WO2005048662A1 - Method for generating high-temperature high-density plasma by cusp cross-section pinch - Google Patents

Method for generating high-temperature high-density plasma by cusp cross-section pinch Download PDF

Info

Publication number
WO2005048662A1
WO2005048662A1 PCT/JP2003/014580 JP0314580W WO2005048662A1 WO 2005048662 A1 WO2005048662 A1 WO 2005048662A1 JP 0314580 W JP0314580 W JP 0314580W WO 2005048662 A1 WO2005048662 A1 WO 2005048662A1
Authority
WO
WIPO (PCT)
Prior art keywords
pinch
plasma
cusp
section
temperature
Prior art date
Application number
PCT/JP2003/014580
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsu Miyamoto
Original Assignee
Tetsu Miyamoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tetsu Miyamoto filed Critical Tetsu Miyamoto
Priority to AU2003280823A priority Critical patent/AU2003280823A1/en
Priority to PCT/JP2003/014580 priority patent/WO2005048662A1/en
Publication of WO2005048662A1 publication Critical patent/WO2005048662A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/04Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
    • H05H1/08Theta pinch devices, e.g. SCYLLA

Definitions

  • the present invention relates to a high-temperature, high-density plasma generation method, and more particularly to a method of generating high-temperature, high-density plasma by pinching a cusp cross section.
  • the present invention can be used for high-temperature and high-density plasma sources, high-intensity light sources with wavelengths in the ultraviolet to X-ray range, lasers, strong neutron sources, and fusion devices. Background art
  • the pinch phenomenon roughly the upper limit of the generated plasma density for an external magnetic field peak Lynch 1 0 1 7 cm- 3 about a is te one Tapinchi (or electrodeless discharge) and ultra-high density plasma because it is self-field pinch
  • a Z-pinch or electrode discharge
  • the present invention belongs to this kind of Z pinch.
  • high-temperature, high-density plasma can be generated by Z-pinch discharge, the generated plasma is extremely unstable.
  • Capillary Z-pinch is used for discharge excitation of X-ray laser, which needs to generate uniform high-temperature plasma.
  • Capillary tube In the Z-pinch a capillary tube is used as a discharge tube, and because of the stabilization effect due to the existence of the tube wall and the accompanying density distribution, a uniform number of 100 eV required for X-ray laser excitation is obtained. It is possible to generate a plasma. It has the disadvantage of severe damage to the tube wall.
  • high-temperature nuclear reaction plasmas exceeding several eV have been generated using the Z-pinch, and research on intense neutron sources mainly using plasma focus devices has been conducted.
  • two sets of coaxial guns or plasma focus devices are arranged to face each other, and the generated and accelerated plasma is collided in the middle of the two sets of devices, and a spindle cusp-shaped plasma is generated. It has been proposed to generate them (JA, H. Leeet. Al., Plasma Phys., Vol. 20, 1025—1038 (19778)). However, increasing the discharge current in this configuration creates a strong pinch in front of the center electrode, a plasma focus, where most of the energy is dissipated.
  • the present invention impairs the features of Z-pinch, which can generate high-temperature, high-density plasma.
  • the object is to suppress the instability of the generated plasma and solve the problem of maintaining a uniform high-temperature and high-density plasma for a long time. Disclosure of the invention
  • the present invention seeks to generate high-temperature and high-density plasma by large-current discharge and to stabilize the instability of Z-pinch plasma by its geometric shape.
  • the gist of the first invention is a method of generating high-temperature, high-density plasma by discharging, comprising: a first sheet Z-pinch generation device in which a cathode is arranged around a first anode plate via an insulator; A second sheet Z pinch generator in which a second anode plate is disposed so as to face the first sheet Z pinch generator via an insulator so as to penetrate the cathode, and wherein the first sheet Z pinch is provided.
  • a device in which a portion facing the generation device and the second sheet Z-pinch generation device is an airtight container filled with gas, the plasma from the first sheet Z-pinch generation device and the second sheet are generated.
  • a high-temperature, high-density plasma generation method using a cusp cross-section pinch is characterized by generating a high-temperature, high-density pinch plasma column having a cusp cross-section by colliding and merging plasma from a Z-pinch generation device.
  • the gist of the second invention is that by attaching a conductor plate to both sides of the first anode plate and the second anode plate at both ends of the pinch plasma column having the generated cusp cross section, Claims characterized by supporting a magnetic force for shortening the length of the plasma column generated at the same time, and delaying the collapse of the plasma column so as to prevent the plasma near the axis from flowing out in the axial direction.
  • Item 1 is a method for generating high-temperature, high-density plasma by pinching a cusp section.
  • the gist of the third invention is that in a method of generating high-temperature and high-density plasma by discharge, a sheet Z-pinch generating device in which a ground electrode is arranged around a positive electrode plate via an insulator, and a negative electrode is formed around the negative electrode. And a sheet Z pinch generator with a ground electrode placed through an insulator at 90 degrees alternately around the center axis of the plasma column to be generated, and four sets are placed facing each other. Near the center axis of the plasma column that is to generate plasma from the four sets of sheet Z pinch generating devices by using a device in which the sheet Z pinch generating device of the four sets becomes an airtight container filled with gas.
  • a high-temperature, high-density plasma generation method using a cusp cross-section pinch is characterized by generating a high-temperature, high-density cusp cross-section pinch plasma column by collision and coalescence. '
  • the gist of the fourth invention is that a conductor plate is attached to the two opposite positive electrodes and the opposite negative electrode on both sides of the positive electrode and the negative electrode at both ends of the plasma column having the generated cusp cross section. This supports the magnetic force to reduce the length of the plasma column generated in the line cusp, and prevents the plasma near the axis from flowing out in the axial direction to delay the collapse of the plasma column. 4.
  • the gist of the fifth invention is that the cusp cross-section pinch generating device according to claim 1 or 3 is closed and a torus-shaped cusp cross-section pinch plasma column is generated. High-density plasma generation method.
  • the gist of the sixth invention is that, in claim 1, the breakdown voltage of the insulating part separating the anode and the cathode is increased to prevent insulation rupture and discharge from occurring on the surface of the insulator, Close the discharge area between the anode and anode Discharge between the pole discharge parts, or after pre-ionization and pre-heating, discharge is generated between the positive electrode and the negative electrode, and a cusp cross section characterized by the generation of a pinch plasma column with a cusp cross section near the axis There is a high-temperature, high-density plasma generation method by pinching.
  • the gist of the seventh invention is that, in claim 3, the ground electrode is covered with an insulator, the withstand voltage of an insulating portion separating a positive electrode and a negative electrode is increased, and dielectric breakdown and discharge occur on the surface of the insulator. And discharge between the positive and negative electrode discharge sections, and discharge between the positive and negative electrode discharge sections, or pre-ionization and pre-heating, then discharge between the anode and cathode tips.
  • a high-temperature, high-density plasma generation method using a cusp cross-section pinch is characterized by generating a pinch plasma column having a cusp cross-section near the axis.
  • the gist of the eighth invention is that, in the toroidal cusp cut surface pinch plasma column according to claim 5, a current along the axis of the plasma column or a torus Z pinch is superimposed by an induced electromotive force to form a torus.
  • the gist of the ninth invention is to superimpose a current or a Z-pinch along the axis of the plasma column on the pinch plasma column having a straight cusp cross section according to Claims 1, 3, 6, and 7.
  • the method is a high-temperature, high-density plasma generation method using a linear force-sp cross section Z pinch, which generates a magnetic field in the azimuthal direction with respect to the axis of the plasma column.
  • Fig. 1 is a front view showing the concept of the sheet Z-pinch generating device used in the present invention.
  • Fig. 2 is a right side view of Fig. 1.
  • Fig. 3 is a top view of the center cross section of Fig. 1 as viewed from above.
  • FIG. 4 is a diagram showing Embodiment 1 according to the present invention.
  • FIG. 5 is a diagram showing a second embodiment according to the present invention.
  • FIG. 6 is a view showing a third embodiment according to the present invention.
  • FIG. 7 shows a fourth embodiment according to the present invention.
  • FIG. 8 is a diagram showing generation of a sheet Z pinch in Embodiment 4 according to the present invention.
  • FIG. 9 is a diagram showing a fifth embodiment according to the present invention.
  • FIG. 10 shows a sixth embodiment according to the present invention.
  • FIG. 11 shows a seventh embodiment according to the present invention.
  • FIG. 12 is a diagram showing a preionization power supply or a preheating power supply used in Embodiments 6 and 7 according to the present invention.
  • FIG. 13 is a view showing a Z-pinch of the cusp cross section of the eighth embodiment according to the present invention.
  • FIG. 14 is a view showing a ninth embodiment according to the present invention.
  • FIGS. 1 is a front view
  • FIG. 2 is a right side view
  • FIG. 3 is a top view of a central cross section of FIG. 1 as viewed from above.
  • Charge is stored in the capacitor 4 shown in FIG. 3 in advance, and the voltage of the capacitor 4 is applied to the anode (positive electrode) 1 and the cathode (negative electrode) via a switch 5 (gap switch or high power semiconductor switch, etc.).
  • a switch 5 gap switch or high power semiconductor switch, etc.
  • the discharge begins along the surface of insulator 3, first between anode 1 and cathode 2 separated by insulator 3. Next, it is formed on the surface of insulator 3
  • the generated plasma is heated as the current increases due to the discharge of the capacitor, and is accelerated rightward by the magnetic pressure.
  • Dotted line 7 conceptually illustrates the current path moving from left to right over time. This also conceptually shows the shape of the moving plasma layer, which eventually produces a sheet-like plasma 6 in front of the anode.
  • Reference numeral 8 indicates the magnetic field lines around the plasma sheet 6.
  • the region surrounded by electrodes and insulators where a plasma layer is formed is a discharge chamber, which is filled with a gas of an appropriate type and an appropriate pressure after being evacuated.
  • FIG. 4 shows Example 1 according to the present invention using two sets of the sheet Z pinch generating devices shown in FIGS. 1 to 3.
  • switches 13a and 13b are provided between the anode 9a and the cathode 10 and between the anode 9b and the cathode 10 in the same manner as shown in FIG.
  • the voltage of the capacitors 12a and 12b is applied through the, and creeping discharge is generated simultaneously on the surfaces of the insulators 11a and 11b.
  • the high resistances 14a and 14b are for applying a potential to the floating anodes 9a and 9b before closing the switches 13a and 13b.
  • the generated plasma is accelerated in the direction of the center axis (this is the z-axis) of the plasma column that is to be generated, and collides with the plasma coming from the opposite side to unite with the z-axis. Compress near. Then, through a complicated transient process, a plasma column 15a with a force sp-shaped cross section with a hyperboloid formed by the current path 15b is finally generated.
  • the magnetic field on the z-axis of this plasma column 15a is zero, and the magnetic field near the z-axis is weak. Therefore, a uniform plasma can be generated near the z-axis along the z-axis.
  • the discharge current can be increased without incurring energy loss due to instability near the anode as in the case of generating dolcusp. Although there is a loss of plasma and heat conduction through the linear force sp, increasing the current can reduce the loss sufficiently for the time required for the purpose.
  • the insulator surfaces 11a and 11b separating the anodes 9a and 9b and the cathode 10 are positioned at positions where the radiation from the pinch plasma is shaded. To reduce the damage.
  • FIG. 5 shows four arrangements of 16a, 16b, 16c, 16d around the plasma column to be generated so that the positive and negative center electrodes alternate.
  • (16a and 16c are positive center electrodes
  • 16b and 16d are negative center electrodes)
  • positive and negative voltages are applied to these electrodes, respectively, and discharged to generate a plasma column.
  • FIG. 1 shows an embodiment of a high-temperature and high-density plasma generation apparatus using a cusp cross-section pinch configured in such a manner that a cross section of a plasma column and a discharge circuit are conceptually shown.
  • Each electrode has the same configuration as the sheet Z pinch device shown in FIGS. 1 to 3 in principle.
  • 16a and 16c are positive electrodes
  • 16b and 16d are negative electrodes
  • ground electrodes are formed by insulators 18a, 18b, 18c, and 18d.
  • Insulated from 17 Positive electrodes 16a and 16c are connected to capacitors 19a and 19c charged to positive voltage V through switches 20a and 20c, respectively, and negative electrodes 16b and 16d are switches respectively. It is connected to capacitors 19b and 19d charged to a negative voltage of 1 V through 20b and 20d.
  • the high resistances 2 la, 21 b, 21 c, and 21 d are for keeping the potential of the positive and negative electrodes before the discharge as the potential of the ground electrode.
