WO2005046464A1 - Papillary light reflex measuring instrument for evaluating relaxed feeling - Google Patents

Papillary light reflex measuring instrument for evaluating relaxed feeling Download PDF

Info

Publication number
WO2005046464A1
WO2005046464A1 PCT/JP2004/016718 JP2004016718W WO2005046464A1 WO 2005046464 A1 WO2005046464 A1 WO 2005046464A1 JP 2004016718 W JP2004016718 W JP 2004016718W WO 2005046464 A1 WO2005046464 A1 WO 2005046464A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pupil
feeling
relaxation
evaluating
Prior art date
Application number
PCT/JP2004/016718
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinao Nagashima
Hidetoshi Sadachi
Yukihiro Yada
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Publication of WO2005046464A1 publication Critical patent/WO2005046464A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/112Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change

Definitions

  • the present invention relates to a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation.
  • the pupil is a space that has an afferent path starting from the retinal optic nerve and is surrounded by iris muscles whose main autonomic nerve is the efferent path, and can provide information on the central nerve as well as the cranial nerve and the autonomic nerve. .
  • Pupil research is remarkable, and in basic research, new knowledge has been obtained on the relevance to other nervous systems and the cerebrum and cerebellum by reviewing the light response pathway.
  • the scope of research has been expanded as a means of objectively evaluating visual inputs and as a means of elucidating the pathology of various neurological diseases.
  • a pupil examination based on the principle of infrared Pupillogram is known.
  • the principle of the infrared Pupillogram is that the human retina has no sensitivity S to the infrared light, so it is not possible that the infrared light incident on the retina by irradiating the infrared light will affect the light response, which is the mechanism of adjusting the amount of visible light. Therefore, changes in the size of the pupil due to visible light can be attributed to the force detected by the photoelectric element as a change in the amount of light reflected from the iris by irradiating the eye with infrared rays, or the change in the pupil area by the television camera. Recording and its screen power The principle is that it can be recorded continuously as an analog electric signal proportional to the pupil area! / ⁇ ⁇ .
  • Patent Document 1 JP-A-7-163522
  • Patent Document 2 JP-A-7-171104 Disclosure of the invention
  • a method of determining whether the parasympathetic nerve is dominant or a method of determining whether the sympathetic nerve is dominant is employed.
  • an apparatus for analyzing pupil movement due to light response based on the principle of the above-mentioned infrared pupilogram is used. Can be used.
  • the test apparatus is a device capable of clinically determining a subject's neuropathy or consciousness disorder. Therefore, it is unsuitable as a test device that can be used easily by ordinary healthy people to find out the degree of stress and relatation for daily health management.
  • the conventional pupil-optical response test device was used clinically to check for neurological disorders and consciousness disorders. As shown in Fig. 7, a large weighing device with a considerable weight of, for example, about 200 to 500 g was used.
  • the stimulus light for irradiating the pupil with visible light uses a convex lens between the light source and the eyeball in the open loop method.
  • the light is once converged in front of the eyes by the convex lens, and is narrowed down to a smaller diameter than the pupil at the time of miosis, and then is injected into the eyeball as a certain amount of stimulus. If the relative positional relationship between the light source and the pupil changes at each measurement, the light irradiation position may shift. Therefore, even if the irradiation light amount of the light source power is constant, each subject or the same subject Even in this case, the amount of light incident on the pupil changes at each measurement, which may make it difficult to objectively and accurately evaluate the degree of stress and relaxation.
  • the present invention provides a pupil-to-photoreaction measurement for evaluating a feeling of relaxation that can be easily used by, for example, a normal healthy person, and that can easily and objectively and accurately evaluate the degree of stress or relatation. About the tool.
  • the present invention relates to a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation used when tracking a pupil-to-light reaction to evaluate a feeling of relaxation, and is a three-dimensional mask that is worn on a face covering an eye portion.
  • a pupil imaging unit and a light stimulating unit attached to the three-dimensional mask unit so as to face the eyeball of at least one eye; and connecting and controlling the pupil imaging unit and the light stimulating unit,
  • Control analysis means for recording an image sent from the pupil imaging means and performing arithmetic analysis on the miosis and mydriasis of the pupil based on the imaging, and the pupil imaging means and the pupil imaging means of the three-dimensional mask unit
  • the weight when mounted, including the light stimulus is 30-120 g.
  • the three-dimensional mask portion is a mask having a three-dimensional shape with a hollow inside, and is attached to the three-dimensional mask portion when the pupil is attached to the face while covering the eyes. It has a shape-retaining rigidity enough to hold the imaging means and the light stimulating means at a predetermined distance from the eyeball of the eye.
  • a goggle-type mask can be used.
  • FIG. 1 is a perspective view showing a state in which a three-dimensional mask portion of a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to an embodiment of the present invention is attached to a face of a subject.
  • FIG. 2 is a perspective view illustrating a configuration of a three-dimensional mask portion of a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a control analysis mechanism in a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to one embodiment of the present invention.
  • FIG. 4 is a chart for explaining the analysis parameters calculated and analyzed by the control analysis means.
  • FIG. 5 (a)] is an explanatory diagram of the photostimulator of the present invention in Reference Example 1.
  • FIG. 5 (b) is a diagram of the relative light emission intensity distribution on the light receiving surface obtained in Reference Example 1.
  • FIG. 6 (a)] FIG. 6 (a) is an explanatory diagram of the photostimulation device in Reference Example 2.
  • FIG. 6 (b)] is a diagram of the relative light emission intensity distribution on the light receiving surface obtained in Reference Example 2.
  • FIG. 7 is a perspective view showing a state in which a mask unit of a conventional pupil-to-light reaction test apparatus is attached to the face of a subject.
  • FIG. 8 (a)] shows the results of measurement of the degree of relaxation performed using the pupil-to-photoresponse measuring instrument for evaluating a feeling of relaxation according to the present invention and an electrocardiogram.
  • FIG. 8 (b) shows the results of measurement of the degree of relaxation performed using the pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to the present invention and an electrocardiogram.
  • FIG. 8 (c) shows the results of measurement of the degree of relaxation performed using the pupil-to-photoresponse measuring instrument for evaluating a feeling of relaxation according to the present invention and an electrocardiogram.
  • FIG. 9 (a) shows the results of measurement of the degree of relaxation performed using a commercially available pupil-to-photoresponse measuring instrument and an electrocardiogram.
  • FIG. 9 (b) shows the results of measurement of the relatability using a commercially available pupil-to-photoresponse measuring instrument and an electrocardiogram.
  • FIG. 9 (c) shows the results of measurement of the degree of relaxation performed using a commercially available pupil-to-photoresponse measuring instrument and an electrocardiogram.
  • FIG. 10 (a) shows the result of measuring the pupil diameter before light stimulation measured 15 minutes after entering the room in Example 2.
  • FIG. 10 (b) shows the results of measuring the amount of miosis changed by light stimulation measured 15 minutes after entering the room in Example 2.
  • FIG. 10 (c) shows the results of measurement of the miosis rate changed by light stimulation measured 15 minutes after entering the room in Example 2.
  • FIG. 11 (a) shows the result of measuring the pupil diameter before light stimulation measured 45 minutes after entering the room in Example 2.
  • FIG. 11 (b) shows the results of measuring the amount of miosis changed by light stimulation measured 45 minutes after entering the room in Example 2.
  • FIG. 11 (c) shows the results of measurement of the miosis rate changed by light stimulation measured 45 minutes after entering the room in Example 2.
  • a pupil-to-light response measuring instrument 10 for evaluating a feeling of relaxation is a light-response measuring instrument used for tracking a pupil-light reaction to evaluate a feeling of relaxation.
  • a three-dimensional mask portion 11 that is attached to the face so as to cover the eyes, and a pupil imaging means 12 that is attached to the three-dimensional mask portion 11 so as to face at least one eyeball.
  • the light stimulating means 13 and the pupil imaging means 12 and the light stimulating means 13 are connected to each other to control them, record the image sent from the pupil imaging means 12, and based on the image, the miosis of the pupil and Control analysis means 14 (see Fig. 3) for performing arithmetic analysis on mydriasis is provided, and the weight of the three-dimensional mask unit 11 including the pupil imaging means 12 and the light stimulating means 13 when attached is 30-120 g. Has become.
  • the pupil imaging means 12 includes an infrared CCD camera 15 and a light emitting diode 17 for infrared illumination, and the light stimulating means 13 scatters a plurality of visible light emitting diodes 18. It is composed of a cover 19.
  • the pupil imaging means 12 and the light stimulating means 13 are arranged so as to face the eyeball of one eye, and the inner face of the three-dimensional mask section 11 is provided with the other eye.
  • a fixation light emitting diode 20 is provided so as to face the eyeball.
  • the three-dimensional mask section 11 constituting the pupil-to-light reaction measuring instrument 10 of the present embodiment is a goggle-type two-part mask formed of a non-light-projecting material,
  • the peripheral part is in close contact with the skin of the face, blocking light from entering the hollow interior from the outside, and night vision Condition
  • the pupil imaging means 12 is composed of an infrared CCD camera 15 and a light-emitting diode 17 for infrared illumination.
  • the infrared CCD camera 15 has a main body protruding outside the three-dimensional mask section 11 and its The lens part 16 faces one of the parts of the three-dimensional mask part 11 with the lens part 16 facing the center hole 22 of the annular band plate-shaped light scattering plate 19 arranged on the inner surface of the three-dimensional mask part 11. Installed. Further, a pair of the light-emitting diodes 17 for infrared illumination are mounted on the light scattering plate 18 in the shape of an annular band plate on both sides in the diametrical direction with respect to the center hole 22.
  • the infrared CCD camera 15 has a frequency of, for example, about 30-60 Hz and a sampling performance of about 0.017-0.033 ms per frame, and is controlled by the control analysis means 14 to continuously photograph the pupil. At the same time, the obtained image is transmitted to the control analysis means 14.
  • the light stimulating means 13 is composed of, for example, eight visible light emitting diodes 18 and a light scattering plate 19, and each of the eight visible light emitting diodes 18 emits, for example, about 7 to 13 W.
  • the light-scattering plate 19, which has strength, is disposed at an equal angular interval of 45 degrees in the circumferential direction on the annular-shaped plate-shaped light scattering plate 19, and is covered by the light-scattering plate 19. It is buried in the light scattering plate 19.
  • the visible light emitting diode 18 emits visible light at a predetermined lighting time of, for example, about 0.1 to 2 seconds and a predetermined lighting interval of, for example, about 10 to 60 seconds, under the control of the control analysis means 14. I can do it.
  • the light scattering plate 19 disposed over the visible light emitting diode 18 is made of, for example, acrylic resin, and has a size of about 3 to 14 mm in inner diameter, 25 to 45 mm in outer diameter, and about 0.5 to 5 mm in thickness. It is formed in the shape of an annular belt plate.
  • the light scattering plate 19 is interposed between the visible light emitting diode 18 and the eyeball and is attached to the inner surface of the three-dimensional mask portion 11 so that a light beam output from the visible light emitting diode 18 is scattered. This makes it possible to form an image by forming an image after repeating reflection and refraction on the plate 19, thereby making the photostimulating means 13 function as a surface-emitting type element. is there.
  • the light scattering plate 19 can increase the light emission area (bright spot) of the light stimulating means 13 and make the amount of light irradiated to the pupil uniform, for example, the face shape of the subject can be improved. Even if there is a physical individual difference or a relative displacement due to a difference in the distance between the light stimulating means 13 and the pupil due to a difference or a different measurement opportunity by the same subject, such a variation or displacement is caused by a large bright spot. By absorbing, it becomes possible to evaluate the relaxed feeling with high accuracy by making the irradiation light amount uniform.
  • the light stimulating means 19 composed of the visible light emitting diode 18 and the light scattering plate 19 be arranged at a distance of 13 to 35 mm from the eyeball of the eye.
  • the infrared CCD camera can be used even when there is a difference in pupil size between individuals or when the pupil moves and is not stable. When the image of the pupil falls within the range of the captured image, effective measurement can be performed.
  • the control analysis means 14 which controls the pupil imaging means 12 and the light stimulus means 13 and performs arithmetic analysis on the pupil miosis and mydriasis based on the image taken by the pupil imaging means 12, as shown in FIG.
  • a central processing unit CPU
  • CPU central processing unit
  • a light stimulus control circuit that controls the lighting time and light intensity
  • the control analysis means 14 comprises an infrared CCD camera 15 constituting the pupil imaging means 12, a light emitting diode 17 for infrared illumination, and a light stimulating means 13 via various wirings 23 (see FIGS. 1 and 2). It is connected to the visible light emitting diode 18 or the fixation light emitting diode 20 described below, etc., and controls these, records the image sent from the pupil image pickup means 12, and based on this image, According to various known arithmetic analysis methods, arithmetic analysis relating to miosis and mydriasis of a pupil is performed. The imaging and analysis results are displayed on a display device as needed.
  • the pupil diameter value in the initial state (Dl: mm), the changed pupil diameter value after light stimulation (D2: mm), Pupil ratio (CR: D2 ZD1), time required for the pupil to be minimized (Tl: m Sec ), time required for the pupil to return to 63% of the minimum value from the minimum mydriasis (T2 : msec), miotic velocity (VC: mm / sec),
  • the pupil acceleration (AC: mm / sec 2 ) and the mydriatic velocity (VD: mm / sec) are calculated and analyzed by the constant force control analysis means 14.
  • the pupil-light response parameter cannot be absolute valued in pixel units, the pupil ratio can be obtained but cannot be applied to other parameters, and the measurement results are only used for data comparison within individuals. It will be limited.
