WO2005042624A1 - Thermoplastic elastomer composition and formed article - Google Patents

Thermoplastic elastomer composition and formed article Download PDF

Info

Publication number
WO2005042624A1
WO2005042624A1 PCT/JP2004/016106 JP2004016106W WO2005042624A1 WO 2005042624 A1 WO2005042624 A1 WO 2005042624A1 JP 2004016106 W JP2004016106 W JP 2004016106W WO 2005042624 A1 WO2005042624 A1 WO 2005042624A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
resin
thermoplastic elastomer
monomer
elastomer composition
Prior art date
Application number
PCT/JP2004/016106
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyonori Umetsu
Hirofumi Masuda
Kazuhiro Ejiri
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2005515173A priority Critical patent/JPWO2005042624A1/en
Publication of WO2005042624A1 publication Critical patent/WO2005042624A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/005Hydrogenated nitrile rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile

Definitions

  • the present invention relates to a thermoplastic elastomer composition
  • a thermoplastic elastomer composition comprising a polyamide resin and / or a polyester resin and a specific rubber. More specifically, the present invention has excellent heat resistance, and further has improved compression set and fatigue resistance.
  • a thermoplastic elastomer composition is a thermoplastic elastomer composition.
  • Polyamide-based elastomers and polyester-based elastomers which are block copolymers obtained by combining a polyamide or polyester block with a polyether block, have excellent mechanical properties and appropriate flexibility. It is a thermoplastic elastomer having. However, these elastomers have a high hardness and are inferior in heat resistance and compression set for use as rubber-like elastic materials. Therefore, as a method of improving these characteristics, a method of mixing rubber with the above-mentioned elastomer has been attempted, and various rubber blending techniques have been proposed.
  • Patent Document 1 proposes a thermoplastic elastomer composition obtained by dispersing and mixing a crosslinked rubber component containing at least 20% of a gel component in a polyester elastomer component. Specifically, this document discloses a composition in which a crosslinked carboxy-modified nitrile-butadiene rubber is kneaded with a polyester ester elastomer using a brabender.
  • Patent Document 2 discloses a crosslinking agent comprising a polyamide-based elastomer or a polyester-based elastomer, and a rubber particle having a core Cielny layer structure comprising a core layer of a crosslinking rubber and a shell layer of a rubber having a crosslinking group.
  • a method has been proposed in which the rubber particles are dispersed in an elastomer while kneading in the presence of a rubber layer while mainly crosslinking the shell layer.
  • this method improves tensile properties and compression set, it has the problem of inferior heat resistance. is there.
  • Patent Document 3 discloses a powerful thermoplastic elastomer composition comprising a rubber of acrylate rubber, ethylene-atarylate rubber or a combination thereof, polyester, polycarbonate or polyphenylene oxide, or a combination thereof, and a strong thermoplastic elastomer composition.
  • this document discloses a thermoplastic elastomer composition using a rubber which is at least partially cross-linked with a cross-linking agent of a polyfunctional oxazoline, oxazine, imidazoline, carbodiimide or a combination thereof as the rubber.
  • molded articles of the composition described in this document have a problem that compression permanent set is insufficiently improved and fatigue resistance is poor.
  • Patent Document 1 JP-A-5-79256
  • Patent Document 2 JP-A-8-231770
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-246749
  • An object of the present invention is to provide a thermoplastic elastomer composition which can provide a molded article having excellent heat resistance, small compression set, and excellent fatigue resistance. Means for solving the problem
  • the inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, kneaded a polyamide resin or a polyester resin having a melting point in a specific range and a flexural modulus not more than a specific value with a specific rubber.
  • the inventors have found that a thermoplastic elastomer composition dynamically crosslinked while achieving the above object achieves the above object, and has completed the present invention based on this finding.
  • thermoplastic elastomer composition obtained by dynamically crosslinking while kneading.
  • the resin (A) contains a plasticizer
  • thermoplastic elastomer composition according to claim 1 wherein the content of the plasticizer is 1 to 50 parts by weight per 100 parts by weight of the resin (A).
  • the rubber (B) contains a gel component
  • thermoplastic elastomer composition according to the above 1 or 2 wherein the content of the gel component is 30 to 100% by weight based on 100% by weight of the whole rubber (B).
  • thermoplastic elastomer composition according to any one of items 13 to 13, wherein the particles of the rubber (B) are finely dispersed in a matrix of the resin (A).
  • thermoplastic elastomer composition obtained by molding the thermoplastic elastomer composition according to any one of the above items 1 to 4 at 160 to 350 ° C.
  • thermoplastic elastomer composition in which crosslinked rubber particles are finely dispersed in a matrix of a polyamide resin or a polyester resin. Since this thermoplastic elastomer composition can provide molded articles having low compression set and excellent fatigue resistance in addition to heat resistance, various rubber parts such as seals, hoses, automobile boots and the like can be provided. It can be suitably used as a product.
  • the thermoplastic elastomer composition of the present invention has a polyamide resin having a melting point of 160 to 300 ° C and a flexural modulus at a temperature of 23 ° C of 10,000 kgf / cm 2 (23 ° C) or less.
  • (A1) or at least one resin (a) 20- 95 wt 0/0 of the poly ester resin (A2), and at least one rubber (B) 80- 5% by weight selected from an acrylic rubber (B1) group, Is dynamically kneaded while kneading.
  • the resin (A) of the present invention is a polyamide resin (A1) or a polyester resin (A2), or a mixture of these resins.
  • the polyamide resin (A1) used in the present invention is a polymer having an acid amide bond (-CONH-). It is.
  • Examples of such a polymer include a polymer obtained by polycondensation of diamine and a dibasic acid, a polymer obtained by polycondensation of a diamine derivative such as diformyl and a dibasic acid, and a dibasic polymer such as dimethyl ester.
  • a polymer obtained by the polycondensation of an acid derivative with diamine a polymer obtained by the reaction of dinitrile or diamide with formaldehyde, a polymer obtained by polyaddition of diisocyanate with a dibasic acid, a self-product of an amino acid or its derivative
  • Examples thereof include a polymer obtained by condensation, a polymer obtained by ring-opening polymerization of ratatum, and the like.
  • these polyamide resins may contain a polyether block.
  • polyamide resins include polycapramide (6-nylon), polyhexamethylene adipamide (66-nylon), polyhexamethylene sebacamide (610-nylon), and polyundecaneamide. (11-nylon), polylaurinamide (12-nylon), poly- ⁇ -aminoheptanic acid (7-nylon), poly- ⁇ _aminononanoic acid (9-nylon) and the like.
  • 6-nylon, 66-nylon, 12-nylon and 11_nylon are preferred from the viewpoints of versatility and heat resistance.
  • the polymerization degree of the polyamide resin (A1) used in the present invention is usually 90-600, preferably 100-500.
  • the polyester resin (# 2) used in the present invention is a polymer having an ester bond, and is usually obtained by polycondensation of a polyhydric alcohol and a polybasic acid or a polybasic acid ester compound.
  • polyester resin (# 2) for example, generally known polyester resins such as an alkyd resin, a maleic acid resin, a saturated polyester resin, and an unsaturated polyester resin can be used.
  • polyhydric alcohol ethylene glycol, diethylene glycol, triethylene glycol, butylene glycol, trimethylene glycol, propylene glycol, cyclohexane dimethanol, and the like are used.
  • polybasic acid phthalic acid, fumaric acid, adipic acid and the like are used.
  • polyhydric alcohols include Preference is given to using Tylendalcol, butylene glycol or trimethylene glycol.
  • aromatic polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate obtained by using phthalic acid are particularly preferable.
  • the polyester resin does not have a polyether block as a copolymer component.
  • heat resistance may be reduced.
  • the weight average molecular weight of the polyester resin (A2) used in the present invention is usually 40,000-100,000, and preferably ⁇ 60,000-100,000.
  • the polyamide resin (A1) and the polyester resin (A2) used in the present invention have a melting point of 160-300. C, preferably 165-270. C, more preferably 170-220. C's. If the melting point is too low, the heat resistance of the thermoplastic elastomer obtained is inferior, and if it is too high, the polyamide resin (A1) and the polyester resin (A2) may deteriorate during processing.
  • the melting points of the polyamide resin (A1) and the polyester resin (A2) can be determined from the peak temperature of the heat of fusion using a differential scanning calorimeter.
  • the lower limit of the flexural modulus is not particularly limited, but is usually about 2, OOOkgfZcm 2 . If the flexural modulus is too large, the compression set is inferior.
  • a polyamide resin composition containing a plasticizer and a polyester resin composition containing a plasticizer are used as the polyamide resin (A1) and the polyester resin (A2) having a flexural modulus within the above range. It is preferable to use
  • plasticizer examples include di- (2-ethylhexyl) phthalate, di-n-octyl phthalate, diisonol phthalate, dicyclohexyl phthalate, diphenyl phthalate, benzyl phthalate, and benzyl phthalate.
  • Phthalate compounds such as 2-ethylhexyl; Phosphate compounds such as triphenyl phosphate, tricresinole phosphate, decyldiphenyl phosphate, and triethyl phosphate; Kishiru), Trimerit Trimellitic acid ester compounds such as acid tree n-octyl; adipic acid ester compounds such as di- (2-ethylhexyl) adipate, dibutoxetinole adipate and diisononinole adipate; Azelaic acid ester compounds such as xyl and diazelleate (2-ethylhexyl); sulfonamide derivatives such as butylbenzenesulfonamide; sebacic acid ester compounds such as di- (2-ethylhexyl) sebacate; n-octinole Hydroxybenzoates such as
  • phthalic acid ester compounds, sulfonamide derivatives, and hydroxybenzoate are preferred, and phthalic acid-hydroxyethyl-2-ethylhexyl, butylbenzensulfonamide, and n-octyl-4-hydroxybenzoate are more preferred.
  • the content of the plasticizer is usually 1 to 50 parts by weight, preferably 5 to 30 parts by weight per 100 parts by weight of at least one resin (A) of the polyamide resin (A1) or the polyester resin (A2). It is. If the content of the plasticizer is too small, the flexural modulus of the resin (A) tends to be too large, and if it is too large, the heat resistance may be deteriorated.
  • the resin (A) and the plasticizer are uniformly mixed at 160-350 ° C using a blender such as a brabender, a twin-screw extruder, or a kneader. Mix well until you get it. If the plasticizer is added at the stage of kneading the resin (A) and the rubber (B), the plasticizer is distributed to both the resin (A) and the rubber (B), so that the resin (A) The flexural modulus is not sufficiently reduced, and the effects of the thermoplastic elastomer composition of the present invention, particularly the improvement effects such as fatigue resistance, are not effectively exhibited, which is not preferable.
  • the rubber (B) used in the present invention consists of at least one selected from the group consisting of acrylic rubber (B1), nitrile rubber (B2), hydrogenated nitrile rubber (B3) and ephalohydrin rubber (B4). Things.
  • the rubber (B) of the present invention is at least one of acrylic rubber (B1) and hydrogenated nitrile rubber (B3).
  • the rubber (B) needs to have a crosslinkable group suitable for dynamic crosslinking described below.
  • the crosslinkable group may be any crosslinkable group generally known to be capable of reacting with a crosslinker used in rubber processing, and may be appropriately selected depending on the type of the crosslinker used. It may be selected, but it is preferably at least one selected from the group consisting of a halogen-containing group, an epoxy group and a carboxy group.
  • the rubber (B) has a viscosity ML (100.C) of preferably 10-150, more preferably
  • the compression set may increase, and if it is too high, the moldability may be poor.
  • the rubber (B) those containing a gel (also called a gel component) can be preferably used.
  • the gel content of the rubber (B), to the rubber (B) total 100 weight 0/0, preferably 30- 1 00 wt%, more preferably 50 to 100 wt%, particularly preferably 60- 100 wt% It is.
  • the gel component is preferably dispersed uniformly in the rubber.
  • the gel content of the rubber (B) can be measured by the following method. That is, after dissolving a predetermined amount of rubber (B) with a good solvent for the rubber, the solution is filtered through a filter such as an 80-mesh wire mesh, and the solvent-insoluble matter trapped on the filter is dried to weigh. It is measured and calculated as the weight ratio to the initial predetermined amount.
  • the acrylic rubber (B1) has an acrylate monomer or a methacrylate ester monomer [hereinafter abbreviated as (meth) acrylate monomer] in the molecule. ] Unit.
  • the content of the (meth) acrylate monomer unit is preferably 55 to 99.5% by weight, more preferably 85 to 99% by weight, and particularly preferably 100% by weight of the whole acrylic rubber (B1). Is from 95 to 98% by weight, and the balance has monomer units copolymerizable with the (meth) acrylate monomer.
  • Examples of the (meth) acrylic acid ester monomer include (meth) acrylic acid alkyl ester monomers and (meth) acrylic acid alkoxyalkyl ester monomers.
  • an ester of alkinol having 118 carbon atoms with (meth) acrylic acid is preferred.
  • ethyl (meth) acrylate and n-butyl (meth) acrylate are preferable, and ethyl acrylate and n -butyl acrylate are particularly preferable.
  • (meth) acrylic acid alkoxyalkyl ester monomer an ester of an alcoholic alcohol having 2 to 8 carbon atoms and (meth) acrylic acid is preferable.
  • methoxymethyl (meth) acrylate methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, 2_ethoxyshethyl (meth) acrylate, 2_butoxyshethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, ) 2-propoxyshetyl acrylate, 3-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate and the like.
  • 2-ethoxyethyl (meth) acrylate and 2-methoxyethyl (meth) acrylate are preferable, and 2-ethoxyethyl acrylate and 2-methoxyethyl acrylate are particularly preferable.
  • the acrylic rubber (B1) used in the present invention contains a monomer unit copolymerizable with a (meth) acrylate monomer in addition to a (meth) acrylate monomer unit. May be.
  • the copolymerizable monomer include a conjugated diene monomer, a non-covalent diene monomer, an aromatic vinyl monomer, an ⁇ , -ethylenically unsaturated nitrile monomer, and an amide group. Included are (meth) acrylic monomers, polyfunctional di (meth) acrylic monomers, and other olefin-based monomers.
  • conjugated diene monomer examples include 1,3-butadiene, butadiene, chloroprene, and piperylene.
  • non-conjugated diene monomer examples include 1,2-butadiene, 1,4-pentadiene, dicyclopentadiene, norbornene, ethylidene norbornene, 1,4-hexadiene, norbornadiene and the like.
  • aromatic vinyl monomer examples include styrene, permethylstyrene, dibutylbenzene, and the like.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer include acrylonitrile and methacrylonitrile.
  • Amide group-containing (meth) acrylic monomers include acrylamide and methacrylamide. I can get lost.
  • olefin monomers include ethylene, propylene, butyl chloride, butylidene chloride, butyl acetate, ethyl butyl ether, butyl butyl ether and the like. Of these, ethylene and vinyl acetate are preferred.
  • a crosslinkable group-containing monomer containing a crosslinkable group suitable for dynamic crosslinking may be used as another monomer copolymerizable with the above-mentioned (meth) acrylic acid ester monomer.
  • a crosslinkable group-containing monomer containing a crosslinkable group suitable for dynamic crosslinking.
  • examples of such a crosslinkable group-containing monomer include a monomer having a halogen-containing group, an epoxy group or a hydroxyl group.
  • Examples of the monomer having a halogen-containing group include halogen-containing vinyl ethers such as 2-chloroethyl butyl ether; halogen-containing styrene derivatives such as chloromethylstyrene; halogen-containing vinyl acetates such as vinyl chloride acetate; Is mentioned.
  • Examples of the epoxy group-containing monomer include aryl glycidyl ether and glycidyl (meth) acrylate.
  • carboxyl group-containing monomer examples include ethylenically unsaturated monocarboxylic acids or ethylenically unsaturated polycarboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid; monobutyl maleate and fumaric acid.
  • Butenedionic acid monobutenedionic acid monocycloalkyl ester such as monobutyl acid; and the like.
  • the amount of the crosslinkable group-containing monomer to be used is preferably 0.5 to 10% by weight, more preferably 115 to 5% by weight, based on all the polymerized monomers. If the amount of the cross-linkable group-containing monomer is too small, the dynamic cross-linking does not proceed sufficiently and the dispersibility of the rubber may be impaired. Conversely, if the amount is too large, the polymerization process of the acrylic rubber (B1) may be performed. The rubber (B1) may not be polymerized stably.
  • the acrylic rubber (B1) contains a gel component, as a monomer copolymerizable with the (meth) acrylic acid ester monomer, spontaneous crosslinking occurs during the polymerization reaction.
  • a gel component as a monomer copolymerizable with the (meth) acrylic acid ester monomer, spontaneous crosslinking occurs during the polymerization reaction.
  • an unsaturated crosslinkable group-containing monomer having two or more butyl groups is preferable to use.
  • unsaturated cross-linkable group-containing monomer examples include polyfunctional bur compounds such as dibutylbenzene and 1,3,5-trivinylbenzene; and diaryl such as diaryl phthalate and diaryl fumarate.
  • polyfunctional bur compounds such as dibutylbenzene and 1,3,5-trivinylbenzene
  • diaryl such as diaryl phthalate and diaryl fumarate.
  • Compounds; polyfunctional atalylates such as trimethylolpropane triatalylate and ethylene dalcol dimethacrylate; and the like.
  • the amount of the unsaturated crosslinkable group-containing monomer used is preferably 0.2 to 1.5% by weight, more preferably 0.2 to 1.5% by weight, based on the total amount of monomers used for polymerization of the acrylic rubber (B1). Is 0.3-1.0% by weight.
  • the nitrile rubber (B2) is a rubber obtained by copolymerizing an ⁇ , ethylenically unsaturated nitrile monomer, a conjugated diene monomer and other monomers copolymerizable therewith as required. It is.
  • Examples of the a, ⁇ -ethylenically unsaturated nitrile monomer include acrylonitrile, methacrylonitrile, and ⁇ -methyl acrylonitrile, among which acrylonitrile is preferable.
  • the amount of the ⁇ , -ethylenically unsaturated nitrile monomer used in the copolymerization of nitrile rubber ( ⁇ 2) is preferably 30 to 80% by weight, more preferably 35 to 60% by weight, based on all monomers used for the polymerization. %. If the amount of a, j3_ethylenically unsaturated nitrile monomer is too small, the oil resistance may be poor, and if it is too large, the cold resistance may be poor.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. Among them, 1,3_butadiene is preferred.
  • the monomer that can be added as necessary and that can be copolymerized with the above monomer includes a crosslinkable group-containing monomer suitable for dynamic crosslinking, as described in the description of the acrylic rubber (B1).
  • a monomer containing an unsaturated crosslinkable group suitable for containing a gel can be used in the same amount as described above.
  • Hydrogenated nitrile rubber (B3) is used to remove carbon-carbon unsaturated bonds in the main chain of nitrile rubber (B2). It is a rubber made by hydrogenation.
  • the epihalohydrin rubber (B4) may be referred to as an epihalohydrin monomer (b41) [hereinafter sometimes referred to as “monomer (b41)”. Or a ring-opened copolymer of the monomer (b41) and a monomer copolymerizable therewith.
  • a force S such as epichronorehydrin, epib mouth mohydrin, 2-methylhepiclorhydrin and the like are preferable, and among them, epichlorhydrin is preferable.
  • the alkylene oxide monomer (b42) [hereinafter sometimes referred to as “monomer (b42)”.
  • an epoxy group-containing crosslinkable monomer (b43) [hereinafter sometimes referred to as “monomer (b43)”. And the like.
  • alkylene oxide monomer (b42) examples include chain alkylene oxides such as ethylene oxide, propylene oxide, and 1,2-epoxy-14-cyclopentane; 1,2-epoxycyclopentane; Cyclic alkylene oxides such as 1,2-epoxycyclohexane; and the like.
  • Examples of the epoxy group-containing crosslinkable monomer (b43) include glycidyl ether group-containing compounds such as aryl glycidyl ether and bullet glycidyl ether; and glycidyl ester group-containing compounds such as glycidyl (meth) atalylate and glycidyl crotonate. 3,4-epoxy-1-butene and other epoxy-containing unsaturated hydrocarbons;
  • ethylene oxide and propylene oxide are preferably used for the purpose of imparting rubber elasticity to the ephalohydrin rubber (B4).
  • the monomer (b43) is used when the epihalohydrin rubber (B4) contains a gel component, and is preferably arylglycidyl ether.
  • the no and logen atoms of the monomer (b41) can be used.
  • the ratio of the monomer unit content of the epihalohydrin rubber is preferably in the following range.
  • the monomer (b41) units preferably 20- 100 Monore 0/0, more preferably 25 9 0 mole 0/0; monomer (b42) units, preferably 0 75 Monore 0 / 0 , more preferably 10 to 70 mol%; the monomer (b43) unit is preferably 15 mol% or less, more preferably 10 mol% or less.
  • the molded article may have high hygroscopicity, and if too large, the molded article may have poor cold resistance. If the monomer (b42) unit content is too large, foaming may occur during molding.
  • the acrylic rubber (B1), nitrile rubber (B2), and ephalohydrin rubber (B4) used in the present invention can be obtained by polymerizing each of the above rubber-forming monomers by a known polymerization method. It can. Specifically, the acrylic rubber (B1) and nitrile rubber (B2) can be obtained by emulsion polymerization and the like, and the ephalohydrin rubber (B4) can be obtained by solution polymerization and solvent slurry polymerization.
  • the hydrogenated nitrile rubber (B3) is produced by hydrogenating carbon-carbon unsaturated bonds of the nitrile rubber (B2). More specifically, an aqueous layer hydrogenation method in which the latet after the emulsion polymerization of nitrile rubber (B2) is adjusted to a concentration of about 20% by weight and then hydrogenates against carbon-carbon unsaturated bonds in the rubber, Alternatively, an oil layer hydrogenation method of hydrogenating a carbon-carbon double bond in a rubber in a solution of nitrile rubber (B2) in an organic solvent is exemplified.
  • a compound of a platinum group element such as palladium is added as a catalyst to the above-mentioned aqueous or oil-based reaction solution contained in a pressure-resistant closed vessel, and the dissolved oxygen is depressurized, purged with an inert gas or hydrogen, etc. After removing with, usually, hydrogen is sealed at a pressure of 0.5-20 MPa at 5-150 ° C.
  • the hydrogenation rate is usually at least 70%, preferably at least 80%.
  • the rubber (B) obtained by these production methods may have a core-shell structure comprising a core layer of a crosslinked rubber and a shell layer of a rubber having a crosslinkable group.
  • thermoplastic elastomer composition [0066] Method for producing thermoplastic elastomer composition
  • the thermoplastic elastomer composition of the present invention comprises a polyamide resin (A1) or a polyester resin. Resin (A2) and at least one resin selected from the group consisting of acrylic rubber (B1), nitrile rubber (B2), hydrogenated nitrile rubber (B3) and ephalohydrin rubber (B4) And the rubber (B) is dynamically kneaded while kneading.
  • Dynamic crosslinking is a process in which the resin (A) and the rubber (B) are kneaded to finely disperse the rubber (B) in a matrix of the resin (A), and the rubber (B) is mixed with a crosslinking agent. Means cross-linking.
  • the thermoplastic elastomer composition of the present invention obtained by performing dynamic crosslinking can provide a molded article having improved mechanical strength and fatigue resistance to bending and constant elongation.
  • a crosslinking agent for dynamic crosslinking a crosslinking agent generally used as a crosslinking agent for rubber can be used, but depending on the type of the crosslinking group of the rubber). It is preferable to use the following.
  • crosslinkable group when the crosslinkable group is a halogen-containing group, examples thereof include a sulfur-based crosslinking agent (which may be accompanied by a metal fossil) and a triazine-based crosslinking agent.
  • crosslinking group is an epoxy group
  • examples thereof include an organic ammonium-based crosslinking agent, an imidazole-based crosslinking agent, and a polyacid-based crosslinking agent.
  • crosslinkable group is a carboxyl group
  • a polyamine crosslinker a diisocyanate crosslinker and the like can be mentioned.
  • the amount of the crosslinking agent to be used is preferably 0.1 to 2 parts by weight, more preferably 0.5 to 1 part by weight, based on 100 parts by weight of the total of the resin (A) and the rubber (B). Department. If the amount of the cross-linking agent is too small, the cross-linking during dynamic cross-linking does not proceed sufficiently, and the dispersion of the rubber (B) in the resin (A) becomes insufficient, which may increase the compression set. Conversely, if the amount is too large, the decomposition of the resin (A) may be accelerated.
  • the method of dynamic crosslinking may be any general dynamic crosslinking method, for example, the following method.
  • the rubber (B) is kneaded with a kneading machine usually at 160 to 300 ° C, preferably 180 to 250 ° C, while giving shearing force.
  • the resin (A) is added to the mixture and kneaded.
  • the rubber (B) is dispersed in the matrix of the molten resin (A).
  • the crosslinking agent is added and further kneaded to crosslink the rubber (B).
  • the resin (A) may not melt sufficiently, and if it is too high, the rubber (B) may be thermally degraded.
  • a batch kneader such as a Brabender or Labo Plastomill
  • a continuous kneader such as a single screw extruder or a twin screw extruder can be used.
  • the crosslinking agent is preferably added through an addition hole provided in the middle of the barrel of the extruder.
  • thermoplastic elastomer composition of the present invention may contain, as long as the effects of the present invention are not impaired, fillers such as carbon black and silica; antioxidants; lubricants; You may mix and use the compounding agent generally mix
  • thermoplastic elastomer composition of the present invention obtained by the above method is a crosslinked rubber (B
  • Particles are finely dispersed in the matrix of the resin (A), and have the properties of a thermoplastic elastomer.
  • composition of the present invention is a thermoplastic elastomer, it can be extruded at 160 to 350 ° C., such as extrusion molding, injection molding, transfer molding, compression molding, calendar molding, etc., like a normal thermoplastic resin.
  • extrusion molding injection molding, transfer molding, compression molding, calendar molding, etc.
  • a molded article of an arbitrary shape can be obtained.
  • the molded article of the present invention thus obtained has rubber elasticity, is excellent in heat resistance, oil resistance, and mechanical properties, and is excellent in fatigue resistance with small compression set. Therefore, various rubber parts related to automobiles, such as seal parts such as shaft seals and bearing seals; hose parts such as air duct hoses, fuel hoses, and oil hoses; boots such as constant velocity joint boots and rack and pinion boots; It is preferably used as Example
  • the melting points of the polyamide resin (A1) and the polyester resin (A2) were determined from the peak temperature of heat of fusion using a differential scanning calorimeter.
  • the flexural modulus of the polyamide resin (A1) and the polyester resin (A2) was measured at 23 ° C. according to JIS D790.
  • thermoplastic elastomer composition was molded by a press machine preheated to 250 ° C. to obtain a sheet having a thickness of 2 mm. Then, this sheet was punched into a predetermined shape to prepare a test piece. Using the obtained test pieces, the tensile strength and tensile elongation at break were measured in accordance with the tensile test of JIS K6251.
  • test piece was prepared in the same manner as the test piece for which the tensile strength and tensile elongation at break were measured in the above (3).
  • the obtained test specimen was allowed to stand in an environment of 150 ° C for 70 hours, aged by air heating, and the tensile strength was measured again using the aged test specimen according to the method (3). Then, the amount of change (rate of change in tensile strength:%) from the measured value in the above (3) was determined, and the heat resistance was evaluated. The closer this change is to 0, the better the heat resistance.
  • Thermoplastic Elastomer Composition The hardness was measured according to a hardness test of IS K6253.
  • test piece for measuring compression set was prepared by injection molding, and the obtained test piece was used to perform compression set at 25% compression rate and 120 ° C for 70 hours under compression conditions. Was measured.
  • a test piece punched out of a 2 mm sheet into a predetermined shape is prepared, and the test piece is stretched to half the breaking elongation, and then returned to 0% elongation at a rate of 300 times / min. And the number of times until the test piece was broken was measured. Many breaks The higher the degree, the better the fatigue resistance.
  • the Mooney viscosity ML at a measurement temperature of 100 ° C. was measured according to the Mooney viscosity test of the uncrosslinked rubber physical test method of JIS K6300.
  • the gel content in the rubber (B) was determined by measuring the proportion of the solvent-insoluble component when the rubber (B) was dissolved in a good solvent. Specifically, first, about 0.2 g of the rubber (B) is weighed, dissolved in methyl ethyl ketone, and the obtained solution is filtered through a filter such as a wire mesh. Then, the weight of the insoluble matter trapped in the filter after removing the solvent was measured, and the ratio to the total weight of the dissolved rubber was calculated.
  • a tolyl rubber latex was obtained.
  • 4 liters (480 g total solids) of a carboxyl group-containing nitrile rubber latex adjusted to a total solid content of 12% by weight using this latex was charged into a 10 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes.
  • palladium acetate as a hydrogenation catalyst was dissolved in 2.4 liters of 4 times the molar amount of water and added.
  • the gel content of the obtained rubber (B31) is 85%, and the Mooney viscosity ML (100 ° C) is 80.
  • Example 1 a polyamide resin (A12: 12-nylon, average degree of polymerization 220, melting point 170 ° C, flexural modulus 2,600 kgf / cm 2 , n-octyl-4 -Hydroxybenzoate (containing 25% by weight of plasticizer)), kneading and dynamic cross-linking were performed in the same manner as in Example 1, and the test and evaluation were performed. The results are shown in Table 1.
  • Example 1 is the same as Example 1 except that nitrile rubber (B21; Nipoll072J manufactured by Zeon Corporation, Mooney viscosity ML (100 ° C) 48) was used instead of the acrylic rubber (B11).
  • nitrile rubber B21; Nipoll072J manufactured by Zeon Corporation, Mooney viscosity ML (100 ° C) 48
  • Example 1 kneading and dynamic cross-linking were carried out in the same manner as in Example 1 except that a hydrogenated nitrile rubber (B31) was used instead of the acrylic rubber (B11), and a test and evaluation were performed. The results are shown in Table 1.
  • Example 1 instead of the acrylic rubber (B11), ephalohydrin rubber (B41; GechronlOO, manufactured by Nippon Zeon, Mooney viscosity ML (100 ° C) 58) was used, and magnesia oxide was used.
  • Example 4 a polyester resin (A21: polyethylene terephthalate, weight average molecular weight 83,000, melting point 210 ° C, flexural modulus 5,700 kgf / cm 2 , phthalic acid-hydroxy Chinore 2_ Echiru hexyl Similarly kneaded with the exception of using the (plasticizer) 15 parts by weight 0/0 containing) example 4 performs dynamic crosslinking test was evaluated. The results are shown in Table 1.
  • Example 1 the addition amount of the polyamide resin (All) was 35 parts, and the amount of the acrylic rubber (B11) was Kneading and dynamic crosslinking were performed in the same manner as in Example 1 except that the addition amount was changed to 65 parts, and a test and evaluation were performed. The results are shown in Table 1.
  • Example 1 a polyamide resin (All) was converted to a polyamide resin having a high flexural modulus (6-nape, UBE nylon 6 1030B, manufactured by Ube Industries, melting point 225 ° C, flexural modulus 26, OOOkgf Except for changing to Zcm 2 ), kneading and dynamic crosslinking were performed in the same manner as in Example 1, and the test and evaluation were performed. The results are shown in Table 1.
  • Example 1 the polyamide resin (Al 1) was converted to a low-melting polyamide resin (nylon copolymer 1: Vestamide E40, Daicel. Degussa, melting point 150 ° C, flexural modulus 1,000 kgf / cm 2 ) Except for the change, kneading and dynamic crosslinking were carried out in the same manner as in Example 1, and tests and evaluations were performed. The results are shown in Table 1.
  • thermoplastic elastomer compositions satisfying the requirements of the present invention provided molded articles having excellent heat resistance, small compression set, and excellent fatigue resistance.
  • Example 1-7 As shown in Table 1, all of the thermoplastic elastomer compositions satisfying the requirements of the present invention provided molded articles having excellent heat resistance, small compression set, and excellent fatigue resistance. Example 1-7).
  • a sheet obtained by press-molding a composition obtained by kneading with acrylic rubber using a polyamide resin having a melting point that is too low and dynamically crosslinking the rubber has a large compression set and low heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A thermoplastic elastomer composition which is prepared by subjecting 20 to 95 wt % of at least one resin (A) of a polyamide resin (A1) and a polyester resin (A2), which has a melting point of 160 to 300˚C and a bending elastic modulas at 23˚C of 10,000 kgf/cm2 or less, and 5 to 80 wt % of at least one rubber (B) selected from the group consisting of an acrylic rubber (B1), a nitrile rubber (B2), a hydrogenated nitrile rubber (B3) and an epihalohydrin rubber (B4) to dynamic crosslinking while kneading them. The thermoplastic elastomer composition can provide a formed article which exhibits excellent heat resistance, a reduced compression set and excellent fatigue resistance.

Description

明 細 書  Specification
熱可塑性エラストマ一組成物及び成形品  Thermoplastic elastomer compositions and molded articles
技術分野  Technical field
[0001] 本発明は、ポリアミド樹脂及び/又はポリエステル樹脂と、特定のゴムとから成る熱 可塑性エラストマ一組成物に関し、詳しくは、耐熱性に優れ、さらに圧縮永久歪み及 び耐疲労性が改良された熱可塑性エラストマ一組成物に関する。  [0001] The present invention relates to a thermoplastic elastomer composition comprising a polyamide resin and / or a polyester resin and a specific rubber. More specifically, the present invention has excellent heat resistance, and further has improved compression set and fatigue resistance. A thermoplastic elastomer composition.
背景技術  Background art
[0002] ポリアミド又はポリエステルのブロックと、ポリエーテルのブロックとが結合してなるブ ロック共重合体であるポリアミド系エラストマ一やポリエステル系エラストマ一は、機械 的特性に優れ、かつ適度な柔軟性を有する熱可塑性エラストマ一である。し力 なが ら、これらのエラストマ一は、ゴム状弾性体としての用途に利用するためには硬度が 高ぐまた、耐熱性や圧縮永久歪みに劣る。そのため、これらの特性を改良する方法 として上記エラストマ一にゴムを混合する方法が試みられており、種々のゴムブレンド 技術が提案されている。  [0002] Polyamide-based elastomers and polyester-based elastomers, which are block copolymers obtained by combining a polyamide or polyester block with a polyether block, have excellent mechanical properties and appropriate flexibility. It is a thermoplastic elastomer having. However, these elastomers have a high hardness and are inferior in heat resistance and compression set for use as rubber-like elastic materials. Therefore, as a method of improving these characteristics, a method of mixing rubber with the above-mentioned elastomer has been attempted, and various rubber blending techniques have been proposed.
[0003] 近年は、伸びや圧縮永久歪み等を改良するために、前記エラストマ一マトリクス中 に架橋ゴム粒子を微分散させることが提案されてレ、る。  [0003] In recent years, it has been proposed to finely disperse crosslinked rubber particles in the elastomer matrix in order to improve elongation and compression set.
[0004] 例えば特許文献 1は、ゲル分を 20%以上含有する架橋ゴム成分をポリエステルエ ラストマー成分中に分散混合してなる熱可塑性エラストマ一組成物を提案している。 具体的には、この文献では、架橋カルボキシ変性二トリル一ブタジエンゴムを、ポリエ 一テルエステルエラストマ一にブラベンダを用いて混練した組成物が開示されている [0004] For example, Patent Document 1 proposes a thermoplastic elastomer composition obtained by dispersing and mixing a crosslinked rubber component containing at least 20% of a gel component in a polyester elastomer component. Specifically, this document discloses a composition in which a crosslinked carboxy-modified nitrile-butadiene rubber is kneaded with a polyester ester elastomer using a brabender.
。しかし、エラストマ一中に架橋ゴム成分を単に分散混合させるだけでは圧縮永久歪 みを十分改良するまでには至らない。 . However, simply dispersing and mixing the crosslinked rubber component in the elastomer does not sufficiently improve the compression set.
[0005] 一方、特許文献 2は、ポリアミド系エラストマ一又はポリエステル系エラストマ一と、架 橋ゴムのコア層と架橋性基を有するゴムのシェル層力 成るコアーシエルニ層構造を 有するゴム粒子とを架橋剤の存在下に混練して、主にシェル層を架橋させながら該 ゴム粒子をエラストマ一中に分散させる方法を提案している。し力しながら、この方法 によると、引張特性や圧縮永久歪みは改良されるものの、耐熱性が劣るという問題が ある。 On the other hand, Patent Document 2 discloses a crosslinking agent comprising a polyamide-based elastomer or a polyester-based elastomer, and a rubber particle having a core Cielny layer structure comprising a core layer of a crosslinking rubber and a shell layer of a rubber having a crosslinking group. A method has been proposed in which the rubber particles are dispersed in an elastomer while kneading in the presence of a rubber layer while mainly crosslinking the shell layer. However, while this method improves tensile properties and compression set, it has the problem of inferior heat resistance. is there.
[0006] 特許文献 3では、アタリレートゴム、エチレン一アタリレートゴム又はそれらの組合せ のゴムと、ポリエステル、ポリカーボネート又はポリフエ二レンォキシド、又はそれらの 組合せと、力 なる熱可塑性エラストマ一組成物が開示されている。特に、この文献 においては、上記ゴムとして、多官能性ォキサゾリン、ォキサジン、イミダゾリン、カル ポジイミド又はそれらの組合せの架橋剤により少なくとも部分的に架橋したゴムを使 用する熱可塑性エラストマ一組成物が開示されている。し力しながら、この文献記載 の組成物の成形品も圧縮永久歪みの改善は不十分であり、耐疲労性に劣るという問 題があった。  [0006] Patent Document 3 discloses a powerful thermoplastic elastomer composition comprising a rubber of acrylate rubber, ethylene-atarylate rubber or a combination thereof, polyester, polycarbonate or polyphenylene oxide, or a combination thereof, and a strong thermoplastic elastomer composition. ing. In particular, this document discloses a thermoplastic elastomer composition using a rubber which is at least partially cross-linked with a cross-linking agent of a polyfunctional oxazoline, oxazine, imidazoline, carbodiimide or a combination thereof as the rubber. ing. However, molded articles of the composition described in this document have a problem that compression permanent set is insufficiently improved and fatigue resistance is poor.
特許文献 1:特開平 5 - 79256号公報  Patent Document 1: JP-A-5-79256
特許文献 2:特開平 8 - 231770号公報  Patent Document 2: JP-A-8-231770
特許文献 3:特開平 11 - 246749号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 11-246749
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の目的は、耐熱性に優れ、圧縮永久歪みが小さぐかつ、耐疲労性に優れ る成形品を与えることのできる熱可塑性エラストマ一組成物を提供することである。 課題を解決するための手段 [0007] An object of the present invention is to provide a thermoplastic elastomer composition which can provide a molded article having excellent heat resistance, small compression set, and excellent fatigue resistance. Means for solving the problem
[0008] 本発明者らは上記課題を解決すべく鋭意研究を行った結果、特定範囲の融点と特 定値以下の曲げ弾性率とを有するポリアミド樹脂やポリエステル樹脂と、特定のゴムと を混練しながら動的架橋させてなる熱可塑性エラストマ一組成物が上記目的を達成 することを見出し、この知見に基づいて本発明を完成するに至った。  [0008] The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, kneaded a polyamide resin or a polyester resin having a melting point in a specific range and a flexural modulus not more than a specific value with a specific rubber. The inventors have found that a thermoplastic elastomer composition dynamically crosslinked while achieving the above object achieves the above object, and has completed the present invention based on this finding.
[0009] 力べして本発明によれば、以下の発明 1一 5が提供される。  According to the present invention, the following inventions 115 are provided.
1. 融点が 160— 300°C、温度 23°Cにおける曲げ弾性率が 10,000kgf/cm2以下 であるポリアミド樹脂 (A1)又はポリエステル樹脂 (A2)の少なくとも一種の樹脂 (A) 2 0— 95重量%と、 1. At least one kind of polyamide resin (A1) or polyester resin (A2) having a flexural modulus of 10,000 kgf / cm 2 or less at a melting point of 160-300 ° C and a temperature of 23 ° C. 95% by weight,
アクリルゴム(B1)、二トリルゴム(B2)、水素化二トリルゴム(B3)及びェピハロヒドリン ゴム(B4)よりなる群から選ばれる少なくとも一種のゴム(B) 5— 80重量0 /0と、 Acrylic rubber (B1), nitrile rubber (B2), a hydrogenated nitrile rubber (B3) and at least one rubber selected from the group consisting of Epiharohidorin rubber (B4) (B) 5- 80 wt 0/0,
を混練しながら動的架橋させて成る熱可塑性エラストマ一組成物。 2. 前記樹脂 (A)が、可塑剤を含有しており、 A thermoplastic elastomer composition obtained by dynamically crosslinking while kneading. 2. The resin (A) contains a plasticizer,
前記可塑剤の含有量が、前記樹脂 (A) 100重量部あたり、 1一 50重量部である上 記 1に記載の熱可塑性エラストマ一組成物。  2. The thermoplastic elastomer composition according to claim 1, wherein the content of the plasticizer is 1 to 50 parts by weight per 100 parts by weight of the resin (A).
3. 前記ゴム(B)が、ゲル分を含有しており、  3. The rubber (B) contains a gel component,
前記ゲル分の含有量が、前記ゴム(B)全体 100重量%に対して、 30— 100重量% である上記 1又は 2に記載の熱可塑性エラストマ一組成物。  3. The thermoplastic elastomer composition according to the above 1 or 2, wherein the content of the gel component is 30 to 100% by weight based on 100% by weight of the whole rubber (B).
4. 前記ゴム(B)の粒子が、前記樹脂 (A)のマトリックス中に微分散している上記 1 一 3のいずれかに記載の熱可塑性エラストマ一組成物。  4. The thermoplastic elastomer composition according to any one of items 13 to 13, wherein the particles of the rubber (B) are finely dispersed in a matrix of the resin (A).
5. 上記 1一 4のいずれかに記載の熱可塑性エラストマ一組成物を 160— 350°Cで 成形してなる成形品。  5. A molded article obtained by molding the thermoplastic elastomer composition according to any one of the above items 1 to 4 at 160 to 350 ° C.
発明の効果  The invention's effect
[0010] 本発明によれば、架橋したゴム粒子がポリアミド樹脂やポリエステル樹脂のマトリック ス中に微分散した熱可塑性エラストマ一組成物が提供される。この熱可塑性エラスト マー組成物は、耐熱性に加えて、圧縮永久歪みが小さぐかつ耐疲労性に優れる成 形品を与えることができるので、シール、ホース、 自動車のブーツ等、種々のゴム部 品として好適に使用できる。  According to the present invention, there is provided a thermoplastic elastomer composition in which crosslinked rubber particles are finely dispersed in a matrix of a polyamide resin or a polyester resin. Since this thermoplastic elastomer composition can provide molded articles having low compression set and excellent fatigue resistance in addition to heat resistance, various rubber parts such as seals, hoses, automobile boots and the like can be provided. It can be suitably used as a product.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の熱可塑性エラストマ一組成物は、融点が 160— 300°Cで、温度 23°Cにお ける曲げ弾性率が 10,000kgf/cm2 (23°C)以下であるポリアミド樹脂(A1)又はポリ エステル樹脂 (A2)の少なくとも一種の樹脂 (A) 20— 95重量0 /0と、アクリルゴム(B1) 群から選ばれる少なくとも一種のゴム(B) 80— 5重量%と、を混練しながら動的架橋 させて成るものである。 [0011] The thermoplastic elastomer composition of the present invention has a polyamide resin having a melting point of 160 to 300 ° C and a flexural modulus at a temperature of 23 ° C of 10,000 kgf / cm 2 (23 ° C) or less. (A1) or at least one resin (a) 20- 95 wt 0/0 of the poly ester resin (A2), and at least one rubber (B) 80- 5% by weight selected from an acrylic rubber (B1) group, Is dynamically kneaded while kneading.
[0012] 榭脂 (A) [0012] Fat (A)
本発明の樹脂 (A)は、ポリアミド樹脂 (A1)又はポリエステル樹脂 (A2)、あるいは、 これらの樹脂の混合物である。  The resin (A) of the present invention is a polyamide resin (A1) or a polyester resin (A2), or a mixture of these resins.
[0013] ポリアミド榭脂 (A1) [0013] Polyamide resin (A1)
本発明に用いるポリアミド樹脂 (A1)は、酸アミド結合 (-CONH-)を有する重合体 である。 The polyamide resin (A1) used in the present invention is a polymer having an acid amide bond (-CONH-). It is.
このような重合体としては、例えば、ジァミンと二塩基酸との重縮合により得られる重 合体、ジホルミルなどのジァミン誘導体と二塩基酸との重縮合により得られる重合体、 ジメチルエステルなどの二塩基酸誘導体とジァミンとの重縮合により得られる重合体 、ジニトリル又はジアミドとホルムアルデヒドとの反応により得られる重合体、ジイソシァ ナートと二塩基酸との重付加により得られる重合体、アミノ酸又はその誘導体の自己 縮合により得られる重合体、ラタタムの開環重合により得られる重合体、などが挙げら れる。またこれらのポリアミド樹脂は、ポリエーテルブロックを含有していてもよい。  Examples of such a polymer include a polymer obtained by polycondensation of diamine and a dibasic acid, a polymer obtained by polycondensation of a diamine derivative such as diformyl and a dibasic acid, and a dibasic polymer such as dimethyl ester. A polymer obtained by the polycondensation of an acid derivative with diamine, a polymer obtained by the reaction of dinitrile or diamide with formaldehyde, a polymer obtained by polyaddition of diisocyanate with a dibasic acid, a self-product of an amino acid or its derivative Examples thereof include a polymer obtained by condensation, a polymer obtained by ring-opening polymerization of ratatum, and the like. Further, these polyamide resins may contain a polyether block.
[0014] これらのポリアミド樹脂の具体例としては、ポリカプラミド(6-ナイロン)、ポリへキサメ チレンアジポアミド(66—ナイロン)、ポリへキサメチレンセバカミド(610—ナイロン)、ポ リウンデカンアミド(11—ナイロン)、ポリラウリンアミド (12—ナイロン)、ポリ— ω—ァミノへ プタン酸(7-ナイロン)、ポリ- ω _アミノノナン酸(9-ナイロン)などが挙げられる。これ らの中でも、汎用性及び耐熱性などの観点から、 6-ナイロン、 66-ナイロン、 12-ナ ィロン及び 11_ナイロンが好ましレ、。  [0014] Specific examples of these polyamide resins include polycapramide (6-nylon), polyhexamethylene adipamide (66-nylon), polyhexamethylene sebacamide (610-nylon), and polyundecaneamide. (11-nylon), polylaurinamide (12-nylon), poly-ω-aminoheptanic acid (7-nylon), poly-ω_aminononanoic acid (9-nylon) and the like. Among these, 6-nylon, 66-nylon, 12-nylon and 11_nylon are preferred from the viewpoints of versatility and heat resistance.
[0015] 本発明に用いるポリアミド樹脂 (A1)の重合度は、通常、 90— 600、好ましくは 100 一 500である。  [0015] The polymerization degree of the polyamide resin (A1) used in the present invention is usually 90-600, preferably 100-500.
[0016] ポリエステル樹脂(Α2)  [0016] Polyester resin (Α2)
本発明に用いるポリエステル樹脂 (Α2)はエステル結合を有する重合体であって、 通常、多価アルコールと多塩基酸又は多塩基酸エステルィヒ合物との重縮合により得 られる。  The polyester resin (# 2) used in the present invention is a polymer having an ester bond, and is usually obtained by polycondensation of a polyhydric alcohol and a polybasic acid or a polybasic acid ester compound.
[0017] 本発明においてポリエステル樹脂(Α2)としては、例えば、アルキッド樹脂、マレイン 酸樹脂、飽和ポリエステル樹脂、不飽和ポリエステル樹脂などの一般的に知られてい るポリエステル樹脂を用いることができる。  [0017] In the present invention, as the polyester resin (# 2), for example, generally known polyester resins such as an alkyd resin, a maleic acid resin, a saturated polyester resin, and an unsaturated polyester resin can be used.
[0018] 多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレング リコーノレ、ブチレングリコーノレ、トリメチレングリコーノレ、プロピレングリコーノレ、シクロへ キサンジメタノールなどが用いられる。また、多塩基酸としては、フタル酸、フマル酸、 アジピン酸などが用いられる。  As the polyhydric alcohol, ethylene glycol, diethylene glycol, triethylene glycol, butylene glycol, trimethylene glycol, propylene glycol, cyclohexane dimethanol, and the like are used. As the polybasic acid, phthalic acid, fumaric acid, adipic acid and the like are used.