  • Electrode 16a, I6b, 16c, 16d, insulator 18a, 18b, 18c, 18d The area of No. 23 is a discharge chamber, which is filled with gas of an appropriate type and an appropriate pressure after being evacuated. In this state, when the four switches are closed at the same time and a voltage is applied to the positive and negative electrodes, the surface of the insulators 18a, 18b, 18c, and 18d is connected to the ground electrode 17 respectively. A creeping discharge occurs along. The generated plasma layer rises in temperature as the current increases, and is accelerated in the direction of the z-axis by the magnetic pressure formed across the plasma layer.
  • the plasma layers moving from the eight directions separate from the ground electrode 17 on the way, generate a discharge between the positive electrode and the negative electrode, and then gather near the z-axis to generate a plasma column.
  • a plasma column 22 a having a cusp cross-section with the current line indicated by the dotted line 22 b as the isobar is generated near the z-axis. (Because the magnetic field is zero on the z-axis, a uniform plasma along the z-axis can be generated in the vicinity of the region where the magnetic field is weak.
  • the negative electrode can be grounded, and the ground electrode can be set at the intermediate potential. Also, by using an insulating material for the ground electrode, the device shown in FIG. 4 can be obtained in which four quadrants are equivalent. It is also possible to generate a cusp cross section pinch having four or more line cusps by using four or more sets of the sheet Z pinch generating apparatus shown in FIGS. 1 to 3.
  • the apparatuses of Examples 1 and 2 can generate a cusp cross-section pinch except for near both ends when the length is sufficiently long in the axial direction of the plasma column.
  • the magnetic field is closed near the anode, and in Example 2, the line cusp near the anode and the cathode and both ends of the sheet Z-pinch portion. Therefore, in this part, the length in the z-axis direction is the thermal velocity of the plasma About to shorten.
  • the plasma in the weak magnetic field near the Z axis flows out in the axial direction.
  • the shortening of the plasma column and the loss of the plasma can be sufficiently slow compared to the required duration.
  • some method is needed.
  • the length of the plasma column is finite, and the lines of magnetic force close in the line cusp or sheet Z pinch area near the anode and cathode at both ends, so that the length in the z direction is reduced by about the thermal velocity of the plasma I do. And the plasma near the axis where the magnetic field is weak flows out in the z direction.
  • Embodiment 3 shown in FIG. 6 solves this problem and relates to a method of delaying the collapse of the cusp-section pinch plasma column by installing conductor plates at both ends of the cusp-section pinch electrode.
  • FIG. 6 shows the apparatus of Embodiment 1 (FIG. 4) further provided with conductor plates 24a and 24b, and the conductor plates 24a and 24b provided a wire cusp near the anode and a sheet Z pinch.
  • a method is provided to support the magnetic pressure in the part and prevent shrinkage until the plasma separates from the conductor plates 24a and 24b.
  • the line cusp and the sheet Z near the upper and lower cathodes can be generated so as to surround the pinch plasma column in the form of a fan-shaped connection of the Z pinch. Therefore, the outflow of plasma near the axis is suppressed.
  • Embodiment 4 shown in FIG. 7 solves the above-mentioned problem relating to the collapse of the plasma column, similarly to Embodiment 3 shown in FIG.
  • FIG. 7 shows an example in which conductor plates 25a, 25b, 26 are connected to both ends of an anode and a cathode in the apparatus of Example 2 (FIG. 5), respectively.
  • a fan-shaped sheet Z pinch as shown in Fig. 8 is generated at both ends of the plasma column.
  • Ma The gap 27 or hole 28 near the axis of the conductor plate reduces the interaction between the plasma near the axis and the conductor, and can guide various radiations from the plasma to the outside.
  • Example 4 in FIG. 7 by connecting a conductor plate to both ends of two positive electrodes and two negative electrodes, it is possible to delay the collapse of the plasma column and the loss of plasma in the axial direction. it can.
  • 29a and 29b are anodes
  • 30a and 30b are cathodes
  • 31a, 31b, 31c and 3Id are ground electrodes.
  • 32 a, 32 b, 32 c, 32 d, 32 e, 32 f, 32 g, and 32 h are insulators.
  • 33 is a torus-shaped pinch plasma column with a cusp cross section, and 34 is the current.
  • the illustration of the power supply circuit corresponding to the power supply circuit in Fig. 5 capacitoracitors 19a-d, switches 20a-d, resistors 22a-d
  • Example 5 shown in FIG. 9 is a modified example in which the anode, the cathode, the ground electrode, the insulator, etc. of Example 2 are made into a closed curve, and the pinch plasma column having a straight cusp cross section is made into a torus.
  • the end of the plasma column existing in 2 can be eliminated.
  • the first embodiment can be similarly formed into a torus shape.
  • the fifth embodiment shown in FIG. 9 can be used for a high-temperature and high-density plasma source, a high-brightness X-ray source, a strong neutron source and the like.
  • a straight, uniform plasma is required, as in the case of X-ray laser emission, a straight section should be provided on the race track or on a part of the torus, and the straight cusp cross section should be used. Can be done.
  • Example 6
  • the force described in relation to the sheet Z pinch is not necessarily limited to the force.
  • Starting discharge from creeping discharge on the surface of an insulator can be achieved by using a relatively low-speed discharge power supply due to the existence of an initial dynamic process.
  • There are advantages such as the ability to control the energy that can be given to the plasma during column formation.
  • an appropriate gas pressure using equipment parameters according to the mass number
  • performing preionization and preheating as necessary a uniform gas pressure between the positive and negative electrodes or between the positive and negative electrodes is obtained. If a discharge can be generated, it is possible to start directly from the electrode discharge between the anode and the cathode.
  • the embodiment 6 shown in FIG. 10 is not based on the creeping discharge as in the cusp-section pinch device of the embodiments 1 and 2, but between the discharge portions of the anodes 34a, 34b and the cathode 35. 9 shows a method for changing to electrode discharge.
  • two sets of cusp section pinching devices as in the first and third embodiments are used, and a creeping distance is increased to prevent a creeping discharge on an insulator surface separating an anode and a cathode.
  • the distance between the anode and cathode discharge sections is reduced, and the breakdown voltage there is reduced, so that the discharge starts from the creeping discharge on the surface of the insulator to the anode and cathode.
  • the distance between the electrodes is reduced to reduce the breakdown voltage.
  • the creepage distance is increased, and the lines of electric force between the anode and cathode are increased.
  • the structure is designed to block the air.
  • the capacitors 37a, 37b and the switches 38a, 38b and the high resistances 39a, 39b of FIG. 10 are the same as those of the apparatus of FIG. It is a main discharge circuit corresponding to b, 13a, 13b, 14a, and 14b.
  • Reference numerals 40a and 4Ob denote power sources for preionization or preheating, and an example thereof is as shown by a dotted line in FIG.
  • the pre-ionization or pre-heating power source shown in FIG. 12 includes a high-frequency power source 52, a pulse transformer 53, and a condenser 54 for direct current separation between the positive and negative electrodes. By supplying a high frequency current to the primary side of the pulse transformer 53 that does not affect the switching of the main discharge power supply from the outside, weakly ionized plasma can be generated between the electrodes prior to the main discharge. .
  • the start of the discharge is not caused by the creeping discharge as in the cusp section pinch device of the embodiments 2, 4, 5 etc., but by the positive electrodes 42a, 42c and the negative electrode. It shows a method for changing to an electrode discharge between the discharge portions of 42b and 42d.
  • the positive and negative electrodes are insulated from the ground electrode 43 with insulators 44a, 44b, 44c, and 44d, and the inner surface of the ground electrode 43.
  • the distance between the positive electrode discharge part and the negative electrode discharge part is reduced to reduce the dielectric breakdown voltage between the positive and negative electrodes.
  • a preionization or preheating power supply consisting of the high-frequency power supply 52, pulse transformer 53, and capacitor 54 shown in Fig. 12 is connected. You.
  • Symbols 46a, 46b, 46c, 46d are capacitors, symbols 47a, 47b, 47c, 47d are switches, symbols 48a, 48b, 48 c, 48 d indicate high resistance, and capacitors 19 a, 19 b, 19 c, 19 d, switches 20 a, 20 b, 20 c, 20 d, Works similarly to high resistance 21a, 21b, 21c, 21d.
  • a dotted line 50 near the z axis indicates a current line.
  • the inner surface of the ground electrode 43 is largely covered with the insulator in the four sets of cusp section pinching devices of the second, fourth, fifth, etc. Discharge between the anode and the cathode is prohibited, and the discharge is started by narrowing the interval between the positive electrode discharge part and the negative electrode discharge part and lowering the dielectric breakdown voltage there, as in the sixth embodiment. Is changed from creeping discharge on the surface of the insulator between the ground electrode 43 to air discharge between the electrodes between the positive electrode discharge part and the negative electrode discharge part.
  • This is a plasma generation method using a cusp cross-section pinch, which generates By performing preionization or preheating discharge prior to interelectrode discharge, a more uniform discharge can be generated between the positive electrode and the negative electrode.
  • Embodiment 7 is applicable to the case of Embodiment 5 in the form of a torus. is there.
  • Example 8 shown in Fig. 13 provides a method for superimposing the axial current by adding an induced electromotive force along the axis of the pinch plasma column of the torus-shaped cusp cross section of Example 5.
  • the cusp cross-section pinch in Examples 1, 2, 5-7 can be called the cusp cross-section Z pinch.
  • superposition of the induced discharge current along the axis of the plasma column and generation of a closed magnetic field in the azimuthal direction surrounding the pinch plasma column with a cusp section suppresses particle loss and energy loss from the line cusp. It is. From another point of view, increasing the induced discharge current causes a so-called torus Z pinch, which is equivalent to stabilizing the torus Z pinch with a cusp current.
  • FIG. 13 shows an example of the same equipment as in Fig. 9 except that the solenoid coil 55 is installed so as to pass through the center axis of the equipment so that the plasma is on the secondary side of the transformer.
  • a current in the axial direction of the torus is applied to the toroidal plasma column by discharging the solenoid coil 55 with a capacitor 56 and a switch 57 in synchronism with the pinch discharge of the cusp cut surface in Example 5. Can be done.
  • a torus-shaped Z-pinch plasma 33b having a cusp cross section can be generated at the center of the cusp cross-section pinch plasma 33a.
  • the power supply for the solenoid coil 55 the same power supply as the cusp section pinch can be used, and in this case, synchronization can be performed automatically.
  • particle loss and energy loss from the wire cusp can be suppressed, and the torus-shaped Z pinch can be stabilized by the cusp current.
  • FIG. 14 is a diagram corresponding to the right side view of the central longitudinal section of FIG. 5 with new electrodes 58a and 59b attached to both ends. In the left half of Fig. 14, 16c and 18c are omitted. In the right half of FIG. 14, 63 a and 63 b are omitted.
  • the electrodes 58a and 58b are insulated from the cusp section pinch electrodes 16a-d and 17 by insulating plates 59a and b ', and are arranged at both ends of the plasma column. After the cusp cut pinch plasma column 63 a is formed, a discharge is generated between the electrodes 58 a and 58 b, and a current 64 along the axis of the plasma column is superimposed to form a straight line. A cusp section Z-pinch plasma column 63b can be generated.
  • the capacitors 60a, b, the switches 61a, b and the high resistances 62a, b constitute the power supply for the current along the axis. In the present embodiment, it is necessary to lower the voltage V of the pinch in the cusp cross section and make the voltage V ′ of the pinch in the cusp cross section sufficiently higher than V.
  • the instability of generated plasma can be suppressed and uniform high-temperature high-density plasma can be maintained for a long time, without impairing the characteristics of the Z pinch capable of generating high-temperature high-density plasma.
  • the present invention generates a high-temperature, high-density plasma to generate a high-temperature, high-density plasma source, a high-intensity light source having a wavelength in the ultraviolet to X-ray range, a laser or an intense neutron source having a wavelength in the ultraviolet to X-ray range, It can be applied to fusion reactors.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

A means for generating a high-temperature, high-density plasma having a long duration and exhibiting excellent uniformity and stability available as the nuclear fusion reaction plasma such as a high-temperature, high-density plasma source, various high-luminance light sources and lasers of wavelength region from ultraviolet to X-ray or a powerful neutron source. Two sets or more of flat sheet Z pinch generator produced by elongating a coaxial gun or a plasma focus unit having an anode and a cathode arranged coaxially are disposed oppositely around the axis of a plasma column being generated. Two sets or more of sheet Z pinch plasma generated by discharging a large current are combined in the vicinity of the axis to generate a cusp cross-section Z pinch plasma column, thus generating a high-temperature, high-density plasma for use in various applications.