  • the pupil diameter in mm with the absolute value calibrator, other useful parameters (VC, VD, etc.) can be used.
  • the iris diameter with little individual difference can be regarded as a constant, and its value can be calculated by proportional calculation with 11 mm.
  • the miosis rate CR is interpreted depending on the type of stimulus, because depending on the type of stimulus presented, even if it affects the same autonomic nervous activity, it may not show a certain tendency due to the balance between D1 and D2 May be different.
  • Dl, D2 and CR in mosquito ⁇ Ete, VC point force it is useful to use parameters such as V D is also preferable.
  • the pupil is determined not by diameter but by area. This is a point that the area can more accurately detect the size of the pupil. However, if the pupil is obstructed by eyelashes or the eyelids are not completely open, this may cause an error, so it is preferable to use the diameter.
  • the pupil imaging means 12, the light stimulating means 13, the fixation light emitting diode 20, the wiring 23 and the like are included.
  • the weight of the three-dimensional mask portion 11 is 30 to 120 g, preferably 30 to 80 g.
  • the fixation light emitting diode 20 attached to the inner surface of the other part of the three-dimensional mask portion 11 so as to face the eyeball (non-measuring eye) of the other eye is It is provided to stabilize the measurement eye by removing the influence of the miosis of the eyeball (measurement eye) of one eye to be measured by turning on the visible light and gazing at the other eye. And has a wavelength of, for example, about 490-770 nm.
  • the sensation of relaxation is evaluated using the pupil-to-light reaction measuring device 10 for evaluating relaxation in the present embodiment.
  • the three-dimensional mask part 11 is attached to the face so as to cover both eyes with each part, for example, after waiting for 90 seconds for dark adaptation, taking a reference time of 20 seconds, and controlling by the control analysis means 14, For example, a light stimulus with a lighting time of 0.25 seconds and a lighting interval of 20 seconds is performed five times via the light stimulating means 13.
  • pupil imaging by the pupil imaging means 12 is performed continuously at an interval of, for example, 0.017 ms, and the imaging is completed 10 seconds after the fifth lighting.
  • the captured images are sequentially sent to the control and analysis means 14 to perform arithmetic analysis, calculate various analysis parameters, and evaluate the degree of stress and relaxation.
  • the function of the sympathetic nerve is relatively superior to the function of the parasympathetic nerve in a state of feeling stress.
  • the pupil phase is increased and changes in analysis parameters such as shortening of the mydriatic time (T2) and increasing of the mydriatic velocity (VD) appear. And remarkable activation of the mydriatic phase, it is possible to objectively and appropriately evaluate the degree of stress by tracking changes in these analysis parameters.
  • the pupil-to-light reaction measuring instrument 10 for evaluating a feeling of relaxation of the present embodiment for example, a normal healthy person can easily use the pupil-light reaction measuring instrument to easily know the degree of stress and relaxation, And the degree of relaxation can be objectively and easily evaluated with high accuracy. That is, according to the present embodiment, a goggle-type three-dimensional mask unit 11 that is worn on the face covering the eyes, a pupil imaging unit 12 and a light stimulus unit 13 that are attached to the three-dimensional mask unit, and control these. And a control analysis means for performing arithmetic analysis on the miosis and mydriasis of the pupil based on the obtained image.
  • the three-dimensional mask portion has a lightweight and compact weight of about 30 to 120 g when worn. The structure makes it easy to handle Yes, while attaching and detaching the three-dimensional mask part 11 smoothly with a simple operation, for example, while standing
  • the three-dimensional mask portion has a light weight of about 30 to 120 g when worn, even when the three-dimensional mask portion is worn on the face, the subject does not need extra Therefore, it is possible to easily and objectively evaluate the degree of stress and relaxation with high accuracy.
  • the light stimulating means 13 is configured by covering the visible light emitting diode 18 with the light scattering plate 19, increasing the light emitting area (bright point) to the pupil. Since the irradiation light amount of the subject can be made uniform, physical differences and relative positions due to variations in the distance between the light stimulating means 13 and the pupil can occur due to differences in the facial shape of the subject and different measurement opportunities by the same subject. Even if there is a shift, the degree of stress and relaxation can be evaluated more objectively and accurately by effectively absorbing such variations and position shifts by the large bright spots.
  • the time for adapting the B sound is as short as about 90 seconds, it is possible to appropriately track the pupil-light reaction thereafter, and It takes a considerable amount of time to adjust, for example, about 15 minutes, and there is no danger of causing drowsiness to the subject in night vision conditions compared to a conventional pupil-light reaction test device. It is possible to effectively avoid the influence on the pupil-light reaction due to drowsiness as described above. Also, by significantly reducing the measurement time, for example, the lighting time to 0.25 seconds and the lighting interval to 20 seconds, it is possible to effectively avoid the stress caused by the long measurement time. Will be possible. Therefore, it becomes possible to more objectively and accurately evaluate the degree of stress relaxation.
  • the pupil imaging means does not necessarily need to include an infrared CCD camera and a light emitting diode for infrared illumination.
  • the light stimulating means does not necessarily include a plurality of visible light emitting diodes covered with a light scattering plate. It is not necessary to be.
  • the pupil imaging means, the light stimulating means, and the fixation light emitting diode may be provided in a pair on the three-dimensional mask unit so as to face the eyes of both eyes, for example, so that both eyes can be measured simultaneously. it can.
  • the measurement can be performed in a dark room or quasi-dark room, for example, about 51 ux, do not face the pupil imaging means and the light stimulating means! / Open the three-dimensional mask part of the non-measurement eye part.
  • a fixation point provided at a distance of, for example, about 5 m may be fixed at a distance, and the measurement eye may be measured while being stabilized.
  • the number of visible light emitting diodes constituting the light stimulating means is not limited to eight, and is arbitrary, and the light scattering plate does not necessarily need to be in the shape of an annular band plate.
  • the evaluation result of the feeling of relaxation with high accuracy corresponding to the evaluation of the feeling of relaxation by analyzing the electrocardiogram (chest V5 lead) RR interval fluctuation spectrum analysis can be obtained.
  • a demonstration test that supports the obtained results will be described as Example 1.
  • a test in which the pupil-to-photoreaction measuring device for evaluating a feeling of relaxation according to the present invention is evaluated to be effective in causing a relaxed state of cedrol force S will be described as Example 2. Note that the present invention is not limited to Examples 1 and 2.
  • ECG electrodes were installed in a constant environment at a temperature of 23 ° C and a relative humidity of 50%, and continuous monitoring was started.
  • the pupil-photoreaction measuring device weight 80 g
  • Light stimulation was performed 5 times for 0.25 seconds at intervals of 2 seconds.
  • the goggles were removed, and for 15 minutes, group A heard white noise and group B heard the babbling of the brook. Then, goggles were put on the face again, and after dark adaptation for 1 minute and 30 seconds, the same pupil-optical response test as described above was performed.
  • FIG. Figures 8 (b) and 8 (c) show the results of analysis by ECG RR interval fluctuation spectrum analysis.
  • VC electrocardiogram RR interval fluctuation spectrum analysis power
  • Tukey-Kramer method as a multiple comparison test (Post-hoc test).
  • no significant difference was observed in the miotic velocity (VC) after hearing the white noise, as compared with after the environmental ordering.
  • HF and LF / HF by ECG R-R interval and fluctuation spectrum analysis showed no significant difference.
  • a significant increase (p-0.01) was observed in the miotic rate (VC) compared to after acclimatization.
  • HF showed an increasing tendency by the analysis of the electrocardiogram R-R interval fluctuation spectrum, and a significant decrease (p-0.01) was observed in LF / HF.
  • a significant increase (p-0.01) was observed in the miotic rate (VC) after hearing the sound of the babbling babble.
  • HF showed a tendency to increase by the analysis of ECG R-R interval fluctuation spectrum, and a significant decrease (p 0.01) was observed in LF / HF.
  • LF is the low-frequency component obtained by integrating the amplitude of 0.03-0.12 Hz by the fast Fourier transform of the electrocardiogram
  • HF is the integrated value of the amplitude of 0.12-0.5 Hz. Refers to high frequency components.
  • Example 2 For the same subject as in Example 1, in place of the goggle-type relaxation pupil-light reaction measuring instrument of the present invention, a commercially available pupil-light reaction measuring instrument (Iriscoder C7364, manufactured by Hamamatsu Photonics Co., Ltd.) was used. (The weight was 500 g), and the test was conducted under the same conditions and method as in Example 1. The results are shown in FIGS. 9 (a), (b) and (c).
  • the pupil velocity (VC) tended to increase compared to that after environmental ordering, but there was a significant difference between individuals, indicating a significant difference. Unacceptable strength. Furthermore, HF by ECG RR interval fluctuation spectrum analysis showed an increasing trend, and a significant decrease in LF / HF was observed (p ⁇ 0.01). Even after hearing the sound of the babbling of Ogawa, the pupil velocity (VC) tended to increase compared to after hearing the white noise, but the variation among individuals was significant and significant. The difference was unrecognizable. In addition, HF by ECG RR interval fluctuation spectrum analysis showed an increasing trend, and a significant decrease in LF / HF (p ⁇ 0.01) was observed.
  • the type of the pupil-to-light reaction measuring instrument was determined between the individual (between-subject), and the type of the sound was determined within the individual (within-subject).
  • ANOVA repeated measure analysis of variance
  • the degree of relaxation was changed by the electrocardiogram R-R interval fluctuation spectrum analysis method and the pupil-to-photoreaction measuring device of the shift after hearing the white noise compared to after the environmental ordering. was unacceptable.
  • the ECG RR interval fluctuation spectrum analysis method and the goggle type pupil-to-light reaction measuring device of the present invention for evaluating the sense of relaxation significantly increased the degree of relaxation.
  • 4 groups of 12 persons, 3 groups (A (Group B, Group B and Group C) were set up in a Latin square as shown in Table 1 so as to experience all environments.
  • the three-day study was adjusted so that each subject measured pupil-to-light response at the same time. Subjects environment variable chamber (temperature 23.
  • Pupil-to-light response was measured by wearing the goggles (weight 80 g) shown in Fig. 2 on the face, and the pupil diameter D before light stimulation and the amount of miosis D changed by light stimulation,
  • the miosis rate CR which is the ratio of 1 2, was set to each parameter.
  • the measurement was performed by wearing goggles, adapting to the B tone for 5 minutes in the light-shielded state, and then applying 0.25 seconds of light stimulation 5 times at 20-second intervals. Indicated by standard error.
  • the measurement results 15 minutes after entering the room are shown in Figs. 10 (a)-(c), and the measurement results 45 minutes after entering the room are shown in Figs. 11 (a)-(c).
  • Control normal air only environment
  • 100-Ced cedrol a when stripped at a concentration of 100 / g / m 3 environment
  • 800-Ced cedrol a when stripped at a concentration of 800 / g / m 3 environment.
  • FIG. 10 (a) (c) and FIG. 11 (a) - According to the measurement results (c), the compared with the environment only normal air, in the environment Cedrol 800 / gZm 3, entry After 15 minutes, the pupil diameter D before light stimulation shows a decreasing tendency, and the change amount D of the pupil diameter after light stimulation shows an increasing tendency.
  • the light source of the photostimulator of the pupil-to-photoreaction measuring device for evaluation of relaxation in Reference Example 1 was used as shown in FIG. 5 (a).
  • the light source of the photostimulator eight light emitting diodes of 660 nm are arranged on a circumference of 15 mm radius at equal angular intervals of 45 degrees, and a light scattering plate of 2 mm thick made of acrylic resin is placed on top of it, with an outer diameter of 20 mm. Process into a shape with an inner diameter of 10mm.
  • the position of the light-emitting surface of the light stimulator is defined by defining two-dimensional orthogonal coordinates with the origin at the position of the light-receiving surface (the position at a vertical distance of 20 mm) corresponding to the subject's pupil, perpendicular to the center of the light scattering plate.
  • the light intensity on the light receiving surface was normalized with the light intensity at 1 as 1.
  • Figure 5 (b) shows the normalized emission intensity distribution of the light-receiving surface.
  • FIG. 6 shows a commonly used closed loop method as a light source of the photostimulator.
  • Using a single 660 nm light emitting diode determine a two-dimensional orthogonal coordinate originating at the position of the light receiving surface (at a vertical distance of 20 mm) corresponding to the subject's pupil, perpendicular to the optical axis of the light emitting diode
  • the light intensity on the light-receiving surface was normalized with the light intensity on the light-emitting surface of the photostimulator as 1.
  • Fig. 6 (b) shows the normalized emission intensity distribution of the light receiving surface.
  • each light emitting diode is arranged evenly below the light scattering plate rather than the light irradiating device consisting of one light emitting diode.
  • the light stimulator that has been used can distribute a certain amount or more of light intensity over a wide range on the light receiving surface corresponding to the subject's pupil. It has been found that the use of a photostimulator in which the light emitting diodes are evenly arranged makes it possible to easily equalize the irradiation light amount to the pupil.
  • the pupil-to-light reaction measuring device for evaluating a feeling of relaxation of the present invention for example, a normal healthy person can easily use it, and easily and easily evaluate the degree of stress and relaxation objectively and accurately. Can be.

Abstract

A papillary light reflex measuring instrument for evaluating a relaxed feeling (10) used when evaluating a relaxed feeling by tracking papillary light reflex, comprising a three-dimensional mask set (11) mounted on the face so as to cover eye portions, a pupil imaging means (12) and a light stimulating means (13) disposed on the inner surface side of the mask set (11) so as to face the eyeball of at least one eye, and a control analyzing means (14) connected with the pupil imaging means (12) and the light stimulating means (13) to control them, for recording a picked-up image sent from the pupil imaging means (12) and performing a computing analysis relating to a constricted pupil and a dilated pupil based on the image, wherein a total weight at mounting of the three-dimensional mask set (11) including the pupil imaging means (12) and the light stimulating means (13) is 30-120 g.

Description

明 細 書  Specification
リラックス感評価用瞳孔対光反応計測具  Pupil-to-photoresponse measuring instrument for relaxation evaluation
技術分野  Technical field
[0001] 本発明は、リラックス感評価用瞳孔対光反応計測具に関する。  The present invention relates to a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation.
背景技術  Background art
[0002] 瞳孔は、網膜視神経にはじまる求心路をもち、自律神経を主たる遠心路とする虹彩 筋によって囲まれる空間であり、中枢神経はもとより脳神経、自律神経に関する情報 を提供することが可能である。瞳孔に関する研究にはめざましいものがあり、基礎研 究の面では対光反応経路の見直しによる他の神経系との関連性や、大脳、小脳との 関連性等に新たな知見を得ており、また臨床研究の面では、視覚入力の他覚的評 価の手段や各種神経疾患の病態解明手段等として研究の範囲が拡げられている。  [0002] The pupil is a space that has an afferent path starting from the retinal optic nerve and is surrounded by iris muscles whose main autonomic nerve is the efferent path, and can provide information on the central nerve as well as the cranial nerve and the autonomic nerve. . Pupil research is remarkable, and in basic research, new knowledge has been obtained on the relevance to other nervous systems and the cerebrum and cerebellum by reviewing the light response pathway. In the area of clinical research, the scope of research has been expanded as a means of objectively evaluating visual inputs and as a means of elucidating the pathology of various neurological diseases.
[0003] また、瞳孔検査の代表的な方法として、赤外線 Pupillogramの原理に基づく瞳孔検 查が知られている。赤外線 Pupillogramの原理は、ヒト網膜は赤外線に対して感受性 力 Sないため、赤外線を照射することによって網膜に入射する赤外光が可視光の光量 調節機構である対光反応に影響を与えることはないことから、可視光による瞳孔の大 きさの変化は、目に赤外線を照射することによって虹彩より反射している反射光量の 変化として光電素子によって検出する力、或いはテレビカメラによって瞳孔面積変化 を記録し、その画面力 瞳孔面積に比例したアナログ電気信号として連続的に記録 することができると!/ヽぅ原理である。  [0003] Further, as a typical method of pupil examination, a pupil examination based on the principle of infrared Pupillogram is known. The principle of the infrared Pupillogram is that the human retina has no sensitivity S to the infrared light, so it is not possible that the infrared light incident on the retina by irradiating the infrared light will affect the light response, which is the mechanism of adjusting the amount of visible light. Therefore, changes in the size of the pupil due to visible light can be attributed to the force detected by the photoelectric element as a change in the amount of light reflected from the iris by irradiating the eye with infrared rays, or the change in the pupil area by the television camera. Recording and its screen power The principle is that it can be recorded continuously as an analog electric signal proportional to the pupil area! / ヽ ぅ.
[0004] そして、赤外線 Pupillogramの原理に基づいて対光反応による瞳孔運動を分析して 、対象者の神経障害や意識障害を臨床的に判定できるようにした装置が開発されて おり(例えば、特許文献 1、特許文献 2参照)、これらの装置によれば、例えば対光反 応潜時の延長、縮瞳量の低下、縮瞳率の低下等を介して入力系(主に視神経)障害 が判定され、副交感神経系が縮瞳相に、交感神経系が散瞳相に各々反映されること を介して、出力系(交感'副交感)障害が判定されている。  [0004] Devices have been developed that analyze pupil movement due to light response based on the principle of infrared Pupillogram, and can clinically determine a subject's nervous disorder or consciousness disorder (for example, see Patents). According to these devices, the input system (mainly the optic nerve) is impaired, for example, by prolonging the light response latency, reducing the amount of miosis, and reducing the ratio of miosis. It is determined that the output system (sympathetic / parasympathetic) disorder is determined through the fact that the parasympathetic nervous system is reflected in the miotic phase and the sympathetic nervous system is reflected in the mydriatic phase.
特許文献 1:特開平 7 - 163522号公報  Patent Document 1: JP-A-7-163522
特許文献 2:特開平 7-171104号公報 発明の開示 Patent Document 2: JP-A-7-171104 Disclosure of the invention
[0005] 一方、現代社会におけるさまざまなストレス要因から、近年、健常者であっても、多く の人々がストレスによる悩みを抱えており、このようなストレスの程度を客観的に評価 できるようにすることにより、例えば運動ゃァロマテラピー等によるストレス解消方法を 日常生活に適宜取り入れ、リラックス感が得られるようにして、 日々の健康の維持増 進をさらに効果的に図るようにすることが望まれている。ここで、肉体的 ·精神的なスト レスを受けた場合、副交感神経と交感神経の働きのバランスが崩れて自律神経系に 失調が生じると、精神の亢進状態が引き起こされ、速やかな入眠や、十分な睡眠が 妨げられることが一般的に知られている。また、これらのストレスを緩和させてリラック ス感を得るには、副交感神経の働きを交感神経の働きよりも相対的に優位にすると効 果的であることち知られて ヽる。  [0005] On the other hand, due to various stress factors in modern society, in recent years, even healthy people, many people are suffering from stress, and the degree of such stress can be objectively evaluated. Therefore, it is desired that stress reduction methods such as exercise perromatherapy, etc., be incorporated into daily life as appropriate, so that a relaxed feeling can be obtained, and that daily health maintenance and improvement can be achieved more effectively. . Here, if physical and mental stress is imposed, the parasympathetic and sympathetic nervous systems may become out of balance, resulting in ataxia in the autonomic nervous system, which may lead to a state of mental hyperactivity, promptly falling asleep, It is generally known that adequate sleep is disturbed. It is also known that parasympathetic function can be made relatively superior to sympathetic function to alleviate these stresses and achieve a feeling of relaxation.
[0006] したがって、ストレスやリラックスの程度を客観的且つ適切に評価するには、副交感 神経が優位な状態にあるカゝ、交感神経が優位な状態にあるかを判定する方法を採 用することが考えられ、このような副交感神経が優位な状態や交感神経が優位な状 態を検査する方法として、上述の赤外線 Pupillogramの原理に基づ 、て対光反応によ る瞳孔運動を分析する装置を用いることが可能である。  [0006] Therefore, in order to objectively and appropriately evaluate the degree of stress and relaxation, a method of determining whether the parasympathetic nerve is dominant or a method of determining whether the sympathetic nerve is dominant is employed. As a method for examining such a state in which the parasympathetic nerve is dominant or a state in which the sympathetic nerve is dominant, an apparatus for analyzing pupil movement due to light response based on the principle of the above-mentioned infrared pupilogram is used. Can be used.
[0007] し力しながら、上述の赤外線 Pupillogramの原理に基づく瞳孔対光反応検査装置に よれば、当該検査装置は、対象者の神経障害や意識障害を臨床的に判定できるよう にした装置であって、一般の健常者が、 日々の健康管理を目的として、ストレスやリラ ッタスの程度を知るために手軽に用いる検査器具としては不適当である。すなわち、 従来の瞳孔対光反応検査装置は、神経障害や意識障害を調べるために臨床的に 用いるものであったため、図 7に示すように、例えば 200— 500g程度の相当の重量 を有する大掛りな装置となり、これをリラックス感の評価用に用いる場合には、顔に装 着した際に、例えばその重量によって前方に倒れるような荷重が負荷されて、これを 支持するために首に余分な力を入れたり、前方力 手で押さえ付けるような動作が必 要となるため、このような動作が却ってストレスとして表れてリラックス感に影響を与え ることになり、ストレスやリラックスの程度を客観的に精度良く評価することが困難にな る場合がある。 [0008] また、上述の赤外線 Pupillogramの原理に基づく瞳孔対光反応検査装置によれば、 瞳孔に可視光を照射するための刺激光は、 Open loop方式では、光源と眼球との間 に凸レンズを置くことにより、凸レンズによって眼前で一度光を収束させて、縮瞳時の 瞳孔径よりも小さく絞ってから眼球内に一定量の刺激として入射させるものである力 被験者の顔面形状の相違によって、或いは光源と瞳孔間の相対的位置関係が測定 時毎に異なってしまうことによって、光照射位置がずれる恐れがあり、したがって光源 力 の照射光量が一定であっても、各被験者毎に、或いは同一被験者であっても測 定時毎に瞳孔への入射光量が変わってしまい、ストレスやリラックスの程度を客観的 に精度良く評価することが困難になる場合がある。 However, according to the pupil-to-light reaction test apparatus based on the principle of the infrared Pupillogram described above, the test apparatus is a device capable of clinically determining a subject's neuropathy or consciousness disorder. Therefore, it is unsuitable as a test device that can be used easily by ordinary healthy people to find out the degree of stress and relatation for daily health management. In other words, the conventional pupil-optical response test device was used clinically to check for neurological disorders and consciousness disorders. As shown in Fig. 7, a large weighing device with a considerable weight of, for example, about 200 to 500 g was used. When this device is used to evaluate the feeling of relaxation, when the device is worn on the face, for example, a load that falls forward due to its weight is applied, and an extra load is applied to the neck to support the device. Because it is necessary to apply force or hold down the hand with the forward force, such an action appears as stress rather than affecting the feeling of relaxation, and the degree of stress and relaxation is objectively measured. It may be difficult to evaluate with high accuracy. [0008] Further, according to the pupil-to-light reaction inspection apparatus based on the infrared Pupillogram principle described above, the stimulus light for irradiating the pupil with visible light uses a convex lens between the light source and the eyeball in the open loop method. By placing the lens, the light is once converged in front of the eyes by the convex lens, and is narrowed down to a smaller diameter than the pupil at the time of miosis, and then is injected into the eyeball as a certain amount of stimulus. If the relative positional relationship between the light source and the pupil changes at each measurement, the light irradiation position may shift. Therefore, even if the irradiation light amount of the light source power is constant, each subject or the same subject Even in this case, the amount of light incident on the pupil changes at each measurement, which may make it difficult to objectively and accurately evaluate the degree of stress and relaxation.
[0009] 本発明は、例えば一般の健常者が手軽に用いることができると共に、ストレスやリラ ッタスの程度を客観的に精度良く容易に評価することのできるリラックス感評価用瞳 孔対光反応計測具に関する。  [0009] The present invention provides a pupil-to-photoreaction measurement for evaluating a feeling of relaxation that can be easily used by, for example, a normal healthy person, and that can easily and objectively and accurately evaluate the degree of stress or relatation. About the tool.
[0010] 本発明は、瞳孔対光反応を追跡してリラックス感を評価する際に用いるリラックス感 評価用瞳孔対光反応計測具であって、目の部分を覆って顔に装着される立体マスク 部と、少なくとも一方の目の眼球と対向するように前記立体マスク部に取り付けられる 瞳孔撮像手段及び光刺激手段と、前記瞳孔撮像手段及び前記光刺激手段と接続し てこれらを制御すると共に、前記瞳孔撮像手段から送られる撮像を記録し、該撮像に 基づいて瞳孔の縮瞳及び散瞳に関する演算解析を行う制御解析手段とを備えてお り、且つ前記立体マスク部の前記瞳孔撮像手段及び前記光刺激手段を含んだ装着 時の重量が、 30— 120gである。  [0010] The present invention relates to a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation used when tracking a pupil-to-light reaction to evaluate a feeling of relaxation, and is a three-dimensional mask that is worn on a face covering an eye portion. A pupil imaging unit and a light stimulating unit attached to the three-dimensional mask unit so as to face the eyeball of at least one eye; and connecting and controlling the pupil imaging unit and the light stimulating unit, Control analysis means for recording an image sent from the pupil imaging means and performing arithmetic analysis on the miosis and mydriasis of the pupil based on the imaging, and the pupil imaging means and the pupil imaging means of the three-dimensional mask unit The weight when mounted, including the light stimulus, is 30-120 g.
[0011] 本発明において、立体マスク部は、内部が中空となった立体形状を有するマスクで あって、目の部分を覆って顔に装着された際に、当該立体マスク部に取り付けられた 瞳孔撮像手段及び光刺激手段を、目の眼球から所定の間隔を置いて離れた位置に 保持できる程度の保形剛性を有するものであり、例えばゴーグルタイプのマスクを用 いることがでさる。  [0011] In the present invention, the three-dimensional mask portion is a mask having a three-dimensional shape with a hollow inside, and is attached to the three-dimensional mask portion when the pupil is attached to the face while covering the eyes. It has a shape-retaining rigidity enough to hold the imaging means and the light stimulating means at a predetermined distance from the eyeball of the eye. For example, a goggle-type mask can be used.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明の一実施形態に係るリラックス感評価用瞳孔対光反応計測具の 立体マスク部を被試者の顔に装着した状態を示す斜視図である。 [図 2]図 2は、本発明の一実施形態に係るリラックス感評価用瞳孔対光反応計測具の 立体マスク部の構成を説明する斜視図である。 FIG. 1 is a perspective view showing a state in which a three-dimensional mask portion of a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to an embodiment of the present invention is attached to a face of a subject. FIG. 2 is a perspective view illustrating a configuration of a three-dimensional mask portion of a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to one embodiment of the present invention.
[図 3]図 3は、本発明の一実施形態に係るリラックス感評価用瞳孔対光反応計測具に おける制御解析機構の説明図である。  FIG. 3 is an explanatory diagram of a control analysis mechanism in a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to one embodiment of the present invention.
