WO2005039570A1 - TGF-β INFORMATION TRANSFER PATHWAY INHIBITOR - Google Patents

TGF-β INFORMATION TRANSFER PATHWAY INHIBITOR Download PDF

Info

Publication number
WO2005039570A1
WO2005039570A1 PCT/JP2004/016370 JP2004016370W WO2005039570A1 WO 2005039570 A1 WO2005039570 A1 WO 2005039570A1 JP 2004016370 W JP2004016370 W JP 2004016370W WO 2005039570 A1 WO2005039570 A1 WO 2005039570A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meta
para
ortho
tgf
Prior art date
Application number
PCT/JP2004/016370
Other languages
French (fr)
Japanese (ja)
Inventor
Soichi Kojima
Wakako Kondo
Hideaki Kakeya
Hiroyuki Osada
Yasuharu Sakamoto
Tadashi Nakata
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to JP2005515065A priority Critical patent/JP4688680B2/en
Publication of WO2005039570A1 publication Critical patent/WO2005039570A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/24Oxygen atoms attached in position 2 with hydrocarbon radicals, substituted by oxygen atoms, attached to other ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/4211,3-Oxazoles, e.g. pemoline, trimethadione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a TGF- 3 signaling pathway inhibitor containing cytoxazone or a derivative thereof as an active ingredient, and a therapeutic and / or prophylactic agent for a TGF- ⁇ -related disease.
  • TGF- / 3 is a common etiologic agent in liver diseases such as liver fibrosis, cirrhosis, hepatitis, or hepatic regeneration failure, and attempts to treat or prevent the disease by suppressing its activity have been made. Has been done.
  • antibody therapy using neutralizing antibodies against TGF-j3, or gene therapy using dominant negative TGF-receptor gene or soluble TGF- ⁇ receptor gene can stop the action of TGF-J3 at the entrance.
  • Reported reports Schouppan et al. Digestion 59: 385-390, 1998; Qi et al. Proc Natl Acad Sci USA 96: 2345-2349, 1999; and Ueno et al. Hum Gene Ther 11: 33-42, 2000).
  • TGF-j3 is produced as a latent inactive molecule and is converted to an active molecule by protease (TGF- / 3 activation reaction).
  • TGF- / 3 activation reaction enzyme-activated molecule
  • animal models have shown the possibility of inhibiting disease by inhibiting the TGF j3 activation reaction using a synthetic protease inhibitor or an antibody (Akitaetal. Gastroenterology 123: 352-364, 2002)
  • the activation reaction is specific to a disease state, a fibrous tissue, and an isoform, and that the adaptation symptoms are limited.
  • TGF- ⁇ strongly promotes the production of extracellular matrix by mesenchymal cells and suppresses the proliferation of epithelial cells, resulting in hepatic fibrosis, cirrhosis, atherosclerosis, pulmonary fibrosis, dermal fibrosis, renal failure, It is a homodimer with a molecular weight of 25 kD and has a variety of biological activities, including the formation of pathological conditions of sclerosing diseases such as uterine fibroids and suppression of the function of immunocompetent cells. As described above, studies in animal models using neutralizing antibodies to TGF- / 3 have revealed that sclerosing diseases can be prevented and treated by suppressing the action of TGF- ⁇ .
  • an object of the present invention is to provide a TGF- ⁇ signaling pathway inhibitor comprising a low-molecular compound that can inhibit the TGF-j3 signaling pathway.
  • cytoxazone represented by the formula (1) or a derivative thereof (hereinafter, also abbreviated as CXZ) as defined in the present specification is used for transmitting TGF-
  • CXZ a derivative thereof
  • R 1 is a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxypropyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxyphenyl group An ortho-, meta- or para-nitrophenyl group, an ortho-, meta- or para-aminophenyl group, a linear or branched alkyl group having 1-20 carbon atoms, 1-20 carbon atoms
  • R 2 represents a hydroxymethyl group, a hydroxyxyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-alkyl group.
  • a TGF-signalling pathway inhibitor comprising a compound represented by the formula (1) as an active ingredient.
  • the TGF-i3 signaling pathway inhibitor of the present invention inhibits the TGF-i3 signaling pathway by suppressing the phosphorylation of Smad2.
  • R 1 is a hydroxymethyl group, a hydroxyshethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxy group.
  • R 2 represents a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an o / to, a meta- or para-methoxyphenyl group, an ortho-, Meta- or para-hydroxyphenyl group, ortho-, meta- or para-nitrophenyl group Ortho-, meta- or para-aminophenyl, benzyl, ortho-, meta- or para-methoxybenzyl, ortho-, meta- or para-hydroxybenzyl, ortho-, meta- or para-nitrobenzyl , Ortho, Meta, Meta- or para-aminophenyl, benzyl, ortho-, meta- or para-
  • a therapeutic and / or prophylactic agent for a TGF- ⁇ -related disease comprising a compound represented by the formula (1) as an active ingredient.
  • the TGF-] 3-related disease is liver fibrosis-cirrhosis, hepatitis, liver regeneration failure, arteriosclerosis, pulmonary fibrosis, dermal fibrosis, renal failure, or uterine fibroids.
  • R 1 is a hydroxymethyl group and R 2 is a para-methoxyphenyl group.
  • the compound used in the present invention is a compound represented by the following formula (2).
  • FIG. 1 shows the TGF-signaling pathway.
  • TGF-A Factors and factors that increase the synthesis and secretion of TGF-
  • T G F-3 vitamin A, antiestrogen, bleomycin,
  • Dexamethasone virus infection, lymphocyte activation, fracture, liver fibrosis, myocardial infarction, liver damage
  • Vitamin A cholesterol, hematoma, androsis
  • FIG. 2 shows inhibition of liver pathogenesis by inhibition of TGF- / 3 activation using protease inhibitors.
  • FIG. 3 shows the structure of cytoxazone.
  • R 1 represents a hydroxymethyl group
  • R 2 represents a p-methoxyphenyl group.
  • FIG. 4 shows suppression of hepatic stellate cell activation by cytoxazone through suppression of TGF-J3 activity.
  • FIG. 5 shows that the amount of Smad2 and the amount of phosphorylated Smad2 are reduced by cytoxazone treatment.
  • FIG. 6 shows the reduction of the amount of Smad-target gene complex by cytoxazone treatment.
  • FIG. 7 shows suppression of TGF- ⁇ -dependent transcription activation activity by cytoxazone treatment in hepatic stellate cells and mink lung epithelial cells.
  • FIG. 8 shows suppression of signaling downstream of the TGF-] 3 receptor by cytoxazone treatment.
  • FIG. 9 shows suppression of Smad activity by cytoxazone treatment.
  • FIG. 10 shows the effects of cytoxazone treatment on Smad mRNA expression and protein content.
  • FIG. 11 shows the effect of cytoxazone treatment on nuclear localization of Smad protein.
  • FIG. 12 shows suppression of transcriptional activation activity of procollagen gene promoter by cytoxazone treatment.
  • FIG. 13 shows the recovery of liver regeneration by cytoxazone in mice.
  • TGF- / 3 is produced as an inactive latent form with a molecular weight of about 300 kD that cannot bind to the receptor, and is activated on and around the target cell surface to become an active form that can bind to the receptor and exerts its action ( Figure 1 ).
  • TGF- ⁇ The action of TGF- ⁇ in target cells is transmitted through a series of protein phosphorylation pathways that are responsible for signaling Smads.
  • TGF- ⁇ binds to type II TGF- ⁇ receptor on the surface of target cells, two types of type II receptor and type I TGF- ⁇ receptor
  • a receptor complex consisting of two molecules is formed, and the type II receptor phosphorylates the type I receptor.
  • the phosphorylated type I receptor phosphorylates Smad2 or Smad3
  • phosphorylated Smad2 or Smad3 forms a complex with Smad4 and translocates to the nucleus, where CAGA located in the target gene promoter region is present. It binds to a target sequence called box and induces the transcriptional expression of the target gene together with coactivator (Fig. ⁇ ).
  • the present inventors believe that latent TGF- / 3 is activated by protease cleavage in the liver, and exhibits potent fibrogenesis-inducing ability and hepatocyte proliferation-inhibiting ability.
  • the present inventors subsequently hoped that a combined use of a TGF-signaling inhibitor and a protease inhibitor that suppresses the activation of TGF- ⁇ would produce a synergistic inhibitory effect on disease state formation.
  • Screening of TGF- / 3 signaling inhibitor was performed.
  • a cytoxazone having an oxazolidinone ring (FIG. 3; abbreviated as cytoxazone: CXZ) was found.
  • R1 is a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxyphenyl group, an ortho-, meta- or A paranitrophenyl group, an ortho-, meta-, or para-aminophenyl group, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkoxy group having 1 to 20 carbon atoms.
  • R2 represents a hydroxymethyl group, a hydroxyxyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho, a meta- or para-methoxyphenyl group, an ortho-, meta-, or para-hydroxyphenyl group , Ortho-, meta- or para-nitrophenyl group, ortho , Meta- or para-aminophenyl, benzyl, ortho-, meta- or para-methoxybenzyl, ortho-, meta- or para-hydroxybenzyl, ortho-, meta- or para-nitrobenzyl, ortho-, meta- A mono- or para-aminobenzyl group, a linear or branched alkyl group having 1 to 20 carbon atoms, or a linear or branched alkoxy group having 1 to 20 carbon atoms.
  • Cytoxazone is an antibiotic produced and secreted by Streptomyces and is known to suppress the production of cytokines IL4 and IL10 from immunocompetent Th2 cells (Kakeya H et al., J Antibio 1998; 51 Kakeya H et al., J Org Chem 1999; 64: 1052-1053).
  • the discovery and purification of cytoxazone or a derivative thereof is described in JP-A-11-209355, and its organic synthesis is described in JP-A-2000-86639, And Tetrahedron Lett 1999; 40: 4203-4206.
  • the compound represented by the formula (1) used in the present invention is a known compound, and can be obtained or synthesized according to the description in the above literature.
  • the present invention relates to a TGF-] 3 signaling pathway inhibitor, and a therapeutic and / or prophylactic agent for a TGF- ⁇ -related disease, comprising a compound represented by the formula (1) defined herein as an active ingredient. Things. Hereinafter, these may be collectively referred to as the drug of the present invention.
  • the compound represented by the formula (1) may be used alone as it is, but it is usually supplied in the form of a pharmaceutical composition using a pharmaceutically acceptable pharmaceutical additive.
  • a pharmaceutically acceptable pharmaceutical additive preferable.
  • the medicament of the present invention can be administered orally or parenterally.
  • Pharmaceutically acceptable pharmaceutical additives referred to herein include excipients, diluents, extenders, disintegrants, stabilizers, preservatives, buffers, emulsifiers, fragrances, coloring agents, sweeteners , Thickeners, flavoring agents, solubilizers or other additives.
  • compositions suitable for oral administration include, for example, tablets, granules, capsules, powders, solutions, suspensions, and syrups.
  • Pharmaceutical compositions suitable for parenteral administration include: For example, injections, drops, suppositories, transdermal absorbents, etc. can be mentioned, but the form of the drug of the present invention is not limited to these.
  • Examples of the form of parenteral administration include various administration forms such as intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection or intraperitoneal injection.
  • Injectables may be prepared as non-aqueous diluents (eg, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol), suspensions or emulsions. You can also.
  • Such injections can be sterilized by filtration sterilization through a pateria-retaining filter, blending of a bactericide or irradiation.
  • Injectables can be manufactured in the form of ready-to-use preparations. That is, a sterile solid composition can be obtained by freeze-drying or the like and dissolved in sterile distilled water for injection or another solvent before use.
  • the agent of the present invention can be administered to mammals including humans.
  • the drug of the present invention Dosage should be adjusted according to the patient's age, sex, weight, symptoms, route of administration and other conditions. Generally, 0.001 mg Zk to 1000 mg / kg per adult per day , Preferably in the range of 0.01 mg / kg to 100 mg Z kg, particularly preferably in the range of lm g Z kg to 50 mg / kg, for example, 20 mg. Z kg.
  • the above dose of the drug may be administered daily or at intervals of several days, for example, every 1 to 4 days.
  • the agent of the present invention can be used as a TGF-3 signaling pathway inhibitor, and can be used, for example, as a therapeutic and / or prophylactic agent for TGF-related diseases.
  • TGF-] 3-related disease include a disease in which the pathogenesis factor is TGF-] 3 (for example, a liver disease in which the pathogenesis factor is TGF- ⁇ ).
  • TGF- ⁇ -related diseases include hepatic fibrosis, cirrhosis, hepatitis, hepatic regeneration failure, arteriosclerosis, pulmonary fibrosis, dermal fibrosis, renal failure, or uterine fibroids.
  • a therapeutic and / or prophylactic agent for a TGF-] 3-related disease is to be interpreted in a broad sense including suppressing or preventing the onset and / or progression of the disease.
  • the therapeutic effect of the agent of the present invention on the symptoms of a TGF-] 3-related disease can be tested and examined by administering it to a disease model animal according to a conventional method.
  • a disease model animal for example, for liver diseases such as hepatitis (for example, viral hepatitis (type I, type II, type C, type III, etc.)), cirrhosis, or drug-induced liver injury
  • the model animals already reported can be used.
  • Example 1 Inhibition of hepatic stellate cell activation by CXZ
  • hepatic stellate cells were isolated from the liver of male Wistar rats (weight 350-400 g; Japan Clea). Away, 10 cm culture plastic dishes or-out the 3 ⁇ 5 ⁇ 10 6 cells per sheet, 10% ⁇ Shi calf serum (FCS; Invitrogen Corporation) Dulbecco's modified Eagle's culture areas, including (DMEM; Invitrogen Corp. ) The cells were cultured. Compounds having the following structure from the next day
  • CXZ hepatic stellate cell activation induced by microscopy.
  • CXZ suppressed activation of stellate cells (morphological change accompanied by disappearance of oil droplets containing vitamin A).
  • the effect is dose-dependent manner, the optimum value is one fc at a final concentration of 150 ⁇ g / ml 7 This 0
  • CGF-treated cells showed higher levels of TGF- ⁇ 1 and type I procollagen a 2 (procollagen) than control cells (treated with 0.5% DMS0 as a solvent).
  • the amount of ⁇ -smooth muscle actin (a SMA) gene was decreased.
  • GPDH dalyceraldehyde-3-phosphate dehydrogenase
  • the amount of protein was determined using PIERCE BCA Assay Kit and standard serum albumin. After isolation of stellate cells from rat liver, seed 4.0 ⁇ 10 5 cells per 3.5 cm plastic dish, and replace with serum-free medium containing CXZ the next day after culturing in DMEM containing 10% FCS. After culturing for another 4 days, 500 ng of pPAI-1-Luc per dish was transfected using the Lipofectamine Plus reagent in the same manner as for MLE cells. An extract was prepared, and the luciferase activity in the extract was measured.
  • the effect of TGF- ⁇ is on the phosphorylation of Smad by the receptor, the translocation of the phosphorylated Smad complex to the nucleus, and the transcription of the phosphorylated Smad complex by binding to the target gene promoter. Is transmitted by the route of promotion. Therefore, to determine whether CXZ inhibits the TGF- signaling pathway, the total amount of Smad2, the amount of phosphorylated Smad2, and the amount of phosphorylated Smad complex bound to the target gene promoter were analyzed by Western plot analysis and gel shift analysis. It was examined from the measurement results of Sey.
  • Estane blot analysis of proteins on the membrane was performed using Smad2-recognized mouse monoclonal antibody (final concentration 1 ⁇ g / ml; Pharmingen) and phosphorylated Smad2-recognized ⁇ sagi polyclonal antibody (final concentration 2 ⁇ g / ml; Upstate Biotechnology) and a combination of horseradish luoxidase-conjugated goat anti-mouse or ephedra IgG antibody (final 1: 750 dilution) according to a previously reported method (Okuno M et al., Gastroenterology 2001; 120: 1784-1800). ). Bands were detected on the Amersham (Buckinghamshire, UK) ECL system.
  • the CXZ-treated cells showed higher CXZ levels than the control cells (cells treated with 0.5% DMS0 as the solvent: lane 1).
  • the total amount of Smad2 and the amount of phosphorylated Smad2 decreased depending on the concentration. At this time, the internal standard GAPDH amount had not changed.
  • a nuclear extract was prepared from rat hepatic stellate cells isolated, cultured, and treated with drugs as described in the experiment in Fig. 4A according to the method described above (Shimada J et al., Mol Endocrinol 2002; 15: 1677-1692).
  • Radiolabeled CAGA box sequence binding sequence of phosphorylated Smad complex present in PAI-1 promoter
  • oligonucletide containing ice on ice After incubating with oligonucletide containing ice on ice, phosphorylation on 43 ⁇ 4 polyacrylamide gel After separating the Smad-CAGA box complex and the free CAGA box, the amount of the phosphorylated Smad-CAGA box complex was measured by autoradiography.
  • Lane 1 contains the unlabeled CAGA box sequence. This is the result when gonurequotide was added to the nuclear extract derived from the control cells, indicating that the obtained band was a specific band.
  • hepatic stellate cells cultured in a 35-mm dish were treated with or without 150 g / ml of CXZ for 3 days, and pRL-CMV (Renilla luciferase, 50 ng / dish).
  • pRL-CMV Renilla luciferase, 50 ng / dish.
  • ⁇ -1-Luc 500 ng / dish
  • PAI-1 promoter luciferase expression vector or 9CAGA-Luc (500 ng / dish)
  • 9CAGA-Luc 500 ng / dish
  • luciferase activity in each lysate was measured, changes in firefly luciferase activity were calculated, normalized to the luciferase activity of CXZ-untreated control cells, and plotted.
  • Fig. 7 shows the results.
  • the luciferase reporter transmission driven by nine CAGA boxes the target motif to which the Smad2 / Smad4 complex or Smad3 / Smad4 complex binds, which is a signaling factor for TGF- It was demonstrated that CXZ suppressed the TGF-J3-dependent transcriptional activation activity using the offspring.
  • Example 4 Inhibition of signaling downstream of the TGF- / 3 receptor
  • FIG. 8 shows the results.
  • Example 5 Smad activity suppression
  • Smad2 or Smad3 present in the cytoplasm is phosphorylated to form a complex with Smad4, and phosphorylated Smad2 / Smad4 complex or phosphorylated Smad3
  • the results in Figure 9 show the effect of CXZ on hepatic stellate cells that forcibly expressed Smad2, Smad3, and Smad4. CXZ suppresses the expression of Smad3 as shown in Example 6, which is rescued by forced expression of Smad3.
  • Smad2 does not change, but the activity of forced Smad2 is suppressed in Smad2 / Smad4 + Smad3 / Smad4 and Smad2 / Smad4 cells. (Including phosphorylation of Smad2).
  • mice pre-treated with LPS and partially hepatectomized were treated with CXZ (15 mg / kg body weight / 0; ip) (no control).
  • CXZ 15 mg / kg body weight / 0; ip
  • the liver was isolated, a section was prepared, stained with an anti-PCNA antibody, and observed with a light microscope. The results are shown in FIG. In Fig. 3, the nucleus stained brown is the regenerated cell nucleus, and the PCNA labeling index, which is the result of counting the number of nuclei, is 28.5 ⁇ 3.74 in the control. In contrast, the value was 80.8 ⁇ 3.89 in the CXZ-administered case. Cytosoxazone was shown to restore liver regeneration.
  • CXZ has the effect of blocking the TGF- ⁇ signaling pathway by decreasing the phosphorylated Smad responsible for TGF- ⁇ signaling, thereby inhibiting the action of TGF- ⁇ .
  • ⁇ -related diseases such as liver stellate cells, which cause liver cirrhosis. did.
  • CXZ or its derivatives it is possible to develop preventive and therapeutic drugs for TGF-related diseases such as various sclerotic diseases based on blockade of TGF- / 3 signaling pathway, which was difficult with conventional technology Can be expected.
  • the present inventors based on the finding that cytoxazone suppresses TGF- ⁇ -dependent activation of hepatic stellate cells, the present inventors have found inhibition of the TGF-signalling pathway as a new biological activity of cytoxazone or a derivative thereof.
  • the use of a TGF-signalling pathway inhibitor containing cytoxazone or a derivative thereof as an active ingredient according to the present invention makes it possible to establish a method for treating and preventing TGF-related diseases.

Abstract

A TGF-β information transfer pathway inhibitor comprising a low-molecular compound capable of inhibiting TGF-β information transfer pathway. There is provided a TGF-β information transfer pathway inhibitor comprising as an active ingredient a compound of the formula: (1) wherein R1 is hydroxymethyl, etc. and R2 is p-methoxyphenyl, etc.

Description

明細書  Specification
TGF-β情報伝達経路阻害剤 技術分野  TGF-β signaling pathway inhibitor
本発明は、 サイトキサゾン又はその誘導体を有効成分として含む TGF— ]3情報 伝達経路阻害剤、 並びに TGF— β関連疾患の治療及ぴノ又は予防剤に関する。 背景技術  The present invention relates to a TGF- 3 signaling pathway inhibitor containing cytoxazone or a derivative thereof as an active ingredient, and a therapeutic and / or prophylactic agent for a TGF-β-related disease. Background art
TGF-/3は、 肝線維症、 肝硬変、 肝炎、 又は肝再生不全などの肝疾患に共通する 病態形成因子であること力ゝら、 その活性を抑えることにより当該疾患を治療又は 予防する試みがなされている。 例えば、 TGF- j3の中和抗体を用いた抗体療法、 も しくはドミナントネガティブ TGF- 受容体遺伝子や可溶性 TGF- β受容体遺伝子 を用いた遺伝子治療によって TGF-J3の作用を入り口で止める方法が報告されて レヽる (Schuppan et al. Digestion 59 :385 - 390, 1998; Qi et al. Proc Natl Acad Sci USA 96:2345—2349, 1999;及び Ueno et al. Hum Gene Ther 11:33-42, 2000)。 一方、 本発明者らは、 TGF - j3が潜在型不活性型分子として産生され、 プロテア ーゼによって活性型分子に変換される点 (TGF - /3の活性化反応) に注目し、 低分 子合成プロテアーゼ阻害剤や抗体 (Akitaetal. Gastroenterology 123 :352-364, 2002) を用いて TGF j3活性化反応を阻害することによって、病気を防ぐことがで きる可能性を動物モデルで示したが、 活性化反応が病態、 糸且織、 ァイソフォーム 特異的であることが明らかとなり、 適応症状が限られることがわかってきた。 一方、 サイトキサゾン (CXZ) については、 その精製法や免疫細胞のサイトカイ ン産生能の調節活性、 合成法が報告されている (Kakeya H 他、 J Antibio 1998;51:1126-1128; Kakeya H他、 J Org Chem 1999 ;64: 1052-1053;特開平 1 1 - 209 35 5号公報;及び特開 2000— 8 6 6 3 9号公報) 力 その他の生 物活性については不明であつた。 発明の開示 TGF- / 3 is a common etiologic agent in liver diseases such as liver fibrosis, cirrhosis, hepatitis, or hepatic regeneration failure, and attempts to treat or prevent the disease by suppressing its activity have been made. Has been done. For example, antibody therapy using neutralizing antibodies against TGF-j3, or gene therapy using dominant negative TGF-receptor gene or soluble TGF-β receptor gene, can stop the action of TGF-J3 at the entrance. Reported reports (Schuppan et al. Digestion 59: 385-390, 1998; Qi et al. Proc Natl Acad Sci USA 96: 2345-2349, 1999; and Ueno et al. Hum Gene Ther 11: 33-42, 2000). On the other hand, the present inventors have focused on the fact that TGF-j3 is produced as a latent inactive molecule and is converted to an active molecule by protease (TGF- / 3 activation reaction). Although animal models have shown the possibility of inhibiting disease by inhibiting the TGF j3 activation reaction using a synthetic protease inhibitor or an antibody (Akitaetal. Gastroenterology 123: 352-364, 2002), It has been revealed that the activation reaction is specific to a disease state, a fibrous tissue, and an isoform, and that the adaptation symptoms are limited. On the other hand, for cytoxazone (CXZ), its purification method, the activity of regulating the cytokin production of immune cells, and its synthesis method have been reported (Kakeya H et al., J Antibio 1998; 51: 1126-1128; Kakeya H et al.). , J Org Chem 1999; 64: 1052-1053; JP-A-11-209355; and JP-A-2000-86639. Power and other biological activities were unknown. Disclosure of the invention
TGF- βは、 間葉系細胞の細胞外マトリックス産生を強力に促すとともに上皮系 細胞の増殖を抑制することにより、 肝線維化 肝硬変、 動脈硬化、 肺線維症、 庳 膚線維症、 腎不全、 子宮筋腫などの硬化性疾患の病態を形成する一方、 免疫担当 細胞の働きを抑制するなど、 多彩な生物活性を示す分子量 25 kDのホモダイマー 多機能サイト力インである。 上記の通り、 TGF- /3に対する中和抗体を用いた動物 モデルでの検討から、 TGF- βの働きを抑制することによつて硬化性疾患を予防 . 治療できることがわかってきた。 さらに、変異 TGF- 受容体を用いた遺伝子治療 の開発が試みられている。 しかし、 抗体療法や遺伝子治療では、 必要量や投与法 の観点で問題が残っており、 すぐには臨床応用できず、 TGF- )3の作用機序に基づ いた低分子阻害剤の開発が望まれている。 即ち、 本発明は、 T G F— j3情報伝達 経路を阻害することができる低分子化合物から成る T G F - β情報伝達経路阻害 剤を提供することを解決すべき課題とした。  TGF-β strongly promotes the production of extracellular matrix by mesenchymal cells and suppresses the proliferation of epithelial cells, resulting in hepatic fibrosis, cirrhosis, atherosclerosis, pulmonary fibrosis, dermal fibrosis, renal failure, It is a homodimer with a molecular weight of 25 kD and has a variety of biological activities, including the formation of pathological conditions of sclerosing diseases such as uterine fibroids and suppression of the function of immunocompetent cells. As described above, studies in animal models using neutralizing antibodies to TGF- / 3 have revealed that sclerosing diseases can be prevented and treated by suppressing the action of TGF-β. Furthermore, development of gene therapy using mutant TGF-receptors has been attempted. However, in antibody therapy and gene therapy, problems remain in terms of the required amount and administration method, and clinical application is not immediately possible, and the development of small molecule inhibitors based on the mechanism of action of TGF-) 3 has been developed. Is desired. That is, an object of the present invention is to provide a TGF-β signaling pathway inhibitor comprising a low-molecular compound that can inhibit the TGF-j3 signaling pathway.
本発明者らは上記課題を解決するための鋭意検討した結果、 本明細書に定義す る式(1 ) で表されるサイトキサゾン又はその誘導体 (以下、 CXZとも略記する) が TGF - の情報伝達経路を阻害することを初めて見出することにより、本発明を 完成するに到った。  The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, cytoxazone represented by the formula (1) or a derivative thereof (hereinafter, also abbreviated as CXZ) as defined in the present specification is used for transmitting TGF- The present invention has been completed by finding for the first time inhibition of the pathway.
即ち、 本発明によれば、 下記式 (1 ) :  That is, according to the present invention, the following formula (1):
Figure imgf000004_0001
Figure imgf000004_0001
(式中 R 1は、 ヒドロキシメチル基、 ヒ ドロキシェチル基、 ヒ ドロキシプロピル 基、 ヒ ドロキシプチル基、 フエニル基、 オルト一、 メタ一またはパラーメ トキシ フエニル基、 オルト一、 メタ一またはパラ一ヒ ドロキシフエニル基、 オルト一、 メタ一またはパラ一ニトロフエニル基、 オルト一、 メタ一またはパラ一アミノフ ュニル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アルキル基、 炭素数 1〜2 0 の直鎖状または分岐鎖状アルコキシ基を示し、 R2は、 ヒドロキシメチル基、 ヒ ドロキシェチル基、 ヒ ドロキシプロピル基、 ヒ ドロキシプチル基、 フエニル基、 オルト一、 メタ一またはパラーメ トキシフエニル基、 オルト一、 メタ一またはパ ラーヒ ドロキシフエニル基、 オルト一、 メタ一またはパラ一ニトロフエニル基、 オルト一、 メタ一またはパラーァミノフエ二ル基、 ベンジル基、 オルト一、 メタ 一またはパラーメ トキシベンジル基、 オルト一、 メタ一またはパラ一ヒ ドロキシ ベンジル基、 オルト一、 メタ一またはパラーニトロべンジル基、 オルト一、 メタ —またはパラ―ァミノベンジル基、 炭素数 1〜 2 0の直鎖状または分岐鎖状アル キル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アルコキシ基を示す。 ) で表される化合物を有効成分として含む、 T G F— 情報伝達経路阻害剤が提供 される。 (Wherein R 1 is a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxypropyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxyphenyl group An ortho-, meta- or para-nitrophenyl group, an ortho-, meta- or para-aminophenyl group, a linear or branched alkyl group having 1-20 carbon atoms, 1-20 carbon atoms And R 2 represents a hydroxymethyl group, a hydroxyxyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-alkyl group. , Meta- or para-hydroxyphenyl, ortho-, meta- or para-nitrophenyl, ortho-, meta- or para-aminophenyl, benzyl, ortho-, meta- or para-methoxybenzyl, ortho-, meta- Or para-hydroxybenzyl group, ortho-, meta- or para-nitrobenzyl group, ortho-, meta- or para-aminobenzyl group, linear or branched alkyl group having 1 to 20 carbon atoms, carbon number 1 to 20 linear or branched alkoxy groups. A TGF-signalling pathway inhibitor comprising a compound represented by the formula (1) as an active ingredient.
好ましくは、 本発明の T G F— 情報伝達経路阻害剤は、 S m a d 2のリン酸 化を抑制することにより T G F— i3情報伝達経路を阻害する。  Preferably, the TGF-i3 signaling pathway inhibitor of the present invention inhibits the TGF-i3 signaling pathway by suppressing the phosphorylation of Smad2.
本発明の別の側面によれば、 下記式 (1 ) :  According to another aspect of the invention, the following formula (1):
Figure imgf000005_0001
Figure imgf000005_0001
(式中 R1は、 ヒ ドロキシメチル基、 ヒ ドロキシェチル基、 ヒ ドロキシプロピル 基、 ヒ ドロキシブチル基、 フエニル基、 オルト一、 メタ一またはパラ一メ トキシ フエニル基、 オルト一、 メタ一またはパラ一ヒ ドロキシフエニル基、 オルト一、 メタ一またはパラーニトロフエニル基、 オルト一、 メタ一またはパラーアミノフ ェニル基、 炭素数 1〜 2 0の直鎖状または分岐鎖状アルキル基、 炭素数 1〜 2 0 の直鎖状または分岐鎖状アルコキシ基を示し、 R2は、 ヒ ドロキシメチル基、 ヒ ドロキシェチル基、 ヒドロキシプロピル基、 ヒ ドロキシブチル基、 フエニル基、 オ^/トー、 メタ一またはパラ一メ トキシフエニル基、 オルト一、 メタ一またはパ ラーヒ ドロキシフエニル基、 オルト一、 メタ一またはパラーニトロフエニル基、 オルト一、 メタ一またはパラーアミノフヱ-ル基、 ベンジル基、 オルト一、 メタ —またはパラーメ トキシベンジル基、 オルト一、 メタ一またはパラ一ヒ ドロキシ ベンジル基、 オルト一、 メタ一またはパラ一ニトロべンジル基、 オルト一、 メタ(In the formula, R 1 is a hydroxymethyl group, a hydroxyshethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxy group. Droxyphenyl group, ortho-, meta- or para-nitrophenyl group, ortho-, meta- or para-aminophenyl group, linear or branched alkyl group having 1 to 20 carbon atoms, linear chain having 1 to 20 carbon atoms R 2 represents a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an o / to, a meta- or para-methoxyphenyl group, an ortho-, Meta- or para-hydroxyphenyl group, ortho-, meta- or para-nitrophenyl group Ortho-, meta- or para-aminophenyl, benzyl, ortho-, meta- or para-methoxybenzyl, ortho-, meta- or para-hydroxybenzyl, ortho-, meta- or para-nitrobenzyl , Ortho, Meta
—またはパラ一ァミノべンジル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アル キル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アルコキシ基を示す。 ) で表される化合物を有効成分として含む、 TGF— β関連疾患の治療及び/又は予 Ρ方剤が提供される。 — Or a para-aminobenzyl group, a linear or branched alkyl group having 1 to 20 carbon atoms, or a linear or branched alkoxy group having 1 to 20 carbon atoms. A therapeutic and / or prophylactic agent for a TGF-β-related disease, comprising a compound represented by the formula (1) as an active ingredient.
好ましくは、 TGF— ]3関連疾患は肝線維化 Ζ肝硬変、 肝炎、 肝再生不全、 動脈 硬化、 肺線維症、 皮膚線維症、 腎不全、 又は子宮筋腫である。  Preferably, the TGF-] 3-related disease is liver fibrosis-cirrhosis, hepatitis, liver regeneration failure, arteriosclerosis, pulmonary fibrosis, dermal fibrosis, renal failure, or uterine fibroids.
好ましくは、 R1は、 ヒ ドロキシメチル基であり、 R2は、 パラ一メトキシフエ ニル基である。 特に好ましくは、 本発明で用いる化合物は下記式 (2 ) で表され る化合物である。 Preferably, R 1 is a hydroxymethyl group and R 2 is a para-methoxyphenyl group. Particularly preferably, the compound used in the present invention is a compound represented by the following formula (2).
Figure imgf000006_0001
図面の簡単な説明
Figure imgf000006_0001
Brief Description of Drawings
図 1は、 TGF- シグナル伝達経路を示す。  FIG. 1 shows the TGF-signaling pathway.
A: T G F— の合成 ·分泌を高める因子、 要因  A: Factors and factors that increase the synthesis and secretion of TGF-
T G F— 3、 ビタミン A、 抗エストロゲン、 ブレオマイシン、  T G F-3, vitamin A, antiestrogen, bleomycin,
デキサメサゾン、 ヴィルス感染、 リンパ球活性化、 骨折、 肝線維化、 心筋梗塞、 肝障害  Dexamethasone, virus infection, lymphocyte activation, fracture, liver fibrosis, myocardial infarction, liver damage
B :細胞外基質から T G F— ]3を放出させる因子  B: Factor that releases TGF—] 3 from extracellular matrix
エラスターゼ、 チマーゼ、 プラスミン、 トロンビン  Elastase, chymase, plasmin, thrombin
C: T G F— の活性化を起こす因子  C: factor that activates TGF-
4 Four
差替え用紙(規則 26) 酸、 アルカリ、 熱、 変性剤、 活性酸素種 (R O S )、 Replacement form (Rule 26) Acid, alkali, heat, denaturant, reactive oxygen species (ROS),
エンドグリコシダーゼ、 トロンボスポンジン、 セリンプロテアーゼ、 インテグリン、 マトリックスメタ口プロテアーゼ  Endoglycosidase, thrombospondin, serine protease, integrin, matrix meta-oral protease
D:細胞に T G F— 活性化を起こす因子、 要因  D: Factors that cause TGF-activation in cells
混合培養、 ビタミン Α、 ビタミン D、 抗エストロゲン、 ブレオマイシン、 デキサメサゾン、 リポ多糖、 I g G、 インターフェロン、 癌化  Mixed culture, vitamin Α, vitamin D, antiestrogen, bleomycin, dexamethasone, lipopolysaccharide, IgG, interferon, carcinogenesis
E: T G F _ j3受容体の発現を高める因子、 要因  E: Factors that increase the expression of TGF_j3 receptor
ビタミン A、 肝線維化  Vitamin A, liver fibrosis
F : T G F— j3受容体の発現を減らす因子、 要因  F: factors that reduce the expression of TGF-j3 receptor
癌化、 細胞外マトリックス  Carcinogenesis, extracellular matrix
図 2は、プロテアーゼインヒビターを用いた TGF- /3活性化阻害による肝臓の病 態形成の抑制を示す。  FIG. 2 shows inhibition of liver pathogenesis by inhibition of TGF- / 3 activation using protease inhibitors.
図 3は、 サイトキサゾンの構造を示す。 R 1はヒドロキシメチル基を示し、 R 2は p—メトキシフエ二ル基を示す。  FIG. 3 shows the structure of cytoxazone. R 1 represents a hydroxymethyl group, and R 2 represents a p-methoxyphenyl group.
図 4は、サイトキサゾンによる TGF- J3活性抑制を介する肝星細胞の活性化抑制 を示す。 A) 形態変化、 B ) 標的遺伝子発現の抑制、 C) TGF- ]3依存転写活性の 抑制  FIG. 4 shows suppression of hepatic stellate cell activation by cytoxazone through suppression of TGF-J3 activity. A) morphological changes, B) suppression of target gene expression, C) suppression of TGF-] 3-dependent transcriptional activity
図 5は、 サイトキサゾン処理による Smad2量およびリン酸化 Smad2量の減少を 示す。  FIG. 5 shows that the amount of Smad2 and the amount of phosphorylated Smad2 are reduced by cytoxazone treatment.
図 6は、 サイトキサゾン処理による Smad-標的遺伝子複合体量の減少を示す。 図 7は、肝星細胞とミンク肺上皮細胞におけるサイトキサゾン処理による TGF - β依存性転写活性化活性の抑制を示す。  FIG. 6 shows the reduction of the amount of Smad-target gene complex by cytoxazone treatment. FIG. 7 shows suppression of TGF-β-dependent transcription activation activity by cytoxazone treatment in hepatic stellate cells and mink lung epithelial cells.
図 8は、サイトキサゾン処理による TGF- ]3受容体の下流のシグナル伝達の抑制 を示す。  FIG. 8 shows suppression of signaling downstream of the TGF-] 3 receptor by cytoxazone treatment.
図 9は、 サイトキサゾン処理による Smad活性の抑制を示す。  FIG. 9 shows suppression of Smad activity by cytoxazone treatment.
図 1 0は、サイトキサゾン処理による Smadの mRNA発現及ぴ蛋白質量に対する 影響を示す。 図 1 1は、サイトキサゾン処理による Smad蛋白質の核局在に対する影響を示す。 図 1 2は、 サイトキサゾン処理によるプロコラーゲン遺伝子プロモーターの転 写活性化活性の抑制を示す。 FIG. 10 shows the effects of cytoxazone treatment on Smad mRNA expression and protein content. FIG. 11 shows the effect of cytoxazone treatment on nuclear localization of Smad protein. FIG. 12 shows suppression of transcriptional activation activity of procollagen gene promoter by cytoxazone treatment.
図 1 3は、 マウスにおけるサイトキサゾンによる肝再生の回復を示す。  FIG. 13 shows the recovery of liver regeneration by cytoxazone in mice.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
Transforming Growth Factor (TGF) - は、 硬化性疾患の病態形成を担ったり、 免疫担当細胞の働きを抑制する一方、 プロテアーゼの過剰産生を抑制することに よつて肺組織が分解され肺気腫に陥るのを防いだりしたり癌細胞の増殖を抑制す るなど、 多彩な生物活性を示す分子量 25 kDのホモダイマー多機能性サイトカイ ンである。 TGF- /3は受容体に結合できない分子量約 300 kDの不活性な潜在型とし て産生され、 標的細胞表面やその周囲において活性化されて受容体に結合できる 活性型となり、 その作用を発揮する (図 1 )。  Transforming Growth Factor (TGF)-is responsible for the pathogenesis of sclerosing diseases and suppresses the function of immunocompetent cells, while suppressing the overproduction of proteases to prevent the breakdown of lung tissue and emphysema. It is a 25 kD molecular weight homodimeric multifunctional cytokine that has a variety of biological activities, such as preventing or inhibiting the growth of cancer cells. TGF- / 3 is produced as an inactive latent form with a molecular weight of about 300 kD that cannot bind to the receptor, and is activated on and around the target cell surface to become an active form that can bind to the receptor and exerts its action (Figure 1 ).
標的細胞における TGF- βの作用は Smadという情報伝達を担う一連のタンパク 質のリン酸化経路によって伝達される。 まず、活性型 TGF- が標的細胞表面に存 在する Π型 TGF- β受容体に結合すると、 II型受容体 2分子と I型 TGF - β受容体 The action of TGF-β in target cells is transmitted through a series of protein phosphorylation pathways that are responsible for signaling Smads. First, when activated TGF- binds to type II TGF-β receptor on the surface of target cells, two types of type II receptor and type I TGF-β receptor
2分子からなる受容体複合体が形成され、 II型受容体が I型受容体をリン酸化す る。 次に、 リン酸化 I型受容体は、 Smad2もしくは Smad3をリン酸化すると、 リ ン酸化された Smad2や Smad3は Smad4と複合体を形成して核に移行し、 標的遺伝 子プロモーター領域に存在する CAGA boxと呼ばれる標的配列に結合し、コアクチ ベータ一とともに標的遺伝子の転写発現を誘導する (図 ι )。 本発明者らは、潜在型 TGF - /3が肝臓においてはプロテアーゼによる切断活性化 を受け、 強力な線維形成誘導能や肝細胞増殖抑制能を発揮することが原因となり 肝線維化/肝硬変や肝再生不全を引き起こすことを発見し、プロテアーゼインヒビ ターを用いて TGF - の活性化を阻害してやると病態形成を抑制できること (図 2 ) を報告した (Okuno M他、 Gastroenterology 2001; 120 : 1784- 1800; Akita K 他、 Gastroenterology 2002 ; 123 : 352-364)。 これらの発見に基づき、 プロテア一 ゼに対する抗体を用いた治療法の開発、 さらには病態 ·組織 ·ァイソフォーム特 異的活性化反応認識抗体の作製を報告している (特願 2002-057253 号、 特願 2003-313014号)。 A receptor complex consisting of two molecules is formed, and the type II receptor phosphorylates the type I receptor. Next, when the phosphorylated type I receptor phosphorylates Smad2 or Smad3, phosphorylated Smad2 or Smad3 forms a complex with Smad4 and translocates to the nucleus, where CAGA located in the target gene promoter region is present. It binds to a target sequence called box and induces the transcriptional expression of the target gene together with coactivator (Fig. ι). The present inventors believe that latent TGF- / 3 is activated by protease cleavage in the liver, and exhibits potent fibrogenesis-inducing ability and hepatocyte proliferation-inhibiting ability. It was found that it causes regenerative failure, and it was reported that inhibition of TGF- activation by using a protease inhibitor can suppress the formation of pathology (Fig. 2) (Okuno M et al., Gastroenterology 2001; 120: 1784-1800). ; Akita K Et al., Gastroenterology 2002; 123: 352-364). Based on these findings, we have reported the development of a therapeutic method using an antibody against protease, and the production of an antibody recognizing a specific activation reaction in disease state, tissue, and isoform (Japanese Patent Application No. 2002-057253). , Japanese Patent Application No. 2003-313014).
本発明者らは続いて、 TGF - の情報伝達抑制物質と TGF - βの活性化を抑えるプ 口テアーゼ阻害剤を併用することによって相乗的に病態形成抑制効果が得られる ことを期待して、 TGF- /3情報伝達抑制物質のスクリ一ユングを行った。その結果、 ォキサゾリジノン環を有するサイトキサゾン (図 3 ; cytoxazone : CXZと略) を見 出だした。 R1は、 ヒ ドロキシメチル基、 ヒドロキシェチル基、 ヒドロキシプロピ ル基、 ヒドロキシプチル基、 フエニル基、 オルト一、 メタ一またはパラーメ トキ シフエニル基、オルトー、メタ一またはパラーヒ ドロキシフエニル基、オルト一、 メタ一またはパラーニトロフエニル基、 オルト一、 メタ一またはパラーアミノフ ヱニル基、 炭素数 1〜 2 0の直鎖状または分岐鎖上アルキル基、 炭素数 1〜 2 0 の直鎖状または分岐鎖状アルコキシ基を示し、 R2は、 ヒ ドロキシメチル基、 ヒ ド ロキシェチル基、 ヒ ドロキシプロピル基、 ヒ ドロキシブチル基、 フエニル基、 ォ ルトー、 メタ一またはパラーメ トキシフエ二ル基、 オルト一、 メタ一またはパラ ーヒドロキシフエニル基、 オルト一、 メタ一またはパラーニトロフエニル基、 ォ ルトー、 メタ一またはパラーァミノフエ二ル基、 ベンジル基、 オルト一、 メタ一 またはパラーメ トキシベンジル基、 オルト一、 メタ一またはパラーヒ ドロキシべ ンジル基、 オルト一、 メタ一またはパラーニトロべンジル基、 オルト一、 メタ一 またはパラーァミノべンジル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アルキ ル基、 炭素数 1〜 2 0の直鎖状または分岐鎖状アルコキシ基を示す。  The present inventors subsequently hoped that a combined use of a TGF-signaling inhibitor and a protease inhibitor that suppresses the activation of TGF-β would produce a synergistic inhibitory effect on disease state formation. Screening of TGF- / 3 signaling inhibitor was performed. As a result, a cytoxazone having an oxazolidinone ring (FIG. 3; abbreviated as cytoxazone: CXZ) was found. R1 is a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxyphenyl group, an ortho-, meta- or A paranitrophenyl group, an ortho-, meta-, or para-aminophenyl group, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkoxy group having 1 to 20 carbon atoms. R2 represents a hydroxymethyl group, a hydroxyxyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho, a meta- or para-methoxyphenyl group, an ortho-, meta-, or para-hydroxyphenyl group , Ortho-, meta- or para-nitrophenyl group, ortho , Meta- or para-aminophenyl, benzyl, ortho-, meta- or para-methoxybenzyl, ortho-, meta- or para-hydroxybenzyl, ortho-, meta- or para-nitrobenzyl, ortho-, meta- A mono- or para-aminobenzyl group, a linear or branched alkyl group having 1 to 20 carbon atoms, or a linear or branched alkoxy group having 1 to 20 carbon atoms.
サイ トキサゾンは、 ストレブトマイセス属が産生分泌する抗生物質で、 免疫担 当 Th2細胞からのサイトカイン IL4並びに IL10の産生を抑制することが知られて レヽる (Kakeya H他、 J Antibio 1998; 51: 1126 - 1128; Kakeya H 他、 J Org Chem 1999 ;64: 1052-1053)。 サイトキサゾン又はその誘導体の発見、 精製については特 開平 11- 209355号公報に記載されており、その有機合成は特開 2000-86639号公報、 及ぴ Tetrahedron Lett 1999 ;40: 4203-4206に記載されている。 上記の通り、 本発 明で用いる式 (1 ) で表される化合物は公知化合物であり、 上記文献の記載に準 じて入手又は合成することができる。 Cytoxazone is an antibiotic produced and secreted by Streptomyces and is known to suppress the production of cytokines IL4 and IL10 from immunocompetent Th2 cells (Kakeya H et al., J Antibio 1998; 51 Kakeya H et al., J Org Chem 1999; 64: 1052-1053). The discovery and purification of cytoxazone or a derivative thereof is described in JP-A-11-209355, and its organic synthesis is described in JP-A-2000-86639, And Tetrahedron Lett 1999; 40: 4203-4206. As described above, the compound represented by the formula (1) used in the present invention is a known compound, and can be obtained or synthesized according to the description in the above literature.
本発明は、 本明細書に定義する式 (1 ) で表される化合物を有効成分として含 む、 T G F— ]3情報伝達経路阻害剤、 並びに TGF— β関連疾患の治療及び Ζ又は 予防剤に関するものである。 以下、 これらを総称して本発明の薬剤と称する場合 がある。  The present invention relates to a TGF-] 3 signaling pathway inhibitor, and a therapeutic and / or prophylactic agent for a TGF-β-related disease, comprising a compound represented by the formula (1) defined herein as an active ingredient. Things. Hereinafter, these may be collectively referred to as the drug of the present invention.
本発明の薬剤としては、 式 (1 ) で表される化合物をそのまま単独で用いても よいが、 通常は薬学的に許容される製剤添加物を用いて医薬組成物の形態で供給 することが好ましい。 本発明の薬剤は経口的又は非経口的に投与することができ る。 本明細書で言う薬学的に許容される製剤添加物としては、 賦形剤、 希釈剤、 増量剤、 崩壌剤、 安定剤、 保存剤、 緩衝剤、 乳化剤、 芳香剤、 着色剤、 甘味剤、 粘稠剤、 矯味剤、 溶解補助剤あるいはその他の添加剤等が挙げられる。  As the drug of the present invention, the compound represented by the formula (1) may be used alone as it is, but it is usually supplied in the form of a pharmaceutical composition using a pharmaceutically acceptable pharmaceutical additive. preferable. The medicament of the present invention can be administered orally or parenterally. Pharmaceutically acceptable pharmaceutical additives referred to herein include excipients, diluents, extenders, disintegrants, stabilizers, preservatives, buffers, emulsifiers, fragrances, coloring agents, sweeteners , Thickeners, flavoring agents, solubilizers or other additives.
経口投与に適する医薬組成物としては、 例えば、 錠剤、 顆粒剤、 カプセル剤、 散剤、 溶液剤、 懸濁剤、 シロップ剤などを挙げることができ、 非経口投与に適す る医薬組成物としては、 例えば、 注射剤、 点滴剤、 坐剤、 経皮吸収剤などを挙げ ることができるが、 本発明の薬剤の形態はこれらに限定されることはない。 非経口投与の形態としては、 静脈内注射、 皮下注射、 皮内注射、 筋肉内注射あ るいは腹腔内注射などの種々の投与形態を例示することができる。 注射剤は、 場 合により、 非水性の希釈剤 (例えばプロピレングリコール、 ポリエチレングリコ ール、ォリーブ油のような植物油、エタノールのようなアルコール類など)、懸濁 剤あるいは乳濁剤として調製することもできる。 そのような注射剤の無菌化は、 パクテリァ保留フィルターを通す濾過滅菌、 殺菌剤の配合または照射により行う ことができる。 注射剤は、 用時調製の形態として製造することができる。 即ち、 凍結乾燥法などによって無菌の固体組成物とし、 使用前に無菌の注射用蒸留水ま たは他の溶媒に溶解して使用することも可能である。  Pharmaceutical compositions suitable for oral administration include, for example, tablets, granules, capsules, powders, solutions, suspensions, and syrups. Pharmaceutical compositions suitable for parenteral administration include: For example, injections, drops, suppositories, transdermal absorbents, etc. can be mentioned, but the form of the drug of the present invention is not limited to these. Examples of the form of parenteral administration include various administration forms such as intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection or intraperitoneal injection. Injectables may be prepared as non-aqueous diluents (eg, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol), suspensions or emulsions. You can also. Such injections can be sterilized by filtration sterilization through a pateria-retaining filter, blending of a bactericide or irradiation. Injectables can be manufactured in the form of ready-to-use preparations. That is, a sterile solid composition can be obtained by freeze-drying or the like and dissolved in sterile distilled water for injection or another solvent before use.
本発明の薬剤はヒトを含む哺乳動物に投与することができる。 本発明の薬剤の 投与量は患者の年齢、 性別、 体重、 症状、 及び投与経路などの条件に応じて適宜 増減されるべきである力 一般的には、成人一日あたり 0· 001m g Z k から 1000 m g / k g程度の範囲であり、 好ましくは 0. 01m g / k gから 100m g Z k g程 度の範囲であり、 特に好ましくは lm g Z k gから 50m g / k g程度の範囲であ り、 例えば、 2 0 m g Z k gである。 上記投与量の薬剤は、 毎日投与してもよい しあるいは数日間隔で投与してもよく、 例えば 1〜4日毎に投与される。 The agent of the present invention can be administered to mammals including humans. The drug of the present invention Dosage should be adjusted according to the patient's age, sex, weight, symptoms, route of administration and other conditions.Generally, 0.001 mg Zk to 1000 mg / kg per adult per day , Preferably in the range of 0.01 mg / kg to 100 mg Z kg, particularly preferably in the range of lm g Z kg to 50 mg / kg, for example, 20 mg. Z kg. The above dose of the drug may be administered daily or at intervals of several days, for example, every 1 to 4 days.
本発明の薬剤は、 T G F— 3情報伝達経路阻害剤として使用することができ、 例えば、 TGF— 関連疾患の治療及びノ又は予防剤として使用することができる。 TGF— ]3関連疾患としては、 病態形成因子が TGF— ]3である疾患 (例えば、 病態形 成因子が TGF— βである肝疾患など) を挙げることができる。 TGF— β関連疾患の 具体例としては、 肝線維化 Ζ肝硬変、 肝炎、 肝再生不全、 動脈硬化、 肺線維症、 皮膚線維症、 腎不全、 又は子宮筋腫などを挙げることができる。 また、 TGF— ]3 関連疾患の治療及び/又は予防剤とは、 該疾患の発症及び または進行を抑制又 は阻止することを含む広い意味で解釈される。  The agent of the present invention can be used as a TGF-3 signaling pathway inhibitor, and can be used, for example, as a therapeutic and / or prophylactic agent for TGF-related diseases. Examples of the TGF-] 3-related disease include a disease in which the pathogenesis factor is TGF-] 3 (for example, a liver disease in which the pathogenesis factor is TGF-β). Specific examples of TGF-β-related diseases include hepatic fibrosis, cirrhosis, hepatitis, hepatic regeneration failure, arteriosclerosis, pulmonary fibrosis, dermal fibrosis, renal failure, or uterine fibroids. In addition, a therapeutic and / or prophylactic agent for a TGF-] 3-related disease is to be interpreted in a broad sense including suppressing or preventing the onset and / or progression of the disease.
本発明の薬剤の TGF— ]3関連疾患の症状に対する治療効果については、 常法に 従って疾患モデル動物に投与することにより試験、 検討することができる。 例え ば、 肝炎 (例えば、 ウィルス性肝炎 (Α型、 Β型、 C型、 Ε型など) など)、 肝硬 変あるいは薬物肝障害などの肝疾患ついても、 既報のモデル動物を用いることが できる (例えば、 「疾患別モデル動物の作製と新薬開発のための試験 ·実験法」、 ρ· 119- 129及ぴ p. 349-358、 1993、 技術情報協会などを参照)。  The therapeutic effect of the agent of the present invention on the symptoms of a TGF-] 3-related disease can be tested and examined by administering it to a disease model animal according to a conventional method. For example, for liver diseases such as hepatitis (for example, viral hepatitis (type I, type II, type C, type III, etc.)), cirrhosis, or drug-induced liver injury, the model animals already reported can be used. (For example, see “Tests for the preparation of disease-specific model animals and development of new drugs · Experimental methods”, pp. 119-129 and p. 349-358, 1993, Technical Information Association, etc.).
以下の実施例により本発明をさらに具体的に説明するが、 本発明は実施例によ つて限定されることはない。 実施例  The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples. Example
実施例 1 : CXZによる肝星細胞の活性化抑制 Example 1: Inhibition of hepatic stellate cell activation by CXZ
既報の方法に従って (Okuno M他、 Gastroenterology 2001; 120 : 1784- 1800)、 雄のウィスターラット (体重 350〜400g; Japan Clea) の肝臓から肝星細胞を単 離し、 10 cm培養プラスティックディッシュ 1枚あたりに3 · 5 Χ 106個の細胞をま き、 10%ゥシ胎児血清 (FCS ; Invitrogen社製) を含むダルベッコ改変イーグル培 地 (DMEM; Invitrogen社製) でー晚培養した。 翌日より下記構造を有する化合物According to a previously reported method (Okuno M et al., Gastroenterology 2001; 120: 1784-1800), hepatic stellate cells were isolated from the liver of male Wistar rats (weight 350-400 g; Japan Clea). Away, 10 cm culture plastic dishes or-out the 3 · 5 Χ 10 6 cells per sheet, 10% © Shi calf serum (FCS; Invitrogen Corporation) Dulbecco's modified Eagle's culture areas, including (DMEM; Invitrogen Corp. ) The cells were cultured. Compounds having the following structure from the next day
(以下、 CXZ と略記する) を含む無血清培地に交換し、 さらに 6日間培養し、 プ ラスティックディッシュ上で培養することによって誘起される肝星細胞の活性化 に及ぼす薬剤の影響を顕微鏡下で観察した。 (Hereinafter abbreviated as CXZ), changed to a serum-free medium, cultured for another 6 days, and cultured on a plastic dish to observe the effect of the drug on hepatic stellate cell activation induced by microscopy. Was observed.
Figure imgf000012_0001
図 4 Aに示すように、 CXZ は星細胞の活性化 (ビタミン Aを含む油滴の消失を 伴う形態変化) を抑制した。 その効果は容量依存的であり、 最適値は終濃度 150 μ g/mlで fcつ 7こ 0
Figure imgf000012_0001
As shown in Fig. 4A, CXZ suppressed activation of stellate cells (morphological change accompanied by disappearance of oil droplets containing vitamin A). The effect is dose-dependent manner, the optimum value is one fc at a final concentration of 150 μ g / ml 7 This 0
次に、 星細胞の活性化に伴い発現が誘導されることが知られている幾つかの遺 伝子 [TGF- ]3 1、 I型プロコラゲン α 2、 α平滑筋ァクチン]について、 その発現量 の変化を逆転写ポリメラーゼ連鎖反応 (RT- PCR) 法により検討した。 内部標準と してはグリセルアルデヒド -3-リン酸デヒドロゲナーゼ (GAPDH) 遺伝子量の変化 を測定した。 顕微鏡下での観察を終了した細胞から QIAGEN社の R EASY RNA Purification Kitを用いて RNAを抽出 ·精製し、 M- MLV逆転写酵素 (Invitrogen 社製) を用いて、 その使用説明書に従って、 RNA (1 μ β) を cDNAに逆転写し、 こ の cDNA を铸型として以下のセンスおよびアンチセンスプライマーを用いて各 cDNAフラグメントを PCRで増幅したのちに 2%ァガロースゲルに流してェチジゥム プロマイドで染色し、 相対量を UV光下で比較 ·観察した。 Next, the expression levels of several genes [TGF-] 31, type I procollagen α2, and α-smooth muscle actin] whose expression is known to be induced by stellate cell activation The changes in DNA were examined by the reverse transcription polymerase chain reaction (RT-PCR) method. Changes in the amount of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene were measured as an internal standard. Extract and purify RNA from cells that have been observed under a microscope using QIAGEN's REASY RNA Purification Kit, and use M-MLV reverse transcriptase (manufactured by Invitrogen) according to the manufacturer's instructions. stained with Echijiumu Puromaido by passing a (1 mu beta) reverse transcribed into cDNA, each cDNA fragment using the following sense and antisense primers to the cDNA of this as铸型to then amplified by PCR to 2% Agarosugeru, The relative amounts were compared and observed under UV light.
ラット TGF - β 1 Rat TGF-β 1
5' -GGACTCTCCACCTGCAAGAC-3' (配列番号 1 )  5'-GGACTCTCCACCTGCAAGAC-3 '(SEQ ID NO: 1)
10 Ten
差替え用紙 (規則 26) 5, -CTCTGCAGGCGCAGCTCTG-3' (配列番号 2 ) Replacement form (Rule 26) 5, -CTCTGCAGGCGCAGCTCTG-3 '(SEQ ID NO: 2)
ラット I型プロコラゲン α 2 Rat type I procollagen α 2
5' -CCTGGTCCTCATGGTTCTGT-3' (配列番号 3 )  5'-CCTGGTCCTCATGGTTCTGT-3 '(SEQ ID NO: 3)
5' -CTGGTCAGCCCTGTAGAAGC-3' (配列番号 4 )  5'-CTGGTCAGCCCTGTAGAAGC-3 '(SEQ ID NO: 4)
ラット α平滑筋ァクチン Rat alpha smooth muscle actin
5, -ACTGGGACGACATGGAAAAG-3' (配列番号 5 )  5, -ACTGGGACGACATGGAAAAG-3 '(SEQ ID NO: 5)
5, -GTCCAGAGCGACATAGCACA-3' (配列番号 6 ) 5, -GTCCAGAGCGACATAGCACA-3 '(SEQ ID NO: 6)
ラットグリセルアルデヒド- 3-リン酸デヒドロザ "一ゼ (GAPDH) Rat glyceraldehyde-3-phosphate dehydroza "Ize (GAPDH)
5' -GCTGAGAATGGGAAGCTGGT-3' (配列番号 7 ) 5'-GCTGAGAATGGGAAGCTGGT-3 '(SEQ ID NO: 7)
5' -CCTTGGCAGCACCAGTGGAT-3' (配列番号 8 ) 5'-CCTTGGCAGCACCAGTGGAT-3 '(SEQ ID NO: 8)
図 4 Βに示すように、 コント口ールの細胞 (溶媒である 0. 5% DMS0処理) に比 ベて CXZ処理細胞(C X Ζ )では、 TGF- β 1、 I型プロコラゲン a 2 (procollagen)、 α平滑筋ァクチン (a SMA)遺伝子量が減少していた。 このとき、 内部標準のダリ セルアルデヒド- 3-リン酸デヒドロゲナーゼ (GAPDH) 遺伝子量には変化がみられ なかった。  As shown in Fig. 4 C, CGF-treated cells (CXΖ) showed higher levels of TGF-β1 and type I procollagen a 2 (procollagen) than control cells (treated with 0.5% DMS0 as a solvent). ), The amount of α-smooth muscle actin (a SMA) gene was decreased. At this time, there was no change in the amount of the internal standard dalyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene.
肝星細胞の活性化は星細胞自身が産生する TGF- βに依存していることから、 CXZによる星細胞活性化抑制効果が TGF- βの活性抑制に因るものであるか否かを、 TGF- βの活性測定に最も一般的に用いられているミンク肺上皮(MLE)細胞並びに ラット肝星細胞を用いたリポーターアツセィにより検討した。  Since the activation of hepatic stellate cells depends on TGF-β produced by the stellate cells themselves, it was determined whether the inhibitory effect of CXZ on stellate cell activation was due to the suppression of TGF-β activity. The activity of TGF-β was examined by a reporter assay using mink lung epithelial (MLE) cells, which are most commonly used, and rat hepatic stellate cells.
3. 5 cm培養プラスティックディッシュ 1枚あたりに 1. 0 X 105個の MLE細胞をま き、 10% FCS (Invitrogen社製)を含む DMEM (Invitrogen社製)でー晚培養した後 に、 TGF- の代表的な標的遺伝子である pPAI - 1のプロモーターにルシフェラーゼSeed 1.0 x 10 5 MLE cells per 3.5 cm culture plastic dish, and cultured in DMEM (Invitrogen) containing 10% FCS (Invitrogen). -Luciferase in the promoter of pPAI-1 which is a typical target gene of
(Luc ) リポーターを融合させた pPAI- 1— Luc を Lipofectamine Plus 試薬(Puc) reporter-fused pPAI-1—Luc with Lipofectamine Plus reagent
(Invitrogen社製) を用いてディッシュ 1枚あたり 500 ng トランスフエクショ ンした。 トランスフエクシヨン 2時間後の培地を 1 ng/ml ヒト組み換え TGF- β 1(Invitrogen) was used to perform 500 ng transfection per dish. After 2 hours of transfection, add 1 ng / ml human recombinant TGF-β1
(R&D社製) や 150 μ g/ml CXZ、並びにこれらの組み合わせを含む無血清培地に交 換し、 2日間前培養した後に細胞抽出液を作製し、 抽出液中のルシフェラーゼ活 性を Promega社の Dual Lucif erase Assay Kitを用いてルミノメーター (Packard 社製) により測定した。 トランスフエクシヨンの効率を捕正するためにゥミシィ タケルシフェラーゼを同時にトランスフエクシヨンし、 測定結果はゥミシィタケ ルシフェラ一ゼの値と抽出液のタンパク量で補正したのちに TGF - /3 1のみの値を 100%とした相対値で表した(図 4 C、 レーン 1〜3 )。 タンパク量は PIERCE社の BCA Assay Kit を用いてゥシ血清アルブミンをスタンダードとして決定した。 星 細胞はラット肝臓から単離後 3. 5cmプラスティックディッシュ 1枚あたり 4. 0 X 105個の細胞をまき、ー晚 10% FCSを含む DMEMで培養した翌日から CXZを含む無 血清培地に交換し、 さらに 4日間培養した後に MLE細胞と同様に Lipofectamine Plus試薬を用いてディッシュ 1枚あたり 500ngの pPAI- 1-Lucをトランスフエク シヨンし、 CXZを含む無血清培地でさらに 2 日間培養した細胞から抽出液を調製 し、 抽出液中のルシフェラーゼ活性を測定した。 結果はゥミシィタケルシフェラ 一ゼの値と抽出液のタンパク量で補正したのちに CXZ無処理細胞(内在性 TGF - β の刺激を受けている)の値を 100%とした相対値で表した(図 4 C、 レーン 4と 5 )。 図 4 Cに示すように CXZは TGF - j3により誘導される Luc活性の顕著な抑制を示 した(レーン 2 vs レーン 3 (MLE細胞) ; レーン 4 vs レーン 5 (星細胞) )。 この 結果は、 CXZが TGF- /3の活性を抑制することを示しており、 CXZが TGF- J3の情報 伝達経路を阻害する活性を有していることが強く示唆された。 実施例 2 : CXZによる TGF - βの情報伝達経路阻害 (R & D), 150 μg / ml CXZ, or a serum-free medium containing these combinations, and pre-cultured for 2 days to prepare a cell extract, and then luciferase activity in the extract. Was measured with a luminometer (manufactured by Packard) using the Dual Lucif erase Assay Kit from Promega. In order to detect the efficiency of the transfection, transfection was carried out simultaneously with Mycobacterium luciferase, and the measurement results were corrected with the value of Mycobacterium luciferase and the amount of protein in the extract, and then the value of TGF- / 31 alone was corrected. The relative value was set to 100% (FIG. 4C, lanes 1 to 3). The amount of protein was determined using PIERCE BCA Assay Kit and standard serum albumin. After isolation of stellate cells from rat liver, seed 4.0 × 10 5 cells per 3.5 cm plastic dish, and replace with serum-free medium containing CXZ the next day after culturing in DMEM containing 10% FCS. After culturing for another 4 days, 500 ng of pPAI-1-Luc per dish was transfected using the Lipofectamine Plus reagent in the same manner as for MLE cells. An extract was prepared, and the luciferase activity in the extract was measured. The results are expressed as relative values with the value of CXZ-untreated cells (stimulated with endogenous TGF-β) as 100%, after correcting for the value of Mycobacterium luciferase and the amount of protein in the extract. (Figure 4C, lanes 4 and 5). As shown in FIG. 4C, CXZ showed remarkable suppression of Luc activity induced by TGF-j3 (lane 2 vs. lane 3 (MLE cells); lane 4 vs. lane 5 (star cells)). This result indicates that CXZ suppresses the activity of TGF- / 3, strongly suggesting that CXZ has an activity of inhibiting the signaling pathway of TGF-J3. Example 2: Inhibition of TGF-β signaling pathway by CXZ
実施例 1に記載したように、 TGF- βの作用は、 受容体による Smadのリン酸化、 リン酸化 Smad複合体の核への移行、 リン酸化 Smad複合体の標的遺伝子プロモー ターへの結合による転写の促進という経路で伝達される。 そこで、 CXZが TGF- の情報伝達経路を阻害しているかどうかについて、 Smad2総量、 リン酸化 Smad2 量、並びにリン酸化 Smad複合体の標的遺伝子プロモーターへの結合量を、 ウェス タンプロット解析、 並びにゲルシフトアツセィの測定結果から検討した。  As described in Example 1, the effect of TGF-β is on the phosphorylation of Smad by the receptor, the translocation of the phosphorylated Smad complex to the nucleus, and the transcription of the phosphorylated Smad complex by binding to the target gene promoter. Is transmitted by the route of promotion. Therefore, to determine whether CXZ inhibits the TGF- signaling pathway, the total amount of Smad2, the amount of phosphorylated Smad2, and the amount of phosphorylated Smad complex bound to the target gene promoter were analyzed by Western plot analysis and gel shift analysis. It was examined from the measurement results of Sey.
まず、 ウェスタンプロット解析による Smad2総量とリン酸化 Smad2量の測定結 果を説明する。 図 4 Aの実験のごとく単離、 培養し、 終濃度 100 /z g/ml、 並びに 200 ^ g/ml のサイトキサゾンで処理したラット肝星細胞より 1 X S D Sサンプル バッファーを用いて細胞抽出液を作製し、 10%ポリアクリルアミドゲル電気泳動に かけたのちに PVDF (ポリビュデンジフルオリ ド) 膜に電気泳動転写した。 膜上の タンパク質のゥエスタンブロット解析は、 Smad2認識マウスモノクロナル抗体(終 濃度 1 μ g/ml; Pharmingen社製)、 並びにリン酸化 Smad2認識ゥサギポリクロナ ル抗体 (終濃度 2 μ g/ml; Upstate Biotechnology社製) とホースラディッシュぺ ルォキシダーゼ結合ャギ抗マウスもしくはゥサギ IgG抗体 (最終 1 : 750希釈) の 組み合わせを用いて、既報の方法に従って行った (Okuno M他、 Gastroenterology 2001;120: 1784—1800)。 バンドは Amersham (Buckinghamshire, UK) ECL system で検出した。 First, the western blot analysis was used to determine the total amount of Smad2 and the amount of phosphorylated Smad2. The result is explained. Cell extracts were prepared from rat hepatic stellate cells isolated and cultured as in the experiment in Figure 4A and treated with cytoxazone at a final concentration of 100 / zg / ml and 200 ^ g / ml using 1XSDS sample buffer. After electrophoresis on a 10% polyacrylamide gel, it was electrophoretically transferred to a PVDF (polybutene difluoride) membrane. Estane blot analysis of proteins on the membrane was performed using Smad2-recognized mouse monoclonal antibody (final concentration 1 μg / ml; Pharmingen) and phosphorylated Smad2-recognized ゥ sagi polyclonal antibody (final concentration 2 μg / ml; Upstate Biotechnology) and a combination of horseradish luoxidase-conjugated goat anti-mouse or ephedra IgG antibody (final 1: 750 dilution) according to a previously reported method (Okuno M et al., Gastroenterology 2001; 120: 1784-1800). ). Bands were detected on the Amersham (Buckinghamshire, UK) ECL system.
その結果、 図 5に示すように、 コント口ールの細胞 (溶媒である 0. 5% DMS0処 理した細胞:レーン 1 ) に比べて、 CXZ処理細胞 (レーン 2と 3 ) では、 CXZの濃 度に依存して Smad2総量とリン酸化 Smad2量が減少していた。 このとき、 内部標 準の GAPDH量は変化していなかった。  As a result, as shown in Fig. 5, the CXZ-treated cells (lanes 2 and 3) showed higher CXZ levels than the control cells (cells treated with 0.5% DMS0 as the solvent: lane 1). The total amount of Smad2 and the amount of phosphorylated Smad2 decreased depending on the concentration. At this time, the internal standard GAPDH amount had not changed.
次に、ゲルシフトアツセィによるリン酸化 Smad複合体の標的遺伝子プロモータ 一への結合量の測定結果を説明する。 図 4 Aの実験のごとく単離、 培養、 薬剤処 理したラッ ト肝星細胞よ り既述の方法 (Shimada J 他、 Mol Endocrinol 2002 ; 15 : 1677 - 1692) に従って核抽出液を作製し、 放射標識した CAGAボックス配 列 (PAI- 1プロモーター中に存在するリン酸化 Smad複合体の結合配列) 含有オリ ゴヌレクオチドと氷上にてィンキュベーシヨンしたのちに、 4¾ポリアクリルアミ ドゲルにてリン酸化 Smad- CAGAボックス複合体とフリーの CAGAボックスとを分離 したのちに、 オートラジオグラフィ一によつてリン酸化 Smad- CAGAボックス複合 体量を測定した。  Next, the results of measurement of the amount of phosphorylated Smad complex bound to the target gene promoter by gel shift assay will be described. A nuclear extract was prepared from rat hepatic stellate cells isolated, cultured, and treated with drugs as described in the experiment in Fig. 4A according to the method described above (Shimada J et al., Mol Endocrinol 2002; 15: 1677-1692). Radiolabeled CAGA box sequence (binding sequence of phosphorylated Smad complex present in PAI-1 promoter) After incubating with oligonucletide containing ice on ice, phosphorylation on 4¾ polyacrylamide gel After separating the Smad-CAGA box complex and the free CAGA box, the amount of the phosphorylated Smad-CAGA box complex was measured by autoradiography.
その結果、 図 6に示すようにコントロールの細胞 (溶媒である 0. 5% DMS0処理 した細胞:レーン 2 )に比べて CXZ処理細胞(レーン 3 )では、リン酸化 Smad- CAGA ボックス複合体量が減少していた。レーン 1は未標識 CAGAボックス配列含有ォリ ゴヌレクオチドをコントロールの細胞由来の核抽出液に加えた時の結果であり、 得られたバンドが特異的バンドであることを示している。 As a result, as shown in Fig. 6, the amount of phosphorylated Smad-CAGA box complex in CXZ-treated cells (lane 3) was lower than that in control cells (cells treated with 0.5% DMS0 as a solvent: lane 2). Had decreased. Lane 1 contains the unlabeled CAGA box sequence. This is the result when gonurequotide was added to the nuclear extract derived from the control cells, indicating that the obtained band was a specific band.
さらに、 RT-PCR法によって TGF- β受容体量の変化を測定したところ、 CXZ処理 した細胞では TGF- 受容体量は変化していないことがわかった。 また、 CXZは潜 在型 TGF- βの活性化反応にも影響を与えなかつた。  Furthermore, when the change in the amount of TGF-β receptor was measured by the RT-PCR method, it was found that the amount of TGF-receptor did not change in the CXZ-treated cells. In addition, CXZ did not affect the activation of latent TGF-β.
以上の結果より、 CXZは Smad2のリン酸化を抑制することによって TGF- )3の情 報伝達経路を抑制することがわかった。 実施例 3:肝星細胞とミンク肺上皮細胞における CXZによる TGF - β依存性転写活 性化活性の抑制  From the above results, it was found that CXZ suppressed the signaling pathway of TGF-) 3 by suppressing the phosphorylation of Smad2. Example 3: Inhibition of TGF-β-dependent transcriptional activation activity by CXZ in hepatic stellate cells and mink lung epithelial cells
単離の 2 4時間後に、 3 5 mm皿で培養した肝星細胞を 150 g/ml.の CXZの存 在下又は非存在下で 3 日間処理し、 pRL- CMV {Renilla ルシフェラーゼ, 50 ng/ dish)と一緒に、 PAI - 1 プロモータ ルシフェラーゼ発現べクタ一である ρΡΑΙ-1-Luc (500 ng/ dish) 又は 9コピーの CAGA配列を含むベクターである 9CAGA-Luc (500 ng/ dish)の何れかをトランスフエクシヨンした (図 7の左のグ ラフ)。 トランスフエクシヨンした細胞を同一条件下でさらに 24時間処理を続け た。 3 5 mm皿上に 2 X 1 0 5のミンク肺上皮細胞 (MELC) をプレーティングし た 2 4時間後に、細胞を 150 μ g/mlの CXZの存在下又は非存在下で 3日間処理し、 9CAGA-Luc (500 ng/ dish)と pRL- CMV (50 ng/ dish)の組み合わせでトランスフ ェクシヨンした (図 7の右のグラフ)。 トランスフエクシヨンの翌日、 細胞を 150 μ g/mlの CXZの存在下又は非存在下で、 5 ng/mlの組み換えヒト TGF— 1で 16 時間処理した。 両方の細胞から細胞ライセートを調製し、 各ライセートにおける ルシフェラーゼ活性を測定し、ホタルルシフェラーゼ活性の変化を計算して、 CXZ 未処理の対照細胞の ルシフェラーゼ活性に標準化した後、プロットした。 結果を図 7に示す。図 7の結果から分かるように、 T G F - のシグナル伝達' 転写因子である Smad2/Smad4複合体もしくは Smad3/Smad4複合体が結合する標的 モチーフである CAGAボックス 9個で駆動されるルシフェラーゼリポーター遣伝 子を用いて、 CXZ により、 TGF- J3依存性転写活性化活性が抑制されることが実証 された。 実施例 4 : TGF- /3受容体の下流のシグナル伝達の抑制 Twenty-four hours after isolation, hepatic stellate cells cultured in a 35-mm dish were treated with or without 150 g / ml of CXZ for 3 days, and pRL-CMV (Renilla luciferase, 50 ng / dish). ) Together with ρΡΑΙ-1-Luc (500 ng / dish), a PAI-1 promoter luciferase expression vector, or 9CAGA-Luc (500 ng / dish), a vector containing 9 copies of CAGA sequence (See the left graph in Fig. 7). The transfected cells were treated for another 24 hours under the same conditions. 3 5 mm dishes on 2 X 1 0 5 mink lung epithelial cells (MELC) 2 4 hours after plating, cells were treated for 3 days in the presence or absence of CXZ of 0.99 mu g / ml Then, transfection was performed using a combination of 9CAGA-Luc (500 ng / dish) and pRL-CMV (50 ng / dish) (the right graph in FIG. 7). The day after transfection, cells were treated with 5 ng / ml recombinant human TGF-1 for 16 hours in the presence or absence of 150 μg / ml CXZ. Cell lysates were prepared from both cells, luciferase activity in each lysate was measured, changes in firefly luciferase activity were calculated, normalized to the luciferase activity of CXZ-untreated control cells, and plotted. Fig. 7 shows the results. As can be seen from the results in Fig. 7, the luciferase reporter transmission driven by nine CAGA boxes, the target motif to which the Smad2 / Smad4 complex or Smad3 / Smad4 complex binds, which is a signaling factor for TGF- It was demonstrated that CXZ suppressed the TGF-J3-dependent transcriptional activation activity using the offspring. Example 4: Inhibition of signaling downstream of the TGF- / 3 receptor
3 5 mm皿上に 2 X 1 0 5のミンク肺上皮細胞 (MELC) をプレーティングした 2 4時間後に、 細胞を 150 g/mlの CXZの存在下又は非存在下で 3日間処理し、 ρΡΑΙ-1-Luc (500 ng/ dish) と pRL - CMV (50 ng/ dish)の組み合わせ、 及ぴ活性 型 TGF- jS受容体 Iを構成的に発現するベクターでトランスフエクションした。 ト ランスフエクシヨンした細胞を同一条件下でさらに 24時間土 CXZ処理を続けた。 以下、 実施例 3と同様にルシフェラーゼ活性を測定した。 3 5 mm dishes on 2 X 1 0 5 mink lung epithelial cells (MELC) 2 4 hours after plating, was treated in the presence or absence of cells of 150 g / ml CXZ 3 days, Roroarufaiota Transfections were performed using a combination of -1-Luc (500 ng / dish) and pRL-CMV (50 ng / dish) and a vector that constitutively expresses the active TGF-jS receptor I. The transfected cells were further treated with soil CXZ under the same conditions for another 24 hours. Thereafter, luciferase activity was measured in the same manner as in Example 3.
結果を図 8に示す。 TGF- /3受容体が存在する条件下でサイトキサゾンの効果を 比較した図 8の結果から、 TGF- )3受容体の下流のシグナル伝達にサイトキサゾン が効果を発揮することが実証された。 実施例 5 : Smad活性の抑制  Fig. 8 shows the results. The results of FIG. 8, which compares the effects of cytoxazone under the presence of the TGF- / 3 receptor, demonstrate that cytoxazone exerts an effect on signaling downstream of the TGF-) 3 receptor. Example 5: Smad activity suppression
単離の 2 4時間後に、 3 5 mm皿の肝星細胞を 150 g/mlの CXZの存在下又は 非存在下で 3 日間処理し、 9CAGA - Luc (500 ng/ dish)と pRL-CMV (50 ng/ dish) の組み合わせ、 及ぴ Smads 2, 3, 及び 4 (200 ngずつ Zdish)の幾つかの組み合わ せをトランスフエクシヨンした。 トランスフエクシヨンした細胞を同一条件下で さらに 24時間処理を続けた。細胞ライセートを調製し、各ライセートにおけるル シフェラーゼ活性を測定し、 ホタルルシフェラーゼ活性の変化を計算して、 CXZ 未処理の対照細胞の Renillaルシフエラーゼ活性に標準化した後、プロットした。 結果を図 9に示す。 TGF- のシグナル伝達は、 受容体が活性化 (リン酸化) さ れると、 細胞質に存在する Smad2もしくは Smad3がリン酸化され Smad4と複合体 を形成し、 リン酸化 Smad2/Smad4複合体もしくはリン酸化 Smad3/Smad4複合体が 核へ移行して標的配列 CAGAボックスに結合し、他の転写因子や転写仲介因子と一 緒になって基本転写因子を活性化し、 標的遺伝子の転写を引き起こすという機構 である (図 1 )。 図 9の結果は、 Smad2, Smad3, Smad4を強制的に発現した肝星細 胞における CXZの影響を示すものである。 CXZは実施例 6に示すように Smad3の 発現を抑制するが、 これは、 Smad3 の強制発現でレスキューされる。 これに対し て、 Smad2 の発現は変わらないが、 強制発現した Smad2 の活性が Smad2/Smad4+Smad3/Smad4,並びに Smad2/Smad4の細胞において抑制を受けている こと力、ら、 CXZは Smad2の活性 (含 Smad2のリン酸化) を抑制していることが示 された。 実施例 6 : Smadの mR A発現及ぴ蛋白質量に対する影響 Twenty-four hours after isolation, 35 mm dishes of hepatic stellate cells were treated in the presence or absence of 150 g / ml CXZ for 3 days, and 9CAGA-Luc (500 ng / dish) and pRL-CMV ( A combination of 50 ng / dish) and several combinations of Smads 2, 3, and 4 (200 ng each Zdish) were transfection. The transfected cells were treated for another 24 hours under the same conditions. Cell lysates were prepared, luciferase activity was measured in each lysate, changes in firefly luciferase activity were calculated, plotted after normalization to Renilla luciferase activity of CXZ-untreated control cells. The results are shown in FIG. When TGF- signaling is activated (phosphorylated), Smad2 or Smad3 present in the cytoplasm is phosphorylated to form a complex with Smad4, and phosphorylated Smad2 / Smad4 complex or phosphorylated Smad3 The mechanism by which the / Smad4 complex translocates to the nucleus and binds to the target sequence CAGA box, activates basic transcription factors together with other transcription factors and transcription mediators, and triggers transcription of the target gene (Fig. 1). The results in Figure 9 show the effect of CXZ on hepatic stellate cells that forcibly expressed Smad2, Smad3, and Smad4. CXZ suppresses the expression of Smad3 as shown in Example 6, which is rescued by forced expression of Smad3. In contrast, the expression of Smad2 does not change, but the activity of forced Smad2 is suppressed in Smad2 / Smad4 + Smad3 / Smad4 and Smad2 / Smad4 cells. (Including phosphorylation of Smad2). Example 6: Effect of Smad on mRNA expression and protein content
初代肝星細胞を 150 /z g/mlの CXZの存在下又は非存在下で 4日間処理した後、 細胞ライセートを調製し、 m R N Aを単離し、図示した Smadの m R N A量の変化 を RT- PCRにより評価した (図 1 0の左図)。  After treating primary hepatic stellate cells in the presence or absence of 150 / zg / ml CXZ for 4 days, cell lysate was prepared, mRNA was isolated, and the change in mRNA amount of Smad shown in RT- It was evaluated by PCR (left figure in FIG. 10).
ラッド Smad2 Rad Smad2
5' -GCCCCAACTGTAACCAGAGA-3' (配列番号 9 )  5'-GCCCCAACTGTAACCAGAGA-3 '(SEQ ID NO: 9)
5' -CGCTCTGGGTTTTGACTAGC-3' (配列番号 1 0 )  5'-CGCTCTGGGTTTTGACTAGC-3 '(SEQ ID NO: 10)
ラッ卜 Smad3 Rat Smad3
5' -CTGTGAGTTCGCCTTCAACA-3' (配列番号 1 1 )  5'-CTGTGAGTTCGCCTTCAACA-3 '(SEQ ID NO: 11)
5' -TGTGAAGCGTGGAATGTCTC-3' (配列番号 1 2 )  5'-TGTGAAGCGTGGAATGTCTC-3 '(SEQ ID NO: 12)
ラット Smad4 Rat Smad4
5' -AGTCCCTTCAAGCTGTCCTATTGTA-3' (配列番号 1 3 )  5'-AGTCCCTTCAAGCTGTCCTATTGTA-3 '(SEQ ID NO: 13)
5' -CGGGTAGATCTTGTGGACGGCGTCA-3' (配列番号 1 4 )  5'-CGGGTAGATCTTGTGGACGGCGTCA-3 '(SEQ ID NO: 14)
ラッ卜 Smad7 Rat Smad7
5' -CCAACTGCAGACTGTCCAGA-3' (配列番号 1 5 )  5'-CCAACTGCAGACTGTCCAGA-3 '(SEQ ID NO: 15)
5' -AACCAGGGAACACTTTGTGC-3' (配列番号 1 6 )  5'-AACCAGGGAACACTTTGTGC-3 '(SEQ ID NO: 16)
HSC-T6細胞を 150 μ g/mlの CXZの存在下又は非存在下で 4日間処理した後、細 胞ライセートを調製し、 Smad 2及ぴ Z又は 3の総蛋白質量及ぴリン酸化蛋白質量 の変化を、 抗 Smad 2/3抗体及び抗ホスホ Smad 2/3抗体を用いたウェスタンブロ より評価した (図 1 0の右図)。 After treating HSC-T6 cells in the presence or absence of 150 μg / ml CXZ for 4 days, cell lysates were prepared, and total protein and phosphorylated protein of Smad 2 and Z or 3 were prepared. Western blot using anti-Smad 2/3 antibody and anti-phospho Smad 2/3 antibody (Figure 10 right).
図 1 0に示す通り、 mR A レベルでは Smad3において有意差が見られ、 蛋白質 では Smad 2 /3の複合タンパク質で差が見られた。 実施例 7 : Smad蛋白質の核局在に対する影響  As shown in FIG. 10, a significant difference was seen in Smad3 at the mRNA level, and a difference was seen in the Smad2 / 3 complex protein in the protein. Example 7: Effect of Smad protein on nuclear localization
初代肝星細胞を 150 μ g/mlの CXZの存在下又は非存在下で 4日間処理した後、 細胞を固定化し、 抗 Smad2/3抗体で染色し、 共焦点レーザー顕微鏡で観察した。 結果を図 1 1に示す。 Smad2/3は、 CXZ非処理細胞 (コントロール) ではより核に 集まっているのに対して、 CXZ 処理細胞は細胞全体に広がっていることが観察さ れた。 実施例 8 :プロコラーゲン遺伝子プロモーターの転写活性化活性の抑制  After treating primary hepatic stellate cells in the presence or absence of 150 μg / ml CXZ for 4 days, the cells were fixed, stained with anti-Smad2 / 3 antibody, and observed with a confocal laser microscope. The results are shown in FIG. Smad2 / 3 was more concentrated in the nucleus in CXZ-untreated cells (control), while CXZ-treated cells were observed to spread throughout the cells. Example 8: Suppression of transcriptional activation activity of procollagen gene promoter
初代肝星細胞を 150 μ §/πι1 の CXZ の存在下又は非存在下で 3 日間処理し、 pCollagen-Luc (500 ng/ dish)及ぴ pRL - CMV (50 ng/dish)の組み合わせをトラン スフヱクシヨンし、同一条件下でさらに 24時間処理を続けた。細胞ライセートを 調製し、 各ライセートにおけるルシフェラーゼ活性を測定し、 ホタルルシフェラ ーゼ活性の変化を計算して、 CXZ未処理の対照細胞の Renillaルシフェラーゼ活 性に標準化した後、 プロットした。 Primary liver stellate cells were treated for 3 days in the presence or absence of CXZ of 150 μ § / πι1, pCollagen- Luc (500 ng / dish)及Pi pRL - CMV Trang combinations (50 ng / dish) Sufuwekushiyon The treatment was continued for another 24 hours under the same conditions. Cell lysates were prepared, luciferase activity in each lysate was measured, changes in firefly luciferase activity were calculated, and plotted after normalization to Renilla luciferase activity of CXZ-untreated control cells.
結果を図 1 2に示す。 図 1 2の結果から、 CXZ はプロコラーゲン遺伝子プロモ 一ターの転写活性化活性を抑制することが示された。 実施例 9 :マウスにおけるサイトキサゾンによる肝再生の回復  The results are shown in FIG. The results in FIG. 12 indicated that CXZ suppressed the transcriptional activation activity of the procollagen gene promoter. Example 9: Restoration of liver regeneration by cytoxazone in mice
LPSで前処理し、 部分的に肝切除したマウスを、 CXZ (15mg/ kg体重 / 0; i. p. ) で処理した(対照では処理しない)。部分肝切除の開始後 4 8時間後に肝臓を単離 し、 その切片を調製し、抗 PCNA抗体で染色し、光学顕微鏡で観察した。 結果を図 1 3に示す。 図 ΐ 3において茶褐色に染まっている核が再生をした細胞核で、 こ の核の数を測定した結果である PCNA標識指数は、対照では 2 8 . 5 ± 3 . 7 4で あるのに対し、 CXZ投与例では 8 0 . 8 ± 3 . 8 9であった。 サイトキサゾンに より肝再生が回復することが示された。 Mice pre-treated with LPS and partially hepatectomized were treated with CXZ (15 mg / kg body weight / 0; ip) (no control). 48 hours after the start of the partial hepatectomy, the liver was isolated, a section was prepared, stained with an anti-PCNA antibody, and observed with a light microscope. The results are shown in FIG. In Fig. 3, the nucleus stained brown is the regenerated cell nucleus, and the PCNA labeling index, which is the result of counting the number of nuclei, is 28.5 ± 3.74 in the control. In contrast, the value was 80.8 ± 3.89 in the CXZ-administered case. Cytosoxazone was shown to restore liver regeneration.
(実施例のまとめ) (Summary of Examples)
上記の通り、CXZは TGF- βの情報伝達を担うリン酸化 Smadを減少させることに よって TGF- β情報伝達経路を遮断し、 TGF- βの作用を阻害する作用を有しており、 TGF- βが関連する疾患、 例えば肝硬変の原因である肝星細胞の活性化を有意に抑 制したり、 肝再生不全の原因である肝細胞の増殖抑制を回復する作用を有してい ることが判明した。 CXZ又はその誘導体を用いることによって、 従来の技術では 困難であった TGF- /3の情報伝達経路遮断に基づく各種硬化性疾患を始めとする TGF- 関連疾患の予防薬 ·治療薬の開発が可能であると期待できる。 産業上の利用可能性  As described above, CXZ has the effect of blocking the TGF-β signaling pathway by decreasing the phosphorylated Smad responsible for TGF-β signaling, thereby inhibiting the action of TGF-β. β-related diseases, such as liver stellate cells, which cause liver cirrhosis. did. By using CXZ or its derivatives, it is possible to develop preventive and therapeutic drugs for TGF-related diseases such as various sclerotic diseases based on blockade of TGF- / 3 signaling pathway, which was difficult with conventional technology Can be expected. Industrial applicability
本発明では、サイトキサゾンが TGF- β依存の肝星細胞の活性化を抑制するとい う知見に基づいて、サイトキサゾン又はその誘導体の新しい生物活性として TGF - 情報伝達経路阻害を見出した。 本発明によるサイトキサゾン又はその誘導体を 有効成分として含む TGF— 情報伝達経路阻害剤を用いることにより、 TGF - 関 連疾患の治療法 ·予防法を確立することが可能になる。  In the present invention, based on the finding that cytoxazone suppresses TGF-β-dependent activation of hepatic stellate cells, the present inventors have found inhibition of the TGF-signalling pathway as a new biological activity of cytoxazone or a derivative thereof. The use of a TGF-signalling pathway inhibitor containing cytoxazone or a derivative thereof as an active ingredient according to the present invention makes it possible to establish a method for treating and preventing TGF-related diseases.

Claims

請求の範囲 The scope of the claims
1 . 下記式 (1 ) : 1. The following equation (1):
Figure imgf000021_0001
Figure imgf000021_0001
(式中 R1は、 ヒ ドロキシメチル基、 ヒ ドロキシェチル基、 ヒ ドロキシプロピル '基、 ヒドロキシブチル基、 フエニル基、 オルト一、 メタ一またはパラーメ トキシ フエニル基、 オルト一、 メタ一またはパラ一ヒ ドロキシフエニル基、 オルト一、 メタ一またはパラーニトロフエニル基、 オルト一、 メタ一またはパラ一アミノフ ェニル基、 炭素数 1〜 2 0の直鎖状または分岐鎖状アルキル基、 炭素数 1〜 2 0 の直鎖状または分岐鎖状アルコキシ基を示し、 R2は、 ヒ ドロキシメチル基、 ヒ ドロキシェチル基、 ヒドロキシプロピル基、 ヒ ドロキシブチル基、 フエニル基、 オルト一、 メタ一またはパラ一メ トキシフエニル基、 オルト一、 メタ一またはパ ラーヒ ドロキシフエニル基、 オルト一、 メタ一またはパラーニトロフエニル基、 オルト一、 メタ一またはパラ一ァミノフエニル基、 ベンジル基、 オルト一、 メタ —またはパラーメ トキシベンジル基、 オルト一、 メタ一またはパラ一ヒドロキシ ベンジル基、 オルト一、 メタ一またはパラ一ニトロべンジル基、 オルト一、 メタ 一またはパラ一ァミノべンジル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アル キル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アルコキシ基を示す。 ) で表される化合物を有効成分として含む、 T G F— ]3情報伝達経路阻害剤。 (Wherein R 1 is a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl 'group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxyphenyl group) Group, ortho-, meta- or para-nitrophenyl group, ortho-, meta- or para-aminophenyl group, linear or branched alkyl group having 1 to 20 carbon atoms, straight-chained alkyl group having 1 to 20 carbon atoms Represents a linear or branched alkoxy group, and R 2 is a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- Mono- or para-hydroxyphenyl, ortho-, meta- or para-nitrophenyl Ortho-, meta- or para-aminophenyl, benzyl, ortho-, meta- or para-methoxybenzyl, ortho-, meta- or para-hydroxybenzyl, ortho-, meta- or para-nitrobenzyl, It represents an ortho-, meta- or para-aminobenzyl group, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkoxy group having 1 to 20 carbon atoms. A TGF-] 3 signaling pathway inhibitor comprising a compound represented by the formula (1) as an active ingredient:
2 . S m a d 2のリン酸化を抑制することにより T G F— 情報伝達経路を 阻害する、 請求項 1に記載の T G F— ]3情報伝達経路阻害剤。  2. The TGF—] 3 signaling pathway inhibitor according to claim 1, which inhibits the TGF— signaling pathway by suppressing phosphorylation of Smad2.
3 . 下記式 (1 ) :
Figure imgf000022_0001
3. The following equation (1):
Figure imgf000022_0001
(式中 R1は、 ヒ ドロキシメチル基、 ヒ ドロキシェチル基、 ヒ ドロキシプロピル 基、 ヒ ドロキシブチル基、 フエニル基、 オルト一、 メタ一またはパラーメ トキシ フエニル基、 オルト一、 メタ一またはパラーヒ ドロキシフエニル基、 オルト一、 メタ一またはパラーニトロフエニル基、 オルト一、 メタ一またはパラーアミノフ ェニル基、 炭素数 1〜 2 0の直鎖状または分岐鎖状アルキル基、 炭素数 1〜 2 0 の直鎖状または分岐鎖状アルコキシ基を示し、 R2は、 ヒ ドロキシメチル基、 ヒ ドロキシェチル基、 ヒ ドロキシプロピル基、 ヒ ドロキシプチル基、 フエュル基、 オルト一、 メタ一またはパラ一メ トキシフエ二ル基、 オルト一、 メタ一またはパ ラ一ヒ ドロキシフエニル基、 オルト一、 メタ一またはパラ一ニトロフエニル基、 オルト一、 メタ一またはパラ一ァミノフエ二ル基、 ベンジル基、 オルト一、 メタ —またはパラーメ トキシベンジル基、 オルト一、 メタ一またはパラーヒ ドロキシ ベンジル基、 オルト一、 メタ一またはパラ一ニトロべンジル基、 オルト一、 メタ 一またはパラーァミノべンジル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アル キル基、 炭素数 1〜2 0の直鎖状または分岐鎖状アルコキシ基を示す。 ) で表される化合物を有効成分として含む、 TGF— 関連疾患の治療及び Z又は予 防剤。 (Wherein R 1 is a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- or para-hydroxyphenyl group, an ortho-hydroxyphenyl group, 1, meta- or para-nitrophenyl group, ortho-, meta- or para-aminophenyl group, linear or branched alkyl group having 1 to 20 carbon atoms, linear or branched chain having 1 to 20 carbon atoms R 2 is a hydroxymethyl group, a hydroxyxethyl group, a hydroxypropyl group, a hydroxybutyl group, a phenyl group, an ortho-, meta- or para-methoxyphenyl group, an ortho-, meta- Or para-hydroxyphenyl, ortho-, meta- or para-nitrophenyl , Ortho-, meta- or para-aminophenyl, benzyl, ortho-, meta- or para-methoxybenzyl, ortho-, meta- or para-hydroxybenzyl, ortho-, meta- or para-nitrobenzyl Groups, ortho-, meta- or para-aminobenzyl groups, linear or branched alkyl groups having 1 to 20 carbon atoms, and linear or branched alkoxy groups having 1 to 20 carbon atoms. ) A therapeutic or Z- or prophylactic agent for a TGF-related disease, comprising a compound represented by the formula
4 . TGF— /3関連疾患が肝線維化 Ζ肝硬変、 肝炎、 肝再生不全、 動脈硬化、 肺 線維症、 皮膚線維症、 腎不全、 又は子宮筋腫である、 請求項 3に記載の薬剤。  4. The drug according to claim 3, wherein the TGF- / 3-related disease is liver fibrosis, cirrhosis, hepatitis, hepatic regeneration failure, arteriosclerosis, lung fibrosis, dermal fibrosis, renal failure, or uterine fibroids.
5 . R1力 ヒ ドロキシメチル基であり、 R2力 パラ一メ トキシフエニル基 である、 請求項 1カゝら 4の何れかに記載の薬剤。 5. The drug according to any one of claims 1 to 4, which is an R 1 force hydroxymethyl group and an R 2 force paramethoxyphenyl group.
6 . 式 (1 ) で表される化合物が下記式 (2 ) で表される化合物である、 請 求項 1から 5の何れかに記載の薬剤。
Figure imgf000023_0001
6. The drug according to any one of claims 1 to 5, wherein the compound represented by the formula (1) is a compound represented by the following formula (2).
Figure imgf000023_0001
21 差替え用紙 (規則 26) 21 Replacement form (Rule 26)
PCT/JP2004/016370 2003-10-28 2004-10-28 TGF-β INFORMATION TRANSFER PATHWAY INHIBITOR WO2005039570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515065A JP4688680B2 (en) 2003-10-28 2004-10-28 TGF-β signal transduction pathway inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-367654 2003-10-28
JP2003367654 2003-10-28

Publications (1)

Publication Number Publication Date
WO2005039570A1 true WO2005039570A1 (en) 2005-05-06

Family

ID=34510306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016370 WO2005039570A1 (en) 2003-10-28 2004-10-28 TGF-β INFORMATION TRANSFER PATHWAY INHIBITOR

Country Status (2)

Country Link
JP (1) JP4688680B2 (en)
WO (1) WO2005039570A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967526A1 (en) 2007-03-08 2008-09-10 Riken Inhibitor of TGF-ß activation reaction
WO2011102483A1 (en) * 2010-02-19 2011-08-25 独立行政法人理化学研究所 HUMAN LAP TGF-β BINDING ANTIBODY
WO2014058317A1 (en) 2012-10-10 2014-04-17 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Methods and means for predicting resistance to anti-cancer treatment
WO2016210292A1 (en) 2015-06-25 2016-12-29 Children's Medical Center Corporation Methods and compositions relating to hematopoietic stem cell expansion, enrichment, and maintenance
WO2017161001A1 (en) 2016-03-15 2017-09-21 Children's Medical Center Corporation Methods and compositions relating to hematopoietic stem cell expansion
US10041046B2 (en) 2013-03-14 2018-08-07 Massachusetts Institute Of Technology Compositions and methods for epithelial stem cell expansion and culture
WO2019183245A1 (en) 2018-03-20 2019-09-26 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use
WO2019236766A1 (en) 2018-06-06 2019-12-12 Ideaya Biosciences, Inc. Methods of culturing and/or expanding stem cells and/or lineage committed progenitor cells using lactam compounds
US10568883B2 (en) 2014-09-03 2020-02-25 Massachusetts Institute Of Technology Compositions, systems, and methods for generating inner ear hair cells for treatment of hearing loss
WO2020142485A1 (en) 2018-12-31 2020-07-09 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use
US11021687B2 (en) 2016-01-08 2021-06-01 The Brigham And Women's Hospital, Inc. Production of differentiated enteroendocrine cells and insulin producing cells
US11033546B2 (en) 2016-03-02 2021-06-15 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using a GSK3 inhibitor: I
US11066419B2 (en) 2016-12-30 2021-07-20 Frequency Therapeutics, Inc. 1H-pyrrole-2,5-dione compounds and methods of using same
US11162071B2 (en) 2018-08-17 2021-11-02 Frequency Therapeutics, Inc. Compositions and methods for generating hair cells by upregulating JAG-1
US11160868B2 (en) 2016-03-02 2021-11-02 Frequency Therapeutics, Inc. Thermoreversible compositions for administration of therapeutic agents
US11260130B2 (en) 2016-03-02 2022-03-01 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using a GSK3 inhibitor: IV
US11617745B2 (en) 2018-08-17 2023-04-04 Frequency Therapeutics, Inc. Compositions and methods for generating hair cells by downregulating FOXO

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209355A (en) * 1998-01-27 1999-08-03 Rikagaku Kenkyusho Cytoxazone, its production, immunomodulator, and anticancer agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209355A (en) * 1998-01-27 1999-08-03 Rikagaku Kenkyusho Cytoxazone, its production, immunomodulator, and anticancer agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAKEYA H. ET AL: "Cytoxazone: A Novel Cytokine Modulator Containing a 2-Oxazolidinone Ring Produced by Streptomyces sp.", J. ORG. CHEM., vol. 64, no. 3, 1999, pages 1053 - 1053, XP002983619 *
KAKEYA H. ET AL: "Isolation and Biological Activity of a Novel Cytokine Modulator, Cytoxazone", THE JOURNAL OF ANTIBIOTICS, vol. 51, no. 12, 1998, pages 1126 - 1128, XP002983620 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967526A1 (en) 2007-03-08 2008-09-10 Riken Inhibitor of TGF-ß activation reaction
US7732401B2 (en) 2007-03-08 2010-06-08 Riken Inhibitor of TGF-β activation reaction
WO2011102483A1 (en) * 2010-02-19 2011-08-25 独立行政法人理化学研究所 HUMAN LAP TGF-β BINDING ANTIBODY
WO2014058317A1 (en) 2012-10-10 2014-04-17 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Methods and means for predicting resistance to anti-cancer treatment
US10041046B2 (en) 2013-03-14 2018-08-07 Massachusetts Institute Of Technology Compositions and methods for epithelial stem cell expansion and culture
US10041047B2 (en) 2013-03-14 2018-08-07 Massachusetts Institute Of Technology Compositions and methods for epithelial stem cell expansion and culture
US10954490B2 (en) 2013-03-14 2021-03-23 The Brigham And Women's Hospital, Inc. Compositions and methods for epithelial stem cell expansion and culture
US11369607B2 (en) 2014-09-03 2022-06-28 The Brigham And Women's Hospital, Inc. Compositions, systems, and methods for generating inner ear hair cells for treatment of hearing loss
US10568883B2 (en) 2014-09-03 2020-02-25 Massachusetts Institute Of Technology Compositions, systems, and methods for generating inner ear hair cells for treatment of hearing loss
WO2016210292A1 (en) 2015-06-25 2016-12-29 Children's Medical Center Corporation Methods and compositions relating to hematopoietic stem cell expansion, enrichment, and maintenance
US11021687B2 (en) 2016-01-08 2021-06-01 The Brigham And Women's Hospital, Inc. Production of differentiated enteroendocrine cells and insulin producing cells
US11033546B2 (en) 2016-03-02 2021-06-15 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using a GSK3 inhibitor: I
US11260130B2 (en) 2016-03-02 2022-03-01 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using a GSK3 inhibitor: IV
US11160868B2 (en) 2016-03-02 2021-11-02 Frequency Therapeutics, Inc. Thermoreversible compositions for administration of therapeutic agents
WO2017161001A1 (en) 2016-03-15 2017-09-21 Children's Medical Center Corporation Methods and compositions relating to hematopoietic stem cell expansion
EP4049665A1 (en) 2016-03-15 2022-08-31 Children's Medical Center Corporation Methods and compositions relating to hematopoietic stem cell expansion
US11066419B2 (en) 2016-12-30 2021-07-20 Frequency Therapeutics, Inc. 1H-pyrrole-2,5-dione compounds and methods of using same
WO2019183245A1 (en) 2018-03-20 2019-09-26 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use
WO2019236766A1 (en) 2018-06-06 2019-12-12 Ideaya Biosciences, Inc. Methods of culturing and/or expanding stem cells and/or lineage committed progenitor cells using lactam compounds
US11162071B2 (en) 2018-08-17 2021-11-02 Frequency Therapeutics, Inc. Compositions and methods for generating hair cells by upregulating JAG-1
US11617745B2 (en) 2018-08-17 2023-04-04 Frequency Therapeutics, Inc. Compositions and methods for generating hair cells by downregulating FOXO
WO2020142485A1 (en) 2018-12-31 2020-07-09 Icahn School Of Medicine At Mount Sinai Kinase inhibitor compounds and compositions and methods of use

Also Published As

Publication number Publication date
JPWO2005039570A1 (en) 2007-02-22
JP4688680B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2005039570A1 (en) TGF-β INFORMATION TRANSFER PATHWAY INHIBITOR
Matsuda et al. Transcriptional inhibition of progressive renal disease by gene silencing pyrrole–imidazole polyamide targeting of the transforming growth factor-β1 promoter
KR101780456B1 (en) New use of eupatilin and chromen derivatives as pharmaceutical composition for prevention and treatment of fibrosis via EMT inhibitory activity
KR102067848B1 (en) Methods of treating fibrosis
JP2018526982A (en) Regulation of hepatitis B virus replication
DK2368564T3 (en) A pharmaceutical composition containing as for use in the treatment of dysregulated inflammatory diseases or conditions
Geng et al. Liquiritigenin suppresses the activation of hepatic stellate cells via targeting miR-181b/PTEN axis
JP2022081677A (en) Medical use of interferon-lambda for treatment of fibrosis
Zafar et al. CITED2 inhibits STAT1-IRF1 signaling and atherogenesis
Choi et al. Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β
US20230304088A1 (en) Compositions and methods of detection of pre-symptomatic als
Wu et al. Fibrinogen-like protein 2 deficiency aggravates renal fibrosis by facilitating macrophage polarization
WO2013138951A1 (en) Quinazoline derivate and use thereof as apoptosis inhibitor
WO2014059196A2 (en) Diagnosis and treatment of sma and smn deficiency
US10744113B2 (en) Use of chromone derivative as pharmaceutical composition for prevention and treatment of fibrosis using EMT inhibitory activity
WO2022137964A1 (en) Pharmaceutical composition for preventing or treating cartilage/bone/joint diseases, and method for screening drug for preventing or treating cartilage/bone/joint diseases
US20230407304A1 (en) Use of microrna inhibition to prevent and treat osteoarthritis and other inflammatory diseases
US20220125822A1 (en) Treatment Methods for Fibrosis Targeting SMOC2
US20230067811A1 (en) Modulating lymphatic vessels in neurological disease
US20230201310A1 (en) Stat3 phosphorylation inhibitor, and prophylactic or therapeutic agent for autoimmune disease and coronavirus infection
CN112870359A (en) TRIM41 inhibitor, anti-inflammatory effect and application thereof
Mohamed et al. Netrin-1 Overexpression Induces Polycystic Kidney Disease: A Novel Mechanism Contributing to Cystogenesis in Autosomal Dominant Polycystic Kidney Disease
WO2022260162A1 (en) Prophylactic and/or therapeutic agent for nash
CN114432334B (en) Application of lnc-BIHAA1 in preparation of medicines for preventing and/or treating hepatic fibrosis
WO2020241816A1 (en) Novel therapeutic agent for digestive organ cancer, and screening method for same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515065

Country of ref document: JP

122 Ep: pct application non-entry in european phase