Description

明細書 力スプ断面ピンチによる高温高密度プラズマ生成法 技術分野  Description High-temperature, high-density plasma generation method using force-pinch pinch
本発明は、 高温高密度プラズマ生成法に係り、 特にカスプ断面ピンチ により高温、 高密度プラズマを生成する方法に関するものである。 本発 明は、 高温 ·高密度プラズマ源、 紫外から X線領域の波長の高輝度光源 あるいはレーザー、 強力中性子源、 核融合装置等に利用できる。 背景技術  The present invention relates to a high-temperature, high-density plasma generation method, and more particularly to a method of generating high-temperature, high-density plasma by pinching a cusp cross section. The present invention can be used for high-temperature and high-density plasma sources, high-intensity light sources with wavelengths in the ultraviolet to X-ray range, lasers, strong neutron sources, and fusion devices. Background art
放電により高温高密度プラズマを生成する方法としては、 ピンチ現象 を利用するものが知られている。 ピンチ現象には、 大別して外部磁場ピ ンチであるため生成プラズマ密度の上限が 1 0 1 7 c m— 3程度であるテ 一ターピンチ (あるいは無電極放電) と自己磁場ピンチであるため超高 密度プラズマの生成が可能な Zピンチ (あるいは電極放電) がある。 本 発明はこの Zピンチの一種に属するものである。 Zピンチ放電で、 高温 高密度プラズマを生成することは可能であるが、 生成プラズマは極めて 不安定である。 有限ラーマ一半径効果、 密度分布効果等の安定化効果は 存在するが、 'これらプラズマに内在する安定化効果は弱く、 Zピンチプ ラズマ柱を十分安定化することは出来ない。 そのため、 Zピンチの応用 は持続時間が短くても可能な場合に限られ、 核融合炉心プラズマの生成 等長時間の保持を必要とする課題への応用は困難と考えられてきた。 各 種の Zピンチを用いたこれ迄の応用としては、 高温高密度プラズマ源、 強力な紫^光、 X線などの各種高輝度光源、短波長レーザーの放電励起、 中性子その他荷電粒子源等がある。 高輝度 X線源のためには、 これまで ガスパフ Zピンチ、 プラズマフォーカス、 多重細線 (W i r e - a r r a y) Zピンチ等が用いられてきた。 また一様な高温プラズマの生成が 必要な X線レーザーの放電励起には、毛細管 Zピンチが用いられている。 毛細管 Zピンチにおいては、 放電管として毛細管が用いられており、 管 壁の存在及びそれに伴う密度分布による安定化効果で、 X線レーザー励 起に必要な程度に一様な数 1 00 e Vのプラズマを生成することが可能 である。 じかし、 管壁の損傷が激しいという欠点を持っている。 更に Z ピンチを用いては、 数 e Vを超える高温の核反応プラズマも生成され ており、 主にプラズマフォーカス装置を用いた強力中性子源の研究も行 われてきた。 As a method of generating high-temperature and high-density plasma by electric discharge, a method utilizing a pinch phenomenon is known. The pinch phenomenon, roughly the upper limit of the generated plasma density for an external magnetic field peak Lynch 1 0 1 7 cm- 3 about a is te one Tapinchi (or electrodeless discharge) and ultra-high density plasma because it is self-field pinch There is a Z-pinch (or electrode discharge) that can generate an electric field. The present invention belongs to this kind of Z pinch. Although high-temperature, high-density plasma can be generated by Z-pinch discharge, the generated plasma is extremely unstable. Although there are stabilizing effects such as the finite llama one-radius effect and the density distribution effect, 'the stabilizing effects inherent in these plasmas are weak, and the Z-pinch plasma column cannot be sufficiently stabilized. Therefore, the application of Z-pinch is limited to the case where it is possible even if the duration is short, and it has been considered difficult to apply it to tasks that require long-term retention such as generation of fusion core plasma. Previous applications using various types of Z-pinch include high-temperature, high-density plasma sources, various types of high-intensity light sources such as strong violet light and X-rays, discharge excitation of short-wavelength lasers, neutrons, and other charged particle sources. is there. For high-brightness X-ray sources, Gaspuff Z-pinch, plasma focus, multi-wire (Wire-array) Z-pinch, etc. have been used. Capillary Z-pinch is used for discharge excitation of X-ray laser, which needs to generate uniform high-temperature plasma. Capillary tube In the Z-pinch, a capillary tube is used as a discharge tube, and because of the stabilization effect due to the existence of the tube wall and the accompanying density distribution, a uniform number of 100 eV required for X-ray laser excitation is obtained. It is possible to generate a plasma. It has the disadvantage of severe damage to the tube wall. In addition, high-temperature nuclear reaction plasmas exceeding several eV have been generated using the Z-pinch, and research on intense neutron sources mainly using plasma focus devices has been conducted.
本発明に関連する放電方式としては、 2組の同軸ガンあるいはプラズ マフォーカス装置を向かい合わせに配置し、生成、加速したプラズマを、 2組の装置の中間で衝突させ、 スピンドルカスプ状のプラズマを生成す ることが提案されている (J A, H. L e e e t . a l ., P l a s m a P h y s ., V o l . 20, 1 0 2 5— 1 0 3 8 ( 1 9 7 8))。 しか し、 この配位で放電電流を増加させると、 中心電極の前方に強いピンチ、 即ちプラズマフォーカスが発生し、 そこで大部分のエネルギーが散逸さ れる。 このため、 同軸電極を持つ 2つの装置の中間で生成されるスピン ドルカスプ状プラズマに供給しうるエネルギーには上限があり、 生成可 能なプラズマの温度、 密度にも上限がある。 Zピンチの不安定性は、 プ ラズマ柱の断面が円形であることに起因している。 そのため、 幾何学的 形状による安定化法、 その例として、 プラズマ断面を楕円あるいはシー ト状にした Zピンチが提案されている (T. M i y a mo t o, J . P h y s . S o c . J a p a n, V o l . 6 8, 1 2 3 8 - 1 2 5 8 ( 1 9 9 9))。  As a discharge method related to the present invention, two sets of coaxial guns or plasma focus devices are arranged to face each other, and the generated and accelerated plasma is collided in the middle of the two sets of devices, and a spindle cusp-shaped plasma is generated. It has been proposed to generate them (JA, H. Leeet. Al., Plasma Phys., Vol. 20, 1025—1038 (19778)). However, increasing the discharge current in this configuration creates a strong pinch in front of the center electrode, a plasma focus, where most of the energy is dissipated. For this reason, there is an upper limit on the energy that can be supplied to the spindle cusp-shaped plasma generated between two devices with coaxial electrodes, and there is also an upper limit on the temperature and density of the plasma that can be generated. The instability of the Z pinch is due to the circular cross section of the plasma column. For this reason, a stabilization method using a geometric shape has been proposed, for example, a Z-pinch in which the plasma cross section is elliptical or sheet-shaped (T. Miyamo to, J. Phys. Soc. Japan , Vol. 68, 12 38-12 25 8 (199 9)).
本発明は、 高温高密度プラズマ生成が可能である Zピンチの特徴を損 なうことなく、 より広い範囲の応用を可能とするため、 生成プラズマの 不安定性を抑制し、 一様な高温高密度プラズマを長時間持続させる課題 を解決することにある。 発明の開示 The present invention impairs the features of Z-pinch, which can generate high-temperature, high-density plasma. In order to make a wider range of applications possible without any inconvenience, the object is to suppress the instability of the generated plasma and solve the problem of maintaining a uniform high-temperature and high-density plasma for a long time. Disclosure of the invention
本発明は大電流放電により高温高密度プラズマを生成すると共に、 Z ピンチプラズマの不安定性を、 その幾何学的形状により安定化しようと するものである。  The present invention seeks to generate high-temperature and high-density plasma by large-current discharge and to stabilize the instability of Z-pinch plasma by its geometric shape.
第 1の発明の要旨は、 放電により高温高密度のプラズマを生成する方 法において、 第 1の陽極板の周囲に絶縁物を介して陰極を配置した第 1 のシート Zピンチ生成装置と、 前記陰極を貫通するように絶縁物を介し 第 1のシート Zピンチ生成装置と対向するように第 2の陽極板を配置し た第 2のシート Zピンチ生成装置を備え、 前記第 1のシート Zピンチ生 成装置と前記第 2のシート Zピンチ生成装置の向かい合った部分をガス を満たした気密容器となるようにした装置により、 前記第 1のシート Z ピンチ生成装置からのプラズマと前記第 2のシート Zピンチ生成装置か らのプラズマを衝突、 合体させて高温高密度のカスプ断面のピンチブラ ズマ柱を生成することを特徴とするカスプ断面ピンチによる高温高密度 プラズマ生成法にある。  The gist of the first invention is a method of generating high-temperature, high-density plasma by discharging, comprising: a first sheet Z-pinch generation device in which a cathode is arranged around a first anode plate via an insulator; A second sheet Z pinch generator in which a second anode plate is disposed so as to face the first sheet Z pinch generator via an insulator so as to penetrate the cathode, and wherein the first sheet Z pinch is provided. By using a device in which a portion facing the generation device and the second sheet Z-pinch generation device is an airtight container filled with gas, the plasma from the first sheet Z-pinch generation device and the second sheet are generated. A high-temperature, high-density plasma generation method using a cusp cross-section pinch is characterized by generating a high-temperature, high-density pinch plasma column having a cusp cross-section by colliding and merging plasma from a Z-pinch generation device.
第 2の発明の要旨は、 前記生成されたカスプ断面のピンチプラズマ柱 の両端における、 前記第 1の陽極板および前記第 2の陽極板の両側面に 導体板を取り付けることにより、 線力スプ部に生じるプラズマ柱の長さ を短縮させようとする磁気力を支え、 且つ軸近傍のプラズマが軸方向へ 流出するのを妨げるようにしてプラズマ柱の崩壌を遅らせることを特徴 とする請求の範囲第 1項記載のカスプ断面ピンチによる高温高密度ブラ ズマ生成法にある。 第 3の発明の要旨は、 放電により高温高密度のプラズマを生成する方 法において、 正電極板の周囲に絶縁物を介して接地電極を配置したシー ト Zピンチ生成装置と、 負電極の周囲に絶縁物を介して接地電極を配置 したシート Zピンチ生成装置とを、 生成しようとするプラズマ柱の中心 軸の周りに交互に 9 0度づっずらせて 4組向かい合わせに配置し、 前記 4組のシート Zピンチ生成装置が向かい合った部分をガスで満たした気 密容器となるようにした装置により、 前記 4組のシート Zピンチ生成装 置からのプラズマを生成しようとするプラズマ柱の中心軸近傍で衝突、 合体させて、 高温高密度のカスプ断面のビンチプラズマ柱を生成するこ とを特徴とするカスプ断面ピンチによる高温高密度プラズマ生成法にあ る。 ' The gist of the second invention is that by attaching a conductor plate to both sides of the first anode plate and the second anode plate at both ends of the pinch plasma column having the generated cusp cross section, Claims characterized by supporting a magnetic force for shortening the length of the plasma column generated at the same time, and delaying the collapse of the plasma column so as to prevent the plasma near the axis from flowing out in the axial direction. Item 1 is a method for generating high-temperature, high-density plasma by pinching a cusp section. The gist of the third invention is that in a method of generating high-temperature and high-density plasma by discharge, a sheet Z-pinch generating device in which a ground electrode is arranged around a positive electrode plate via an insulator, and a negative electrode is formed around the negative electrode. And a sheet Z pinch generator with a ground electrode placed through an insulator at 90 degrees alternately around the center axis of the plasma column to be generated, and four sets are placed facing each other. Near the center axis of the plasma column that is to generate plasma from the four sets of sheet Z pinch generating devices by using a device in which the sheet Z pinch generating device of the four sets becomes an airtight container filled with gas. A high-temperature, high-density plasma generation method using a cusp cross-section pinch is characterized by generating a high-temperature, high-density cusp cross-section pinch plasma column by collision and coalescence. '
第 4の発明の要旨は、 前記生成されたカスプ断面を持つプラズマ柱の 両端における正電極、 負電極の両側面において、 前記向かい合った 2つ の正電極および向かい合った負電極に導体板を取り付けることにより、 線カスプ部に生じるプラズマ柱の長さを短縮させようとする磁気力を支 え、 且つ軸近傍のプラズマが軸方向へ流出するのを妨げるようにしてプ ラズマ柱の崩壊を遅らせると共に、 プラズマからの各種放射を外部に導 くようにすることを特徴とする請求の範囲第 3項記載のカスプ断面ピン チによる高温高密度プラズマ生成法にある。  The gist of the fourth invention is that a conductor plate is attached to the two opposite positive electrodes and the opposite negative electrode on both sides of the positive electrode and the negative electrode at both ends of the plasma column having the generated cusp cross section. This supports the magnetic force to reduce the length of the plasma column generated in the line cusp, and prevents the plasma near the axis from flowing out in the axial direction to delay the collapse of the plasma column. 4. A high-temperature, high-density plasma generation method using a cusp-section pinch according to claim 3, wherein various kinds of radiation from the plasma are guided to the outside.
第 5の発明の要旨は、 前記請求の範囲第 1項あるいは第 3項のカスプ 断面ピンチ生成装置を閉じた曲線状として、 トーラス状のカスプ断面ピ ンチプラズマ柱を生成することを特徴とする高温高密度プラズマ生成法 にある。  The gist of the fifth invention is that the cusp cross-section pinch generating device according to claim 1 or 3 is closed and a torus-shaped cusp cross-section pinch plasma column is generated. High-density plasma generation method.
第 6の発明の要旨は、 請求の範囲第 1項において、 陽極、 陰極を隔て ている絶縁部の耐圧を増加させ、 絶縁物表面での絶縁破壌、 放電が発生 しないようにすると共に、 陰極、 陽極間の放電部を接近させ、 陽極と陰 極放電部間で放電するか、 あるいは予備電離、 予備加熱を行った後、 陽 極と陰極間で放電を発生させ、 軸近傍にカスプ断面のピンチプラズマ柱 を生成することを特徴とするカスプ断面ピンチによる高温高密度プラズ マ生成法にある。 The gist of the sixth invention is that, in claim 1, the breakdown voltage of the insulating part separating the anode and the cathode is increased to prevent insulation rupture and discharge from occurring on the surface of the insulator, Close the discharge area between the anode and anode Discharge between the pole discharge parts, or after pre-ionization and pre-heating, discharge is generated between the positive electrode and the negative electrode, and a cusp cross section characterized by the generation of a pinch plasma column with a cusp cross section near the axis There is a high-temperature, high-density plasma generation method by pinching.
第 7の発明の要旨は、 請求の範囲第 3項において、 接地電極を絶縁物 で覆い、 正電極、 負電極を隔てる絶縁部の耐圧を増加させ、 絶縁物表面 での絶縁破壊、 放電が発生しないようにすると共に、 正電極、 負電極放 電部を接近させ、 正電極と負電極放電部間で放電するか、 あるいは予備 電離、 予備加熱を行った後、 陽極と陰極先端間で放電を発生させ、 軸近 傍にカスプ断面のピンチプラズマ柱を生成することを特徴とするカスプ 断面ピンチによる高温高密度プラズマ生成法にある。  The gist of the seventh invention is that, in claim 3, the ground electrode is covered with an insulator, the withstand voltage of an insulating portion separating a positive electrode and a negative electrode is increased, and dielectric breakdown and discharge occur on the surface of the insulator. And discharge between the positive and negative electrode discharge sections, and discharge between the positive and negative electrode discharge sections, or pre-ionization and pre-heating, then discharge between the anode and cathode tips. A high-temperature, high-density plasma generation method using a cusp cross-section pinch is characterized by generating a pinch plasma column having a cusp cross-section near the axis.
第 8の発明の要旨は、 請求の範囲第 5項の前記トーラス状のカスプ断 面ピンチプラズマ柱において、 誘導起電力によりこのプラズマ柱の軸に 沿う電流あるいはトーラス状 Zピンチを重畳し、 トーラスの軸に関する 方位角方向の磁場成分を生成することを特徴とするカスプ断面 Zピンチ による高温高密度プラズマ生成法にある。  The gist of the eighth invention is that, in the toroidal cusp cut surface pinch plasma column according to claim 5, a current along the axis of the plasma column or a torus Z pinch is superimposed by an induced electromotive force to form a torus. A high-temperature, high-density plasma generation method using a cusp cross-section Z pinch, which generates a magnetic field component in an azimuthal direction about an axis.
第 9の発明の要旨は, 請求の範囲第 1項, 第 3項, 第 6項, 第 7項の 直線状カスプ断面ピンチプラズマ柱において, このプラズマ柱の軸に沿 う電流あるいは Zピンチを重畳し, プラズマ柱の軸に関する方位角方向 の磁場を生成することを特徴とする直線状力スプ断面 Zピンチによる高 温高密度プラズマ生成法である。 図面の簡単な説明  The gist of the ninth invention is to superimpose a current or a Z-pinch along the axis of the plasma column on the pinch plasma column having a straight cusp cross section according to Claims 1, 3, 6, and 7. The method is a high-temperature, high-density plasma generation method using a linear force-sp cross section Z pinch, which generates a magnetic field in the azimuthal direction with respect to the axis of the plasma column. Brief Description of Drawings
第 1図は本発明で使用するシート Zピンチ生成装置の概念を示した正面 図 Fig. 1 is a front view showing the concept of the sheet Z-pinch generating device used in the present invention.
第 2図は第 1図の右側面図 第 3図は第 1図の中央横断面を上から見た上面図 Fig. 2 is a right side view of Fig. 1. Fig. 3 is a top view of the center cross section of Fig. 1 as viewed from above.
第 4図は本発明による実施例 1を示す図 FIG. 4 is a diagram showing Embodiment 1 according to the present invention.
第 5図は本発明による実施例 2を示す図 FIG. 5 is a diagram showing a second embodiment according to the present invention.
第 6図は本発明による実施例 3を示す図 FIG. 6 is a view showing a third embodiment according to the present invention.
第 7図は本発明による実施例 4を示す図 FIG. 7 shows a fourth embodiment according to the present invention.
第 8図は本発明による実施例 4におけるシート Zピンチの生成を示した 図 FIG. 8 is a diagram showing generation of a sheet Z pinch in Embodiment 4 according to the present invention.
第 9図は本発明による実施例 5を示す図 FIG. 9 is a diagram showing a fifth embodiment according to the present invention.
第 1 0図は本発明による実施例 6を示す図 FIG. 10 shows a sixth embodiment according to the present invention.
第 1 1図は本発明による実施例 7を示す図 FIG. 11 shows a seventh embodiment according to the present invention.
第 1 2図は本発明による実施例 6、 7で使用される予備電離電源あるい は予備加熱電源を示す図 FIG. 12 is a diagram showing a preionization power supply or a preheating power supply used in Embodiments 6 and 7 according to the present invention.
第 1 3図は本発明による実施例 8のカスプ断面 Zピンチを示す図 第 1 4図は本発明による実施例 9を示す図 発明を実施するための最良の形態 FIG. 13 is a view showing a Z-pinch of the cusp cross section of the eighth embodiment according to the present invention. FIG. 14 is a view showing a ninth embodiment according to the present invention.
以下、 本発明に係るカスプ断面ピンチによる高温高密度プラズマ生成 法の実施の形態について詳細に説明する。  Hereinafter, an embodiment of a high-temperature high-density plasma generation method using a cusp section pinch according to the present invention will be described in detail.
まず、 本発明で使用するシート Zピンチ生成装置の概念を第 1図から第 3図に示す。 第 1図は正面図、 第 2図は右側面図、 第 3図は第 1図の中 央横断面を上から見た上面図である。 First, the concept of the sheet Z pinch generating device used in the present invention is shown in FIGS. 1 is a front view, FIG. 2 is a right side view, and FIG. 3 is a top view of a central cross section of FIG. 1 as viewed from above.
第 3図に示すコンデンサー 4には予め電荷が蓄積され、 このコンデン サー 4の電圧がスィッチ 5 (ギャップスィッチ、 或いは大電力半導体ス イッチなど) を介して陽極 (正電極) 1と陰極 (負電極) 2の間に印加 されると、 放電は、 まず絶縁物 3で隔てられた陽極 1と陰極 2の間にお いて、 絶縁物 3の表面に沿って始まる。 次いで、 絶縁物 3の表面に生成 されたプラズマは、コンデンサー放電による電流の増加と共に加熱され、 磁気圧により右方向に加速される。 点線 7は、 時間の経過と共に左から 右へ移動する電流の経路を概念的に示している。 これはまた、 運動する プラズマ層の形状も概念的に示しており、 最終的に陽極前方にシート状 のプラズマ 6が生成される。 符号 8はプラズマシート 6周囲の磁力線を 示している。 なお、 電極、 絶縁物で囲まれプラズマ層が形成される領域 は放電室であり、 真空にした後適当な種類、 および適当な圧力のガスが 充填されている。 次に実施例 1から実施例 9を例にとって、 発明の実施 の形態について具体的に説明していく。 Charge is stored in the capacitor 4 shown in FIG. 3 in advance, and the voltage of the capacitor 4 is applied to the anode (positive electrode) 1 and the cathode (negative electrode) via a switch 5 (gap switch or high power semiconductor switch, etc.). When applied between 2, the discharge begins along the surface of insulator 3, first between anode 1 and cathode 2 separated by insulator 3. Next, it is formed on the surface of insulator 3 The generated plasma is heated as the current increases due to the discharge of the capacitor, and is accelerated rightward by the magnetic pressure. Dotted line 7 conceptually illustrates the current path moving from left to right over time. This also conceptually shows the shape of the moving plasma layer, which eventually produces a sheet-like plasma 6 in front of the anode. Reference numeral 8 indicates the magnetic field lines around the plasma sheet 6. The region surrounded by electrodes and insulators where a plasma layer is formed is a discharge chamber, which is filled with a gas of an appropriate type and an appropriate pressure after being evacuated. Next, embodiments of the present invention will be specifically described with reference to Examples 1 to 9.
実施例 1 Example 1
第 1図から第 3図に示したシート Zピンチ生成装置を 2組用いた本発 明に係る実施例 1を、 第 4図に示す。 第 4図に示した装置においても第 3図に示されているのと同様に陽極 9 a、 陰極 1 0間、 及ぴ陽極 9 b、 陰極 1 0間に、 スィッチ 1 3 a、 1 3 bを介してコンデンサー 1 2 a、 1 2 bの電圧を印加して、 絶縁物 1 1 a、 1 1 bの表面で同時に沿面放 電を発生させる。 高抵抗 1 4 a、 1 4 bは、 スィッチ 1 3 a、 1 3 bを 閉じる前に浮遊している陽極 9 a、 9 bに電位を与えるためのものであ る。 更に、'電流を増加させることにより、 生成しょうとしているプラズ マ柱の中心軸 (これを z軸とする) の方向に生成プラズマを加速し、 反 対側から来るプラズマと衝突、 合体させ z軸近傍に圧縮する。 その後、 複雑な過渡過程を経て、 電流経路 1 5 bで出来る双曲面を表面とする力 スプ状断面を持つプラズマ柱 1 5 aが最終的に生成される。 このプラズ マ柱 1 5 aの z軸上での磁場は零であり、 z軸近傍での磁場も弱い。 そ のため、 z軸近傍には z軸に沿って一様なプラズマを生成することが出 来る。  FIG. 4 shows Example 1 according to the present invention using two sets of the sheet Z pinch generating devices shown in FIGS. 1 to 3. In the apparatus shown in FIG. 4, switches 13a and 13b are provided between the anode 9a and the cathode 10 and between the anode 9b and the cathode 10 in the same manner as shown in FIG. The voltage of the capacitors 12a and 12b is applied through the, and creeping discharge is generated simultaneously on the surfaces of the insulators 11a and 11b. The high resistances 14a and 14b are for applying a potential to the floating anodes 9a and 9b before closing the switches 13a and 13b. Furthermore, by increasing the current, the generated plasma is accelerated in the direction of the center axis (this is the z-axis) of the plasma column that is to be generated, and collides with the plasma coming from the opposite side to unite with the z-axis. Compress near. Then, through a complicated transient process, a plasma column 15a with a force sp-shaped cross section with a hyperboloid formed by the current path 15b is finally generated. The magnetic field on the z-axis of this plasma column 15a is zero, and the magnetic field near the z-axis is weak. Therefore, a uniform plasma can be generated near the z-axis along the z-axis.
本実施例 1によれば、 2組のプラズマフォーカス装置を用いてスピン ドルカスプを生成する場合のように、 陽極近傍での不安定性によるエネ ルギー損失を伴うことなく、 放電電流を増加させることができる。 線力 スプを通るプラズマの損失や熱伝導損失は存在するが、 電流を増加させ ることにより、 目的のために必要な時間のあいだの損失を十分小さくす ることが可能である。 本実施例 1の第 4図の装置においては、 陽極 9 a および 9 b、 陰極 1 0を隔てている絶縁物面 1 1 aおよび 1 1 bを、 ピ ンチプラズマからの放射の陰になる位置に置き、 その損傷を減らすこと が可能である。 According to the first embodiment, spinning is performed using two sets of plasma focus devices. The discharge current can be increased without incurring energy loss due to instability near the anode as in the case of generating dolcusp. Although there is a loss of plasma and heat conduction through the linear force sp, increasing the current can reduce the loss sufficiently for the time required for the purpose. In the apparatus shown in Fig. 4 of the first embodiment, the insulator surfaces 11a and 11b separating the anodes 9a and 9b and the cathode 10 are positioned at positions where the radiation from the pinch plasma is shaded. To reduce the damage.
実施例 2 Example 2
第 5図は、 正の中心電極と負の中心電極が交互になるように、 生成し ようとするプラズマ柱の周囲に 1 6 a、 1 6 b、 1 6 c、 1 6 dと 4組 配置し (1 6 a、 1 6 cは正の中心電極、 1 6 b、 1 6 dは負の中心電 極)、 これらの電極にそれぞれ正、負の電圧を印加、 放電してプラズマ柱 を生成するように構成したカスプ断面ピンチによる高温高密度プラズマ 生成装置の一実施形態を示すもので、 プラズマ柱の断面及び放電回路は 概念的に示してある。 それぞれの電極は原理的には第 1図から第 3図に 示したシート Zピンチ装置と同じ構成である。  Fig. 5 shows four arrangements of 16a, 16b, 16c, 16d around the plasma column to be generated so that the positive and negative center electrodes alternate. (16a and 16c are positive center electrodes, 16b and 16d are negative center electrodes), and positive and negative voltages are applied to these electrodes, respectively, and discharged to generate a plasma column. FIG. 1 shows an embodiment of a high-temperature and high-density plasma generation apparatus using a cusp cross-section pinch configured in such a manner that a cross section of a plasma column and a discharge circuit are conceptually shown. Each electrode has the same configuration as the sheet Z pinch device shown in FIGS. 1 to 3 in principle.
第 5図において、 1 6 a、 1 6 cは正電極、 1 6 b、 1 6 dは負電極 であり、 絶縁物 1 8 a、 1 8 b、 1 8 c、 1 8 dにより、 接地電極 1 7 と絶縁されている。 正電極 1 6 a、 1 6 cは、 それぞれスィツチ 2 0 a、 20 cを通して正電圧 Vに充電したコンデンサー 1 9 a、 1 9 cに、 ま た負電極 1 6 b、 1 6 dはそれぞれスィッチ 20 b、 20 dを通して負 電圧一 Vに充電したコンデンサー 1 9 b、 1 9 dに接続されている。 高 抵抗 2 l a、 2 1 b、 2 1 c、 2 1 dは、 放電前における正負電極の電 位を接地電極の電位としておくためのものである。電極 1 6 a、 I 6 b、 1 6 c、 1 6 d、 絶縁物 1 8 a、 1 8 b、 1 8 c、 1 8 dで囲まれた符 号 2 3の領域は放電室であり、 真空にした後適当な種類および適当な圧 力のガスを充填している。この状態で 4つのスィツチを同時に閉じて正、 負電極に電圧を印加すると、 それぞれ接地電極 1 7との間で、 絶縁物 1 8 a、 1 8 b、 1 8 c、 1 8 dの表面に沿って沿面放電が発生する。 発 生したプラズマ層は、 電流の増加と共に高温となり、 プラズマ層を横切 つて形成される磁気圧により、 z軸の方向に加速される。 8つの方向か ら運動してくるプラズマ層は、 途中で接地電極 1 7から離れ、 正電極と 負電極間の放電となった後、 z軸近傍に集まり、 プラズマ柱が生成され る。 動的な過渡過程が終わり、 準平衡状態に到達したとき、 z軸近傍に は点線 2 2 bで示される電流線を等圧面とするカスプ断面を持つプラズ マ柱 2 2 aが生成される。 ( z軸上で磁場は零であるので、その近傍の磁 場が弱い領域において、 z軸に沿う一様なプラズマを生成することが出 来る。 In Fig. 5, 16a and 16c are positive electrodes, 16b and 16d are negative electrodes, and ground electrodes are formed by insulators 18a, 18b, 18c, and 18d. Insulated from 17 Positive electrodes 16a and 16c are connected to capacitors 19a and 19c charged to positive voltage V through switches 20a and 20c, respectively, and negative electrodes 16b and 16d are switches respectively. It is connected to capacitors 19b and 19d charged to a negative voltage of 1 V through 20b and 20d. The high resistances 2 la, 21 b, 21 c, and 21 d are for keeping the potential of the positive and negative electrodes before the discharge as the potential of the ground electrode. Electrode 16a, I6b, 16c, 16d, insulator 18a, 18b, 18c, 18d The area of No. 23 is a discharge chamber, which is filled with gas of an appropriate type and an appropriate pressure after being evacuated. In this state, when the four switches are closed at the same time and a voltage is applied to the positive and negative electrodes, the surface of the insulators 18a, 18b, 18c, and 18d is connected to the ground electrode 17 respectively. A creeping discharge occurs along. The generated plasma layer rises in temperature as the current increases, and is accelerated in the direction of the z-axis by the magnetic pressure formed across the plasma layer. The plasma layers moving from the eight directions separate from the ground electrode 17 on the way, generate a discharge between the positive electrode and the negative electrode, and then gather near the z-axis to generate a plasma column. When the dynamic transient process ends and the quasi-equilibrium state is reached, a plasma column 22 a having a cusp cross-section with the current line indicated by the dotted line 22 b as the isobar is generated near the z-axis. (Because the magnetic field is zero on the z-axis, a uniform plasma along the z-axis can be generated in the vicinity of the region where the magnetic field is weak.
第 5図に示した実施例では第 1図から第 3図に示したシート Zピンチ 生成装置を 4組用い、 プラズマ柱の軸に垂直な面における 4つの象限の プラズマ状態が同一となる構造にした装置としている。 本実施例におい て負電極を接地し、 接地電極を中間電位とすることもできる。 また接地 電極を絶縁物とすることにより、 4つの象限が同等な第 4図の装置とで きる。 また第 1図から第 3図に示したシート Zピンチ生成装置の装置を 4組以上用い、 線カスプを 4つ以上持つカスプ断面ピンチを生成するこ とも可能である。  In the embodiment shown in FIG. 5, four sets of the sheet Z pinch generators shown in FIGS. 1 to 3 are used, and the plasma state in the four quadrants on the plane perpendicular to the axis of the plasma column is the same. Device. In this embodiment, the negative electrode can be grounded, and the ground electrode can be set at the intermediate potential. Also, by using an insulating material for the ground electrode, the device shown in FIG. 4 can be obtained in which four quadrants are equivalent. It is also possible to generate a cusp cross section pinch having four or more line cusps by using four or more sets of the sheet Z pinch generating apparatus shown in FIGS. 1 to 3.
実施例 1 び 2の装置は、 プラズマ柱の軸方向に十分長いとき、 両端近 傍を除いてカスプ断面ピンチを生成することができる。 しかし、 放電容 器が陰極を兼ねている実施例 1においては、 陽極近傍、 実施例 2におい ては陽極及び陰極近傍の線カスプ及ぴシート Zピンチ部の両端において 磁場が閉じる。 それ故、 この部分で z軸方向の長さがプラズマの熱速度 程度で短縮する。 また Z軸近傍の磁場の弱い領域のプラズマは軸方向に 流出する。 高輝度 X線源、 X線レーザーの放電励起等を目的とする多く の応用課題において、 このプラズマ柱の短縮やプラズマの流失は、 必要 な持続時間と比較して十分遅くできる。 しかし、 プラズマ柱の崩壊を更 に遅らせる必要があるときには、 何らかの方法が必要となる。 The apparatuses of Examples 1 and 2 can generate a cusp cross-section pinch except for near both ends when the length is sufficiently long in the axial direction of the plasma column. However, in Example 1 in which the discharge vessel also serves as the cathode, the magnetic field is closed near the anode, and in Example 2, the line cusp near the anode and the cathode and both ends of the sheet Z-pinch portion. Therefore, in this part, the length in the z-axis direction is the thermal velocity of the plasma About to shorten. The plasma in the weak magnetic field near the Z axis flows out in the axial direction. In many applications, such as high-intensity X-ray sources and discharge excitation of X-ray lasers, the shortening of the plasma column and the loss of the plasma can be sufficiently slow compared to the required duration. However, when it is necessary to further delay the collapse of the plasma column, some method is needed.
実施例 3 Example 3
上記のように、 プラズマ柱の長さは有限であり、 両端部の陽極および 陰極に近い線カスプあるいはシート Zピンチ領域において磁力線が閉じ るため、 z方向の長さがプラズマの熱速度程度で短縮する。 また磁場が 弱い軸近傍のプラズマは z方向に流出する。  As described above, the length of the plasma column is finite, and the lines of magnetic force close in the line cusp or sheet Z pinch area near the anode and cathode at both ends, so that the length in the z direction is reduced by about the thermal velocity of the plasma I do. And the plasma near the axis where the magnetic field is weak flows out in the z direction.
第 6図に示した実施例 3はこの問題を解決したもので、 カスプ断面ピ ンチ電極の両端に、 導体板を設置し、 カスプ断面ピンチプラズマ柱の崩 壌を遅らせる方法に関係している。 第 6図は、 実施例 1の装置 (第 4図) において、 更に導体板 2 4 a、 2 4 bを設け、 この導体板 2 4 a、 2 4 bで陽極近傍の線カスプ、 シート Zピンチ部における磁気圧を支え、 導 体板 2 4 a、 2 4 bからプラズマが剥離するまでの間、 収縮を防ぐ方法 を与えている。 陰極 1 0が放電容器を兼ねている第 6図の実施例におい ては、 上下の陰極近傍の線カスプ及ぴシート Zピンチが扇状につながる 形で、 カスプ断面ピンチプラズマ柱を囲むように生成できるので、 軸近 傍のプラズマの流出は抑制される。  Embodiment 3 shown in FIG. 6 solves this problem and relates to a method of delaying the collapse of the cusp-section pinch plasma column by installing conductor plates at both ends of the cusp-section pinch electrode. FIG. 6 shows the apparatus of Embodiment 1 (FIG. 4) further provided with conductor plates 24a and 24b, and the conductor plates 24a and 24b provided a wire cusp near the anode and a sheet Z pinch. A method is provided to support the magnetic pressure in the part and prevent shrinkage until the plasma separates from the conductor plates 24a and 24b. In the embodiment of FIG. 6 in which the cathode 10 also serves as a discharge vessel, the line cusp and the sheet Z near the upper and lower cathodes can be generated so as to surround the pinch plasma column in the form of a fan-shaped connection of the Z pinch. Therefore, the outflow of plasma near the axis is suppressed.
