WO2005040410A1 - Screening for lipolytic enzyme or amidase activity - Google Patents
Screening for lipolytic enzyme or amidase activity Download PDFInfo
- Publication number
- WO2005040410A1 WO2005040410A1 PCT/DK2004/000748 DK2004000748W WO2005040410A1 WO 2005040410 A1 WO2005040410 A1 WO 2005040410A1 DK 2004000748 W DK2004000748 W DK 2004000748W WO 2005040410 A1 WO2005040410 A1 WO 2005040410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- ester
- sample
- polyunsaturated fatty
- amide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/44—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
Definitions
- the present invention relates to a method for detecting 1 >hydrolytic activity towards a particular ester or amide bond in a substrate.
- Lipolytic enzymes such as triacyl glycerol lipase, phospholipases, and galactolipase are used industrially, e.g. in baking as additives to dough, and in detergents. In the development of lipolytic enzymes for baking it is of interest to test candidate enzymes for their hydro- lytic activity on ester bonds in various substrates such as triacyl glycerol, phospholipids and qalactolipids (WO 0032758). Amidases can be used industrially, e.g. in the hydrolysis of nylon.
- Lipolytic enzyme or amidase activity in a sample is conventionally detected by incubating the sample with a lipid or amide and detecting the formation of free non-esterified fatty acid.
- the formation of fatty acid may be followed by titration or by enzymatic colorimetric methodology.
- US 4301244 discloses such a method which relies upon the acylation of coenzyme A(CoA) by the fatty acids in the presence of added acyl-CoA synthetase (ACS).
- the acyl-CoA produced is oxidized by added acyl-CoA oxidase (ACOD) with the generation of hydrogen peroxide.
- ACOD acyl-CoA oxidase
- Hydrogen peroxide in the presence of peroxidase (POD) permits the oxidative conden- sation of 3-methyl-N-ethyl-N-(b-hydroxyethyl)-aniline (MEHA) with 4-aminoantipyrine to form a purple color which can be measured spectrophotometrically at 550nm.
- MEHA 3-methyl-N-ethyl-N-(b-hydroxyethyl)-aniline
- MEHA 4-aminoantipyrine
- the inventors have developed a method of testing samples for their enzymatic activity for hydrolysis of a particular ester or amide bond in a substrate.
- the method uses a test sub- strate with one or more polyunsaturated fatty acyl groups linked through amide or ester bonds.
- the release of the polyunsaturated fatty acid is detected by the use of a lipoxygenase to convert the polyunsaturated fatty acid into a hydroperoxide which is then detected, e.g. through a color reaction.
- the method can be used to test for a particular enzymatic activity with a substrate specificity of interest.
- the method can be used to detect various specificities of amidase or lipolytic enzyme activities, i.e. enzyme activities classified in EC 3.5.1 and 3.1.1.
- the lipolytic enzyme or amidase activity in a sample may be detected by a method, comprising the steps of: a) incubating the sample with a substrate having one or two polyunsaturated fatty acyl groups linked through amide or ester bonds, b) simultaneously or subsequently incubating the sample with a lipoxygenase to allow formation of a hydroperoxide of the polyunsaturated acid, and c) detecting the formation of the hydroperoxide.
- lipolytic enzyme or amidase activity in a test sample may be detected by a method, comprising the sequential steps of: a) incubating the sample with a lipoxygenase and a substrate having one or more polyunsaturated fatty acyl groups linked through amide or ester bonds, to allow formation of a hydroperoxide of the polyunsaturated acid, b) incubating with a ferrous salt and xylenol orange to allow color generation, and c) detecting color generation.
- Test substrate The substrate is an ester or amide of the general formula (A-CO-X) n B wherein A-CO is polyunsaturated fatty acyl, X is O (oxygen) or NH, n is an integer (particularly 1 or 2), and B is an organic group.
- the substrate is hydrolyzed into free polyunsaturated fatty acid A-COOH and a hydroxyl compound (alcohol or phenol) or amine (A-CO-X) n-1 B-XH or B(XH) n .
- the poly-unsaturated fatty acyl group and the corresponding poly-unsaturated fatty acid may contain a c/s,c/s-1,4-pentadiene unit, such as linoleoyl and linoleic acid (18 carbon atoms, 2 double bonds), linolenoyl and linolenic acid (18:3), arachidonoyl and arachidonic acid (20:4), eicosapentaenoyl and eicosapentaenoic acid (EPA, 20:5) and/or docosahexaenoyl and docosahexaenoic acid (DHA, 22:6).
- a c/s,c/s-1,4-pentadiene unit such as linoleoyl and linoleic acid (18 carbon atoms, 2 double bonds), linolenoyl and linolenic acid (18:3), arachidono
- the substrate may be a lipid having one or more (particularly one or two) polyunsaturated fatty acyl groups linked through amide or ester bonds.
- the lipid may in particularly be a polar lipid such as a phospholipid, a lysopholipid or a galactolipid.
- the substrate may be isolated from natural sources or may be commercially available. The isolated substrate may con- tain a mixture of polyunsaturated fatty acyl groups together with other acyl groups. Some examples are: Phospholipids, e.g.
- phosphatidyl inositol PI
- PE phosphatidyl ethanolamine
- PC phos- phatidyl choline
- APE N-acyl phosphatidyl ethanolamine
- Lysophospholipids e.g. lyso-phosphatidyl choline (LPC), lyso-phosphatidyl ethanolamine (LPE), N-acyl lysophosphatidyl ethanolamine (ALPE)
- LPC lyso-phosphatidyl choline
- LPE lyso-phosphatidyl ethanolamine
- APE N-acyl lysophosphatidyl ethanolamine
- Galactolipids e.
- the substrate may be an ester prepared synthetically, e.g. by attaching a polyunsaturated fatty acyl group (such as linoleoyl) to a hydroxyl group of the following compounds:
- Aliphatic alcohols primary, secondary, tertiary, e.g. 1 ,2-di-O-butyl-glycerol and 1,3-di-O- butylglycerol
- Amino acid derivatives e.g. Ser, Thr, Tyr
- Galactolipids e.g. digalactosyl diglyceride (DGDG), monogalactosyl diglyceride (MGDG), digalactosyl monoglyceride (DGMG)
- Peptides oligo or poly containing a hydroxyl-amino acid, Ser, Thr or Tyr
- Saccharides mono/oligo/poly, e.g.
- the substrate may be an amide prepared synthetically, e.g.
- a polyunsaturated fatty acyl group such as linoleoyl
- an amino group of the following amines Amino sugars (e.g. glucosamine) ⁇ Phosphatidylethanolamines (e.g. PE) Aliphatic or aromatic amines (e.g. 1 ,6-diaminohexane) Amino acid derivatives and peptides Ceramides
- Lipoxygenase The method uses a lipoxygenase, preferably with a high activity for free polyunsaturated acid and a low activity for the polyunsaturated fatty acyl group in the substrate.
- the lipoxygenase (EC 1.13.11.12) is an enzyme that catalyzes the oxygenation of poly-unsaturated fatty acids such as linoleic acid, linolenic acid and arachidonic acid, which contain a cs,c/s-1 ,4-pentadiene unit and produces hydroperoxides of these fatty acids.
- the lipoxygenase is able to oxidize substrates containing a c/s-c/s-pentadienyl moiety.
- the lipoxy- genase may be a 9-lipoxygenase with the ability to oxidize the double bond between carbon atoms 9 and 10 in linoleic acid and linolenic acid, or it may be a 13-lipoxygenase with the ability to oxidize the double bond between carbon atoms 12 and 13 in linoleic acid and linolenic acid.
- the lipoxygenase may be from animal, plant or microbial source.
- a plant lipoxygenase may be from plants of the pulse family ⁇ Fabaceae), soybean (lipoxygenases 1, 2 and 3), cucumber, or barley.
- a microbial lipoxygenase may be from a yeast such as Saccharomyces cerevisiae, a thermophilic actinomycete such as Thermoactinomyces vulgaris or Thermomy- ces, e.g. T. lanuginosus, or from fungi.
- a fungal lipoxygenase may be derived from Ascomycota, particularly Ascomycota in- certae sedis e.g. Magnaporthaceae, such as Gaeumannomyces or Magnaporthe, or anamor- phic Magnaporthaceae such as Pyricularia, or alternatively anamorphic Ascomycota such as Geotrichum, e.g. G. candidum.
- the fungal lipoxygenase may be from Gaeummanomyces graminis, e.g. G. graminis var. graminis, G. graminis var. avenae or G. graminis var. tritici, (WO 0220730) or Magnaporthe salvinii (WO 2002086114). Also, a fungal lipoxygenase may be from Fusarium such as F. oxysporum or F. proliferatum, or Penicillium sp.
- Test samples The method can be applied to any kind of samples, crude or purified, e.g. soil samples, isolated microbial strain (e.g. cultivated on an appropriate medium), or enzymes in crude or purified form.
- the enzymes may be isolated from nature or may be variants formed by modi- fying the amino acid sequence of a parent lipolytic enzyme or amidase.
- the screening method can be carried out in a cuvette, or it can be used for high- throughput screening in a microtiter plate.
- the substrate may be applied to a tex- tile swatch which is then treated in a detergent solution with a lipolytic enzyme to be tested and a lipoxygenase.
- a solution of trilinolein (e.g. 25 % by weight) in n-hexane or n- heptane may be applied to small pieces of textile from which the solvent is evaporated.
- the textile pieces may be fitted into the holes of a microtiter plate, with 5 micro-l of trilinolein solution applied to each textile piece.
- Detection of hydroperoxide relies on detection of a hydroperoxide formed by the action of the lipoxygenase.
- the detection can conveniently be done by the color generation with various known reagents such as xylenol orange or diphenyl-1-pyrenylphosphine (DPPP).
- DPPP diphenyl-1-pyrenylphosphine
- Other reagents can be found in Chapter 19 of Handbook of Fluorescent Probes and Research Products, 9 th Edition, published by Molecuular Probes.
- the method can be used to detect an amidase (EC 3.5.1) or a lipolytic enzyme (EC 3.1.1) with a particular substrate speci- ficity.
- the substrate can be chosen so as to detect any of the following enzyme activities: EC 3.1.1.1 carboxylesterase EC 3.1.1.2 arylesterase EC 3.1.1.3 triacylglycerol lipase EC 3.1.1.4 phospholipase A 2 EC 3.1.1.5 lysophospholipase EC 3.1.1.6 acetylesterase EC 3.1.1.7 acetylcholinesterase' EC 3.1.1.8 cholinesterase EC 3.1.1.13 sterol esterase EC 3.1.1.26 galactolipase EC 3.1.1.32 phospholipase ⁇ EC 3.1.1.50 wax-ester hydrolase EC 3.5.1.13 aryl-acylamidase EC 3.5.1.14 amino
- the method can be used to select enzymes for various uses by a suitable choice of the test substrate.
- a wheat lipid can be used to select a lipolytic enzyme for use addition to a dough in the preparation of baked products.
- An aliphatic amine e.g. 1 ,6-diaminohexane
- a substrate applied to textile can be used to screen for lipolytic enzymes for use in de- tergents.
- linoleoyl amides Synthesis of linoleoyl amides, general procedure
- the linoleoyl amides were prepared analogous to the linoleoyl esters except that no DMAP were used and TEA (triethylamine) or DIPEA (diisopropyethylamine) was used as base.
- TEA triethylamine
- DIPEA diisopropyethylamine
- the substrate is added to a concentration of 0.44 mg/ml and a total volume of 60 microliter in a buffer at pH 7.0 containing 5 mM CaCI 2 , 50 mM HEPES, 50 mM Borate and 50 mM Actetic acid and homogenized for 1 minute by sonication at 60 °C.
- lipoxygenase e.g. from Magnaporthe salvinii
- reaction mixture 200 microliter is incubated (B) for 60 minutes at 25°C and OD560 is determined. Reaction runs in 96-well microtiterplate format and lipase-reaction is quantifyied upon determination of OD560 in triplicate, and upon substraction of similar blank experiments without lipase in incubation A. In blank experiment the sample is added in incubation B where pH ⁇ 2 and the lipolytic enzyme activity is normally insignificant.
- Example 1 Isolation of flour lipids MGDG, DGDG, APE and ALPE Wheat flour (1 kg) was extracted twice with MeOH (1.5 L, stirring for 30 min). The extracts were concentrated and the residue re-dissolved in hexane (1 L) and concentrated. Yield of lipid extract: 8.5 g. The lipid extract was applied to a column packed with silica gel (120 g), which was preconditioned with 1 L of hexane/2-propanol/butanol/H 2 O (60:30:7:3). Neutral lip- ids and carotenoids were removed by eluation with hexane (800 mL) and then EtOAc (1.2 L).
- Example 2 Isolation of polar lipid mixture A mixture of polar lipids (DGDG, MGDG, APE, ALPE) was isolated from wheat flour as follows. Wheat flour (1.5 kg) was stirred in a beaker with MeOH (2.25 L) using a mechanical stirrer (350 rpm). After 20 min the thick suspension was filtered on a G1 filter (27x22 cm). The wetted flour was re-suspended and stirred with an additional amount of MeOH (2 L) and filtered again. The pooled MeOH phases were concentrated on a rotary evaporator and the resi- due was dissolved in hexane (1 L). Filtration and concentration to dryness left 22.6 g of lipid extract (this yield may vary).
- This extract contained both polar and non-polar lipids.
- a silica gel column was packed using 270 g of Merck silica gel 60 (270 g) and an elu- ent of hexane/2-propanol/1-butanol/water (600:300:70:30). The extracted lipids was then dissolved in a small volume of the eluent and applied to the column. The column was eluted with first hexane (1400 mL), next ethyl acetate (2100 mL) and finally MeOH (2800 mL). The MeOH fraction was concentrated (careful, may sputter) to give 4.9 g of polar lipid extract. Storage: freezer, over nitrogen if possible.
- Example 3 Preparation of (+/-) 3-0-Linoleoyl-1,2-di-O-butyl glycerol
- the alcohol 1 ,2-di-O-butyl glycerol was prepared as described in Ciuffreda, P.; Loseta, A.; Manzocchi, A.; Santaniello, E.; Chem. Phys. Lip.; 111, 105-110 (2001), essentially as follows.
- Example 4 Activity of lipolytic enzymes on ester substrates
- the following substrates were prepared, and various lipolytic enzymes were tested with each substrate: ⁇
- Galactolipid Digalactosyl diglyceride (DGDG) and monogalactosyl diglyceride (MGDG)
- Phospholipid Lecithin
- Sterol ester Cholesterol linoleate
- Wax ester Arachidyl linoleate 2-position of glycerides: 1 ,3-dibutyl-2-linoleyl glycerol
- Glycerides Trilinolein Linoleic acid Isopropyl ester ⁇ Linoleic acid Syringaldazine (4-Hydroxy-3,5-dimethoxybenzaldehyde azine) diester (poor solubility) Linoleic acid Phenyl ester Soy bean oil (with a content of linoleic acid, mainly
- Example 5 Comparison with plate assay Five variants of a parent lipolytic enzyme were prepared by amino acid modification and were tested in lipid hydrolysis for 30 minutes at 25°C with MGDG or APE as substrate at
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/576,497 US20070122862A1 (en) | 2003-10-29 | 2004-10-29 | Screening for lipolytic enzymes or amidase activity |
EP04790066A EP1682671A1 (en) | 2003-10-29 | 2004-10-29 | Screening for lipolytic enzyme or amidase activity |
CA002540379A CA2540379A1 (en) | 2003-10-29 | 2004-10-29 | Screening for lipolytic enzyme or amidase activity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200301596 | 2003-10-29 | ||
DKPA200301596 | 2003-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005040410A1 true WO2005040410A1 (en) | 2005-05-06 |
Family
ID=34485968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2004/000748 WO2005040410A1 (en) | 2003-10-29 | 2004-10-29 | Screening for lipolytic enzyme or amidase activity |
Country Status (4)
Country | Link |
---|---|
US (1) | US20070122862A1 (en) |
EP (1) | EP1682671A1 (en) |
CA (1) | CA2540379A1 (en) |
WO (1) | WO2005040410A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006039541A2 (en) | 2004-09-30 | 2006-04-13 | Novozymes, Inc. | Polypeptides having lipase activity and polynucleotides encoding same |
US7939290B2 (en) * | 2006-05-09 | 2011-05-10 | Chungnam National University Industry Collaboration Foundation | Method for analyzing the activity of lipoxygenase using a water-soluble substrate |
WO2012062817A1 (en) | 2010-11-12 | 2012-05-18 | Novozymes A/S | Polypeptides having phospholipase c activity and polynucleotides encoding same |
US8309147B2 (en) | 2002-12-12 | 2012-11-13 | Novozymes A/S | Method for selecting lipolytic enzyme |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1523270A (en) * | 1976-07-01 | 1978-08-31 | Chembro Holdings Pty Ltd | Determination of polyunsaturated fat levels in body fluid |
US4347313A (en) * | 1978-02-27 | 1982-08-31 | Boehringer Mannheim Gmbh | Analytical determination of lipase |
FR2520006A1 (en) * | 1982-01-21 | 1983-07-22 | Toyo Jozo Kk | PROCESS FOR THE QUANTITATIVE MEASUREMENT OF UNSATURATED FATTY ACIDS |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55108297A (en) * | 1979-02-13 | 1980-08-20 | Toyobo Co Ltd | Determining method of free fatty acid |
DE3516001A1 (en) * | 1985-05-03 | 1986-11-06 | Boehringer Mannheim Gmbh, 6800 Mannheim | LIPASE COLOR TEST |
DE4128693A1 (en) * | 1991-08-29 | 1993-03-04 | Henkel Kgaa | OIL-IN-WATER EMULSIONS OF POLAR OIL COMPONENTS |
GB0112226D0 (en) * | 2001-05-18 | 2001-07-11 | Danisco | Method of improving dough and bread quality |
US20030113846A1 (en) * | 2002-08-28 | 2003-06-19 | Preeti Lal | Lipid metabolism enzymes |
-
2004
- 2004-10-29 EP EP04790066A patent/EP1682671A1/en not_active Withdrawn
- 2004-10-29 WO PCT/DK2004/000748 patent/WO2005040410A1/en active Application Filing
- 2004-10-29 CA CA002540379A patent/CA2540379A1/en not_active Abandoned
- 2004-10-29 US US10/576,497 patent/US20070122862A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1523270A (en) * | 1976-07-01 | 1978-08-31 | Chembro Holdings Pty Ltd | Determination of polyunsaturated fat levels in body fluid |
US4347313A (en) * | 1978-02-27 | 1982-08-31 | Boehringer Mannheim Gmbh | Analytical determination of lipase |
FR2520006A1 (en) * | 1982-01-21 | 1983-07-22 | Toyo Jozo Kk | PROCESS FOR THE QUANTITATIVE MEASUREMENT OF UNSATURATED FATTY ACIDS |
Non-Patent Citations (4)
Title |
---|
GAY C ET AL.: "Hydroperoxide Assay with the Ferric-Xylenol Orange Complex", ANALYTICAL BIOCHEMISTRY, vol. 273, 1999, pages 149 - 155, XP002314653 * |
NAGATA Y ET AL: "REACTION OF PHOSPHATIDYLCHOLINE HYDROPEROXIDE IN HUMAN PLASMA: THE ROLE OF PEROXIDASE AND LECITHIN:CHOLESTEROL ACYLTRANSFERASE", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, NEW YORK, US, US, vol. 239, no. 1, 1 May 1996 (1996-05-01), pages 24 - 30, XP000982574, ISSN: 0003-9861 * |
PÉREZ-GILABERT M ET AL.: "Oxidation of Dilinoleoyl Phosphatidylcholine by lipoxygenase 1 from soybeans", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 354, no. 1, 1 June 1998 (1998-06-01), pages 18 - 23, XP002314654 * |
See also references of EP1682671A1 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8309147B2 (en) | 2002-12-12 | 2012-11-13 | Novozymes A/S | Method for selecting lipolytic enzyme |
WO2006039541A2 (en) | 2004-09-30 | 2006-04-13 | Novozymes, Inc. | Polypeptides having lipase activity and polynucleotides encoding same |
EP2295555A2 (en) | 2004-09-30 | 2011-03-16 | Novozymes, Inc. | Polypeptides having lipase activity and polynucleotides encodig same |
EP2298872A2 (en) | 2004-09-30 | 2011-03-23 | Novozymes A/S | Polypeptides having lipase activity and polynucleotides encoding same |
EP2302042A2 (en) | 2004-09-30 | 2011-03-30 | Novozymes A/S | Polypeptides having lipase activity and polynucleotides encoding same |
US7939290B2 (en) * | 2006-05-09 | 2011-05-10 | Chungnam National University Industry Collaboration Foundation | Method for analyzing the activity of lipoxygenase using a water-soluble substrate |
WO2012062817A1 (en) | 2010-11-12 | 2012-05-18 | Novozymes A/S | Polypeptides having phospholipase c activity and polynucleotides encoding same |
Also Published As
Publication number | Publication date |
---|---|
US20070122862A1 (en) | 2007-05-31 |
EP1682671A1 (en) | 2006-07-26 |
CA2540379A1 (en) | 2005-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brockerhoff | Lipolytic enzymes | |
Díaz et al. | The effect of myotoxins isolated from Bothrops snake venoms on multilamellar liposomes: relationship to phospholipase A2, anticoagulant and myotoxic activities | |
Gilham et al. | Techniques to measure lipase and esterase activity in vitro | |
Borgström | Influence of bile salt, pH, and time on the action of pancreatic lipase; physiological implications | |
Tanaka et al. | Effects of growth temperature on the fatty acid composition of the free‐living nematodeCaenorhabditis elegans | |
ES2372859T3 (en) | COMPOSITIONS FOR THE DETERMINATION OF THE ACTIVITY LIPASA AND METHOD FOR DETERMINING THE ACTIVITY. | |
Van den Bosch et al. | The acylation of 1-acylglycero-3-phosphorylcholines by rat-liver microsomes | |
Amara et al. | Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2 | |
Roy et al. | Phospholipase activity and phospholipid patterns in tobacco cells treated with fungal elicitor | |
Amara et al. | Continuous measurement of galactolipid hydrolysis by pancreatic lipolytic enzymes using the pH-stat technique and a medium chain monogalactosyl diglyceride as substrate | |
Jermsuntiea et al. | Purification and characterization of intracellular lipase from the polyunsaturated fatty acid-producing fungus Mortierella alliacea | |
Veeraragavan | A simple and sensitive method for the estimation of microbial lipase activity | |
EP1573052B1 (en) | Method of selecting a lipolytic enzyme | |
Terasaki et al. | Glycerolipid acyl hydrolase activity in the brown alga Cladosiphon okamuranus Tokida | |
US20070122862A1 (en) | Screening for lipolytic enzymes or amidase activity | |
Flieger et al. | Critical evaluation of p-nitrophenylphosphorylcholine (p-NPPC) as artificial substrate for the detection of phospholipase C☆ | |
Belhaj et al. | Galactolipase activity of Talaromyces thermophilus lipase on galactolipid micelles, monomolecular films and UV-absorbing surface-coated substrate | |
Park et al. | Purification and characterization of hepatic lipase from Todarodes pacificus | |
Miettinen et al. | Screening of microbes for lipases specific for saturated medium and long-chain fatty acids of milk fat | |
Piel et al. | Chemoenzymatic synthesis of fluorogenic phospholipids and evaluation in assays of phospholipases A, C and D | |
Buckley | Mechanism of action of bacterial glycerophospholipid: cholesterol acyltransferase | |
Masahiro et al. | Synthesis of acyl phosphatidylglycerol from phosphatidylglycerol in Escherichia coli K-12: evidence for the participation of detergent-resistant phospholipase A and heat-labile membrane-bound factor (s) | |
Gavino et al. | Purification of Acyl CoA: 1-acyl-sn-glycero-3-phosphorylcholine Acyltransferase | |
SUZUKI et al. | Studies on Production of Lipids in Fungi. II. Lipid Compositions of Six Species of Mucorales in Zygomycetes | |
Gora et al. | The proinflammatory mediator platelet activating factor is an effective substrate for human group X secreted phospholipase A2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004790066 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2540379 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007122862 Country of ref document: US Ref document number: 10576497 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2004790066 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10576497 Country of ref document: US |