[0019] これらの中でも、耐熱性、機械的強度等の観点から、多価アルコールとしては、ェ チレンダルコール、ブチレングリコール又はトリメチレングリコールを用いることが好ま しい。また、多塩基酸としては、フタル酸を用いて得られるポリエチレンテレフタレート 、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどの芳香族ポリエステル 樹脂が特に好ましい。 [0019] Among these, from the viewpoints of heat resistance, mechanical strength, and the like, polyhydric alcohols include Preference is given to using Tylendalcol, butylene glycol or trimethylene glycol. Further, as the polybasic acid, aromatic polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate obtained by using phthalic acid are particularly preferable.
[0020] なお、本発明においては、ポリエステル樹脂としては、ポリエーテルブロックを共重 合成分として有さないものが好ましい。ポリエーテルブロックを有するポリエステル樹 脂を用いると、耐熱性が低下するおそれがある。  In the present invention, it is preferable that the polyester resin does not have a polyether block as a copolymer component. When a polyester resin having a polyether block is used, heat resistance may be reduced.
[0021] 本発明に用いるポリエステル樹脂 (A2)の重量平均分子量は、通常、 40, 000— 1 00, 000、好まし <は 60, 000— 100, 000である。  [0021] The weight average molecular weight of the polyester resin (A2) used in the present invention is usually 40,000-100,000, and preferably <60,000-100,000.
[0022] 本発明で用いるポリアミド樹脂 (A1)及びポリエステル樹脂 (A2)は、融点が 160— 300。Cであり、好ましくは 165— 270。C、より好ましくは 170— 220。Cのものである。融 点が低すぎると得られる熱可塑性エラストマ一の耐熱性が劣り、逆に高すぎると加工 時にポリアミド樹脂 (A1)、ポリエステル樹脂 (A2)が劣化する可能性がある。なお、ポ リアミド樹脂 (A1)及びポリエステル樹脂 (A2)の融点は、示差走査型熱量計を用い て、融解熱のピーク温度より求められる。  [0022] The polyamide resin (A1) and the polyester resin (A2) used in the present invention have a melting point of 160-300. C, preferably 165-270. C, more preferably 170-220. C's. If the melting point is too low, the heat resistance of the thermoplastic elastomer obtained is inferior, and if it is too high, the polyamide resin (A1) and the polyester resin (A2) may deteriorate during processing. The melting points of the polyamide resin (A1) and the polyester resin (A2) can be determined from the peak temperature of the heat of fusion using a differential scanning calorimeter.
[0023] 本発明に用いるポリアミド樹脂 (A1)及びポリエステル樹脂 (A2)は、温度 23°Cにお ける曲げ弾性率力 10, 000kgf/cm2以下であり、好ましくは 8, 000kgf/cm2以 下、より好ましくは 7, OOOkgfZcm2以下である。なお、曲げ弾性率の下限は、特に 限定されないが、通常 2, OOOkgfZcm2程度である。曲げ弾性率が大きすぎると圧 縮永久歪性に劣る。 [0023] Polyamide resins for use in the present invention (A1) and polyester resin (A2), the elastic modulus force 10 Contact Keru bending temperature 23 ° C, and at 000kgf / cm 2 or less, preferably 8, 000kgf / cm 2 or more Lower, more preferably 7, OOOkgfZcm 2 or less. The lower limit of the flexural modulus is not particularly limited, but is usually about 2, OOOkgfZcm 2 . If the flexural modulus is too large, the compression set is inferior.
[0024] 本発明においては、曲げ弾性率が上記範囲となるポリアミド樹脂 (A1)及びポリエス テル樹脂 (A2)として、可塑剤を含有するポリアミド樹脂組成物及び可塑剤を含有す るポリエステル樹脂組成物を用いることが好ましい。  In the present invention, a polyamide resin composition containing a plasticizer and a polyester resin composition containing a plasticizer are used as the polyamide resin (A1) and the polyester resin (A2) having a flexural modulus within the above range. It is preferable to use
[0025] 可塑剤としては、フタル酸ジ一(2—ェチルへキシル)、フタル酸ジ一 n—ォクチル、フタ ル酸ジイソノエル、フタル酸ジシクロへキシル、フタル酸ジフエニル、フタル酸ブチル ベンジル、フタル酸ーヒドロキシェチノレー 2_ェチルへキシルなどのフタル酸エステル 化合物;リン酸トリフエニル、リン酸トリクレジノレ、リン酸デシルジフヱニル、リン酸トリエ チルなどのリン酸エステル化合物;トリメリット酸トリ _ (2_ェチルへキシル)、トリメリット 酸トリー n—ォクチルなどのトリメリット酸エステル化合物;アジピン酸ジ—(2—ェチルへ キシノレ)、アジピン酸ジブトキシェチノレ、アジピン酸ジイソノニノレなどのアジピン酸エス テル化合物;ァゼライン酸ジー n—へキシル、ァゼライン酸ジー(2—ェチルへキシル)な どのァゼライン酸エステル化合物;ブチルベンゼンスルフォンアミドなどのスルフォン アミド誘導体;セバシン酸ジ—(2—ェチルへキシル)などのセバシン酸エステル化合物 ; n—ォクチノレ一 4—ヒドロキシベンゾエート、 n—ブチノレ一ヒドロキシベンゾエートなどのヒ ドロキシベンゾエート;などが挙げられる。 [0025] Examples of the plasticizer include di- (2-ethylhexyl) phthalate, di-n-octyl phthalate, diisonol phthalate, dicyclohexyl phthalate, diphenyl phthalate, benzyl phthalate, and benzyl phthalate. -Hydroxyethynole Phthalate compounds such as 2-ethylhexyl; Phosphate compounds such as triphenyl phosphate, tricresinole phosphate, decyldiphenyl phosphate, and triethyl phosphate; Kishiru), Trimerit Trimellitic acid ester compounds such as acid tree n-octyl; adipic acid ester compounds such as di- (2-ethylhexyl) adipate, dibutoxetinole adipate and diisononinole adipate; Azelaic acid ester compounds such as xyl and diazelleate (2-ethylhexyl); sulfonamide derivatives such as butylbenzenesulfonamide; sebacic acid ester compounds such as di- (2-ethylhexyl) sebacate; n-octinole Hydroxybenzoates such as 1-4-hydroxybenzoate and n-butynole-hydroxybenzoate; and the like.
これらのなかでもフタル酸エステル化合物、スルフォンアミド誘導体、ヒドロキシベン ゾエートが好ましぐフタル酸ーヒドロキシェチルー 2—ェチルへキシル、ブチルベンゼ ンスルフォンアミド、 n—ォクチルー 4ーヒドロキシベンゾエートがより好ましい。  Of these, phthalic acid ester compounds, sulfonamide derivatives, and hydroxybenzoate are preferred, and phthalic acid-hydroxyethyl-2-ethylhexyl, butylbenzensulfonamide, and n-octyl-4-hydroxybenzoate are more preferred.
[0026] 可塑剤の含有量は、ポリアミド樹脂 (A1)又はポリエステル樹脂 (A2)の少なくとも一 種の樹脂 (A) 100重量部あたり、通常、 1一 50重量部、好ましくは 5— 30重量部であ る。可塑剤含有量が少なすぎると樹脂 (A)の曲げ弾性率が大きくなりすぎる傾向があ り、逆に多すぎると耐熱性が悪化するおそれがある。  [0026] The content of the plasticizer is usually 1 to 50 parts by weight, preferably 5 to 30 parts by weight per 100 parts by weight of at least one resin (A) of the polyamide resin (A1) or the polyester resin (A2). It is. If the content of the plasticizer is too small, the flexural modulus of the resin (A) tends to be too large, and if it is too large, the heat resistance may be deteriorated.
[0027] 樹脂 (A)に可塑剤を配合するには、ブラベンダ、二軸押出機、ニーダーなどの混 合機を用いて、 160— 350°Cで樹脂 (A)と可塑剤とを均一になるまで十分に混合す ればよレ、。可塑剤を、樹脂 (A)とゴム (B)とを混練する段階で添加すると、可塑剤が、 樹脂 (A)とゴム (B)との双方に分配されてしまうため、樹脂 (A)の曲げ弾性率が十分 に低下せず、本発明の熱可塑性エラストマ一組成物の効果、特に耐疲労性等の改 善効果が有効に発現しないので好ましくない。  [0027] To blend the plasticizer into the resin (A), the resin (A) and the plasticizer are uniformly mixed at 160-350 ° C using a blender such as a brabender, a twin-screw extruder, or a kneader. Mix well until you get it. If the plasticizer is added at the stage of kneading the resin (A) and the rubber (B), the plasticizer is distributed to both the resin (A) and the rubber (B), so that the resin (A) The flexural modulus is not sufficiently reduced, and the effects of the thermoplastic elastomer composition of the present invention, particularly the improvement effects such as fatigue resistance, are not effectively exhibited, which is not preferable.
[0028] ゴム(B)  [0028] Rubber (B)
本発明に用いるゴム(B)は、アクリルゴム(B1)、二トリルゴム(B2)、水素化二トリル ゴム(B3)及びェピハロヒドリンゴム(B4)よりなる群から選ばれる少なくとも一種からな るものである。好ましくは、本発明のゴム(B)は、アクリルゴム(B1)又は水素化二トリ ルゴム(B3)の少なくとも一種力 なるものである。  The rubber (B) used in the present invention consists of at least one selected from the group consisting of acrylic rubber (B1), nitrile rubber (B2), hydrogenated nitrile rubber (B3) and ephalohydrin rubber (B4). Things. Preferably, the rubber (B) of the present invention is at least one of acrylic rubber (B1) and hydrogenated nitrile rubber (B3).
[0029] 本発明においては、ゴム(B)は後述する動的架橋に適する架橋性基を有する必要 がある。この架橋性基は、一般的にゴム加工で使用される架橋剤と反応し得るものと して知られている架橋性基であればよぐまた、用いる架橋剤の種類によって適宜選 択されればよいが、ハロゲン含有基、エポキシ基及びカルボキシノレ基からなる群から 選ばれる少なくとも一種であるのが好ましい。 In the present invention, the rubber (B) needs to have a crosslinkable group suitable for dynamic crosslinking described below. The crosslinkable group may be any crosslinkable group generally known to be capable of reacting with a crosslinker used in rubber processing, and may be appropriately selected depending on the type of the crosslinker used. It may be selected, but it is preferably at least one selected from the group consisting of a halogen-containing group, an epoxy group and a carboxy group.
[0030] ゴム(B)のム一二一粘度 ML (100。C)は、好ましくは 10— 150であり、より好まし  [0030] The rubber (B) has a viscosity ML (100.C) of preferably 10-150, more preferably
1+ 4  1+ 4
くは 20— 120、特に好ましくは 30— 100である。ムーニー粘度が低すぎると圧縮永 久歪みが大きくなるおそれがあり、逆に高すぎると成形加工性が劣る可能性がある。  20 to 120, particularly preferably 30 to 100. If the Mooney viscosity is too low, the compression set may increase, and if it is too high, the moldability may be poor.
[0031] ゴム(B)としては、ゲル (ゲル分ともいう。)を含有するものを好ましく用いることがで きる。ゴム(B)のゲル含有量は、ゴム(B)全体 100重量0 /0に対して、好ましくは 30— 1 00重量%、より好ましくは 50— 100重量%、特に好ましくは 60— 100重量%である。 ゲル含有量が上記範囲にあると圧縮永久歪みがより小さい熱可塑性エラストマ一組 成物が得られる。ゲル分は、ゴム )中に均一に分散していることが好ましい。 [0031] As the rubber (B), those containing a gel (also called a gel component) can be preferably used. The gel content of the rubber (B), to the rubber (B) total 100 weight 0/0, preferably 30- 1 00 wt%, more preferably 50 to 100 wt%, particularly preferably 60- 100 wt% It is. When the gel content is in the above range, a thermoplastic elastomer composition having a smaller compression set can be obtained. The gel component is preferably dispersed uniformly in the rubber.
[0032] なお、ゴム(B)のゲル含有量は以下の方法により測定することができる。すなわち、 所定量のゴム(B)を該ゴムの良溶媒で溶解させた後、溶液を 80メッシュの金網等の フィルターで濾過し、フィルター上に捕捉された溶媒不溶解分を乾燥して重量を測定 し、当初の所定量に対する重量割合として算出される。  [0032] The gel content of the rubber (B) can be measured by the following method. That is, after dissolving a predetermined amount of rubber (B) with a good solvent for the rubber, the solution is filtered through a filter such as an 80-mesh wire mesh, and the solvent-insoluble matter trapped on the filter is dried to weigh. It is measured and calculated as the weight ratio to the initial predetermined amount.
[0033] アクリルゴム(B1)  [0033] Acrylic rubber (B1)
アクリルゴム(B1)は、分子中に、アクリル酸エステル単量体又はメタクリル酸エステ ル単量体〔以下、(メタ)アクリル酸エステル単量体と略記する。〕単位を含有する。 (メ タ)アクリル酸エステル単量体単位の含有量は、アクリルゴム(B1)全体 100重量%に 対して、好ましくは 55— 99. 5重量%、より好ましくは 85— 99重量%、特に好ましくは 95— 98重量%であり、残余に(メタ)アクリル酸エステル単量体と共重合可能な単量 体の単位を有する。  The acrylic rubber (B1) has an acrylate monomer or a methacrylate ester monomer [hereinafter abbreviated as (meth) acrylate monomer] in the molecule. ] Unit. The content of the (meth) acrylate monomer unit is preferably 55 to 99.5% by weight, more preferably 85 to 99% by weight, and particularly preferably 100% by weight of the whole acrylic rubber (B1). Is from 95 to 98% by weight, and the balance has monomer units copolymerizable with the (meth) acrylate monomer.
[0034] (メタ)アクリル酸エステル単量体としては、例えば、(メタ)アクリル酸アルキルエステ ル単量体、(メタ)アクリル酸アルコキシアルキルエステル単量体などが挙げられる。  [0034] Examples of the (meth) acrylic acid ester monomer include (meth) acrylic acid alkyl ester monomers and (meth) acrylic acid alkoxyalkyl ester monomers.
[0035] (メタ)アクリル酸アルキルエステル単量体としては、炭素数 1一 8のアル力ノールと( メタ)アクリル酸とのエステルが好ましレ、。  As the (meth) acrylic acid alkyl ester monomer, an ester of alkinol having 118 carbon atoms with (meth) acrylic acid is preferred.
具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n- プロピル、(メタ)アクリル酸 n-ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸 イソブチル、(メタ)アクリル酸 n-へキシル、(メタ)アクリル酸 2-ェチルへキシル、 (メタ )アクリル酸シクロへキシルなどが挙げられる。 Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate , N-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth ) Cyclohexyl acrylate and the like.
これらの中でも(メタ)アクリル酸ェチル及び(メタ)アクリル酸 n-ブチルが好ましく、 アクリル酸ェチル及びアクリル酸 n—ブチルが特に好ましい。 Among them, ethyl (meth) acrylate and n-butyl (meth) acrylate are preferable, and ethyl acrylate and n -butyl acrylate are particularly preferable.
[0036] (メタ)アクリル酸アルコキシアルキルエステル単量体としては、炭素数 2— 8のアル コキシアル力ノールと(メタ)アクリル酸とのエステルが好ましレ、。  [0036] As the (meth) acrylic acid alkoxyalkyl ester monomer, an ester of an alcoholic alcohol having 2 to 8 carbon atoms and (meth) acrylic acid is preferable.
具体的には、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、 (メタ )アクリル酸 2_エトキシェチル、(メタ)アクリル酸 2_ブトキシェチル、(メタ)アクリル酸 2-メトキシェチル、 (メタ)アクリル酸 2-プロポキシェチル、 (メタ)アクリル酸 3-メトキシ プロピル、(メタ)アクリル酸 4-メトキシブチルなどが挙げられる。  Specifically, methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, 2_ethoxyshethyl (meth) acrylate, 2_butoxyshethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, ) 2-propoxyshetyl acrylate, 3-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate and the like.
これらの中でも(メタ)アクリル酸 2-エトキシェチル及び (メタ)アクリル酸 2-メトキシェ チルが好ましく、アクリル酸 2—エトキシェチル及びアクリル酸 2—メトキシェチルが特に 好ましい。  Among them, 2-ethoxyethyl (meth) acrylate and 2-methoxyethyl (meth) acrylate are preferable, and 2-ethoxyethyl acrylate and 2-methoxyethyl acrylate are particularly preferable.
[0037] 本発明において用いられるアクリルゴム(B1)には、 (メタ)アクリル酸エステル単量 体単位以外に、(メタ)アクリル酸エステル単量体と共重合可能な単量体単位を含有 していてもよい。共重合可能な単量体としては、例えば、共役ジェン系単量体、非共 役ジェン系単量体、芳香族ビュル単量体、 α , -エチレン性不飽和二トリル単量体 、アミド基含有 (メタ)アクリル単量体、多官能性ジ (メタ)アクリル単量体、その他のォ レフイン系単量体などが例示される。  [0037] The acrylic rubber (B1) used in the present invention contains a monomer unit copolymerizable with a (meth) acrylate monomer in addition to a (meth) acrylate monomer unit. May be. Examples of the copolymerizable monomer include a conjugated diene monomer, a non-covalent diene monomer, an aromatic vinyl monomer, an α, -ethylenically unsaturated nitrile monomer, and an amide group. Included are (meth) acrylic monomers, polyfunctional di (meth) acrylic monomers, and other olefin-based monomers.
[0038] 共役ジェン単量体としては、 1, 3—ブタジエン、ブタジエン、クロ口プレン、ピペリレン などが挙げられる。  [0038] Examples of the conjugated diene monomer include 1,3-butadiene, butadiene, chloroprene, and piperylene.
非共役ジェン単量体としては、 1, 2—ブタジエン、 1, 4_ペンタジェン、ジシクロペン タジェン、ノルボルネン、ェチリデンノルボルネン、 1 , 4一へキサジェン、ノルボルナジ ェンなどが挙げられる。  Examples of the non-conjugated diene monomer include 1,2-butadiene, 1,4-pentadiene, dicyclopentadiene, norbornene, ethylidene norbornene, 1,4-hexadiene, norbornadiene and the like.
芳香族ビュル単量体としては、スチレン、 ひーメチルスチレン、ジビュルベンゼンな どが挙げられる。  Examples of the aromatic vinyl monomer include styrene, permethylstyrene, dibutylbenzene, and the like.
α, β—エチレン性不飽和二トリル単量体としては、アクリロニトリル、メタアタリロニト リルが例示される。  Examples of the α, β-ethylenically unsaturated nitrile monomer include acrylonitrile and methacrylonitrile.
アミド基含有 (メタ)アクリル単量体としては、アクリルアミド、メタクリルアミドなどが挙 げられる。 Amide group-containing (meth) acrylic monomers include acrylamide and methacrylamide. I can get lost.
その他のォレフィン系単量体としては、エチレン、プロピレン、塩化ビュル、塩化ビ ユリデン、酢酸ビュル、ェチルビュルエーテル、ブチルビュルエーテルなどが挙げら れる。これらの中でもエチレン及び酢酸ビュルが好ましレ、。  Other olefin monomers include ethylene, propylene, butyl chloride, butylidene chloride, butyl acetate, ethyl butyl ether, butyl butyl ether and the like. Of these, ethylene and vinyl acetate are preferred.
[0039] 上記(メタ)アクリル酸エステル単量体以外の単量体を共重合する場合は、アクリル ゴム(B1)全体 100重量%に対して、 45重量%以下、好ましくは 15重量%以下、より 好ましくは 5重量%以下の割合で含有させて、共重合するのが望ましレ、。  When a monomer other than the above (meth) acrylic acid ester monomer is copolymerized, 45% by weight or less, preferably 15% by weight or less, based on 100% by weight of the whole acrylic rubber (B1), More preferably, it is desirable to incorporate it in a proportion of 5% by weight or less and copolymerize.
[0040] さらに、上述の(メタ)アクリル酸エステル単量体と共重合可能な他の単量体として、 動的架橋に適する架橋性基を含有する架橋性基含有単量体を使用することが好ま しい。このような架橋性基含有単量体としては、ハロゲン含有基、エポキシ基又は力 ルポキシノレ基を有する単量体が挙げられる。  [0040] Further, as another monomer copolymerizable with the above-mentioned (meth) acrylic acid ester monomer, a crosslinkable group-containing monomer containing a crosslinkable group suitable for dynamic crosslinking may be used. Is preferred. Examples of such a crosslinkable group-containing monomer include a monomer having a halogen-containing group, an epoxy group or a hydroxyl group.
[0041] ハロゲン含有基を有する単量体としては、 2—クロ口ェチルビュルエーテルなどのハ ロゲン含有ビニルエーテル;クロロメチルスチレンなどのハロゲン含有スチレン誘導体 ;ビニルクロ口アセテートなどのハロゲン含有ビニルアセテート;などが挙げられる。  Examples of the monomer having a halogen-containing group include halogen-containing vinyl ethers such as 2-chloroethyl butyl ether; halogen-containing styrene derivatives such as chloromethylstyrene; halogen-containing vinyl acetates such as vinyl chloride acetate; Is mentioned.
[0042] エポキシ基含有単量体としては、ァリルグリシジルエーテル、グリシジル (メタ)アタリ レートなどが挙げられる。  [0042] Examples of the epoxy group-containing monomer include aryl glycidyl ether and glycidyl (meth) acrylate.
[0043] カルボキシル基含有単量体としては、アクリル酸、メタクリル酸、ィタコン酸、フマル 酸、マレイン酸などのエチレン性不飽和モノカルボン酸又はエチレン性不飽和多価 カルボン酸;マレイン酸モノブチル、フマル酸モノブチルなどのブテンジオン酸モノア ブテンジオン酸モノシクロアルキルエステル;などが挙げられる。  Examples of the carboxyl group-containing monomer include ethylenically unsaturated monocarboxylic acids or ethylenically unsaturated polycarboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid; monobutyl maleate and fumaric acid. Butenedionic acid monobutenedionic acid monocycloalkyl ester such as monobutyl acid; and the like.
[0044] これらの架橋性基含有単量体の使用量は、全重合単量体中、好ましくは 0. 5— 10 重量%、より好ましくは 1一 5重量%である。架橋性基含有単量体の使用量が少なす ぎると、動的架橋が十分に進行せずにゴムの分散性が損なわれるおそれがあり、逆 に多すぎると、アクリルゴム(B1)の重合工程にぉレ、て安定にゴム(B1)を重合できな い可能性がある。 [0044] The amount of the crosslinkable group-containing monomer to be used is preferably 0.5 to 10% by weight, more preferably 115 to 5% by weight, based on all the polymerized monomers. If the amount of the cross-linkable group-containing monomer is too small, the dynamic cross-linking does not proceed sufficiently and the dispersibility of the rubber may be impaired. Conversely, if the amount is too large, the polymerization process of the acrylic rubber (B1) may be performed. The rubber (B1) may not be polymerized stably.
[0045] また、アクリルゴム(B1)にゲル分を含有させる場合には、(メタ)アクリル酸エステル 単量体と共重合可能な他の単量体として、重合反応中に自発的な架橋が可能であり 、かつ、ビュル基を 2以上有する不飽和架橋性基含有単量体を使用することが好まし レ、。 [0045] When the acrylic rubber (B1) contains a gel component, as a monomer copolymerizable with the (meth) acrylic acid ester monomer, spontaneous crosslinking occurs during the polymerization reaction. Possible It is preferable to use an unsaturated crosslinkable group-containing monomer having two or more butyl groups.
[0046] 上記不飽和架橋性基含有単量体の例としては、ジビュルベンゼン、 1,3,5_トリビニ ルベンゼンなどの多官能ビュル化合物;ジァリルフタレート、ジァリルフマレートなどの ジァリル化合物;トリメチロールプロパントリアタリレート、エチレンダルコールジメタァク リレートなどの多官能アタリレート;などが挙げられる。  Examples of the unsaturated cross-linkable group-containing monomer include polyfunctional bur compounds such as dibutylbenzene and 1,3,5-trivinylbenzene; and diaryl such as diaryl phthalate and diaryl fumarate. Compounds; polyfunctional atalylates such as trimethylolpropane triatalylate and ethylene dalcol dimethacrylate; and the like.
[0047] 不飽和架橋性基含有単量体の使用量は、アクリルゴム(B 1 )の重合に用いる全単 量体量に対して、好ましくは 0. 2— 1. 5重量%、より好ましくは 0. 3— 1. 0重量%で ある。  [0047] The amount of the unsaturated crosslinkable group-containing monomer used is preferably 0.2 to 1.5% by weight, more preferably 0.2 to 1.5% by weight, based on the total amount of monomers used for polymerization of the acrylic rubber (B1). Is 0.3-1.0% by weight.
[0048] 二トリルゴム(B2)  [0048] Nitrile rubber (B2)
二トリルゴム(B2)は、 α , エチレン性不飽和二トリル単量体、共役ジェン単量体 及び必要に応じて加えられるこれらと共重合可能なその他の単量体を共重合してな るゴムである。  The nitrile rubber (B2) is a rubber obtained by copolymerizing an α, ethylenically unsaturated nitrile monomer, a conjugated diene monomer and other monomers copolymerizable therewith as required. It is.
[0049] a , β -エチレン性不飽和二トリル単量体としては、アクリロニトリル、メタタリロニトリ ル、 α—クロ口アクリロニトリルなどが挙げられ、中でも、アクリロニトリルが好ましい。二 トリルゴム(Β2)の共重合に用いる α , -エチレン性不飽和二トリル単量体の量は、 重合に用いる全単量体中、好ましくは 30— 80重量%、より好ましくは 35— 60重量% である。 a , j3 _エチレン性不飽和二トリル単量体の使用量が少なすぎると耐油性が 劣るおそれがあり、多すぎると耐寒性が劣る可能性がある。  [0049] Examples of the a, β-ethylenically unsaturated nitrile monomer include acrylonitrile, methacrylonitrile, and α-methyl acrylonitrile, among which acrylonitrile is preferable. The amount of the α, -ethylenically unsaturated nitrile monomer used in the copolymerization of nitrile rubber (Β2) is preferably 30 to 80% by weight, more preferably 35 to 60% by weight, based on all monomers used for the polymerization. %. If the amount of a, j3_ethylenically unsaturated nitrile monomer is too small, the oil resistance may be poor, and if it is too large, the cold resistance may be poor.
[0050] 共役ジェン単量体としては、 1, 3—ブタジエン、イソプレン、 2, 3_ジメチルー 1 , 3- ブタジエン、 1, 3_ペンタジェンなどが挙げられる。中でも、 1 , 3_ブタジエンが好まし レ、。  [0050] Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. Among them, 1,3_butadiene is preferred.
[0051] 必要に応じて加えられる、上記単量体と共重合可能な単量体としては、アクリルゴ ム(B1 )の説明で述べたと同様の、動的架橋に適する架橋性基含有単量体、ゲルを 含有させる場合に好適な不飽和架橋性基含有単量体などを、それぞれ前述と同程 度量使用することができる。  [0051] The monomer that can be added as necessary and that can be copolymerized with the above monomer includes a crosslinkable group-containing monomer suitable for dynamic crosslinking, as described in the description of the acrylic rubber (B1). In addition, a monomer containing an unsaturated crosslinkable group suitable for containing a gel can be used in the same amount as described above.
[0052] 水素化二トリルゴム(B3)  [0052] Hydrogenated nitrile rubber (B3)
水素化二トリルゴム(B3)は、二トリルゴム(B2)の主鎖の炭素一炭素不飽和結合を 水素化して成るゴムである。 Hydrogenated nitrile rubber (B3) is used to remove carbon-carbon unsaturated bonds in the main chain of nitrile rubber (B2). It is a rubber made by hydrogenation.
[0053] 水素化二トリルゴム(B3)においても、必要に応じてカ卩えられる、上記単量体と共重 合可能な単量体としてアクリルゴム(B1)の説明で述べたと同様の、動的架橋に適す る架橋性基含有単量体、ゲルを含有させる場合に好適な不飽和架橋性基含有単量 体などを、それぞれ前述と同程度量使用することができる。  [0053] Also in the hydrogenated nitrile rubber (B3), the same kinetics as described in the description of the acrylic rubber (B1) as a monomer copolymerizable with the above-mentioned monomer, which can be cured if necessary. A cross-linkable group-containing monomer suitable for selective cross-linking, an unsaturated cross-linkable group-containing monomer suitable for containing a gel, and the like can be used in the same amounts as described above.
[0054] ェピハロヒドリンゴム(B4)  [0054] Epihalohydrin rubber (B4)
ェピハロヒドリンゴム(B4)は、ェピハロヒドリン単量体(b41)〔以下、「単量体(b41)」 と記すことがある。〕の開環重合体、又は、単量体 (b41)及びこれと共重合可能な単 量体との開環共重合体である。  The epihalohydrin rubber (B4) may be referred to as an epihalohydrin monomer (b41) [hereinafter sometimes referred to as “monomer (b41)”. Or a ring-opened copolymer of the monomer (b41) and a monomer copolymerizable therewith.
[0055] ェピハロヒドリン単量体(b41)としては、ェピクロノレヒドリン、ェピブ口モヒドリン、 2—メ チルェピクロルヒドリンなどが挙げられる力 S、なかでもェピクロルヒドリンが好ましい。  As the ephalohydrin monomer (b41), a force S such as epichronorehydrin, epib mouth mohydrin, 2-methylhepiclorhydrin and the like are preferable, and among them, epichlorhydrin is preferable.
[0056] 単量体 (b41)と共重合可能な単量体としては、アルキレンォキシド単量体 (b42)〔 以下、「単量体 (b42)」と記すことがある。〕や、エポキシ基含有架橋性単量体 (b43) 〔以下、「単量体 (b43)」と記すことがある。〕などが挙げられる。  As the monomer copolymerizable with the monomer (b41), the alkylene oxide monomer (b42) [hereinafter sometimes referred to as “monomer (b42)”. ] And an epoxy group-containing crosslinkable monomer (b43) [hereinafter sometimes referred to as “monomer (b43)”. And the like.
[0057] アルキレンォキシド単量体(b42)としては、エチレンォキシド、プロピレンォキシド、 1, 2_エポキシ一 4_クロ口ペンタンなどの鎖状アルキレンォキシド; 1, 2—エポキシシク 口ペンタン、 1, 2-エポキシシクロへキサンなどの環状アルキレンォキシド;などが例 示される。  Examples of the alkylene oxide monomer (b42) include chain alkylene oxides such as ethylene oxide, propylene oxide, and 1,2-epoxy-14-cyclopentane; 1,2-epoxycyclopentane; Cyclic alkylene oxides such as 1,2-epoxycyclohexane; and the like.
[0058] エポキシ基含有架橋性単量体(b43)としては、ァリルグリシジルエーテル、ビュル グリシジルエーテルなどのグリシジルエーテル基含有化合物;グリシジル (メタ)アタリ レート、グリシジルクロトネートなどのグリシジルエステル基含有化合物; 3, 4一ェポキ シ一 1ーブテンなどのエポキシ基含有不飽和炭化水素;などが例示される。  [0058] Examples of the epoxy group-containing crosslinkable monomer (b43) include glycidyl ether group-containing compounds such as aryl glycidyl ether and bullet glycidyl ether; and glycidyl ester group-containing compounds such as glycidyl (meth) atalylate and glycidyl crotonate. 3,4-epoxy-1-butene and other epoxy-containing unsaturated hydrocarbons;
[0059] 単量体(b42)の中ではエチレンォキシド及びプロピレンォキシドがェピハロヒドリン ゴム(B4)にゴム弾性等を付与する目的で好ましく用いられる。また、単量体 (b43)は ェピハロヒドリンゴム(B4)にゲル分を含有させる場合に用いられ、ァリルグリシジルェ 一テルが好ましい。  [0059] Among the monomers (b42), ethylene oxide and propylene oxide are preferably used for the purpose of imparting rubber elasticity to the ephalohydrin rubber (B4). Further, the monomer (b43) is used when the epihalohydrin rubber (B4) contains a gel component, and is preferably arylglycidyl ether.
[0060] また、ェピハロヒドリンゴム(B4)を動的架橋させる際には、単量体 (b41)の有する ノ、ロゲン原子を利用することができる。 [0061] ェピハロヒドリンゴムを構成する単量体単位含有量の割合は、以下の範囲とすること が好ましい。 [0060] In addition, when the ephalohydrin rubber (B4) is dynamically crosslinked, the no and logen atoms of the monomer (b41) can be used. [0061] The ratio of the monomer unit content of the epihalohydrin rubber is preferably in the following range.
すなわち、単量体(b41)単位は、好ましくは 20— 100モノレ0 /0、より好ましくは 25— 9 0モル0 /0 ;単量体(b42)単位は、好ましくは 0— 75モノレ0 /0、より好ましくは 10— 70モ ル%;単量体(b43)単位は好ましくは 15モル%以下、より好ましくは 10モル%以下 である。 That is, the monomer (b41) units, preferably 20- 100 Monore 0/0, more preferably 25 9 0 mole 0/0; monomer (b42) units, preferably 0 75 Monore 0 / 0 , more preferably 10 to 70 mol%; the monomer (b43) unit is preferably 15 mol% or less, more preferably 10 mol% or less.
[0062] 単量体 (b41)単位含有量が少なすぎると成形品の吸湿性が高くなる場合があり、 多すぎると成形品の耐寒性が劣るおそれがある。単量体 (b42)単位含有量が多すぎ ると成形時に発泡するおそれがある。  [0062] If the unit content of the monomer (b41) is too small, the molded article may have high hygroscopicity, and if too large, the molded article may have poor cold resistance. If the monomer (b42) unit content is too large, foaming may occur during molding.
[0063] ゴム(B)の重合  [0063] Polymerization of rubber (B)
本発明に用いるアクリルゴム(B1)、二トリルゴム(B2)及びェピハロヒドリンゴム(B4) は、それぞれ上記の各ゴム形成用単量体を公知の重合方法で重合することにより得 ることができる。具体的には、アクリルゴム(B1)及び二トリルゴム(B2)は乳化重合な どにより、ェピハロヒドリンゴム(B4)は溶液重合や溶媒スラリー重合などによって得る こと力 Sできる。  The acrylic rubber (B1), nitrile rubber (B2), and ephalohydrin rubber (B4) used in the present invention can be obtained by polymerizing each of the above rubber-forming monomers by a known polymerization method. it can. Specifically, the acrylic rubber (B1) and nitrile rubber (B2) can be obtained by emulsion polymerization and the like, and the ephalohydrin rubber (B4) can be obtained by solution polymerization and solvent slurry polymerization.
[0064] また、水素化二トリルゴム(B3)は、二トリルゴム(B2)の炭素-炭素不飽和結合を水 素化することにより製造される。具体的には、二トリルゴム(B2)の乳化重合後のラテツ タスを濃度約 20重量%に調整してから該ゴム中の炭素—炭素不飽和結合に対して 水素化する水層水素化法、又は、二トリルゴム (B2)を有機溶媒に溶解した溶液中で 、該ゴム中の炭素一炭素二重結合を水素化する油層水素化法などが例示される。水 素化反応は、耐圧密閉容器に入れた上記の水系又は油系反応液にパラジウム等の 白金族元素の化合物を触媒として添加し、溶存酸素を減圧、不活性ガスや水素によ るパージ等で除去した後、通常、 5— 150°Cにて、水素を 0. 5— 20MPaの圧力で封 入して行う。水素化率は、通常、 70%以上、好ましくは 80%以上である。  [0064] The hydrogenated nitrile rubber (B3) is produced by hydrogenating carbon-carbon unsaturated bonds of the nitrile rubber (B2). More specifically, an aqueous layer hydrogenation method in which the latet after the emulsion polymerization of nitrile rubber (B2) is adjusted to a concentration of about 20% by weight and then hydrogenates against carbon-carbon unsaturated bonds in the rubber, Alternatively, an oil layer hydrogenation method of hydrogenating a carbon-carbon double bond in a rubber in a solution of nitrile rubber (B2) in an organic solvent is exemplified. In the hydrogenation reaction, a compound of a platinum group element such as palladium is added as a catalyst to the above-mentioned aqueous or oil-based reaction solution contained in a pressure-resistant closed vessel, and the dissolved oxygen is depressurized, purged with an inert gas or hydrogen, etc. After removing with, usually, hydrogen is sealed at a pressure of 0.5-20 MPa at 5-150 ° C. The hydrogenation rate is usually at least 70%, preferably at least 80%.
[0065] これらの製造法によって得られるゴム(B)は、架橋ゴムのコア層と、架橋性基を有す るゴムのシェル層力 成るコア—シェル構造であってもよい。  The rubber (B) obtained by these production methods may have a core-shell structure comprising a core layer of a crosslinked rubber and a shell layer of a rubber having a crosslinkable group.
[0066] 熱可塑性エラストマ一組成物の製造方法  [0066] Method for producing thermoplastic elastomer composition
本発明の熱可塑性エラストマ一組成物は、ポリアミド樹脂 (A1)又はポリエステル榭 脂 (A2)の少なくとも一種の樹脂 (A)と、アクリルゴム(B1)、二トリルゴム(B2)、水素 化二トリルゴム(B3)及びェピハロヒドリンゴム(B4)よりなる群から選ばれる少なくとも 一種のゴム(B)と、を混練しながら動的架橋させることによって調製される。 The thermoplastic elastomer composition of the present invention comprises a polyamide resin (A1) or a polyester resin. Resin (A2) and at least one resin selected from the group consisting of acrylic rubber (B1), nitrile rubber (B2), hydrogenated nitrile rubber (B3) and ephalohydrin rubber (B4) And the rubber (B) is dynamically kneaded while kneading.
[0067] 動的架橋とは、樹脂 (A)とゴム(B)とを混練して樹脂 (A)のマトリックス中にゴム(B) を微細に分散させつつ、ゴム(B)を架橋剤を用いて架橋させることをいう。動的架橋 を行うことによって得られる本発明の熱可塑性エラストマ一組成物は、機械的強度及 び、屈曲ゃ定伸張に対する耐疲労性が改良された成形品を与えることができる。  [0067] Dynamic crosslinking is a process in which the resin (A) and the rubber (B) are kneaded to finely disperse the rubber (B) in a matrix of the resin (A), and the rubber (B) is mixed with a crosslinking agent. Means cross-linking. The thermoplastic elastomer composition of the present invention obtained by performing dynamic crosslinking can provide a molded article having improved mechanical strength and fatigue resistance to bending and constant elongation.
[0068] 本発明において、動的架橋の架橋剤としては、ゴムの架橋剤として一般的に用いら れている架橋剤を使用することができるが、ゴム )の架橋性基の種類に応じて以下 のものを用いることが好ましい。  [0068] In the present invention, as a crosslinking agent for dynamic crosslinking, a crosslinking agent generally used as a crosslinking agent for rubber can be used, but depending on the type of the crosslinking group of the rubber). It is preferable to use the following.
すなわち、架橋性基がハロゲン含有基である場合には、硫黄系架橋剤(金属石鹼 を伴う場合あり)、トリアジン系架橋剤などが挙げられる。  That is, when the crosslinkable group is a halogen-containing group, examples thereof include a sulfur-based crosslinking agent (which may be accompanied by a metal fossil) and a triazine-based crosslinking agent.
架橋性基がエポキシ基である場合には、有機アンモニゥム系架橋剤、イミダゾール 系架橋剤、多価酸系架橋剤などが挙げられる。  When the crosslinking group is an epoxy group, examples thereof include an organic ammonium-based crosslinking agent, an imidazole-based crosslinking agent, and a polyacid-based crosslinking agent.
架橋性基がカルボキシル基である場合には、多価アミン系架橋剤、ジイソシアナ一 ト系架橋剤などが挙げられる。  When the crosslinkable group is a carboxyl group, a polyamine crosslinker, a diisocyanate crosslinker and the like can be mentioned.
[0069] 本発明においては、樹脂 (A)とゴム(B)との使用比率は、重量比で、 A : B = 20 : 80 一 95: 5、好ましくは A: B = 50: 50—80: 20である。ゴム(B)の量が少なすぎると圧 縮永久歪みが大きくなるおそれがあり、逆に多すぎると動的架橋時のゴム(B)の分散 が不十分になり、加工性が低下する可能性がある。  [0069] In the present invention, the ratio of the resin (A) to the rubber (B) used is A: B = 20: 80-95: 5, preferably A: B = 50: 50-80, by weight ratio. : 20. If the amount of the rubber (B) is too small, the permanent compression set may increase. Conversely, if the amount is too large, the dispersion of the rubber (B) at the time of dynamic crosslinking becomes insufficient, and the processability may decrease. There is.
[0070] また、上記架橋剤の使用量は、樹脂 (A)及びゴム(B)の合計 100重量部に対して 、好ましくは 0. 1— 2重量部、より好ましくは 0. 5— 1重量部である。架橋剤の量が少 なすぎると、動的架橋時の架橋が十分進行せず、樹脂 (A)中へのゴム (B)の分散が 不十分になり、圧縮永久歪みが増大するおそれがあり、逆に多すぎると、樹脂 (A)の 分解を促進する可能性がある。  [0070] The amount of the crosslinking agent to be used is preferably 0.1 to 2 parts by weight, more preferably 0.5 to 1 part by weight, based on 100 parts by weight of the total of the resin (A) and the rubber (B). Department. If the amount of the cross-linking agent is too small, the cross-linking during dynamic cross-linking does not proceed sufficiently, and the dispersion of the rubber (B) in the resin (A) becomes insufficient, which may increase the compression set. Conversely, if the amount is too large, the decomposition of the resin (A) may be accelerated.
[0071] 動的架橋の方法は一般的な動的架橋法であればいずれでもよぐ例えば、以下の 方法による。先ず、ゴム(B)を混練機で、通常、 160— 300°C、好ましくは 180— 250 °Cにて剪断を与えつつ混練する。次いで、これに樹脂 (A)をカ卩えて混練することによ り、溶融した樹脂 (A)のマトリックスにゴム(B)を分散させる。次いで、樹脂 (A)のマト リックス中にゴム(B)が十分に微分散した時点で、上記架橋剤を添加してさらに混練 することにより、ゴム(B)を架橋させる。 [0071] The method of dynamic crosslinking may be any general dynamic crosslinking method, for example, the following method. First, the rubber (B) is kneaded with a kneading machine usually at 160 to 300 ° C, preferably 180 to 250 ° C, while giving shearing force. Next, the resin (A) is added to the mixture and kneaded. The rubber (B) is dispersed in the matrix of the molten resin (A). Next, when the rubber (B) is sufficiently finely dispersed in the matrix of the resin (A), the crosslinking agent is added and further kneaded to crosslink the rubber (B).
[0072] 混練温度が低すぎると樹脂 (A)が十分に溶融しないおそれがあり、逆に高すぎると ゴム(B)が熱劣化する可能性がある。 [0072] If the kneading temperature is too low, the resin (A) may not melt sufficiently, and if it is too high, the rubber (B) may be thermally degraded.
混練機としては、ブラベンダ、ラボプラストミルなどのバッチ式混練機;単軸押出機、 二軸押出機などの連続式混練機;などを用いることができる。  As the kneader, a batch kneader such as a Brabender or Labo Plastomill; a continuous kneader such as a single screw extruder or a twin screw extruder can be used.
押出機などの連続式混練機を用いる場合には、架橋剤は、押出機のバレルの途中 に設けた添加孔から添加するのが好ましい。  When using a continuous kneader such as an extruder, the crosslinking agent is preferably added through an addition hole provided in the middle of the barrel of the extruder.
[0073] 本発明の熱可塑性エラストマ一組成物には、本発明の効果を損なわない範囲で、 カーボンブラックやシリカなどの充填剤;老化防止剤;滑剤;老化防止剤などの、ゴム や樹脂に一般的に配合される配合剤を配合して用いてもよい。 [0073] The thermoplastic elastomer composition of the present invention may contain, as long as the effects of the present invention are not impaired, fillers such as carbon black and silica; antioxidants; lubricants; You may mix and use the compounding agent generally mix | blended.
[0074] 前記方法により得られる本発明の熱可塑性エラストマ一組成物は、架橋したゴム(B[0074] The thermoplastic elastomer composition of the present invention obtained by the above method is a crosslinked rubber (B
)の粒子が樹脂 (A)のマトリックス中に微分散しており、熱可塑性エラストマ一の性質 を有する。 ) Particles are finely dispersed in the matrix of the resin (A), and have the properties of a thermoplastic elastomer.
[0075] 本発明の組成物は、熱可塑性エラストマ一であるので、通常の熱可塑性樹脂と同 様に 160— 350°Cで押出成形、射出成形、トランスファー成形、圧縮成形、カレンダ 一成形などの方法によって成形することにより、任意の形状の成形品にすることがで きる。  Since the composition of the present invention is a thermoplastic elastomer, it can be extruded at 160 to 350 ° C., such as extrusion molding, injection molding, transfer molding, compression molding, calendar molding, etc., like a normal thermoplastic resin. By molding by the method, a molded article of an arbitrary shape can be obtained.
[0076] こうして得られる本発明の成形品は、ゴム弾性を有すると共に、耐熱性、耐油性及 び機械的特性に優れ、かつ、圧縮永久歪みが小さぐ耐疲労性に優れる。そのため 、 自動車関連の各種ゴム部品、例えば、シャフトシール、ベアリングシールなどのシー ル部品;エアーダクトホース、燃料ホース、オイルホースなどのホース部品;等速ジョイ ントブーツ、ラックアンドピニオンブーツなどのブーツ;などとして好適に使用される。 実施例  [0076] The molded article of the present invention thus obtained has rubber elasticity, is excellent in heat resistance, oil resistance, and mechanical properties, and is excellent in fatigue resistance with small compression set. Therefore, various rubber parts related to automobiles, such as seal parts such as shaft seals and bearing seals; hose parts such as air duct hoses, fuel hoses, and oil hoses; boots such as constant velocity joint boots and rack and pinion boots; It is preferably used as Example
[0077] 本発明をさらに具体的に説明するために、以下に実施例及び比較例を挙げて説明 する力 本発明はこれらの実施例に限定されるものではない。なお、特に示さない限 り、「部」及び「%」は重量基準である。実施例、比較例及び参考例における各種物性 は、下記の方法により測定した。 [0077] The present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples. Unless otherwise indicated, “parts” and “%” are based on weight. Various physical properties in Examples, Comparative Examples and Reference Examples Was measured by the following method.
[0078] (1)融点 (0078) Melting point
ポリアミド樹脂 (A1)及びポリエステル樹脂 (A2)の融点は、示差走査型熱量計を用 いて、融解熱のピーク温度より求めた。  The melting points of the polyamide resin (A1) and the polyester resin (A2) were determined from the peak temperature of heat of fusion using a differential scanning calorimeter.
[0079] (2)曲げ弾性率 [0079] (2) Flexural modulus
ポリアミド樹脂 (A1)及びポリエステル樹脂 (A2)の曲げ弾性率は、 JIS D790に従 レ、 23°Cで測定した。  The flexural modulus of the polyamide resin (A1) and the polyester resin (A2) was measured at 23 ° C. according to JIS D790.
[0080] (3)引張強度及び引張破断伸び [0080] (3) Tensile strength and tensile elongation at break
熱可塑性エラストマ一組成物を 250°Cに予熱したプレス機により成形し、厚み 2mm のシートとした。そして、このシートを所定の形状に打ち抜いて、試験片を作製した。 得られた試験片を用いて、 JIS K6251の引張試験に従って引張強度及び引張破 断伸びを測定した。  The thermoplastic elastomer composition was molded by a press machine preheated to 250 ° C. to obtain a sheet having a thickness of 2 mm. Then, this sheet was punched into a predetermined shape to prepare a test piece. Using the obtained test pieces, the tensile strength and tensile elongation at break were measured in accordance with the tensile test of JIS K6251.
[0081] (4)耐熱性 [0081] (4) Heat resistance
前記(3)の引張強度及び引張破断伸びを測定した試験片と同様にして試験片を作 製した。得られた試験片を 150°Cの環境下に 70時間静置して、空気加熱老化を行 い、この老化後の試験片を用いて、再度、前記(3)の方法で引張強度を測定し、前 記(3)の測定値からの変化量(引張強度変化率:%)を求め、耐熱性を評価した。こ の変化量が 0に近いほど耐熱性に優れる。  A test piece was prepared in the same manner as the test piece for which the tensile strength and tensile elongation at break were measured in the above (3). The obtained test specimen was allowed to stand in an environment of 150 ° C for 70 hours, aged by air heating, and the tensile strength was measured again using the aged test specimen according to the method (3). Then, the amount of change (rate of change in tensile strength:%) from the measured value in the above (3) was determined, and the heat resistance was evaluated. The closer this change is to 0, the better the heat resistance.
[0082] (5)硬度 [0082] (5) Hardness
熱可塑性エラストマ一組成物の硬度 ίお IS K6253の硬さ試験に従い測定した。  Hardness of Thermoplastic Elastomer Composition The hardness was measured according to a hardness test of IS K6253.
[0083] (6)圧縮永久歪み [0083] (6) Compression set
JIS K6262に従い、射出成形にて圧縮永久歪み測定用の試験片を作製し、得ら れた試験片を用いて、 25%の圧縮率で 120°C、 70時間の圧縮条件で圧縮永久歪 みを測定した。  In accordance with JIS K6262, a test piece for measuring compression set was prepared by injection molding, and the obtained test piece was used to perform compression set at 25% compression rate and 120 ° C for 70 hours under compression conditions. Was measured.
[0084] (7)耐疲労性 (7) Fatigue resistance
2mmのシートから所定の形状に打ち抜いた試験片を作製し、該試験片を破断伸 びの 2分の 1まで伸張させ、次いで伸張 0%の状態に戻す、という操作を 300回/分 の速度で繰り返し、試験片が破断するまでの回数を測定した。破断までの回数が多 レ、ほど、耐疲労性に優れる。 A test piece punched out of a 2 mm sheet into a predetermined shape is prepared, and the test piece is stretched to half the breaking elongation, and then returned to 0% elongation at a rate of 300 times / min. And the number of times until the test piece was broken was measured. Many breaks The higher the degree, the better the fatigue resistance.
[0085] (8)ムーニー粘度 [0085] (8) Mooney viscosity
ゴム(B)について、 JIS K6300の未架橋ゴム物理試験法のムーニー粘度試験に 従って、測定温度 100°Cにおけるムーニー粘度 ML を測定した。  For the rubber (B), the Mooney viscosity ML at a measurement temperature of 100 ° C. was measured according to the Mooney viscosity test of the uncrosslinked rubber physical test method of JIS K6300.
1 +4  1 +4
[0086] (9)ゴム(B)中のゲル分含有量  [0086] (9) Content of gel component in rubber (B)
ゴム(B)中のゲル分含有量は、ゴム (B)を良溶媒に溶解させたときの溶媒不溶解分 の割合を測定することにより求めた。具体的には、まず、約 0. 2gのゴム(B)を秤量し 、メチルェチルケトンに溶解させ、得られた溶液を金網等のフィルターで濾過する。そ して、フィルタ一中に捕捉された不溶解分の、溶媒除去後の重量を測定し、溶解させ たゴム全重量に対する割合を計算した。  The gel content in the rubber (B) was determined by measuring the proportion of the solvent-insoluble component when the rubber (B) was dissolved in a good solvent. Specifically, first, about 0.2 g of the rubber (B) is weighed, dissolved in methyl ethyl ketone, and the obtained solution is filtered through a filter such as a wire mesh. Then, the weight of the insoluble matter trapped in the filter after removing the solvent was measured, and the ratio to the total weight of the dissolved rubber was calculated.
[0087] 参考例 1  [0087] Reference Example 1
アクリルゴム(B11)の製造  Manufacture of acrylic rubber (B11)
温度計、攪拌装置、窒素導入管及び減圧装置を備えた重合反応器に、イオン交換 7 200部、ラウリル硫酸ナトリウム 3部、アクリル酸ェチル 47部、アクリル酸 n—ブチル 5 0部、エチレングリコールジメタタリレート 1部、及びフマル酸モノメチル 2部を仕込み、 減圧による脱気及び窒素置換を 2回繰り返して酸素を十分除去した。そして、ナトリウ ムホルムアルデヒドスルホキシレート 0. 002部及びクメンハイド口パーォキシド 0· 005 部を加えて、 20°C、常圧下で乳化重合反応を開始させ、重合転化率が 95%以上に 達するまで反応を行った。得られたラテックスを塩化カルシウム水溶液で凝固させて 脱液し、クラムを水洗後乾燥してカルボキシノレ基含有アクリルゴム(Bl 1)を得た。 得られたカルボキシル基含有アクリルゴム(B11)のゲル分は 80%、ムーニー粘度 ML (100°C)は 45であった。  In a polymerization reactor equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a decompression device, 200 parts of ion exchange, 3 parts of sodium lauryl sulfate, 47 parts of ethyl acrylate, 50 parts of n-butyl acrylate, 50 parts of ethylene glycol One part of tatalylate and 2 parts of monomethyl fumarate were charged, and deaeration under reduced pressure and nitrogen substitution were repeated twice to sufficiently remove oxygen. Then, 0.002 parts of sodium formaldehyde sulfoxylate and 0.005 parts of cumoxide at the mouth are added, and the emulsion polymerization reaction is started at 20 ° C under normal pressure, and the reaction is continued until the polymerization conversion reaches 95% or more. went. The obtained latex was coagulated with an aqueous calcium chloride solution and drained, and the crumb was washed with water and dried to obtain a carboxy group-containing acrylic rubber (Bl 1). The gel fraction of the obtained carboxyl group-containing acrylic rubber (B11) was 80%, and the Mooney viscosity ML (100 ° C) was 45.
1 + 4  1 + 4
[0088] 参考例 2  [0088] Reference Example 2
水素化二トリルゴム(B31)の製造  Production of hydrogenated nitrile rubber (B31)
温度計、攪拌装置、窒素導入管及び減圧装置を備えた重合反応器に、イオン交換 水 200部、ラウリル硫酸ナトリウム 3部、アクリロニトリル 30部、ブタジエン 67部、メタク リル酸 2部及びジビュルベンゼン 1部を仕込み、減圧による脱気及び窒素置換を 2回 繰り返して酸素を十分除去した。そして、ナトリウムホルムアルデヒドスルホキシレート 0. 002部及びクメンハイド口パーォキシド 0. 005部をカ卩えて、 10°C、常圧下で乳化 重合反応を開始させ、重合転化率が 95%以上に達するまで反応を行い、カルボキ シル基含有二トリルゴムのラテックスを得た。次いで、このラテックスを用いて全固形 分濃度 12重量%に調整したカルボキシル基含有二トリルゴムのラテックス 4リットル( 全固形分 480g)を攪拌機付きの 10リットルのオートクレープに投入し、窒素ガスを 10 分間流してラテックス中の溶存酸素を除去した後、水素化触媒として酢酸パラジウム をその 4倍モルの水 2. 4リットルに溶解して添カ卩した。系内を 2回水素ガスで置換後、 内容物を 50°Cとし、 3MPaまで水素ガスで加圧した状態で、 6時間水素化反応を行 レ、、次いで塩化カルシウムで凝固し、水洗、乾燥を経て水素化率 95%のカルボキシ ル基含有水素化二トリルゴム(B31)を得た。 In a polymerization reactor equipped with a thermometer, a stirrer, a nitrogen inlet tube and a decompressor, put 200 parts of ion-exchanged water, 3 parts of sodium lauryl sulfate, 30 parts of acrylonitrile, 67 parts of butadiene, 2 parts of methacrylic acid, and 1 part of dibutylbenzene. Then, degassing under reduced pressure and nitrogen replacement were repeated twice to sufficiently remove oxygen. And sodium formaldehyde sulfoxylate 0.002 parts and 0.005 parts of cumenehydride peroxide were dried, and the emulsion polymerization reaction was started at 10 ° C and normal pressure.The reaction was continued until the polymerization conversion reached 95% or more. A tolyl rubber latex was obtained. Next, 4 liters (480 g total solids) of a carboxyl group-containing nitrile rubber latex adjusted to a total solid content of 12% by weight using this latex was charged into a 10 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the latex by flowing, palladium acetate as a hydrogenation catalyst was dissolved in 2.4 liters of 4 times the molar amount of water and added. After replacing the inside of the system with hydrogen gas twice, the content was adjusted to 50 ° C and pressurized with hydrogen gas to 3MPa, hydrogenation reaction was performed for 6 hours, then coagulated with calcium chloride, washed with water and dried Thus, a carboxyl group-containing hydrogenated nitrile rubber (B31) having a hydrogenation ratio of 95% was obtained.
得られたゴム(B31)のゲル分は 85%、ムーニー粘度 ML (100°C)は 80であつ  The gel content of the obtained rubber (B31) is 85%, and the Mooney viscosity ML (100 ° C) is 80.
1 + 4  1 + 4
た。  It was.
[0089] 実施例 1  Example 1
ポリアミド樹 fl旨 (Al 1)とアクリルゴム(Bl 1)との混練  Kneading of polyamide tree flum (Al 1) and acrylic rubber (Bl 1)
東洋精機社製ラボプラストミル(内容量 600ml)を用い、 230°Cに予熱したミキサー にアクリルゴム(B11) 40部を入れて 1分間素練りした。次いで、前記ミキサーにポリア ミド榭脂 (Al l : 6-ナイロン、平均重合度 430、融点 214°C、曲げ弾性率 6, 500kgf /cm2,ブチルベンゼンスルフォンアミド(可塑剤)を 15重量%含有) 60部を投入して 5分間混合し、その後、へキサメチレンジァミンカーバメート (架橋剤) 0. 5部を投入し て、さらに 7分間混合した。 Using a Toyo Seiki Labo Plastomill (volume: 600 ml), 40 parts of acrylic rubber (B11) was placed in a mixer preheated to 230 ° C, and masticated for 1 minute. Then, a polyamide resin (All: 6-nylon, average degree of polymerization 430, melting point 214 ° C, flexural modulus 6,500 kgf / cm 2 , butylbenzenesulfonamide (plasticizer) containing 15% by weight in the mixer was used. 60 parts were added and mixed for 5 minutes, and then 0.5 parts of hexamethylene diamine carbamate (crosslinking agent) was added and mixed for another 7 minutes.
[0090] そして、混合終了後、すみやかに混合物を取り出し、予熱していないプレス機でプ レスすることによりシート状のサンプルとし、このサンプルを 250°Cに予熱したプレス 機によりプレスして、 2mm厚のシートに成形した。得られたシート状のサンプルを、前 記方法により試験、評価した。結果を表 1に記載する。 After completion of the mixing, the mixture was immediately taken out and pressed with a press machine that had not been preheated to obtain a sheet-like sample. This sample was pressed with a press machine preheated to 250 ° C. It was formed into a thick sheet. The obtained sheet-shaped sample was tested and evaluated by the methods described above. The results are shown in Table 1.
[0091] 実施例 2 [0091] Example 2
ポリアミド榭脂 (A12)とアクリルゴム(Bl 1)との混練  Kneading of polyamide resin (A12) and acrylic rubber (Bl 1)
実施例 1において、ポリアミド樹脂 (Al l)の代わりにポリアミド樹脂 (A12 : 12-ナイ ロン、平均重合度 220、融点 170°C、曲げ弾性率 2, 600kgf/cm2、 n—ォクチルー 4 ーヒドロキシベンゾエート(可塑剤)を 25重量%含有)を用いた以外は実施例 1と同様 に混練、動的架橋を行い試験、評価した。結果を表 1に記載する。 In Example 1, a polyamide resin (A12: 12-nylon, average degree of polymerization 220, melting point 170 ° C, flexural modulus 2,600 kgf / cm 2 , n-octyl-4 -Hydroxybenzoate (containing 25% by weight of plasticizer)), kneading and dynamic cross-linking were performed in the same manner as in Example 1, and the test and evaluation were performed. The results are shown in Table 1.
[0092] 実施例 3 [0092] Example 3
ポリアミド榭脂 (Al 1)と二トリルゴム(B21)との混練  Kneading of polyamide resin (Al 1) and nitrile rubber (B21)
実施例 1において、アクリルゴム(B11)の代わりに二トリルゴム(B21 ; Nipoll072J 日本ゼオン製、ムーニー粘度 ML (100°C) 48)を用いた以外は実施例 1と同様  Example 1 is the same as Example 1 except that nitrile rubber (B21; Nipoll072J manufactured by Zeon Corporation, Mooney viscosity ML (100 ° C) 48) was used instead of the acrylic rubber (B11).
1 +4  1 +4
に混練、動的架橋を行い試験、評価した。結果を表 1に記載する。  The mixture was kneaded and dynamically crosslinked, and tested and evaluated. The results are shown in Table 1.
[0093] 実施例 4 [0093] Example 4
ポリアミド樹脂 (Al l)と水素化二トリルゴム(B31)との混練  Kneading of polyamide resin (All) and hydrogenated nitrile rubber (B31)
実施例 1において、アクリルゴム(B11)の代わりに水素化二トリルゴム(B31)を用い た以外は実施例 1と同様に混練、動的架橋を行い試験、評価した。結果を表 1に記 載する。  In Example 1, kneading and dynamic cross-linking were carried out in the same manner as in Example 1 except that a hydrogenated nitrile rubber (B31) was used instead of the acrylic rubber (B11), and a test and evaluation were performed. The results are shown in Table 1.
[0094] 実施例 5 [0094] Example 5
ポリアミド樹脂 (Al l) ェピハロヒドリンゴム (B41) の混練  Kneading of polyamide resin (All) and epihalohydrin rubber (B41)
実施例 1において、アクリルゴム(B11)の代わりにェピハロヒドリンゴム(B41 ; Gech ronl lOO, 日本ゼオン製、ムーニー粘度 ML (100°C) 58)を使用し、酸化マグネ  In Example 1, instead of the acrylic rubber (B11), ephalohydrin rubber (B41; GechronlOO, manufactured by Nippon Zeon, Mooney viscosity ML (100 ° C) 58) was used, and magnesia oxide was used.
1 + 4  1 + 4
シゥムを 1部添加した以外は実施例 1と同様に混練、動的架橋を行い試験、評価した 。結果を表 1に記載する。  Kneading and dynamic crosslinking were carried out and tested and evaluated in the same manner as in Example 1 except that 1 part of shim was added. The results are shown in Table 1.
[0095] 実施例 6 [0095] Example 6
ポリエステル榭脂 (A21)と水素化二トリルゴム(B31)との混練  Kneading of polyester resin (A21) and hydrogenated nitrile rubber (B31)
実施例 4において、ポリアミド樹脂 (Al l)に代えてポリエステル樹脂 (A21:ポリプチ レンテレフタレート、重量平均分子量 83, 000、融点 210°C、曲げ弾性率 5, 700kgf /cm2,フタル酸—ヒドロキシェチノレー 2_ェチルへキシル(可塑剤)を 15重量0 /0含有) を用いた以外は実施例 4と同様に混練、動的架橋を行い試験、評価した。結果を表 1 に記載する。 In Example 4, a polyester resin (A21: polyethylene terephthalate, weight average molecular weight 83,000, melting point 210 ° C, flexural modulus 5,700 kgf / cm 2 , phthalic acid-hydroxy Chinore 2_ Echiru hexyl Similarly kneaded with the exception of using the (plasticizer) 15 parts by weight 0/0 containing) example 4 performs dynamic crosslinking test was evaluated. The results are shown in Table 1.
[0096] 実施例 7 [0096] Example 7
ポリアミド榭脂 (Al l)とアクリルゴム(B11)との混練  Kneading of polyamide resin (All) and acrylic rubber (B11)
実施例 1において、ポリアミド樹脂 (Al l)の添力卩量を 35部、アクリルゴム(B11)の 添加量を 65部とした以外は実施例 1と同様に混練、動的架橋を行い試験、評価した 。結果を表 1に記載する。 In Example 1, the addition amount of the polyamide resin (All) was 35 parts, and the amount of the acrylic rubber (B11) was Kneading and dynamic crosslinking were performed in the same manner as in Example 1 except that the addition amount was changed to 65 parts, and a test and evaluation were performed. The results are shown in Table 1.
[0097] 比較例 1 [0097] Comparative Example 1
高曲げ弾性率ポリアミド榭脂とアクリルゴム(Bl 1)との混練  Kneading of high flexural modulus polyamide resin and acrylic rubber (Bl 1)
実施例 1におレ、て、ポリアミド樹脂 (Al l)を高曲げ弾性率ポリアミド樹脂(6—ナイ口 ン、 UBEナイロン 6 1030B、宇部興産社製、融点 225°C、曲げ弾性率 26, OOOkgf Zcm2)に変更した以外は、実施例 1と同様に混練、動的架橋を行い試験、評価した 。結果を表 1に記載する。 In Example 1, a polyamide resin (All) was converted to a polyamide resin having a high flexural modulus (6-nape, UBE nylon 6 1030B, manufactured by Ube Industries, melting point 225 ° C, flexural modulus 26, OOOkgf Except for changing to Zcm 2 ), kneading and dynamic crosslinking were performed in the same manner as in Example 1, and the test and evaluation were performed. The results are shown in Table 1.
[0098] 比較例 2 [0098] Comparative Example 2
低 点ポリアミド 脂 アクリルゴム (B11) の混練  Kneading of low-point polyamide fat acrylic rubber (B11)
実施例 1におレ、て、ポリアミド樹脂 (Al 1)を低融点ポリアミド樹脂(ナイロンコポリマ 一:べスタミド E40、ダイセル.デグサ製、融点 150°C、曲げ弾性率 1, 000kgf/cm2 )に変更した以外は、実施例 1と同様に混練、動的架橋を行い試験、評価した。結果 を表 1に記載する。 In Example 1, the polyamide resin (Al 1) was converted to a low-melting polyamide resin (nylon copolymer 1: Vestamide E40, Daicel. Degussa, melting point 150 ° C, flexural modulus 1,000 kgf / cm 2 ) Except for the change, kneading and dynamic crosslinking were carried out in the same manner as in Example 1, and tests and evaluations were performed. The results are shown in Table 1.
[0099] [表 1] [0099] [Table 1]
) Js鳞6 ¾ ¾2 ) Js 鳞 6 ¾ ¾2
Figure imgf000021_0001
Figure imgf000021_0001
*1: UBEナイロン 6 1013B (宇部興産製) * 2: べスタミド E40 (ダイセル'デグサ製) * 1: UBE nylon 6 1013B (made by Ube Industries) * 2: Vestamide E40 (made by Daicel Degussa)
[0100] 表 1が示すように、本発明の要件を満たす熱可塑性エラストマ一組成物はいずれも 耐熱性に優れ、かつ、圧縮永久歪みが小さぐ耐疲労性に優れる成形品を与えた( 実施例 1一 7)。 [0100] As shown in Table 1, all of the thermoplastic elastomer compositions satisfying the requirements of the present invention provided molded articles having excellent heat resistance, small compression set, and excellent fatigue resistance. Example 1-7).
[0101] 一方、曲げ弾性率が高すぎるポリアミド樹脂を用いてアクリルゴムと共に混練してゴ ムを動的架橋してなる組成物をプレス成形して得たシートは、圧縮永久歪が大きぐ 耐疲労性に劣る結果となった (比較例 1)。  [0101] On the other hand, a sheet obtained by press-molding a composition obtained by dynamically kneading rubber by kneading with an acrylic rubber using a polyamide resin having a too high flexural modulus has a large compression set. The result was poor fatigue performance (Comparative Example 1).
また、融点が低すぎるポリアミド樹脂を用いてアクリルゴムと共に混練してゴムを動 的架橋してなる組成物をプレス成形して得たシートは、圧縮永久歪が大きぐ耐熱性 が低くなる結果となった (比較例 2)。  Also, a sheet obtained by press-molding a composition obtained by kneading with acrylic rubber using a polyamide resin having a melting point that is too low and dynamically crosslinking the rubber has a large compression set and low heat resistance. (Comparative Example 2).

Claims

請求の範囲 The scope of the claims
融点が 160— 300°C、温度 23°Cにおける曲げ弾性率が 10,000kgf/cm2以下で あるポリアミド樹脂 (A1)又はポリエステル樹脂 (A2)の少なくとも一種の樹脂 (A) 20 一 95重量%と、 At least one polyamide resin (A1) or polyester resin (A2) with a flexural modulus of 10,000 kgf / cm 2 or less at a melting point of 160-300 ° C and a temperature of 23 ° C (A) 20-95% by weight When,
アクリルゴム(B1)、二トリルゴム(B2)、水素化二トリルゴム(B3)及びェピハロヒドリン ゴム(B4)よりなる群から選ばれる少なくとも一種のゴム(B) 5— 80重量0 /0と、 を混練しながら動的架橋させて成る熱可塑性エラストマ一組成物。 Acrylic rubber (B1), nitrile rubber (B2), a hydrogenated nitrile rubber (B3) and at least one rubber selected from the group consisting of Epiharohidorin rubber (B4) (B) 5- 80 wt 0/0, and kneading A thermoplastic elastomer composition dynamically crosslinked.
前記樹脂 (A)が、可塑剤を含有しており、  The resin (A) contains a plasticizer,
前記可塑剤の含有量が、前記樹脂 (A) 100重量部あたり、 1一 50重量部である請 求項 1に記載の熱可塑性エラストマ一組成物。  2. The thermoplastic elastomer composition according to claim 1, wherein the content of the plasticizer is 1 to 50 parts by weight per 100 parts by weight of the resin (A).
前記ゴム(B)が、ゲル分を含有しており、  The rubber (B) contains a gel component,
前記ゲル分の含有量が、前記ゴム(B)全体 100重量%に対して、 30— 100重量% である請求項 1又は 2に記載の熱可塑性エラストマ一組成物。  3. The thermoplastic elastomer composition according to claim 1, wherein the content of the gel component is 30 to 100% by weight based on 100% by weight of the whole rubber (B).
前記ゴム(B)の粒子が、前記樹脂 (A)のマトリックス中に微分散している請求項 1一 3のいずれかに記載の熱可塑性エラストマ一組成物。  14. The thermoplastic elastomer composition according to claim 13, wherein the rubber (B) particles are finely dispersed in a matrix of the resin (A).
請求項 1一 4のいずれかに記載の熱可塑性エラストマ一組成物を 160 350°Cで 成形してなる成形品。  A molded article obtained by molding the thermoplastic elastomer composition according to any one of claims 14 to 160 at 350 ° C.
PCT/JP2004/016106 2003-10-31 2004-10-29 Thermoplastic elastomer composition and formed article WO2005042624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515173A JPWO2005042624A1 (en) 2003-10-31 2004-10-29 Thermoplastic elastomer composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003373328 2003-10-31
JP2003-373328 2003-10-31

Publications (1)

Publication Number Publication Date
WO2005042624A1 true WO2005042624A1 (en) 2005-05-12

Family

ID=34544088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016106 WO2005042624A1 (en) 2003-10-31 2004-10-29 Thermoplastic elastomer composition and formed article

Country Status (2)

Country Link
JP (1) JPWO2005042624A1 (en)
WO (1) WO2005042624A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001970A (en) * 2004-06-15 2006-01-05 Yokohama Rubber Co Ltd:The Thermoplastic resin composition for automobile component
US7074857B2 (en) 2002-09-30 2006-07-11 E. I. Du Pont De Nemours And Company Curable thermoplastic elastomeric blend, method of manufacture, and use thereof
WO2006129452A1 (en) * 2005-06-02 2006-12-07 Nok Corporation Joint boot
US7244790B2 (en) 2005-05-02 2007-07-17 E.I. Du Pont De Nemours And Company Thermoplastic elastomer blend, method of manufacture and use thereof
JPWO2006003972A1 (en) * 2004-06-30 2008-04-17 日本ゼオン株式会社 Thermoplastic elastomer composition and molded article thereof
EP2058367A1 (en) * 2006-09-01 2009-05-13 Kaneka Corporation Thermoplastic elastomer composition
US8013067B2 (en) 2002-09-30 2011-09-06 E.I. Du Pont De Nemours And Company Curable thermoplastic elastomeric blend, method of manufacture, and use thereof
JP5138109B1 (en) * 2012-05-09 2013-02-06 義一 後藤 Open-end spinning machine rotor shaft support disk
CN103589126A (en) * 2013-11-28 2014-02-19 青岛科技大学 Nitrile rubber/polylactic acid thermoplastic vulcanizate and preparation method
JP2014517138A (en) * 2011-06-21 2014-07-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Heat-stabilized acrylate elastomer composition and method for producing the same
JP2015017225A (en) * 2013-07-12 2015-01-29 日油株式会社 Thermoplastic elastomer
JP2015105357A (en) * 2013-12-02 2015-06-08 日油株式会社 Thermoplastic elastomer
JP2016121227A (en) * 2014-12-24 2016-07-07 リケンテクノス株式会社 Thermoplastic elastomer composition
WO2017057516A1 (en) * 2015-09-28 2017-04-06 株式会社ブリヂストン Resin material for hoses, hose tube and hose
EP3239231A4 (en) * 2014-12-25 2018-10-17 Zeon Corporation Crosslinkable nitrile rubber composition and crosslinked rubber material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225066A (en) * 1996-02-27 1997-09-02 Sumitomo Rubber Ind Ltd Ball core for ball sport
JP2000191928A (en) * 1998-12-28 2000-07-11 Sumitomo Rubber Ind Ltd Thermoplastic resin composition for ball and one-piece golf ball produced by using the composition
JP2003064262A (en) * 2001-08-27 2003-03-05 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225066A (en) * 1996-02-27 1997-09-02 Sumitomo Rubber Ind Ltd Ball core for ball sport
JP2000191928A (en) * 1998-12-28 2000-07-11 Sumitomo Rubber Ind Ltd Thermoplastic resin composition for ball and one-piece golf ball produced by using the composition
JP2003064262A (en) * 2001-08-27 2003-03-05 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition and method for producing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074857B2 (en) 2002-09-30 2006-07-11 E. I. Du Pont De Nemours And Company Curable thermoplastic elastomeric blend, method of manufacture, and use thereof
US8013067B2 (en) 2002-09-30 2011-09-06 E.I. Du Pont De Nemours And Company Curable thermoplastic elastomeric blend, method of manufacture, and use thereof
JP2006001970A (en) * 2004-06-15 2006-01-05 Yokohama Rubber Co Ltd:The Thermoplastic resin composition for automobile component
JPWO2006003972A1 (en) * 2004-06-30 2008-04-17 日本ゼオン株式会社 Thermoplastic elastomer composition and molded article thereof
US7244790B2 (en) 2005-05-02 2007-07-17 E.I. Du Pont De Nemours And Company Thermoplastic elastomer blend, method of manufacture and use thereof
WO2006129452A1 (en) * 2005-06-02 2006-12-07 Nok Corporation Joint boot
EP2058367A1 (en) * 2006-09-01 2009-05-13 Kaneka Corporation Thermoplastic elastomer composition
EP2058367A4 (en) * 2006-09-01 2012-10-17 Kaneka Corp Thermoplastic elastomer composition
US8748526B2 (en) 2006-09-01 2014-06-10 Kaneka Corporation Thermoplastic elastomer composition
JP2014517138A (en) * 2011-06-21 2014-07-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Heat-stabilized acrylate elastomer composition and method for producing the same
CN103518009A (en) * 2012-05-09 2014-01-15 后藤义一 Rotor shaft support disk for open-end spinning frame
JP2013234404A (en) * 2012-05-09 2013-11-21 Giichi Goto Rotor shaft supporting disk for open-end fine spinning machine
JP5138109B1 (en) * 2012-05-09 2013-02-06 義一 後藤 Open-end spinning machine rotor shaft support disk
CN103518009B (en) * 2012-05-09 2016-02-03 后藤义一 The armature spindle supporting disk of free end spinning frame
JP2015017225A (en) * 2013-07-12 2015-01-29 日油株式会社 Thermoplastic elastomer
CN103589126A (en) * 2013-11-28 2014-02-19 青岛科技大学 Nitrile rubber/polylactic acid thermoplastic vulcanizate and preparation method
JP2015105357A (en) * 2013-12-02 2015-06-08 日油株式会社 Thermoplastic elastomer
JP2016121227A (en) * 2014-12-24 2016-07-07 リケンテクノス株式会社 Thermoplastic elastomer composition
EP3239231A4 (en) * 2014-12-25 2018-10-17 Zeon Corporation Crosslinkable nitrile rubber composition and crosslinked rubber material
US10266681B2 (en) 2014-12-25 2019-04-23 Zeon Corporation Cross-linkable nitrile rubber composition and cross-linked rubber product, and method for manufacturing cross-linkable nitrile rubber composition
WO2017057516A1 (en) * 2015-09-28 2017-04-06 株式会社ブリヂストン Resin material for hoses, hose tube and hose
CN108027090A (en) * 2015-09-28 2018-05-11 株式会社普利司通 Hose resin material, hose tubing and hose
JPWO2017057516A1 (en) * 2015-09-28 2018-07-19 株式会社ブリヂストン Resin material for hose, hose pipe and hose

Also Published As

Publication number Publication date
JPWO2005042624A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
EP1672027B1 (en) Thermoplastic elastomer composition and formed article
WO2005042624A1 (en) Thermoplastic elastomer composition and formed article
WO2001014469A1 (en) Crosslinkable rubber composition and crosslinked object
JP6881318B2 (en) Method for Producing Thermoplastic Elastomer Composition
JPH10505615A (en) Soft thermoplastic elastomers with improved resistance to oil expansion and compression set
JPH0784541B2 (en) Thermoplastic elastomer-like composition
WO2006003972A1 (en) Thermoplatic elastomer composition and molded product thereof
WO2006003973A1 (en) Thermoplastic elastomer composition, method for producing such composition, and molded article
JP6395594B2 (en) Thermoplastic elastomer composition
JPH0314071B2 (en)
WO2003046073A1 (en) Rubber vulcanizate, process for its production, and polymer composition, rubber composition and vulcanizable rubber composition used in the process
JP2618644B2 (en) Thermoplastic polymer composition
EP0275186A2 (en) Thermoplastic polymer composition
EP1406937A1 (en) Heat and oil resistant thermoplastic elastomer
JPH02269138A (en) Thermoplastic elastomer composition
CN114573890A (en) Hydrogenated nitrile rubber material and preparation method thereof
WO2005037914A1 (en) Polymer alloy, crosslinked object, and industrial part
JPH0764979B2 (en) Thermoplastic resin composition
EP0593769B1 (en) Thermoplastic elastomer composition
CN1139685A (en) Moulded material with no-luster surface
JPH059337A (en) Rubber composition
JP2001002793A (en) Polyamide-fiber reinforced elastic body
JPH0331355A (en) Thermoplastic resin composition having excellent impact resistance and moldability
JPH0331354A (en) Thermoplastic resin composition having excellent impact resistance
JPH0753816A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515173

Country of ref document: JP

122 Ep: pct application non-entry in european phase