実施例 4 Example 4
第 7図に示した実施例 4も第 6図の実施例 3と同様、 プラズマ柱の崩 壊に関する上記問題を解決したものである。 第 7図は、 実施例 2 (第 5 図) の装置において、 陽極及び陰極の両端に、 導体板 2 5 a、 2 5 b , 2 6、 をそれぞれ接続した例を示しており、 実施例 3と同様にプラズマ 柱の両端に第 8図に示すような扇状のシート Zピンチが生成される。 ま た導体板の軸近傍の間隙 2 7あるいは穴 2 8により、 軸近傍のプラズマ と導体の相互作用を減らすと共に、 プラズマからの各種放射を外部に導 くことが出来る。 Embodiment 4 shown in FIG. 7 solves the above-mentioned problem relating to the collapse of the plasma column, similarly to Embodiment 3 shown in FIG. FIG. 7 shows an example in which conductor plates 25a, 25b, 26 are connected to both ends of an anode and a cathode in the apparatus of Example 2 (FIG. 5), respectively. Similarly, a fan-shaped sheet Z pinch as shown in Fig. 8 is generated at both ends of the plasma column. Ma The gap 27 or hole 28 near the axis of the conductor plate reduces the interaction between the plasma near the axis and the conductor, and can guide various radiations from the plasma to the outside.
第 7図の実施例 4においては、 2つの正電極、 2つの負電極の両端に 導体板を接続することにより、 プラズマ柱の崩壌を遅らせると共に、 軸 方向へのプラズマの流失を遅らせることができる。  In Example 4 in FIG. 7, by connecting a conductor plate to both ends of two positive electrodes and two negative electrodes, it is possible to delay the collapse of the plasma column and the loss of plasma in the axial direction. it can.
実施例 5 ' Example 5 '
プラズマ柱の端の影響をなくすもう一つの方法は、 第 9図のように、 プラズマ柱の軸を、 直線状ではなく、 円周状、 レーストラック状あるい はその他の閉じた曲線状とすることである。  Another way to eliminate the effects of the end of the plasma column is to make the axis of the plasma column not circular, but circumferential, racetrack or other closed curve, as shown in Figure 9. That is.
第 9図において、 2 9 a、 2 9 bは陽極、 30 a、 3 0 bは陰極、 3 l a、 3 1 b、 3 1 c、 3 I dは接地電極である。 3 2 a、 3 2 b、 3 2 c、 3 2 d、 3 2 e、 3 2 f 、 3 2 g、 3 2 hは絶縁物である。 3 3 はトーラス状のカスプ断面ピンチプラズマ柱で、 34は電流を示してい る。 第 9図においては, 簡単のために第 5図の電源回路 (コンデンサー 1 9 a〜 d, スィッチ 2 0 a〜d, 抵抗 2 2 a〜 d ) に相当する電源回 路の図示を省略している。  In FIG. 9, 29a and 29b are anodes, 30a and 30b are cathodes, 31a, 31b, 31c and 3Id are ground electrodes. 32 a, 32 b, 32 c, 32 d, 32 e, 32 f, 32 g, and 32 h are insulators. 33 is a torus-shaped pinch plasma column with a cusp cross section, and 34 is the current. In Fig. 9, for simplicity, the illustration of the power supply circuit corresponding to the power supply circuit in Fig. 5 (capacitors 19a-d, switches 20a-d, resistors 22a-d) is omitted. I have.
第 9図に示した実施例 5は、 実施例 2の陽極、 陰極、 接地電極、 絶縁 物などを閉じた曲線状にし、 直線状カスプ断面ピンチプラズマ柱をトー ラス状としたもので、 実施例 2に存在するプラズマ柱の端をなくするこ とができる。 実施例 1についても同様にトーラス状とすることが出来る 第 9図に示した本実施例 5は、 高温高密度プラズマ源、 高輝度 X線源、 強力中性子源等に用いることができる。 X線レーザーを放射させる場合 のように、 直線状の一様プラズマが要求されるときには、 レーストラッ ク状あるいはトーラスの一部に直線部をもうけ、 その直線カスプ断面 Z ピンチプラズマ部を利用することが出来る。 実施例 6 Example 5 shown in FIG. 9 is a modified example in which the anode, the cathode, the ground electrode, the insulator, etc. of Example 2 are made into a closed curve, and the pinch plasma column having a straight cusp cross section is made into a torus. The end of the plasma column existing in 2 can be eliminated. The first embodiment can be similarly formed into a torus shape. The fifth embodiment shown in FIG. 9 can be used for a high-temperature and high-density plasma source, a high-brightness X-ray source, a strong neutron source and the like. When a straight, uniform plasma is required, as in the case of X-ray laser emission, a straight section should be provided on the race track or on a part of the torus, and the straight cusp cross section should be used. Can be done. Example 6
実施例 1、 2においては、 シート Zピンチと関連させて説明してきた 力 必ずしもそれにとらわれるものではない。 絶縁物表面の沿面放電か ら放電を開始することは、 初期の動的過程の存在により、 比較的低速の 放電電源を用いることが可能で、 また一様な放電を生成し易いことや、 プラズマ柱生成時にプラズマに与えうるエネルギーの制御が可能になる 等の利点がある。 しかし、 適切なガス圧 (その質量数に応じた装置パラ メータを用いる) を選び、 必要に応じ予備電離、 予備加熱を行って、 陽 極と陰極間あるいは正電極と負電極間で一様な放電を発生させることが 可能であれば、 直接陽極と陰極の間の電極放電から開始することも可能 である。 その際、 高速電源を用いれば、 短時間でプラズマ柱に大きなェ ネルギーを与えることができ、 動的過程におけるエネルギー損失を減ら すことが可能である。またガス圧を低くすることにより電極を蒸発させ、 電極物質からなる金属プラズマを生成することも可能である。  In the first and second embodiments, the force described in relation to the sheet Z pinch is not necessarily limited to the force. Starting discharge from creeping discharge on the surface of an insulator can be achieved by using a relatively low-speed discharge power supply due to the existence of an initial dynamic process. There are advantages such as the ability to control the energy that can be given to the plasma during column formation. However, by selecting an appropriate gas pressure (using equipment parameters according to the mass number), performing preionization and preheating as necessary, a uniform gas pressure between the positive and negative electrodes or between the positive and negative electrodes is obtained. If a discharge can be generated, it is possible to start directly from the electrode discharge between the anode and the cathode. At that time, if a high-speed power supply is used, large energy can be given to the plasma column in a short time, and it is possible to reduce energy loss in the dynamic process. It is also possible to evaporate the electrode by lowering the gas pressure and generate metal plasma composed of the electrode material.
第 1 0図に示した実施例 6は、 実施例 1、 2などのカスプ断面ピンチ 装置におけるような沿面放電からではなく、 陽極 3 4 a、 3 4 b及び陰 極 3 5の放電部間の電極放電に変更するための方法を示したものである。  The embodiment 6 shown in FIG. 10 is not based on the creeping discharge as in the cusp-section pinch device of the embodiments 1 and 2, but between the discharge portions of the anodes 34a, 34b and the cathode 35. 9 shows a method for changing to electrode discharge.
この実施例 6は、 実施例 1、 3などのカスプ断面ピンチ装置を 2組そ なえたものにおいて、 陽極と陰極を隔てている絶縁物表面での沿面放電 を阻止するため沿面距離を増加させる等絶縁耐カを高める構造とすると 共に、 陽極放電部及び陰極放電部の間隔を狭め、 そこでの絶縁破壊電圧 を低くすることにより、 放電の開始を絶縁物表面での沿面放電から、 陽 極及ぴ陰極放電部間の電極間気中放電に変更し、 高温高密度のカスプ断 面のピンチプラズマ柱 4 1を生成することを特徴とするカスプ断面ピン チによるプラズマ生成法である。 また電極間放電に先立ち、 予備電離あ るいは予備加熱放電を施すことにより、 陽極及び陰極間により一様な放 電を発生させることができる。 In the sixth embodiment, two sets of cusp section pinching devices as in the first and third embodiments are used, and a creeping distance is increased to prevent a creeping discharge on an insulator surface separating an anode and a cathode. In addition to having a structure that enhances the dielectric strength, the distance between the anode and cathode discharge sections is reduced, and the breakdown voltage there is reduced, so that the discharge starts from the creeping discharge on the surface of the insulator to the anode and cathode. This is a plasma generation method using a cusp cross-section pinch characterized by generating a pinch plasma column 41 having a high-temperature, high-density cusp cross-section by changing to air discharge between electrodes between cathode discharge parts. Prior to the discharge between the electrodes, pre-ionization or pre-heating discharge is applied to make the discharge more uniform between the anode and cathode. Electricity can be generated.
第 1 0図に示したように、 陽極 34 a、 34 bおよび陰極 3 5の放電 部 (生成するプラズマ柱の近傍) においては、 絶縁破壊電圧を下げるた め電極間距離を小さく している。 同時に、 陽極 34 a、 34 b及ぴ陰極 3 5を隔てている絶縁物 3 6 a、 3 6 b内面の絶縁耐カを高めるため、 沿面距離を長くすると共に、 陽極及び陰極間の電気力線を遮るような構 造にしている。 第 3図の装置にこれらの変更を施すことにより、 放電の 開始を沿面放電から、 陽極と陰極間の電極放電に変更することが可能で ある。  As shown in FIG. 10, in the discharge portions of the anodes 34a and 34b and the cathode 35 (near the generated plasma column), the distance between the electrodes is reduced to reduce the breakdown voltage. At the same time, in order to increase the insulation resistance of the insulators 36a, 36b separating the anodes 34a, 34b and the cathode 35, the creepage distance is increased, and the lines of electric force between the anode and cathode are increased. The structure is designed to block the air. By making these changes to the apparatus shown in FIG. 3, it is possible to change the start of discharge from creeping discharge to electrode discharge between the anode and the cathode.
第 1 0図のコンデンサー 3 7 a、 3 7 b及ぴスィッチ 3 8 a、 3 8 b およぴ高抵抗 3 9 a、 3 9 bは、 前記第 4図の装置における 1 2 a、 1 2 b、 1 3 a、 1 3 b、 1 4 a、 1 4 bに対応した主放電回路である。 40 a、 4 O bは、 予備電離あるいは予備加熱用の電源であり、 その一 例は、 第 1 2図の点線で囲んで示したようなものである。 第 1 2図の予 備電離あるいは予備加熱電源は、 高周波電源 5 2、 パルス トランス 5 3 及ぴ正負電極間を直流的に切り離すためのコンデンサー 54からなつて いる。 パルス トランス 5 3の 1次側に、 主放電電源のスィッチの開閉に 影響を及ぼさない程度の高周波電流を外部から供給することにより、 主 放電に先立ち電極間に弱電離プラズマを発生させることができる。  The capacitors 37a, 37b and the switches 38a, 38b and the high resistances 39a, 39b of FIG. 10 are the same as those of the apparatus of FIG. It is a main discharge circuit corresponding to b, 13a, 13b, 14a, and 14b. Reference numerals 40a and 4Ob denote power sources for preionization or preheating, and an example thereof is as shown by a dotted line in FIG. The pre-ionization or pre-heating power source shown in FIG. 12 includes a high-frequency power source 52, a pulse transformer 53, and a condenser 54 for direct current separation between the positive and negative electrodes. By supplying a high frequency current to the primary side of the pulse transformer 53 that does not affect the switching of the main discharge power supply from the outside, weakly ionized plasma can be generated between the electrodes prior to the main discharge. .
実施例 7 Example 7
第 1 1図に示した実施例 7は、 放電の開始を実施例 2、 4、 5などの カスプ断面ピンチ装置におけるような沿面放電からではなく、 正電極 4 2 a、 4 2 c及び負電極 4 2 b、 4 2 dの放電部間の電極放電に変更す るための方法を示したものである。 接地電極 4 3と正電極及び負電極間 の放電を禁止するため、 正電極負電極を絶縁物 44 a、 44 b、 44 c、 44 dで接地電極 4 3から絶縁すると共に接地電極 4 3内面を L字状の 絶縁物 4 5 a、 4 5 b、 4 5 c、 4 5 dで覆っている。 同時に、 正電極 と負電極間の絶縁破壊電圧を下げるため、 正電極放電部と負電極放電部 間の距離を狭めている。 これらの変更により、 適当なガス圧の下で、 放 電の開始を沿面放電から、 陽極と陰極間の電極放電に変更することが可 能となる。 In the embodiment 7 shown in FIG. 11, the start of the discharge is not caused by the creeping discharge as in the cusp section pinch device of the embodiments 2, 4, 5 etc., but by the positive electrodes 42a, 42c and the negative electrode. It shows a method for changing to an electrode discharge between the discharge portions of 42b and 42d. To prevent discharge between the ground electrode 43 and the positive and negative electrodes, the positive and negative electrodes are insulated from the ground electrode 43 with insulators 44a, 44b, 44c, and 44d, and the inner surface of the ground electrode 43. The L-shape Covered with insulators 45a, 45b, 45c, 45d. At the same time, the distance between the positive electrode discharge part and the negative electrode discharge part is reduced to reduce the dielectric breakdown voltage between the positive and negative electrodes. With these changes, it becomes possible to change the start of discharge from creeping discharge to electrode discharge between the anode and the cathode under an appropriate gas pressure.
第 1 1図における Aと Bおよび D、 Cと Bおよび Dの間には、 第 1 2 図の高周波電源 5 2、 パルストランス 5 3及びコンデンサー 54からな る予備電離あるいは予備加熱電源が接続される。  Between A and B and D and between C and B and D in Fig. 11, a preionization or preheating power supply consisting of the high-frequency power supply 52, pulse transformer 53, and capacitor 54 shown in Fig. 12 is connected. You.
なお、 符号 4 6 a、 4 6 b、 46 c、 4 6 dはコンデンサ、 符号 4 7 a、 4 7 b、 4 7 c、 4 7 dはスィツチ、 符号 4 8 a、 4 8 b、 4 8 c、 4 8 dは高抵抗を示し、 第 5図に示したコンデンサ 1 9 a、 1 9 b、 1 9 c、 1 9 d、 スィッチ 20 a、 2 0 b、 2 0 c、 2 0 d、 高抵抗 2 1 a、 2 1 b、 2 1 c、 2 1 dと同様の働きをする。、 また、 z軸近傍に示 される点線 5 0は電流線を示す。  Symbols 46a, 46b, 46c, 46d are capacitors, symbols 47a, 47b, 47c, 47d are switches, symbols 48a, 48b, 48 c, 48 d indicate high resistance, and capacitors 19 a, 19 b, 19 c, 19 d, switches 20 a, 20 b, 20 c, 20 d, Works similarly to high resistance 21a, 21b, 21c, 21d. A dotted line 50 near the z axis indicates a current line.
このように、 第 7の発明は、 実施例 2、 4、 5などのカスプ断面ピン チ装置を 4組そなえたものにおいて接地電極 4 3内面の大部分を絶縁物 により覆い、 接地電極 4 3と陽極及び陰極との間の放電を禁止すると共 に、 実施例 6と同様に、 正電極放電部及ぴ負電極放電部の間隔を狭め、 そこでの絶縁破壊電圧を低くすることにより、 放電の開始を接地電極 4 3との間の絶縁物表面での沿面放電から、 正電極放電部及び負電極放電 部間の電極間気中放電に変更し、 高温高密度のカスプ断面のピンチプラ ズマ柱 4 9を生成することを特徴とするカスプ断面ピンチによるプラズ マ生成法である。 また電極間放電に先立ち、 予備電離あるいは予備加熱 放電を施すことにより、 正電極及び負電極間により一様な放電を発生さ せることができる。  As described above, in the seventh invention, the inner surface of the ground electrode 43 is largely covered with the insulator in the four sets of cusp section pinching devices of the second, fourth, fifth, etc. Discharge between the anode and the cathode is prohibited, and the discharge is started by narrowing the interval between the positive electrode discharge part and the negative electrode discharge part and lowering the dielectric breakdown voltage there, as in the sixth embodiment. Is changed from creeping discharge on the surface of the insulator between the ground electrode 43 to air discharge between the electrodes between the positive electrode discharge part and the negative electrode discharge part. This is a plasma generation method using a cusp cross-section pinch, which generates By performing preionization or preheating discharge prior to interelectrode discharge, a more uniform discharge can be generated between the positive electrode and the negative electrode.
この実施例 7の方法は, トーラス状の実施例 5の場合にも適用可能で ある。 The method of Embodiment 7 is applicable to the case of Embodiment 5 in the form of a torus. is there.
実施例 8 Example 8
第 1 3図に示した実施例 8は、 実施例 5のトーラス状カスプ断面ピン チプラズマ柱の軸に沿う誘導起電力を加え, 軸方向電流を重畳させるた めの方法を与えたもので、 実施例 1、 2, 5— 7のカスプ断面ピンチに 対し, カスプ断面 Zピンチと呼ぶことが出来る。 即ち、 プラズマ柱の軸 に沿う誘導放電電流を重畳し、 カスプ断面ピンチプラズマ柱を囲む方位 角方向の閉じた磁場を発生させることにより、 線カスプ部からの粒子損 失、 エネルギー損失を抑制したものである。 別の見地で、 誘導放電電流 を増加させると、 所謂トーラス状 Zピンチが発生するので、 トーラス状 Zピンチをカスプ状電流により安定化させることにも相当している。 第 1 3図は第 9図と同一の装置について, プラズマがトランスの 2次 側になるようソレノイ ドコイル 5 5を装置の中心軸を貫くように設置し た例を示している。 このソレノイ ドコイル 5 5に, 実施例 5のカスプ断 面ピンチ放電と同期させて, コンデンサー 5 6 , スィッチ 5 7を用いて 放電するごとにより トーラス状プラズマ柱に, トーラスの軸方向の電流 を与えることが出来る。 この電流を十分増加させることにより, カスプ 断面ピンチプラズマ 3 3 aの中心部に, カスプ断面を持つトーラス状の Zピンチプラズマ 3 3 bを発生させることが出来る。 ソレノィ ドコイル 5 5の電源には, カスプ断面ピンチと同じ電源を用いることも可能で, この場合には自動的に同期させることが出来る。  Example 8 shown in Fig. 13 provides a method for superimposing the axial current by adding an induced electromotive force along the axis of the pinch plasma column of the torus-shaped cusp cross section of Example 5. The cusp cross-section pinch in Examples 1, 2, 5-7 can be called the cusp cross-section Z pinch. In other words, superposition of the induced discharge current along the axis of the plasma column and generation of a closed magnetic field in the azimuthal direction surrounding the pinch plasma column with a cusp section suppresses particle loss and energy loss from the line cusp. It is. From another point of view, increasing the induced discharge current causes a so-called torus Z pinch, which is equivalent to stabilizing the torus Z pinch with a cusp current. Fig. 13 shows an example of the same equipment as in Fig. 9 except that the solenoid coil 55 is installed so as to pass through the center axis of the equipment so that the plasma is on the secondary side of the transformer. A current in the axial direction of the torus is applied to the toroidal plasma column by discharging the solenoid coil 55 with a capacitor 56 and a switch 57 in synchronism with the pinch discharge of the cusp cut surface in Example 5. Can be done. By sufficiently increasing this current, a torus-shaped Z-pinch plasma 33b having a cusp cross section can be generated at the center of the cusp cross-section pinch plasma 33a. As the power supply for the solenoid coil 55, the same power supply as the cusp section pinch can be used, and in this case, synchronization can be performed automatically.
この実施例 8によれば、 線カスプからの粒子損失, エネルギー損失を 抑制することができ、 また、 カスプ電流により トーラス状 Zピンチの安 定化を図ることができる。  According to the eighth embodiment, particle loss and energy loss from the wire cusp can be suppressed, and the torus-shaped Z pinch can be stabilized by the cusp current.
実施例 9 Example 9
実施例 9の直線状カスプ断面 Zピンチは, 本質的には実施例 8と同じ で, その一部に相当する。 しかし, 直線状カスプ断面 Zピンチにおいて は, トーラス状カスプ断面 Z ピンチのように誘導起電力を用いることが 出来ないので, 電極放電を用いる。 第 1 4図は第 5図の中央縦断面の右 側面図において両端に新しい電極 5 8 a , 5 9 bを取り付けたものに相 当する図である。 第 1 4図の左半分では 1 6 c及び 1 8 cを省略してあ る。 また、 第 1 4図の右半分では 6 3 a、 6 3 bを省略してある。 電極 5 8 a , 5 8 bは, カスプ断面ピンチ電極 1 6 a— d, 1 7とは絶縁板 5 9 a , b'により絶縁され、 プラズマ柱の両端に配置される。 カスプ断 面ピンチプラズマ柱 6 3 aが形成された後、 この電極 5 8 a、 5 8 b間 で放電を発生させ、 プラズマ柱の軸に沿う電流 6 4を重畳することによ り、 直線状カスプ断面 Zピンチプラズマ柱 6 3 bを生成することができ る。 コンデンサー 6 0 a、 b、 スィッチ 6 1 a、 b , 高抵抗 6 2 a、 b は、 軸に沿う電流のための電源を構成している。 本実施例においては、 カスプ断面ピンチの電圧 Vを低く し、カスプ断面 Zピンチの電圧 V 'を, Vより十分高くする必要がある。 The straight cusp cross-section Z pinch in Example 9 is essentially the same as in Example 8. And corresponds to a part of it. However, in the linear cusp cross-section Z-pinch, electrode discharge is used because the induced electromotive force cannot be used unlike the torus-shaped cusp cross-section Z-pinch. FIG. 14 is a diagram corresponding to the right side view of the central longitudinal section of FIG. 5 with new electrodes 58a and 59b attached to both ends. In the left half of Fig. 14, 16c and 18c are omitted. In the right half of FIG. 14, 63 a and 63 b are omitted. The electrodes 58a and 58b are insulated from the cusp section pinch electrodes 16a-d and 17 by insulating plates 59a and b ', and are arranged at both ends of the plasma column. After the cusp cut pinch plasma column 63 a is formed, a discharge is generated between the electrodes 58 a and 58 b, and a current 64 along the axis of the plasma column is superimposed to form a straight line. A cusp section Z-pinch plasma column 63b can be generated. The capacitors 60a, b, the switches 61a, b and the high resistances 62a, b constitute the power supply for the current along the axis. In the present embodiment, it is necessary to lower the voltage V of the pinch in the cusp cross section and make the voltage V ′ of the pinch in the cusp cross section sufficiently higher than V.
以上実施例 1から実施例 9について説明したが、 本発明は、 以上述べ た実施例に限定されるものではない。 産業状の利用の可能性  Although the first to ninth embodiments have been described above, the present invention is not limited to the above-described embodiments. Possibility of industrial use
本発明によれば、 高温高密度プラズマ生成が可能である Zピンチの特 徴を損なうことなく、 生成プラズマの不安定性を抑制し、 一様な高温高 密度プラズマを長時間持続させることができる。 また、 本発明は高温高 密度プラズマを生成することにより、 高温高密度プラズマ源、 紫外から X線領域の波長の高輝度光源、 紫外から X線領域の波長のレーザーある いは強力中性子源、 核融合反応炉等への応用が可能である。  ADVANTAGE OF THE INVENTION According to this invention, the instability of generated plasma can be suppressed and uniform high-temperature high-density plasma can be maintained for a long time, without impairing the characteristics of the Z pinch capable of generating high-temperature high-density plasma. In addition, the present invention generates a high-temperature, high-density plasma to generate a high-temperature, high-density plasma source, a high-intensity light source having a wavelength in the ultraviolet to X-ray range, a laser or an intense neutron source having a wavelength in the ultraviolet to X-ray range, It can be applied to fusion reactors.

Claims

請求の範囲 The scope of the claims
1 . 放電により高温高密度のプラズマを生成する方法において、 第 1の陽極板の周囲に絶縁物を介して陰極を配置した第 1のシート Zピ ンチ生成装置と、 前記陰極を貫通するように絶縁物を介し第 1のシート Zピンチ生成装置と対向するように第 2の陽極板を配置した第 2のシー ト Zピンチ生成装置を備え、 1. A method for generating high-temperature, high-density plasma by discharge, comprising: a first sheet Z-pinch generating device in which a cathode is arranged around a first anode plate via an insulator; A second sheet Z-pinch generator in which a second anode plate is arranged so as to face the first sheet Z-pinch generator through an insulator;
前記第 1のシート Zピンチ生成装置と前記第 2のシート Zピンチ生成装 置の向かい合った部分をガスで満たした気密容器となるようにした装置 により、 前記第 1のシート Zピンチ生成装置からのプラズマと前記第 2 のシート Zピンチ生成装置からのプラズマを衝突、 合体させて高温高密 度のカスプ断面のピンチプラズマ柱を生成するこ,とを特徴とするカスプ 断面ピンチによる高温高密度プラズマ生成法。 The first sheet Z-pinch generating device and the second sheet Z-pinch generating device are configured such that an opposed portion of the first sheet Z-pinch generating device becomes an airtight container filled with gas. A high-temperature, high-density plasma generation method using a cusp cross-section pinch, wherein the plasma and the plasma from the second sheet Z-pinch generation device are collided and combined to generate a high-temperature, high-density cusp cross-section pinch plasma column. .
2 . 請求の範囲第 1項のカスプ断面ピンチによる高温高密度プラズマ生 成法において、  2. In the high-temperature and high-density plasma generation method using the cusp cross-section pinch according to claim 1,
前記生成されたカスプ断面のピンチプラズマ柱の両端における、 前記第 1の陽極板および前記第 2の陽極板の両側面に導体板を取り付けること により、 線カスプ部に生じるプラズマ柱の長さを短縮させようとする磁 気力を支え、 且つ軸近傍のプラズマが軸方向へ流出するのを妨げるよう にしてプラズマ柱の崩壊を遅らせることを特徴とするカスプ断面ピンチ による高温高密度プラズマ生成法。 By attaching conductor plates to both sides of the first anode plate and the second anode plate at both ends of the pinch plasma column of the generated cusp cross section, the length of the plasma column generated in the line cusp portion is reduced. A high-temperature, high-density plasma generation method using a cusp cross-section pinch, which supports the magnetic force to be caused, and delays the collapse of the plasma column by preventing the plasma near the axis from flowing out in the axial direction.
3 . 放電により高温高密度のプラズマを生成する方法において、 正電極板の周囲に絶縁物を介して接地電極を配置したシート Zピンチ生 成装置と、 負電極の周囲に絶縁物を介して接地電極を配置したシート Z ピンチ生成装置とを、 生成しょうとするプラズマ柱の中心軸の周りに交 互に 9 0度づっずらせて 4組向かい合わせに配置し、 前記 4組のシート Zピンチ生成装置が向かい合った部分をガスで満たした気密容器となる ようにした装置により、 前記 4組のシート Zピンチ生成装置からのブラ ズマを生成しようとするプラズマ柱の中心軸近傍で衝突、 合体させて、 高温高密度のカスプ断面のピンチプラズマ柱を生成することを特徴とす るカスプ断面ピンチによる高温高密度プラズマ生成法。 3. In the method of generating high-temperature and high-density plasma by discharge, sheet Z pinch generator with ground electrode placed around positive electrode plate via insulator, and grounding around negative electrode via insulator. The sheet with electrodes arranged thereon and the Z-pinch generator are alternately rotated 90 degrees around the center axis of the plasma column to be generated, and are arranged in four sets facing each other. The apparatus in which the Z-pinch generating device is configured to be an airtight container filled with gas at the portion facing each other, collides near the center axis of the plasma column to generate plasma from the four sets of sheet Z-pinch generating devices, A high-temperature, high-density plasma generation method using a cusp cross-section pinch, which is combined with a high-temperature, high-density cusp cross-section pinch plasma column.
4 . 請求の範囲第 3項のカスプ靳面ピンチによる高温高密度プラズマ生 成法において、  4. In the high-temperature, high-density plasma generation method using the cusp face pinch according to claim 3,
前記生成されたカスプ断面を持つプラズマ柱の両端における正電極、 負 電極の両側面において、 前記向かい合った 2つの正電極および向かい合 つた負電極に導体板を取り付けることにより、 線カスプ部に生じるブラ ズマ柱の長さを短縮させようとする磁気力を支え、 且つ軸近傍のプラズ マが軸方向へ流出するのを妨げるようにしてプラズマ柱の崩壌を遅らせ ると共に、 プラズマからの各種放射を外部に導くようにすることを特徴 とするカスプ断面ピンチによる高温高密度ブラズマ生成法。 By attaching a conductor plate to the two opposed positive electrodes and the opposed negative electrodes on both sides of the positive electrode and the negative electrode at both ends of the plasma column having the generated cusp cross section, the brass generated in the line cusp portion is obtained. While supporting the magnetic force that attempts to shorten the length of the plasma column, preventing the plasma near the axis from flowing out in the axial direction, delaying the collapse of the plasma column, and preventing various radiation from the plasma A high-temperature, high-density plasma generation method using a cusp section pinch, which is guided to the outside.
5 . 前記請求の範囲第 1項あるいは第 3項のカスプ断面ピンチ生成装置 を閉じた曲線状として、 トーラス状のカスプ断面ピンチプラズマ柱を生 成することを特徴とするカスプ断面ピンチによる高温高密度プラズマ生 成法。  5. The cusp section pinch generating device according to claim 1 or 3, wherein the cusp section pinch is formed into a closed curve, and a torus-shaped cusp section pinch plasma column is generated. Plasma generation method.
6 . 請求の範囲第 1項のカスプ断面ピンチによる高温高密度プラズマ生 成法において、  6. In the high-temperature, high-density plasma generation method according to claim 1,
陽極、 陰極を隔てている絶縁部の耐圧を増加させ、 絶縁物表面での絶縁 破壌、 放電が発生しないようにすると共に、 陰極、 陽極間の放電部を接 近させ、 陽極と陰極放電部間で放電するか、 あるいは予備電離、 予備加 熱を行った後、 陽極と陰極間で放電を発生させ、 軸近傍にカスプ断面の ピンチプラズマ柱を生成することを特徴とするカスプ断面ピンチによる 高温高密度プラズマ生成法。 Increasing the breakdown voltage of the insulating part separating the anode and the cathode, preventing insulation rupture and discharge from occurring on the surface of the insulator, and bringing the discharge part between the cathode and the anode close to the anode and the cathode discharge part After the pre-ionization or pre-heating, a discharge is generated between the anode and the cathode, and a pinch plasma column with a cusp cross section is formed near the axis. High-density plasma generation method.
7 . 請求の範囲第 3項のカスプ断面ピンチによる高温高密度プラズマ生 成法において、 7. In the method for generating high-temperature and high-density plasma by the cusp section pinch according to claim 3,
接地電極を絶縁物で覆い、 正電極、 負電極を隔てる絶縁部の耐圧を増加 させ、 絶縁物表面での絶縁破壊、 放電が発生しないようにすると共に、 正電極、 負電極放電部を接近させ、 正電極と負電極放電部間で放電する 力、、 あるいは予備電離、 予備加熱を行った後、 陽極と陰極先端間で放電 を発生させ、 軸近傍にカスプ断面のピンチプラズマ柱を生成することを 特徴とするカスプ断面ピンチによる高温高密度プラズマ生成法。 Cover the ground electrode with an insulator, increase the withstand voltage of the insulating part separating the positive electrode and the negative electrode, prevent dielectric breakdown and discharge on the insulator surface, and make the positive electrode and the negative electrode discharge parts closer After the discharge between the positive and negative electrode discharge parts, or after preionization and preheating, a discharge is generated between the anode and cathode tips to generate a pinch plasma column with a cusp cross section near the axis. A high-temperature, high-density plasma generation method using a cusp section pinch.
8 . 請求の範囲第 5項の前記トーラス状のカスプ断面ピンチプラズマ柱 において、 誘導起電力によりこのプラズマ柱の軸に沿う トーラス状電流 あるいはトーラス状 Zピンチを重畳し、 トーラスの軸に関する方位角方 向の磁場成分を生成することを特徴とするカスプ断面 Zピンチによる高 温高密度プラズマ生成法。  8. The torus-shaped cusp-section pinch plasma column according to claim 5, wherein a torus-like current or a torus-like Z-pinch along the axis of the plasma column is superimposed by an induced electromotive force to form an azimuthal direction with respect to the axis of the torus. A high-temperature, high-density plasma generation method using a cusp cross-section Z pinch, characterized by generating a magnetic field component in the opposite direction.
9 . 請求の範囲第 1項, 第 3項, 第 6項, 第 7項の直線状カスプ断面ピ ンチブラ マ柱において, このプラズマ柱の軸に沿う電流あるいは Zピ ンチを重畳し, プラズマ柱の軸に関する方位角方向の磁場を生成するこ とを特徴とする直線状カスプ断面 Zピンチによる高温高密度プラズマ生 成法。  9. In the straight cusp cross section pinch-brama column of claims 1, 3, 3 and 6, the current along the axis of the plasma column or the Z-pinch is superimposed, and the plasma column is pinched. A high-temperature, high-density plasma generation method using a linear cusp cross-section Z pinch, which generates a magnetic field in an azimuthal direction about the axis.
PCT/JP2003/014580 2003-11-17 2003-11-17 Method for generating high-temperature high-density plasma by cusp cross-section pinch WO2005048662A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003280823A AU2003280823A1 (en) 2003-11-17 2003-11-17 Method for generating high-temperature high-density plasma by cusp cross-section pinch
PCT/JP2003/014580 WO2005048662A1 (en) 2003-11-17 2003-11-17 Method for generating high-temperature high-density plasma by cusp cross-section pinch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014580 WO2005048662A1 (en) 2003-11-17 2003-11-17 Method for generating high-temperature high-density plasma by cusp cross-section pinch

Publications (1)

Publication Number Publication Date
WO2005048662A1 true WO2005048662A1 (en) 2005-05-26

Family

ID=34587067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014580 WO2005048662A1 (en) 2003-11-17 2003-11-17 Method for generating high-temperature high-density plasma by cusp cross-section pinch

Country Status (2)

Country Link
AU (1) AU2003280823A1 (en)
WO (1) WO2005048662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119207A (en) * 2010-12-02 2012-06-21 Ihi Corp Plasma light source, and method for generating plasma light
US20220394840A1 (en) * 2021-05-28 2022-12-08 Zap Energy, Inc. Electrode configuration for extended plasma confinement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530162A (en) * 1978-08-25 1980-03-03 Yuuichi Kiriyuu Plasma enclosing device
JPH07326492A (en) * 1994-06-02 1995-12-12 Sumitomo Heavy Ind Ltd Method and device for forming sheet plasma
JP2002507832A (en) * 1998-03-18 2002-03-12 プレックス・エルエルシー Soft X-ray source of Z pinch using dilution gas
JP2003218025A (en) * 2001-10-10 2003-07-31 Xtreme Technologies Gmbh Apparatus for generating extreme ultraviolet ray based on gas discharge
JP2004028969A (en) * 2002-06-21 2004-01-29 Toru Miyamoto Production method for high temperature high density sheet plasma by liner compression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530162A (en) * 1978-08-25 1980-03-03 Yuuichi Kiriyuu Plasma enclosing device
JPH07326492A (en) * 1994-06-02 1995-12-12 Sumitomo Heavy Ind Ltd Method and device for forming sheet plasma
JP2002507832A (en) * 1998-03-18 2002-03-12 プレックス・エルエルシー Soft X-ray source of Z pinch using dilution gas
JP2003218025A (en) * 2001-10-10 2003-07-31 Xtreme Technologies Gmbh Apparatus for generating extreme ultraviolet ray based on gas discharge
JP2004028969A (en) * 2002-06-21 2004-01-29 Toru Miyamoto Production method for high temperature high density sheet plasma by liner compression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYAMOTO T.: "Dense sheet Z-pinches", JOURNAL OF PHYSICAL SOCIETY OF JAPAN, vol. 68, no. 4, April 1999 (1999-04-01), pages 1238 - 1258, XP002977557 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119207A (en) * 2010-12-02 2012-06-21 Ihi Corp Plasma light source, and method for generating plasma light
US20220394840A1 (en) * 2021-05-28 2022-12-08 Zap Energy, Inc. Electrode configuration for extended plasma confinement
US20220394838A1 (en) * 2021-05-28 2022-12-08 Zap Energy, Inc. Apparatus and method for extended plasma confinement
US11744001B2 (en) * 2021-05-28 2023-08-29 Zap Energy, Inc. Electrode configuration for extended plasma confinement
US11758640B2 (en) 2021-05-28 2023-09-12 Zap Energy, Inc. Apparatus and method for extended plasma confinement

Also Published As

Publication number Publication date
AU2003280823A1 (en) 2005-06-06

Similar Documents

Publication Publication Date Title
US5075594A (en) Plasma switch with hollow, thermionic cathode
JP5571115B2 (en) Pulsed power system including plasma open switch
Bogolyubov et al. A powerful soft X-ray source for X-ray lithography based on plasma focusing
JP2007506545A (en) Nanopowder synthesis using pulsed arc discharge and applied magnetic field
US20110234101A1 (en) Induction switch
KR102341290B1 (en) an apparatus for generating a filamentous auxiliary discharge for a fusion reactor having an apparatus for producing X-radiation and particle radiation and also an apparatus for producing X-radiation and particle radiation, and for generating X-radiation and particle radiation way for
Dimov et al. Compensated proton beam production in an accelerating ring at a current above the space charge limit
RU2638954C2 (en) Commute structure device
WO2005048662A1 (en) Method for generating high-temperature high-density plasma by cusp cross-section pinch
JP2016526261A (en) Dielectric wall accelerator using diamond or diamond-like carbon
KR101983294B1 (en) An Electron Structure of a Large Current Duo Plasmatron Ion Source for BNCT Accelerator and an Apparatus Comprising the Same
Li et al. Trigger Properties of an Ejected-Plasma-Triggered SF Gas Gap for 10-kV Smart Distribution Network
RU2418339C1 (en) High-voltage electronic device
JP2002168982A (en) Inertia electrostatic containment device
Shi et al. The influence of axial-magnetic-field distribution on the initial expansion process in triggered vacuum arc
RU2725439C1 (en) Method and device for producing high-temperature plasma with magnetic stabilization of z-pinch
Zhang et al. Conduction current in nanosecond-pulse diffuse discharges at atmospheric pressure
OA20426A (en) Apparatus for producing a filamented auxiliary discharge for an apparatus for producing X-Radiation and Particle Radiation and also for a fusion reactor with the apparatus for producing X-Radiation and Particle Radiation and method for producing X-Radiation and Particle Radiation.
RU2273118C2 (en) Neutron generator
US20230269860A1 (en) High electron trapping ratio betatron
JP6834536B2 (en) Plasma light source
WO2006131975A1 (en) High-temperature high-density plasma column produced by baseball z pinch and its generating method and generating appratus
JPH0650110B2 (en) RF ion source
JPS6394543A (en) Plasma x-ray generator
JPS589981A (en) Vacuum deposition device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP