mmの範囲にあるようにする。 Further, according to the present invention, there is provided a fuel injection valve comprising a swirl element for imparting a swirl force to fuel, wherein the swirl element is formed of a brittle material, and has a substantially circular central flow path at the center of the swirl element. The flow path diameter of the central flow path on the surface side of the swirl element having the swirl flow path is smaller than the flow path diameter of the swirl element on the side opposite to the surface of the swirl element having the swirl flow path. Further, according to the present invention, in a fuel injection valve provided with a swirl element for applying a swirl force to fuel, a side wall of a swirl flow path of the swirl element and a side wall of a central flow path provided at an inner diameter portion of the swirl element The angle of the tip of the acute angle portion formed by the above is set to be in the range of 0 to 0.01 mm.
さらに本発明では、 燃料に旋回力を付与する旋回素子と、 燃料噴射量を制御す るための弁体とを備える燃料噴射弁において、 前記旋回素子を保持して、 ノズ ルに固定するための旋回素子保持部材を設け、 前記旋回素子保持部材の内径部 において、 前記弁体を摺動案内する。 Further, according to the present invention, there is provided a fuel injection valve including a swirl element for imparting a swirl force to fuel, and a valve body for controlling a fuel injection amount. A turning element holding member is provided, and the valve element is slidably guided at an inner diameter portion of the turning element holding member.
さらに本発明では、 燃料に旋回力を付与する旋回素子を備える燃料噴射弁にお いて、 前記旋回素子の内径部に、 前記弁体を摺動案内するための、 摺動部材を 設ける。 Further, according to the present invention, in a fuel injection valve provided with a swirling element for applying a swirling force to fuel, a sliding member for slidingly guiding the valve element is provided at an inner diameter portion of the swirling element.
さらに本発明では、 燃料に旋回力を付与する旋回素子を備える燃料噴射弁に おいて、 前記旋回素子の、 旋回流路を有する側の端面と、 前記旋回素子に接す る固定部材の、 前記旋回素子の端面に接する端面とのうち、 少なくとも何れか 一方の端面の、 前記旋回素子の内径部に設けられる中央部流路の近傍に、 前記 旋回素子と前記固定部材とが接触しないためのテ一パまたは段差部を設ける。 さらに本発明では、 燃料に旋回力を付与する旋回素子を備え、 前記旋回素子 を単結晶シリコンで形成する燃料噴射弁において、 前記旋回素子の母材である 単結晶シリコンが、 燃料に直接接触することのないように、 前記旋回素子の表 面に表面層を設ける。 Further, according to the present invention, in a fuel injection valve provided with a swirling element for applying a swirling force to fuel, an end surface of the swirling element on a side having a swirling flow path, and a fixing member in contact with the swirling element, At least one of the end faces that are in contact with the end face of the turning element, in the vicinity of the central flow path provided in the inner diameter portion of the turning element, a tape for preventing the turning element from contacting with the fixed member. One or a step is provided. Further, according to the present invention, in the fuel injection valve including a swirl element that applies a swirl force to the fuel, and the swirl element is formed of single-crystal silicon, the single-crystal silicon that is a base material of the swirl element directly contacts the fuel. In order to prevent this, a surface layer is provided on the surface of the turning element.
さらに本発明では、 前記表面層はシリコンの酸化膜とする。 図面の簡単な説明 Further, in the present invention, the surface layer is a silicon oxide film. Brief Description of Drawings
図 1は、 本発明の燃料噴射弁の一実施形態を示す断面図である。 図 2 Aは、 本発明の燃料噴射弁の旋回素子を示す平面図である。 図 2 Bは、 本発明の燃料 噴射弁の旋回素子を示す断面図である。 図 3は、 本発明の燃料噴射弁の旋回素 子付近の構造を拡大した部分断面図である。 図 4は、 本発明の燃料噴射装弁の 旋回素子とロッドを拡大した断面図である。 図 5 Aは、 本発明の燃料噴射弁の
旋回素子保持部材を示す平面図である。 図 5 Bは、 本発明の燃料噴射弁の旋回 素子保持部材を示す断面図である。 図 6は、 本発明の燃料噴射装弁の旋回素子 とロッドを拡大した断面図である。 図 7は、 本発明の燃料噴射弁の旋回素子と その表面層を示す断面図である。 図 8は、 本発明の燃料噴射弁の旋回素子とこ の旋回素子の内周部に設けた摺動部材を示す平面図である。 図 9 Aは、 本発明 の燃料噴射弁の他の実施例の旋回素子を示す平面図である。 図 9 Bは、 本発明 の燃料噴射弁の他の実施例の旋回素子を示す断面図である。 図 9 Cは、 本発明 の燃料噴射弁の他の実施例の旋回素子を示す裏面図である。 図 1 0 Aは、 本発 明の燃料噴射弁のノズルを示す平面図である。 図 1 0 Bは、 本発明の燃料噴射 弁のノズルを示す断面図である。 図 1 1 Aは, 本発明の燃料噴射弁の他の実施 例の旋回素子 (スワラ構造) を示す平面図である。 図 1 1 Bは, 本発明の燃料 噴射弁の他の実施例の旋回素子 (スワラ構造) を示す断面図であり、 図 1 1 A の A _ B線に沿って断面した図である。 図 1 2は、 旋回素子 (スワラ構造) の 加工方法を示す図で、 加工プロセス (a) - ( g) を示している。 発明を実施するための最良の形態 FIG. 1 is a sectional view showing an embodiment of the fuel injection valve of the present invention. FIG. 2A is a plan view showing a swirl element of the fuel injection valve of the present invention. FIG. 2B is a cross-sectional view showing the swirl element of the fuel injection valve of the present invention. FIG. 3 is an enlarged partial cross-sectional view of the structure near the swirl element of the fuel injection valve of the present invention. FIG. 4 is an enlarged sectional view of the swirling element and the rod of the fuel injection valve of the present invention. FIG. 5A shows the fuel injection valve of the present invention. It is a top view which shows a rotation element holding member. FIG. 5B is a cross-sectional view showing a turning element holding member of the fuel injection valve of the present invention. FIG. 6 is an enlarged sectional view of the swirling element and the rod of the fuel injection valve of the present invention. FIG. 7 is a cross-sectional view showing the swirl element of the fuel injection valve of the present invention and its surface layer. FIG. 8 is a plan view showing a swirl element of the fuel injection valve of the present invention and a sliding member provided on an inner peripheral portion of the swirl element. FIG. 9A is a plan view showing a swirl element according to another embodiment of the fuel injection valve of the present invention. FIG. 9B is a sectional view showing a swirl element according to another embodiment of the fuel injection valve of the present invention. FIG. 9C is a rear view showing a swirl element according to another embodiment of the fuel injection valve of the present invention. FIG. 10A is a plan view showing the nozzle of the fuel injection valve of the present invention. FIG. 10B is a sectional view showing the nozzle of the fuel injection valve of the present invention. FIG. 11A is a plan view showing a swirl element (swirler structure) of another embodiment of the fuel injection valve of the present invention. FIG. 11B is a cross-sectional view showing a swirling element (swirler structure) of another embodiment of the fuel injection valve of the present invention, and is a cross-sectional view taken along the line A_B of FIG. 11A. Fig. 12 is a diagram showing the method of processing the swivel element (swirler structure), and shows the processing processes (a)-(g). BEST MODE FOR CARRYING OUT THE INVENTION
図 1〜 5を用いて本発明の燃料噴射弁の一実施形態について説明する。 An embodiment of the fuel injection valve of the present invention will be described with reference to FIGS.
はじめに、 図 1を用いて本発明の燃料噴射弁の一実施形態の構成及び基本動 作について説明する。 First, the configuration and basic operation of an embodiment of the fuel injection valve of the present invention will be described with reference to FIG.
図 1は本発明の燃料噴射弁の一実施形態を示す断面図である。 ノズル 1 1の下 端部には、 弾性部材 2 1を介して、 旋回素子保持部材 2 2を設ける。 旋回素子 保持部材 2 2の内側に、 燃料に旋回力を付与するための単結晶シリコン製の旋 回素子 1 2を設ける。 ステンレス鋼製のオリフィスプレート 1を、 ノズル 1 1 の下端部に挿入し、 溶接等の方法により固定する。 オリフィスプレ一ト 1には 燃料噴射孔 2、 弁座 3が設けられる。 FIG. 1 is a sectional view showing an embodiment of the fuel injection valve of the present invention. At the lower end of the nozzle 11, a turning element holding member 22 is provided via an elastic member 21. A turning element 12 made of single-crystal silicon for applying a turning force to the fuel is provided inside the turning element holding member 22. Insert the stainless steel orifice plate 1 into the lower end of the nozzle 11 and fix it by welding or the like. The orifice plate 1 is provided with a fuel injection hole 2 and a valve seat 3.
弁体 4は、 ガイドプレート 1 3の中央部に設けられる孔と、 旋回素子保持部材 2 2の内径部とによって摺動案内される。 The valve body 4 is slidably guided by a hole provided at the center of the guide plate 13 and the inner diameter of the turning element holding member 22.
弁体 4は、 可動鉄心 5と、 筒状部材 6、 ロヅド 7を溶接等の方法により結合し
て構成されている。 可動鉄心 5の内部に設けられるダンパプレート 8は、 筒状 部材 6の上端面によってその外周部が上下方向について支持されている。 連動 部材 1 0は内側固定鉄心 9の内部に、 軸方向に摺動可能なように支持されてい る。 連動部材 1 0の先端部はダンパプレート 8の内周部に接触している。 ダン パプレート 8は、 その外周部が支持され、 内周部が軸方向にたわむことにより、 板ばねとして機能する。 The valve element 4 connects the movable iron core 5, the cylindrical member 6, and the rod 7 by welding or the like. It is configured. The outer peripheral portion of the damper plate 8 provided inside the movable iron core 5 is supported in the vertical direction by the upper end surface of the tubular member 6. The interlocking member 10 is supported inside the inner fixed iron core 9 so as to be slidable in the axial direction. The tip of the interlocking member 10 is in contact with the inner periphery of the damper plate 8. The outer peripheral portion of the damper plate 8 is supported, and the inner peripheral portion bends in the axial direction, thereby functioning as a leaf spring.
ノズル 1 1は、 ノズルハウジング 1 4の内部に固定される。 ノズル 1 1の上端 部には、 弁体 4のストロークを調整するためのリング 1 5を設ける。 内側固定 鉄心 9の内部にはスプリングピン 1 9が固定さる。 スプリングピン 1 9の下端 部を固定端として、 スプリング 2 0が圧縮状態で設けられる。 スプリング 2 0 のスプリング力は、 連動部材 1 0及びダンパプレート 8を介して、 弁体 4に伝 達され、 弁体 4は弁座 3に押し付けられる。 この閉弁状態では、 燃料通路が閉 じられるため、 燃料供給口 2 3から供給された燃料は燃料噴射弁内部に留まり、 燃料噴射孔 2からの燃料噴射は行われない。 The nozzle 11 is fixed inside the nozzle housing 14. A ring 15 for adjusting the stroke of the valve body 4 is provided at the upper end of the nozzle 11. Inside fixed A spring pin 19 is fixed inside the iron core 9. The spring 20 is provided in a compressed state with the lower end of the spring pin 19 as a fixed end. The spring force of the spring 20 is transmitted to the valve body 4 via the interlocking member 10 and the damper plate 8, and the valve body 4 is pressed against the valve seat 3. In this closed state, the fuel passage is closed, so that the fuel supplied from the fuel supply port 23 remains inside the fuel injection valve, and the fuel injection from the fuel injection hole 2 is not performed.
ノズルハウジング 1 4、 可動鉄心 5、 内側固定鉄心 9、 プレートハウジング 1 Nozzle housing 1 4, moveable iron core 5, inner fixed iron core 9, plate housing 1
6、 外側固定鉄心 1 7によって、 コイル 5 0の周りを一巡する磁気回路が構成 される。 6. The outer fixed iron core 17 forms a magnetic circuit that loops around the coil 50.
噴射指令パルスがオンの状態になると、 コイル 5 0に電流が流れ、 可動鉄心 5 は内側固定鉄心 9に電磁力によって吸引され、 弁体 4は、 その上端面が内側固 定鉄心 9の下端面に接触する位置まで移動する。 この開弁状態では、 弁体 4と 弁座 3の間に隙間ができるため、 燃料通路が開かれ、 燃料供給口 2 3から供給 された燃料が、 旋回素子 1 2によって旋回力を与えられて、 燃料噴射孔 2から 噴射される。 When the injection command pulse is turned on, a current flows through the coil 50, the movable iron core 5 is attracted to the inner fixed iron core 9 by electromagnetic force, and the upper end surface of the valve body 4 has the lower end surface of the inner fixed iron core 9. Move to the position where it touches. In this open state, a gap is formed between the valve element 4 and the valve seat 3, so that the fuel passage is opened, and the fuel supplied from the fuel supply port 23 is provided with a swirling force by the swirl element 12 to rotate. The fuel is injected from the fuel injection hole 2.
噴射指令パルスがオフの状態になると、 コイル 5 0に電流が流れなくなり、 電 磁力が消滅するため、 スプリング 2 0のスプリング力によって弁体 4は閉弁状 態に戻り、 燃料の噴射が終わる。 When the injection command pulse is turned off, no current flows through the coil 50, and the electromagnetic force disappears. Therefore, the valve body 4 returns to the valve-closed state by the spring force of the spring 20, and the fuel injection ends.
燃料噴射弁のはたらきは、 上記のように、 噴射指令パルスに従って、 弁体 4の 位置を開弁状態と閉弁状態に切り替え、 燃料供給量を制御することである。 さ
らに、 旋回素子 1 2によって、 旋回力を付与された燃料を、 燃料噴射孔 2から 噴射することにより、 燃料粒径の小さい、 すなわち微粒化特性の良好な燃料噴 霧を形成することである。 The function of the fuel injection valve is to control the fuel supply amount by switching the position of the valve element 4 between the open state and the closed state according to the injection command pulse as described above. The Further, by injecting the fuel imparted with the swirling force by the swirling element 1 2 from the fuel injection holes 2, it is possible to form a fuel spray having a small fuel particle diameter, that is, excellent atomization characteristics. .
内燃機関の燃焼を安定ィ匕するため、 または内燃機関から排出される排気に含ま れる有害成分を低減するため、 粒径のより小さい、 すなわち微粒化特性の良好 な燃料噴霧を供給できる燃料噴射弁が必要となっている。 A fuel injection valve capable of supplying a fuel spray having a small particle diameter, that is, excellent atomization characteristics, in order to stabilize combustion of an internal combustion engine or reduce harmful components contained in exhaust gas discharged from the internal combustion engine. Is needed.
ここで図 2〜5により、 本発明の燃料噴射弁の一実施形態において、 良好な 微粒化特性を得るために用いている手段の詳細及び作用、 効果について詳述す る o Here, with reference to FIGS. 2 to 5, the details, functions and effects of the means used for obtaining good atomization characteristics in one embodiment of the fuel injection valve of the present invention will be described in detail.
図 2 A及び図 2 Bは本発明の燃料噴射弁の一実施形態に用いられる旋回素子 1 2を示し、 図 2 Aは旋回素子 1 2の平面図、 図 2 Bは、 旋回素子 1 2の断面 図である。 2A and 2B show a swirl element 12 used in an embodiment of the fuel injection valve of the present invention, FIG. 2A is a plan view of the swirl element 12, and FIG. It is sectional drawing.
旋回素子 1 2の材料は単結晶シリコンで形成されている。 旋回素子 1 2の中 央部には、 弁体 4の口ッド 7が挿入されるための貫通孔である中央部流路 1 0 8が形成される。 旋回素子 1 2の下端面には、 燃料に旋回力を付与するための 複数の凹部である旋回流路 1 0 1が形成される。 The material of the turning element 12 is formed of single crystal silicon. In the center of the swivel element 12, a center passage 108 that is a through hole for inserting the opening 7 of the valve element 4 is formed. On the lower end surface of the swirl element 12, a swirl flow path 101 as a plurality of recesses for applying a swirl force to the fuel is formed.
凸部 1 0 2に、 各々の旋回流路 1 0 1の側壁を形成する。 単結晶シリコン製 の旋回素子 1 2に形成される中央部流路 1 0 8及び旋回流路 1 0 1はエツチン グによって形成する。 The side wall of each swirl flow path 101 is formed on the convex part 102. The central passage 108 and the swirl passage 101 formed in the swirl element 12 made of single crystal silicon are formed by etching.
エッチング力卩ェを用いることにより、 単結晶シリコン製の旋回素子 1 2の中 央部流路 1 0 8及び、 旋回流路 1 0 1の形状を高精度にすることが可能となる c 第一に、 隣り合う旋回流路 1 0 1の側壁と中央部流路 1 0 8の側壁とによつ て囲まれる部分である鋭角形状部 1 0 7の先端を鋭いエッジとしている。 いい かえれば、 鋭角形状部 1 0 7は、 凸部 1 0 2の内径部が中央部流路 1 0 8に接 する先端部分である。 By using the etching force, it becomes possible to make the shapes of the central flow path 108 and the swirl flow path 101 of the swirl element 12 made of single crystal silicon highly accurate. In addition, the tip of the acute angle portion 107 which is a portion surrounded by the side wall of the adjacent swirling flow path 101 and the side wall of the central flow path 108 has a sharp edge. In other words, the acute angle portion 107 is a tip portion where the inner diameter of the convex portion 102 is in contact with the central flow path 108.
切削加工や型を用いる焼結加工によって、 旋回流路 1 0 1を形成する場合に は、 鋭角形状部 1 0 7の先端にある程度の丸みをもたせる必要がある。 エッチ ング加工を用いることにより、 鋭角形状部 1 0 7の先端部の角アール (角丸み
部) を 0〜0 . 0 l mm程度とすることが可能となる。 When the swirling flow path 101 is formed by cutting or sintering using a mold, the tip of the acute-angled portion 107 needs to be rounded to some extent. By using the etching process, the rounded corner (rounded corner) ) Can be set to about 0 to 0.01 mm.
鋭角形状部 1 0 7の先端部の角アールが大きい場合には、 そこで発生する燃 料の渦により、 燃料の旋回力を弱めてしまう可能性がある。 エッチング加工に より、 鋭角形状部 1 0 7の先端部の角アールを 0〜0 . 0 1 mm程度とするこ とができれば、 燃料渦の発生を抑制することが可能となり、 強い燃料旋回力を 得て、 燃料噴射弁の微粒化特性を向上させることが可能となる。 If the corner radius of the tip of the acute angle portion 107 is large, there is a possibility that the swirling force of the fuel may be weakened by the vortex of the fuel generated there. If the corner radius of the tip of the acute-angled portion 107 can be reduced to about 0 to 0.01 mm by etching, the generation of fuel vortex can be suppressed, and a strong fuel swirling force can be obtained. As a result, the atomization characteristics of the fuel injection valve can be improved.
第二に、 旋回流路 1 0 1の側壁を、 旋回素子 1 2の端面に対し略垂直とする ことが可能となる。 切削加工や型を用いる焼結加工によって、 旋回流路 1 0 1 を形成する場合には、 旋回流路 1 0 1の側壁には、 比較的におおきな傾斜や、 角アールを設ける必要がある。 Second, the side wall of the swirling flow path 101 can be made substantially perpendicular to the end face of the swirling element 12. When the swirling flow path 101 is formed by cutting or sintering using a mold, it is necessary to provide a relatively large inclination or a square radius on the side wall of the swirling flow path 101.
エッチング加工により旋回流路 1 0 1の側壁を略垂直とすることにより、 旋 回流路 1 0 1の幅を深さ方向について均一にすることができる。 よって燃料の 流速分布も、 上記深さ方向について略均一にすることができるため、 旋回力の むらが発生しにくく、 均一で強い燃料旋回力を得て、 燃料噴射弁の微粒化特性 を向上させることが可能となる。 By making the side wall of the swirling channel 101 substantially vertical by etching, the width of the swirling channel 101 can be made uniform in the depth direction. Therefore, the flow velocity distribution of the fuel can be made substantially uniform in the above-described depth direction, so that it is difficult to generate a non-uniform swirl force, and a uniform and strong fuel swirl force is obtained, thereby improving the atomization characteristics of the fuel injection valve. It becomes possible.
尚、 図 2 Aにおいては、 旋回流路 1 0 1が 6本の場合を例にとり説明してい るが、 旋回流路の本数が何本 (2本以上) であっても、 本発明の効果が損なわ れるものではない。例えば旋回流路 1 0 1の本数は 4本でもよい。 Although FIG. 2A illustrates an example in which the number of swirling channels 101 is six, the effect of the present invention can be obtained regardless of the number of swirling channels (two or more). Is not impaired. For example, the number of swirling channels 101 may be four.
さらに、 図 2 Aにおいては、 旋回流路 1 0 1の側壁は直線状である場合を例 にとり説明しているが、 旋回流路の側壁は曲線状であっても、 本発明を適用す ることが可能である。 Further, in FIG. 2A, the case where the side wall of the swirling channel 101 is straight is described as an example, but the present invention is applied even if the side wall of the swirling channel is curved. It is possible.
また、 図 2においては、 旋回流路 1 0 1の側壁は、 中央部流路 1 0 8の接線 方向である場合を例にとり説明しているが、 旋回流路 1 0 1の側壁は必ずしも、 中央部流路 1 0 8の接線方向である必要はない。 Further, in FIG. 2, the case where the side wall of the swirling flow path 101 is in the tangential direction of the central flow path 108 is described as an example, but the side wall of the swirling flow path 101 is not necessarily required. It does not need to be in the tangential direction of the central channel 108.
図 3は本発明の燃料噴射弁の一実施形態のうち燃料噴射孔 2の近傍を拡大し た部分断面図である。 FIG. 3 is an enlarged partial sectional view of the vicinity of the fuel injection hole 2 in one embodiment of the fuel injection valve of the present invention.
旋回素子保持部材 2 2を設け、 その内径部に旋回素子 1 2を保持する。 旋回 素子保持部材 2 2の材料としてはステンレス鋼が好適であるが、 これに限定す
るものではない。 旋回素子保持部材 2 2の内径は、 旋回素子 1 2の内径よりも 僅かに小さくしておく。 旋回素子保持部材 2 2の内径部を、 ロッド 7の摺動案 内として用いるようにする。 A swivel element holding member 22 is provided, and the swivel element 12 is held at its inner diameter. The material of the turning element holding member 22 is preferably stainless steel, but is not limited to this. Not something. The inner diameter of the turning element holding member 22 is slightly smaller than the inner diameter of the turning element 12. The inner diameter of the swivel element holding member 22 is used as a slide for the rod 7.
これにより、 旋回素子 1 2の内径部を摺動案内として用いる必要がなくなる ため、 旋回素子 1 2の材料として単結晶シリコンを選択することが可能となる。 さらに、 旋回素子保持部材 2 2の上面には、 単結晶シリコンよりも縦弾性係 数の小さい材料からなる弾性部材 2 1を設ける。 弾性部材 2 1の材料は、 ゴム 等の合成樹脂や銅を主成分とする合金を用いることが望ましいが、 これに限定 するものではなく、 単結晶シリコンよりも弾性係数の小さい材料であればよい。 このような構成によれば、 ステンレス鋼製等からなるのオリフィスプレート This eliminates the need to use the inner diameter portion of the turning element 12 as a sliding guide, so that single crystal silicon can be selected as the material of the turning element 12. Further, an elastic member 21 made of a material having a smaller longitudinal elastic coefficient than single crystal silicon is provided on the upper surface of the turning element holding member 22. As the material of the elastic member 21, it is desirable to use a synthetic resin such as rubber or an alloy containing copper as a main component. . According to such a configuration, the orifice plate made of stainless steel or the like is used.
1をノズル 1 1に挿入、 固定する工程において発生する軸方向の力を弾性部材 2 1が変形することによって吸収するため、 単結晶シリコン製の旋回素子 1 2 に過大な圧縮応力が作用することを防止することができる。 よって、 旋回素子 1 2の材料として単結晶シリコン等の脆性材料を用いることが可能となる。 さ らに、 オリフィスプレート 1の旋回素子 1 2に対向する端面の内側には微小テ —パ部 1 0 9を設けることが望ましい。 Since the elastic member 21 deforms and absorbs the axial force generated in the process of inserting and fixing the nozzle 1 into the nozzle 11, excessive compressive stress acts on the single crystal silicon swivel element 12. Can be prevented. Therefore, it becomes possible to use a brittle material such as single crystal silicon as the material of the turning element 12. Further, it is desirable to provide a minute taper portion 109 inside the end face of the orifice plate 1 facing the turning element 12.
これによれば、 旋回素子 1 2の内径部の鋭角形状部 1 0 7と、 オリフィスプ レート 1が接触することがなくなる。 よって、 鋭角形状部 1 0 7に過大な応力 がかかることがなくなるため、 鋭角形状部 1 0 7の破損を防止することが可能 となる。 According to this, the acute angle portion 107 of the inner diameter portion of the turning element 12 does not contact the orifice plate 1. Therefore, an excessive stress is not applied to the acute angled portion 107, so that the acute angled portion 107 can be prevented from being damaged.
尚、 微小テ一パ部 1◦ 9のテーパ角は、 十分小さくしておく。 望ましくは 1 度から 3度程度であるが、 これに限定するものではない。 Note that the taper angle of the small taper section 1◦9 should be sufficiently small. Desirably, it is about 1 to 3 degrees, but it is not limited to this.
また、 微小テ一パ部 1 0 9の替わりに、 段差状の逃げを設けても、 同様の効 果が得られることは言うまでもない。 さらに、 微小テ一パ部 1 0 9または段差 状の逃げは、 オリフィスプレート 1側に設けるのではなく、 旋回素子 1 2の下 側端面に設けても同様の効果が得られる。 It is needless to say that a similar effect can be obtained by providing a step-shaped relief in place of the minute taper portion 109. Further, the same effect can be obtained by providing the minute taper portion 109 or the step-shaped relief on the lower end surface of the swivel element 12 instead of providing it on the orifice plate 1 side.
さらに、 単結晶シリコン製の旋回素子 1 2に作用する圧縮応力が問題となら ない場合には、 弾性部材 2 1は設けなくてもよい。
尚、 図 3において、 燃料は流れ 1 0 4に示すようになる。 ノズル 1 1の上流 から供給される燃料は、 旋回素子保持部材 2 2の貫通孔 1 0 6を通り、 旋回素 子 1 2の外周から、 旋回流路 1 0 1を通って、 燃料噴射孔 2へと流れるように する。 Further, when the compressive stress acting on the single crystal silicon turning element 12 is not a problem, the elastic member 21 may not be provided. In FIG. 3, the fuel flows as shown in 104. The fuel supplied from the upstream of the nozzle 11 passes through the through hole 106 of the swirl element holding member 22, and from the outer periphery of the swirl element 12, passes through the swirl flow path 101 and the fuel injection hole 2 So that it flows to
図 4は本発明の燃料噴射弁の一実施形態のうちロヅドアの一部と旋回素子 1 2の一部を拡大した部分断面図である。 FIG. 4 is an enlarged partial cross-sectional view of a part of the low door and a part of the swivel element 12 in one embodiment of the fuel injection valve of the present invention.
単結晶シリコン製の旋回素子 1 2の中央部流路 1 0 8に面する旋回素子 1 2 の内側壁 1 0 3には、 旋回素子 1 2から内径側に突出した部分である凸部 1 0 0を設ける。 中央部流路 1 0 8の形成方法は、 旋回素子 1 2の上側端面からェ ヅチングにより中央部流路 1 0 8を形成する工程と、 旋回素子 1 2の下側端面 からエッチングにより中央部流路 1 0 8を形成する工程とを組み合わせる方法 とすることが好ましい。 このような単結晶シリコン製の旋回素子 1 2の形成方 法をとることにより、 上側端面から加工した孔形状と下側端面から加工した孔 形状の継ぎ目として凸部 1 0 0を容易に設けることが可能となる。 The inner wall 10 3 of the swivel element 12 facing the central flow path 108 of the single-crystal silicon swivel element 12 has a convex portion 10 protruding from the swirl element 12 toward the inner diameter side. 0 is provided. The method of forming the central flow path 108 includes a step of forming the central flow path 108 by etching from the upper end face of the swirl element 12, and a method of forming the central flow path by etching from the lower end face of the swirl element 12. It is preferable that the method be combined with the step of forming the path 108. By adopting such a method of forming the rotating element 12 made of single crystal silicon, it is possible to easily provide the convex portion 100 as a joint between the hole shape processed from the upper end surface and the hole shape processed from the lower end surface. Becomes possible.
上記の凸部 1 0 0を単結晶シリコン製の旋回素子 1 2に設けることによる作 用 ·効果を説明する。 The operation and effect of providing the above-described protrusion 100 on the turning element 12 made of single crystal silicon will be described.
燃料噴射弁の微粒化特性を向上するためには、 図 3で示したとおり、 燃料の 流れは、 旋回素子 1 2の外周から旋回流路を通って、 燃料噴射孔 2へと流れる ようにすることが必要である。 しかしながら、 燃料噴射弁を構成するうえで、 ロッド 7の外周部と旋回素子 1 2の内径部との間にも、 環状隙間 1 1 5を設け ざるを得ない。 In order to improve the atomization characteristics of the fuel injection valve, as shown in Fig. 3, the flow of the fuel should flow from the outer periphery of the swirl element 12 through the swirl flow path to the fuel injection hole 2. It is necessary. However, in configuring the fuel injection valve, the annular gap 115 must be provided also between the outer peripheral portion of the rod 7 and the inner diameter portion of the swirl element 12.
この環状隙間 1 1 5を通って、 燃料噴射孔 2へ直接流れる燃料には旋回力が 作用しないため、 微粒化特性を悪化させる可能 がある。 よって、 環状隙間 1 1 5を通って流れる燃料の流量は極力小さくする必要がある。 Since no swirling force acts on the fuel flowing directly to the fuel injection holes 2 through the annular gap 1 15, the atomization characteristics may be deteriorated. Therefore, it is necessary to minimize the flow rate of the fuel flowing through the annular gap 115.
このため、 本発明の一実施形態では、 環状隙間 1 1 5の途中に、 燃料流れを 遮るための、 凸部 1 0 0を設けている。 これによれば、 環状隙間 1 1 5を燃料 が通過するときの流路抵抗が増大するため、 環状隙間 1 1 5を流れる燃料流量 を小さくすることが可能となり、 燃料の微粒化特性を向上させることが可能と
なる。 For this reason, in one embodiment of the present invention, a protrusion 100 for blocking fuel flow is provided in the middle of the annular gap 115. According to this, the flow resistance when fuel passes through the annular gap 115 increases, so that the fuel flow rate flowing through the annular gap 115 can be reduced, and the atomization characteristics of the fuel are improved. It is possible Become.
さらに、 中央部流路 1 0 8を、 旋回素子 1 2の上下両端面から加工すること による別の作用効果について説明する。 貫通孔である中央部流路 1 0 8を、 た とえば、 旋回素子 1 2の上側端面からのみェヅチング加工し、 貫通させようと すれば、 旋回素子 1 2の下側端面に形成される中央部流路 1 0 8の近傍におい て、 孔形状の真円度が悪化したり、 下側端面の面粗さが劣化したりする可能性 がある。 上下両端面から中央部流路 1 0 8をエッチング加工する工程を組み合 わせれば、 上記のような形状劣化を防ぐことが可能となる。 Further, another operation and effect obtained by processing the central flow path 108 from the upper and lower end surfaces of the swirl element 12 will be described. For example, if the central flow path 108, which is a through hole, is etched only from the upper end face of the swivel element 12 to make it penetrate, the center formed at the lower end face of the swivel element 12 is formed. In the vicinity of the internal flow path 108, the roundness of the hole shape may be deteriorated, and the surface roughness of the lower end surface may be deteriorated. By combining the step of etching the central flow passage 108 from the upper and lower end surfaces, it is possible to prevent the above-described shape deterioration.
尚、 この加工方法及び作用効果は、 単結晶シリコンからなる材料に、 貫通す る燃料流路を設けようとするいかなる場合にも適用することができる。 例えば、 旋回流路を設けずに、 貫通する燃料流路だけを設ける場合にも同様の作用 ·効 果を得ることができる。 Note that this processing method and the function and effect can be applied to any case where a fuel flow path penetrating through a material made of single crystal silicon is to be provided. For example, the same operation and effect can be obtained when only a penetrating fuel flow path is provided without providing a swirl flow path.
図 5 Aは、 本発明の燃料噴射弁の一実施形態の旋回素子保持部材 2 2を示す 平面図である。 図 5 Bは、 本発明の燃料噴射弁の一実施形態の旋回素子保持部 材 2 2を示す断面図である。 FIG. 5A is a plan view showing a swirl element holding member 22 of one embodiment of the fuel injection valve of the present invention. FIG. 5B is a cross-sectional view showing the swirl element holding member 22 of one embodiment of the fuel injection valve of the present invention.
旋回素子保持部材 2 2に、 貫通孔 1 0 6を設ける。 貫通孔 1 0 6を通った燃 料は、 旋回素子 1 2の外周部に導かれるように、 燃料通路としての凹部 1 1 4 を設ける。 このとき、 貫通孔 1 0 6の、 燃料流れに垂直な面についての断面積 は、 図 4で示した環状隙間 1 1 5の断面積よりも十分に大きくしておく。 さら に、 凹部 1 1 4の、 燃料流れに垂直な面についての断面積は、 図 4で示した環 状隙間 1 1 5の断面積よりも十分に大きくしておく。 A through hole 106 is provided in the turning element holding member 22. A recess 114 is provided as a fuel passage so that the fuel passing through the through hole 106 is guided to the outer peripheral portion of the swirl element 12. At this time, the cross-sectional area of the through hole 106 on a plane perpendicular to the fuel flow is sufficiently larger than the cross-sectional area of the annular gap 115 shown in FIG. Further, the cross-sectional area of the concave portion 114 on the plane perpendicular to the fuel flow should be sufficiently larger than the cross-sectional area of the annular gap 115 shown in FIG.
このような構成により、 大部分の燃料は、 旋回素子 1 2の旋回流路 1 0 1を 通ることになるため、 燃料旋回力を強化することが可能となり、 微粒化特性を 向上させることができる。 With such a configuration, most of the fuel passes through the swirling flow path 101 of the swirling element 12, so that it is possible to enhance the fuel swirling force and improve the atomization characteristics. .
図 6は本発明の燃料噴射弁の他の実施形態のうちロッド 7と旋回素子 1 2を 拡大した部分断面図である。 FIG. 6 is an enlarged partial cross-sectional view of a rod 7 and a swivel element 12 of another embodiment of the fuel injection valve of the present invention.
旋回素子 1 2の中央部燃料流路の下流側の直径は、 上流側の直径よりも小さ くする。 このような構成によっても、 環状隙間 1 1 5を燃料が通過するときの
流路抵抗が増大するため、 環状隙間 1 1 5を流れる燃料流量を小さくすること が可能となり、 燃料の微粒ィ匕特性を向上させることが可能となる。 The diameter of the swirling element 12 on the downstream side of the central fuel flow path is smaller than the diameter on the upstream side. Even with such a configuration, when fuel passes through the annular gap 1 15 Since the flow path resistance is increased, the flow rate of the fuel flowing through the annular gap 115 can be reduced, and the characteristics of finely divided fuel can be improved.
また下流側の直径を小さくすることの作用効果は、 燃料噴射孔 2に近い部分 に、 滞留する燃料体積を小さくすることである。 これにより、 滞留した燃料が、 旋回力を付与されずに燃料噴射孔 2から噴射されることがなくなり、 微粒化特 性を向上させることが可能となる。 The effect of reducing the diameter on the downstream side is to reduce the volume of fuel remaining in the portion near the fuel injection hole 2. This prevents the retained fuel from being injected from the fuel injection holes 2 without imparting the swirling force, thereby improving the atomization characteristics.
図 Ίは本発明の燃料噴射弁の他の実施形態に用いられる旋回素子 1 2の断面 図である。 FIG. 5 is a cross-sectional view of a swirl element 12 used in another embodiment of the fuel injection valve of the present invention.
旋回素子 1 2は、 燃料に直接接触する部材である。 旋回素子 1 2を単結晶シ リコンで形成する場合には、 微量のシリコンが燃料中に溶け出す可能性がある。 内燃機関に設けられる機構部品や電子部品、 センサ一類、 触媒等の補機類は、 微量のシリコンにより、 その性能が劣化する可能性がある。 そこで、 旋回素子 The swirl element 12 is a member that directly contacts the fuel. When the swirl element 12 is formed of single-crystal silicon, a small amount of silicon may be dissolved in the fuel. A small amount of silicon may degrade the performance of mechanical components, electronic components, sensors, and auxiliary equipment such as catalysts provided in internal combustion engines. So, the turning element
1 2の母材である単結晶シリコンと、 燃料とが直接接触することがないように、 旋回素子 1 2の外周部には、 燃料に溶けることのないシリコンの酸ィ匕膜からな る表面層 1 1 0を設ける。 これにより、 微量のシリコンが燃料中に溶け出すこ とを防止できるため、 補機類への悪影響を懸念することなく、 旋回素子 1 2を 単結晶シリコンで形成することができるようになる。 To prevent direct contact between the single crystal silicon as the base material of 12 and the fuel, the outer periphery of the orbiting element 12 has a surface made of silicon oxide film that does not dissolve in the fuel. Layer 110 is provided. As a result, a small amount of silicon can be prevented from dissolving into the fuel, so that the swirl element 12 can be formed of single-crystal silicon without worrying about adverse effects on accessories.
尚、 表面層 1 1 0は、 シリコンの酸化膜とすることが望ましい。 シリコンの 酸化膜は化学的に安定であり、 燃料に溶け出すことはないからである。 Preferably, the surface layer 110 is a silicon oxide film. Silicon oxide is chemically stable and does not dissolve into the fuel.
尚、 旋回素子 1 2に表面層 1 1 0を設け、 旋回素子 1 2の材料成分が燃料中 に溶け出さないようにする方法は、 旋回素子 1 2を単結晶シリコン以外の材料 で形成する場合にも用いることができる。 The method of providing a surface layer 110 on the swivel element 12 to prevent the material components of the swivel element 12 from dissolving in the fuel is based on the case where the swivel element 12 is formed of a material other than single crystal silicon. Can also be used.
図 8は本発明の燃料噴射弁の他の実施形態に用いられる旋回素子 1 2の断面 図である。 FIG. 8 is a cross-sectional view of a swirl element 12 used in another embodiment of the fuel injection valve of the present invention.
旋回素子 1 2の内径部に、 旋回素子 1 2の材料とは異なる材料からなるリン グ状の摺動部材 1 1 1を設ける。 摺動部材 1 1 1の材料はステンレス鋼が好適 であるが、 これに限定するものではない。 A ring-shaped sliding member 111 made of a material different from the material of the turning element 12 is provided on the inner diameter of the turning element 12. The material of the sliding member 111 is preferably stainless steel, but is not limited thereto.
このような摺動部材 1 1 1を有する旋回素子 1 2の構成によれば、 燃料噴射
弁に旋回素子保持部材 2 2を用いることなく、 ロッド 7の摺動案内をすること が可能となり、 燃料噴射弁の部品構成を簡単にすることができる。 According to the configuration of the swivel element 12 having such a sliding member 111, fuel injection The sliding guide of the rod 7 can be performed without using the swivel element holding member 22 for the valve, and the component configuration of the fuel injection valve can be simplified.
図 9 Aは、 本発明の燃料噴射弁の他の実施形態に用いられる旋回素子 1 2の 平面図である。 図 9 Bは、 本発明の燃料噴射弁の他の実施形態に用いられる旋 回素子 1 2の断面図である。 図 9 Cは、 本発明の燃料噴射弁の他の実施形態に 用いられる旋回素子 1 2の裏面図である。 FIG. 9A is a plan view of a swirl element 12 used in another embodiment of the fuel injection valve of the present invention. FIG. 9B is a cross-sectional view of a swirl element 12 used in another embodiment of the fuel injection valve of the present invention. FIG. 9C is a rear view of the swirl element 12 used in another embodiment of the fuel injection valve of the present invention.
旋回素子 1 2の上側の端面に、 燃料流路 1 1 2を設けている。 燃料流路 1 1 2は、 エッチング加工によって形成することが好適であるが、 これに限定する ものではない。 A fuel flow path 112 is provided on the upper end face of the swirling element 112. The fuel flow channel 112 is preferably formed by etching, but is not limited to this.
このような構成によれば、 旋回素子保持部材 2 2を用いることなく、 燃料流 路 1 1 2を介して、 燃料を旋回素子 1 2の外周部に導くことが可能となるため、 部品構成を簡単にすることができる。 According to such a configuration, it is possible to guide the fuel to the outer peripheral portion of the swirl element 12 via the fuel flow path 112 without using the swirl element holding member 22. Can be easy.
図 1 0 Aは、 本発明の燃料噴射弁の他の実施形態に用いられるノズル 1 1の 平面図である。 図 1 0 Bは、 本発明の燃料噴射弁の他の実施形態に用いられる ノズル 1 1の断面図である。 FIG. 10A is a plan view of a nozzle 11 used in another embodiment of the fuel injection valve of the present invention. FIG. 10B is a cross-sectional view of a nozzle 11 used in another embodiment of the fuel injection valve of the present invention.
ノズル 1 1の下端部付近に、 放射状燃料流路 1 1 3を設ける。 Near the lower end of the nozzle 11, a radial fuel flow path 113 is provided.
このような構成によっても、 旋回素子保持部材 2 2を用いることなく、 燃料 流路 1 1 3を介して、 燃料を旋回素子 1 2の外周部に導くことが可能となるた め、 部品構成を簡単にすることができる。 Even with such a configuration, it is possible to guide the fuel to the outer peripheral portion of the swirl element 12 through the fuel flow path 113 without using the swirl element holding member 22. Can be easy.
尚、 図 1〜図 1 0を用いて説明した本発明の実施形態は、 単結晶シリコン以 外の材料からなる旋回素子を備えた燃料噴射弁に適用してもよい。 The embodiment of the present invention described with reference to FIGS. 1 to 10 may be applied to a fuel injection valve provided with a swirl element made of a material other than single crystal silicon.
さらに、 図 1では、 弁体を電磁吸引力によって駆動する方式の燃料噴射弁を 例にとって説明したが、 図 1〜図 1 0を用いて説明した本発明の実施形態は、 いかなる駆動方式の燃料噴射弁に適用してもよい。 例えば、 ピエゾ素子ゃ超磁 歪素子を用いて弁体を駆動する場合や、 燃料圧力を利用して弁体を駆動する場 合にも本発明を適用することが可能である。 Further, in FIG. 1, the fuel injection valve of the type in which the valve body is driven by the electromagnetic attraction force has been described as an example, but the embodiment of the present invention described with reference to FIG. 1 to FIG. You may apply to an injection valve. For example, the present invention can be applied to a case where a valve element is driven using a piezo element / a giant magnetostrictive element, or a case where a valve element is driven using fuel pressure.
さらに、 板状部材に貫通する旋回流路および貫通する中央部流路を設けて、 この板状部材の上下に積層される板状部材を設けて、 旋回素子を形成する場合
がある。 この場合にも、 図 1〜図 1 0を用いて説明した本発明を適用することが 可能である。 Further, a case in which a swirling flow path penetrating through the plate-shaped member and a central flow path penetrating through the plate-shaped member are provided, and plate-shaped members stacked above and below the plate-shaped member are provided to form a turning element There is. Also in this case, the present invention described with reference to FIGS. 1 to 10 can be applied.
本発明のスワラ (旋回素子) 構造に関する他の一実施例を図 1 1 A , 1 1 B およびその加工方法を図 1 2に示す。 なお、 図 1 1 Aは、 スワラ (旋回素子) 構造の平面図、 図 1 1 Bは図 1 1 Aの A— B破線部の断面図を示す。 FIGS. 11A and 11B show another embodiment of the swirler (swirl element) structure of the present invention, and FIGS. FIG. 11A is a plan view of a swirler (swirl element) structure, and FIG. 11B is a cross-sectional view taken along a broken line AB of FIG. 11A.
スワラチップ (旋回素子チヅプ) の構造は中央部に貫通孔 1 1 0 8が形成さ れており、 平面部 1 1 0 6と突起部が円周上において任意の角度をもって等分 割に形成されている。 突起部の先端部は、 貫通孔 1 1 0 8の接線と交わるよう に細長く形成されている。 一方、 外周部の形状はアール部 1 1 0 3と直線部 1 1 0 5から形成されている。 The structure of the swirler tip (pivot element chip) has a through hole 1108 formed in the center, and a flat portion 1106 and a protrusion are equally divided at an arbitrary angle on the circumference. I have. The tip of the projection is formed to be elongated so as to intersect with the tangent of the through-hole 111. On the other hand, the shape of the outer peripheral part is formed of a round part 1103 and a straight part 111.
スワラは、 他の構造体に組み込むことから、 貫通孔の内径寸法および外周部 アール部間の外径寸法に高精度が要求される。 Since the swirler is incorporated into another structure, high precision is required for the inner diameter of the through hole and the outer diameter between the outer radius and the radius.
本発明の高精度スワラ加工方法に関する一実施例を次に示す。 An embodiment of the high-precision swirler processing method of the present invention will be described below.
図 1 2はシリコン材料とマイクロマシニング技術を用いてスヮラを加工するプ 口セスを示す。 はじめに、 図 1 2の (a) に示すように厚さ 1 0 0 0 z m ( 1 0 0 ) 方位の熱酸化膜 1 1 0 1が形成されたシリコンウェハ 1 1 0 0を準備す る。 次にホトリソプロセスを用いて、 シリコンウェハ 1 1 0 0の表面に形成さ れた熱酸化膜 1 1 0 1上にレジスト塗布 ·パターン露光 ·現像 ·熱酸化膜のェ ヅチングを片面から行い、 図 1 2の (b ) に示すように突起部のマスクパ夕一 ン 1 1 0 7 aを形成する。 Figure 12 shows the process of processing a slurry using silicon material and micromachining technology. First, as shown in FIG. 12 (a), a silicon wafer 1100 on which a thermal oxide film 1100 having a thickness of 100000zm (100) is formed is prepared. Next, using a photolitho process, resist coating, pattern exposure, development, and etching of the thermal oxide film were performed on one side of the thermal oxide film 1 101 formed on the surface of the silicon wafer 1101, As shown in FIG. 12 (b), a mask pattern 110a of the protrusion is formed.
次に、 パターンが形成された面にスパヅ夕リング装置により厚さ 0 . 3 zmの アルミ二ゥム薄膜を形成する。 薄膜形成方法としては蒸着装置や電子ビーム蒸 着装置などを用いても良い。 その後、 図 1 2の (c ) に示すように、 ホトリソ プロセスを用いてシリコンウェハ 1 1 0 0の表面に形成されたァゥミニゥム薄 膜 1 1 0 2上にレジスト塗布 ·パ夕一ン露光 ·現像 ·アルミニウム薄膜のェヅ チングを片面から行い、 外周部のアール部 1 1 0 3と直線部 1 1 0 5および貫 通孔 1 1 0 8のマスクパ夕一ン 1 1 0 4を形成する。 このように異なるパ夕一 ンを重ねて形成する多層マスクは、 異なる深さの孔を時間差で一括してエッチ
ング加工を行うために用いた。 Next, an aluminum thin film having a thickness of 0.3 zm is formed on the surface on which the pattern has been formed by a sputtering device. As a method of forming a thin film, a vapor deposition device, an electron beam vapor deposition device, or the like may be used. Thereafter, as shown in FIG. 12 (c), a resist is applied onto a thin aluminum film 1102 formed on the surface of the silicon wafer 110 using the photolithography process. · Etching of the aluminum thin film is performed from one side to form a rounded portion 1103 and a linear portion 1105 on the outer peripheral portion and a mask pattern 1104 of the through hole 111. In this way, a multilayer mask formed by overlapping different patterns is capable of simultaneously etching holes of different depths with a time difference. It was used to perform the machining process.
この方式を適用しない加工法では、 はじめに外周部および貫通孔の段差部をェ ヅチングで加工し、 その後、 突起部パ夕一ンをパ夕一ニングする必要がある。 しかし、 個々にェヅチングを行うと、 最初のエッチングで高段差部が存在する ために、 次のホトリソ工程で高段差部へのレジスト形成が困難となる問題が生 し 。 In a processing method to which this method is not applied, it is necessary to first process the outer peripheral portion and the step portion of the through-hole by etching, and then to perform the protruding portion patterning. However, when etching is performed individually, there is a problem that it is difficult to form a resist on the high step portion in the next photolithography step because a high step portion exists in the first etching.
そのため、 永発明のスワラ加工には、 多層マスク法を適用することが有効とな る。 また、 多層マスクの形成では第一のマスクと第二のマスクで位置ずれが考 えられる。 そのため、 位置ずれの発生を考慮して、 第一のマスクに対して第二 のマスクは 5 zmくらい小さく形成し、 位置ずれに対するパターン誤差を吸収 している。 Therefore, it is effective to apply the multilayer mask method to the swirling process of the invention. In the formation of a multi-layer mask, misalignment between the first mask and the second mask can be considered. For this reason, the second mask is formed to be smaller than the first mask by about 5 zm in consideration of the occurrence of the displacement, thereby absorbing the pattern error due to the displacement.
図 12の (d) に示すようにアルミニウム薄膜をマスクとしてシリコンのドラ ィエッチング加工を任意の深さ、 例えば 200 zmまで行う。 この加工によつ て、 貫通孔 1108および外周部のアール部 1103と直線部 1105は深さ 200 mまで加工される。 その後、 アルミニウム薄膜マスクを除去した後、 図 12の (e) に示すように熱酸化膜をマスクとしてシリコンのドライエッチ ング加工を任意の深さ、 例えば 320 zmまで行う。 As shown in FIG. 12 (d), dry etching of silicon is performed to an arbitrary depth, for example, 200 zm, using the aluminum thin film as a mask. By this processing, the through-hole 1108, the round portion 1103 of the outer peripheral portion, and the straight portion 1105 are processed to a depth of 200 m. Then, after removing the aluminum thin film mask, dry etching of silicon is performed to an arbitrary depth, for example, 320 zm using the thermal oxide film as a mask, as shown in FIG. 12 (e).
この加工によって、 貫通孔 1108および外周部のアール部 1103と直線部 1105は深さ 520 zmまで、 平面部 1106は深さ 320 zmまで加工さ れる。 また、 この加工によって図 11 Bに示した突起部 1107の先端部まで 高精度に加工することができる。 By this processing, the through-hole 1108, the round part 1103 and the straight part 1105 of the outer peripheral part are processed to a depth of 520 zm, and the flat part 1106 is processed to a depth of 320 zm. Further, by this processing, processing can be performed with high accuracy up to the tip of the protrusion 1107 shown in FIG. 11B.
前記、 ドライエッチング加工装置には誘導結合型のプラズマエッチング「I C P— R I E (Induct ively Coupl ed Plasma— RI E」装置を用いることによりァスぺクト比 20程度の垂直な壁を有するエッチ ング加工を行える。 As described above, an inductively coupled plasma etching “ICP-RIE (Inductively Coupled Plasma-RIE)” apparatus is used as the dry etching apparatus to perform etching processing having vertical walls with an aspect ratio of about 20. I can do it.
ドライェヅチング加工では加工条件によってエツチング加工面、 特に加工底面 にマイクログラスのような微小な針が形成される場合が存在する。 そのため、 図 12の (e) のエッチング加工が終了した後、 熱酸化膜をマスク材として、
常温の水酸化力リゥム水溶液に数分間、 浸漬することでマイク口グラスを除去 することができる。 In dry etching, there are cases where minute needles such as microglasses are formed on the etching surface, particularly on the processing bottom, depending on the processing conditions. Therefore, after the etching shown in Fig. 12 (e) is completed, the thermal oxide film is used as a mask material. The glass at the microphone opening can be removed by immersing it for a few minutes in an aqueous solution of aqueous hydration power at room temperature.
その他にマイクログラスを除去する方法として、 水酸化力リゥム水溶液だけで はなく、 その他のウエットエッチング液、 例えば、 エチレンジァミンピロカテ コール、 テトラメチルアンモニゥムハイド口オキサイド、 ヒドラジンを用いる ことができる。 また、 微小なガラスビーズを吹き付けて除去する方法、 回転ブ ラシなどを押し付けて除去する方法を用いても良い。 Other methods of removing micrograss include not only aqueous hydration aqueous solution, but also other wet etching solutions such as ethylenediamine pyrocatechol, tetramethylammonium hydroxide, and hydrazine. it can. Alternatively, a method of spraying and removing fine glass beads, or a method of pressing a rotating brush or the like to remove the beads may be used.
次に、 熱酸化膜を除去した後、 熱酸化膜 1 1 0 1およびアルミニウム薄膜 1 1 ◦ 2をシリコンウェハ 1 1 0 0の両側全面に形成する。 その後、 図 1 2の ( f ) に示すようにホトリソプロセスを用いて、 裏面側に貫通孔 1 1 0 8およ び外周部のアール部 1 1 0 3と直線部 1 1 0 5のパターン形成を行う。 シリコ ンのドライェヅチング加工を行うことで、 貫通孔 1 1 0 8および外形が形成さ れる。 次にアルミニウム薄膜、 熱酸化膜の順にマスクを除去した後、 ダイシン グカロェを行うことでスヮラ形状ができる。 最後にスワラ全面に熱酸ィ匕膜を形成 し、 完成する (図 1 2の (g ) ) 。 Next, after removing the thermal oxide film, a thermal oxide film 111 and an aluminum thin film 111 are formed on the entire surface of both sides of the silicon wafer 110. Then, as shown in (f) of Fig. 12, using a photolitho process, the pattern of the through-hole 1 1 108, the rounded portion 1 1 10 3 and the straight portion 1 1 5 Perform formation. The through hole 1108 and the outer shape are formed by performing the silicon dry etching. Next, after removing the mask in the order of the aluminum thin film and the thermal oxide film, dicing is performed to form a slurry. Finally, a thermal oxidation film is formed on the entire surface of the swirler to complete the process ((g) in FIG. 12).
前記の加工プロセスでは貫通孔 1 1 0 8および外周部の加工を両側からドライ エッチング加工を用いて行った。 これは片面からの加工では、 ェヅチング深さ が深くなるにつれて、 壁面のサイドエッチング量が大きくなり、 例えば貫通孔 1 1 0 8の寸法が精度内に入らない可能性がある。 In the above processing process, the processing of the through hole 1108 and the outer peripheral portion was performed from both sides using dry etching. This is because, in the processing from one side, as the etching depth increases, the amount of side etching on the wall surface increases, and for example, there is a possibility that the dimensions of the through hole 110 may not be within the precision.
なお、 今回は 1 0 0 0 /m厚さのシリコンウェハを用いたが、 それより薄いシ リコンウェハ、 例えば 5 0 0〃m厚さを用いた場合には図 1 2の (e ) のプロ セスまで行い、 ダイシング後、 全面に熱酸化膜を形成するプロセスを用いるこ とができる。 In this case, a silicon wafer with a thickness of 1000 / m was used. However, when a silicon wafer with a thickness smaller than that, for example, a thickness of 500〃m, was used, the process shown in Fig. 12 (e) was used. After dicing, a process of forming a thermal oxide film on the entire surface can be used.
さらにスワラ構造で特に重要な部分は、 図 1 1 Bに示した突起部 1 1 0 7の先 端部形状であることから、 突起部 1 1 0 7の形成をシリコンのドライェヅチン グを用いて加工し、 貫通孔 1 1 0 8および外周部のアール部 1 1 0 3と直線部 1 1 0 5の加工を他の加工法、 例えば、 マイクロブラスト加工、 超音波加工、 ダイヤモンドドリルなどを組み合わせて加工を行うことにより、 低コストのス
ワラ構造を提供することもできる。 Furthermore, a particularly important part of the swirler structure is the shape of the tip of the protrusion 1107 shown in FIG. 11B, so the formation of the protrusion 1107 is processed using silicon dry etching. The through hole 1108 and the outer radius 11103 and the straight portion 1105 are processed by a combination of other processing methods such as micro blasting, ultrasonic processing, and diamond drilling. To reduce costs. A straw structure can also be provided.
本発明の旋回素子 (スワラ構造) に用いる材料はシリコンに限らず、 アルミ ナゃジルコニァなどのセラミックス、 切削性や研削性に優れたセラミックス、あ るいはガラス等の脆性材料を用いることができる。 The material used for the swirling element (swirler structure) of the present invention is not limited to silicon, and ceramics such as aluminum zirconia, ceramics excellent in cutting and grinding properties, or brittle materials such as glass can be used.
本発明によれば、 旋回素子を単結晶シリコン等の脆性材料で形成できるよう になるため、 旋回力の強い旋回流路が形成できるようになる。 また、 旋回素子 内径部を通過する燃料流量を低減できるため、 燃料に強い旋回力を付与できる ようになる。 よって、 微粒化特性の良好な燃料噴射弁を得ることができるよう になる。 産業上の利用可能性 According to the present invention, since the turning element can be formed of a brittle material such as single crystal silicon, a turning channel having a strong turning force can be formed. Further, since the flow rate of fuel passing through the inner diameter of the swirl element can be reduced, a strong swirl force can be applied to the fuel. Therefore, a fuel injection valve having good atomization characteristics can be obtained. Industrial applicability
本発明は内燃機関用の燃料噴射弁に利用できる。 特に燃料噴射弁において、 単 結晶シリコンからなる旋回素子を旋回素子保持部に保持し、 弾性部材を介して、 ノズルとオリフィスプレートの間に固定する。 旋回素子の中央部流路には、 凸 部を設け、 旋回素子の外径と、 旋回素子の内径との間の環状隙間を狭くする。 上記環状隙間を流れる燃料流量を抑制し、 燃料に強い旋回力を付与する。
The present invention can be used for a fuel injection valve for an internal combustion engine. In particular, in a fuel injection valve, a swirl element made of single-crystal silicon is held in a swivel element holding part, and is fixed between a nozzle and an orifice plate via an elastic member. A convex portion is provided in the central flow path of the turning element to reduce an annular gap between the outer diameter of the turning element and the inner diameter of the turning element. The fuel flow rate flowing through the annular gap is suppressed, and a strong swirling force is applied to the fuel.