圆 4]図 4は、制御解析手段によって演算解析される解析パラメータを説明するチヤ ートである。 [4] FIG. 4 is a chart for explaining the analysis parameters calculated and analyzed by the control analysis means.
圆 5(a)]図 5 (a)は、参考例 1における本発明品の光刺激装置の説明図である。 FIG. 5 (a)] FIG. 5 (a) is an explanatory diagram of the photostimulator of the present invention in Reference Example 1.
圆 5(b)]図 5 (b)は、参考例 1により得られた受光面の相対発光強度分布図である。 圆 6(a)]図 6 (a)は、参考例 2における光刺激装置の説明図である。 圆 5 (b)] FIG. 5 (b) is a diagram of the relative light emission intensity distribution on the light receiving surface obtained in Reference Example 1. FIG. 6 (a)] FIG. 6 (a) is an explanatory diagram of the photostimulation device in Reference Example 2.
圆 6(b)]図 6 (b)は、参考例 2により得られた受光面の相対発光強度分布図である。 FIG. 6 (b)] FIG. 6 (b) is a diagram of the relative light emission intensity distribution on the light receiving surface obtained in Reference Example 2.
[図 7]図 7は、従来の瞳孔対光反応検査装置のマスク部を被試者の顔に装着した状 態を示す斜視図である。 [FIG. 7] FIG. 7 is a perspective view showing a state in which a mask unit of a conventional pupil-to-light reaction test apparatus is attached to the face of a subject.
圆 8(a)]図 8 (a)は、本発明のリラックス感評価用瞳孔対光反応計測具、及び心電図 を用いて行ったリラックス度計測結果である。 FIG. 8 (a)] FIG. 8 (a) shows the results of measurement of the degree of relaxation performed using the pupil-to-photoresponse measuring instrument for evaluating a feeling of relaxation according to the present invention and an electrocardiogram.
圆 8(b)]図 8 (b)は、本発明のリラックス感評価用瞳孔対光反応計測具、及び心電図 を用いて行ったリラックス度計測結果である。 FIG. 8 (b)] FIG. 8 (b) shows the results of measurement of the degree of relaxation performed using the pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation according to the present invention and an electrocardiogram.
圆 8(c)]図 8 (c)は、本発明のリラックス感評価用瞳孔対光反応計測具、及び心電図 を用いて行ったリラックス度計測結果である。 FIG. 8 (c)] FIG. 8 (c) shows the results of measurement of the degree of relaxation performed using the pupil-to-photoresponse measuring instrument for evaluating a feeling of relaxation according to the present invention and an electrocardiogram.
圆 9(a)]図 9 (a)は、市販の瞳孔対光反応計測具、及び心電図を用いて行ったリラック ス度計測結果である。 圆 9 (a)] FIG. 9 (a) shows the results of measurement of the degree of relaxation performed using a commercially available pupil-to-photoresponse measuring instrument and an electrocardiogram.
圆 9(b)]図 9 (b)は、市販の瞳孔対光反応計測具、及び心電図を用いて行ったリラッ タス度計測結果である。 [9 (b)] FIG. 9 (b) shows the results of measurement of the relatability using a commercially available pupil-to-photoresponse measuring instrument and an electrocardiogram.
圆 9(c)]図 9 (c)は、市販の瞳孔対光反応計測具、及び心電図を用いて行ったリラック ス度計測結果である。 圆 9 (c)] FIG. 9 (c) shows the results of measurement of the degree of relaxation performed using a commercially available pupil-to-photoresponse measuring instrument and an electrocardiogram.
[図 10(a)]図 10 (a)は、実施例 2における入室 15分後に測定した光刺激前の瞳孔径 計測結果である。  [FIG. 10 (a)] FIG. 10 (a) shows the result of measuring the pupil diameter before light stimulation measured 15 minutes after entering the room in Example 2.
[図 10(b)]図 10 (b)は、実施例 2における入室 15分後に測定した光刺激により変化し た縮瞳量計測結果である。 [図 10(c)]図 10 (c)は、実施例 2における入室 15分後に測定した光刺激により変化し た縮瞳率計測結果である。 [FIG. 10 (b)] FIG. 10 (b) shows the results of measuring the amount of miosis changed by light stimulation measured 15 minutes after entering the room in Example 2. [FIG. 10 (c)] FIG. 10 (c) shows the results of measurement of the miosis rate changed by light stimulation measured 15 minutes after entering the room in Example 2.
[図 11(a)]図 11 (a)は、実施例 2における入室 45分後に測定した光刺激前の瞳孔径 計測結果である。  [FIG. 11 (a)] FIG. 11 (a) shows the result of measuring the pupil diameter before light stimulation measured 45 minutes after entering the room in Example 2.
[図 11(b)]図 11 (b)は、実施例 2における入室 45分後に測定した光刺激により変化し た縮瞳量計測結果である。  [FIG. 11 (b)] FIG. 11 (b) shows the results of measuring the amount of miosis changed by light stimulation measured 45 minutes after entering the room in Example 2.
[図 11(c)]図 11 (c)は、実施例 2における入室 45分後に測定した光刺激により変化し た縮瞳率計測結果である。  [FIG. 11 (c)] FIG. 11 (c) shows the results of measurement of the miosis rate changed by light stimulation measured 45 minutes after entering the room in Example 2.
発明の詳細な説明  Detailed description of the invention
[0013] 本発明の好ましい一実施形態に係るリラックス感評価用瞳孔対光反応計測具 10は 、瞳孔対光反応を追跡してリラックス感を評価する際に用いる対光反応計測具であつ て、図 1及び図 2に示すように、目の部分を覆って顔に装着される立体マスク部 11と、 少なくとも一方の目の眼球と対向するように立体マスク部 11に取り付けられる瞳孔撮 像手段 12及び光刺激手段 13と、瞳孔撮像手段 12及び光刺激手段 13と接続してこ れらを制御すると共に、瞳孔撮像手段 12から送られる撮像を記録し、該撮像に基づ いて瞳孔の縮瞳及び散瞳に関する演算解析を行う制御解析手段 14 (図 3参照)とを 備えており、且つ立体マスク部 11の瞳孔撮像手段 12及び光刺激手段 13を含んだ 装着時の重量が、 30— 120gとなっている。  [0013] A pupil-to-light response measuring instrument 10 for evaluating a feeling of relaxation according to a preferred embodiment of the present invention is a light-response measuring instrument used for tracking a pupil-light reaction to evaluate a feeling of relaxation. As shown in FIGS. 1 and 2, a three-dimensional mask portion 11 that is attached to the face so as to cover the eyes, and a pupil imaging means 12 that is attached to the three-dimensional mask portion 11 so as to face at least one eyeball. And the light stimulating means 13 and the pupil imaging means 12 and the light stimulating means 13 are connected to each other to control them, record the image sent from the pupil imaging means 12, and based on the image, the miosis of the pupil and Control analysis means 14 (see Fig. 3) for performing arithmetic analysis on mydriasis is provided, and the weight of the three-dimensional mask unit 11 including the pupil imaging means 12 and the light stimulating means 13 when attached is 30-120 g. Has become.
[0014] また、本実施形態によれば、瞳孔撮像手段 12は、赤外線 CCDカメラ 15と赤外線照 明用発光ダイオード 17とからなり、光刺激手段 13は、複数の可視光発光ダイオード 18を光散乱板 19で覆って構成されている。  According to the present embodiment, the pupil imaging means 12 includes an infrared CCD camera 15 and a light emitting diode 17 for infrared illumination, and the light stimulating means 13 scatters a plurality of visible light emitting diodes 18. It is composed of a cover 19.
[0015] さらに、本実施形態によれば、瞳孔撮像手段 12及び光刺激手段 13は一方の目の 眼球と対向するように配置されており、立体マスク部 11の内側面には、他方の目の眼 球と対向するように固視灯用発光ダイオード 20が設けられている。  Further, according to the present embodiment, the pupil imaging means 12 and the light stimulating means 13 are arranged so as to face the eyeball of one eye, and the inner face of the three-dimensional mask section 11 is provided with the other eye. A fixation light emitting diode 20 is provided so as to face the eyeball.
[0016] 本実施形態の瞳孔対光反応計測具 10を構成する立体マスク部 11は、不投光性の 材料によって形成されたゴーグルタイプの 2パーツ型のマスクであって、各パーツに よって目の部分を各々覆った状態で装着ベルト 21を介して顔に装着された際に、周 縁部が顔の肌と密着して中空の内部に外部から光が侵入するのを遮断して暗視状 態にすると共に、光刺激手段 13の発光に伴った瞳孔対光反応の追跡を効果的に行 うことを可能にするものである。これにより、暗順応のための暗室を必要としない。 The three-dimensional mask section 11 constituting the pupil-to-light reaction measuring instrument 10 of the present embodiment is a goggle-type two-part mask formed of a non-light-projecting material, When the camera is worn on the face via the wearing belt 21 with each part covered, the peripheral part is in close contact with the skin of the face, blocking light from entering the hollow interior from the outside, and night vision Condition In addition to this, it is possible to effectively track the pupil-to-light reaction accompanying the light emission of the light stimulating means 13. This eliminates the need for a darkroom for dark adaptation.
[0017] 瞳孔撮像手段 12は、赤外線 CCDカメラ 15と赤外線照明用発光ダイオード 17とか らなるものであり、赤外線 CCDカメラ 15は、その本体部分を立体マスク部 11の外側 に突出配置すると共に、そのレンズ部 16を、立体マスク部 11の内側面に配設された 円環帯板形状の光散乱板 19の中央の穴部分 22に臨ませた状態で、立体マスク部 1 1の一方のパーツに取り付けられている。また赤外線照明用発光ダイオード 17は、中 央の穴部分 22を挟んだ直径方向の両側に位置して、円環帯板形状の光散乱板 18 に一対取り付けられている。そして、赤外線 CCDカメラ 15は、例えば 30— 60Hz程 度の周波数と、 1フレーム当たり 0. 017-0. 033ms程度のサンプリング性能を備え ており、制御解析手段 14により制御されて瞳孔を連続撮影すると共に、得られた撮 像を制御解析手段 14に送信するようになっている。  The pupil imaging means 12 is composed of an infrared CCD camera 15 and a light-emitting diode 17 for infrared illumination. The infrared CCD camera 15 has a main body protruding outside the three-dimensional mask section 11 and its The lens part 16 faces one of the parts of the three-dimensional mask part 11 with the lens part 16 facing the center hole 22 of the annular band plate-shaped light scattering plate 19 arranged on the inner surface of the three-dimensional mask part 11. Installed. Further, a pair of the light-emitting diodes 17 for infrared illumination are mounted on the light scattering plate 18 in the shape of an annular band plate on both sides in the diametrical direction with respect to the center hole 22. The infrared CCD camera 15 has a frequency of, for example, about 30-60 Hz and a sampling performance of about 0.017-0.033 ms per frame, and is controlled by the control analysis means 14 to continuously photograph the pupil. At the same time, the obtained image is transmitted to the control analysis means 14.
[0018] 光刺激手段 13は、例えば 8個の可視光発光ダイオード 18と光散乱板 19とからなる ものであり、 8個の可視光発光ダイオード 18は、各々、例えば 7— 13 W程度の発光 強度を有しており、円環帯板形状の光散乱板 19に、これの周方向に 45度の等角度 間隔をおいて配設されると共に、光散乱板 19によって覆われるようにして当該光散 乱板 19に埋設設置されている。また可視光発光ダイオード 18は、制御解析手段 14 力 の制御によって例えば 0. 1— 2秒程度の所定の点灯時間、及び例えば 10— 60 秒程度の所定の点灯間隔で、可視光を発光することができるようになって 、る。  The light stimulating means 13 is composed of, for example, eight visible light emitting diodes 18 and a light scattering plate 19, and each of the eight visible light emitting diodes 18 emits, for example, about 7 to 13 W. The light-scattering plate 19, which has strength, is disposed at an equal angular interval of 45 degrees in the circumferential direction on the annular-shaped plate-shaped light scattering plate 19, and is covered by the light-scattering plate 19. It is buried in the light scattering plate 19. Further, the visible light emitting diode 18 emits visible light at a predetermined lighting time of, for example, about 0.1 to 2 seconds and a predetermined lighting interval of, for example, about 10 to 60 seconds, under the control of the control analysis means 14. I can do it.
[0019] 可視光発光ダイオード 18を覆って配置される光散乱板 19は、例えばアクリル榭脂 等からなり、内径 3— 14mm、外径 25— 45mm、厚さ 0. 5— 5mm程度の大きさの円 環帯板形状に加工形成されたものである。光散乱板 19は、可視光発光ダイオード 1 8と眼球との間に介在して立体マスク部 11の内側面に取り付けられることにより、可視 光発光ダイオード 18から出力される光線の束を、光散乱板 19に対して反射、屈折を 繰り返させた後に結像させて共心光線の束とすることを可能にし、これによつて光刺 激手段 13を、面発光型の素子として機能させるものである。  The light scattering plate 19 disposed over the visible light emitting diode 18 is made of, for example, acrylic resin, and has a size of about 3 to 14 mm in inner diameter, 25 to 45 mm in outer diameter, and about 0.5 to 5 mm in thickness. It is formed in the shape of an annular belt plate. The light scattering plate 19 is interposed between the visible light emitting diode 18 and the eyeball and is attached to the inner surface of the three-dimensional mask portion 11 so that a light beam output from the visible light emitting diode 18 is scattered. This makes it possible to form an image by forming an image after repeating reflection and refraction on the plate 19, thereby making the photostimulating means 13 function as a surface-emitting type element. is there.
[0020] また、光散乱板 19によって光刺激手段 13による発光面積 (輝点)を大きくして、瞳 孔への照射光量を均一化することが可能になるため、例えば被験者の顔面形状の 相違や、同一被験者による異なる測定機会によって、光刺激手段 13と瞳孔間の距離 のバラツキによる身体的個人差や相対的位置ずれが生じても、大きな輝点によってこ のようなバラツキや位置ずれを吸収することにより、照射光量の均一化による精度の 良いリラックス感の評価が可能になる。 [0020] In addition, since the light scattering plate 19 can increase the light emission area (bright spot) of the light stimulating means 13 and make the amount of light irradiated to the pupil uniform, for example, the face shape of the subject can be improved. Even if there is a physical individual difference or a relative displacement due to a difference in the distance between the light stimulating means 13 and the pupil due to a difference or a different measurement opportunity by the same subject, such a variation or displacement is caused by a large bright spot. By absorbing, it becomes possible to evaluate the relaxed feeling with high accuracy by making the irradiation light amount uniform.
[0021] なお、可視光発光ダイオード 18と光散乱板 19とからなる光刺激手段 19は、目の眼 球と 13— 35mmの間隔をおいて配置されるようにすることが好ましい。光刺激手段 19を目の眼球と 13— 35mmの間隔をおいて配置することにより、個人間に瞳孔の大 きさの違いがある場合や、瞳孔が動いて安定しない場合でも、赤外線 CCDカメラが 捕らえる映像の範囲に瞳孔の画像が収まることになつて、効果的な計測を行うことが 可會 になる。 It is preferable that the light stimulating means 19 composed of the visible light emitting diode 18 and the light scattering plate 19 be arranged at a distance of 13 to 35 mm from the eyeball of the eye. By arranging the light stimulating means 19 at a distance of 13-35 mm from the eyeball of the eye, the infrared CCD camera can be used even when there is a difference in pupil size between individuals or when the pupil moves and is not stable. When the image of the pupil falls within the range of the captured image, effective measurement can be performed.
[0022] 瞳孔撮像手段 12や光刺激手段 13を制御すると共に、瞳孔撮像手段 12による撮像 に基づいて瞳孔の縮瞳及び散瞳に関する演算解析を行う制御解析手段 14は、図 3 に示すように、例えば、コンピュータの制御装置と演算装置とを合わせた中央処理装 置 (CPU)、光の点灯時間や光強度の制御を行う光刺激コントロール回路、赤外線 C CDカメラ力ゝらのビデオ信号を取り込む画像ボード、瞳孔画像、瞳孔の 2値化画像、 及び解析パラメータのチャートを表示する表示装置 (CRT)、瞳孔の動画像、瞳孔直 径 (Z値)、及びトリガー信号を記録するデータ記録装置等を備えている。制御解析手 段 14は、各種の配線 23 (図 1,図 2参照)を介して、瞳孔撮像手段 12を構成する赤 外線 CCDカメラ 15や赤外線照明用発光ダイオード 17、光刺激手段 13を構成する 可視光発光ダイオード 18、或いは後述する固視灯用発光ダイオード 20等と接続して おり、これらを制御すると共に、瞳孔撮像手段 12から送られる撮像を記録し、この撮 像に基づ!、て、公知の各種の演算解析方法に従って瞳孔の縮瞳及び散瞳に関する 演算解析を行うようになっている。また必要に応じて撮像や解析結果を表示装置に 表示するようになっている。  The control analysis means 14 which controls the pupil imaging means 12 and the light stimulus means 13 and performs arithmetic analysis on the pupil miosis and mydriasis based on the image taken by the pupil imaging means 12, as shown in FIG. For example, a central processing unit (CPU) that combines a computer control unit and an arithmetic unit, a light stimulus control circuit that controls the lighting time and light intensity, and captures video signals from infrared CCD camera power Display board (CRT) that displays an image board, pupil image, pupil binarized image, and analysis parameter chart, pupil moving image, pupil diameter (Z value), and data recording device that records trigger signals, etc. It has. The control analysis means 14 comprises an infrared CCD camera 15 constituting the pupil imaging means 12, a light emitting diode 17 for infrared illumination, and a light stimulating means 13 via various wirings 23 (see FIGS. 1 and 2). It is connected to the visible light emitting diode 18 or the fixation light emitting diode 20 described below, etc., and controls these, records the image sent from the pupil image pickup means 12, and based on this image, According to various known arithmetic analysis methods, arithmetic analysis relating to miosis and mydriasis of a pupil is performed. The imaging and analysis results are displayed on a display device as needed.
[0023] なお、本実施形態によれば、図 4を参照して、解析パラメータとして例えば初期状態 の瞳孔直径値 (Dl :mm)、光刺激後の変化瞳孔直径値 (D2 :mm)、縮瞳率 (CR: D2 ZD1)、瞳孔が最小になるまでに要した時間 (Tl :mSec)、瞳孔が最小から散瞳して、 最小値の 63%まで回復するのに要した時間 (T2 :msec)、縮瞳速度 (VC: mm/sec)、 縮瞳加速度 (AC : mm/sec2)、散瞳速度 (VD: mm/sec)等力 制御解析手段 14によ つて演算解析されることになる。 According to the present embodiment, referring to FIG. 4, as analysis parameters, for example, the pupil diameter value in the initial state (Dl: mm), the changed pupil diameter value after light stimulation (D2: mm), Pupil ratio (CR: D2 ZD1), time required for the pupil to be minimized (Tl: m Sec ), time required for the pupil to return to 63% of the minimum value from the minimum mydriasis (T2 : msec), miotic velocity (VC: mm / sec), The pupil acceleration (AC: mm / sec 2 ) and the mydriatic velocity (VD: mm / sec) are calculated and analyzed by the constant force control analysis means 14.
瞳孔対光反応のパラメータは、ピクセル単位とすると絶対値ィ匕ができないため、縮 瞳率は求められるが他のパラメータには応用できず、よって、計測結果が個人内の データ比較の利用のみに限定されてしまう。一方、絶対値較正器により瞳孔径を mm 単位で表すことにより、他の有用なパラメータ (VC、 VD等)を利用できることになる。ま た、瞳孔径の簡易絶対値較正には、個体差の少ない虹彩径を定数と見なし、その値 を 11 mmとして比例計算により求めることもできる。  Since the pupil-light response parameter cannot be absolute valued in pixel units, the pupil ratio can be obtained but cannot be applied to other parameters, and the measurement results are only used for data comparison within individuals. It will be limited. On the other hand, by expressing the pupil diameter in mm with the absolute value calibrator, other useful parameters (VC, VD, etc.) can be used. In addition, for simple absolute value calibration of the pupil diameter, the iris diameter with little individual difference can be regarded as a constant, and its value can be calculated by proportional calculation with 11 mm.
縮瞳率 CRは、呈示する刺激の種類によっては、同じ自律神経活動に作用するもの であっても、 D1と D2のバランスにより一定の傾向を示さないことがあるため、刺激の種 類によって解釈の異なる場合が考えられる。よって、 Dl、 D2及び CRにカ卩えて、 VC、 VD等のパラメータを用いることが有用性の点力も好まし 、。 The miosis rate CR is interpreted depending on the type of stimulus, because depending on the type of stimulus presented, even if it affects the same autonomic nervous activity, it may not show a certain tendency due to the balance between D1 and D2 May be different. Thus, Dl, D2 and CR in mosquito卩Ete, VC, point force it is useful to use parameters such as V D is also preferable.
また、瞳孔を直径ではなく面積で求める場合もある。これは、面積のほうが、瞳孔の 大きさを精度よく捉えることができるとの点力もである。しかし、瞳孔が睫毛で遮られた り、瞼が完全に開いていない等の場合には誤差の原因となるため、直径を用いること が好ましい。  In some cases, the pupil is determined not by diameter but by area. This is a point that the area can more accurately detect the size of the pupil. However, if the pupil is obstructed by eyelashes or the eyelids are not completely open, this may cause an error, so it is preferable to use the diameter.
[0024] そして、本実施形態のリラックス感評価用瞳孔対光反応計測具 10によれば、瞳孔 撮像手段 12、光刺激手段 13、固視灯用発光ダイオード 20、配線 23等を含んだ装 着時の立体マスク部 11の重量が、 30— 120g、好ましくは 30— 80gとなっている。当 該範囲とすることにより、例えばベルトを介して顔面にゴーグルを容易に固定すること が可能になり、手でゴーグルを支えながら計測したり、首に余分な荷重が力かること による測定結果への影響を効果的に回避できるという利点が得られることになる。  According to the pupil-to-light response measuring instrument 10 for evaluating a feeling of relaxation of the present embodiment, the pupil imaging means 12, the light stimulating means 13, the fixation light emitting diode 20, the wiring 23 and the like are included. At this time, the weight of the three-dimensional mask portion 11 is 30 to 120 g, preferably 30 to 80 g. By setting the range, the goggles can be easily fixed to the face, for example, via a belt, and the measurement can be performed while supporting the goggles with a hand or the measurement result due to excessive load applied to the neck. The advantage is obtained that the effect of can be effectively avoided.
[0025] また、本実施形態によれば、他方の目の眼球 (非測定眼)と対向するように立体マス ク部 11の他方のパーツの内側面に取り付けられる固視灯用発光ダイオード 20は、可 視光を点灯して他方の目により注視させることによって、例えば計測対象となる一方 の目の眼球 (測定眼)の縮瞳による影響を除去し、測定眼を安定させるために設けら れるもので、例えば 490— 770nm程度の波長を有している。  According to the present embodiment, the fixation light emitting diode 20 attached to the inner surface of the other part of the three-dimensional mask portion 11 so as to face the eyeball (non-measuring eye) of the other eye is It is provided to stabilize the measurement eye by removing the influence of the miosis of the eyeball (measurement eye) of one eye to be measured by turning on the visible light and gazing at the other eye. And has a wavelength of, for example, about 490-770 nm.
[0026] 本実施形態のリラックス感評価用瞳孔対光反応計測具 10を用いてリラックス感を評 価するには、各パーツによって両目を覆うようにして立体マスク部 11を顔に装着し、 例えば 90秒間待って暗順応させた後に、基準時間を 20秒間とり、制御解析手段 14 の制御によって、例えば点灯時間を 0. 25秒、点灯間隔を 20秒間とした光刺激を、 光刺激手段 13を介して 5回行う。この間、瞳孔撮像手段 12による瞳孔の撮像を例え ば 0. 017msの間隔で連続して行うと共に、 5回目の点灯後、 10秒間で撮像を終了 する。また撮影された撮像を逐次制御解析手段 14に送って演算解析を行い、各種 の解析パラメータを算出して、ストレスやリラックスの程度を評価する。 The sensation of relaxation is evaluated using the pupil-to-light reaction measuring device 10 for evaluating relaxation in the present embodiment. In order to evaluate, the three-dimensional mask part 11 is attached to the face so as to cover both eyes with each part, for example, after waiting for 90 seconds for dark adaptation, taking a reference time of 20 seconds, and controlling by the control analysis means 14, For example, a light stimulus with a lighting time of 0.25 seconds and a lighting interval of 20 seconds is performed five times via the light stimulating means 13. During this time, pupil imaging by the pupil imaging means 12 is performed continuously at an interval of, for example, 0.017 ms, and the imaging is completed 10 seconds after the fifth lighting. In addition, the captured images are sequentially sent to the control and analysis means 14 to perform arithmetic analysis, calculate various analysis parameters, and evaluate the degree of stress and relaxation.
[0027] すなわち、リラックスを感じている状態では、副交感神経の働きが交感神経の働きよ りも相対的に優位になることが知られており、このような副交感神経優位の状態では、 縮瞳が観察されると共に速度因子が抑制され、縮瞳時間 (T1)の増カロ、縮瞳速度 (V C)の低下、縮瞳加速度 (AC)の低下等の解析パラメータの変化が表れ、一方、交感 神経抑制の状態では、散瞳相の抑制と縮瞳相の賦活ィ匕を認めることから、これらの 解析パラメータの変化を追跡することにより、リラックスの程度を客観的且つ適切に評 価することが可能になる。  [0027] That is, it is known that the action of the parasympathetic nerve is relatively superior to the action of the sympathetic nerve in a state of feeling relaxed. Is observed and the velocity factor is suppressed, and changes in analysis parameters such as increased caloric time of miotic period (T1), decreased miotic speed (VC), and decreased miotic acceleration (AC) appear. In the state of nerve suppression, suppression of the mydriatic phase and activation of the miotic phase are recognized. Therefore, by tracking changes in these analysis parameters, it is possible to objectively and appropriately evaluate the degree of relaxation. Will be possible.
[0028] また、ストレスを感じて ヽる状態では、交感神経の働きが副交感神経の働きよりも相 対的に優位になることが知られており、このような交感神経優位の状態では、散瞳相 が亢進し、散瞳時間 (T2)の短縮、散瞳速度 (VD)の増大等の解析パラメータの変化 が表れ、一方、副交感神経抑制の状態では、散瞳し、縮瞳相の抑制と散瞳相の著し い賦活ィ匕を認めることから、これらの解析パラメータの変化を追跡することにより、スト レスの程度を客観的且つ適切に評価することが可能になる。  [0028] It is also known that the function of the sympathetic nerve is relatively superior to the function of the parasympathetic nerve in a state of feeling stress. The pupil phase is increased and changes in analysis parameters such as shortening of the mydriatic time (T2) and increasing of the mydriatic velocity (VD) appear. And remarkable activation of the mydriatic phase, it is possible to objectively and appropriately evaluate the degree of stress by tracking changes in these analysis parameters.
[0029] そして、本実施形態のリラックス感評価用瞳孔対光反応計測具 10によれば、例え ば一般の健常者が手軽に用いてストレスやリラックスの程度を容易に知ることができる と共に、ストレスやリラックスの程度を客観的に精度良く容易に評価することができる。 すなわち、本実施形態によれば、目の部分を覆って顔に装着されるゴーグルタイプ の立体マスク部 11と、立体マスク部に取り付けられる瞳孔撮像手段 12及び光刺激手 段 13と、これらを制御すると共に、得られた撮像に基づいて瞳孔の縮瞳及び散瞳に 関する演算解析を行う制御解析手段とからなり、立体マスク部は、装着時の重量が 3 0— 120g程度の軽量且つコンパクトな構造となって 、ることから、取り扱 、が容易で あり、当該立体マスク部 11を簡易な動作でスムーズに着脱しつつ、例えば立ったままAccording to the pupil-to-light reaction measuring instrument 10 for evaluating a feeling of relaxation of the present embodiment, for example, a normal healthy person can easily use the pupil-light reaction measuring instrument to easily know the degree of stress and relaxation, And the degree of relaxation can be objectively and easily evaluated with high accuracy. That is, according to the present embodiment, a goggle-type three-dimensional mask unit 11 that is worn on the face covering the eyes, a pupil imaging unit 12 and a light stimulus unit 13 that are attached to the three-dimensional mask unit, and control these. And a control analysis means for performing arithmetic analysis on the miosis and mydriasis of the pupil based on the obtained image. The three-dimensional mask portion has a lightweight and compact weight of about 30 to 120 g when worn. The structure makes it easy to handle Yes, while attaching and detaching the three-dimensional mask part 11 smoothly with a simple operation, for example, while standing
、或いは座ったままの状態で手軽にリラックス感を評価することが可能になる。 Alternatively, it is possible to easily evaluate the feeling of relaxation while sitting.
[0030] また、本実施形態によれば、立体マスク部は、装着時の重量が 30— 120g程度の 軽量となっていることから、これを顔に装着した状態においても、被験者は装着による 余分なストレスを感じることがなぐしたがってストレスやリラックスの程度を客観的に精 度良く容易に評価することが可能になる。  Further, according to the present embodiment, since the three-dimensional mask portion has a light weight of about 30 to 120 g when worn, even when the three-dimensional mask portion is worn on the face, the subject does not need extra Therefore, it is possible to easily and objectively evaluate the degree of stress and relaxation with high accuracy.
[0031] さらに、本実施形態によれば、光刺激手段 13は、可視光発光ダイオード 18を光散 乱板 19で覆って構成されており、発光面積 (輝点)を大きくして、瞳孔への照射光量 を均一化することができるので、被験者の顔面形状の相違や同一被験者による異な る測定機会に伴って、光刺激手段 13と瞳孔間の距離のバラツキによる身体的個人 差や相対的位置ずれが生じても、大きな輝点によってこのようなバラツキや位置ずれ を効果的に吸収することにより、ストレスやリラックスの程度をさらに客観的に精度良く 評価することが可能になる。  Further, according to the present embodiment, the light stimulating means 13 is configured by covering the visible light emitting diode 18 with the light scattering plate 19, increasing the light emitting area (bright point) to the pupil. Since the irradiation light amount of the subject can be made uniform, physical differences and relative positions due to variations in the distance between the light stimulating means 13 and the pupil can occur due to differences in the facial shape of the subject and different measurement opportunities by the same subject. Even if there is a shift, the degree of stress and relaxation can be evaluated more objectively and accurately by effectively absorbing such variations and position shifts by the large bright spots.
[0032] さらにまた、本実施形態によれば、 B音順応させるための時間を 90秒程度の短い時 間としても、その後の瞳孔対光反応の追跡を適切に行うことが可能であり、暗順応さ せるための時間として例えば 15分程度の相当の時間を要して 、た従来の瞳孔対光 反応検査装置と比較して、暗視状態の中で被験者に眠気を生じさせる恐れがなぐこ のような眠気による瞳孔対光反応への影響を効果的に回避することが可能になる。ま た、計測時間を、例えば点灯時間を 0. 25秒、点灯間隔を 20秒間として大幅に短縮 することにより、計測時間が長時間になることによるストレスの発生を効果的に回避す ることが可能になる。したがって、これらによってさらに客観的に精度良くストレスゃリ ラックスの程度を評価することが可能になる。  Further, according to the present embodiment, even if the time for adapting the B sound is as short as about 90 seconds, it is possible to appropriately track the pupil-light reaction thereafter, and It takes a considerable amount of time to adjust, for example, about 15 minutes, and there is no danger of causing drowsiness to the subject in night vision conditions compared to a conventional pupil-light reaction test device. It is possible to effectively avoid the influence on the pupil-light reaction due to drowsiness as described above. Also, by significantly reducing the measurement time, for example, the lighting time to 0.25 seconds and the lighting interval to 20 seconds, it is possible to effectively avoid the stress caused by the long measurement time. Will be possible. Therefore, it becomes possible to more objectively and accurately evaluate the degree of stress relaxation.
[0033] なお、本発明は、上記実施形態に限定されることなく種々の変更が可能である。例 えば、瞳孔撮像手段は、赤外線 CCDカメラと赤外線照明用発光ダイオードとからな るものである必要は必ずしもなぐ光刺激手段は、複数の可視光発光ダイオードを光 散乱板で覆って構成されるものである必要は必ずしもな 、。また瞳孔撮像手段及び 光刺激手段や固視灯用発光ダイオードは、両方の目の眼球と対向するように立体マ スク部に各一対設けて、例えば両方の目を同時に計測できるようにすることもできる。 さらに、例えば 1一 51ux程度の暗室又は準暗室内で計測を行うことができる場合には 、瞳孔撮像手段及び光刺激手段を対向させな!/、非測定眼の部分の立体マスク部を オープンにし、例えば 5m程度の距離に設けた固視点を遠見固視させて、測定眼を 安定させながら計測を行うようにすることもできる。 [0033] The present invention is not limited to the above embodiment, and various modifications can be made. For example, the pupil imaging means does not necessarily need to include an infrared CCD camera and a light emitting diode for infrared illumination.The light stimulating means does not necessarily include a plurality of visible light emitting diodes covered with a light scattering plate. It is not necessary to be. The pupil imaging means, the light stimulating means, and the fixation light emitting diode may be provided in a pair on the three-dimensional mask unit so as to face the eyes of both eyes, for example, so that both eyes can be measured simultaneously. it can. Furthermore, if the measurement can be performed in a dark room or quasi-dark room, for example, about 51 ux, do not face the pupil imaging means and the light stimulating means! / Open the three-dimensional mask part of the non-measurement eye part. For example, a fixation point provided at a distance of, for example, about 5 m may be fixed at a distance, and the measurement eye may be measured while being stabilized.
[0034] さらにまた、光刺激手段を構成する可視光発光ダイオードの数は 8個に限定される ことなく任意であり、光散乱板は円環帯板形状のものである必要は必ずしもない。 実施例 [0034] Furthermore, the number of visible light emitting diodes constituting the light stimulating means is not limited to eight, and is arbitrary, and the light scattering plate does not necessarily need to be in the shape of an annular band plate. Example
[0035] 本発明のリラックス感評価用瞳孔対光反応計測具を用いることにより、心電図 (胸部 V5誘導) R-R間隔変動スペクトル解析によるリラックス感の評価に対応する精度の良 いリラックス感の評価結果が得られることを裏付ける実証試験を、実施例 1として説明 する。また、本発明のリラックス感評価用瞳孔対光反応計測具を用いて、セドロール 力 Sリラックス状態をもたらすのに有効であることを評価した試験を実施例 2として説明 する。なお、本発明はこれらの実施例 1, 2に限定されるものではない。  [0035] By using the pupil-to-light reaction measuring device for evaluating a feeling of relaxation according to the present invention, the evaluation result of the feeling of relaxation with high accuracy corresponding to the evaluation of the feeling of relaxation by analyzing the electrocardiogram (chest V5 lead) RR interval fluctuation spectrum analysis can be obtained. A demonstration test that supports the obtained results will be described as Example 1. Also, a test in which the pupil-to-photoreaction measuring device for evaluating a feeling of relaxation according to the present invention is evaluated to be effective in causing a relaxed state of cedrol force S will be described as Example 2. Note that the present invention is not limited to Examples 1 and 2.
[0036] 〔実施例 1〕  [Example 1]
30代の健常女性 20名を 2群に分け、 A群 10名は、始めに白色雑音を聞かせ、次に 小川のせせらぎの音を聞力せた。一方 B群 10名は、始めに小川のせせらぎの音を聞 かせ、次に白色雑音を聞力せた。音を聞く順番を変えることにより、群間でカウンター ノ ランスをとつた。その時の生理状態について、上記実施形態と同様の構成を有す るリラックス感評価用瞳孔対光反応計測具を用いた瞳孔対光反応試験、及び心電図 (胸部 V5誘導) R-R間隔変動スペクトル解析を行った。  Twenty healthy women in their thirties were divided into two groups, and the ten in Group A heard white noise first, followed by the sound of the babbling brook. On the other hand, 10 people in group B heard the babbling of the brook first and then the white noise. By changing the order in which the sounds were heard, counter-nomination was achieved between groups. For the physiological state at that time, a pupil-light response test using a pupil-light response measuring device for evaluating the feeling of relaxation having the same configuration as in the above embodiment, and an electrocardiogram (thoracic V5 lead) RR interval fluctuation spectrum analysis were performed. Was.
まず、温度 23°C、相対湿度 50%の一定環境下で、心電図の電極を装着し、連続 モニタリングを開始した。電極装着後 15分間環境馴化させた後、本発明品であるゴ 一ダルタイプのリラックス感評価用瞳孔対光反応計測具 (重量 80g)を顔面に装着し 、 1分 30秒間の暗順応後、 20秒間のインターバルで 0. 25秒間の光刺激を 5回行つ た。瞳孔対光反応後ゴーグルを外し、 15分間、 A群は白色雑音を聞力せ、 B群は小 川のせせらぎの音を聞カゝせた。次いで、再びゴーグルを顔面に装着し、 1分 30秒間 の暗順応後に、前記と同様の瞳孔対光反応試験を行った。ここで、各音による影響 を Wash Outする目的で、 15分間、安静状態を保った後、更に、 15分間、 A群は小川 のせせらぎの音を聞力せ、 B群は白色雑音を聞力せた。最後に、再びゴーグルを顔 面に装着し、 1分 30秒間の暗順応後に、前記と同様の瞳孔対光反応試験を行った。 結果を図 8 (a)に示す。また心電図 R-R間隔変動スペクトル解析による解析結果を図 8 (b) , (c)に示す。 First, ECG electrodes were installed in a constant environment at a temperature of 23 ° C and a relative humidity of 50%, and continuous monitoring was started. After acclimatization for 15 minutes after the electrodes were mounted, the pupil-photoreaction measuring device (weight 80 g) for evaluating the feeling of relaxation of the godal type of the present invention was attached to the face, and after dark adaptation for 1 minute 30 seconds, Light stimulation was performed 5 times for 0.25 seconds at intervals of 2 seconds. After the pupil-light reaction, the goggles were removed, and for 15 minutes, group A heard white noise and group B heard the babbling of the brook. Then, goggles were put on the face again, and after dark adaptation for 1 minute and 30 seconds, the same pupil-optical response test as described above was performed. Here, for the purpose of washing out the effects of each sound, keep the resting state for 15 minutes, and then for 15 minutes, Hear the murmuring sound, and group B hears white noise. Finally, the goggles were put on the face again, and after dark adaptation for 1 minute and 30 seconds, the same pupil-optical response test as above was performed. The results are shown in FIG. Figures 8 (b) and 8 (c) show the results of analysis by ECG RR interval fluctuation spectrum analysis.
[0037] 図 8 (a) , (b) , (c)に示す結果によれば、瞳孔対光反応試験から得られた縮瞳速度  [0037] According to the results shown in Figs. 8 (a), (b), and (c), the miotic velocity obtained from the pupil-optical response test
(VC)および心電図 R-R間隔変動スペクトル解析力 得られた HF、 LF/HFをそれぞ れ変動要因とする一元配置分散分析法 (One factor ANOVA)を行った結果、有意な 差が認められ(HF:p〈0.05、その他: p〈0.0001)たので、更に多重比較検定(Post-hoc test)として、 Tukey-Kramer法による解析を行った。 A群および B群では、環境順ィ匕 後と比較し、白色雑音を聞いた後では縮瞳速度 (VC)に有意な差は認められなかつ た。また、心電図 R-R間隔および変動スペクトル解析による HF及び LF/HFも有意な 差は認められな力つた。一方、小川のせせらぎの音を聞力せた後では、環境順化後 と比較し、縮瞳速度 (VC)に有意な増加 (pく 0.01)が認められた。更に、心電図 R-R間 隔変動スペクトル解析による HFが増加傾向を示し、 LF/HFに有意な減少(pく 0.01)が 認められた。また、白色雑音を聞いた後と比較しても、小川のせせらぎの音を聞力せ た後では、縮瞳速度 (VC)に有意な増加 (pく 0.01)が認められた。更に、心電図 R-R 間隔変動スペクトル解析による HFが増加傾向を示し、 LF/HFに有意な減少(pく 0.01) が認められた。なお、ここで LFとは、心電図の高速フーリエ変換により、 0. 03-0. 1 2Hzの振幅を積分した低周波数成分をいい、 HFとは、 0. 12-0. 5Hzの振幅を積分 した高周波数成分をいう。  (VC) and electrocardiogram RR interval fluctuation spectrum analysis power One-way analysis of variance (One factor ANOVA) using the obtained HF and LF / HF as fluctuation factors, respectively, showed a significant difference (HF : p <0.05, other: p <0.0001), and further analyzed by Tukey-Kramer method as a multiple comparison test (Post-hoc test). In groups A and B, no significant difference was observed in the miotic velocity (VC) after hearing the white noise, as compared with after the environmental ordering. HF and LF / HF by ECG R-R interval and fluctuation spectrum analysis showed no significant difference. On the other hand, after hearing the sound of the babbling babble, a significant increase (p-0.01) was observed in the miotic rate (VC) compared to after acclimatization. In addition, HF showed an increasing tendency by the analysis of the electrocardiogram R-R interval fluctuation spectrum, and a significant decrease (p-0.01) was observed in LF / HF. Compared to hearing the white noise, a significant increase (p-0.01) was observed in the miotic rate (VC) after hearing the sound of the babbling babble. Furthermore, HF showed a tendency to increase by the analysis of ECG R-R interval fluctuation spectrum, and a significant decrease (p 0.01) was observed in LF / HF. Here, LF is the low-frequency component obtained by integrating the amplitude of 0.03-0.12 Hz by the fast Fourier transform of the electrocardiogram, and HF is the integrated value of the amplitude of 0.12-0.5 Hz. Refers to high frequency components.
[0038] 〔比較例 1〕  [Comparative Example 1]
実施例 1と同じ被験者に対し、本発明品であるゴーグルタイプのリラックス感評価用 瞳孔対光反応計測具に替えて、市販の瞳孔対光反応計測具 (浜松ホトニタス株式会 社製、ィリスコーダ C7364) (重量 500g)を用いたこと以外は、実施例 1と同様の条件 及び方法にて試験を行った。結果を図 9 (a) , (b) , (c)に示す。  For the same subject as in Example 1, in place of the goggle-type relaxation pupil-light reaction measuring instrument of the present invention, a commercially available pupil-light reaction measuring instrument (Iriscoder C7364, manufactured by Hamamatsu Photonics Co., Ltd.) was used. (The weight was 500 g), and the test was conducted under the same conditions and method as in Example 1. The results are shown in FIGS. 9 (a), (b) and (c).
[0039] 図 9 (a) , (b) , (c)に示す結果によれば、実施例 1と同様に一元配置分散分析法( One factor ANOVA)を行った結果、有意な差が認められ(LF/HF:p〈0.0001)たので 、更に多重比較検定(Post- hoc test)として、 Tukey-Kramer法による解析を行った。 A 群および B群では、環境順ィ匕後と比較し、白色雑音を聞いた後では縮瞳速度 (VC) に有意な差は認められな力つた。また、心電図 R-R間隔変動スペクトル解析による HF 及び LF/HFも有意な差は認められな力つた。一方、小川のせせらぎの音を聞力せた 後では、環境順ィ匕後と比較し、縮瞳速度 (VC)に増加傾向が認められたが、個人間 のノ ラツキが大きく有意な差は認められな力つた。更に、心電図 R-R間隔変動スぺク トル解析による HFは、増加傾向を示し、 LF/HFに有意な減少(p〈0.01)が認められた 。また、白色雑音を聞いた後と比較しても、小川のせせらぎの音を聞力せた後では、 縮瞳速度 (VC)に増加傾向が認められたが、個人間のバラツキが大きく有意な差は 認められな力つた。更に、心電図 R-R間隔変動スペクトル解析による HFは、増加傾向 を示し、 LF/HFに有意な減少(p〈0.01)が認められた。 [0039] According to the results shown in Figs. 9 (a), (b), and (c), a significant difference was observed as a result of performing one-way analysis of variance (One factor ANOVA) as in Example 1. (LF / HF: p <0.0001), so that analysis was performed by the Tukey-Kramer method as a multiple comparison test (Post-hoc test). A In group and group B, there was no significant difference in the miotic rate (VC) after hearing the white noise compared to after the environmental ordering. In addition, HF and LF / HF by ECG RR interval fluctuation spectrum analysis showed no significant difference. On the other hand, after hearing the sound of the babbling of the brook, the pupil velocity (VC) tended to increase compared to that after environmental ordering, but there was a significant difference between individuals, indicating a significant difference. Unacceptable strength. Furthermore, HF by ECG RR interval fluctuation spectrum analysis showed an increasing trend, and a significant decrease in LF / HF was observed (p <0.01). Even after hearing the sound of the babbling of Ogawa, the pupil velocity (VC) tended to increase compared to after hearing the white noise, but the variation among individuals was significant and significant. The difference was unrecognizable. In addition, HF by ECG RR interval fluctuation spectrum analysis showed an increasing trend, and a significant decrease in LF / HF (p <0.01) was observed.
更に、実施例 1と比較例 1の縮瞳速度 (VC)の結果を基に瞳孔対光反応計測具の 種類を個体間の要因(between-subject)、音の種類を個体内要因(within-subject)と する反復測定分散分析法 (repeated measure ANOVA)を行った結果、瞳孔対光反 応計測具 (上記実施形態と同様の構成を有する計測具と市販計測具)の間では、有 意な差 (Pく 0.0001)が認められた。また、音の種類 (環境順化時、白色雑音、および小 川のせせらぎ)の間でも有意な差 (p〈0.0001)が認められた。  Further, based on the results of the miosis rate (VC) of Example 1 and Comparative Example 1, the type of the pupil-to-light reaction measuring instrument was determined between the individual (between-subject), and the type of the sound was determined within the individual (within-subject). As a result of the repeated measure analysis of variance (ANOVA) as the subject), a significant difference was observed between the pupil-to-light response measurement device (a measurement device having the same configuration as the above embodiment and a commercially available measurement device). A difference (P <0.0001) was observed. There was also a significant difference (p <0.0001) between the types of sound (acclimation, white noise, and babble brook).
[0040] 以上の結果より、環境順ィ匕後と比較し、白色雑音を聞いた後では、心電図 R- R間隔 変動スペクトル解析法、及び 、ずれの瞳孔対光反応計測具でもリラックス度に変化が 認められな力つた。一方、小川のせせらぎの音を聞力せた状態では、心電図 R-R間 隔変動スペクトル解析法、及び本発明品であるゴーグルタイプのリラックス感評価用 瞳孔対光反応計測具ではリラックス度の有意な増加が認められたが、市販の瞳孔対 光反応計測具では、個人間のバラツキが大きぐリラックス度に有意な差が認められ なかった。  [0040] Based on the above results, the degree of relaxation was changed by the electrocardiogram R-R interval fluctuation spectrum analysis method and the pupil-to-photoreaction measuring device of the shift after hearing the white noise compared to after the environmental ordering. Was unacceptable. On the other hand, in the state where the sound of the babbling of the brook was heard, the ECG RR interval fluctuation spectrum analysis method and the goggle type pupil-to-light reaction measuring device of the present invention for evaluating the sense of relaxation significantly increased the degree of relaxation. However, there was no significant difference in the degree of relaxation due to large variations among individuals using a commercially available pupil-optical response measurement device.
[0041] 〔実施例 2〕  Example 2
30— 40代の健常女性 12名を対象に、 3つの環境に分けて試験を実施した。すな わち、正常空気だけの環境、セドロールを 100 gZm3の濃度で揮散させた時の環 境、及びセドロールを 800 gZm3の濃度で揮散させた時の環境である。セドロール 呈示による順序効果や残存効果をキャンセルする目的で、 12名を 4名ずつ、 3群 (A 群、 B群、 C群)に分けてすベての環境を経験するように、表 1に示すようなラテン方 格を組んだ。更に、 3日間に渡る試験は、各被検者が同じ時間帯に瞳孔対光反応を 測定されるように調整した。被験者は、環境可変室 (温度 23. 0°C、湿度 50. 0%、室 内体積 25m3)に入室して、環境馴化の後に、瞳孔対光反応は、入室 15分後、及び 4 5分後に測定した。瞳孔対光反応の測定は、図 2に示すゴーグル (重量 80g)を顔面 に装着して行い、光刺激前の瞳孔径 D及び光刺激により変化した縮瞳量 D、それら The study was conducted on 12 healthy women in their 30s and 40s in three environments. Ie, an environment when stripped at a concentration of environment, and cedrol 800 gZm 3 when the normal air only environment, stripped at a concentration of 100 gZm 3 a cedrol. In order to cancel the order effect and residual effect due to presentation of cedrol, 4 groups of 12 persons, 3 groups (A (Group B, Group B and Group C) were set up in a Latin square as shown in Table 1 so as to experience all environments. In addition, the three-day study was adjusted so that each subject measured pupil-to-light response at the same time. Subjects environment variable chamber (temperature 23. 0 ° C, humidity 50.0%, the chamber volume 25 m 3) and enter the, after acclimatization, pupillary light response, entering after 15 minutes, and 4 5 Measured after minutes. Pupil-to-light response was measured by wearing the goggles (weight 80 g) shown in Fig. 2 on the face, and the pupil diameter D before light stimulation and the amount of miosis D changed by light stimulation,
1 2 の比である縮瞳率 CRを各パラメタ一とした。計測方法は、ゴーグルを装着して、遮光 した状態で 5分間、 B音順応をしてから、 0. 25秒の光刺激を 20秒間のインターバルで 5回実施し、データは、その平均値士標準誤差で示した。入室 15分後の測定結果を 図 10 (a)—(c)に、入室 45分後の測定結果を図 11 (a)— (c)に各々示す。  The miosis rate CR, which is the ratio of 1 2, was set to each parameter. The measurement was performed by wearing goggles, adapting to the B tone for 5 minutes in the light-shielded state, and then applying 0.25 seconds of light stimulation 5 times at 20-second intervals. Indicated by standard error. The measurement results 15 minutes after entering the room are shown in Figs. 10 (a)-(c), and the measurement results 45 minutes after entering the room are shown in Figs. 11 (a)-(c).
[0042] [表 1] [Table 1]
Figure imgf000016_0001
表 1 実験群の設定
Figure imgf000016_0001
Table 1 Experimental group settings
Control:正常空気だけの環境, 100-Ced:セドロールを 100 / g/m3の濃度で 揮散させた時の環境, 800-Ced:セドロールを 800 / g/m3の濃度で揮散させ た時の環境. Control: normal air only environment, 100-Ced: cedrol a when stripped at a concentration of 100 / g / m 3 environment, 800-Ced: cedrol a when stripped at a concentration of 800 / g / m 3 environment.
[0043] 図 10 (a) (c)及び図 11 (a)— (c)に示す測定結果によれば、正常空気だけの環 境と比較して、セドロール 800 / gZm3の環境では、入室 15分後に光刺激前の瞳孔 直径 Dは、減少傾向を示し、更に光刺激後の瞳孔直径の変化量 Dは、増加傾向を[0043] FIG. 10 (a) (c) and FIG. 11 (a) - According to the measurement results (c), the compared with the environment only normal air, in the environment Cedrol 800 / gZm 3, entry After 15 minutes, the pupil diameter D before light stimulation shows a decreasing tendency, and the change amount D of the pupil diameter after light stimulation shows an increasing tendency.
1 2 示した結果、縮瞳率 CRの有意な増加が認めら、入室 45分後には、更に顕著な増加 を示した。また、セドロール 100 /z g/m3の環境下でも増加傾向が認められた。これら の結果から、セドロールは、濃度依存的にリラックス状態をもたらし副交感神経を優位 にして 、ることが示唆された。 1 2 As a result, a significant increase in the miosis rate CR was observed, and a further remarkable increase was shown 45 minutes after entering the room. In addition, an increasing trend even in an environment of cedrol 100 / zg / m 3 was observed. These results suggest that cedrol exerts a relaxed state in a concentration-dependent manner and predominates the parasympathetic nerve.
[0044] 以下、複数の可視光発光ダイオードを光散乱板で覆ってなる光刺激手段が、一定 以上の光強度を広範囲に分布させて、瞳孔への照射光量を容易に均一化できること を裏付ける実証試験を、参考例として説明する。 〔参考例 1〕 The following demonstration demonstrates that the photostimulation means, in which a plurality of visible light emitting diodes are covered with a light scattering plate, can easily distribute the light intensity above a certain level over a wide range and uniformly irradiate the pupil. The test is described as a reference example. (Reference Example 1)
参考例 1のリラックス感評価用瞳孔対光反応計測具の光刺激装置の光源は、図 5 ( a)に示すものを用いた。光刺激装置の光源として、 660nmの発光ダイオードを半径 15mmの円周上に 45度の等角度間隔で 8個配置し、その上にアクリル榭脂からなる 厚さ 2mmの光散乱板を外形 20mm、内径 10mmの形状に加工してのせる。光散乱 板の中心と垂直に交わる、被験者の瞳孔部に対応させた、受光面の位置 (垂直距離 20mmの位置)を原点とする 2次元の直交座標を定め、光刺激装置の発光面の位置 における光強度を 1として、受光面における光強度を基準化した。基準化した受光面 の相対発光強度分布図を図 5 (b)に示す。  The light source of the photostimulator of the pupil-to-photoreaction measuring device for evaluation of relaxation in Reference Example 1 was used as shown in FIG. 5 (a). As the light source of the photostimulator, eight light emitting diodes of 660 nm are arranged on a circumference of 15 mm radius at equal angular intervals of 45 degrees, and a light scattering plate of 2 mm thick made of acrylic resin is placed on top of it, with an outer diameter of 20 mm. Process into a shape with an inner diameter of 10mm. The position of the light-emitting surface of the light stimulator is defined by defining two-dimensional orthogonal coordinates with the origin at the position of the light-receiving surface (the position at a vertical distance of 20 mm) corresponding to the subject's pupil, perpendicular to the center of the light scattering plate. The light intensity on the light receiving surface was normalized with the light intensity at 1 as 1. Figure 5 (b) shows the normalized emission intensity distribution of the light-receiving surface.
[0045] 〔参考例 2〕 [Reference Example 2]
光刺激装置の光源として、一般的に用いられる Closed loop方式を、図 6に示した。 660nmの発光ダイオードを 1個用い、これの光軸と垂直に交わる、被験者の瞳孔部 に対応させた、受光面の位置 (垂直距離 20mmの位置)を原点とする 2次元の直交座 標を定め、光刺激装置の発光面の位置における光強度を 1として、受光面における 光強度を基準化した。基準化した受光面の相対発光強度分布図を図 6 (b)に示す。  FIG. 6 shows a commonly used closed loop method as a light source of the photostimulator. Using a single 660 nm light emitting diode, determine a two-dimensional orthogonal coordinate originating at the position of the light receiving surface (at a vertical distance of 20 mm) corresponding to the subject's pupil, perpendicular to the optical axis of the light emitting diode The light intensity on the light-receiving surface was normalized with the light intensity on the light-emitting surface of the photostimulator as 1. Fig. 6 (b) shows the normalized emission intensity distribution of the light receiving surface.
[0046] 図 5 (b)及び図 6 (b)に示す試験結果によれば、 1個の発光ダイオードからなる光刺 激装置よりも光散乱板の下に 8個の発光ダイオードを均等に配置した光刺激装置の ほうが、被験者の瞳孔部に対応する受光面に対して、一定量以上の光強度を広範 囲の分布させることが可能となり、これによつて、光散乱板の下に 8個の発光ダイォー ドを均等に配置した光刺激装置を用いることにより、瞳孔への照射光量を容易に均 一化できることが判明した。 According to the test results shown in FIG. 5 (b) and FIG. 6 (b), eight light emitting diodes are arranged evenly below the light scattering plate rather than the light irradiating device consisting of one light emitting diode. The light stimulator that has been used can distribute a certain amount or more of light intensity over a wide range on the light receiving surface corresponding to the subject's pupil. It has been found that the use of a photostimulator in which the light emitting diodes are evenly arranged makes it possible to easily equalize the irradiation light amount to the pupil.
産業上の利用可能性  Industrial applicability
[0047] 本発明のリラックス感評価用瞳孔対光反応計測具によれば、例えば一般の健常者 が手軽に用いることができると共に、ストレスやリラックスの程度を客観的に精度良く 容易に評価することができる。 According to the pupil-to-light reaction measuring device for evaluating a feeling of relaxation of the present invention, for example, a normal healthy person can easily use it, and easily and easily evaluate the degree of stress and relaxation objectively and accurately. Can be.

Claims

請求の範囲 The scope of the claims
[1] 瞳孔対光反応を追跡してリラックス感を評価する際に用いるリラックス感評価用瞳孔 対光反応計測具であって、  [1] A pupil-to-light response measuring device for evaluating a feeling of relaxation, which is used when tracking a pupil-to-light response to evaluate a feeling of relaxation,
目の部分を覆って顔に装着される立体マスク部と、少なくとも一方の目の眼球と対 向するように前記立体マスク部に取り付けられる瞳孔撮像手段及び光刺激手段と、 前記瞳孔撮像手段及び前記光刺激手段と接続してこれらを制御すると共に、前記 瞳孔撮像手段から送られる撮像を記録し、該撮像に基づ!/ヽて瞳孔の縮瞳及び散瞳 に関する演算解析を行う制御解析手段とを備えており、  A three-dimensional mask portion that is attached to the face so as to cover the eyes, a pupil imaging unit and a light stimulating unit that are attached to the three-dimensional mask unit so as to face at least one eyeball; Control analysis means for connecting to and controlling the light stimulating means, recording an image sent from the pupil imaging means, and performing arithmetic analysis on the miosis and mydriasis of the pupil based on the imaging; With
且つ前記立体マスク部の前記瞳孔撮像手段及び前記光刺激手段を含んだ装着時 の重量が、 30— 120gであるリラックス感評価用瞳孔対光反応計測具。  And a pupil-to-light reaction measuring instrument for evaluating a feeling of relaxation, wherein the weight of the three-dimensional mask portion at the time of attachment including the pupil imaging means and the light stimulating means is 30 to 120 g.
[2] 前記瞳孔撮像手段は、赤外線 CCDカメラと赤外線照明用発光ダイオードとからなり 、前記光刺激手段は、複数の可視光発光ダイオードを光散乱板で覆って構成されて いる請求の範囲第 1項記載のリラックス感評価用瞳孔対光反応計測具。  [2] The pupil imaging means comprises an infrared CCD camera and a light emitting diode for infrared illumination, and the light stimulating means is constituted by covering a plurality of visible light emitting diodes with a light scattering plate. Item 6. A pupil-to-light response measuring instrument for evaluating a feeling of relaxation according to the item.
[3] 前記光散乱板は、内径 3— 14mm、外径 25— 45mmの円環帯板形状を有しており 、前記赤外線 CCDカメラのレンズ部は、前記光散乱板の中央の穴部分に配置される 請求の範囲第 1項又は第 2項記載のリラックス感評価用瞳孔対光反応計測具。  [3] The light-scattering plate has an annular band shape having an inner diameter of 3 to 14 mm and an outer diameter of 25 to 45 mm, and a lens portion of the infrared CCD camera is provided at a central hole of the light-scattering plate. 3. The pupil-to-light response measuring instrument for evaluating a feeling of relaxation according to claim 1 or 2, which is arranged.
[4] 前記光刺激手段は、目の眼球と 13— 35mmの間隔をおいて配置される請求の範 囲第 1項一第 3項のいずれかに記載のリラックス感評価用瞳孔対光反応計測具。  4. The pupil-to-light reaction measurement for evaluating a feeling of relaxation according to any one of claims 1 to 3, wherein the light stimulating means is arranged at a distance of 13 to 35 mm from the eyeball of the eye. Utensils.
[5] 前記瞳孔撮像手段及び前記光刺激手段は一方の目の眼球と対向するように取り 付けられており、前記立体マスク部には、他方の目の眼球と対向するように固視灯用 発光ダイオードが設けられている請求の範囲第 1項一第 4項のいずれかに記載のリラ ックス感評価用瞳孔対光反応計測具。  [5] The pupil imaging means and the light stimulating means are attached so as to face the eyeball of one eye, and the stereoscopic mask portion is provided with a fixation lamp for facing the eyeball of the other eye. 5. The pupil-to-photoreaction measuring device for relax feeling evaluation according to claim 1, further comprising a light emitting diode.
PCT/JP2004/016718 2003-11-13 2004-11-11 Papillary light reflex measuring instrument for evaluating relaxed feeling WO2005046464A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003383325A JP4179968B2 (en) 2003-11-13 2003-11-13 Pupil-to-light response measuring instrument for relaxation evaluation
JP2003-383325 2003-11-13

Publications (1)

Publication Number Publication Date
WO2005046464A1 true WO2005046464A1 (en) 2005-05-26

Family

ID=34587288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016718 WO2005046464A1 (en) 2003-11-13 2004-11-11 Papillary light reflex measuring instrument for evaluating relaxed feeling

Country Status (2)

Country Link
JP (1) JP4179968B2 (en)
WO (1) WO2005046464A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079374A (en) * 2012-10-16 2014-05-08 Univ Of Tokyo Pupil diameter measurement support apparatus and pupil diameter measurement support system
WO2016025323A1 (en) 2014-08-10 2016-02-18 Autonomix Medical, Inc. Ans assessment systems, kits, and methods
US9931069B2 (en) 2011-05-20 2018-04-03 Google Llc Systems and methods for measuring reactions of head, eyes, eyelids and pupils
CN113631094A (en) * 2019-01-28 2021-11-09 斯卡拉株式会社 System, device, method, and computer program for determining physical and mental states

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029207A (en) * 2005-07-25 2007-02-08 Univ Of Tokushima Ocular movement imaging apparatus
JP2007144113A (en) 2005-10-25 2007-06-14 Olympus Corp Biological information collecting and presenting apparatus, and pupil diameter measuring device
JP5006070B2 (en) * 2007-02-28 2012-08-22 森永製菓株式会社 Stress intensity calculation method and stress intensity calculation apparatus
JP5171094B2 (en) * 2007-04-11 2013-03-27 アイリテック株式会社 Autonomic nerve function or / and stress level evaluation device
JP4674229B2 (en) * 2007-10-26 2011-04-20 尚治 北島 Acoustic pupillary reaction test system
JP5870853B2 (en) * 2012-05-30 2016-03-01 株式会社デンソー Face image pickup device, pupil measurement device, and light shielding device
JP5718492B1 (en) * 2014-01-16 2015-05-13 日本電信電話株式会社 Sound saliency estimating apparatus, method and program thereof
JP5718494B1 (en) * 2014-01-16 2015-05-13 日本電信電話株式会社 Impression estimation device, method thereof, and program
JP5718495B1 (en) * 2014-01-16 2015-05-13 日本電信電話株式会社 Impression estimation device, method thereof, and program
JP5718493B1 (en) * 2014-01-16 2015-05-13 日本電信電話株式会社 Sound saliency estimating apparatus, method and program thereof
CN108024768B (en) * 2015-05-27 2021-02-05 斋藤粮三 Mobile terminal pressure evaluation program and mobile terminal including the same
CN209404742U (en) * 2018-04-03 2019-09-20 林臣 A kind of visual field meter
CN110313888A (en) * 2019-07-23 2019-10-11 云南省第一人民医院 A kind of Neurology pupillary light reflex diagnostic device and application
JP6952293B2 (en) * 2019-10-30 2021-10-20 糧三 齋藤 Stress evaluation program for mobile terminals and mobile terminals equipped with the program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437929A (en) * 1987-08-03 1989-02-08 Ei Uoorudoofu Ronarudo Infrared type video electric nystagmograph
JPH07255669A (en) * 1994-03-24 1995-10-09 Sony Corp Eye condition detector and indicator
JPH08299275A (en) * 1995-05-15 1996-11-19 Nippon Koden Corp Optical device for binocular image pickup and binocular image pickup apparatus
JPH0928672A (en) * 1995-05-15 1997-02-04 Nippon Koden Corp Device for pulpillometry and alzheimer's disease diagnosis
JP2000060829A (en) * 1998-08-18 2000-02-29 Sanyo Electric Co Ltd Instrument for measuring biological effect
JP2001037720A (en) * 1999-05-24 2001-02-13 Meiyoo:Kk Entire visual field light stimulation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437929A (en) * 1987-08-03 1989-02-08 Ei Uoorudoofu Ronarudo Infrared type video electric nystagmograph
JPH07255669A (en) * 1994-03-24 1995-10-09 Sony Corp Eye condition detector and indicator
JPH08299275A (en) * 1995-05-15 1996-11-19 Nippon Koden Corp Optical device for binocular image pickup and binocular image pickup apparatus
JPH0928672A (en) * 1995-05-15 1997-02-04 Nippon Koden Corp Device for pulpillometry and alzheimer's disease diagnosis
JP2000060829A (en) * 1998-08-18 2000-02-29 Sanyo Electric Co Ltd Instrument for measuring biological effect
JP2001037720A (en) * 1999-05-24 2001-02-13 Meiyoo:Kk Entire visual field light stimulation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931069B2 (en) 2011-05-20 2018-04-03 Google Llc Systems and methods for measuring reactions of head, eyes, eyelids and pupils
JP2014079374A (en) * 2012-10-16 2014-05-08 Univ Of Tokyo Pupil diameter measurement support apparatus and pupil diameter measurement support system
WO2016025323A1 (en) 2014-08-10 2016-02-18 Autonomix Medical, Inc. Ans assessment systems, kits, and methods
EP3177201B1 (en) * 2014-08-10 2023-08-02 Autonomix Medical, Inc. Methods and systems for assessing neural activity in an eye
US11883103B2 (en) 2014-08-10 2024-01-30 Autonomix Medical, Inc. ANS assessment systems, kits, and methods
CN113631094A (en) * 2019-01-28 2021-11-09 斯卡拉株式会社 System, device, method, and computer program for determining physical and mental states

Also Published As

Publication number Publication date
JP4179968B2 (en) 2008-11-12
JP2005143684A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US20200383567A1 (en) Pupilary screening system and method
US9101312B2 (en) System for the physiological evaluation of brain function
WO2005046464A1 (en) Papillary light reflex measuring instrument for evaluating relaxed feeling
US9402542B2 (en) Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
US8668337B2 (en) System for the physiological evaluation of brain function
US8807753B2 (en) Pupillary assessment method and apparatus
AU2014259786B2 (en) Monitoring neurological functional status
JP2002541959A (en) Pupilometer with pupil irregularity detection, pupil tracking, pupil reaction detection function, glaucoma examination function, corneal anatomical measurement function, intracranial pressure detection function, and eye abnormality measurement function
JP2007144113A (en) Biological information collecting and presenting apparatus, and pupil diameter measuring device
US9433354B2 (en) Devices for modulation of retinal stimulation and/or retinal signal processing and methods of use thereof
US20180249941A1 (en) Oculometric Neurological Examination (ONE) Appliance
AU2018269163A1 (en) Device, system and method for monitoring neurological functional status
Yue Identifying vestibular and visual cortical response during circular vection among people with different susceptibility to motion sickness
Takada et al. The impact of 3D games on brain blood flow dynamics and its utilization
Różanowski et al. Pupillometric sleepiness measurements PST with concurrent video optic sensor of pupillary size
GARNER Development of a Non-Invasive Blink Reflexometer
Hiss Psychophysical responses to earth-vertical rotations in the elderly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase