WO2005042466A1 - Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device - Google Patents

Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device Download PDF

Info

Publication number
WO2005042466A1
WO2005042466A1 PCT/JP2004/016018 JP2004016018W WO2005042466A1 WO 2005042466 A1 WO2005042466 A1 WO 2005042466A1 JP 2004016018 W JP2004016018 W JP 2004016018W WO 2005042466 A1 WO2005042466 A1 WO 2005042466A1
Authority
WO
WIPO (PCT)
Prior art keywords
quaternary ammonium
ammonium salt
electrolyte
bonded
methoxymethyl
Prior art date
Application number
PCT/JP2004/016018
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Nabeshima
Hiroaki Tokuda
Tetsuo Nishida
Megumi Tomisaki
Kazutaka Hirano
Original Assignee
Otsuka Chemical Co., Ltd.
Stella Chemifa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co., Ltd., Stella Chemifa Corporation filed Critical Otsuka Chemical Co., Ltd.
Priority to JP2005515146A priority Critical patent/JP4836578B2/en
Publication of WO2005042466A1 publication Critical patent/WO2005042466A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Quaternary ammonium salts electrolytes, electrolytes and electrochemical devices
  • the present invention relates to a quaternary ammonium salt, an electrolyte, an electrolytic solution, and an electrochemical device.
  • room temperature molten salts examples include, for example, those represented by the general formula
  • R 1A , R 2A , R 3A and are the same or different and are each an alkyl group having 115 carbon atoms or R, 1 O— (CH 2) — (R ′ is a methyl group or ethyl Group, n is an integer of 1 to 4)
  • W represents a nitrogen atom or a phosphorus atom, and Y represents a monovalent aion. ] Is known (Patent Document 1).
  • Patent Document 1 The aliphatic ammonium salt disclosed in Patent Document 1 has excellent solubility in non-aqueous organic solvents and has a property that salt precipitation hardly occurs at low temperatures.
  • Patent document l WO 02/076924 A1
  • An object of the present invention is to provide a quaternary ammonium salt having a melting point of 10 ° C. or less, high electric conductivity, and excellent solubility in a non-aqueous organic solvent. It is.
  • the present inventors have intensively studied to develop a quaternary ammonium salt capable of solving the above problems.
  • the specific quaternary ammonium salt represented by the following general formula (1) which has neither a specific description nor suggestion in Patent Document 1, has a low melting point of 10 ° C or less, It has been found that it has excellent solubility in organic organic solvents, has remarkably high electric conductivity, and can be suitably used as an electrolyte.
  • the present invention has been completed based on such knowledge.
  • the present invention provides the following quaternary ammonium salts, electrolytes, electrolytes, and electrochemical devices.
  • R 1 and R 2 are the same or different and each represent a C alkyl group.
  • R 1 and R 2 are the same or different and each represent a C alkyl group.
  • R 3 and R 4 are the same or different and represent a methyl group or an ethyl group.
  • X— represents an anion.
  • R 1 and R 2 are the same or different and each represents a C alkyl group.
  • R 1 and R 2 are the same or different and each represents a C alkyl group.
  • R 3 and R 4 are the same or different and represent a methyl group or an ethyl group.
  • X— represents an anion.
  • X— is BF—, A1C1-—, Al C1-—, PF—, AsF—, N (CF SO) —, N (CF SO)
  • Electrode containing one or more of the electrolytes described in any of 7-12 above 14.
  • organic solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, nitrile compounds, and sulfonate compounds.
  • organic solvent is at least one selected from the group consisting of propylene carbonate, ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate.
  • An electrochemical device comprising the electrolytic solution according to 13 above.
  • examples of the C alkyl group represented by R 1 and R 2 include methyl
  • the C alkyl group is a methyl group.
  • saturated heterocyclic ring formed combine with each other together with the nitrogen atom R 1 and the R 2 is bonded, for example, a saturated heterocyclic ring of 3-5 members.
  • Preferred saturated heterocycles are pyrrolidine rings.
  • Specific quaternary ammonium cations include bis (methoxymethyl) dimethylammonium cation, N, N- (dimethoxymethyl) N-ethyl-N-methylammonium-dimethylcation, and N, N- (dimethoxymethyl).
  • anion represented by X— for example, BF—, A1C1-, Al C1-, PF—, AsF—, N
  • Preferred anions are BF— and N (CF SO)
  • Preferred quaternary ammonium salts include, for example, bis (methoxymethyl) dimethylammoniumtetrafluoroborate, N, N— (dimethoxymethyl) N-ethyl-N-methylammonium N-N- (dimethoxymethyl) N-propyl N-methyltetrafluoroborate, N, N- (dimethoxymethyl) N-butyl-N-methyl-tetrafluoroborate Tetrafluoroborate, bis (methoxymethyl) getyl-ammonium-tetrafluoroborate, N— (ethoxymethyl) N— (methoxymethyl) N, N—dimethylammonium-dimethyltetrafluoroborate, N— (Ethoxymethyl) -N- (methoxymethyl) N-ethyl-N-methylammonium-dimethyltetrafluoroborate, bis (ethoxymethyl) dimethylammonium-dimethyltetrafluoroborate , N, N
  • the quaternary ammonium salt of the present invention is produced by various methods. A typical method will be described using the following reaction formula.
  • R 2 , R 3 , R 4 and X— are the same as above.
  • X 1 represents a halogen atom.
  • M represents a hydrogen atom or a metal atom.
  • a quaternary ammonium salt represented by the general formula (4) is produced.
  • the salt exchange reaction between the quaternary ammonium salt represented by the general formula (4) and the general formula (5) the compound represented by the general formula (1) Grade ammonium salt can be produced.
  • M is H or an alkali metal atom such as Na, K, and Li; an alkaline earth metal atom such as Ca, Mg, and Ba; and a metal atom such as Ag. including.
  • the tertiary amine of the general formula (2) is synthesized according to a known method. Such methods are described, for example, in C.M.McLeod und G.M.Robinson, J.Chem.Soc, 119, 1470 (1921),
  • the tertiary amine represented by the general formula (2) is generally a secondary amine or formaldehyde.
  • the reaction temperature is suitably -5 to 25 ° C when an aqueous formaldehyde solution is used, and 60 to 100 ° C when paraformaldehyde is used.
  • the reaction is generally completed within several hours to 24 hours.
  • the tertiary amine represented by the general formula (2) is easily isolated from the reaction mixture by a conventional isolation means, for example, extraction, rectification and the like.
  • Examples of the compound represented by the general formula (3) include chloromethyl methyl ether, bromomethylinolemethynoateate, odomethinolemethynoateate, chloromethineleetinoateate, and Lomomethylethyl ether, eodomethylethyl ether and the like are included.
  • solvents can be used as long as they can dissolve the tertiary amine represented by the general formula (2) and the compound represented by the general formula (3) and do not adversely affect the reaction. Can be used widely.
  • solvents include, for example, benzene, toluene, xylene and the like.
  • Aromatic hydrocarbons Halogenated hydrocarbons such as dichloromethane, chloroform, tetrachlorosilane, etc .; Lower alcohols such as methanol, ethanol, isopropanol, n-butanol and tert-butanol; Ketones such as acetone and methyl ethyl ketone ; Jefferies chill ether, ethers such as diisopropyl ether; n - hexane, aliphatic hydrocarbons such as n- heptane; alicyclic hydrocarbons such as cyclohexane and the like cycloalkyl and the like.
  • aromatic hydrocarbons such as toluene, halogenated hydrocarbons such as dichloromethane, and ketones such as acetone are preferred.
  • solvents can be used alone or in combination of two or more. These solvents are preferably non-aqueous solvents.
  • the compound represented by the general formula (3) is generally used in an amount of 0.3 to 5 mol, preferably 0.6 to 1.2 mol, per 1 mol of the tertiary amine (2).
  • the reaction is usually performed at ⁇ 10 to 25 ° C., and is generally completed in several hours to about 24 hours.
  • the compound represented by the general formula (5) used as a raw material is a known compound, for example,
  • This salt exchange reaction is performed in an appropriate solvent.
  • the solvent used is a solvent capable of dissolving the quaternary ammonium salt represented by the general formula (4) and the compound represented by the general formula (5) and having no adverse effect on the reaction. As long as it is publicly known, it can be widely used.
  • solvents examples include water; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, etc .; lower alcohols such as methanol, ethanol, isopropanol, n-butanol, tert-butanol; acetone, methyl Ketones such as ethyl ketone; Esters such as tyl; and aprotic polar solvents such as dimethyl sulfoxide and dimethylformamide. Of these, lower alcohols such as methanol; halogenated hydrocarbons such as chloroform, and water are preferred. These solvents can be used alone or in combination of two or more.
  • Salt exchange can also be performed using ion exchange resin.
  • An ion exchange resin is usually used as the ion exchange resin.
  • solvent used here known solvents can be widely used as long as they can dissolve the general formula (4) and do not adversely affect the salt exchange reaction.
  • solvents are generally water, alcohols and the like.
  • the use ratio of the quaternary ammonium salt represented by the general formula (4) and the compound represented by the general formula (5) is usually 0.5 mol per 1 mol of the former. It is good to be 5 mol, preferably 0.9 to 1.2 mol. Since the reaction usually proceeds rapidly, for example, the temperature of a solution in which both are dissolved in a solvent should be maintained near room temperature. Generally, the salt exchange reaction is completed in about 10 minutes to 12 hours.
  • the target compound obtained in each of the above reactions can be easily separated from the reaction mixture by a conventional separation means, for example, a conventional isolation and purification means such as concentration, washing, organic solvent extraction, chromatography, and recrystallization. It is isolated and purified.
  • a conventional isolation and purification means such as concentration, washing, organic solvent extraction, chromatography, and recrystallization. It is isolated and purified.
  • reaction conditions for producing a quaternary ammonium salt are as follows.
  • a quaternary ammonium salt represented by the general formula (4) is dissolved in the lower alcohol, and a predetermined amount is added to this solution.
  • Borofluoric acid, silver borofluoride or the like and react at about room temperature for about 30 minutes.
  • the target compound can be isolated by distilling off hydrogen halide formed by the reaction, filtering off halogen salts such as silver halide, and concentrating the filtrate under reduced pressure and drying.
  • a known method for example, N
  • a quaternary ammonium represented by the general formula (4) is dissolved in water, and a predetermined amount of an alkali metal salt of pistrifluoromethanesulfonimide (a lithium salt of bistrifluoromethanesulfonimide, sodium Salt, potassium salt, etc.) and react at 0-25 ° C for 30 minutes. Extract the desired product with an appropriate solvent (e.g., dichloromethane, chloroform, ethyl acetate, etc.), wash the extract with water, concentrate under reduced pressure, and dry to isolate the desired compound. Can be.
  • an appropriate solvent e.g., dichloromethane, chloroform, ethyl acetate, etc.
  • the quaternary ammonium salt of the present invention is a room temperature molten salt that is liquid at room temperature, has excellent solubility in non-aqueous organic solvents, and has high electric conductivity. Therefore, the quaternary ammonium salt of the present invention can be suitably used as an electrolyte.
  • the electrolyte itself that also forms the quaternary ammonium salt of the present invention can be used as the electrolytic solution. Further, the electrolyte which also forms the quaternary ammonium salt of the present invention can be used by mixing with an appropriate solvent.
  • examples of the solvent include cyclic carbonates, chain carbonates, ester phosphates, cyclic ethers, chain ethers, ratatonyi conjugates, chain esters, nitrile compounds, amide compounds, and sulfone imides. And the like. These solvents are used alone or as a mixture of two or more.
  • cyclic carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate and the like.
  • chain carbonate examples include dimethyl carbonate, ethyl methyl carbonate, getyl carbonate and the like.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, and getyl methyl phosphate.
  • cyclic ether examples include tetrahydrofuran, 2-methyltetrahydrofuran and the like.
  • chain ether examples include dimethoxyethane.
  • ratatonyi ligated products include ⁇ -petit mouth ratatones and the like.
  • chain ester examples include methyl propionate, methyl acetate and ethyl acetate. Ruacetate, methyl formate and the like can be mentioned.
  • nitrile conjugate examples include acetonitrile and the like.
  • amido conjugate examples include dimethylformamide and the like.
  • sulfone conjugate examples include sulfolane and methyl sulfolane.
  • the concentration of the electrolyte is preferably 0.1 M or more, more preferably 0.5 M or more, and still more preferably 1 M or more. It is better to do the above.
  • electrolyte of the present invention can be used in combination with a known electrolyte.
  • Examples of known electrolytes to be used by mixing with the electrolyte of the present invention include alkali metal salts, quaternary ammonium salts, quaternary phosphonium salts, and the like.
  • Examples of the alkali metal salt include a lithium salt, a sodium salt, and a potassium salt. More specifically, lithium salts include lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium sulfolimide, lithium lithium sulfolmethide, and the like. More specifically, examples of the sodium salt include sodium hexafluorophosphate, sodium borofluoride, sodium perchlorate, sodium trifluoromethanesulfonate, sodium sulfolimide, sodium sulfolmethide, and the like.
  • potassium salts include potassium hexafluorophosphate, potassium borofluoride, potassium perchlorate, potassium trifluorosulfonate, potassium sulfolimide, potassium sulfolmethide, and the like.
  • Examples of the quaternary ammonium salts include tetraalkylammonium salts, imidazole salts, virazolym salts, pyridium salts, triazolium salts, and pyridazim salts. It is. More specifically, tetraalkylammonium salts include, for example, tetraethylammoniumtetrafluoroborate, tetramethylammoniumtetrafluoroborate, and tetramethylammonium-tetrafluoroborate.
  • Tetrabutylammonium-tetrafluoroborate triethylmethylammonium-tetrafluoroborate, trimethylethylammonium-tetrafluoroborate, dimethylgethylammonium-tetrafluoroborate , Trimethylpropylammonium tetrafluoroborate, trimethylbutylammonium Tetrafluoroborate, dimethylethylpropylammonium-tetrafluoroborate, methylethylpropylbutylammonium-tetrafluoroborate, N, N-dimethylpi-oligo-dimethyltetrafluoroborate , N-ethyl-N-methylpyrrolidi-dimethyltetrafluoroborate, N-methyl-N-propylpyrrolidiniumtetrafluoroborate, N-ethynole-N-propylpyrrolidi-dimethyltetrafluoroborate
  • examples of the imidazolyl salt include 1,3 dimethylimidazolymtetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, and 1,3 ethylimidazolyltetrafluoroborate.
  • Roborate 1,2-dimethyl-3-ethylimidazolium tetrafluoroborate, 1,2 dimethyl-3 propylimidazolidium tetrafluoroborate and the like.
  • virazolidium salt there are 1,2-dimethylpyrazolidium tetrafluoroborate, 1-methyl-2-ethylpyrazolidium tetrafluoroborate, 1-propyl 2-methylbirazoli Dumtetrafluoroborate, 1-methyl-2-butylbiazolidiumtetrafluoroborate and the like can be mentioned.
  • examples of the pyridi-pium salts include N-methylpyridi-p-tetrafluoroborate, N-ethylpyridi-p-tetrafluoroborate, N-propylpyridi-p-tetrafluoroborate, and N-butylpyridi-p-tetratetraborate Fluoroborate and the like.
  • triazolyl salts include 1-methyltriazolyltetrafluoroborate, 1-ethyltriazolyltetrafluoroborate, and 1-propyltriazolyltetrafluoroborate. And 1-butyltriazolyltetrafluoroborate.
  • pyridazim-dum salts include 1-methylpyridazim-dumtetrafluoroborate, 1-ethylpyridazi-dumtetrafluoroborate, 1-propylpyridazi-dumtetrafluoroborate, 1-butylpyridazi-dimethyltetrafluoroborate and the like.
  • Examples of the quaternary phospho-dimethyl salt include, for example, tetraethyl phospho-dimethyl tetrafluoroborate Rate, tetramethylphospho-dimethyltetrafluoroborate, tetrapropylphospho-dimethyltetrafluroborate, tetrabutylphospho-dimethyltetrafluoroborate, triethylmethionolephosphonium tetraphlenololoborate, trimethinole Ethynolephosphonium tetrafluorolenoborolate, dimethyl getyl phosphonium tetrafluoroborate, trimethylpropyl phosphonetetrafluoroborate, trimethylbutyl phospho-dimethyltetrafluoroborate, dimethyl ester Tylpropylphosphoniumtetrafluoroborate, methylethylpropylbutylphospho-dimethyltetrafluoroborate and the like can be mentioned
  • these known electrolytes are used alone or as a mixture of two or more.
  • Examples of the electrochemical device include an electric double layer capacitor, a secondary battery, and the like.
  • the electrolyte or electrolyte of the present invention is used for known electric double layer capacitors and secondary batteries, and can be used in the same manner as the electrolyte or electrolyte.
  • the quaternary ammonium salt of the present invention a solution in which the salt is dissolved in an organic solvent can be used as an electrolyte for an electrochemical device.
  • the electrolyte concentration is preferably 0.1 M or more, more preferably 0.5 M or more, particularly Preferably it is 1M or more. If the electrolyte concentration is less than 0.1 M, the electrical conductivity will be low, and the performance of the electrochemical device will be reduced.
  • the upper limit of the electrolyte concentration is the concentration at which quaternary ammonium salts which are liquid at room temperature are separated from the organic solvent, and 100% if they are not separated from the organic solvent. For quaternary ammonium salts which are solid at room temperature, the upper limit is the concentration at which the salts are saturated with an organic solvent.
  • An electrolyte for an electrochemical device can be prepared using the quaternary ammonium salt of the present invention.
  • the electrolytic solution obtained by the present invention can be used for an electrochemical device capable of storing electric energy by physical action or chemical action, and can be suitably used for, for example, an electric double layer capacitor and a lithium battery.
  • a method for preparing an electrolytic solution for an electric double layer capacitor using the quaternary ammonium salt of the present invention will be described below.
  • the quaternary ammonium salt of the present invention is a liquid, it is itself.
  • the atmosphere is not mixed with air, for example, in a glove box in an inert atmosphere such as argon gas or nitrogen gas. It is preferable to carry out the preparation work.
  • the moisture in the working environment can be managed with a dew point meter.
  • the dew point is 60 ° C or less. If the dew point is 60 ° C. or higher, it is not preferable that the working time is long because the electrolyte absorbs the moisture in the atmosphere and the water in the electrolyte rises.
  • the water content in the electrolyte can be measured with a Karl Fischer meter.
  • the electrolyte concentration is determined from the viewpoint of the electrical conductivity of the electrolyte as described above.
  • the concentration is preferably 0.1 M or more, more preferably 0.5 M or more, and particularly preferably 1 M or more.
  • the upper limit of the electrolyte concentration is not limited as long as precipitation and separation of the electrolyte do not occur.
  • the organic solvent the various solvents described above can be used.
  • the type of the organic solvent used and the present invention are not limited. It is preferable to determine the mixing ratio of these according to the type of the quaternary ammonium salt.
  • N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate in the electrolyte is The proportion is preferably 10-80% by weight, more preferably 15-70% by weight, even more preferably 20-60% by weight.
  • N (ethoxymethyl) N— (methoxymethyl) pyrrolidium in the electrolyte is preferably 20-90% by weight, more preferably 30-80% by weight.
  • N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate in the electrolyte ratio is preferably 30 to 90 weight 0/0, more preferably 40- 80 weight 0/0.
  • the quaternary ammonium salt of the present invention can also be used for an electrolyte for a lithium battery.
  • the working environment in which the preparation is performed is preferably in a glove box in which the dew point is controlled.
  • an electrolytic solution can be obtained by dissolving a lithium salt in the quaternary ammonium salt. Further, the quaternary ammonium salt of the present invention is mixed with an appropriate organic solvent, and the lithium salt is dissolved in the mixture to obtain an electrolyte solution.
  • lithium salt various salts can be used as described above.
  • the type is not particularly limited as long as no lithium salt is precipitated.
  • the lithium salt concentration is usually 0.1 M or more and 2.0 M or less, preferably 0.15 M or more, 1.5 M or less, preferably 0.2 M or more, 1.2 M or less, particularly preferably 0.3 M or more, and 1.0 M or less.
  • the lithium salt concentration is less than 0.1 M, when the charge / discharge rate is high, the lithium ions are depleted in the vicinity of the electrode, and the charge / discharge characteristics tend to deteriorate.
  • the lithium ion concentration exceeds 2.0 M, the viscosity of the electrolyte increases, and the electric conductivity tends to decrease.
  • one of the quaternary ammonium salt of the present invention and the ion forming the lithium salt contains BF-. The reason is certain
  • the amount is preferable to adjust the amount to be at least 0.8%, and it is more preferable to adjust the amount to be 0.8% or more.
  • the upper limit concentration is that the number of BF-containing ions is 100% of the total number of ions in the electrolyte.
  • the electrolytic solution may be used after being diluted with an organic solvent.
  • organic solvents include cyclic carbonates, chain carbonates, cyclic ethers and chain ethers. , Nitrile compounds, sulfonated compounds and the like.
  • Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate.
  • Specific examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate and the like.
  • Specific examples of the cyclic ether include tetrahydrofuran, hexahydropyran and the like.
  • Specific examples of the chain ether include 1,2-dimethoxyethane.
  • As a specific example of the nitrile conjugate, acetonitrile and the like can be mentioned.
  • Specific examples of the sulfone compound include sulfolane.
  • organic solvents can be used as a mixture.
  • examples of the combination include ethylene carbonate and dimethinole carbonate, ethylene carbonate and ethynolemethinole carbonate, ethylene carbonate and propylene carbonate, and ethylene carbonate and tetrahydrofuran.
  • the electrolytic solution used in the present invention preferably contains a specific organic additive.
  • organic additives include, for example, ethylene carbonate, bi-lene carbonate, butylene carbonate, ethylene trithio carbonate, vinylene trithio carbonate, ethylene sulfide and the like. Of these, ethylene carbonate and vinylene carbonate are preferred. These organic additives are used alone or in combination of two or more.
  • a lithium ion selective permeable membrane known as Electrolyte Interface is formed, which can suppress the decomposition and insertion of the ammonium cation forming the molten salt at room temperature into the anode material, and as a result, provide stable charge and discharge characteristics of the lithium battery. Can be.
  • the organic additive includes a substance that also functions as a diluent.
  • the content of these organic additives is preferably such that the ratio of the organic additives to the total weight of the electrolyte is 1% by weight or more and 40% by weight or less, more preferably 1% by weight or more and 30% by weight or less. More preferably, it is 1% by weight or more and 20% by weight or less, most preferably 1% by weight or more and 10% by weight or less.
  • the content of the organic additive is 1% by weight or less, a sufficient film is not formed on the negative electrode surface, and there is a tendency that the decomposition of the ammonium cation forming the room temperature molten salt and the insertion into the negative electrode material cannot be suppressed. Occurs.
  • An electric double layer capacitor can be suitably produced using the electrolytic solution of the present invention obtained as described above.
  • this electric double layer capacitor for example, the one shown in FIG. 1 can be mentioned.
  • the shape of the electric double layer capacitor is not limited to the coin type as shown in Fig. 1, but it is a stacked type in which the electrodes are stacked and stored in a can body, and a wound type in which the electrodes are wound and stored. Or a laminate type packaged in an aluminum laminate.
  • the structure of a coin-type electric double layer capacitor will be described as an example.
  • FIG. 1 is a drawing showing a cross section of a coin-type electric double layer capacitor. Electrodes 1 and 2 are arranged to face each other with a separator 3 interposed therebetween, and housed in containers 4 and 5.
  • the electrode includes a polarizable electrode portion made of a carbon material such as activated carbon and a current collector portion.
  • the container bodies 4 and 5 are made of, for example, stainless steel, aluminum or the like which is not corroded by the electrolyte.
  • the container bodies 4 and 5 are electrically insulated by an insulating gasket 6, and at the same time, seal the inside of the metal can body so that moisture and air from the outside of the can body do not enter.
  • the current collector and the container body 4 of the electrode 1 and the current collector of the electrode 2 and the metal spacer 7 are in contact with each other at an appropriate pressure due to the presence of the metal spring 8, respectively. Keep in touch.
  • the current collector may be bonded using a conductive paste such as a carbon paste.
  • the polarizable electrode material has a large specific surface area, a high electric conductivity, and is preferably a material, and is electrochemically stable to the electrolytic solution within the range of applied voltage to be used. It is necessary. Examples of such a material include a carbon material, a metal oxide material, and a conductive polymer material. Considering cost, the polarizable electrode material is preferably a carbon material.
  • activated carbon materials are preferred. Specific examples thereof include sawdust activated carbon, coconut activated carbon, pitch'cotas-based activated carbon, phenol-based activated carbon, polyacrylonitrile-based activated carbon, and cellulose-based activated carbon. Forces are not limited to these.
  • Examples of the metal oxide-based material include, but are not limited to, ruthenium oxide, manganese oxide, manganese oxide, and the like.
  • Examples of the conductive polymer material include polyaline, polypyrrole film, and polythiophene. Force, such as a film and a poly (3,4-ethylenedioxythiophene) film. The present invention is not limited to these.
  • the electrode is formed by pressing the above-mentioned polarizable electrode material with a binder under pressure, or mixing the above-mentioned polarizable electrode material with a binder together with an organic solvent such as pyrrolidone to form a paste into an aluminum foil. Etc., and then dried after coating.
  • the separator As the separator, a separator having high electronic insulation and excellent wettability of the electrolytic solution and high ion permeability is preferable, and it is necessary that the separator be electrochemically stable within an applied voltage range.
  • the material of the separator is not particularly limited, but paper making which is strong such as rayon and manila hemp; polyolefin-based porous film; polyethylene nonwoven fabric; polypropylene nonwoven fabric and the like are preferably used.
  • a lithium secondary battery can be suitably prepared using the electrolyte solution of the present invention obtained as described above.
  • Examples of the shape of the lithium secondary battery of the present invention include a coin shape, a cylindrical shape, a square shape, and a laminate, but the shape is not limited to these shapes.
  • a coin-type cell shown in FIG. 2 can be mentioned.
  • a stacked body in which the positive electrode 11, the separator 13, the negative electrode 12, and the spacer 17 are stacked in this order from the positive electrode can 14 side is housed.
  • the electrolyte is impregnated between the positive electrode 11, the separator 13, and the negative electrode 12.
  • the gasket 16 interposed between the positive electrode can 14 and the negative electrode can 15 are crimped to join the two, thereby sealing the laminate.
  • Examples of the positive electrode active material include LiCoO, LiNiO, LiNiCoO, and LiNiCoM.
  • Composite oxides with metals oxides such as TiO and V O; sulfides such as TiS and FeS;
  • the power of the battery capacity and the energy density The composite oxide of lithium and a transition metal is preferable.
  • the positive electrode is formed by press-molding these positive electrode active materials together with a known conductive auxiliary and a binder, or by mixing the positive electrode active material together with a known conductive auxiliary and a binder with an organic solvent such as pyrrolidone.
  • the paste can be obtained by applying a paste into a current collector, such as an aluminum foil, followed by drying.
  • lithium metal As the negative electrode active material, lithium metal, an alloy of lithium metal and another metal, and a material into which lithium ions are inserted and desorbed are used.
  • alloys of lithium metal and other metals include LiAl, Li—Sn, LiZn, and LiSi.
  • the material into which lithium ions are inserted and desorbed include carbon materials obtained by firing resins and pitches, carbon materials obtained by adding a boron compound to these carbon materials, and natural graphite. These negative electrode active materials are used alone or as a mixture of two or more.
  • the negative electrode is formed by pressure-forming these negative electrode active materials together with a known conductive auxiliary and a binder, or by forming the negative electrode active material together with a known conductive auxiliary and a binder together with an organic solvent such as pyrrolidone. To a paste, and then apply it to a current collector such as a copper foil and then dry it.
  • the separator is not particularly limited as long as it is an insulator and a chemically stable material immediately after the passage of the electrolytic solution.
  • the quaternary ammonium salt of the present invention and an electrolytic solution containing the same are suitable as an electrolytic solution for an electrochemical device having high electric conductivity and high solubility in an organic solvent.
  • Examples of the electrochemical device include, but are not limited to, electric double-layer capacitors, secondary batteries, dye-sensitized solar cells, electocole chromic elements, capacitors, and the like. Particularly suitable electrochemical devices are electric double layer capacitors and secondary batteries.
  • the quaternary ammonium salt of the present invention has a melting point of 10 ° C or less, it can maintain a liquid form at room temperature (25 ° C). Further, the quaternary ammonium salt of the present invention is remarkably excellent in solubility in organic solvents and has high electric conductivity.
  • the quaternary ammonium salt of the present invention which is itself liquid at room temperature (25 ° C), can be used as an electrolyte as it is. This electrolyte can prevent electrolyte deposition even at low temperatures. Stable electrical conductivity can be achieved. Further, since this quaternary ammonium salt can be used as an electrolyte as it is, it is possible to increase the ion concentration of the electrolyte, and to exhibit high electrical conductivity.
  • the quaternary ammonium salt of the present invention which is excellent in solubility in an organic solvent, can be dissolved in an organic solvent to form an electrolyte.
  • the quaternary ammonium salt of the present invention does not precipitate, and there is no fear that the electric conductivity of the electrolytic solution is reduced.
  • the quaternary ammonium salt of the present invention is excellent in fluidity due to its low viscosity, and therefore, is suitable for use in an electrolytic solution of an electric device using a porous electrode that requires permeability. Can also be suitably used.
  • FIG. 1 is a partial cross-sectional view of an electric double layer capacitor produced in Example 10 of the present invention.
  • FIG. 2 is a partial sectional view of a lithium secondary battery prepared in Example 12 of the present invention.
  • FIG. 3 is a graph showing the electrical conductivity of mixed solutions of various concentrations obtained in Example 6, Example 7, and Comparative Example 3 of the present invention.
  • Dimethylmethoxymethylamine 30 Og was dissolved in 120 g of toluene, and the atmosphere was replaced with nitrogen. To this solution, 16.3 g of chloromethyl methyl ether (reagent: manufactured by Tokyo Chemical Industry) was added dropwise at 5 ° C over 1 hour. The solution was stirred at 5 ° C for 10 hours to complete the reaction. The lower layer separated from the two layers was separated, washed three times with 150 g of toluene, further three times with 150 g of methyl ethyl ketone, dried under reduced pressure, and dried with 25 g of dimethyldimethoxymethylammonium. -Pemuchloride (colorless liquid) was obtained.
  • dimethyldimethoxymethylammonium chloride was dissolved in 50 g of methanol, and 45.3 g of a 30% HBF methanol solution was added. Hydrogen chloride and excess under reduced pressure
  • the melting point of the quaternary ammonium salt (bis (methoxymethyl) dimethylammonium-tetrafluoroborate) obtained above was measured using a differential thermal analyzer (RIGAKU, DSC8230B) manufactured by Rigaku Corporation. Was performed using Specifically, the sample weight was 20 mg, and the sample was quenched to 150 ° C with liquid argon, and then heated at a rate of 5 ° CZ. The melting point was also determined by the intersection force between the baseline tangent and the tangent to the peak slope. The melting point of the quaternary ammonium salt obtained in Example 1 was 4 ° C.
  • the melting point of the quaternary ammonium salt (bis (methoxymethyl) pyrrolidi-dimethylbistrifluoromethanesulfonylimide) obtained above was measured in the same manner as in Example 1.
  • the melting point of the quaternary ammonium salt obtained in Example 2 could not be clearly determined.
  • the glass transition temperature (Tg) was -90 ° C.
  • N (methoxyethyl) N-methylpyrrolidium-dimethiodide 10.00 was dissolved in 67 ml of ultrapure water, 4.27 g of silver oxide was added, and the mixture was stirred for 3 hours. The reaction solution was filtered to completely remove the precipitate. After removal, 42% tetrafluoroboric acid was added in small portions until the pH reached 5-6. The reaction solution was freeze-dried and further dried under reduced pressure to obtain 8.26 g of N (methoxyethyl) N-methylpyrrolidi-dimethyltetrafluoroborate, which was the target substance.
  • N (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate was synthesized according to WO 02/076924 A 1 (Patent Document 1).
  • N (Methoxyethyl) N, N Jethyl-N-methylammonium (9.20 g) was dissolved in tetrahydrofuran (11 ml), and methyl iodide (10.18 g) was added at 0 ° C. The temperature was gradually raised, and the reaction was carried out at room temperature for 24 hours. After completion of the reaction, tetrahydrofuran was distilled off under reduced pressure, and the residue was recrystallized with a mixed solvent of tetrahydrofuran / ethanol to obtain 17.52 g of N (methoxyethyl) N, N getyl-N-methylammonium iodide.
  • N (Methoxyethyl) N, N Jethyl-N-methylammonium iodide 10.OOg was dissolved in 67 ml of ultrapure water, 4.25 g of silver oxide was added, and the mixture was stirred for 3 hours. After the reaction solution was filtered to completely remove the precipitate, 42% tetrafluoroboric acid was added little by little until the pH reached 5-6. The reaction solution was freeze-dried and further dried under reduced pressure to obtain 8.20 g of N (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate, which was the target substance.
  • Paraformaldehyde (reagent: manufactured by MERK) 101.2 g, potassium carbonate (reagent: manufactured by Wako Pure Chemical) 234. Og and ethyl alcohol (reagent: manufactured by Wako Pure Chemical) 971.3 g were charged, and pyrrolidine (reagent: Tokyo Chemical Industry) Og was dropped at 10 ° C or lower. It took 2 hours for the dripping. After completion of the dropwise addition, the mixture was reacted under reflux for 7 hours. Ethyl alcohol was distilled off, and the residue was distilled under reduced pressure (70 mmHg) to obtain 148.4 g of ethoxymethylpyrrolidine.
  • the organic layer was washed three times with a small amount of water and concentrated.
  • the concentrate was dissolved in ethyl alcohol and recrystallized at 50 ° C. Recrystallization was repeated 5 times.
  • the obtained crystals were dried under reduced pressure to obtain the desired product, 83. Og.
  • N (Ethoxymethyl) N (methoxymethyl) pyrrolidi-pampark Molerate 30 Og prepared in Synthesis Example 2 was dissolved in 250 ml of methyl alcohol, and ion-exchange resin was used. Replaced with fluoroborate). Confirmation of the ion exchange was performed by ion chromatography (TOSOH CM-8020). After confirming the ion exchange, the methyl alcohol solution was concentrated and dried under reduced pressure to obtain 26.lg of the desired product. — NMR (d— CH OH) S ppm:
  • Radiometer CDC641T was used for the measurement cell at 25 ° C.
  • N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate and propylene carbonate (PC) (reagent: manufactured by Kishidai-Dogaku Co., Ltd., lithium nottery grade) produced in Example 4 were added to various concentrations.
  • Mixing was carried out in a dry box under a nitrogen atmosphere with a dew point of 60 ° C or less.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and found to be 30 ppm or less.
  • the concentration of N (ethoxymethyl) N (methoxymethyl) pyrrolidinium tetrafluoroborate in the mixed solution was as shown in Table 2.
  • PC propylene carbonate
  • mixing was performed in a dry bot- tom in a nitrogen atmosphere having a dew point of 60 ° C or less.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less.
  • the concentration of bis (methoxymethyl) dimethylammonium-tetrafluoroborate in the mixed solution was as shown in Table 3.
  • the mixed solutions having various concentrations were transferred to a glass container provided with a screw stopper in a dry box in an amount of 4 ml each and taken out of the dry box.
  • the glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours.
  • N- (methoxyethyl) N, N getyl-N-methylammonium-tetrafluoroborate and propylene carbonate (PC) (Liquid nottery grade, manufactured by Kishidai Tangaku Co., Ltd.) produced in Comparative Example 2 was mixed in a dry box in a nitrogen atmosphere with a dew point of 60 ° C or less.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and found to be 30 ppm or less.
  • the concentration of N (methoxyethyl) N, N getyl-N-methylammonium-tetrafluoroborate in the mixed solution was as shown in Table 4.
  • the mixed solutions having various concentrations were transferred to a glass container equipped with a screw stopper in a dry box in an amount of 4 ml, and taken out of the dry box.
  • the glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours each.
  • N (ethoxymethyl) N (methoxymethyl) pyrrolidinium tetrafluoroborate and ethyl methyl carbonate (EMC) (reagent: manufactured by Kishida Chemical Co., Ltd., lithium battery grade) produced in Example 4 were prepared at various concentrations. The dew point is 60 ° C or less.
  • the mixture was mixed in a dry box under an atmosphere. The water content of the mixed solution was measured with a Karl Fischer water meter (manufactured by Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and found to be 30 ppm or less.
  • the concentration of N (ethoxymethyl) N (methoxymethyl) piperidiniumtetrafluoroborate in the mixed solution was as shown in Table 5.
  • Each mixed solution was transferred to a glass container provided with a screw stopper in an amount of 4 ml each in a dry box, and was taken out of the dry box.
  • the glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours.
  • N- (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate and ethyl methyl carbonate (EMC) (reagent: manufactured by Kishidai-Dogaku Co., Ltd., lithium nottery grade) produced in Comparative Example 2 were Mixing was performed in a nitrogen atmosphere dry box with a dew point of 60 ° C or less to obtain various concentrations.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less.
  • the concentration of N (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate in the mixed solution was as shown in Table 6.
  • N (methoxyethyl) N methylpyrrolidi-dimethyltetrafluoroborate and ethyl methyl carbonate (EMC) (reagent: manufactured by Kishida Chemical Co., Ltd., lithium nottery grade) produced in Comparative Example 1 were prepared at various concentrations. Mixing was performed in a nitrogen atmosphere dry box with a dew point of 60 ° C or less. The water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less. The concentration of N (methoxyethyl) N methylpyrrolidi-dimethyltetrafluoroborate in the mixed solution was as shown in Table 7.
  • Each mixed solution was transferred to a glass container provided with a screw stopper in an amount of 4 ml in a dry box and taken out of the dry box.
  • the glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours.
  • N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethylbis (trifluoromethanesulfol) imide obtained in Example 5 lithium bis (trifluoromethanesulfol) imide (LiTFSI) was added at 0.5 M or 1.
  • LiTFSI lithium bis (trifluoromethanesulfol) imide
  • N (Methoxyethyl) N, N Jethyl-N-methylammonium-dimethylbis (trifluoromethylsulfonyl) imide (reagent: Kanto-Danigaku Co., Ltd. for material research) is dried under reduced pressure (water content: 20 ppm or less), and lithium bis (trifluoromethyl) Lomethanesulfol) imide (LiTFSI) was added to a concentration of 0.5M or 1.OM, and mixed in a nitrogen atmosphere dry box with a dew point of 60 ° C or less.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less.
  • Example 6 From the mixed solution (electrolyte solution) produced in Example 6, the following electric double layer capacitor was prepared using a mixed solution of N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate at a concentration of 2M. did.
  • Electrode 1 and electrode 2 are made of a conductive material mainly composed of activated carbon, a binder, and N-methylbiphenyl. A paste obtained by kneading with mouth lidone was coated on an aluminum foil to a thickness of 150 ⁇ m, and then dried, and the obtained sheet electrode was cut into a disk shape.
  • the container body 4, the container body 5, the spacer 7, and the spring 8 are all made of stainless steel, and the separator 7 is a polypropylene non-woven fabric.
  • the electric double layer capacitor was assembled in a glove box filled with argon gas.
  • the electrode 1, the electrode 2, the container 4, the container 5, the spring 8, and the spacer 7 were vacuum-dried under heating at 120 ° C. for 24 hours, and then taken into a glove box.
  • Electrode 1, electrode 2 and separator 3 were impregnated with the mixed solution (electrolyte solution for electric double layer capacitor) obtained in Example 6.
  • the electrode separator 3, the electrode 2, the spacer 7, and the spring 8 are placed in this order on the container 4 so that the configuration shown in FIG. 1 is obtained, and the gasket 6 is inserted.
  • the container body 5 was placed on the top.
  • the opening of the container body 4 was sealed by bending inward to form an electric double layer capacitor.
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • a coin-type nonaqueous electrolyte lithium secondary battery as shown in FIG. 2 was produced.
  • 11 is a positive electrode
  • 12 is a negative electrode
  • 13 is a porous separator
  • 14 is a positive electrode can
  • 15 is a negative electrode can
  • 16 is a gasket
  • 17 is a spacer
  • 18 is a spring.
  • Natural graphite and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 9: 1, and N-methylpyrrolidone was added thereto to obtain a paste.
  • This paste was uniformly applied on a 22-m-thick copper foil using an applicator for electrode application. This was vacuum-dried at 120 ° C. for 8 hours, and a negative electrode 12 having a diameter of 16 mm was obtained using an electrode punching machine.
  • N-methylpyrrolidone was added to the mixture to obtain a paste.
  • This paste was vacuum dried at 120 ° C. for 8 hours, and a positive electrode 11 having a diameter of 16 mm was obtained with an electrode punching machine.
  • the positive electrode 11 was placed on the bottom surface of the positive electrode can 14, and the porous separator 13 was placed thereon. Then, the non-aqueous electrolyte prepared in Example 11 was injected, and the gasket 16 was inserted. Thereafter, the negative electrode 12, the spacer 17, the spring 18, and the negative electrode can 15 are sequentially placed on the separator 13, and the positive electrode can 14 is removed using a coin crimper machine. The opening was closed by bending inward to form a non-aqueous electrolyte lithium secondary battery.
  • the battery prepared as described above was evaluated as follows. The battery was charged at a constant current of 0.4 mA, and when the voltage reached 4. IV, the battery was charged at a constant voltage of 4. IV for 1 hour. Discharging was performed at a constant current of 1. OmA until the voltage reached 3V. When the voltage reached 3V, it was held at 3V for 1 hour, and the charge / discharge characteristics were examined. As a result, the secondary battery of the present invention prepared in Example 11 showed good cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a quaternary ammonium salt represented by the following general formula: (1) (wherein R1 and R2 may be the same or different and represent a C1-4 alkyl group; R1 and R2 may form a saturated heterocycle together with nitrogen atoms they respectively bonded to; R3 and R4 may be the same or different and represent a methyl group or an ethyl group; and X- represents an anion). Such a quaternary ammonium salt has a melting point not more than 10˚C, excellent solubility in nonaqueous organic solvents, and an exceptionally high electrical conductivity. This quaternary ammonium salt can be preferably used as an electrolyte.

Description

明 細 書  Specification
第四級アンモニゥム塩、電解質、電解液及び電気化学デバイス 技術分野  Quaternary ammonium salts, electrolytes, electrolytes and electrochemical devices
[0001] 本発明は、第四級アンモ-ゥム塩、電解質、電解液及び電気化学デバイスに関す る。  The present invention relates to a quaternary ammonium salt, an electrolyte, an electrolytic solution, and an electrochemical device.
背景技術  Background art
[0002] 近年、融点を常温以下にもつ塩 (常温溶融塩)が開発されている。このような常温溶 融塩としては、例えば、一般式  [0002] In recent years, salts having a melting point below room temperature (room temperature molten salts) have been developed. Examples of such a room temperature molten salt include, for example, those represented by the general formula
[0003] [化 1] 一 + [0003] [Formula 1] I +
R1A R 1A
R2A— W— R3A . Y" (A) R 2A — W— R 3A . Y "(A)
[0004] [式中、 R1A、 R2A、 R3A及び は、同一又は異なって、炭素数 1一 5のアルキル基又 は R,一 O— (CH )—(R'はメチル基又はェチル基、 nは 1一 4の整数)で表されるアル [Wherein, R 1A , R 2A , R 3A and are the same or different and are each an alkyl group having 115 carbon atoms or R, 1 O— (CH 2) — (R ′ is a methyl group or ethyl Group, n is an integer of 1 to 4)
2 n  2 n
コキシアルキル基を示す。これら R1A、 R2A、 R3A及び R4Aのいずれか 2個の基が環を 形成していても構わない。但し、 R1A— R4Aのうち少なくとも 1つは上記アルコキシアル キル基である。 Wは窒素原子又はリン原子を示し、 Yは一価のァ-オンを示す。 ] で表される脂肪族アンモ-ゥム塩が知られて 、る(特許文献 1)。 Represents a oxyalkyl group. Any two groups of R 1A , R 2A , R 3A and R 4A may form a ring. Provided that at least one of R 1A to R 4A is the above-mentioned alkoxyalkyl group. W represents a nitrogen atom or a phosphorus atom, and Y represents a monovalent aion. ] Is known (Patent Document 1).
[0005] 特許文献 1に開示されて!、る脂肪族アンモ-ゥム塩は、非水系有機溶媒への溶解 性に優れ、低温時における塩の析出が起こり難い性質を備えている。  [0005] The aliphatic ammonium salt disclosed in Patent Document 1 has excellent solubility in non-aqueous organic solvents and has a property that salt precipitation hardly occurs at low temperatures.
[0006] しかしながら、該脂肪族アンモ-ゥム塩を非水系有機溶媒に溶解した溶液の電気 伝導度はある程度満足できるものの、脂肪族アンモニゥム塩そのものの電気伝導度 は低ぐ満足できるレベルに至っていない。また、該脂肪族アンモ-ゥム塩は、粘度 が高いために流動性に乏しぐそれ故、浸透性が要求される多孔性の電極を使用し た電気デバイスの電解液には適して 、な 、。  [0006] However, although the electric conductivity of a solution of the aliphatic ammonium salt dissolved in a non-aqueous organic solvent is satisfactory to some extent, the electric conductivity of the aliphatic ammonium salt itself is low and has not reached a satisfactory level. . Further, the aliphatic ammonium salt is poor in fluidity due to high viscosity, and is therefore suitable for an electrolytic solution of an electric device using a porous electrode that requires permeability. ,.
特許文献 l :WO 02/076924 A1  Patent document l: WO 02/076924 A1
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems the invention is trying to solve
[0007] 本発明の課題は、 10°C以下の融点を有し、高い電気伝導度を備え、且つ非水系 有機溶媒への溶解性に優れた第四級アンモ-ゥム塩を提供することである。  An object of the present invention is to provide a quaternary ammonium salt having a melting point of 10 ° C. or less, high electric conductivity, and excellent solubility in a non-aqueous organic solvent. It is.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題を解決できる第四級アンモ-ゥム塩を開発すべく鋭意研 究を重ねてきた。その結果、上記特許文献 1に具体的な記載も示唆もない下記一般 式(1)で表される特定の第四級アンモ-ゥム塩力 10°C以下の低融点を有し、非水 系有機溶媒への溶解性に優れ、且つ格段に高い電気伝導度を有し、電解質として 好適に使用できることを見い出した。本発明は、斯カる知見に基づき完成されたもの である。  [0008] The present inventors have intensively studied to develop a quaternary ammonium salt capable of solving the above problems. As a result, the specific quaternary ammonium salt represented by the following general formula (1), which has neither a specific description nor suggestion in Patent Document 1, has a low melting point of 10 ° C or less, It has been found that it has excellent solubility in organic organic solvents, has remarkably high electric conductivity, and can be suitably used as an electrolyte. The present invention has been completed based on such knowledge.
[0009] 本発明は、下記に示す第四級アンモ-ゥム塩、電解質、電解液及び電気化学デバ イスを提供する。  [0009] The present invention provides the following quaternary ammonium salts, electrolytes, electrolytes, and electrochemical devices.
1.一般式  1.general formula
[0010] [化 2] [0010] [Formula 2]
 ―
q 人 , X (1)  q people, X (1)
R3OH2C + CH2or R 3 OH 2 C + CH 2 or
[0011] [式中、 R1及び R2は、同一又は異なって、 C アルキル基を示す。また R1及び R2は、 [Wherein, R 1 and R 2 are the same or different and each represent a C alkyl group. R 1 and R 2 are
1-4  1-4
これらが結合する窒素原子と共に互いに結合して飽和複素環を形成してもよい。 R3 及び R4は、同一又は異なって、メチル基又はェチル基を示す。 X—は、陰イオンを示 す。] These may be bonded together with the nitrogen atom to which they are bonded to form a saturated heterocyclic ring. R 3 and R 4 are the same or different and represent a methyl group or an ethyl group. X— represents an anion. ]
で表される第四級アンモ-ゥム塩。  A quaternary ammonium salt represented by
2. R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、 3 一 5員の飽和複素環である上記 1に記載の第四級アンモ-ゥム塩。 2. The quaternary ammonium salt according to 1 above, wherein the saturated heterocyclic ring formed by bonding together with the nitrogen atom to which R 1 and R 2 are bonded is a 3- to 5-membered saturated heterocyclic ring.
3. R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、ピ 口リジン環である上記 2に記載の第四級アンモ-ゥム塩。 3. The quaternary ammonium salt according to the above 2, wherein the saturated heterocyclic ring formed by bonding together with the nitrogen atom to which R 1 and R 2 are bonded is a pyridine ring.
4. R1及び R2が共にメチル基である上記 1に記載の第四級アンモ-ゥム塩。 4. The quaternary ammonium salt according to the above 1, wherein R 1 and R 2 are both methyl groups.
5. X—力 BF―、 A1C1―、 Al C1―、 PF―、 AsF―、 N (CF SO )―、 N (CF SO )― 、 C (CF SO )―、 N (CF SO ) (CF CO)—、 CF SO―、 CH SO―、 CH CO―、 CF5. X—force BF—, A1C1-—, Al C1-—, PF—, AsF—, N (CF SO) —, N (CF SO) — , C (CF SO)-, N (CF SO) (CF CO)-, CF SO-, CH SO-, CH CO-, CF
3 2 3 3 2 3 3 3 3 3 3 23 2 3 3 2 3 3 3 3 3 3 2
COO—、 NO—、 C H COO—又、 C H SO—、 CF3BF3—、 C2F5BF3—又は I—であるCOO—, NO—, C H COO—or C H SO—, CF3BF3—, C2F5BF3— or I—
3 3 6 5 6 5 3 3 3 6 5 6 5 3
上記 1一 4のいずれかに記載の第四級アンモ-ゥム塩。  The quaternary ammonium salt according to any one of the above items 14 to 14.
6. X—力 BF—又は N (CF SO )—である上記 5に記載の第四級アンモ-ゥム塩。 6. The quaternary ammonium salt according to the above 5, which is X—force BF— or N (CF 2 SO 4) —.
7.一般式 7.general formula
[0012] [化 3]
Figure imgf000004_0001
[0012] [Formula 3]
Figure imgf000004_0001
[0013] [式中、 R1及び R2は、同一又は異なって、 C アルキル基を示す。また R1及び R2は、 [Wherein, R 1 and R 2 are the same or different and each represents a C alkyl group. R 1 and R 2 are
1-4  1-4
これらが結合する窒素原子と共に互いに結合して飽和複素環を形成してもよい。 R3 及び R4は、同一又は異なって、メチル基又はェチル基を示す。 X—は、陰イオンを示 す。] These may be bonded together with the nitrogen atom to which they are bonded to form a saturated heterocyclic ring. R 3 and R 4 are the same or different and represent a methyl group or an ethyl group. X— represents an anion. ]
で表される第四級アンモ-ゥム塩力 なる電解質。  A quaternary ammonium salt represented by:
8. R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、 3 一 5員の飽和複素環である第四級アンモ-ゥム塩力 なる上記 7に記載の電解質。8. The electrolyte according to the above item 7, wherein the saturated heterocyclic ring formed by bonding to each other together with the nitrogen atom to which R 1 and R 2 are bonded is a quaternary ammonium salt which is a 3- to 5-membered saturated heterocyclic ring. .
9. R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、ピ 口リジン環である第四級アンモ-ゥム塩力 なる上記 8に記載の電解質。 9. The electrolyte according to the above item 8, wherein the saturated heterocyclic ring formed by bonding together with the nitrogen atom to which R 1 and R 2 are bonded is a quaternary ammonia salt which is a pyridine ring.
10. R1及び R2が共にメチル基である第四級アンモ-ゥム塩力 なる上記 7に記載の 10. A quaternary ammonium salt in which both R 1 and R 2 are methyl groups.
11 · X—が、 BF―、 A1C1―、 Al C1―、 PF―、 AsF―、 N (CF SO )―、 N (CF SO ) 11 · X— is BF—, A1C1-—, Al C1-—, PF—, AsF—, N (CF SO) —, N (CF SO)
4 4 2 7 6 6 3 2 2 3CF2 2 4 4 2 7 6 6 3 2 2 3 CF2 2
―、 C (CF SO )―、 N (CF SO ) (CF CO)—、 CF SO―、 CH SO―、 CH CO―、 C―, C (CF SO) ―, N (CF SO) (CF CO) ―, CF SO―, CH SO―, CH CO―, C
2 3 2 3 3 2 3 3 3 3 3 3 22 3 2 3 3 2 3 3 3 3 3 3 2
F COO—、 NO—、 C H COO—又、 C H SO—、 CF3BF3—、 C2F5BF3—又は ΓであF COO—, NO—, C H COO— or C H SO—, CF3BF3—, C2F5BF3— or Γ
3 3 6 5 6 5 3 3 3 6 5 6 5 3
る第四級アンモ-ゥム塩カもなる上記 7— 10のいずれかに記載の電解質。  11. The electrolyte according to any one of the above items 7 to 10, which also comprises a quaternary ammonium salt.
12. X—力 BF—又は N (CF SO )—である第四級アンモ-ゥム塩力 なる上記 11に  12. X-force BF- or N (CFSO) -quaternary ammonium salt power
4 3 2 2  4 3 2 2
記載の電解質。  The electrolyte as described.
13.上記 7— 12の 、ずれかに記載の電解質の 1種又は 2種以上を含有する電解液 14.上記 7— 12のいずれかに記載の電解質のうち少なくとも 1種と、有機溶媒とを含 んでなる上記 13に記載の電解液。 13.Electrolyte containing one or more of the electrolytes described in any of 7-12 above 14. The electrolytic solution according to the above 13, comprising at least one of the electrolytes according to any of the above 7 to 12 and an organic solvent.
15.有機溶媒が、環状炭酸エステル、鎖状炭酸エステル、二トリル化合物及びスルホ ン化合物力もなる群より選ばれる少なくとも 1種である上記 14に記載の電解液。 15. The electrolytic solution according to the above 14, wherein the organic solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, nitrile compounds, and sulfonate compounds.
16.有機溶媒が、プロピレンカーボネート、エチレンカーボネート、ェチルメチルカ一 ボネート及びジメチルカーボネートからなる群より選ばれる少なくとも 1種である上記 1 5に記載の電解液。 16. The electrolytic solution according to the above 15, wherein the organic solvent is at least one selected from the group consisting of propylene carbonate, ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate.
17.上記 13に記載の電解液を含む電気化学デバイス。  17. An electrochemical device comprising the electrolytic solution according to 13 above.
18.電気化学デバイスが、電気二重層キャパシタ又は二次電池である上記 17に記 載の電気化学デバイス。  18. The electrochemical device according to 17 above, wherein the electrochemical device is an electric double layer capacitor or a secondary battery.
[0014] 第 W級アンモニゥム  [0014] Class W ammonium
本明細書にぉ 、て、 R1及び R2で示される C アルキル基としては、例えば、メチル In the present specification, examples of the C alkyl group represented by R 1 and R 2 include methyl
1-4  1-4
、ェチル、 n—プロピル、イソプロピル、 n—ブチル、 sec—ブチル、 tert ブチル基等が 挙げられる。好まし 、C アルキル基は、メチル基である。  , Ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl and the like. Preferably, the C alkyl group is a methyl group.
1-4  1-4
[0015] R1及び R2が結合する窒素原子と共に互いに結合して形成される飽和複素環として は、例えば、 3— 5員の飽和複素環を挙げることができる。好ましい飽和複素環は、ピ 口リジン環である。 [0015] Examples of the saturated heterocyclic ring formed combine with each other together with the nitrogen atom R 1 and the R 2 is bonded, for example, a saturated heterocyclic ring of 3-5 members. Preferred saturated heterocycles are pyrrolidine rings.
[0016] 具体的な第四級アンモ-ゥムカチオンとしてはビス (メトキシメチル)ジメチルアンモ -ゥムカチオン、 N, N— (ジメトキシメチル) N—ェチルー N—メチルアンモ-ゥムカチ オン、 N, N— (ジメトキシメチル) N—プロピル N—メチルアンモ-ゥムカチオン、 N, N (ジメトキシメチル) N—ブチルー N—メチルアンモ-ゥムカチオン、ビス(メトキシメ チル)ジェチルアンモ-ゥムカチオン、 N—(エトキシメチル) N—(メトキシメチル) N , N ジメチルアンモ-ゥムカチオン、 N—(エトキシメチル) N—(メトキシメチル) N— ェチルー N—メチルアンモ-ゥムカチオン、ビス(エトキシメチル)ジメチルアンモ -ゥム カチオン、 N, N— (ジエトキシメチル) N—ェチルー N—メチルアンモ-ゥムカチオン、 ビス(メトキシメチル)ピロリジ -ゥムカチオン、ビス(エトキシメチル)ピロリジ -ゥムカチ オン、 N— (エトキシメチル) N (メトキシメチル)ピロリジ -ゥムカチオン、ビス(メトキ シメチル)アジリジユウムカチオン、ビス(エトキシメチル)アジリジユウムカチオン、 N— (エトキシメチル) -N- (メトキシメチル)アジリジユウムカチオン、ビス (メトキシメチル) ァゼチジュゥムカチオン、ビス(エトキシメチル)ァゼチジュゥムカチオン、 N (ェトキ シメチル) N (メトキシメチル)ァゼチジュゥムカチオン等が挙げられる。 [0016] Specific quaternary ammonium cations include bis (methoxymethyl) dimethylammonium cation, N, N- (dimethoxymethyl) N-ethyl-N-methylammonium-dimethylcation, and N, N- (dimethoxymethyl). N-propyl N-methylammonium cation, N, N (dimethoxymethyl) N-butyl-N-methylammonium cation, bis (methoxymethyl) gethylammonium cation, N- (ethoxymethyl) N- (methoxymethyl) N, N dimethyl Ammonium cation, N- (ethoxymethyl) N- (methoxymethyl) N-ethyl-N-methylammonium cation, Bis (ethoxymethyl) dimethylammonium-cation, N, N— (Diethoxymethyl) N-ethyl-N —Methylammonium-cation, bis (methoxymethyl) pyrrolidium-cation, bis Ethoxymethyl) pyrrolidine - Umukachi on, N- (ethoxymethyl) N (methoxymethyl) pyrrolidine - Umukachion, bis (methoxide Shimechiru) aziridinyl free arm cation, bis (ethoxymethyl) aziridinyl free arm cation, N- (Ethoxymethyl) -N- (methoxymethyl) aziridium cation, bis (methoxymethyl) azetidium cation, bis (ethoxymethyl) azetidium cation, N (ethoxymethyl) N (methoxymethyl) Azetidium cation and the like.
[0017] X—で示される陰イオンとしては、例えば、 BF―、 A1C1―、 Al C1―、 PF―、 AsF―、 N As the anion represented by X—, for example, BF—, A1C1-, Al C1-, PF—, AsF—, N
4 4 2 7 6 6 4 4 2 7 6 6
(CF SO )―、 N (CF SO ) ―、 C (CF SO )―、 N (CF SO ) (CF CO)—、 CF S(CF SO)-, N (CF SO)-, C (CF SO)-, N (CF SO) (CF CO)-, CF S
3 2 2 3CF2 2 2 3 2 3 3 2 3 33 2 2 3 CF2 2 2 3 2 3 3 2 3 3
O―、 CH SO―、 CH CO―、 CF COO—、 NO—、 C H COO—、 C H SO—、 CF3BO-, CH SO-, CH CO-, CF COO-, NO-, CH COO-, CH SO-, CF3B
3 3 3 3 2 3 3 6 5 6 5 33 3 3 3 2 3 3 6 5 6 5 3
F3—、 C2F5BF3—、 I—等が挙げられる。好ましい陰イオンは、 BF—及び N (CF SO ) F3—, C2F5BF3—, I— and the like. Preferred anions are BF— and N (CF SO)
4 3 2 2 4 3 2 2
—である。
[0018] 好ま ヽ第四級アンモ-ゥム塩としては、例えば、ビス (メトキシメチル)ジメチルアン モ-ゥムテトラフルォロボレート、 N, N— (ジメトキシメチル) N—ェチルー N—メチルァ ンモ-ゥムテトラフルォロボレート、 N, N— (ジメトキシメチル) N プロピル N—メチ ルアンモ-ゥムテトラフルォロボレート、 N, N— (ジメトキシメチル) N—ブチルー N—メ チルアンモ-ゥムテトラフルォロボレート、ビス(メトキシメチル)ジェチルアンモ -ゥム テトラフルォロボレート、 N—(エトキシメチル) N—(メトキシメチル) N, N—ジメチル アンモ-ゥムテトラフルォロボレート、 N— (エトキシメチル) -N- (メトキシメチル) N— ェチルー N—メチルアンモ-ゥムテトラフルォロボレート、ビス(エトキシメチル)ジメチル アンモ-ゥムテトラフルォロボレート、 N, N— (ジエトキシメチル) N—ェチルー N—メチ ルアンモ-ゥムテトラフルォロボレート、ビス(メトキシメチル)ピロリジ-ゥムテトラフル ォロボレート、ビス(エトキシメチル)ピロリジ-ゥムテトラフルォロボレート、 N (ェトキ シメチル) N— (メトキシメチル)ピロリジ-ゥムテトラフルォロボレート、ビス (メトキシメ チル)アジリジ-ゥムテトラフルォロボレート、 N—(エトキシメチル) N—(メトキシメチル )アジリジ-ゥムテトラフルォロボレート、ビス (メトキシメチル)ァゼチジュゥムテトラフル ォロボレート、 N—(エトキシメチル) N—(メトキシメチル)ァゼチジュゥムテトラフルォ ロボレート、ビス(メトキシメチル)ジメチルアンモ -ゥムビストリフルォロメタンスルホ- ルイミド、 N, N— (ジメトキシメチル) N—ェチルー N—メチルアンモ -ゥムビストリフル ォロメタンスルホ-ルイミド、 N, N (ジメトキシメチル) N プロピル N—メチルアン モ -ゥムビストリフルォロメタンスルホ-ルイミド、 N, N— (ジメトキシメチル) N—ブチ ルー N—メチルアンモ -ゥムビストリフルォロメタンスルホ-ルイミド、ビス(メトキシメチル )ジェチルアンモ -ゥムビストリフルォロメタンスルホ-ルイミド、 N— (ェトキシメチル)— N— (メトキシメチル) N, N ジメチルアンモ -ゥムビストリフルォロメタンスルホ-ルイ ミド、 N- (エトキシメチル) -N- (メトキシメチル) N—ェチルー N—メチルアンモ -ゥム ビストリフルォロメタンスルホ-ルイミド、ビス(エトキシメチル)ジメチルアンモ-ゥムビ ストリフルォロメタンスルホ-ルイミド、 N, N— (ジエトキシメチル) N—ェチルー N—メチ ルアンモ -ゥムビストリフルォロメタンスルホ-ルイミド、ビス(メトキシメチル)ピロリジ- ゥムビストリフルォロメタンスルホ-ルイミド、ビス(エトキシメチル)ピロリジ -ゥムビストリ フルォロメタンスルホ-ルイミド、 N- (エトキシメチル) N— (メトキシメチル)ピロリジ- ゥムビストリフルォロメタンスルホ-ルイミド、ビス(メトキシメチル)アジリジ -ゥムビストリ フルォロメタンスルホ-ルイミド、 N- (エトキシメチル) N— (メトキシメチル)アジリジ- ゥムビストリフルォロメタンスルホ-ルイミド、ビス(メトキシメチル)ァゼチジュゥムビスト リフルォロメタンスルホ-ルイミド、 N—(エトキシメチル) N—(メトキシメチル)ァゼチジ -ゥムビストリフルォロメタンスルホ-ルイミド等が挙げられる。 Preferred quaternary ammonium salts include, for example, bis (methoxymethyl) dimethylammoniumtetrafluoroborate, N, N— (dimethoxymethyl) N-ethyl-N-methylammonium N-N- (dimethoxymethyl) N-propyl N-methyltetrafluoroborate, N, N- (dimethoxymethyl) N-butyl-N-methyl-tetrafluoroborate Tetrafluoroborate, bis (methoxymethyl) getyl-ammonium-tetrafluoroborate, N— (ethoxymethyl) N— (methoxymethyl) N, N—dimethylammonium-dimethyltetrafluoroborate, N— (Ethoxymethyl) -N- (methoxymethyl) N-ethyl-N-methylammonium-dimethyltetrafluoroborate, bis (ethoxymethyl) dimethylammonium-dimethyltetrafluoroborate , N, N- (diethoxymethyl) N-ethyl-N-methylammonium-dimethyltetrafluoroborate, bis (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate, bis (ethoxymethyl) pyrrolidi-dimethyltetrafluoroborate , N (ethoxymethyl) N- (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate, bis (methoxymethyl) aziridi-dimethyltetrafluoroborate, N- (ethoxymethyl) N- (methoxymethyl) aziridi -Dimethyltetrafluoroborate, bis (methoxymethyl) azetidumtetrafluoroborate, N— (ethoxymethyl) N— (methoxymethyl) azetidumtetrafluoroborate, bis (methoxymethyl) Dimethylammonium-dimethylbistrifluoromethanesulfonimide, N, N- (dimethoxymethyl) N-ethyl-N Methylammo-dimethylbistrifluoromethanesulfonimide, N, N (dimethoxymethyl) N-propyl N-methylammonium-dimethylbistrifluoromethanesulfonimide, N, N— (dimethoxymethyl) N-butylammonium-dimethylbistriimide Fluoromethanesulfonimide, bis (methoxymethyl ) Jethylammo-dimethylbistrifluoromethanesulfonimide, N— (ethoxymethyl) —N— (methoxymethyl) N, N Dimethylammonium-dimethylbistrifluoromethanesulfonylimide, N- (ethoxymethyl) -N -(Methoxymethyl) N-ethyl-N-methylammonium-dimethyl bistrifluoromethanesulfonimide, bis (ethoxymethyl) dimethylammonium-dimethylbistrifluoromethanesulfonimide, N, N— (diethoxymethyl) N— Ethyl-N-methylammonium-dimethylbistrifluoromethanesulfonimide, bis (methoxymethyl) pyrrolidi-dimethylbistrifluoromethanesulfonimide, bis (ethoxymethyl) pyrrolidi-dimethylbistrifluoromethanesulfonimide, N- (Ethoxymethyl) N— (methoxymethyl) pyrrolidi-dimethylbistrifur Methanesulfonimide, bis (methoxymethyl) aziridi-dimethylbistrifluoromethanesulfonimide, N- (ethoxymethyl) N— (methoxymethyl) aziridi-dimethylbistrifluoromethanesulfonimide, bis (methoxymethyl) a Zetizum bis trifluoromethanesulfonimide, N- (ethoxymethyl) N- (methoxymethyl) azetidi-dimethylbistrifluoromethanesulfonimide and the like.
[0019] 本発明の第四級アンモ-ゥム塩は、種々の方法で製造される。その代表的な方法 を下記反応式を用いて説明する。  [0019] The quaternary ammonium salt of the present invention is produced by various methods. A typical method will be described using the following reaction formula.
[0020] [化 4] X vl_
Figure imgf000007_0001
[0020] [ Formula 4] X vl _
Figure imgf000007_0001
(2) (4)  (twenty four)
MX (5) Μχι MX (5) Μχ ι
Figure imgf000007_0002
Figure imgf000007_0002
(1) (6)  (1) (6)
[0021] [式中、
Figure imgf000007_0003
R2、 R3、 R4及び X—は前記に同じ。 X1は、ハロゲン原子を示す。 Mは水素 原子又は金属原子を示す。 ]
[0021] [where,
Figure imgf000007_0003
R 2 , R 3 , R 4 and X— are the same as above. X 1 represents a halogen atom. M represents a hydrogen atom or a metal atom. ]
一般式 (2)で表される第 3級ァミンと一般式 (3)で表される化合物を反応させること により、一般式 (4)で表される第四級アンモニゥム塩が製造され、次に一般式 (4)で 表される第四級アンモ-ゥム塩と一般式 (5)との塩交換反応により、一般式(1)の 4 級アンモ-ゥム塩が製造できる。 By reacting a tertiary amamine represented by the general formula (2) with a compound represented by the general formula (3), a quaternary ammonium salt represented by the general formula (4) is produced. By the salt exchange reaction between the quaternary ammonium salt represented by the general formula (4) and the general formula (5), the compound represented by the general formula (1) Grade ammonium salt can be produced.
[0022] 一般式(5)にお!/、て、 Mは、 H又は Na、 K、 Li等のアルカリ金属原子、 Ca、 Mg、 B a等のアルカリ土類金属原子、 Ag等の金属原子を含む。 In the general formula (5), M is H or an alkali metal atom such as Na, K, and Li; an alkaline earth metal atom such as Ca, Mg, and Ba; and a metal atom such as Ag. including.
[0023] 出発原料として用いられる一般式(2)で表される第 3級ァミン及び一般式(3)で表さ れる化合物は、いずれも公知物質である。 [0023] The tertiary amine represented by the general formula (2) and the compound represented by the general formula (3) used as starting materials are both known substances.
[0024] 一般式(2)の第 3級ァミンは、公知の方法に従 、合成される。このような方法は、例 えば、 C.M.McLeod und G.M.Robinson, J.Chem.Soc, 119, 1470(1921), [0024] The tertiary amine of the general formula (2) is synthesized according to a known method. Such methods are described, for example, in C.M.McLeod und G.M.Robinson, J.Chem.Soc, 119, 1470 (1921),
G.M.Robinson und R.Robinson, J.Chem.Soc, 123, 532(1923), Stewert, T.D;Bradly, G.M.Robinson und R. Robinson, J. Chem. Soc, 123, 532 (1923), Stewert, T.D; Bradly,
W.E.J.Am.Chem.Soc, 1932, 54, 4172-4183等に開示されている。 W.E.J.Am.Chem.Soc, 1932, 54, 4172-4183 and the like.
[0025] 一般式(2)で表される第 3級ァミンは、一般的には、第 2級ァミン、ホルムアルデヒド[0025] The tertiary amine represented by the general formula (2) is generally a secondary amine or formaldehyde.
、アルコール及び炭酸アルカリを原料に用いて合成される。 , Alcohol and alkali carbonate as raw materials.
[0026] これらの原料は、第 2級ァミン 1モルに対し、 10— 38重量0 /0ホルムアルデヒド水溶 液又はパラホルムアルデヒドを 0. 5— 3モル、好ましくは 0. 6-1. 5モル使用し、アル コールを 0. 5— 7モル、好ましくは 2— 5モル使用し、炭酸アルカリを 0. 2— 3モル、好 ましくは 0. 4— 1モル使用する。 [0026] These raw materials, with respect to secondary Amin 1 mol, 10 38 weight 0/0 formaldehyde aqueous solution or paraformaldehyde 0. 5-3 mol, preferably 0.5 6-1. 5 moles and The alcohol is used in an amount of 0.5 to 7 mol, preferably 2 to 5 mol, and the alkali carbonate is used in an amount of 0.2 to 3 mol, preferably 0.4 to 1 mol.
[0027] 反応温度は、ホルムアルデヒド水溶液を用いた場合にはー5— 25°C、パラホルムァ ルデヒドを用いた場合には 60— 100°Cが適当である。反応は、一般に数時間一 24 時間程度で終了する。 [0027] The reaction temperature is suitably -5 to 25 ° C when an aqueous formaldehyde solution is used, and 60 to 100 ° C when paraformaldehyde is used. The reaction is generally completed within several hours to 24 hours.
[0028] 一般式 (2)で表される第 3級ァミンは、慣用の単離手段、例えば、抽出、精留等によ り、反応混合物から容易に単離される。  [0028] The tertiary amine represented by the general formula (2) is easily isolated from the reaction mixture by a conventional isolation means, for example, extraction, rectification and the like.
[0029] 一般式(3)で表される化合物には、例えば、クロロメチルメチルエーテル、ブロモメ チノレメチノレエーテノレ、ョードメチノレメチノレエーテノレ、クロロメチノレエチノレエーテノレ、ブ ロモメチルェチルエーテル、ョードメチルェチルエーテル等が包含される。  [0029] Examples of the compound represented by the general formula (3) include chloromethyl methyl ether, bromomethylinolemethynoateate, odomethinolemethynoateate, chloromethineleetinoateate, and Lomomethylethyl ether, eodomethylethyl ether and the like are included.
[0030] 一般式(2)で表される第 3級ァミンと一般式(3)で表される化合物との反応は、無溶 媒又は適当な溶媒中で行われる。  [0030] The reaction between the tertiary amine represented by the general formula (2) and the compound represented by the general formula (3) is performed in a solvent-free or appropriate solvent.
[0031] 用いられる溶媒としては、一般式(2)で表される第 3級ァミン及び一般式(3)で表さ れる化合物を溶解し得、反応に悪影響を及ぼさない溶媒である限り、公知のものを広 く使用できる。このような溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳 香族炭化水素;ジクロロメタン、クロ口ホルム、四塩ィ匕炭素等のハロゲン化炭化水素; メタノール、エタノール、イソプロパノール、 n—ブタノール、 tert—ブタノール等の低級 アルコール;アセトン、メチルェチルケトン等のケトン;ジェチルエーテル、ジイソプロ ピルエーテル等のエーテル; n—へキサン、 n—ヘプタン等の脂肪族炭化水素;シクロ へキサン等の脂環式炭化水素等が挙げられる。これらの中でも、トルエン等の芳香族 炭化水素、ジクロロメタン等のハロゲンィ匕炭化水素及びアセトン等のケトンが好まし ヽ 。斯カる溶媒は、 1種単独で又は 2種以上混合して使用できる。これら溶媒は無水溶 媒であるのが好ましい。 [0031] As the solvent to be used, known solvents can be used as long as they can dissolve the tertiary amine represented by the general formula (2) and the compound represented by the general formula (3) and do not adversely affect the reaction. Can be used widely. Such solvents include, for example, benzene, toluene, xylene and the like. Aromatic hydrocarbons; Halogenated hydrocarbons such as dichloromethane, chloroform, tetrachlorosilane, etc .; Lower alcohols such as methanol, ethanol, isopropanol, n-butanol and tert-butanol; Ketones such as acetone and methyl ethyl ketone ; Jefferies chill ether, ethers such as diisopropyl ether; n - hexane, aliphatic hydrocarbons such as n- heptane; alicyclic hydrocarbons such as cyclohexane and the like cycloalkyl and the like. Among these, aromatic hydrocarbons such as toluene, halogenated hydrocarbons such as dichloromethane, and ketones such as acetone are preferred. Such solvents can be used alone or in combination of two or more. These solvents are preferably non-aqueous solvents.
[0032] 一般式(3)で表される化合物は、第 3級ァミン(2) 1モルに対して、通常 0. 3— 5モ ル、好ましくは 0. 6-1. 2モル使用する。該反応は、通常- 10— 25°Cにおいて行わ れ、一般に数時間一 24時間程度で完結する。  [0032] The compound represented by the general formula (3) is generally used in an amount of 0.3 to 5 mol, preferably 0.6 to 1.2 mol, per 1 mol of the tertiary amine (2). The reaction is usually performed at −10 to 25 ° C., and is generally completed in several hours to about 24 hours.
[0033] 上記反応で得られる一般式 (4)で表される第四級アンモニゥム塩と一般式(5)の化 合物との反応は、通常の塩交換反応により行われる。 [0033] The reaction between the quaternary ammonium salt represented by the general formula (4) obtained by the above reaction and the compound of the general formula (5) is carried out by a usual salt exchange reaction.
[0034] 原料として用いられる一般式(5)で表される化合物は公知化合物であり、例えば、The compound represented by the general formula (5) used as a raw material is a known compound, for example,
CF SO H、 CF SO Liゝ CF SO Naゝ CF SO K:、 HN (CF SO ) 、 LiN (CF SOCF SO H, CF SO Li ゝ CF SO Na ゝ CF SO K :, HN (CF SO), LiN (CF SO
3 3 3 3 3 3 3 3 3 2 2 3 23 3 3 3 3 3 3 3 3 2 2 3 2
) 、 NaN (CF SO ) 、 KN (CF SO ) 、 HN (CF CF SO ) 、 LiN (CF CF SO )), NaN (CF SO), KN (CF SO), HN (CF CF SO), LiN (CF CF SO)
2 3 2 2 3 2 2 3 2 2 2 3 2 2 22 3 2 2 3 2 2 3 2 2 2 3 2 2 2
、 NaN (CF CF SO ) 、 KN (CF CF SO ) 、 HC (CF SO ) 、 LiC (CF SO ) 、 , NaN (CF CF SO), KN (CF CF SO), HC (CF SO), LiC (CF SO),
3 2 2 2 3 2 2 2 3 2 3 3 2 3 3 2 2 2 3 2 2 2 3 2 3 3 2 3
NaC (CF SO ) 、 KC (CF SO ) 、 HN (CF SO ) (CF CO)、 LiN (CF SO ) (CF NaC (CF SO), KC (CF SO), HN (CF SO) (CF CO), LiN (CF SO) (CF
3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3
CO)、 NaN (CF SO ) (CF CO)、 KN (CF SO ) (CF CO)、 HBF、 LiBF、 NaBF CO), NaN (CF SO) (CF CO), KN (CF SO) (CF CO), HBF, LiBF, NaBF
3 2 3 3 2 3 4 4 4 3 2 3 3 2 3 4 4 4
、 KBF、 AgBF、 HPF、 LiPF、 NaPF、 KPF、 AgPF、 CF CO H、 CF CO L, KBF, AgBF, HPF, LiPF, NaPF, KPF, AgPF, CF CO H, CF CO L
4 4 6 6 6 6 6 3 2 3 2 i、 CF CO Naゝ CF CO K、 CH SO H、 CH SO Liゝ CH SO Naゝ CH SO K等4 4 6 6 6 6 6 3 2 3 2 i, CF CO Na ゝ CF CO K, CH SO H, CH SO Li ゝ CH SO Na ゝ CH SO K, etc.
3 2 3 2 3 3 3 3 3 3 3 3 が挙げられる。 3 2 3 2 3 3 3 3 3 3 3 3
[0035] この塩交換反応は適当な溶媒中で行われる。使用される溶媒としては、一般式 (4) で表される第四級アンモ-ゥム塩及び一般式(5)で表される化合物を溶解し得、反 応に悪影響を及ぼさない溶媒である限り、公知のものを広く使用できる。このような溶 媒としては、例えば、水;ジクロロメタン、クロ口ホルム、四塩化炭素等のハロゲン化炭 化水素;メタノール、エタノール、イソプロパノール、 n—ブタノール、 tert—ブタノール 等の低級アルコール;アセトン、メチルェチルケトン等のケトン;酢酸ェチル、酢酸ブ チル等のエステル;ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極 性溶媒が挙げられる。これらの中でも、メタノール等の低級アルコール類;クロ口ホル ム等のハロゲンィ匕炭化水素及び水が好ましい。これらの溶媒は、 1種単独で又は 2種 以上混合して使用できる。 [0035] This salt exchange reaction is performed in an appropriate solvent. The solvent used is a solvent capable of dissolving the quaternary ammonium salt represented by the general formula (4) and the compound represented by the general formula (5) and having no adverse effect on the reaction. As long as it is publicly known, it can be widely used. Examples of such solvents include water; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, etc .; lower alcohols such as methanol, ethanol, isopropanol, n-butanol, tert-butanol; acetone, methyl Ketones such as ethyl ketone; Esters such as tyl; and aprotic polar solvents such as dimethyl sulfoxide and dimethylformamide. Of these, lower alcohols such as methanol; halogenated hydrocarbons such as chloroform, and water are preferred. These solvents can be used alone or in combination of two or more.
[0036] 塩交換は、イオン交換榭脂を用いて行うこともできる。イオン交換榭脂としては、通 常、ァ-オン交換樹脂が用いられる。  [0036] Salt exchange can also be performed using ion exchange resin. An ion exchange resin is usually used as the ion exchange resin.
[0037] 塩交換は、該榭脂中のァ-オンを予め目的とするァ-オンへ交換しておき、一般式  [0037] In the salt exchange, the aion in the resin is replaced with the desired aion in advance, and the salt is replaced by a general formula
(4)を溶解した溶液を該榭脂中に通すことで達成できる。ここで使用される溶媒は、 一般式 (4)を溶解でき、且つ塩交換反応に悪影響を及ぼさない限り、公知のものを 広く使用できる。このような溶媒は、通常、水、アルコール類等が一般的である。  This can be achieved by passing a solution in which (4) is dissolved through the resin. As the solvent used here, known solvents can be widely used as long as they can dissolve the general formula (4) and do not adversely affect the salt exchange reaction. Such solvents are generally water, alcohols and the like.
[0038] 一般式 (4)で表される第四級アンモニゥム塩と一般式 (5)で表される化合物との使 用割合としては、通常前者 1モルに対して後者を通常 0. 5— 5モル、好ましくは 0. 9 一 1. 2モルとするのがよい。該反応は、通常速やかに進行するので、例えば、両者を 溶媒に溶解した溶液の温度を室温付近に維持しておけばょ 、。一般に 10分一 2時 間程度で塩交換反応は完結する。  [0038] The use ratio of the quaternary ammonium salt represented by the general formula (4) and the compound represented by the general formula (5) is usually 0.5 mol per 1 mol of the former. It is good to be 5 mol, preferably 0.9 to 1.2 mol. Since the reaction usually proceeds rapidly, for example, the temperature of a solution in which both are dissolved in a solvent should be maintained near room temperature. Generally, the salt exchange reaction is completed in about 10 minutes to 12 hours.
[0039] 上記各反応で得られる目的化合物は、通常の分離手段、例えば、濃縮、洗浄、有 機溶媒抽出、クロマトグラフィー、再結晶等の慣用の単離及び精製手段により、反応 混合物から容易に単離、精製される。  [0039] The target compound obtained in each of the above reactions can be easily separated from the reaction mixture by a conventional separation means, for example, a conventional isolation and purification means such as concentration, washing, organic solvent extraction, chromatography, and recrystallization. It is isolated and purified.
[0040] 一般式 (4)で表される第四級アンモ-ゥム塩から Xが BFを示す一般式(1)で表さ  [0040] From the quaternary ammonium salt represented by the general formula (4), X is BF.
4  Four
れる第四級アンモニゥム塩を製造する場合の反応条件を具体的に示すと、一般式 (4 )で表される第四級アンモ-ゥム塩を上記低級アルコールに溶解し、この溶液に所定 量の硼フッ化水素酸、硼フッ化銀等のフッ化硼素塩を添加し、室温付近で 30分程度 反応させる。反応により生成するハロゲンィ匕水素を留去し、またハロゲン化銀等のハ ロゲン塩を濾別し、濾液を減圧濃縮し、乾燥することにより、目的化合物を単離するこ とができる。尚、ハロゲンィ匕水素の留去には、公知の方法、例えば、 Nパブリングに  Specifically, the reaction conditions for producing a quaternary ammonium salt are as follows.A quaternary ammonium salt represented by the general formula (4) is dissolved in the lower alcohol, and a predetermined amount is added to this solution. Borofluoric acid, silver borofluoride or the like, and react at about room temperature for about 30 minutes. The target compound can be isolated by distilling off hydrogen halide formed by the reaction, filtering off halogen salts such as silver halide, and concentrating the filtrate under reduced pressure and drying. In addition, a known method, for example, N
2  2
よる留去、減圧による留去等を適用できる。  Distillation by distillation, distillation under reduced pressure, and the like can be applied.
[0041] 一般式 (4)で表される第四級アンモニゥム塩から Xが N (SO CF ) を示す一般式( [0041] From the quaternary ammonium salt represented by the general formula (4), a general formula wherein X represents N (SO CF) (
2 3 2  2 3 2
1)で表される第四級アンモニゥム塩を製造する場合の反応条件を具体的に示すと、 一般式 (4)で表される第四級アンモ-ゥムを水に溶解し、この溶液に所定量のピスト リフルォロメタンスルホンイミドのアルカリ金属塩(ビストリフルォロメタンスルホンイミド のリチウム塩、ナトリウム塩、カリウム塩等)を添加し、 0— 25°Cで 30分反応する。生成 する目的物を適当な溶媒 (例えば、ジクロロメタン、クロ口ホルム、酢酸ェチル等)で抽 出し、抽出液を水で洗浄した後、減圧濃縮し、乾燥することにより、 目的化合物を単 離することができる。 When the reaction conditions for producing the quaternary ammonium salt represented by 1) are specifically shown, A quaternary ammonium represented by the general formula (4) is dissolved in water, and a predetermined amount of an alkali metal salt of pistrifluoromethanesulfonimide (a lithium salt of bistrifluoromethanesulfonimide, sodium Salt, potassium salt, etc.) and react at 0-25 ° C for 30 minutes. Extract the desired product with an appropriate solvent (e.g., dichloromethane, chloroform, ethyl acetate, etc.), wash the extract with water, concentrate under reduced pressure, and dry to isolate the desired compound. Can be.
[0042] 雷解皙及び雷解液 [0042] Thunder solution and thunder solution
本発明の第四級アンモ-ゥム塩は、常温で液状を示す常温溶融塩であり、非水系 有機溶媒への溶解性に優れ、高い電気伝導度を有している。そのため、本発明の第 四級アンモ-ゥム塩は電解質として好適に使用され得る。  The quaternary ammonium salt of the present invention is a room temperature molten salt that is liquid at room temperature, has excellent solubility in non-aqueous organic solvents, and has high electric conductivity. Therefore, the quaternary ammonium salt of the present invention can be suitably used as an electrolyte.
[0043] 本発明においては、本発明第四級アンモ-ゥム塩カもなる電解質そのものを電解 液として用いることができる。また、本発明第四級アンモ-ゥム塩カもなる電解質を、 適当な溶媒と混合して使用することができる。 In the present invention, the electrolyte itself that also forms the quaternary ammonium salt of the present invention can be used as the electrolytic solution. Further, the electrolyte which also forms the quaternary ammonium salt of the present invention can be used by mixing with an appropriate solvent.
[0044] ここで溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、リン酸エステ ル、環状エーテル、鎖状エーテル、ラタトンィ匕合物、鎖状エステル、二トリル化合物、 アミド化合物、スルホンィ匕合物等を挙げることができる。これらの溶媒は、 1種又は 2種 以上混合して使用される。 [0044] Here, examples of the solvent include cyclic carbonates, chain carbonates, ester phosphates, cyclic ethers, chain ethers, ratatonyi conjugates, chain esters, nitrile compounds, amide compounds, and sulfone imides. And the like. These solvents are used alone or as a mixture of two or more.
[0045] 環状炭酸エステルとしては、具体的には、エチレンカーボネート、プロピレンカーボ ネート、ブチレンカーボネート等が挙げられる。 [0045] Specific examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate and the like.
[0046] 鎖状炭酸エステルとしては、具体的には、ジメチルカーボネート、ェチルメチルカ一 ボネート、ジェチルカーボネート等が挙げられる。 Specific examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate, getyl carbonate and the like.
[0047] リン酸エステルとしては、具体的には、リン酸トリメチル、リン酸トリェチル、リン酸ェチ ルジメチル、リン酸ジェチルメチル等が挙げられる。 [0047] Specific examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, and getyl methyl phosphate.
[0048] 環状エーテルとしては、具体的には、テトラヒドロフラン、 2—メチルテトラヒドロフラン 等が挙げられる。 [0048] Specific examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran and the like.
[0049] 鎖状エーテルとしては、具体的には、ジメトキシェタン等が挙げられる。  [0049] Specific examples of the chain ether include dimethoxyethane.
[0050] ラタトンィ匕合物としては、具体的には、 γ—プチ口ラタトン等が挙げられる。  [0050] Specific examples of ratatonyi ligated products include γ-petit mouth ratatones and the like.
[0051] 鎖状エステルとしては、具体的には、メチルプロピオネート、メチルアセテート、ェチ ルアセテート、メチルホルメート等が挙げられる。 [0051] Specific examples of the chain ester include methyl propionate, methyl acetate and ethyl acetate. Ruacetate, methyl formate and the like can be mentioned.
[0052] 二トリルイ匕合物としては、具体的には、ァセトニトリル等が挙げられる。  [0052] Specific examples of the nitrile conjugate include acetonitrile and the like.
[0053] アミドィ匕合物としては、具体的には、ジメチルホルムアミド等が挙げられる。 Specific examples of the amido conjugate include dimethylformamide and the like.
[0054] スルホンィ匕合物としては、具体的には、スルホラン、メチルスルホラン等が挙げられ る。 [0054] Specific examples of the sulfone conjugate include sulfolane and methyl sulfolane.
[0055] 本発明第四級アンモ-ゥム塩力 なる電解質を上記溶媒と混合して使用する場合 、電解質濃度は、好ましくは 0. 1M以上、より好ましくは 0. 5M以上、更に好ましくは 1M以上とするのがよい。  When the quaternary ammonium salt of the present invention is used in combination with the above solvent, the concentration of the electrolyte is preferably 0.1 M or more, more preferably 0.5 M or more, and still more preferably 1 M or more. It is better to do the above.
[0056] 更に、本発明の電解質は、公知の電解質と混合して使用することもできる。  [0056] Further, the electrolyte of the present invention can be used in combination with a known electrolyte.
[0057] 本発明の電解質と混合して使用される公知の電解質としては、例えば、アルカリ金 属塩、第四級アンモ-ゥム塩、第四級ホスホ-ゥム塩等が挙げられる。  [0057] Examples of known electrolytes to be used by mixing with the electrolyte of the present invention include alkali metal salts, quaternary ammonium salts, quaternary phosphonium salts, and the like.
[0058] アルカリ金属塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩等が挙げられ る。リチウム塩としては、より具体的には、 6フッ化リン酸リチウム、硼フッ化リチウム、過 塩素酸リチウム、トリフロロメタンスルホン酸リチウム、スルホ-ルイミドリチウム、スルホ -ルメチドリチウム等が挙げられる。ナトリウム塩としては、より具体的には、 6フッ化リ ン酸ナトリウム、硼フッ化ナトリウム、過塩素酸ナトリウム、トリフルォロメタンスルホン酸 ナトリウム、スルホ-ルイミドナトリウム、スルホ-ルメチドナトリウム等が挙げられる。力 リウム塩としては、より具体的には、 6フッ化リン酸カリウム、硼フッ化カリウム、過塩素 酸カリウム、トリフルォロスルホン酸カリウム、スルホ-ルイミドカリウム、スルホ-ルメチ ドカリウム等が挙げられる。  [0058] Examples of the alkali metal salt include a lithium salt, a sodium salt, and a potassium salt. More specifically, lithium salts include lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium sulfolimide, lithium lithium sulfolmethide, and the like. More specifically, examples of the sodium salt include sodium hexafluorophosphate, sodium borofluoride, sodium perchlorate, sodium trifluoromethanesulfonate, sodium sulfolimide, sodium sulfolmethide, and the like. Can be More specifically, potassium salts include potassium hexafluorophosphate, potassium borofluoride, potassium perchlorate, potassium trifluorosulfonate, potassium sulfolimide, potassium sulfolmethide, and the like. .
[0059] 第四級アンモ-ゥム塩としては、例えば、テトラアルキルアンモ-ゥム塩、イミダゾリ ゥム塩、ビラゾリゥム塩、ピリジ-ゥム塩、トリァゾリウム塩、ピリダジ-ゥム塩等が挙げら れる。テトラアルキルアンモ-ゥム塩としては、より具体的には、テトラエチルアンモ- ゥムテトラフルォロボレート、テトラメチルアンモ-ゥムテトラフルォロボレート、テトラプ 口ピルアンモ-ゥムテトラフルォロボレート、テトラプチルアンモ-ゥムテトラフルォロボ レート、トリェチルメチルアンモ-ゥムテトラフルォロボレート、トリメチルェチルアンモ -ゥムテトラフルォロボレート、ジメチルジェチルアンモ-ゥムテトラフルォロボレート、 トリメチルプロピルアンモ-ゥムテトラフルォロボレート、トリメチルブチルアンモ -ゥム テトラフルォロボレート、ジメチルェチルプロピルアンモ-ゥムテトラフルォロボレート、 メチルェチルプロピルブチルアンモ-ゥムテトラフルォロボレート、 N, N—ジメチルピ 口リジ-ゥムテトラフルォロボレート、 N—ェチルー N メチルピロリジ-ゥムテトラフルォ ロボレート、 N—メチルー N プロピルピロリジニゥムテトラフルォロボレート、 N—ェチノレ N プロピルピロリジ-ゥムテトラフルォロボレート、 N, N—ジメチルビベリジ-ゥムテ トラフルォロボレート、 N—メチルー N—ェチルピベリジ-ゥムテトラフルォロボレート、 N ーメチルー N プロピルピベリジ-ゥムテトラフルォロボレート、 N—ェチルー N—プロピル ピベリジ-ゥムテトラフルォロボレート、 N, N—ジメチルモルホリュウムテトラフルォロ ボレート、 N—メチルー N ェチルモルホリュウムテトラフルォロボレート、 N—メチルー N プロピルモルホリュウムテトラフルォロボレート、 N—ェチルー N プロピルモルホリ- ゥムテトラフルォロボレート等が挙げられる。イミダゾリゥム塩としては、より具体的には 、 1, 3 ジメチルイミダゾリゥムテトラフルォロボレート、 1ーェチルー 3—メチルイミダゾリ ゥムテトラフルォロボレート、 1, 3 ジェチルイミダゾリゥムテトラフルォロボレート、 1, 2—ジメチルー 3—ェチルイミダゾリゥムテトラフルォロボレート、 1, 2 ジメチルー 3 プロ ピルイミダゾリゥムテトラフルォロボレート等が挙げられる。ビラゾリゥム塩としては、より 具体的には、 1, 2—ジメチルピラゾリゥムテトラフルォロボレート、 1ーメチルー 2—ェチ ルピラゾリゥムテトラフルォロボレート、 1 プロピル 2—メチルビラゾリゥムテトラフルォ ロボレート、 1ーメチルー 2—ブチルビラゾリゥムテトラフルォロボレート等が挙げられる。 ピリジ -ゥム塩としては、より具体的には、 N メチルピリジ-ゥムテトラフルォロボレ一 ト、 N ェチルピリジ-ゥムテトラフルォロボレート、 N プロピルピリジ-ゥムテトラフル ォロボレート、 N ブチルピリジ-ゥムテトラフルォロボレート等が挙げらる。トリァゾリウ ム塩としては、より具体的には、 1ーメチルトリアゾリゥムテトラフルォロボレート、 1ーェ チルトリアゾリゥムテトラフルォロボレート、 1 プロピルトリアゾリゥムテトラフルォロボレ ート、 1ーブチルトリアゾリゥムテトラフルォロボレート等が挙げられる。ピリダジ-ゥム塩 としては、より具体的には、 1 メチルピリダジ-ゥムテトラフルォロボレート、 1 ェチル ピリダジ-ゥムテトラフルォロボレート、 1 プロピルピリダジ-ゥムテトラフルォロボレ一 ト、 1 ブチルピリダジ-ゥムテトラフルォロボレート等が挙げられる。 [0059] Examples of the quaternary ammonium salts include tetraalkylammonium salts, imidazole salts, virazolym salts, pyridium salts, triazolium salts, and pyridazim salts. It is. More specifically, tetraalkylammonium salts include, for example, tetraethylammoniumtetrafluoroborate, tetramethylammoniumtetrafluoroborate, and tetramethylammonium-tetrafluoroborate. , Tetrabutylammonium-tetrafluoroborate, triethylmethylammonium-tetrafluoroborate, trimethylethylammonium-tetrafluoroborate, dimethylgethylammonium-tetrafluoroborate , Trimethylpropylammonium tetrafluoroborate, trimethylbutylammonium Tetrafluoroborate, dimethylethylpropylammonium-tetrafluoroborate, methylethylpropylbutylammonium-tetrafluoroborate, N, N-dimethylpi-oligo-dimethyltetrafluoroborate , N-ethyl-N-methylpyrrolidi-dimethyltetrafluoroborate, N-methyl-N-propylpyrrolidiniumtetrafluoroborate, N-ethynole-N-propylpyrrolidi-dimethyltetrafluoroborate, N, N-dimethylbiveridi-dimethyltetrafluoroborate Roborate, N-methyl-N-ethylpibelidi-dimethyltetrafluoroborate, N-methyl-N-propylpibelidi-dimethyltetrafluoroborate, N-ethyl-N-propylpiberidi-dimethyltetrafluoroborate, N, N —Dimethylmorphodium tetrafluoroborate, N-methyl-N-ethylamine Examples thereof include rufolium tetrafluoroborate, N-methyl-N-propyl morpholium tetrafluoroborate, and N-ethyl-N-propyl morphodium tetrafluoroborate. More specifically, examples of the imidazolyl salt include 1,3 dimethylimidazolymtetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, and 1,3 ethylimidazolyltetrafluoroborate. Roborate, 1,2-dimethyl-3-ethylimidazolium tetrafluoroborate, 1,2 dimethyl-3 propylimidazolidium tetrafluoroborate and the like. More specifically, as the virazolidium salt, there are 1,2-dimethylpyrazolidium tetrafluoroborate, 1-methyl-2-ethylpyrazolidium tetrafluoroborate, 1-propyl 2-methylbirazoli Dumtetrafluoroborate, 1-methyl-2-butylbiazolidiumtetrafluoroborate and the like can be mentioned. More specifically, examples of the pyridi-pium salts include N-methylpyridi-p-tetrafluoroborate, N-ethylpyridi-p-tetrafluoroborate, N-propylpyridi-p-tetrafluoroborate, and N-butylpyridi-p-tetratetraborate Fluoroborate and the like. More specifically, triazolyl salts include 1-methyltriazolyltetrafluoroborate, 1-ethyltriazolyltetrafluoroborate, and 1-propyltriazolyltetrafluoroborate. And 1-butyltriazolyltetrafluoroborate. More specifically, pyridazim-dum salts include 1-methylpyridazim-dumtetrafluoroborate, 1-ethylpyridazi-dumtetrafluoroborate, 1-propylpyridazi-dumtetrafluoroborate, 1-butylpyridazi-dimethyltetrafluoroborate and the like.
第四級ホスホ-ゥム塩としては、例えば、テトラエチルホスホ-ゥムテトラフルォロボ レート、テトラメチルホスホ-ゥムテトラフルォロボレート、テトラプロピルホスホ-ゥムテ トラフルォロボレート、テトラブチルホスホ-ゥムテトラフルォロボレート、トリェチルメチ ノレホスホニゥムテトラフノレオロボレート、トリメチノレエチノレホスホニゥムテトラフノレオロボ レート、ジメチルジェチルホスホニゥムテトラフルォロボレート、トリメチルプロピルホス ホ-ゥムテトラフルォロボレート、トリメチルブチルホスホ-ゥムテトラフルォロボレート、 ジメチルェチルプロピルホスホニゥムテトラフルォロボレート、メチルェチルプロピルブ チルホスホ-ゥムテトラフルォロボレート等が挙げられる。 Examples of the quaternary phospho-dimethyl salt include, for example, tetraethyl phospho-dimethyl tetrafluoroborate Rate, tetramethylphospho-dimethyltetrafluoroborate, tetrapropylphospho-dimethyltetrafluroborate, tetrabutylphospho-dimethyltetrafluoroborate, triethylmethionolephosphonium tetraphlenololoborate, trimethinole Ethynolephosphonium tetrafluorolenoborolate, dimethyl getyl phosphonium tetrafluoroborate, trimethylpropyl phosphonetetrafluoroborate, trimethylbutyl phospho-dimethyltetrafluoroborate, dimethyl ester Tylpropylphosphoniumtetrafluoroborate, methylethylpropylbutylphospho-dimethyltetrafluoroborate and the like can be mentioned.
[0061] 本発明において、これら公知の電解質は、 1種単独で又は 2種以上混合して使用さ れる。  [0061] In the present invention, these known electrolytes are used alone or as a mixture of two or more.
[0062] 雷気化学デバイス  [0062] Lightning chemical device
電気化学デバイスとしては、例えば、電気二重層キャパシタ、二次電池等が挙げら れる。本発明の電解質又は電解液は、公知の電気二重層キャパシタ及び二次電池 に使用されて 、る電解質又は電解液と同じように使用できる。  Examples of the electrochemical device include an electric double layer capacitor, a secondary battery, and the like. The electrolyte or electrolyte of the present invention is used for known electric double layer capacitors and secondary batteries, and can be used in the same manner as the electrolyte or electrolyte.
[0063] 本発明の第四級アンモ-ゥム塩ゃ該塩を有機溶媒に溶解した溶液は、電気化学 デバイス用電解液として使用することができる。  The quaternary ammonium salt of the present invention—a solution in which the salt is dissolved in an organic solvent can be used as an electrolyte for an electrochemical device.
[0064] 第四級アンモ-ゥム塩を有機溶媒に溶解した溶液を電気化学デバイス用電解液と して使用する場合、電解質濃度は、好ましくは 0.1M以上、より好ましくは 0.5M以上 、特に好ましくは 1M以上である。電解質濃度が 0.1Mに満たない場合には電気伝導 性が低くなり、電気化学デバイスの性能を低下させてしまう。電解質濃度の上限は、 常温で液体の第四級アンモ-ゥム塩については、有機溶媒と分離する濃度であり、 有機溶媒と分離しない場合は 100%である。また、常温で固体の第四級アンモ-ゥ ム塩につ!/、ては、該塩が有機溶媒に飽和する濃度が上限である。  When a solution obtained by dissolving a quaternary ammonium salt in an organic solvent is used as an electrolyte for an electrochemical device, the electrolyte concentration is preferably 0.1 M or more, more preferably 0.5 M or more, particularly Preferably it is 1M or more. If the electrolyte concentration is less than 0.1 M, the electrical conductivity will be low, and the performance of the electrochemical device will be reduced. The upper limit of the electrolyte concentration is the concentration at which quaternary ammonium salts which are liquid at room temperature are separated from the organic solvent, and 100% if they are not separated from the organic solvent. For quaternary ammonium salts which are solid at room temperature, the upper limit is the concentration at which the salts are saturated with an organic solvent.
[0065] 本発明の第四級アンモ-ゥム塩を用いて電気化学デバイス用電解液を調製するこ とができる。本発明で得られる電解液は電気エネルギーを物理的な作用又は化学的 な作用により蓄積できる電気化学デバイスに使用でき、例えば、電気二重層キャパシ タ及びリチウム電池に好適に使用できる。  [0065] An electrolyte for an electrochemical device can be prepared using the quaternary ammonium salt of the present invention. The electrolytic solution obtained by the present invention can be used for an electrochemical device capable of storing electric energy by physical action or chemical action, and can be suitably used for, for example, an electric double layer capacitor and a lithium battery.
[0066] 本発明の第四級アンモ-ゥム塩を用 V、た電気二重層キャパシタ用電解液の調製方 法を以下に説明する。本発明の第四級アンモ-ゥム塩が液体の場合にはそれ自身 を電解液として使用でき、また該塩を適当な有機溶媒と混合して使用することができ る。電気二重層キャパシタ用電解液を調製するに当たっては、水分が電気二重層キ ャパシタの性能に悪影響を与えるため、大気が混入しない環境、例えば、アルゴンガ ス、窒素ガス等の不活性雰囲気のグローブボックス内において調製作業することが 好ましい。作業環境の水分は露点計で管理することができる。露点が 60°C以下に なるように、作業環境を設定するのが好ましい。露点が 60°C以上では、作業時間が 長くなると、電解液が雰囲気中の水分を吸収するため電解液中の水分が上昇するの で好ましくな 、。電解液中の水分はカールフィッシャー計で測定することができる。 A method for preparing an electrolytic solution for an electric double layer capacitor using the quaternary ammonium salt of the present invention will be described below. When the quaternary ammonium salt of the present invention is a liquid, it is itself. Can be used as an electrolytic solution, and the salt can be used by mixing with an appropriate organic solvent. In preparing the electrolyte for the electric double layer capacitor, moisture may adversely affect the performance of the electric double layer capacitor, so the atmosphere is not mixed with air, for example, in a glove box in an inert atmosphere such as argon gas or nitrogen gas. It is preferable to carry out the preparation work. The moisture in the working environment can be managed with a dew point meter. It is preferable to set the working environment so that the dew point is 60 ° C or less. If the dew point is 60 ° C. or higher, it is not preferable that the working time is long because the electrolyte absorbs the moisture in the atmosphere and the water in the electrolyte rises. The water content in the electrolyte can be measured with a Karl Fischer meter.
[0067] 本発明の第四級アンモ-ゥム塩を有機溶媒に溶解した溶液を電気化学デバイス用 電解液として使用する場合、上述した通り電解質濃度は、電解液の電気伝導性の観 点から、好ましくは 0.1M以上、より好ましくは 0.5M以上、特に好ましくは 1M以上で ある。電解質濃度の上限は、電解質の析出及び分離を生じない限り限定されない。  [0067] When a solution of the quaternary ammonium salt of the present invention dissolved in an organic solvent is used as an electrolyte for an electrochemical device, the electrolyte concentration is determined from the viewpoint of the electrical conductivity of the electrolyte as described above. The concentration is preferably 0.1 M or more, more preferably 0.5 M or more, and particularly preferably 1 M or more. The upper limit of the electrolyte concentration is not limited as long as precipitation and separation of the electrolyte do not occur.
[0068] ここで有機溶媒としては、上述した種々の溶媒を使用することができるが、溶媒の種 類によって誘電率、粘性、融点等の物性が異なるため、使用する有機溶媒の種類と 本発明第四級アンモ-ゥム塩の種類に応じて、これらの混合割合を決定するのが好 ましい。例えば、 N (エトキシメチル) N (メトキシメチル)ピロリジ-ゥムテトラフルォ ロボレートとプロピレンカーボネートからなる電解液の場合、電解液中の N (エトキシ メチル) N (メトキシメチル)ピロリジ-ゥムテトラフルォロボレートの割合は、好ましく は 10— 80重量%、より好ましくは 15— 70重量%、更に好ましくは 20— 60重量%で ある。 N— (エトキシメチル) N— (メトキシメチル)ピロリジ-ゥムテトラフルォロボレート とジメチルカーボネートからなる電解液の場合、電解液中の N (エトキシメチル) N —(メトキシメチル)ピロリジ-ゥムテトラフルォロボレートの割合は、好ましくは 20— 90 重量%、より好ましくは 30— 80重量%である。 N (エトキシメチル) N (メトキシメチ ル)ピロリジ-ゥムテトラフルォロボレートとェチルメチルカーボネートからなる電解液 の場合、電解液中の N (エトキシメチル) N (メトキシメチル)ピロリジ-ゥムテトラフ ルォロボレートの割合は、好ましくは 30— 90重量0 /0、より好ましくは 40— 80重量0 /0 である。また 2種以上の有機溶媒を混合して使用することもでき、ジメチルカーボネー トとェチルメチルカーボネートとの混合溶媒 (混合比が 1 : 1)を使用する場合、電解液 中の N— (エトキシメチル) N (メトキシメチル)ピロリジ-ゥムテトラフルォロボレート の割合は、好ましくは 30— 80重量%である。 [0068] Here, as the organic solvent, the various solvents described above can be used. However, since the physical properties such as the dielectric constant, viscosity, and melting point differ depending on the type of the solvent, the type of the organic solvent used and the present invention are not limited. It is preferable to determine the mixing ratio of these according to the type of the quaternary ammonium salt. For example, in the case of an electrolyte composed of N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate and propylene carbonate, N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate in the electrolyte is The proportion is preferably 10-80% by weight, more preferably 15-70% by weight, even more preferably 20-60% by weight. In the case of an electrolyte consisting of N— (ethoxymethyl) N— (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate and dimethyl carbonate, N (ethoxymethyl) N— (methoxymethyl) pyrrolidium in the electrolyte The proportion of tetrafluoroborate is preferably 20-90% by weight, more preferably 30-80% by weight. In the case of an electrolyte consisting of N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate and ethyl methyl carbonate, N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate in the electrolyte ratio is preferably 30 to 90 weight 0/0, more preferably 40- 80 weight 0/0. It is also possible to use a mixture of two or more organic solvents.If a mixed solvent of dimethyl carbonate and ethyl methyl carbonate (mixing ratio is 1: 1) is used, the electrolyte The proportion of N- (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate therein is preferably 30-80% by weight.
[0069] 本発明の第四級アンモ-ゥム塩はリチウム電池用電解液に使用することもできる。 [0069] The quaternary ammonium salt of the present invention can also be used for an electrolyte for a lithium battery.
電気二重層キャパシタ用電解液の調製時と同様に、水分がリチウム電池特性に悪影 響を与えるため、調製作業をおこなう作業環境としては、露点が管理されたグローブ ボックス内が好ましい。  As in the preparation of the electrolytic solution for the electric double layer capacitor, moisture adversely affects the characteristics of the lithium battery. Therefore, the working environment in which the preparation is performed is preferably in a glove box in which the dew point is controlled.
[0070] 本発明の第四級アンモ-ゥム塩は、それ自身が液体の場合は第四級アンモ-ゥム 塩にリチウム塩を溶解させることにより電解液が得られる。また、本発明の第四級アン モ-ゥム塩を適当な有機溶媒と混合し、この混合物にリチウム塩を溶解させることによ り電解液が得られる。  [0070] When the quaternary ammonium salt of the present invention is itself a liquid, an electrolytic solution can be obtained by dissolving a lithium salt in the quaternary ammonium salt. Further, the quaternary ammonium salt of the present invention is mixed with an appropriate organic solvent, and the lithium salt is dissolved in the mixture to obtain an electrolyte solution.
[0071] リチウム塩は、上述の通り種々の塩を使用できる。リチウム塩の析出が生じない限り 、その種類は特に限定されない。  [0071] As the lithium salt, various salts can be used as described above. The type is not particularly limited as long as no lithium salt is precipitated.
[0072] リチウム塩濃度は、通常 0.1M以上、 2.0M以下、好ましくは 0.15M以上、 1.5M以 下、好ましくは 0.2M以上、 1.2M以下、特に好ましくは 0.3M以上、 1.0M以下である 。リチウム塩濃度が 0.1Mに満たない場合には、充放電レートが大きい場合に電極近 傍においてリチウムイオンの枯渴が生じ、充放電特性が低下する傾向が生ずる。また リチウムイオン濃度が 2.0Mを超えると電解液の粘度が高くなり、電気伝導性が低くな る傾向が生ずる。  [0072] The lithium salt concentration is usually 0.1 M or more and 2.0 M or less, preferably 0.15 M or more, 1.5 M or less, preferably 0.2 M or more, 1.2 M or less, particularly preferably 0.3 M or more, and 1.0 M or less. . When the lithium salt concentration is less than 0.1 M, when the charge / discharge rate is high, the lithium ions are depleted in the vicinity of the electrode, and the charge / discharge characteristics tend to deteriorate. When the lithium ion concentration exceeds 2.0 M, the viscosity of the electrolyte increases, and the electric conductivity tends to decrease.
[0073] 本発明においては、本発明第四級アンモ-ゥム塩及びリチウム塩を形成するァ- オンのうちいずれか一方には BF—が含まれていることが好ましい。その理由は定かで  [0073] In the present invention, it is preferable that one of the quaternary ammonium salt of the present invention and the ion forming the lithium salt contains BF-. The reason is certain
4  Four
はないが、テトラフルォロボレートを含む場合には正極集電体として使用されるアルミ -ゥムの表面に不働態皮膜が形成され、アルミニウムの溶出を抑制できるためではな いかと考えられている。 BF の含有量イオン数は、電解液中の全ァ-オン数の 0.5%  However, it is thought that when tetrafluoroborate is contained, a passivation film is formed on the surface of aluminum used as a positive electrode current collector, which can suppress the elution of aluminum. I have. BF content The number of ions is 0.5% of the total number of ions in the electrolyte.
4  Four
以上になるように調製するのが好ましぐ 0.8%以上になるように調製するのがより好 ましい。上限濃度は、 BF—の含有イオン数が電解液中の全ァ-オン数の 100%であ  It is preferable to adjust the amount to be at least 0.8%, and it is more preferable to adjust the amount to be 0.8% or more. The upper limit concentration is that the number of BF-containing ions is 100% of the total number of ions in the electrolyte.
4  Four
る。  The
[0074] また電解液は、有機溶媒に希釈して使用することもできる。使用できる有機溶媒とし ては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状エーテル、鎖状エーテ ル、二トリル化合物、スルホンィ匕合物等が挙げられる。 [0074] The electrolytic solution may be used after being diluted with an organic solvent. Examples of usable organic solvents include cyclic carbonates, chain carbonates, cyclic ethers and chain ethers. , Nitrile compounds, sulfonated compounds and the like.
[0075] 環状炭酸エステルの具体例としては、エチレンカーボネート、プロピレンカーボネー ト等が挙げられる。鎖状炭酸エステルの具体例としては、ジメチルカーボネート、ェチ ルメチルカーボネート等が挙げられる。環状エーテルの具体例としては、テトラヒドロ フラン、へキサヒドロピラン等が挙げられる。鎖状エーテルの具体例としては、 1, 2- ジメトキシェタン等が挙げられる。二トリルイ匕合物の具体例としては、ァセトニトリル等 が挙げられる。スルホン化合物の具体例としては、スルホラン等が挙げられる。  [0075] Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate. Specific examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate and the like. Specific examples of the cyclic ether include tetrahydrofuran, hexahydropyran and the like. Specific examples of the chain ether include 1,2-dimethoxyethane. As a specific example of the nitrile conjugate, acetonitrile and the like can be mentioned. Specific examples of the sulfone compound include sulfolane.
[0076] これらの有機溶媒は混合して用いることができる。組み合わせ例としては、エチレン カーボネートとジメチノレカーボネート、エチレンカーボネートとェチノレメチノレカーボネ ート、エチレンカーボネートとプロピレンカーボネート、エチレンカーボネートとテトラヒ ドロフラン等が挙げられる。  [0076] These organic solvents can be used as a mixture. Examples of the combination include ethylene carbonate and dimethinole carbonate, ethylene carbonate and ethynolemethinole carbonate, ethylene carbonate and propylene carbonate, and ethylene carbonate and tetrahydrofuran.
[0077] 本発明で使用される電解液は、特定の有機添加剤を含有するのが好ましい。  [0077] The electrolytic solution used in the present invention preferably contains a specific organic additive.
[0078] 特定の有機添加剤としては、例えば、エチレンカーボネート、ビ-レンカーボネート 、ブチレンカーボネート、エチレントリチォカーボネート、ビニレントリチォカーボネート 、エチレンサルファイド等が挙げられる。これらの中で、エチレンカーボネート及びビ 二レンカーボネートが好ましい。これらの有機添加剤は、 1種単独で又は 2種以上混 合して使用される。 [0078] Specific organic additives include, for example, ethylene carbonate, bi-lene carbonate, butylene carbonate, ethylene trithio carbonate, vinylene trithio carbonate, ethylene sulfide and the like. Of these, ethylene carbonate and vinylene carbonate are preferred. These organic additives are used alone or in combination of two or more.
[0079] 上記特定の有機添加剤を含むことにより、リチウム電池負極表面に SEI (Solid [0079] By including the above specific organic additive, SEI (Solid)
Electrolyte Interface)として知られるリチウムイオン選択的透過膜が形成され、常温 溶融塩を形成するアンモ-ゥムカチオンの分解及び負極材料への挿入を抑制でき、 その結果、リチウム電池安定した充放電特性を与えることができる。 A lithium ion selective permeable membrane known as Electrolyte Interface is formed, which can suppress the decomposition and insertion of the ammonium cation forming the molten salt at room temperature into the anode material, and as a result, provide stable charge and discharge characteristics of the lithium battery. Can be.
[0080] 上記有機添加剤の中には、希釈剤としての機能も併せ持つ物質が含まれている。 [0080] The organic additive includes a substance that also functions as a diluent.
[0081] これら有機添加剤の含有量は、全電解液重量に対する有機添加剤の割合が、好ま しくは 1重量%以上、 40重量%以下、より好ましくは 1重量%以上、 30重量%以下、 更に好ましくは 1重量%以上、 20重量%以下、最も好ましくは 1重量%以上、 10重量 %以下である。有機添加剤の含有量が 1重量%以下の場合には、負極表面に十分 な皮膜が形成されず、常温溶融塩を形成するアンモ-ゥムカチオンの分解及び負極 材料への挿入を抑制できなくなる傾向が生ずる。 [0082] 上記で得られる本発明の電解液を用いて電気二重層キャパシタを好適に作製でき る。この電気二重層キャパシタの一例としては、例えば、図 1に示すようなものを挙げ ることができる。電気二重層キャパシタの形状は、図 1のようなコイン型に限定されるも のではなぐ缶体中に電極を積層して収納されてなる積層型、捲回して収納されてな る捲回型、又はアルミラミネート中にパッキングされてなるラミネート型と称されるもの であってもよい。以下、一例としてコイン型電気二重層キャパシタの構造について説 明する。 [0081] The content of these organic additives is preferably such that the ratio of the organic additives to the total weight of the electrolyte is 1% by weight or more and 40% by weight or less, more preferably 1% by weight or more and 30% by weight or less. More preferably, it is 1% by weight or more and 20% by weight or less, most preferably 1% by weight or more and 10% by weight or less. When the content of the organic additive is 1% by weight or less, a sufficient film is not formed on the negative electrode surface, and there is a tendency that the decomposition of the ammonium cation forming the room temperature molten salt and the insertion into the negative electrode material cannot be suppressed. Occurs. [0082] An electric double layer capacitor can be suitably produced using the electrolytic solution of the present invention obtained as described above. As an example of this electric double layer capacitor, for example, the one shown in FIG. 1 can be mentioned. The shape of the electric double layer capacitor is not limited to the coin type as shown in Fig. 1, but it is a stacked type in which the electrodes are stacked and stored in a can body, and a wound type in which the electrodes are wound and stored. Or a laminate type packaged in an aluminum laminate. Hereinafter, the structure of a coin-type electric double layer capacitor will be described as an example.
[0083] 図 1は、コイン型電気二重層キャパシタの断面を示す図面である。電極 1、 2がセパ レータ 3を介して対向配置され、容器体 4、 5に収納されている。電極は、活性炭等の 炭素材料カゝらなる分極性電極部分と集電体部分とからなる。容器体 4、 5は、電解液 によって腐食されなければよぐ例えばステンレス鋼、アルミニウム等力もなる。容器 体 4、 5は、絶縁性のガスケット 6により電気的に絶縁されており、同時に金属製缶体 内部を密封し、缶体外部からの水分や空気が浸入しないようになっている。電極 1の 集電体及び容器体 4、並びに電極 2の集電体及び金属製のスぺーサー 7は、それぞ れ金属製のスプリング 8の存在により適度な圧力で接触しており、電気的接触を保つ ている。電気伝導性を高めるために、集電体をカーボンペースト等の導電性ペースト を用いて接着してもよい。  FIG. 1 is a drawing showing a cross section of a coin-type electric double layer capacitor. Electrodes 1 and 2 are arranged to face each other with a separator 3 interposed therebetween, and housed in containers 4 and 5. The electrode includes a polarizable electrode portion made of a carbon material such as activated carbon and a current collector portion. The container bodies 4 and 5 are made of, for example, stainless steel, aluminum or the like which is not corroded by the electrolyte. The container bodies 4 and 5 are electrically insulated by an insulating gasket 6, and at the same time, seal the inside of the metal can body so that moisture and air from the outside of the can body do not enter. The current collector and the container body 4 of the electrode 1 and the current collector of the electrode 2 and the metal spacer 7 are in contact with each other at an appropriate pressure due to the presence of the metal spring 8, respectively. Keep in touch. In order to increase electric conductivity, the current collector may be bonded using a conductive paste such as a carbon paste.
[0084] 分極性電極材料は、比表面積が大きく、電気伝導性が高!、材料であることが好まし ぐまた使用する印加電圧の範囲内で電解液に対して電気化学的に安定であること が必要である。このような材料としては、例えば、炭素材料、金属酸化物材料、導電 性高分子材料等が挙げられる。コストを考慮すると、分極性電極材料は、炭素材料で あるのが好ましい。  [0084] The polarizable electrode material has a large specific surface area, a high electric conductivity, and is preferably a material, and is electrochemically stable to the electrolytic solution within the range of applied voltage to be used. It is necessary. Examples of such a material include a carbon material, a metal oxide material, and a conductive polymer material. Considering cost, the polarizable electrode material is preferably a carbon material.
[0085] 炭素材料としては、活性炭材料が好ましぐ具体的には、おがくず活性炭、やしがら 活性炭、ピッチ'コータス系活性炭、フエノール榭脂系活性炭、ポリアクリロニトリル系 活性炭、セルロース系活性炭等が挙げられる力 これらに限定されるものではない。  [0085] As the carbon material, activated carbon materials are preferred. Specific examples thereof include sawdust activated carbon, coconut activated carbon, pitch'cotas-based activated carbon, phenol-based activated carbon, polyacrylonitrile-based activated carbon, and cellulose-based activated carbon. Forces are not limited to these.
[0086] 金属酸ィ匕物系材料としては、例えば、酸化ルテニウム、酸ィ匕マンガン、酸ィ匕コノ レト 等が挙げられる力 これらに限定されるものではない。  [0086] Examples of the metal oxide-based material include, but are not limited to, ruthenium oxide, manganese oxide, manganese oxide, and the like.
[0087] 導電性高分子材料としては、例えば、ポリア-リン、ポリピロール膜、ポリチォフェン 膜、ポリ(3, 4—エチレンジォキシチォフェン)膜等が挙げられる力 これらに限定され るものではない。 [0087] Examples of the conductive polymer material include polyaline, polypyrrole film, and polythiophene. Force, such as a film and a poly (3,4-ethylenedioxythiophene) film. The present invention is not limited to these.
[0088] 電極は、上記分極性電極材料を結着剤と共に加圧成型するか、又は上記分極性 電極材料を結着剤と共にピロリドン等の有機溶剤に混合し、ペースト状にしたものを アルミニウム箔等の集電体に塗工後、乾燥することにより得ることができる。  [0088] The electrode is formed by pressing the above-mentioned polarizable electrode material with a binder under pressure, or mixing the above-mentioned polarizable electrode material with a binder together with an organic solvent such as pyrrolidone to form a paste into an aluminum foil. Etc., and then dried after coating.
[0089] セパレータとしては、電子絶縁性が高ぐ電解液の濡れ性に優れイオン透過性が高 いものが好ましぐまた、印加電圧範囲内において電気化学的に安定である必要が ある。セパレータの材質は、特に限定はないが、レーヨン、マニラ麻等力もなる抄紙; ポリオレフイン系多孔質フィルム;ポリエチレン不織布;ポリプロピレン不織布等が好適 に用いられる。  As the separator, a separator having high electronic insulation and excellent wettability of the electrolytic solution and high ion permeability is preferable, and it is necessary that the separator be electrochemically stable within an applied voltage range. The material of the separator is not particularly limited, but paper making which is strong such as rayon and manila hemp; polyolefin-based porous film; polyethylene nonwoven fabric; polypropylene nonwoven fabric and the like are preferably used.
[0090] 上記で得られる本発明の電解液を用いてリチウム二次電池を好適に作成できる。  [0090] A lithium secondary battery can be suitably prepared using the electrolyte solution of the present invention obtained as described above.
本発明のリチウム二次電池の形状は、コイン型、円筒型、角型、ラミネート等が挙げら れるが、これらの形状に限定されるものではない。本発明のリチウム二次電池の一例 としては、例えば、図 2に示すコイン型セルを挙げることができる。  Examples of the shape of the lithium secondary battery of the present invention include a coin shape, a cylindrical shape, a square shape, and a laminate, but the shape is not limited to these shapes. As an example of the lithium secondary battery of the present invention, for example, a coin-type cell shown in FIG. 2 can be mentioned.
[0091] 以下、図 2に基づいてリチウム二次電池を説明する。  [0091] Hereinafter, the lithium secondary battery will be described with reference to FIG.
[0092] 正極缶 14と負極缶 15とで形成される内部空間に、正極缶 14側から正極 11、セパ レータ 13、負極 12、スぺーサー 17の順に積層された積層体が収納されている。負 極缶 15とスぺーサー 17との間にスプリング 18を介在させることによって、正極 11と負 極 12を適度に圧着固定している。電解液は、正極 11、セパレータ 13及び負極 12の 間に含浸されている。正極缶 14及び負極缶 15の間にガスケット 16を介在させた状 態で、正極缶 14及び負極缶 15を力しめる (crimp)ことによって両者を結合し、上記積 層体を密閉状態にしている。  [0092] In an internal space formed by the positive electrode can 14 and the negative electrode can 15, a stacked body in which the positive electrode 11, the separator 13, the negative electrode 12, and the spacer 17 are stacked in this order from the positive electrode can 14 side is housed. . By interposing a spring 18 between the negative electrode can 15 and the spacer 17, the positive electrode 11 and the negative electrode 12 are appropriately crimped and fixed. The electrolyte is impregnated between the positive electrode 11, the separator 13, and the negative electrode 12. With the gasket 16 interposed between the positive electrode can 14 and the negative electrode can 15, the positive electrode can 14 and the negative electrode can 15 are crimped to join the two, thereby sealing the laminate. .
[0093] 正極活物質としては、例えば、 LiCoO、 LiNiO、 LiNi Co O、 LiNi Co M  [0093] Examples of the positive electrode active material include LiCoO, LiNiO, LiNiCoO, and LiNiCoM.
2 2 1-x x 2 1-y-z y n O、 LiNi Mn O、 LiMnO、 LiMn O、 LiNi Mn O等のリチウムと遷移 z 2 0.5 0.5 2 2 2 4 0.5 1.5 4  2 2 1-x x 2 1-y-z y n O, LiNi Mn O, LiMnO, LiMn O, LiNi Mn O, etc.Lithium and transition z 2 0.5 0.5 2 2 2 4 0.5 1.5 4
金属との複合酸化物; TiO、 V O等の酸化物; TiS、 FeS等の硫ィ匕物等が挙げら  Composite oxides with metals; oxides such as TiO and V O; sulfides such as TiS and FeS;
2 2 5 2  2 2 5 2
れる力 電池容量及びエネルギー密度の観点力 リチウムと遷移金属との複合酸ィ匕 物が好ましい。  The power of the battery capacity and the energy density The composite oxide of lithium and a transition metal is preferable.
[0094] 上記【こお ヽて、 l >x>0、 l >y>0、 1 >z>0、 y+z< 1である。 [0095] 正極は、これらの正極活物質を、公知の導電助剤及び結着剤と共に加圧成型する ことにより、又は正極活物質を公知の導電助剤及び結着剤と共にピロリドン等の有機 溶剤に混合し、ペースト状にしたものをアルミニウム箔等の集電体に塗工後、乾燥す ることにより得ることがでさる。 [0094] Here, l>x> 0, l>y> 0, 1>z> 0, and y + z <1. [0095] The positive electrode is formed by press-molding these positive electrode active materials together with a known conductive auxiliary and a binder, or by mixing the positive electrode active material together with a known conductive auxiliary and a binder with an organic solvent such as pyrrolidone. The paste can be obtained by applying a paste into a current collector, such as an aluminum foil, followed by drying.
[0096] 負極活物質には、リチウム金属、リチウム金属と他金属との合金、リチウムイオンが 挿入脱離する材料が使用される。リチウム金属と他金属との合金としては、 Li Al、 Li — Sn、 Li Zn、 Li Si等が挙げられる。リチウムイオンが挿入脱離する材料としては、 榭脂及びピッチ等を焼成したカーボン材料、これらのカーボン材料にホウ素化合物 を添加したカーボン材料、天然黒鉛等が挙げられる。これらの負極活物質は、 1種単 独で、又は 2種以上を混合して使用される。  [0096] As the negative electrode active material, lithium metal, an alloy of lithium metal and another metal, and a material into which lithium ions are inserted and desorbed are used. Examples of alloys of lithium metal and other metals include LiAl, Li—Sn, LiZn, and LiSi. Examples of the material into which lithium ions are inserted and desorbed include carbon materials obtained by firing resins and pitches, carbon materials obtained by adding a boron compound to these carbon materials, and natural graphite. These negative electrode active materials are used alone or as a mixture of two or more.
[0097] 負極は、これらの負極活物質を、公知の導電助剤及び結着剤と共に加圧成型する ことにより、又は負極活物質を公知の導電助剤及び結着剤と共にピロリドン等の有機 溶剤に混合し、ペースト状にしたものを銅箔等の集電体に塗工後、乾燥することによ り得ることがでさる。  [0097] The negative electrode is formed by pressure-forming these negative electrode active materials together with a known conductive auxiliary and a binder, or by forming the negative electrode active material together with a known conductive auxiliary and a binder together with an organic solvent such as pyrrolidone. To a paste, and then apply it to a current collector such as a copper foil and then dry it.
[0098] セパレータとしては、電解液が通過しやすぐ絶縁体で、化学的に安定な材質であ る限り、特に限定はない。  [0098] The separator is not particularly limited as long as it is an insulator and a chemically stable material immediately after the passage of the electrolytic solution.
[0099] 本発明第四級アンモ-ゥム塩及びこれを含有する電解液は、電気伝導性が高ぐ 有機溶媒に対する溶解性が高ぐ電気化学デバイスの電解液として好適である。 [0099] The quaternary ammonium salt of the present invention and an electrolytic solution containing the same are suitable as an electrolytic solution for an electrochemical device having high electric conductivity and high solubility in an organic solvent.
[0100] 電気化学デバイスとしては、例えば、電気二重層キャパシタ、二次電池、色素増感 型太陽電池、エレクト口クロミック素子、コンデンサ等が例示される力 これらに限定さ れない。特に好適な電気化学デバイスは、電気二重層キャパシタ及び二次電池であ る。 [0100] Examples of the electrochemical device include, but are not limited to, electric double-layer capacitors, secondary batteries, dye-sensitized solar cells, electocole chromic elements, capacitors, and the like. Particularly suitable electrochemical devices are electric double layer capacitors and secondary batteries.
発明の効果  The invention's effect
[0101] 本発明の第四級アンモ-ゥム塩は、融点が 10°C以下であるために、室温(25°C) ではそれ自身液状形態を維持できる。また、本発明の第四級アンモ-ゥム塩は、有 機溶媒に対する溶解性に格段に優れており、高い電気伝導性を有している。  [0101] Since the quaternary ammonium salt of the present invention has a melting point of 10 ° C or less, it can maintain a liquid form at room temperature (25 ° C). Further, the quaternary ammonium salt of the present invention is remarkably excellent in solubility in organic solvents and has high electric conductivity.
[0102] 室温(25°C)においてそれ自身液状を示す本発明の第四級アンモ-ゥム塩は、そ のまま電解液として使用できる。この電解液は、低温での使用でも、電解質の析出が なぐ安定した電気伝導性を発現できる。また、この第四級アンモ-ゥム塩は、そのま ま電解液として使用できることから、電解液のイオン濃度を高くすることが可能となり、 高 ヽ電気伝導度を発現できる。 [0102] The quaternary ammonium salt of the present invention, which is itself liquid at room temperature (25 ° C), can be used as an electrolyte as it is. This electrolyte can prevent electrolyte deposition even at low temperatures. Stable electrical conductivity can be achieved. Further, since this quaternary ammonium salt can be used as an electrolyte as it is, it is possible to increase the ion concentration of the electrolyte, and to exhibit high electrical conductivity.
[0103] 有機溶媒に対する溶解性に優れている本発明の第四級アンモ-ゥム塩は、これを 有機溶媒に溶解して電解液とした場合、低温時で使用しても電解液から本発明の第 四級アンモ-ゥム塩が析出することはなく、電解液の電気伝導性が低下する虞れは ない。  [0103] The quaternary ammonium salt of the present invention, which is excellent in solubility in an organic solvent, can be dissolved in an organic solvent to form an electrolyte. The quaternary ammonium salt of the present invention does not precipitate, and there is no fear that the electric conductivity of the electrolytic solution is reduced.
[0104] 本発明の第四級アンモ-ゥム塩は、低粘度であるため流動性に優れており、それ 故、浸透性が要求される多孔性の電極を使用した電気デバイスの電解液にも好適に 使用できる。  [0104] The quaternary ammonium salt of the present invention is excellent in fluidity due to its low viscosity, and therefore, is suitable for use in an electrolytic solution of an electric device using a porous electrode that requires permeability. Can also be suitably used.
図面の簡単な説明  Brief Description of Drawings
[0105] [図 1]本発明の実施例 10で作成した電気二重層キャパシタの部分断面図である。  FIG. 1 is a partial cross-sectional view of an electric double layer capacitor produced in Example 10 of the present invention.
[図 2]本発明の実施例 12で作成したリチウム二次電池の部分断面図である。  FIG. 2 is a partial sectional view of a lithium secondary battery prepared in Example 12 of the present invention.
[図 3]本発明の実施例 6、実施例 7及び比較例 3で得られた各種濃度の混合溶液の 電気伝導度を示すグラフである。  FIG. 3 is a graph showing the electrical conductivity of mixed solutions of various concentrations obtained in Example 6, Example 7, and Comparative Example 3 of the present invention.
符号の説明  Explanation of symbols
[0106] 1 電極 [0106] One electrode
2 電極  2 electrodes
3 セパレータ  3 Separator
4 容器体  4 Container body
5 容器体  5 Container body
6 ガスケット  6 Gasket
7 スぺーサー  7 Spacer
8 スプリング  8 Spring
11 正極  11 Positive electrode
12 負極  12 Negative electrode
13 多孔質セパレータ  13 Porous separator
14 正極缶 15 負極缶 14 Positive electrode can 15 Anode can
16 ガスケット  16 Gasket
17 スぺーサー  17 Spacer
18 スプリング  18 Spring
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0107] 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明の範囲はこれら の実施例に限定されるものではない。  [0107] Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to these Examples.
[0108] 実施例 1  [0108] Example 1
ビス(メトキシメチル)ジメチルアンモ-ゥムテトラフルォロボレートの合成  Synthesis of bis (methoxymethyl) dimethylammonium-tetrafluoroborate
ジメチルメトキシメチルァミン 30. Ogを 120gのトルエンに溶解し、窒素置換した。こ の溶液に、 5°C下、クロロメチルメチルエーテル (試薬:東京化成製) 16. 3gを 1時間 かけて滴下した。該溶液を 5°Cにて 10時間攪拌し、反応を終了した。 2層分離した下 層を分取し、 150gのトルエンを用いて 3回洗浄を繰り返し、更に 150gのメチルェチ ルケトンを用いて 3回洗浄を繰り返した後、減圧乾燥し、 25. Ogのジメチルジメトキシ メチルアンモ -ゥムクロライド (無色液体)を得た。  Dimethylmethoxymethylamine 30. Og was dissolved in 120 g of toluene, and the atmosphere was replaced with nitrogen. To this solution, 16.3 g of chloromethyl methyl ether (reagent: manufactured by Tokyo Chemical Industry) was added dropwise at 5 ° C over 1 hour. The solution was stirred at 5 ° C for 10 hours to complete the reaction. The lower layer separated from the two layers was separated, washed three times with 150 g of toluene, further three times with 150 g of methyl ethyl ketone, dried under reduced pressure, and dried with 25 g of dimethyldimethoxymethylammonium. -Pemuchloride (colorless liquid) was obtained.
[0109] 次に得られたジメチルジメトキシメチルアンモ -ゥムクロライドをメタノール 50gに溶 解し、 30%HBFのメタノール溶液 45. 3gを添カ卩した。減圧下、塩化水素及び過剰  Next, the obtained dimethyldimethoxymethylammonium chloride was dissolved in 50 g of methanol, and 45.3 g of a 30% HBF methanol solution was added. Hydrogen chloride and excess under reduced pressure
4  Four
の HBFを除き、標記目的物(無色液体) 31. 9gを得た。  Excluding HBF, 31.9 g of the title compound (colorless liquid) was obtained.
4 Four
— NMR(d— CH OH) S ppm:  — NMR (d— CH OH) S ppm:
3  Three
2. 98 (s, 6H) , 3. 65 (s, 6H) , 4. 59 (s, 4H)。  2.98 (s, 6H), 3.65 (s, 6H), 4.59 (s, 4H).
[0110] 上記で得られた第四級アンモ-ゥム塩 (ビス (メトキシメチル)ジメチルアンモ -ゥム テトラフルォロボレート)の融点を、リガク社製示差熱分析計 (RIGAKU、 DSC8230 B)を使用して行った。具体的には、サンプル重量を 20mgとし、液体アルゴンによつ て 150°Cまで急冷した後、 5°CZ分の割合で昇温した。融点はベースライン接線と ピーク勾配の接線の交点力も求めた。実施例 1で得られた第四級アンモ-ゥム塩の 融点は、 4°Cであった。  [0110] The melting point of the quaternary ammonium salt (bis (methoxymethyl) dimethylammonium-tetrafluoroborate) obtained above was measured using a differential thermal analyzer (RIGAKU, DSC8230B) manufactured by Rigaku Corporation. Was performed using Specifically, the sample weight was 20 mg, and the sample was quenched to 150 ° C with liquid argon, and then heated at a rate of 5 ° CZ. The melting point was also determined by the intersection force between the baseline tangent and the tangent to the peak slope. The melting point of the quaternary ammonium salt obtained in Example 1 was 4 ° C.
[0111] 実施例 2  [0111] Example 2
ビス(メトキシメチル)ピロリジ -ゥムビストリフルォロメタンスルホ-ルイミドの合成 メトキシメチルピロリジン 30. Og及びビストリフルォロメタンスルホ-ルイミドリチウム 8 9. 9gを 300gのジクロロメタン溶解し、窒素置換した。この溶液に、 5°C下、クロロメチ ルメチルエーテル (試薬:東京化成製) 21. Ogを 1時間要して滴下した。該溶液の温 度を徐々に昇温し、室温にて 4時間攪拌し反応を終了した。反応液に水 200mlを添 加し、下層を分取した。得られた有機層を 50mlの水を用いて 10回洗浄を繰り返した 。有機層を濃縮し、減圧乾燥し、標記目的物 (無色液体) 97. 6gを得た。Synthesis of bis (methoxymethyl) pyrrolidi-dimethylbistrifluoromethanesulfonimide 300 g of methoxymethylpyrrolidine and 89.9 g of lithium bistrifluoromethanesulfonimide were dissolved in 300 g of dichloromethane, and the mixture was replaced with nitrogen. To this solution, 21. Og of chloromethyl methyl ether (reagent: manufactured by Tokyo Kasei) was added dropwise at 5 ° C for 1 hour. The temperature of the solution was gradually raised and stirred at room temperature for 4 hours to complete the reaction. 200 ml of water was added to the reaction solution, and the lower layer was separated. The obtained organic layer was washed 10 times with 50 ml of water. The organic layer was concentrated and dried under reduced pressure to obtain 97.6 g of the title compound (colorless liquid).
— NMR(CDC1 ) δ ppm:  — NMR (CDC1) δ ppm:
3  Three
2. 17 (m, 4H) , 3. 47 (m, 4H) , 3. 60 (s, 6H) , 4. 53 (s, 4H)。  2.17 (m, 4H), 3.47 (m, 4H), 3.60 (s, 6H), 4.53 (s, 4H).
[0112] 上記で得られた第四級アンモ-ゥム塩 (ビス (メトキシメチル)ピロリジ -ゥムビストリフ ルォロメタンスルホ二ルイミド)の融点を、実施例 1と同様にして測定した。実施例 2で 得られた第四級アンモ-ゥム塩の融点を明確に求めることができな力つた。ガラス転 移温度 (Tg)は— 90°Cであった。 [0112] The melting point of the quaternary ammonium salt (bis (methoxymethyl) pyrrolidi-dimethylbistrifluoromethanesulfonylimide) obtained above was measured in the same manner as in Example 1. The melting point of the quaternary ammonium salt obtained in Example 2 could not be clearly determined. The glass transition temperature (Tg) was -90 ° C.
[0113] 比較例 1 [0113] Comparative Example 1
N (メトキシェチル) N メチルピロリジ-ゥムテトラフルォロボレートを WO 02/0 76924 AUこ従!ヽ合成した。  N (methoxyethyl) N methylpyrrolidi-dimethyltetrafluoroborate was synthesized according to WO 02/0 76924 AU.
[0114] 即ち、オートクレイブ中にピロリジン 68. 77g及び 2—メトキシェチルクロライド 88. 02 gを入れ、 90°Cで 24時間反応を行った。反応終了後、水酸ィ匕カリウム 56gを溶解した 水溶液 200mlを加え、有機層を分離抽出した。水層をジクロロメタン 100にて抽出し (繰り返し 2回行う:合計 200ml)、飽和食塩水にて洗浄した。有機層は無水炭酸カリ ゥム上で乾燥した。有機層を濾過し、ジクロロメタンを減圧留去した後、残渣を蒸留処 理し、 N (メトキシェチル)ピロリジン 24. 02g単離した。  [0114] That is, 68.77 g of pyrrolidine and 88.02 g of 2-methoxyethyl chloride were placed in an autoclave and reacted at 90 ° C for 24 hours. After completion of the reaction, 200 ml of an aqueous solution in which 56 g of potassium hydroxide was dissolved was added, and the organic layer was separated and extracted. The aqueous layer was extracted with dichloromethane 100 (repeated twice: a total of 200 ml) and washed with saturated saline. The organic layer was dried over anhydrous potassium carbonate. After the organic layer was filtered and dichloromethane was distilled off under reduced pressure, the residue was subjected to distillation treatment to isolate 24.02 g of N (methoxyethyl) pyrrolidine.
[0115] 得られた N— (メトキシェチル)ピロリジン 10. 00gをテトラヒドロフラン 12mlに溶解し 、 0°C下ヨウ化メチルを 11. 22gカ卩えた。これを徐々に昇温し、室温にて 24時間反応 を行った。反応終了後、テトラヒドロフランを減圧留去し、残渣をテトラヒドロフラン Zェ タノール系の混合溶媒で再結晶して、 N (メトキシェチル) N メチルピロリジ -ゥム アイオダイド 17. 22gを得た。  [0115] 10.00 g of the obtained N- (methoxyethyl) pyrrolidine was dissolved in 12 ml of tetrahydrofuran, and 11.22 g of methyl iodide was added at 0 ° C. The temperature was gradually raised, and the reaction was carried out at room temperature for 24 hours. After completion of the reaction, tetrahydrofuran was distilled off under reduced pressure, and the residue was recrystallized with a mixed solvent of tetrahydrofuran Z-ethanol to obtain 17.22 g of N (methoxyethyl) N-methylpyrrolidium-dimethyl iodide.
[0116] N (メトキシェチル) N メチルピロリジ -ゥムアイオダイド 10. 00を超純水 67ml に溶解し、酸化銀 4. 27gを加えて 3時間攪拌した。反応液を濾過し完全に沈殿物を 除いた後、 42%テトラフルォロホウ酸を pHが 5— 6になるまで、少量ずつ加えた。反 応溶液を凍結乾燥し、更に減圧乾燥し目的物である N (メトキシェチル) N メチル ピロリジ-ゥムテトラフルォロボレート 8. 26gを得た。 [0116] N (methoxyethyl) N-methylpyrrolidium-dimethiodide 10.00 was dissolved in 67 ml of ultrapure water, 4.27 g of silver oxide was added, and the mixture was stirred for 3 hours. The reaction solution was filtered to completely remove the precipitate. After removal, 42% tetrafluoroboric acid was added in small portions until the pH reached 5-6. The reaction solution was freeze-dried and further dried under reduced pressure to obtain 8.26 g of N (methoxyethyl) N-methylpyrrolidi-dimethyltetrafluoroborate, which was the target substance.
[0117] 上記で得られた N (メトキシェチル) N メチルピロリジ-ゥムテトラフルォロボレ一 トの融点を、実施例 1と同様にして測定した。融点は 15°Cであった。 The melting point of N (methoxyethyl) N-methylpyrrolidi-dimethyltetrafluoroborate obtained above was measured in the same manner as in Example 1. Melting point was 15 ° C.
[0118] 比較例 2 [0118] Comparative Example 2
N (メトキシェチル) N, N ジェチルー N—メチルアンモ -ムテトラフルォロボレート を WO 02/076924 A 1 (特許文献 1)に従い合成した。  N (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate was synthesized according to WO 02/076924 A 1 (Patent Document 1).
[0119] オートクレイブ中にジェチルァミン 35. 35g及び 2—メトキシェチルクロライド 43. 99 gを入れ、 100°Cで 24時間反応を行った。反応終了後、水酸ィ匕カリウム 56gを溶解し た水溶液 100mlをカ卩え、有機層を分離抽出した。水層をジクロロメタン 50mlにて抽 出し (繰り返し 2回行う:合計 100ml)、飽和食塩水にて洗浄した。有機層は無水炭酸 カリウム上で乾燥した。有機層を濾過し、ジクロロメタンを減圧留去した後、残渣を蒸 留処理し、 2—メトキシェチルジェチルァミン 9. 20gを得た。  [0119] 35.35 g of getylamine and 43.99 g of 2-methoxyethyl chloride were placed in an autoclave and reacted at 100 ° C for 24 hours. After completion of the reaction, 100 ml of an aqueous solution in which 56 g of potassium hydroxide was dissolved was dried and the organic layer was separated and extracted. The aqueous layer was extracted with 50 ml of dichloromethane (repeated twice: 100 ml in total) and washed with saturated saline. The organic layer was dried over anhydrous potassium carbonate. After the organic layer was filtered and dichloromethane was distilled off under reduced pressure, the residue was subjected to a distillation treatment to obtain 9.20 g of 2-methoxyethylethylylamine.
[0120] N (メトキシェチル) N, N ジェチルー N—メチルアンモニム 9. 20gをテトラヒドロ フラン 11mlに溶解し、 0°C下ヨウ化メチル 10. 18gをカ卩えた。これを徐々に昇温し、 室温にて 24時間反応を行った。反応終了後、テトラヒドロフランを減圧留去し、残渣 をテトラヒドロフラン/エタノール系の混合溶媒で再結晶し、 N (メトキシェチル) N , N ジェチルー N—メチルアンモニムアイオダイド 17. 52gを得た。  [0120] N (Methoxyethyl) N, N Jethyl-N-methylammonium (9.20 g) was dissolved in tetrahydrofuran (11 ml), and methyl iodide (10.18 g) was added at 0 ° C. The temperature was gradually raised, and the reaction was carried out at room temperature for 24 hours. After completion of the reaction, tetrahydrofuran was distilled off under reduced pressure, and the residue was recrystallized with a mixed solvent of tetrahydrofuran / ethanol to obtain 17.52 g of N (methoxyethyl) N, N getyl-N-methylammonium iodide.
[0121] N (メトキシェチル) N, N ジェチルー N—メチルアンモニムアイオダイド 10. OOg を超純水 67mlに溶解し、酸化銀 4. 25gを加え 3時間攪拌した。反応液を濾過し完 全に沈殿物を除いた後、 42%テトラフルォロホウ酸を pHが 5— 6になるまで、少量ず つ加えた。反応溶液を凍結乾燥し、更に減圧乾燥し目的物である N (メトキシェチ ル) N, N ジェチルー N—メチルアンモニムテトラフルォロボレート 8. 20gを得た。  [0121] N (Methoxyethyl) N, N Jethyl-N-methylammonium iodide 10.OOg was dissolved in 67 ml of ultrapure water, 4.25 g of silver oxide was added, and the mixture was stirred for 3 hours. After the reaction solution was filtered to completely remove the precipitate, 42% tetrafluoroboric acid was added little by little until the pH reached 5-6. The reaction solution was freeze-dried and further dried under reduced pressure to obtain 8.20 g of N (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate, which was the target substance.
[0122] 上記で得られた N (メトキシェチル) N, N ジェチルー N—メチルアンモニムテトラ フルォロボレートの融点を、実施例 1と同様にして測定した。融点は 8°Cであった。  [0122] The melting point of N (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate obtained above was measured in the same manner as in Example 1. Melting point was 8 ° C.
[0123] 実施例 3  [0123] Example 3
ビス(メトキシメチル)ジメチルアンモ -ゥムビストリフルォロメタンスルフォ-ルイミドの 合成 Of bis (methoxymethyl) dimethylammonium-dimethylbistrifluoromethanesulfonimide Composition
N (メトキシメチル) N, N—ジメチルァミン 108. 7gにリチウムビストリフルォロメタ ンスルフォ-ルイミド(試薬: ALDRICH製) 31. 4gを添加し、 5°Cにまで冷却した。こ の溶液にクロロメチルメチルエーテル (試薬:東京化成製) 7. 8gを 1時間かけて滴下 した。反応温度は 10°C以下とした。滴下終了後徐々に昇温し、室温にて 16時間反 応した。反応終了後、濃縮し、真空ポンプにて乾燥した。ジクロロメタン 500gZ水 50 Ogにて抽出した。有機層を 300gの水にて 4回洗浄し、濃縮し、減圧乾燥して、 目的 物 30. 2gを得た。 To 108.7 g of N (methoxymethyl) N, N-dimethylamine, 31.4 g of lithium bistrifluoromethanesulfonimide (reagent: manufactured by ALDRICH) was added, and the mixture was cooled to 5 ° C. To this solution, 7.8 g of chloromethyl methyl ether (reagent: manufactured by Tokyo Chemical Industry) was added dropwise over 1 hour. The reaction temperature was set to 10 ° C or less. After completion of the dropwise addition, the temperature was gradually raised, and the reaction was carried out at room temperature for 16 hours. After completion of the reaction, the mixture was concentrated and dried with a vacuum pump. Extraction was carried out with 500 g of dichloromethane and 50 Og of water. The organic layer was washed four times with 300 g of water, concentrated, and dried under reduced pressure to obtain 30.2 g of the desired product.
— NMR(d— CH OH) S ppm:  — NMR (d— CH OH) S ppm:
3  Three
2. 98 (s, 6H) , 3. 65 (s, 6H) , 4. 59 (s, 4H)。  2.98 (s, 6H), 3.65 (s, 6H), 4.59 (s, 4H).
[0124] 上記で得られたビス(メトキシメチル)ジメチルアンモ -ゥムビストリフルォロメタンスル フォ-ルイミドの融点を、実施例 1と同様にして測定した。  [0124] The melting point of bis (methoxymethyl) dimethylammonium bistrifluoromethanesulfonimide obtained above was measured in the same manner as in Example 1.
[0125] 合成例 1  [0125] Synthesis example 1
N—エトキシメチルピロリジンの合成  Synthesis of N-ethoxymethylpyrrolidine
パラホルムアルデヒド(試薬: MERK社製) 101. 2g、炭酸カリウム(試薬:和光純薬 製) 234. Og及びエチルアルコール (試薬:和光純薬製) 971. 3gを仕込み、ピロリジ ン (試薬:東京化成工業製) 300. Ogを 10°C以下にて滴下した。滴下には 2時間要し た。滴下終了後、混合物を還流下に 7時間反応した。エチルアルコールを留去し、残 渣は減圧蒸留(70mmHg)し、 148. 4gのエトキシメチルピロリジンを得た。 Paraformaldehyde (reagent: manufactured by MERK) 101.2 g, potassium carbonate (reagent: manufactured by Wako Pure Chemical) 234. Og and ethyl alcohol (reagent: manufactured by Wako Pure Chemical) 971.3 g were charged, and pyrrolidine (reagent: Tokyo Chemical Industry) Og was dropped at 10 ° C or lower. It took 2 hours for the dripping. After completion of the dropwise addition, the mixture was reacted under reflux for 7 hours. Ethyl alcohol was distilled off, and the residue was distilled under reduced pressure (70 mmHg) to obtain 148.4 g of ethoxymethylpyrrolidine.
— NMR(CDC1 ) δ ppm:  — NMR (CDC1) δ ppm:
3  Three
1. 17 (t 3H) , 1. 75 (m 4H) , 2. 73 (m 4H) , 3. 49 (q 2H) , 4. 16 (s 2H)。  1.17 (t 3H), 1.75 (m 4H), 2.73 (m 4H), 3.49 (q 2H), 4.16 (s 2H).
[0126] 合成例 2 [0126] Synthesis example 2
N—(エトキシメチル) N—(メトキシメチル)ピロリジ -ゥムパーク口レートの合成  Synthesis of N- (ethoxymethyl) N- (methoxymethyl) pyrrolidi-demipark mouthrate
合成例 1で製造した N エトキシメチルピロリジン 147. 9gに過塩素ナトリウム (試薬; 和光純薬製) 59. 18gを添カ卩し、 5°Cにまで冷却した。この溶液にクロロメチルメチル エーテル (試薬:東京化成製) 36. 93gを 1時間かけて滴下した。反応温度は 10°C以 下とした。滴下終了後、反応混合物を徐々に昇温し、室温にて 12時間反応した。反 応終了後、濾過し、エチルアルコール 100mlにて洗浄した。濃縮後、ジクロロメタン Z水にて抽出した。有機層は少量の水にて 3回洗浄し、濃縮した。濃縮物をェチル アルコールに溶解し、 50°C下で再結晶した。再結晶は 5回繰り返した。得られる結 晶を減圧乾燥し、 目的物 83. Ogを得た。To 147.9 g of N ethoxymethylpyrrolidine produced in Synthesis Example 1, 59.18 g of sodium perchloride (reagent; manufactured by Wako Pure Chemical Industries) was added, and the mixture was cooled to 5 ° C. To this solution, 36.93 g of chloromethyl methyl ether (reagent: manufactured by Tokyo Chemical Industry) was added dropwise over 1 hour. The reaction temperature was lower than 10 ° C. After completion of the dropwise addition, the temperature of the reaction mixture was gradually raised, and the reaction was performed at room temperature for 12 hours. After the completion of the reaction, the mixture was filtered and washed with 100 ml of ethyl alcohol. After concentration, dichloromethane Extracted with Z water. The organic layer was washed three times with a small amount of water and concentrated. The concentrate was dissolved in ethyl alcohol and recrystallized at 50 ° C. Recrystallization was repeated 5 times. The obtained crystals were dried under reduced pressure to obtain the desired product, 83. Og.
— NMR(d— CH OH) S ppm:  — NMR (d— CH OH) S ppm:
3  Three
1. 28 (t 3H) , 2. 16 (m 4H) , 3. 49 (m 4H) , 3. 62 (s 3H) , 3. 84 (q 2H) , 4. 61 (s 2H) , 4. 66 (s 2H)。  1.28 (t 3H), 2.16 (m 4H), 3.49 (m 4H), 3.62 (s 3H), 3.84 (q 2H), 4.61 (s 2H), 4. 66 (s 2H).
[0127] 実施例 4 [0127] Example 4
N— (エトキシメチル) N— (メトキシメチル)ピロリジ-ゥムテトラフルォロボレートの合 成  Synthesis of N- (ethoxymethyl) N- (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate
合成例 2で製造した N (エトキシメチル) N (メトキシメチル)ピロリジ -ゥムパーク 口レート 30. Ogをメチルアルコール 250ml〖こ溶解し、イオン交換榭脂(三菱化学製 D IAION WA30のァ-オンをテトラフルォロボレートに交換) 500mlに通した。ァ-ォ ン交換の確認は、イオンクロマト(TOSOH CM— 8020)にて行った。ァ-オン交換 の確認後、メチルアルコール溶液を濃縮し、減圧乾燥し、 目的物 26. lgを得た。 — NMR(d— CH OH) S ppm:  N (Ethoxymethyl) N (methoxymethyl) pyrrolidi-pampark Molerate 30. Og prepared in Synthesis Example 2 was dissolved in 250 ml of methyl alcohol, and ion-exchange resin was used. Replaced with fluoroborate). Confirmation of the ion exchange was performed by ion chromatography (TOSOH CM-8020). After confirming the ion exchange, the methyl alcohol solution was concentrated and dried under reduced pressure to obtain 26.lg of the desired product. — NMR (d— CH OH) S ppm:
3  Three
1. 28 (t 3H) , 2. 15 (m 4H) , 3. 48 (m 4H) , 3. 62 (s 3H) , 3. 84 (q 2H) , 1.28 (t 3H), 2.15 (m 4H), 3.48 (m 4H), 3.62 (s 3H), 3.84 (q 2H),
4. 60 (s 2H) , 4. 65 (s 2H)。 4.60 (s 2H), 4.65 (s 2H).
[0128] 上記で得られた N (エトキシメチル) N (メトキシメチル)ピロリジ-ゥムテトラフル ォロボレートの融点を、実施例 1と同様にして測定した。 The melting point of N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate obtained as described above was measured in the same manner as in Example 1.
[0129] 実施例 5 [0129] Example 5
N— (エトキシメチル) N— (メトキシメチル)ピロリジ -ゥムビストリフルォロメタンスルフ ォ-ルイミドの合成  Synthesis of N- (ethoxymethyl) N- (methoxymethyl) pyrrolidi-dimethylbistrifluoromethanesulfonimide
合成例 1で製造した N-エトキシメチルピロリジン 50. 0gにリチウムビストリフルォロメ タンスルフォ-ルイミド(試薬: ALDRICH製) 48. 9gを添加し、 5°Cにまで冷却した。 この溶液にクロロメチルメチルエーテル (試薬:東京化成製) 12. 5gを 1時間かけて滴 下した。反応温度は 10°C以下とした。滴下終了後、反応混合物を徐々に昇温し、室 温にて 5時間反応した。反応終了後、反応混合物を濃縮し、真空ポンプにて乾燥し、 ジクロロメタン 1300gZ水 1000gにて抽出した。有機層を 1000gの水にて 4回洗浄し 、濃縮し、減圧乾燥して、 目的物 65. 9gを得た。To 50.0 g of N-ethoxymethylpyrrolidine produced in Synthesis Example 1, 48.9 g of lithium bistrifluoromethanesulfonimide (reagent: manufactured by ALDRICH) was added, and the mixture was cooled to 5 ° C. To this solution, 12.5 g of chloromethyl methyl ether (reagent: manufactured by Tokyo Chemical Industry) was dropped over 1 hour. The reaction temperature was set to 10 ° C or less. After completion of the dropwise addition, the temperature of the reaction mixture was gradually raised, and the reaction was carried out at room temperature for 5 hours. After completion of the reaction, the reaction mixture was concentrated, dried with a vacuum pump, and extracted with 1300 g of dichloromethane and 1000 g of water. Wash the organic layer four times with 1000 g of water It was concentrated and dried under reduced pressure to obtain 65.9 g of the desired product.
— NMR(d— CH OH) S ppm:  — NMR (d— CH OH) S ppm:
3  Three
1. 28 (t 3H) , 2. 15 (m 4H) , 3. 46 (m 4H) , 3. 62 (s 3H) , 3. 83 (q 2H) , 4. 59 (s 2H) , 4. 64 (s 2H)。  1.28 (t 3H), 2.15 (m 4H), 3.46 (m 4H), 3.62 (s 3H), 3.83 (q 2H), 4.59 (s 2H), 4. 64 (s2H).
[0130] 上記で得られた N (エトキシメチル) N— (メトキシメチル)ピロリジ -ゥムビストリフル ォロメタンスルフォニルイミドの融点を、実施例 1と同様にして測定した。 [0130] The melting point of N (ethoxymethyl) N- (methoxymethyl) pyrrolidi-dimethylbistrifluoromethanesulfonylimide obtained above was measured in the same manner as in Example 1.
[0131] 試験例 1  [0131] Test example 1
実施例 1一 5、比較例 1及び比較例 2で得られた第四級アンモ-ゥム塩について、 電気伝導度を測定した。  The electrical conductivity of the quaternary ammonium salts obtained in Example 15 and Comparative Examples 1 and 2 was measured.
[0132] 電気伝導度の測定には、 Radiometer社製の電気伝導度メーターを使用した。測 定セルには Radiometer社製の CDC641Tを使用し、 25°C下にて行った。 [0132] For the measurement of electric conductivity, an electric conductivity meter manufactured by Radiometer was used. Radiometer CDC641T was used for the measurement cell at 25 ° C.
[0133] また、実施例 1一 5、比較例 1及び比較例 2で得られた第四級アンモ-ゥム塩の粘 度を測定した。粘度測定は、振動式製粘度計 (VM— 1G CBCマテリアルズ株式会 社製)を使用し、 25°C下にて行った。 [0133] The viscosity of the quaternary ammonium salt obtained in Example 15 and Comparative Example 1 and Comparative Example 2 was measured. The viscosity was measured at 25 ° C. using a vibrating viscometer (VM-1G, manufactured by CBC Materials Co., Ltd.).
[0134] これらの結果を表 1に示す。 Table 1 shows the results.
[0135] [表 1] [0135] [Table 1]
第四級アンモニゥム塩 融点 電気伝導度 Quaternary ammonium salt Melting point Electrical conductivity
ァニオン (。c) (mS/cm) 実施例 1 BF4— 4 6.2 96
Figure imgf000028_0001
Anion (.c) (mS / cm) Example 1 BF4—4 6.2 96
Figure imgf000028_0001
実施例 3 TFSI" 8 4.8 56 実施例 2 H3C o。、 TFS厂 -90 (Tg) 5.4 54 実施例 4 BF4" - 11 5.8 74 Example 3 TFSI "8 4.8 56 Example 2 H 3 Co. , TFS Factory -90 (Tg) 5.4 54 Example 4 BF4"-11 5.8 74
o  o
実施例 5 TFSI— -90 (Tg) 4.9 40 比較例 1 BF4" 15 2.8 258 Example 5 TFSI--90 (Tg) 4.9 40 Comparative Example 1 BF4 "15 2.8 258
Figure imgf000028_0002
比較例 2 BF4— 8 1.2 645
Figure imgf000028_0002
Comparative Example 2 BF4—8 1.2 645
に CH3 To CH 3
[0136] 実施例 6 [0136] Example 6
実施例 4で製造した N (エトキシメチル) N (メトキシメチル)ピロリジ-ゥムテトラ フルォロボレートとプロピレンカーボネート (PC) (試薬:キシダイ匕学株式会社製、リチ ゥムノッテリーグレード)とを、種々の濃度になるように、露点が 60°C以下の窒素雰 囲気ドライボックス内で混合した。混合後の溶液の水分をカールフィッシャー水分計( 平沼産業株式会社製、平沼微量水分測定装置 AQ - 7)で測定し、 30ppm以下であ ることを確認した。混合溶液中の N (エトキシメチル) N (メトキシメチル)ピロリジニ ゥムテトラフルォロボレートの濃度は、表 2に示す通りとした。  N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate and propylene carbonate (PC) (reagent: manufactured by Kishidai-Dogaku Co., Ltd., lithium nottery grade) produced in Example 4 were added to various concentrations. Mixing was carried out in a dry box under a nitrogen atmosphere with a dew point of 60 ° C or less. The water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and found to be 30 ppm or less. The concentration of N (ethoxymethyl) N (methoxymethyl) pyrrolidinium tetrafluoroborate in the mixed solution was as shown in Table 2.
[0137] 各種濃度の混合溶液を、ドライボックス内で 4mlずつ、スクリュー栓が付 ヽたガラス 容器に移し、ドライボックスの外に取り出した。各種溶液が入ったガラス容器を恒温槽 に浸漬し、 25°Cでそれぞれ 5時間保持した。 [0138] 実施例 7 [0137] Mixed solutions of various concentrations were transferred to a glass container equipped with a screw stopper in a dry box at 4ml intervals and taken out of the dry box. The glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours. [0138] Example 7
実施例 1で製造したビス (メトキシメチル)ジメチルアンモ-ゥムテトラフルォロボレ一 トとプロピレンカーボネート (PC) (試薬:キシダ化学株式会社製、リチウムバッテリー グレード)とを、種々の濃度になるように、露点が 60°C以下の窒素雰囲気ドライボッ タス内で混合した。混合後の溶液の水分をカールフィッシャー水分計 (平沼産業株式 会社製、平沼微量水分測定装置 AQ— 7)で測定し、 30ppm以下であることを確認し た。混合溶液中のビス (メトキシメチル)ジメチルアンモ-ゥムテトラフルォロボレートの 濃度は表 3に示す通りとした。  The bis (methoxymethyl) dimethylammoniumtetrafluoroborate produced in Example 1 and propylene carbonate (PC) (reagent: manufactured by Kishida Chemical Co., Ltd., lithium battery grade) at various concentrations. As described above, mixing was performed in a dry bot- tom in a nitrogen atmosphere having a dew point of 60 ° C or less. The water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less. The concentration of bis (methoxymethyl) dimethylammonium-tetrafluoroborate in the mixed solution was as shown in Table 3.
[0139] 各種濃度の混合溶液を、ドライボックス内で 4mlずつ、スクリュー栓が付 ヽたガラス 容器に移し、ドライボックスの外に取り出した。各種溶液が入ったガラス容器を恒温槽 に浸漬し、 25°Cでそれぞれ 5時間保持した。  [0139] The mixed solutions having various concentrations were transferred to a glass container provided with a screw stopper in a dry box in an amount of 4 ml each and taken out of the dry box. The glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours.
[0140] 比較例 3  [0140] Comparative Example 3
比較例 2で製造した N— (メトキシェチル) N, N ジェチルー N—メチルアンモ -ゥム テトラフルォロボレートとプロピレンカーボネート(PC) (キシダイ匕学株式会社製、リチ ゥムノ ッテリーグレード)とを、種々の濃度になるように、露点が 60°C以下の窒素雰 囲気ドライボックス内で混合した。混合後の溶液の水分をカールフィッシャー水分計( 平沼産業株式会社製、平沼微量水分測定装置 AQ - 7)で測定し、 30ppm以下であ ることを確認した。混合溶液中の N (メトキシェチル) N, N ジェチルー N メチル アンモ-ゥムテトラフルォロボレートの濃度は、表 4に示す通りとした。  N- (methoxyethyl) N, N getyl-N-methylammonium-tetrafluoroborate and propylene carbonate (PC) (Liquid nottery grade, manufactured by Kishidai Tangaku Co., Ltd.) produced in Comparative Example 2 Was mixed in a dry box in a nitrogen atmosphere with a dew point of 60 ° C or less. The water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and found to be 30 ppm or less. The concentration of N (methoxyethyl) N, N getyl-N-methylammonium-tetrafluoroborate in the mixed solution was as shown in Table 4.
[0141] 各種濃度の混合溶液を、ドライボックス内で 4mlずつ、スクリュー栓が付 ヽたガラス 容器に移し、ドライボックスの外に取り出した。各種溶液が入ったガラス容器を恒温槽 に浸漬し、 25°C、でそれぞれ 5時間保持した。  [0141] The mixed solutions having various concentrations were transferred to a glass container equipped with a screw stopper in a dry box in an amount of 4 ml, and taken out of the dry box. The glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours each.
<電気伝導度の測定 >  <Measurement of electrical conductivity>
各種溶液の混合状態を観察した後、再度ドライボックス内から各種溶液を取り出し、 電気伝導度を測定した。電気伝導度の測定には、導電率計 (CDM210 Radiomet er社製)を使用した。測定セルには XE— 100 (Radiometer社製)を使用した。 結果 を表 2、表 3、表 4及び図 3に示す。  After observing the mixed state of the various solutions, the various solutions were again taken out of the dry box, and the electric conductivity was measured. For the measurement of electric conductivity, a conductivity meter (manufactured by CDM210 Radiometer) was used. XE-100 (manufactured by Radiometer) was used as a measurement cell. The results are shown in Tables 2, 3, 4 and 3.
[0142] [表 2] N—(エトキジメチル)一 N—(メトキシメ [0142] [Table 2] N— (ethoxydimethyl) N— (methoxymeth
チル)ピロリジニゥムテトラフルォロボ 伝導度  Chill) pyrrolidinium tetrafluorobo conductivity
レート (,mS/ cm)  Rate (, mS / cm)
0.5 8.1  0.5 8.1
1 12.4  1 12.4
1.5 14.1  1.5 14.1
2 14.6  2 14.6
2.5 13.3  2.5 13.3
3 12.4  3 12.4
[0143] [表 3] ビス (メトキシメチル)ジメチルアンモニゥ [Table 3] Bis (methoxymethyl) dimethylammonium
伝導度  Conductivity
ムテトラフルォロボレート  Mutetrafluoroborate
(mSZ cm)  (mSZ cm)
;辰度 (Μ)  ; Tatsunari (Μ)
0.5 8.8  0.5 8.8
1 12.7  1 12.7
1.5 13.9  1.5 13.9
2 14.3  2 14.3
2.5 13.6  2.5 13.6
3 1 1.9  3 1 1.9
[0144] [表 4] [0144] [Table 4]
Ν—(メトキシェチル)一 Ν—ジェチル一 Ν— (Methoxyethyl) Ν—Jetil
Ν—メチルアンモニムテトラフルォロボ 伝導度  Ν—methylammonium tetrafluorobo conductance
(mS/ cm)  (mS / cm)
レート 濃度 (Μ)  Rate Concentration (Μ)
0.6 8.5  0.6 8.5
1.1 1 1.8  1.1 1 1.8
1.7 12.6  1.7 12.6
2.2 12.0  2.2 12.0
2.8 10.4  2.8 10.4
3.3 8.5 実施例 8  3.3 8.5 Example 8
実施例 4で製造した N (エトキシメチル) N (メトキシメチル)ピロリジニゥムテトラ フルォロボレートとェチルメチルカーボネート(EMC) (試薬:キシダ化学株式会社製 、リチウムバッテリーグレード)とを、種々の濃度になるように、露点が 60°C以下の窒 素雰囲気ドライボックス内で混合した。混合後の溶液の水分をカールフィッシャー水 分計 (平沼産業株式会社製、平沼微量水分測定装置 AQ - 7)で測定し、 30ppm以 下であることを確認した。混合溶液中の N (エトキシメチル) N (メトキシメチル)ピ 口リジ-ゥムテトラフルォロボレート濃度は、表 5に示す通りとした。 N (ethoxymethyl) N (methoxymethyl) pyrrolidinium tetrafluoroborate and ethyl methyl carbonate (EMC) (reagent: manufactured by Kishida Chemical Co., Ltd., lithium battery grade) produced in Example 4 were prepared at various concentrations. The dew point is 60 ° C or less. The mixture was mixed in a dry box under an atmosphere. The water content of the mixed solution was measured with a Karl Fischer water meter (manufactured by Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and found to be 30 ppm or less. The concentration of N (ethoxymethyl) N (methoxymethyl) piperidiniumtetrafluoroborate in the mixed solution was as shown in Table 5.
[0146] 各種混合溶液を、ドライボックス内で 4mlずつ、スクリュー栓が付 、たガラス容器に 移し、ドライボックスの外に取り出した。各種溶液が入ったガラス容器を恒温槽に浸漬 し、 25°C、でそれぞれ 5時間保持した。  [0146] Each mixed solution was transferred to a glass container provided with a screw stopper in an amount of 4 ml each in a dry box, and was taken out of the dry box. The glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours.
[0147] 比較例 4  [0147] Comparative Example 4
比較例 2で製造した N— (メトキシェチル) N, N ジェチルー N—メチルアンモニムテ トラフルォロボレートとェチルメチルカーボネート (EMC) (試薬:キシダイ匕学株式会社 製、リチウムノ ッテリーグレード)とを、種々の濃度になるように、露点が 60°C以下の 窒素雰囲気ドライボックス内で混合した。混合後の溶液の水分をカールフィッシャー 水分計 (平沼産業株式会社製、平沼微量水分測定装置 AQ - 7)で測定し、 30ppm 以下であることを確認した。混合溶液中の N (メトキシェチル) N, N ジェチルー N ーメチルアンモニムテトラフルォロボレート濃度は、表 6に示す通りとした。  N- (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate and ethyl methyl carbonate (EMC) (reagent: manufactured by Kishidai-Dogaku Co., Ltd., lithium nottery grade) produced in Comparative Example 2 were Mixing was performed in a nitrogen atmosphere dry box with a dew point of 60 ° C or less to obtain various concentrations. The water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less. The concentration of N (methoxyethyl) N, N getyl-N-methylammonium tetrafluoroborate in the mixed solution was as shown in Table 6.
[0148] 比較例 5 [0148] Comparative Example 5
比較例 1で製造した N (メトキシェチル) N メチルピロリジ-ゥムテトラフルォロボ レートとェチルメチルカーボネート (EMC) (試薬:キシダ化学株式会社製、リチウム ノ ッテリーグレード)とを、種々の濃度になるように、露点が 60°C以下の窒素雰囲気 ドライボックス内で混合した。混合後の溶液の水分をカールフィッシャー水分計 (平沼 産業株式会社製、平沼微量水分測定装置 AQ— 7)で測定し、 30ppm以下であること を確認した。混合溶液中の N (メトキシェチル) N メチルピロリジ-ゥムテトラフル ォロボレート濃度は、表 7に掲げる通りとした。  N (methoxyethyl) N methylpyrrolidi-dimethyltetrafluoroborate and ethyl methyl carbonate (EMC) (reagent: manufactured by Kishida Chemical Co., Ltd., lithium nottery grade) produced in Comparative Example 1 were prepared at various concentrations. Mixing was performed in a nitrogen atmosphere dry box with a dew point of 60 ° C or less. The water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less. The concentration of N (methoxyethyl) N methylpyrrolidi-dimethyltetrafluoroborate in the mixed solution was as shown in Table 7.
[0149] 各種混合溶液を、ドライボックス内で 4mlずつ、スクリュー栓が付 、たガラス容器に 移し、ドライボックスの外に取り出した。各種溶液が入ったガラス容器を恒温槽に浸漬 し、 25°C、でそれぞれ 5時間保持した。 [0149] Each mixed solution was transferred to a glass container provided with a screw stopper in an amount of 4 ml in a dry box and taken out of the dry box. The glass containers containing the various solutions were immersed in a thermostat and kept at 25 ° C for 5 hours.
<電気伝導度の測定 >  <Measurement of electrical conductivity>
各種溶液の混合状態を観察し、分離していない溶液状態の混合物について、上記 と同様にして電気伝導度を測定した。結果を表 5— 7に示す。 Observe the mixed state of the various solutions. The electric conductivity was measured in the same manner as described above. The results are shown in Table 5-7.
[0150] [表 5] [0150] [Table 5]
[0151] [表 6] [0151] [Table 6]
[0152] [表 7] [0152] [Table 7]
Figure imgf000032_0001
実施例 9
Figure imgf000032_0001
Example 9
実施例 5で得られた N (エトキシメチル) N (メトキシメチル)ピロリジ -ゥムビス(ト リフルォロメタンスルホ -ル)イミドに、リチウムビス(トリフルォロメタンスルホ -ル)イミド (LiTFSI)を 0.5M又は 1. OMの濃度になるように混合した。露点が 60°C以下の窒 素雰囲気ドライボックス内で混合した。混合後の溶液の水分をカールフィッシャー水 分計 (平沼産業株式会社製、平沼微量水分測定装置 AQ - 7)で測定し、 30ppm以 下であることを確認した。 To N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethylbis (trifluoromethanesulfol) imide obtained in Example 5, lithium bis (trifluoromethanesulfol) imide (LiTFSI) was added at 0.5 M or 1. Mix to OM concentration. If the dew point is below 60 ° C The mixture was mixed in a dry box under an atmosphere. The water content of the mixed solution was measured with a Karl Fischer water meter (manufactured by Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and found to be 30 ppm or less.
[0154] 比較例 6 [0154] Comparative Example 6
N (メトキシェチル) N, N ジェチルー N—メチルアンモ -ゥムビス(トリフルォロメ タンスルホ -ル)イミド (試薬:関東ィ匕学社製 素材研究用)を減圧乾燥した後 (水分 量 20ppm以下)、リチウムビス(トリフルォロメタンスルホ -ル)イミド(LiTFSI)を 0.5M 又は 1. OMの濃度になるように添加し、露点が 60°C以下の窒素雰囲気ドライボック ス内で混合した。混合後の溶液の水分をカールフィッシャー水分計 (平沼産業株式 会社製、平沼微量水分測定装置 AQ— 7)で測定し、 30ppm以下であることを確認し た。  N (Methoxyethyl) N, N Jethyl-N-methylammonium-dimethylbis (trifluoromethylsulfonyl) imide (reagent: Kanto-Danigaku Co., Ltd. for material research) is dried under reduced pressure (water content: 20 ppm or less), and lithium bis (trifluoromethyl) Lomethanesulfol) imide (LiTFSI) was added to a concentration of 0.5M or 1.OM, and mixed in a nitrogen atmosphere dry box with a dew point of 60 ° C or less. The water content of the mixed solution was measured with a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Analyzer AQ-7) and confirmed to be 30 ppm or less.
<電気伝導度の測定 >  <Measurement of electrical conductivity>
各種溶液の混合状態の観察後、再度ドライボックス内から溶液を取り出し、上記と 同様にして電気伝導度を測定した。結果を表 8に示す。  After observing the mixed state of the various solutions, the solutions were again taken out of the dry box, and the electric conductivity was measured in the same manner as described above. Table 8 shows the results.
[0155] [表 8] [Table 8]
Figure imgf000033_0001
Figure imgf000033_0001
[0156] 実施例 10 (電気二重層キャパシタの作成)  Example 10 (Production of Electric Double Layer Capacitor)
実施例 6で製造した混合溶液 (電解液)のうち、 N (エトキシメチル) N (メトキシメ チル)ピロリジ-ゥムテトラフルォロボレート濃度 2Mの混合溶液を用い、下記の電気 二重層キャパシタを作成した。  From the mixed solution (electrolyte solution) produced in Example 6, the following electric double layer capacitor was prepared using a mixed solution of N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethyltetrafluoroborate at a concentration of 2M. did.
[0157] 電極 1及び電極 2は、活性炭を主成分とする電導性物質、バインダー、 N—メチルビ 口リドンと共に混練して得られたペーストをアルミニウム箔に 150 μ mの厚さで塗工後 、乾燥して得られたシート状電極を円板状に切り出したものである。 [0157] Electrode 1 and electrode 2 are made of a conductive material mainly composed of activated carbon, a binder, and N-methylbiphenyl. A paste obtained by kneading with mouth lidone was coated on an aluminum foil to a thickness of 150 μm, and then dried, and the obtained sheet electrode was cut into a disk shape.
[0158] 容器体 4、容器体 5、スぺーサー 7、スプリング 8は共にステンレス鋼製であり、セパ レータ 7は、ポリプロピレン不織布である。  [0158] The container body 4, the container body 5, the spacer 7, and the spring 8 are all made of stainless steel, and the separator 7 is a polypropylene non-woven fabric.
[0159] 電気二重層キャパシタの組み立ては、アルゴンガスを満たしたグローブボックス内 で行った。電極 1、電極 2、容器体 4、容器体 5、スプリング 8及びスぺーサー 7を 120 °Cの加熱下、 24時間真空乾燥した後、グローブボックス内に持ち込んだ。実施例 6 で得られた混合溶液 (電気二重層キャパシタ用電解液)を電極 1、電極 2及びセパレ ータ 3に含浸させた。図 1に示す構成となるように、容器体 4の上に、電極 セパレー タ 3、電極 2、スぺーサー 7及びスプリング 8を順々に載置し、ガスケット 6を挿入し、こ れらの上に容器体 5を載せた。容器体 4の開口部分を内方へ折曲することにより封口 し、電気二重層キャパシタを作成した。  [0159] The electric double layer capacitor was assembled in a glove box filled with argon gas. The electrode 1, the electrode 2, the container 4, the container 5, the spring 8, and the spacer 7 were vacuum-dried under heating at 120 ° C. for 24 hours, and then taken into a glove box. Electrode 1, electrode 2 and separator 3 were impregnated with the mixed solution (electrolyte solution for electric double layer capacitor) obtained in Example 6. The electrode separator 3, the electrode 2, the spacer 7, and the spring 8 are placed in this order on the container 4 so that the configuration shown in FIG. 1 is obtained, and the gasket 6 is inserted. The container body 5 was placed on the top. The opening of the container body 4 was sealed by bending inward to form an electric double layer capacitor.
[0160] 上記で作成したコイン型電気二重層キャパシタを、専用のホルダにセットした後、電 気二重層キャパシタの充放電を開始した。電流密度が 2.0mAの定電流充電を行 、 、電圧が 2.5Vに達した時点で定電圧充電に切り替えた。 2.5Vで 120分保持した後 、 2.0mAの定電流放電を行い、電圧が OVに達した時点で低電圧放電に切り替え 0 Vで 120分間保持することで、充放電特性を調べた。その結果、実施例 10で作成さ れた本発明の電気二重層キャパシタは良好な充放電特性を示した。  [0160] After the coin-type electric double layer capacitor prepared above was set in a dedicated holder, charging and discharging of the electric double layer capacitor were started. The constant current charging was performed at a current density of 2.0 mA, and the voltage was switched to the constant voltage charging when the voltage reached 2.5 V. After holding at 2.5 V for 120 minutes, a constant current discharge of 2.0 mA was performed, and when the voltage reached OV, switching to low-voltage discharge was performed and the charge and discharge characteristics were examined by holding at 0 V for 120 minutes. As a result, the electric double layer capacitor of the present invention prepared in Example 10 exhibited good charge / discharge characteristics.
[0161] 実施例 11 (リチウム二次電池電解液の調製)  Example 11 (Preparation of electrolyte solution for lithium secondary battery)
実施例 5で製造した N (エトキシメチル) N (メトキシメチル)ピロリジ -ゥムビス(ト リフルォロメタンスルホ -ル)イミド 5wt%、リチウム塩としてリチウムビストリフルォロメタ ンスルフォ-ルイミド(LiTFSI) O. 5Mを用い、非水溶媒としてビ-レンカーボネート( VC) 5wt%、残りをエチレンカーボネート(EC) Zェチルメチルカーボネート (EMC) = 1,3 (V/V)を用いて非水電解液を調製した。  5% by weight of N (ethoxymethyl) N (methoxymethyl) pyrrolidi-dimethylbis (trifluoromethanesulfonyl) imide prepared in Example 5, lithium bistrifluoromethanesulfonimide (LiTFSI) O.5M as lithium salt A non-aqueous electrolyte is prepared by using 5wt% of bi-lene carbonate (VC) as a non-aqueous solvent and ethylene carbonate (EC) Z-ethyl methyl carbonate (EMC) = 1,3 (V / V) did.
[0162] 実施例 12 (リチウム二次電池の作成)  Example 12 (Production of lithium secondary battery)
図 2に示すようなコイン型非水電解液リチウム二次電池を作成した。図 2において、 11は正極、 12は負極、 13は多孔質セパレータ、 14は正極缶、 15は負極缶、 16は ガスケット、 17はスぺーサ一、 18はスプリングである。 [0163] 図 2に示す非水電解液リチウム二次電池を以下に示す手順で作成した。 A coin-type nonaqueous electrolyte lithium secondary battery as shown in FIG. 2 was produced. In FIG. 2, 11 is a positive electrode, 12 is a negative electrode, 13 is a porous separator, 14 is a positive electrode can, 15 is a negative electrode can, 16 is a gasket, 17 is a spacer, and 18 is a spring. [0163] The nonaqueous electrolyte lithium secondary battery shown in Fig. 2 was prepared in the following procedure.
[0164] 負極 12の作成: [0164] Preparation of negative electrode 12:
天然黒鉛と結着剤のポリフッ化ビ-リデン (PVdF)とを 9 : 1の重量比で混合し、これ に N—メチルピロリドンを加え、ペーストを得た。このペーストを厚さ 22 mの銅箔上に 電極塗工用アプリケーターを用いて均一に塗工した。これを 120°Cで 8時間、真空乾 燥し、電極打ち抜き機で直径 16mmの負極 12を得た。  Natural graphite and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 9: 1, and N-methylpyrrolidone was added thereto to obtain a paste. This paste was uniformly applied on a 22-m-thick copper foil using an applicator for electrode application. This was vacuum-dried at 120 ° C. for 8 hours, and a negative electrode 12 having a diameter of 16 mm was obtained using an electrode punching machine.
[0165] 正極 11の作成: [0165] Preparation of positive electrode 11:
LiCoO粉末と導電助剤のアセチレンブラックと結着剤の PVdFを 90: 5: 5の重量 LiCoO powder, conductive additive acetylene black and binder PVdF 90: 5: 5 weight
2 2
比で混合し、この混合物に N-メチルピロリドンをカ卩え、ペーストを得た。このペースト を 120°Cで 8時間、真空乾燥し、電極打ち抜き機で直径 16mmの正極 11を得た。  And N-methylpyrrolidone was added to the mixture to obtain a paste. This paste was vacuum dried at 120 ° C. for 8 hours, and a positive electrode 11 having a diameter of 16 mm was obtained with an electrode punching machine.
[0166] 正極 11を正極缶 14の底面に載せ、その上に多孔質セパレータ 13を載置した後、 実施例 11で調製した非水電解液を注入し、ガスケット 16を挿入した。その後、セパレ ータ 13の上に負極 12、スぺーサー 17、スプリング 18及び負極缶 15を順々に載置し 、コイン形電池かしめ機(coin crimper machine)を使用して、正極缶 14の開口部分を 内方へ折曲することにより封口し、非水電解液リチウム二次電池を作成した。  [0166] The positive electrode 11 was placed on the bottom surface of the positive electrode can 14, and the porous separator 13 was placed thereon. Then, the non-aqueous electrolyte prepared in Example 11 was injected, and the gasket 16 was inserted. Thereafter, the negative electrode 12, the spacer 17, the spring 18, and the negative electrode can 15 are sequentially placed on the separator 13, and the positive electrode can 14 is removed using a coin crimper machine. The opening was closed by bending inward to form a non-aqueous electrolyte lithium secondary battery.
[0167] 上記の通り作成した電池を下記のように評価した。充電は 0. 4mAの一定電流で行 い、電圧が 4. IVに到達した時点で 4. IVで 1時間定電圧充電した。放電は 1. OmA の定電流で行い、電圧が 3Vになるまで放電した。電圧が 3Vに到達したら 3Vで 1時 間保持し、充放電特性を調べた。その結果、実施例 11で作成された本発明二次電 池は良好なサイクル特性を示した。  [0167] The battery prepared as described above was evaluated as follows. The battery was charged at a constant current of 0.4 mA, and when the voltage reached 4. IV, the battery was charged at a constant voltage of 4. IV for 1 hour. Discharging was performed at a constant current of 1. OmA until the voltage reached 3V. When the voltage reached 3V, it was held at 3V for 1 hour, and the charge / discharge characteristics were examined. As a result, the secondary battery of the present invention prepared in Example 11 showed good cycle characteristics.

Claims

請求の範囲 [1] 一般式 Claims [1] General formula
[化 1]  [Chemical 1]
_  _
roH2c + c撃4 roH 2 c + c strike 4
[式中、 R1及び R2は、同一又は異なって、 C アルキル基を示す。また R1及び R2は、 [Wherein, R 1 and R 2 are the same or different and each represent a C alkyl group. R 1 and R 2 are
1-4  1-4
これらが結合する窒素原子と共に互いに結合して飽和複素環を形成してもよい。 R3 及び R4は、同一又は異なって、メチル基又はェチル基を示す。 X—は、陰イオンを示 す。] These may be bonded together with the nitrogen atom to which they are bonded to form a saturated heterocyclic ring. R 3 and R 4 are the same or different and represent a methyl group or an ethyl group. X— represents an anion. ]
で表される第四級アンモ-ゥム塩。  A quaternary ammonium salt represented by
[2] R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、 3—[2] A saturated heterocyclic ring formed by bonding together with the nitrogen atom to which R 1 and R 2 are bonded is 3—
5員の飽和複素環である請求項 1に記載の第四級アンモニゥム塩。 2. The quaternary ammonium salt according to claim 1, which is a 5-membered saturated heterocycle.
[3] R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、ピロ リジン環である請求項 2に記載の第四級アンモ-ゥム塩。 [3] The quaternary ammonium salt according to claim 2, wherein the saturated heterocyclic ring formed by bonding together with the nitrogen atom to which R 1 and R 2 are bonded is a pyrrolidine ring.
[4] R1及び R2が共にメチル基である請求項 1に記載の第四級アンモ-ゥム塩。 [4] The quaternary ammonium salt according to claim 1, wherein R 1 and R 2 are both methyl groups.
[5] X—力 BF―、 A1C1―、 Al C1―、 PF―、 AsF―、 N (CF SO )—、 N (CF SO )―、  [5] X—force BF—, A1C1-—, Al C1-—, PF—, AsF—, N (CF SO) —, N (CF SO) —,
4 4 2 7 6 6 3 2 2 3CF2 2 2 4 4 2 7 6 6 3 2 2 3 CF2 2 2
C (CF SO )―、 N (CF SO ) (CF CO)—、 CF SO―、 CH SO―、 CH CO―、 CFC (CF SO)-, N (CF SO) (CF CO)-, CF SO-, CH SO-, CH CO-, CF
3 2 3 3 2 3 3 3 3 3 3 2 33 2 3 3 2 3 3 3 3 3 3 2 3
COO—、 NO—、 C H COO—又、 C H SO—、 CF3BF3—、 C2F5BF3—又は I—である COO—, NO—, C H COO—or C H SO—, CF3BF3—, C2F5BF3— or I—
3 6 5 6 5 3  3 6 5 6 5 3
請求項 1一 4のいずれかに記載の第四級アンモ-ゥム塩。  15. The quaternary ammonium salt according to claim 14.
[6] X—力 BF—又は N (CF SO )—である請求項 5に記載の第四級アンモ-ゥム塩。 [6] The quaternary ammonium salt according to claim 5, which is X—force BF— or N (CF 2 SO 4) —.
4 3 2 2  4 3 2 2
[7] 一般式  [7] General formula
[化 2]
Figure imgf000036_0001
[Chemical 2]
Figure imgf000036_0001
[式中、 R1及び R2は、同一又は異なって、 C アルキル基を示す。また R1及び R2は、 [Wherein, R 1 and R 2 are the same or different and each represent a C alkyl group. R 1 and R 2 are
1-4  1-4
これらが結合する窒素原子と共に互いに結合して飽和複素環を形成してもよい。 R3 及び R4は、同一又は異なって、メチル基又はェチル基を示す。 X—は、陰イオンを示 す。] These may be bonded together with the nitrogen atom to which they are bonded to form a saturated heterocyclic ring. R 3 And R 4 are the same or different and represent a methyl group or an ethyl group. X— represents an anion. ]
で表される第四級アンモ-ゥム塩力 なる電解質。  A quaternary ammonium salt represented by:
[8] R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、 3—[8] A saturated heterocyclic ring formed by bonding together with the nitrogen atom to which R 1 and R 2 are bonded is 3—
5員の飽和複素環である第四級アンモ-ゥム塩力 なる請求項 7に記載の電解質。 The electrolyte according to claim 7, which is a quaternary ammonium salt which is a 5-membered saturated heterocycle.
[9] R1及び R2が結合する窒素原子と共に互いに結合して形成する飽和複素環が、ピロ リジン環である第四級アンモ-ゥム塩力 なる請求項 8に記載の電解質。 [9] The electrolyte according to claim 8, wherein the saturated heterocyclic ring formed by bonding to each other together with the nitrogen atom to which R 1 and R 2 are bonded is a quaternary ammonium salt which is a pyrrolidine ring.
[10] R1及び R2が共にメチル基である第四級アンモ-ゥム塩力 なる請求項 7に記載の 電解質。 [10] The electrolyte according to claim 7, wherein R 1 and R 2 are both methyl groups.
[11] X—力 BF―、 A1C1―、 Al C1―、 PF―、 AsF―、 N (CF SO )—、 N (CF SO )―、  [11] X—force BF—, A1C1-—, Al C1-—, PF—, AsF—, N (CF SO) —, N (CF SO) —,
4 4 2 7 6 6 3 2 2 3CF2 2 2 4 4 2 7 6 6 3 2 2 3 CF2 2 2
C (CF SO )―、 N (CF SO ) (CF CO)—、 CF SO―、 CH SO―、 CH CO―、 CFC (CF SO)-, N (CF SO) (CF CO)-, CF SO-, CH SO-, CH CO-, CF
3 2 3 3 2 3 3 3 3 3 3 2 33 2 3 3 2 3 3 3 3 3 3 2 3
COO—、 NO—、 C H COO—又、 C H SO—、 CF3BF3—、 C2F5BF3—又は I—である COO—, NO—, C H COO—or C H SO—, CF3BF3—, C2F5BF3— or I—
3 6 5 6 5 3  3 6 5 6 5 3
第四級アンモ-ゥム塩カもなる請求項 7— 10のいずれかに記載の電解質。  The electrolyte according to any one of claims 7 to 10, which also comprises a quaternary ammonium salt.
[12] X—力 BF—又は N (CF SO )—である第四級アンモ-ゥム塩からなる請求項 11に [12] A quaternary ammonium salt which is X—force BF— or N (CF SO) — according to claim 11,
4 3 2 2  4 3 2 2
記載の電解質。  The electrolyte as described.
[13] 請求項 7— 12のいずれかに記載の電解質の 1種又は 2種以上を含有する電解液。  [13] An electrolytic solution containing one or more of the electrolytes according to any one of claims 7 to 12.
[14] 請求項 7— 12のいずれかに記載の電解質のうち少なくとも 1種と、有機溶媒とを含 んでなる請求項 13に記載の電解液。 [14] The electrolytic solution according to claim 13, comprising at least one of the electrolytes according to any of claims 7 to 12 and an organic solvent.
[15] 有機溶媒が、環状炭酸エステル、鎖状炭酸エステル、二トリル化合物及びスルホン 化合物からなる群より選ばれる少なくとも 1種である請求項 14に記載の電解液。 [15] The electrolytic solution according to claim 14, wherein the organic solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, nitrile compounds and sulfone compounds.
[16] 有機溶媒が、プロピレンカーボネート、エチレンカーボネート、ェチルメチルカーボ ネート及びジメチルカーボネートからなる群より選ばれる少なくとも 1種である請求項 1 5に記載の電解液。 [16] The electrolytic solution according to claim 15, wherein the organic solvent is at least one selected from the group consisting of propylene carbonate, ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate.
[17] 請求項 13に記載の電解液を含む電気化学デバイス。 [17] An electrochemical device comprising the electrolytic solution according to claim 13.
[18] 電気化学デバイス力 電気二重層キャパシタ又は二次電池である請求項 17に記 載の電気化学デバイス。  [18] The electrochemical device according to claim 17, which is an electric double layer capacitor or a secondary battery.
PCT/JP2004/016018 2003-10-31 2004-10-28 Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device WO2005042466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515146A JP4836578B2 (en) 2003-10-31 2004-10-28 Quaternary ammonium salts, electrolytes, electrolytes and electrochemical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003372159 2003-10-31
JP2003-372159 2003-10-31

Publications (1)

Publication Number Publication Date
WO2005042466A1 true WO2005042466A1 (en) 2005-05-12

Family

ID=34543995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016018 WO2005042466A1 (en) 2003-10-31 2004-10-28 Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device

Country Status (3)

Country Link
JP (1) JP4836578B2 (en)
TW (1) TW200519068A (en)
WO (1) WO2005042466A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109698A (en) * 2005-10-11 2007-04-26 Kaneka Corp Electrolyte containing ionic liquid and organic solvent
JP2007141489A (en) * 2005-11-15 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
GB2436469A (en) * 2006-03-25 2007-09-26 Ionic Polymer Solutions Ltd Method of conduction using a quaternary ammonium compound
JP2008034256A (en) * 2006-07-28 2008-02-14 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
WO2008032688A1 (en) * 2006-09-12 2008-03-20 Nippon Chemical Industrial Co., Ltd Electrolyte, electrolytic solution for lithium ion secondary battery comprising the electrolyte, and lithium ion secondary battery using the electrolytic solution
CN101747213A (en) * 2008-12-19 2010-06-23 中国科学院兰州化学物理研究所 Ionic liquid taking diether quaternary ammonium as cation and synthetic method thereof
WO2012023534A1 (en) * 2010-08-17 2012-02-23 セントラル硝子株式会社 Method for producing a lithium hexafluorophosphate concentrated liquid
JP2012116802A (en) * 2010-12-02 2012-06-21 Nitto Boseki Co Ltd Ionic liquid and production method of the same
WO2012133174A1 (en) * 2011-03-25 2012-10-04 昭栄化学工業株式会社 Electrolyte solvent for positive electrode active material composed of oxo acid salt of lithium, electrolyte solution for positive electrode active material composed of oxo acid salt of lithium, and lithium ion secondary battery
JP2014197454A (en) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 Electrolytic solution for lithium air battery
CN104737256A (en) * 2012-10-16 2015-06-24 日清纺控股株式会社 Electrolyte salt and electrolyte for electricity storage device, and electricity storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702115C2 (en) * 2012-04-13 2019-10-04 Аркема Инк. Battery based on organosulphur compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOEHME H. ET AL.: "Zur acylspaltung von formaldehyd-N,O-acetalen", CHEMISCHE BERICHTE, vol. 110, no. 1, 1977, pages 208 - 216, XP002984485 *
CHEMICAL ABSTRACTS, vol. 74, no. 11, 1971, Columbus, Ohio, US; abstract no. 52950G, BOEHME H. ET AL.: "Alpha-halo amines. XXVII. Reactions of alpha-halo ethers, alpha-halo thioethers, and halo amines with N,O-,N,S-, and N,N-acetals" page 292; XP002984484 *
CHEMISCHE BERICHTE, vol. 103, no. 12, 1970, pages 3918 - 3922 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109698A (en) * 2005-10-11 2007-04-26 Kaneka Corp Electrolyte containing ionic liquid and organic solvent
JP2007141489A (en) * 2005-11-15 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
GB2436469A (en) * 2006-03-25 2007-09-26 Ionic Polymer Solutions Ltd Method of conduction using a quaternary ammonium compound
GB2436469B (en) * 2006-03-25 2010-10-06 Ionic Polymer Solutions Ltd Quaternary ammonium compounds and their uses
JP2008034256A (en) * 2006-07-28 2008-02-14 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
US8247112B2 (en) 2006-09-12 2012-08-21 Nippon Chemical Industrial Co., Ltd. Electrolyte, electrolyte solution for lithium-ion secondary battery comprising the electrolyte, and lithium-ion secondary battery using the electrolyte solution
WO2008032688A1 (en) * 2006-09-12 2008-03-20 Nippon Chemical Industrial Co., Ltd Electrolyte, electrolytic solution for lithium ion secondary battery comprising the electrolyte, and lithium ion secondary battery using the electrolytic solution
JP2008071499A (en) * 2006-09-12 2008-03-27 Nippon Chem Ind Co Ltd Electrolyte, lithium-ion secondary battery electrolyte solution containing the same, and lithium-ion secondary battery using lithium-ion secondary battery electrolyte solution
CN101747213A (en) * 2008-12-19 2010-06-23 中国科学院兰州化学物理研究所 Ionic liquid taking diether quaternary ammonium as cation and synthetic method thereof
WO2012023534A1 (en) * 2010-08-17 2012-02-23 セントラル硝子株式会社 Method for producing a lithium hexafluorophosphate concentrated liquid
JP2013014494A (en) * 2010-08-17 2013-01-24 Central Glass Co Ltd Method for producing lithium hexafluorophosphate concentrated liquid
CN103069638A (en) * 2010-08-17 2013-04-24 中央硝子株式会社 Method for producing a lithium hexafluorophosphate concentrated liquid
US9343774B2 (en) 2010-08-17 2016-05-17 Central Glass Company, Limited Method for producing a lithium hexafluorophosphate concentrated liquid
JP2012116802A (en) * 2010-12-02 2012-06-21 Nitto Boseki Co Ltd Ionic liquid and production method of the same
WO2012133174A1 (en) * 2011-03-25 2012-10-04 昭栄化学工業株式会社 Electrolyte solvent for positive electrode active material composed of oxo acid salt of lithium, electrolyte solution for positive electrode active material composed of oxo acid salt of lithium, and lithium ion secondary battery
JP5862656B2 (en) * 2011-03-25 2016-02-16 昭栄化学工業株式会社 Electrolyte solvent for lithium oxoate positive electrode active material, electrolyte solution for lithium oxoate positive electrode active material, and lithium ion secondary battery
US9379413B2 (en) 2011-03-25 2016-06-28 Shoei Chemical Inc. Electrolyte solvent for cathode active material composed of lithium oxo acid salt, electrolyte solution for cathode active material composed of lithium oxo acid salt, and lithium ion secondary battery
CN104737256A (en) * 2012-10-16 2015-06-24 日清纺控股株式会社 Electrolyte salt and electrolyte for electricity storage device, and electricity storage device
JP2014197454A (en) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 Electrolytic solution for lithium air battery

Also Published As

Publication number Publication date
JP4836578B2 (en) 2011-12-14
TW200519068A (en) 2005-06-16
JPWO2005042466A1 (en) 2007-05-10
TWI359127B (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5279764B2 (en) Quaternary ammonium salt and method for producing the same
KR100900132B1 (en) Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device
EP3391454B1 (en) Silane-functionalized ionic liquids and electrolytes comprising the same
JP4802108B2 (en) Quaternary ammonium salts, electrolytes, electrolytes and electrochemical devices
JP4836578B2 (en) Quaternary ammonium salts, electrolytes, electrolytes and electrochemical devices
KR100920555B1 (en) Electrolyte solution and nonaqueous electrolyte lithium secondary battery
JP4751629B2 (en) Quaternary ammonium salts, electrolytes, electrolytes and electrochemical devices
JP2006193460A (en) Quaternary ammonium salt, electrolyte and electrochemical device
WO2006077893A1 (en) Electrolytic solution and electrochemical device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515146

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase