WO2005045337A1 - Lng vapor handling configurations and methods - Google Patents
Lng vapor handling configurations and methods Download PDFInfo
- Publication number
- WO2005045337A1 WO2005045337A1 PCT/US2004/019490 US2004019490W WO2005045337A1 WO 2005045337 A1 WO2005045337 A1 WO 2005045337A1 US 2004019490 W US2004019490 W US 2004019490W WO 2005045337 A1 WO2005045337 A1 WO 2005045337A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- natural gas
- liquefied natural
- stream
- fractionator
- lng
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C5/00—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
- F17C5/06—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C6/00—Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
- F25J3/0214—Liquefied natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/052—Size large (>1000 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
- F17C2205/0364—Pipes flexible or articulated, e.g. a hose
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
- F17C2205/0367—Arrangements in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/035—Propane butane, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/043—Localisation of the removal point in the gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/046—Localisation of the removal point in the liquid
- F17C2223/047—Localisation of the removal point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0146—Two-phase
- F17C2225/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0146—Two-phase
- F17C2225/0153—Liquefied gas, e.g. LPG, GPL
- F17C2225/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/035—High pressure, i.e. between 10 and 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/036—Very high pressure, i.e. above 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/04—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
- F17C2225/042—Localisation of the filling point
- F17C2225/046—Localisation of the filling point in the liquid
- F17C2225/047—Localisation of the filling point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0157—Compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0171—Arrangement
- F17C2227/0178—Arrangement in the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0171—Arrangement
- F17C2227/0185—Arrangement comprising several pumps or compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0306—Heat exchange with the fluid by heating using the same fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
- F17C2227/0316—Water heating
- F17C2227/0318—Water heating using seawater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0327—Heat exchange with the fluid by heating with recovery of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0339—Heat exchange with the fluid by cooling using the same fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0388—Localisation of heat exchange separate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0388—Localisation of heat exchange separate
- F17C2227/0393—Localisation of heat exchange separate using a vaporiser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0636—Flow or movement of content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0642—Composition; Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/02—Improving properties related to fluid or fluid transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/031—Dealing with losses due to heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/05—Improving chemical properties
- F17C2260/056—Improving fluid characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/01—Purifying the fluid
- F17C2265/015—Purifying the fluid by separating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/02—Mixing fluids
- F17C2265/022—Mixing fluids identical fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/02—Mixing fluids
- F17C2265/025—Mixing fluids different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
- F17C2265/034—Treating the boil-off by recovery with cooling with condensing the gas phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/036—Treating the boil-off by recovery with heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/037—Treating the boil-off by recovery with pressurising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/05—Regasification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0118—Offshore
- F17C2270/0123—Terminals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0134—Applications for fluid transport or storage placed above the ground
- F17C2270/0136—Terminals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/90—Mixing of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/90—Boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/60—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/904—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Definitions
- the field of the invention is LNG processing, especially as it relates to LNG vapor handling during LNG ship unloading or transfer.
- LNG ship unloading is in many cases a critical operation that requires efficient integration with a regasification operation.
- LNG vapors are generated from the storage tank due to volumetric displacement, heat gain during LNG transfer and in the pumping system, storage tank boiloff, and flashing due to the pressure differential between the ship and the storage tank.
- the vapors need to be recovered to avoid flaring and pressure buildup in the storage tank system.
- vapor compression and vapor absorption systems generally require significant energy and operator attention, and particularly during transition from normal holding operation to ship unloading operation.
- vapor control can be implemented using a reciprocating pump in which the flow rate and vapor pressure control the proportion of cryogenic liquid and vapor supplied to the pump as described in U.S. Pat. No. 6,640,556 to Ursan et al.
- such configurations are often impractical and generally fail to eliminate the need for vapor recompression in LNG receiving terminals.
- a turboexpander-driven compressor may be employed as described in U.S. Pat. No. 6,460,350 to Johnson et al.
- the energy requirement for vapor recompression is typically provided by expansion of a compressed gas from another source.
- generation of the compressed gas is energy intensive and uneconomical.
- composition and heating values of most imported LNG varies dramatically and will generally depend on the particular source. While LNG with heavier contents or higher heating value can be produced at lower costs at the source, they are often not suitable for the North American market. For example, natural gas for the Californian market must meet a heating value specification of 950 Btu/SCF- 1150 Btu/SCF, and must meet composition limitations on its C 2 and C 3 + components. Especially where LNG is used as transportation fuel, the C 2 + content must be further reduced to avoid high combustion temperature and reduce greenhouse emissions. Table 1 depicts composition requirements in comparison to a typical imported LNG supply. Thus, it would also be desirable to configure an LNG receiving terminal with the capability to accommodate to varying LNG compositions.
- the present invention is directed to various configurations and methods for an LNG plant (most preferably to an LNG regasification terminal) comprising an LNG storage vessel and fractionator configured to receive liquefied natural gas from an LNG carrier vessel and to provide LNG liquid and LNG vapor.
- a fractionator is fluidly coupled to the storage vessel and receives a fractionator feed, wherein the fractionator produces C 2 and lighter components as an overhead product and C 3 and heavier components as a bottom product.
- the refrigeration content of the liquefied natural gas liquid is used to condense the C and lighter components, while the C 3 and heavier components are combined with the LNG vapor to absorb the LNG vapor to thereby form the fractionator feed.
- contemplated plants include a first heat exchanger to cool the fractionator feed using the liquefied natural gas liquid as a refrigerant, and/or a second heat exchanger that heats the fractionator feed using the stream of C 3 and heavier components from the fractionator as a heat source.
- a portion of the LNG vapor from the storage vessel is routed to a second LNG storage vessel (LNG carrier), or the second LNG storage vessel may produce a vapor that is rerouted back to the second LNG storage vessel during ship unloading.
- LNG carrier second LNG storage vessel
- Preferred fractionators are typically configured to provide the condensed C 2 and lighter components to the liquefied natural gas liquid.
- the fractionator may also be configured to receive a portion of the liquefied natural gas liquid as fractionator feed (after the liquefied natural gas liquid has provided refrigeration for condensation of the C 2 and lighter components).
- the fractionator may further be configured to provide liquefied petroleum gas (LPG) as a bottom product.
- LPG liquefied petroleum gas
- the fractionator may be configured to receive another portion of the liquefied natural gas liquid as condensation refrigerant after the liquefied natural gas liquid provided refrigeration for condensation of the C 2 and lighter components to enhance condensation.
- contemplated methods include methods of handling liquefied natural gas vapor in which a liquefied natural gas storage vessel provides LNG liquid and LNG vapor.
- the LNG vapor is combined with a stream of C 3 and heavier components to thereby absorb the LNG vapor and to thereby form a combined product.
- the combined product is separated in a fractionator into the stream of C 3 and heavier components and a stream of C 2 and lighter components, and the stream of C 2 and lighter components is condensed using the refrigeration content of the LNG liquid.
- Figure 2 is a schematic of an exemplary LNG unloading configuration with an external vapor return line.
- Figure 3 is a schematic of an exemplary LNG unloading configuration without an external vapor return line.
- Figure 4 is a schematic of an exemplary LNG unloading configuration with an external vapor return line and LPG production capability.
- the present invention is generally directed to configurations and methods of LNG vapor handling in which the vapor (in most cases predominantly comprising N 2 , C 1 and C 2 ) is combined with a heavier hydrocarbon (in most cases predominantly comprising C 3 , C and heavier components) to form a hydrocarbon mixture having a condensation temperature that is higher than that of the LNG vapor.
- the so generated mixture is subsequently condensed using the refrigeration content of the LNG liquid and the liquid is pumped to a higher pressure.
- the pressurized mixture is then heated, and (C 2 and lighter) vapor is separated from the mixture in a fractionator at elevated pressure.
- the fractionator overhead vapor is condensed using the refrigeration content of the LNG liquid, while the heavier hydrocarbon produced by the fractionator is recycled to the point of combination with LNG vapor.
- contemplated configurations and methods are realized in LNG ship unloading and/or regasification operation in both on-shore and/or off-shore LNG regasification terminals. It should be especially appreciated that in such configurations the need for a vapor compressor for condensation of the vapors is eliminated by mixing the vapor with a component that increases the boiling point of the mixture to a degree such that at least a portion of the mixture can be condensed using the refrigeration content of the LNG liquid.
- the heavier hydrocarbon comprises C 3 and heavier hydrocarbon components that may be added from an external source, or even more preferably, that are extracted from the LNG that is unloaded.
- contemplated configurations include a fractionation system comprising heat exchangers, pumps and fractionators that is configured to utilize the refrigeration released in the regasification process for the separation of LNG into a leaner natural gas and a LPG (Liquefied Petroleum Gas) product.
- LPG Liquefied Petroleum Gas
- An LNG carrier ship typically operates at a pressure slightly less than that of the storage tank, and typically, the LNG ship operates at 16.2 psia to 16.7 psia while the storage tank operates at 16.5 psia to 17.2 psia.
- the vapor from the storage tank, stream 2 is split into two portions, stream 3 and stream 4.
- Stream 3 typically at a flow rate of 20 MMscfd is returned to the LNG ship via a vapor return line and return arm 54 for replenishing the displaced volume from ship unloading.
- Stream 4 typically at a flow rate of 20 MMscfd, is compressed by compressor 55 to about 80 psia to 115 psia and fed as stream 5 to the vapor absorber 58 where the vapor is de-superheated, condensed and absorbed from stream 9 by the sendout LNG.
- the power consumption by compressor 55 is typically 1,000 HP to 2,000 HP, depending on the vapor flow rate and compressor discharge pressure.
- LNG from the storage tank 52 is pumped by the in-tank primary pumps 53 to about 115 to 150 psia forming stream 6, at a typical sendout rate of 250 MMscfd to 1,200 MMscfd.
- Stream 6 is split into stream 7 and stream 8 using the respective control valves 56 and 57, as needed for controlling the vapor condensation process.
- Stream 7, a subcooled liquid at -255°F to -260°F, is routed to the absorber 58 to mix with the compressor discharge stream 5 using a heat transfer contacting device such as trays and packing.
- the operating pressures of the vapor absorber and the compressor are determined by the LNG sendout flow rate. A higher LNG sendout rate with a higher refrigeration content would lower the absorber pressure, and hence require a smaller compressor.
- the absorber design should also consider the normal holding operation when the vapor rate is lower, and the liquid rate must be reduced to a minimal.
- the vapor absorber produces a bottom stream 9 typically at about -200°F to - 220°F, which is then mixed with stream 8 forming streaming 10.
- Stream 10 is pumped by the secondary pump 59 to typically 1000 psig to 1500 psig forming stream 11 which is then heated in LNG vaporizers 60 to about 40°F to 60°F as needed to meet the pipeline specifications.
- the LNG vaporizers are typically open rack type exchangers using seawater, fuel-fired vaporizers, or vaporizers using a heat transfer fluid.
- FIG. 2 An exemplary configuration is depicted in Figure 2 in which vapor absorption is carried out at storage tank overhead pressure using a heavy hydrocarbon liquid (e.g., C 3 and heavier) for absorption, with the heavy hydrocarbon separated from LNG using a fractionator.
- the refrigeration content in the LNG is used for cooling in the absorption process by removing the heat of absorption and condensation as well as in supplying the reflux condensing duty in the fractionator.
- LNG liquid as stream 1 is provided from the LNG carrier ship 50 to the storage tank 52 via unloading line 51.
- Vapor stream 2 from storage tank 52 is split into stream 3 and stream 4.
- Stream 3 typically at a flow rate of 20 MMscfd, is returned to the LNG carrier ship 50 via a vapor return line and return arm 54 for replenishing the displaced volume from ship unloading.
- Stream 4 typically at a flow rate of 20 MMscfd, is mixed with the heavy hydrocarbon stream 16 (typically containing C 3 , C 4 , and heavier hydrocarbons). To raise the boiling point of the mixture, typically about 200 GPM to 500 GPM heavy hydrocarbons is required from the downstream fractionation system.
- the system may be charged with the heavy hydrocarbons from an external source.
- the combined stream 17 is cooled and condensed in exchanger 61 to stream 18 using the refrigeration content from the LNG stream 6 (provided from tank 52 via primary pump 53) typically at -240°F to -255°F.
- the heavy hydrocarbon composition and flow rate of the heavy hydrocarbon fraction can be controlled in the fractionator as necessary to absorb the vapors from the storage tank during the ship unloading and the normal holding operation.
- a LNG vapor rich in the lighter components such as N 2 and Ci
- flow rates of less than 200 gpm and higher than 500 gpm are also deemed suitable.
- a person of ordinary skill in the art will readily determine suitable flow rates, which will predominantly depend on the amount of vapor and the composition of the heavy hydrocarbon.
- suitable components for admixture with the vapor stream especially include propane, butane, and higher hydrocarbons.
- stream 6 is heated from -255°F to about -240°F and supplies the necessary cooling for condensing the combined stream 17.
- the condensate stream 18 is then pumped by pump 62 to about 120 psia to 170 psia forming stream 19.
- the pressurized stream 19 Prior to feeding stream 19 to the fractionator 64, the pressurized stream 19 is heated to about -10°F to 150°F and partially vaporized in exchanger 63 by heat exchange with the bottom liquid 21 from the fractionator 64 to thereby form heated stream 20.
- the fractionator 64 typically operating at about 100 psia to 150 psia, separates the heated combined stream 20 into an overhead liquid stream 22 (containing mostly C 2 and lighter components) and bottom liquid stream 21 (containing mostly C 3 and heavier components).
- the fractionator is refluxed using the refrigeration content from LNG stream 7 in an overhead condenser 65 (which can be separate or integral to fractionator 64). Where desirable, overhead condenser 65 can also be located external to the fractionator, and the liquid stream 22 can be separated in an external located drum (not shown).
- the fractionator is preferably reboiled using an external heat source with a fired reboiler, steam, or other heat source.
- the overhead stream 22, which is depleted of the heavy hydrocarbons (C 3 and heavier) is mixed with the LNG stream 23 forming stream 10.
- the combined sendout stream 10 is then pumped by the secondary pump 59 to typically 1000 psig to 1500 psig forming stream 11, which is then heated in LNG vaporizers 60 to about 40°F to 60°F as needed to meet the pipeline specifications.
- the LNG vaporizers are typically open rack type exchangers using seawater, fuel-fired vaporizers, or vaporizers using a heat transfer fluid.
- vapor from the storage tank 52 is not returned to the LNG carrier ship 50. Consequently, no vapor return line and vapor return arm are needed. Instead, the vapor required by the ship for maintaining volumetric balance is generated with a small vaporizer proximal to or even on the ship.
- a small stream 30 of LNG liquid is vaporized in the heat exchanger 67 to produce vapor stream 3 to achieve a vapor flow of about 20 MMscfd to replenish the displaced volume from the ship.
- the heat source 31 to the vaporizer 67 can be seawater or ambient air.
- additional cooling may be provided to the fractionator as depicted in exemplary configuration of Figure 4.
- the overhead condenser 65 of fractionator 64 includes a second refrigeration coil 66 integral to the column that uses the high pressure LNG to provide additional cooling as needed for higher reflux duty required for LPG production.
- heat exchanger coil 66 and coil 65 can be located external to the column in separate heat exchangers, and liquid stream 22 can be separated in an external drum.
- stream 24 may be between 0 to 100% of stream 26
- stream 24 increases LPG production. With increasing LPG production, it should be recognized that the distillate becomes leaner in composition. Among other desirable effects, a leaner LNG with lower heating value may be more desirable to meet environmental regulations.
- Stream 24 is preferably fed to about the mid section of the fractionator that produces a bottom LPG stream 28, and an overhead distillate liquid stream 22 that is depleted of the heavy hydrocarbons.
- the distillate stream 22 is then mixed with the LNG stream 23 forming stream 10 typically at -220°F to -230°F that is further pumped by the secondary pump 59 to about 1,000 psig to 1,400 psig forming stream 11.
- the high pressure LNG stream is heat exchanged with the overhead vapor in reflux condenser coil 66 forming stream 27, typically at about -180°F to -200°F.
- Stream 27 is further heated in vaporizer 60 to meet the pipeline gas requirement.
- the bottom stream 28 is typically split into two portions; stream 25 and stream 21.
- Stream 21 is recycled back to exchanger 63 prior to its use for vapor absorption, and remaining stream 25 can be sold as the LPG product.
- the same considerations and designations as provided for Figure 2 above apply.
- the inventors contemplate a plant that includes an LNG storage vessel that receives LNG (preferably from a second LNG storage vessel, and most preferably from a LNG carrier ship) and that provide LNG liquid and LNG vapor.
- a fractionator produces a stream of C 2 and lighter components and a stream of C 3 and heavier components from a fractionator feed, wherein the refrigeration content of the liquefied natural gas liquid condenses the C 2 and lighter components, and wherein the C 3 and heavier components absorb the liquefied natural gas vapor thereby forming the fractionator feed.
- a first heat exchanger cools the fractionator feed using the liquefied natural gas liquid as a refrigerant to thereby condense the mixture of the LNG vapor and the C 3 and heavier components, while a second heat exchanger heats the (preferably pressurized) fractionator feed using the stream of C 3 and heavier components from the fractionator as a heat source.
- the separated and condensed C 2 and lighter components are combined with the LNG liquid (after the LNG liquid has been used as refrigerant).
- Still further preferred configurations also include those in which the fractionator receives a portion of the liquefied natural gas liquid as fractionator feed (preferably after the liquefied natural gas liquid has provided refrigeration for condensation of the C 2 and lighter components), and in which the fractionator is configured to provide liquefied petroleum gas (LPG) as a bottom product.
- LPG liquefied petroleum gas
- another portion of the LNG liquid is used as condensation refrigerant after the liquefied natural gas liquid has provided refrigeration for condensation of the C 2 and lighter components.
- the inventors contemplate a method of handling LNG vapor in which LNG liquid and LNG vapor are provided by a LNG storage vessel.
- the LNG vapor is combined with a stream of C 3 and heavier components to thereby absorb the liquefied natural gas vapor and to thereby form a combined product
- the combined product is separated in a fractionator into the stream of C 3 and heavier components and a stream of C 2 and lighter components.
- the stream of C 2 and lighter components is condensed using refrigeration content of the liquefied natural gas liquid.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/578,122 US8505312B2 (en) | 2003-11-03 | 2004-06-17 | Liquid natural gas fractionation and regasification plant |
AU2004288122A AU2004288122B2 (en) | 2003-11-03 | 2004-06-17 | LNG vapor handling configurations and methods |
JP2006537963A JP4496224B2 (en) | 2003-11-03 | 2004-06-17 | LNG vapor handling configuration and method |
EA200600908A EA009649B1 (en) | 2003-11-03 | 2004-06-17 | Lng vapor handling configurations and method therefor |
CA002544428A CA2544428C (en) | 2003-11-03 | 2004-06-17 | Lng vapor handling configurations and methods |
EP04755578A EP1690052A4 (en) | 2003-11-03 | 2004-06-17 | Lng vapor handling configurations and methods |
NO20062264A NO20062264L (en) | 2003-11-03 | 2006-05-19 | LNG steam handling structures and methods |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51729803P | 2003-11-03 | 2003-11-03 | |
US60/517,298 | 2003-11-03 | ||
US52541603P | 2003-11-25 | 2003-11-25 | |
US60/525,416 | 2003-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005045337A1 true WO2005045337A1 (en) | 2005-05-19 |
Family
ID=34576794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/019490 WO2005045337A1 (en) | 2003-11-03 | 2004-06-17 | Lng vapor handling configurations and methods |
Country Status (8)
Country | Link |
---|---|
US (1) | US8505312B2 (en) |
EP (1) | EP1690052A4 (en) |
JP (1) | JP4496224B2 (en) |
AU (1) | AU2004288122B2 (en) |
CA (1) | CA2544428C (en) |
EA (1) | EA009649B1 (en) |
NO (1) | NO20062264L (en) |
WO (1) | WO2005045337A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006087520A1 (en) * | 2005-02-16 | 2006-08-24 | Bp Exploration Operating Company Limited | Process for conditioning liquefied natural gas |
WO2007072136A2 (en) * | 2005-12-22 | 2007-06-28 | Single Buoy Moorings, Inc. | Enhanced lng regas |
WO2007107509A1 (en) * | 2006-03-23 | 2007-09-27 | Shell Internationale Research Maatschappij B.V. | Method and system for the regasification of lng |
WO2008066390A1 (en) * | 2006-11-28 | 2008-06-05 | Moss Maritime As | Re-gasification of lng |
EP1990272A1 (en) * | 2007-05-08 | 2008-11-12 | Daewoo Shipbuilding & Marine Engineering Co., Ltd | Fuel gas supply system and method of an LNG carrier |
FR2960041A1 (en) * | 2010-05-11 | 2011-11-18 | Air Liquide | Device for filling pressurized gas i.e. hydrogen, in tank of vehicle, has connecting circuit formed with compressor and selective cooling unit in upstream, where selective cooling unit selectively cools gas to be compressed |
WO2012097455A1 (en) * | 2011-01-18 | 2012-07-26 | Jose Lourenco | Method of recovery of natural gas liquids from natural gas at ngls recovery plants |
WO2016178034A1 (en) * | 2015-05-07 | 2016-11-10 | Highview Enterprises Limited | Systems and methods for controlling pressure in a cryogenic energy storage system |
WO2017001313A1 (en) * | 2015-06-29 | 2017-01-05 | Shell Internationale Research Maatschappij B.V. | Regasification terminal and a method of operating such a regasification terminal |
EP3196535A1 (en) * | 2016-01-25 | 2017-07-26 | Linde Aktiengesellschaft | Low temperature helium injection |
US10006695B2 (en) | 2012-08-27 | 2018-06-26 | 1304338 Alberta Ltd. | Method of producing and distributing liquid natural gas |
US10077937B2 (en) | 2013-04-15 | 2018-09-18 | 1304338 Alberta Ltd. | Method to produce LNG |
US10288347B2 (en) | 2014-08-15 | 2019-05-14 | 1304338 Alberta Ltd. | Method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations |
US10571187B2 (en) | 2012-03-21 | 2020-02-25 | 1304338 Alberta Ltd | Temperature controlled method to liquefy gas and a production plant using the method |
US10634426B2 (en) | 2011-12-20 | 2020-04-28 | 1304338 Alberta Ltd | Method to produce liquefied natural gas (LNG) at midstream natural gas liquids (NGLs) recovery plants |
US10852058B2 (en) | 2012-12-04 | 2020-12-01 | 1304338 Alberta Ltd. | Method to produce LNG at gas pressure letdown stations in natural gas transmission pipeline systems |
US11097220B2 (en) | 2015-09-16 | 2021-08-24 | 1304338 Alberta Ltd. | Method of preparing natural gas to produce liquid natural gas (LNG) |
US11486636B2 (en) | 2012-05-11 | 2022-11-01 | 1304338 Alberta Ltd | Method to recover LPG and condensates from refineries fuel gas streams |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1695004A1 (en) * | 2003-12-15 | 2006-08-30 | BP Corporation North America Inc. | Systems and methods for vaporization of liquefied natural gas |
US20070012072A1 (en) * | 2005-07-12 | 2007-01-18 | Wesley Qualls | Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility |
KR20090057298A (en) * | 2006-09-11 | 2009-06-04 | 우드사이드 에너지 리미티드 | Boil off gas management during ship-to-ship transfer of lng |
US20080190352A1 (en) | 2007-02-12 | 2008-08-14 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank ship and operation thereof |
KR20080097141A (en) * | 2007-04-30 | 2008-11-04 | 대우조선해양 주식회사 | Floating marine structure having in-tank re-condenser and method for treating boil-off gas on the floating marine structure |
KR100839771B1 (en) * | 2007-05-31 | 2008-06-20 | 대우조선해양 주식회사 | Apparatus for producing nitrogen equipped in a marine structure and method for producing nitrogen using the apparatus |
JP4996987B2 (en) * | 2007-06-12 | 2012-08-08 | 東京瓦斯株式会社 | Reliquefaction device and reliquefaction method for BOG generated in LNG storage tank |
US20090151391A1 (en) * | 2007-12-12 | 2009-06-18 | Conocophillips Company | Lng facility employing a heavies enriching stream |
EP2072885A1 (en) * | 2007-12-21 | 2009-06-24 | Cryostar SAS | Natural gas supply method and apparatus. |
US9243842B2 (en) | 2008-02-15 | 2016-01-26 | Black & Veatch Corporation | Combined synthesis gas separation and LNG production method and system |
US8973398B2 (en) * | 2008-02-27 | 2015-03-10 | Kellogg Brown & Root Llc | Apparatus and method for regasification of liquefied natural gas |
KR20090107805A (en) * | 2008-04-10 | 2009-10-14 | 대우조선해양 주식회사 | Method and system for reducing heating value of natural gas |
US20100122542A1 (en) * | 2008-11-17 | 2010-05-20 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and apparatus for adjusting heating value of natural gas |
WO2010066662A2 (en) * | 2008-12-09 | 2010-06-17 | Shell Internationale Research Maatschappij B.V. | Method of operating a compressor and an apparatus therefor |
KR101078645B1 (en) * | 2009-03-12 | 2011-11-01 | 삼성중공업 주식회사 | Lng/lpg bog reliquefaction apparatus and method |
FR2944088B1 (en) * | 2009-04-03 | 2013-04-19 | Gdf Suez | METHOD FOR DISCHARGING AND STORING LIQUEFIED NATURAL GAS IN METHANOL TERMINAL WITHOUT GAS EVAPORATION |
NO332551B1 (en) | 2009-06-30 | 2012-10-22 | Hamworthy Gas Systems As | Method and apparatus for storing and transporting liquefied petroleum gas |
US9683703B2 (en) * | 2009-08-18 | 2017-06-20 | Charles Edward Matar | Method of storing and transporting light gases |
KR100967818B1 (en) * | 2009-10-16 | 2010-07-05 | 대우조선해양 주식회사 | Ship for supplying liquefied fuel gas |
NO331474B1 (en) * | 2009-11-13 | 2012-01-09 | Hamworthy Gas Systems As | Installation for gasification of LNG |
KR101239352B1 (en) * | 2010-02-24 | 2013-03-06 | 삼성중공업 주식회사 | Floating liquefied natural gas charging station |
US10113127B2 (en) | 2010-04-16 | 2018-10-30 | Black & Veatch Holding Company | Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas |
US9829244B2 (en) * | 2010-07-29 | 2017-11-28 | Fluor Technologies Corporation | Configurations and methods for small scale LNG production |
US9683702B2 (en) * | 2010-11-30 | 2017-06-20 | Korea Advanced Institute Of Science And Technology | Apparatus for pressurizing delivery of low-temperature liquefied material |
WO2012075266A2 (en) | 2010-12-01 | 2012-06-07 | Black & Veatch Corporation | Ngl recovery from natural gas using a mixed refrigerant |
US10451344B2 (en) | 2010-12-23 | 2019-10-22 | Fluor Technologies Corporation | Ethane recovery and ethane rejection methods and configurations |
WO2012124886A1 (en) * | 2011-03-11 | 2012-09-20 | 대우조선해양 주식회사 | System for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine |
US10852060B2 (en) | 2011-04-08 | 2020-12-01 | Pilot Energy Solutions, Llc | Single-unit gas separation process having expanded, post-separation vent stream |
KR101344772B1 (en) | 2012-01-04 | 2013-12-24 | 에스티엑스조선해양 주식회사 | Fuel gas supply and re-liquefaction system of lng/lpg combined carrier |
US10139157B2 (en) | 2012-02-22 | 2018-11-27 | Black & Veatch Holding Company | NGL recovery from natural gas using a mixed refrigerant |
US9140221B2 (en) * | 2012-11-30 | 2015-09-22 | Electro-Motive Diesel, Inc. | Fuel recovery system |
JP6429867B2 (en) * | 2013-06-17 | 2018-11-28 | コノコフィリップス カンパニー | Integrated cascade process for vaporization and recovery of residual LNG in floating tank applications |
KR102151575B1 (en) * | 2013-09-27 | 2020-09-03 | 익셀러레이트 에너지 리미티드 파트너쉽 | Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel |
US10563913B2 (en) | 2013-11-15 | 2020-02-18 | Black & Veatch Holding Company | Systems and methods for hydrocarbon refrigeration with a mixed refrigerant cycle |
US9574822B2 (en) | 2014-03-17 | 2017-02-21 | Black & Veatch Corporation | Liquefied natural gas facility employing an optimized mixed refrigerant system |
FR3027093A1 (en) * | 2014-10-13 | 2016-04-15 | Combisys | METHOD FOR REDUCING THE BOIL-OFF OF A STORAGE OF LIQUEFIED GAS CONTAINED IN A TANK BY USE OF A SECONDARY TANK |
DE102014015987A1 (en) * | 2014-10-28 | 2016-04-28 | Linde Aktiengesellschaft | Boil-off gas management at hydrogen filling stations |
CA2976071C (en) | 2015-02-09 | 2020-10-27 | Fluor Technologies Corporation | Methods and configuration of an ngl recovery process for low pressure rich feed gas |
US10006701B2 (en) | 2016-01-05 | 2018-06-26 | Fluor Technologies Corporation | Ethane recovery or ethane rejection operation |
US10330382B2 (en) | 2016-05-18 | 2019-06-25 | Fluor Technologies Corporation | Systems and methods for LNG production with propane and ethane recovery |
US11725879B2 (en) | 2016-09-09 | 2023-08-15 | Fluor Technologies Corporation | Methods and configuration for retrofitting NGL plant for high ethane recovery |
FR3066250B1 (en) * | 2017-05-12 | 2019-07-05 | Gaztransport Et Technigaz | DEVICE AND METHOD FOR COOLING LIQUEFIED GAS AND / OR NATURAL EVAPORATION GAS FROM LIQUEFIED GAS |
MX2020003412A (en) | 2017-10-20 | 2020-09-18 | Fluor Tech Corp | Phase implementation of natural gas liquid recovery plants. |
RU2685748C1 (en) * | 2018-04-06 | 2019-04-23 | Олег Станиславович Клюнин | Method of producing a gaseous product and device for its implementation |
US12098882B2 (en) | 2018-12-13 | 2024-09-24 | Fluor Technologies Corporation | Heavy hydrocarbon and BTEX removal from pipeline gas to LNG liquefaction |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3663644A (en) * | 1968-01-02 | 1972-05-16 | Exxon Research Engineering Co | Integrated ethylene production and lng transportation |
US3849096A (en) * | 1969-07-07 | 1974-11-19 | Lummus Co | Fractionating lng utilized as refrigerant under varying loads |
US3857245A (en) * | 1973-06-27 | 1974-12-31 | J Jones | Reliquefaction of boil off gas |
US4430103A (en) * | 1982-02-24 | 1984-02-07 | Phillips Petroleum Company | Cryogenic recovery of LPG from natural gas |
US6510706B2 (en) * | 2000-05-31 | 2003-01-28 | Exxonmobil Upstream Research Company | Process for NGL recovery from pressurized liquid natural gas |
US6564579B1 (en) * | 2002-05-13 | 2003-05-20 | Black & Veatch Pritchard Inc. | Method for vaporizing and recovery of natural gas liquids from liquefied natural gas |
US6601406B1 (en) * | 1999-10-21 | 2003-08-05 | Fluor Corporation | Methods and apparatus for high propane recovery |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2230619A (en) * | 1935-03-18 | 1941-02-04 | Phillips Petroleum Co | Process for separating gas and oil |
US2535364A (en) * | 1946-07-26 | 1950-12-26 | Maurice W Lee | Liquefied gas storage system |
NL133404C (en) * | 1963-08-02 | |||
US3303660A (en) * | 1965-09-27 | 1967-02-14 | Clyde H O Berg | Process and apparatus for cryogenic storage |
JPS57131972A (en) * | 1981-02-09 | 1982-08-16 | Mitsubishi Heavy Ind Ltd | Reliquifier for methane based gas mixture |
JPS57164183A (en) * | 1981-04-03 | 1982-10-08 | Chiyoda Chem Eng & Constr Co Ltd | Preparation of heat medium mixture |
JPS5822872A (en) * | 1981-07-31 | 1983-02-10 | 東洋エンジニアリング株式会社 | Method of recovering lpg in natural gas |
US4704146A (en) * | 1986-07-31 | 1987-11-03 | Kryos Energy Inc. | Liquid carbon dioxide recovery from gas mixtures with methane |
JPS6452437A (en) * | 1987-08-24 | 1989-02-28 | Tadashi Sato | Adaptor for changing recorder to ausculatatory recorder and portable recorder equipped therewith |
JPH0633872B2 (en) * | 1987-11-02 | 1994-05-02 | 石川島播磨重工業株式会社 | Precooling method for LNG receiving piping |
JPH0392700A (en) * | 1989-09-01 | 1991-04-17 | Kobe Steel Ltd | Boil-off gas processing method of low temperature liquefied gas |
JP2769219B2 (en) * | 1990-02-13 | 1998-06-25 | 大阪瓦斯株式会社 | LNG boil-off gas processing method and apparatus |
GB9016638D0 (en) * | 1990-07-28 | 1990-09-12 | Jcb Landpower Ltd | Vehicle |
JPH05296399A (en) * | 1992-04-13 | 1993-11-09 | Tokyo Gas Co Ltd | Treatment method of boll-off gas generated in lng storage tank |
JPH07138584A (en) * | 1993-11-17 | 1995-05-30 | Kobe Steel Ltd | Method and apparatus for treating bog vaporized in lng storage equipment |
JPH08270897A (en) * | 1995-03-28 | 1996-10-15 | Osaka Gas Co Ltd | Treating method and device for boil-off gas generated in liquefied natural gas storage tank |
US5561988A (en) * | 1995-10-27 | 1996-10-08 | Advanced Extraction Technologies, Inc. | Retrofit unit for upgrading natural gas refrigeraition plants |
US6089022A (en) * | 1998-03-18 | 2000-07-18 | Mobil Oil Corporation | Regasification of liquefied natural gas (LNG) aboard a transport vessel |
TW432192B (en) * | 1998-03-27 | 2001-05-01 | Exxon Production Research Co | Producing power from pressurized liquefied natural gas |
US6460350B2 (en) | 2000-02-03 | 2002-10-08 | Tractebel Lng North America Llc | Vapor recovery system using turboexpander-driven compressor |
US6516631B1 (en) * | 2001-08-10 | 2003-02-11 | Mark A. Trebble | Hydrocarbon gas processing |
GB0120661D0 (en) * | 2001-08-24 | 2001-10-17 | Cryostar France Sa | Natural gas supply apparatus |
US6640556B2 (en) | 2001-09-19 | 2003-11-04 | Westport Research Inc. | Method and apparatus for pumping a cryogenic fluid from a storage tank |
US7069743B2 (en) | 2002-02-20 | 2006-07-04 | Eric Prim | System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas |
US6672104B2 (en) * | 2002-03-28 | 2004-01-06 | Exxonmobil Upstream Research Company | Reliquefaction of boil-off from liquefied natural gas |
CA2480618C (en) * | 2002-03-29 | 2007-09-18 | Excelerate Energy Limited Partnership | Improved lng carrier |
US6941771B2 (en) * | 2002-04-03 | 2005-09-13 | Howe-Baker Engineers, Ltd. | Liquid natural gas processing |
US6745576B1 (en) | 2003-01-17 | 2004-06-08 | Darron Granger | Natural gas vapor recondenser system |
US7155931B2 (en) * | 2003-09-30 | 2007-01-02 | Ortloff Engineers, Ltd. | Liquefied natural gas processing |
-
2004
- 2004-06-17 AU AU2004288122A patent/AU2004288122B2/en not_active Ceased
- 2004-06-17 JP JP2006537963A patent/JP4496224B2/en not_active Expired - Fee Related
- 2004-06-17 EA EA200600908A patent/EA009649B1/en not_active IP Right Cessation
- 2004-06-17 US US10/578,122 patent/US8505312B2/en not_active Expired - Fee Related
- 2004-06-17 WO PCT/US2004/019490 patent/WO2005045337A1/en active Application Filing
- 2004-06-17 EP EP04755578A patent/EP1690052A4/en not_active Withdrawn
- 2004-06-17 CA CA002544428A patent/CA2544428C/en not_active Expired - Fee Related
-
2006
- 2006-05-19 NO NO20062264A patent/NO20062264L/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3663644A (en) * | 1968-01-02 | 1972-05-16 | Exxon Research Engineering Co | Integrated ethylene production and lng transportation |
US3849096A (en) * | 1969-07-07 | 1974-11-19 | Lummus Co | Fractionating lng utilized as refrigerant under varying loads |
US3857245A (en) * | 1973-06-27 | 1974-12-31 | J Jones | Reliquefaction of boil off gas |
US4430103A (en) * | 1982-02-24 | 1984-02-07 | Phillips Petroleum Company | Cryogenic recovery of LPG from natural gas |
US6601406B1 (en) * | 1999-10-21 | 2003-08-05 | Fluor Corporation | Methods and apparatus for high propane recovery |
US6510706B2 (en) * | 2000-05-31 | 2003-01-28 | Exxonmobil Upstream Research Company | Process for NGL recovery from pressurized liquid natural gas |
US6564579B1 (en) * | 2002-05-13 | 2003-05-20 | Black & Veatch Pritchard Inc. | Method for vaporizing and recovery of natural gas liquids from liquefied natural gas |
Non-Patent Citations (1)
Title |
---|
See also references of EP1690052A4 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006087520A1 (en) * | 2005-02-16 | 2006-08-24 | Bp Exploration Operating Company Limited | Process for conditioning liquefied natural gas |
WO2007072136A2 (en) * | 2005-12-22 | 2007-06-28 | Single Buoy Moorings, Inc. | Enhanced lng regas |
WO2007072136A3 (en) * | 2005-12-22 | 2007-10-04 | Single Buoy Moorings | Enhanced lng regas |
WO2007107509A1 (en) * | 2006-03-23 | 2007-09-27 | Shell Internationale Research Maatschappij B.V. | Method and system for the regasification of lng |
WO2008066390A1 (en) * | 2006-11-28 | 2008-06-05 | Moss Maritime As | Re-gasification of lng |
EP1990272A1 (en) * | 2007-05-08 | 2008-11-12 | Daewoo Shipbuilding & Marine Engineering Co., Ltd | Fuel gas supply system and method of an LNG carrier |
US7690365B2 (en) | 2007-05-08 | 2010-04-06 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Fuel gas supply system and method of an LNG carrier |
FR2960041A1 (en) * | 2010-05-11 | 2011-11-18 | Air Liquide | Device for filling pressurized gas i.e. hydrogen, in tank of vehicle, has connecting circuit formed with compressor and selective cooling unit in upstream, where selective cooling unit selectively cools gas to be compressed |
WO2012097455A1 (en) * | 2011-01-18 | 2012-07-26 | Jose Lourenco | Method of recovery of natural gas liquids from natural gas at ngls recovery plants |
US10634426B2 (en) | 2011-12-20 | 2020-04-28 | 1304338 Alberta Ltd | Method to produce liquefied natural gas (LNG) at midstream natural gas liquids (NGLs) recovery plants |
US10571187B2 (en) | 2012-03-21 | 2020-02-25 | 1304338 Alberta Ltd | Temperature controlled method to liquefy gas and a production plant using the method |
US11486636B2 (en) | 2012-05-11 | 2022-11-01 | 1304338 Alberta Ltd | Method to recover LPG and condensates from refineries fuel gas streams |
US10006695B2 (en) | 2012-08-27 | 2018-06-26 | 1304338 Alberta Ltd. | Method of producing and distributing liquid natural gas |
US10852058B2 (en) | 2012-12-04 | 2020-12-01 | 1304338 Alberta Ltd. | Method to produce LNG at gas pressure letdown stations in natural gas transmission pipeline systems |
US10077937B2 (en) | 2013-04-15 | 2018-09-18 | 1304338 Alberta Ltd. | Method to produce LNG |
US10288347B2 (en) | 2014-08-15 | 2019-05-14 | 1304338 Alberta Ltd. | Method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations |
WO2016178034A1 (en) * | 2015-05-07 | 2016-11-10 | Highview Enterprises Limited | Systems and methods for controlling pressure in a cryogenic energy storage system |
US10955090B2 (en) | 2015-05-07 | 2021-03-23 | Highview Enterprises Limited | Systems and methods for controlling pressure in a cryogenic energy storage system |
WO2017001313A1 (en) * | 2015-06-29 | 2017-01-05 | Shell Internationale Research Maatschappij B.V. | Regasification terminal and a method of operating such a regasification terminal |
US11097220B2 (en) | 2015-09-16 | 2021-08-24 | 1304338 Alberta Ltd. | Method of preparing natural gas to produce liquid natural gas (LNG) |
US11173445B2 (en) | 2015-09-16 | 2021-11-16 | 1304338 Alberta Ltd. | Method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (LNG) |
EP3196535A1 (en) * | 2016-01-25 | 2017-07-26 | Linde Aktiengesellschaft | Low temperature helium injection |
Also Published As
Publication number | Publication date |
---|---|
EA200600908A1 (en) | 2006-08-25 |
EP1690052A4 (en) | 2012-08-08 |
NO20062264L (en) | 2006-06-01 |
EA009649B1 (en) | 2008-02-28 |
CA2544428A1 (en) | 2005-05-19 |
AU2004288122B2 (en) | 2008-08-07 |
JP4496224B2 (en) | 2010-07-07 |
AU2004288122A1 (en) | 2005-05-19 |
CA2544428C (en) | 2009-06-02 |
EP1690052A1 (en) | 2006-08-16 |
US20070125122A1 (en) | 2007-06-07 |
US8505312B2 (en) | 2013-08-13 |
JP2007510880A (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2004288122B2 (en) | LNG vapor handling configurations and methods | |
JP5219306B2 (en) | Configuration and method for offshore LNG regasification and calorific value adjustment | |
KR101301013B1 (en) | Method of extracting ethane from liquefied natural gas | |
AU2005316515B2 (en) | Configurations and methods for LNG regasification and BTU control | |
US7299655B2 (en) | Systems and methods for vaporization of liquefied natural gas | |
CA2651489C (en) | High ethane recovery configurations and methods in lng regasification facilities | |
EP1792129A1 (en) | Configurations and methods for lpg and power cogeneration | |
WO2008079753A9 (en) | Process and apparatus for reducing the heating value of liquefied natural gas | |
EP1848946A1 (en) | Process for conditioning liquefied natural gas | |
MXPA06004708A (en) | Lng vapor handling configurations and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480039727.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004755578 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004288122 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/004708 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2544428 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006537963 Country of ref document: JP |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2004288122 Country of ref document: AU Date of ref document: 20040617 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004288122 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200600908 Country of ref document: EA |
|
WWP | Wipo information: published in national office |
Ref document number: 2004755578 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007125122 Country of ref document: US Ref document number: 10578122 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10578122 Country of ref document: US |