WO2005039282A1 - Drosophila transgenic animal models for the treatment of human genetic diseases caused by expansions of microsatellites which contain the trinucleotide ctg - Google Patents

Drosophila transgenic animal models for the treatment of human genetic diseases caused by expansions of microsatellites which contain the trinucleotide ctg Download PDF

Info

Publication number
WO2005039282A1
WO2005039282A1 PCT/ES2004/070085 ES2004070085W WO2005039282A1 WO 2005039282 A1 WO2005039282 A1 WO 2005039282A1 ES 2004070085 W ES2004070085 W ES 2004070085W WO 2005039282 A1 WO2005039282 A1 WO 2005039282A1
Authority
WO
WIPO (PCT)
Prior art keywords
transgene
phenotype
expression
transgenic
flies
Prior art date
Application number
PCT/ES2004/070085
Other languages
Spanish (es)
French (fr)
Inventor
Manuel PÉREZ ALONSO
Lidón MONFERRER SALES
Rubén Artero Allepuz
Original Assignee
Universitat De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Valencia filed Critical Universitat De Valencia
Publication of WO2005039282A1 publication Critical patent/WO2005039282A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0333Genetically modified invertebrates, e.g. transgenic, polyploid
    • A01K67/0337Genetically modified Arthropods
    • A01K67/0339Genetically modified insects, e.g. Drosophila melanogaster, medfly
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases

Definitions

  • This invention has utility in the bio-edicine sector and in the biopharmaceutical sector.
  • the specific field of utility is the use of transgenic animals as models that allow the investigation of hereditary human diseases, the development of treatments against them and the validation of potential pharmacological treatments.
  • micro-satellite sequences in the human genome are the origin of a growing number of inherited diseases. These include myotonic dystrophies (DM), a type of frequent dystrophy in adults, ataxias, especially spinocerebellar ataxia 8
  • DM myotonic dystrophies
  • ataxias especially spinocerebellar ataxia 8
  • Huntington all due to the expansion of a microsatellite containing the CTG sequence.
  • Myotonic dystrophies constitute a group of autosomal dominant multisisystemic diseases that are characterized mainly by myotonia (inability to relax muscles) and myopathy (muscle degeneration). Ataxias are a complex group of neurodegenerative diseases that lead to generalized uncoordination of limbs, gait and speech. Molecular studies have identified several microsatellite expansions as responsible for these diseases.
  • mutant flies for the muscleblind gene show defects similar to those presented by patients affected by myotonic dystrophy, such as the absence of a structure of the sarcomeres (the molecular motors of the muscles ) called disk Z.
  • the mutant larvae of Drosophila have a hypercontraction of the muscles, which is homologous to the myotonia shown by patients affected by myotonic dystrophies (Artero et al., 1998).
  • other pathogenesis routes that probably contribute to the clinical manifestation of these diseases have also been proposed.
  • a complementary strategy in the search for compounds with a desirable biological activity is to elucidate the pathogenesis molecular pathway of the disease. That is, to establish the cause-effect relationships that lead to the development of the symptoms of that pathology. The more elements of the pathogenesis pathway identified and their cause-effect relationships established, the more possibilities will exist to intervene in a predictable manner in the correction of the molecular defect.
  • invertebrate transgenic animals are provided, in particular of the Drosophila melanogaster insect. These animals are characterized by expressing a CTG microsatellite, cloned from synthetic expansions, in different tissues or moments of the animal's life. Said microsatellite has been introduced stably into the genome of the recipient organism, Drosophila melanogaster, thus obtaining transgenic animals that express RNAs containing said microsatellite in a controlled manner. This expression can be controlled by using the Gal4 / UAS system.
  • the introduced microsatellite is hereinafter referred to as "the transgene”.
  • transgenic flies can be used for the validation of potential drug therapies.
  • This invention provides an invertebrate animal model in which it is possible to generate a phenotype sensitized by controlled expression of a microsatellite containing the CTG sequence. This phenotype results from the expression of a transgene in a given tissue.
  • a sensitized phenotype means that the transgenic invertebrate animal model has a phenotype whose intensity depends on the degree of expression of the transgene.
  • This transgenic animal falls within the scope of this invention, regardless of its stage of development, provided it develops a phenotype caused by the expression of the transgene at some point in its life.
  • Transgenic animals with the sensitized protected phenotype are characterized by having the following phenotypic characteristics: (1) the development of a phenotype whose degree of intensity depends on the degree of transgene expression (2) a change in the expression of a related gene Functionally with the transgene causes a modification in the phenotype.
  • the transgenic animals subject to protection are invertebrate animals. Of particular interest are those of the phylum arthropods, and specifically members of the insect class.
  • the transgenic animal subject to protection belongs to the species Drosophila melanogaster. The description made of them herein allows an expert to reproduce the invention.
  • transgenic animals subject to protection carry a transgene stably integrated into their genome and whose expression can be controlled in space and time, so that a phenotype is generated by the interference it causes the microsatellite expression that contains the CTG sequence.
  • transgene describes a genetic material that has been or will be artificially inserted into the genome of the cell.
  • this expression generally includes the imaginary discs of the larva and embryonic structures such as embryonic musculature. The transgene expresses a product that, when directed in an appropriate spatial pattern, results in a sensitized phenotype.
  • the transgene may be a long sequence of repetitions of the CTG trinucleotide, generally more than 60, either artificially generated or present already in nature.
  • a transgene includes at least a portion of its nucleotide sequence that is substantially similar to microsatellites that contain repeats of naturally occurring CTGs, where substantially similar means a DNA sequence with a sequence identity with the natural version of these microsatellites of at least 40%, usually at least 50% and, more frequently, at least 55%, where the sequence identity is determined with the BLAST program (Basic Local Alignment Search Tool which can be found in the following internet address: http://www.ncbi.nlm.nih.gov/BLAST) in your settings by default.
  • BLAST program Basic Local Alignment Search Tool which can be found in the following internet address: http://www.ncbi.nlm.nih.gov/BLAST
  • the transgene is a microsatellite that contains the CTG sequence originating from nature or having a sequence substantially similar to this one, although it may contain other intercalated sequences, have artificial or synthetic origin and carry attached sequences (coding or not ) such as a sneak gene (known in English as "reporter") or a tag (known in English as "tag”).
  • a sneak gene known in English as "reporter”
  • tag known in English as "tag”
  • An example of both sequences is the green GFP fluorescent protein and its variants.
  • the transgenes subject to protection are represented by SEQ ID NO: 1 and 2 incorporated into this application.
  • the transgene containing the CTG repeats is stably integrated into the animal's genome in such a way that its expression is controlled in space in the desired cell type.
  • the transgene is stably integrated into the genome of the animal behind the UAS sequences of yeast (SEQ ID NO: 3 and 4; represented as UAS-CTG). These UAS sequences serve as binding sites for the yeast Gal4 transcription factor (SEQ ID NO: 7 and 8), so that the expression pattern of the transgene is determined by the expression pattern of the Gal4 transgene.
  • the UAS-CTG transgene may be under the control of any convenient promoter that provides the requirement of a desired expression pattern, where this promoter may be exogenous or endogenous, but will generally be endogenous.
  • a suitable promoter is the promoter located on chromosome 2 in the Drosophila melanogaster genome that regulates GAL4 expression according to the normal pattern of the sevenless gene in the line with reference number 2023 (reference number of the University's Bloomington Drosophila Stock Center from Indiana, USA).
  • the transgene can be integrated into the genome of this insect in a way that can be used for the activation of expression by the promoter in a direct or indirect way, that is, in such a way that the promoter exerts its activation on the transgene in cis or trans. In other words, the expression of the transgene can be mediated directly by the promoter, or by one or more transactivating factors.
  • the transgene When the transgene is under the direct control of the promoter, that is, the promoter regulates the expression of the transgene in cis, the transgene is stably integrated into the fly genome in a place sufficiently close to the promoter and in phase with the promoter such that the cis regulation of the promoter can take place.
  • the promoter controls the expression of the transgene by one or more transactivating factors, usually a transactivating factor, that is, a factor whose expression is directly controlled by the promoter and which binds to a region of the transgene in an appropriate manner to activate the expression of that transgene.
  • the Gal4 transaction system is generally used and reference is made to this system in embodiments of this invention.
  • the coding sequence for the Gal4 protein is stably integrated into the genome of the animal in a manner that is functionally linked. to the endogenous promoter that controls the spatio-temporal expression.
  • An example of this type of animal is line number 2023, available at Bloomington Drosophila Stock Center at the University of Indiana, USA. (http://flybase.bio.indiana.edu/).
  • the transgene is stably integrated in a different position in the genome, usually a random position in the genome, where the transgene is functionally linked to an upstream activator sequence (the UAS sequences), to which the transcription factor of Gal4 yeast binds and activates the expression of the transgene.
  • the UAS sequences an upstream activator sequence
  • Those skilled in the art commonly employ transgenic flies possessing a UAS / Gal4 transactivation system. This system is described in detail in Brand and Perrimon (1993).
  • METHODS TO PRODUCE TRANSGENIC FLIES PROTECTION OBJECT Protected flies can be obtained using any protocol suitable for the stable integration of the transgene into the fly genome in a manner that allows for the requirement of controlled spatial expression of the transgene, that is, , in those places where it is of experimental interest.
  • Several strategies for the integration of the transgene with the requirement of controlled spatial expression can be employed.
  • the methods for producing these transgenic flies involve the stable integration of the transgene into the fly genome.
  • Stable integration can be achieved by first introducing the transgene into a cell or fly cells, for example, in the animal's embryo.
  • the transgene is generally present in a suitable vector, such as a plasmid.
  • the introduction of the transgene can be achieved using a suitable protocol, where suitable protocols can be: electroporation, microinjection, and the like.
  • suitable protocols can be: electroporation, microinjection, and the like.
  • the transgene is stably integrated into the genome of the cell. Stable integration can be either site specific or random, but it is usually random.
  • the stable integration of the transgene in the genome of The animal can be followed macroscopically by the expression of a marker gene incorporated in the chimeric DNA that includes the transgene, for example the white gene (SEQ ID: 9), in the standard manner known to persons versed in this technique.
  • Transposase is an enzyme (SEQ ID NO: 6) that catalyzes the specific integration of DNA molecules that contain the inverted terminal repeats of transposable element P, both in natural transposons and in artificial transposons.
  • the transgene is introduced into the cell by a vector that includes the requirement to possess the inverted terminal repeats (of 31 base pairs) of the transposable element P of Drosophila melanogaster (SEQ ID NO: 5).
  • a vector with the transposase coding sequence for example, a plasmid called "helper" is included with the transgene plasmid that the gene for Drosophila transposase has been cloned, such as pTURBO (as described in Sachr and Pirrotta, 1986).
  • pTURBO as described in Sachr and Pirrotta, 1986.
  • the necessary methodology for the controlled expression of the transgene during the development of the fly is also provided both in space and time.
  • the methods for expression are provided Directed of the transgene.
  • a particular promoter can be included upstream of the transgene as a single unit in the transformation vector employed.
  • a transactivator that regulates the expression of the transgene can be used.
  • Gal4 system described in Brand and Perrimon (1993).
  • the transgenic animals subject to protection have been obtained by: (1) generation of two separate transgenic fly lines: (a) a first line expressing the Gal4 yeast transcription factor mainly in the eye, that is, under the control of an endogenous fly promoter located on chromosome 2 (such as the Drosophila line with identification number 5793 at the Bloomington Drosophila Stock Center); and (b) a second line in which the transgene is stably integrated into the cell genome and fused with a UAS domain; (2) cross the two lines; and (3) identify the progeny with the desired phenotype, that is, an observable morphological or physiological defect that can be a compound eye that has an externally rough appearance.
  • the steps described above are of general knowledge for those people versed in this technique. See also Brand and Perrimon (1993) and Phelps and Brand (1998).
  • the above approach is used for obtaining fertilized eggs that include a stably integrated in 'its genome such transgene wherein the transgene is expressed in a manner spatiotemporal appropriate for the eggs result in adults exhibiting the morphological effect and / or desired physiological (phenotype).
  • fertilized eggs are allowed to progress in their development under the conditions that lead to the desired phenotype.
  • the phenotype of interest of animals can be modulated by varying the conditions under which animals are allowed to mature. For example, the temperature can be modified to modulate the intensity of the phenotype obtained.
  • Embryos or larvae grown at 29-30 degrees Celsius of temperature tend to have a stronger phenotype (which can even reach the death of the animal) than those grown at 25 degrees and the phenotype of these is usually stronger than that of individuals developed at 17-19 degrees.
  • USES Protected flies can be used in a variety of applications, including: (1) as a tool to elucidate the altered genetic mechanism in any disease due, in whole or in part, to the expansion of sequence-based microsatellites CTG, such as myotonic dystrophies, performing systematic genetic searches of genes functionally related to the genes responsible for the phenotype caused by microsatellite expression based on the CTG sequence as described below; (2) as a tool for the systematic search for therapeutic compounds for the treatment of any disease due, in whole or in part, to the expansion of microsatellites based on the CTG sequence, such as myotonic dystrophies; and (3) as a tool for the in vivo validation of potential treatments, even obtained by any other method, of diseases that occur due to alterations in microsatellites based on the CTG sequence (that is, as model animals of human diseases such as Myotonic Dystrophy Type 1 or 2, Sca8 or HDL2).
  • the transgenic flies subject to protection are especially useful for the systematic search for compounds with a therapeutic activity against myotonic dystrophies.
  • a potential therapeutic strategy to relieve the symptoms of patients with myotonic dystrophy is to enhance the function of human proteins homologous to muscleblind (including the MBNLl gene). That is, that the MBNLl protein not bound to CUG trinucleotides works more efficiently.
  • Other potential therapeutic strategies consist of activating the molecular mechanisms that lead to a reduction in the size of the microsatellite expansions based on the CTG sequence object of this patent, or design synthetic peptides that compete with MBNLl in their union with the microsatellite sequences to which it is sequestered in pathological situations.
  • the compounds have an activity with respect to myotonic dystrophies or Sca8 if they modulate or have any effect on at least one parameter or symptom of these diseases, such as myotonic discharges in an electromyogram or stiffness in the muscles (myotonia), where modulating activity can reduce or enhance the magnitude of the symptom, depending on the nature of the disease and the symptom.
  • the methods for the systematic search using the flies subject to protection can be used to identify compounds that modulate the progression of the disease, for example by joining, modulating, enhancing or repressing the activity of a protein or peptide involved in the progression of the disease.
  • Our invention allows the identification of compounds that: (1) not yet being related to modulating the activity of an element of the pathogenic pathway of the disease, have a positive effect with respect to the symptoms of the disease and as such are potentially therapeutic, by example, compounds that alleviate the myotonia of patients; (2) compounds identified by any other method (for example in vitro assays) that cause an adverse effect with respect to the disease and therefore should be avoided as therapeutic agents or (3) compounds that identified using other methods alleviate, improve or suppress totally the symptoms of the disease and are therefore therapeutic agents of choice.
  • a certain amount of candidate compound is generally administered orally.
  • the effect of the candidate compound is determined by finding out whether one or more phenotypic characteristics due to the expression of the microsatellite transgene based on the CTG sequence are enhanced or relieved in the fly under test compared to the control fly, where characteristics in the ones that can be observed a change can be the morphology of the adult's eye, its wings or legs, its behavior (ability to walk, etc.), longevity, physiology and similar characteristics.
  • the candidate compound is orally administered to the fly generally by mixing the compound with the fly's nutrient medium, that is, water, an aqueous solution with additional nutritional elements, etc., and placing the medium in the presence of the fly, (either the larva or the adult although it is usually the adult) in such a way that the fly feeds on that medium.
  • the administration of the compound can also use other routes of administration such as the respiratory route or injection into the hemolymph of the insect, among others.
  • routes of administration such as the respiratory route or injection into the hemolymph of the insect, among others.
  • multiple mixtures with different concentrations of the compound are tested in parallel to obtain a different response with each concentration of the candidate agent.
  • one of these concentrations serves as a negative control, for example, by not incorporating the candidate compound.
  • the claimed methods can be adapted to high-performance systematic searches in which a large number of candidate compounds are tested in parallel using a large number of flies.
  • a large number is understands a plurality, where plurality means at least 10 or 50, usually at least 100, and more normally at least 1000, and may be between 10,000 or 50,000 or more but often will not exceed 5000.
  • transgenic flies that are the object of protection in high-performance systematic searches in toxicity tests, as described in US Patent No. 6,365,129 and which is incorporated by reference.
  • the toxicity, if any, of a plurality of compounds, usually at least 10 different ones, is tested simultaneously, putting them in contact with a population of the transgenic animals subject to protection presenting a phenotype due to microsatellite expression based on the CTG sequence, and determining the effect of such compounds on animals.
  • Such high-performance systematic searches are especially useful for finding potentially therapeutic agents for the treatment of myotonic and Sca8 dystrophies, since only those compounds that treat the disease but are not toxic enough to allow the animal to live are identified as positive for further studies. .
  • the methods object of protection can be used in the systematic search for different potentially therapeutic candidate agents.
  • These candidate agents cover numerous classes of chemicals, although typically they are organic molecules, preferably small organic compounds with a molecular weight of more than 50 and less than 2500 Daltons.
  • These candidate agents have functional groups necessary for physical interaction with proteins, particularly hydrogen bonds, and typically include at least one amine, carbonyl, hydroxyl or carboxyl group, although preferably they have at least two of the functional chemical groups.
  • Candidate agents often include cyclic or heterocyclic carbon structures and / or aromatic or polyaromatic structures substituted with one or more of the functional groups mentioned above.
  • Candidate agents are also among the biomolecules including, but not limited to: peptides, saccharides, fatty acids, spheroids, purines, pyrimidines, their derivatives, structural analogues or combinations thereof.
  • Candidate agents can be obtained from various sources that include collections of natural or synthetic compounds. For example, techniques are available for directed and random synthesis of a wide variety of organic compounds and biomolecules, including random collections of oligopeptides and oligonucleotides. Alternatively, collections of natural compounds in the form of extracts of bacteria, fungi, plants and animals can be obtained or produced.
  • libraries of natural or synthetic products, or their individual components can be modified by conventional biochemical, physical or chemical techniques and can be used to produce combinatorial collections.
  • Known pharmacological agents may undergo random or directed chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogues.
  • New potentially therapeutic agents can also be created using methods such as rational drug design or structural biochemistry. Systematic searches may be directed to known pharmacologically active compounds or chemical analogs thereof, or to new agents with unknown properties such as those created by rational drug design.
  • Candidate agents with therapeutic activity with respect to myotonic dystrophies and Sca8 can be identified on the basis of their ability to enhance one or more aspects of the phenotype of the transgenic flies subject to protection, such as a rough eye phenotype, defective wings, reduced longevity, locomotor problems and the like, as described more above.
  • a rough eye phenotype such as a rough eye phenotype, defective wings, reduced longevity, locomotor problems and the like, as described more above.
  • the methods of protection to identify therapeutic agents against myotonic dystrophies, Sca8 and HDL2 that exhibit low toxicity but are effective in enhancing the activity of the Muscleblind protein. These methods require great specificity on the part of the therapeutic agent so that, while exerting an effect on the function of the Muscleblind protein, the undesirable side effects are limited enough to allow the fly to survive.
  • Methods of systematic searches in flies can be part of a multi-step systematic search process in which the evaluation of the efficacy (and safety) of a candidate therapeutic agent is carried out in more than one model organism.
  • a candidate compound or collection of compounds is subjected to evaluation in a second in vivo model, for example a mouse model.
  • Myotonic dystrophy models in mice have been generated with transgenic mice that express varying degrees of CTG expansion in the human DMPK gene and are described in detail in Mankodi et al. (2001) and in Seznec et al. (2001).
  • a systematic in vitro search can also be used prior to the use of model animals for the disease.
  • the compound is first subjected to a systematic in vitro search, testing its potential as a therapeutic agent in the treatment of myotonic dystrophies.
  • a person versed in the subject knows the convenient essays.
  • the transgenic flies subject to protection can be used to identify genes functionally involved in triggering the phenotype due to expression of the transgene being protected.
  • these genes is the muscleblind gene.
  • the genes relevant to the microsatellite expression phenotype based on the CTG sequence can be identified by performing traditional suppressor and enhancer analyzes on the flies protected. In these analyzes, the genes of the transgenic flies subject to protection are mutated to identify those that potentiate or suppress the phenotype of transgene expression.
  • kits that can be used to carry out systematic search methods.
  • Such kits include a plurality of transgenic flies of this invention, or means for producing such a plurality of flies, that is, a transgenic male fly and female fly of the present invention, the vectors carrying the required genes, such as transgenes. , a gene for the transposase gene, GAL4, etc. Flies can be confined in appropriate containers, that is, vials.
  • the present kits may also include a nutrient medium for animals, that is, culture medium for Drosophila.
  • the present invention also includes therapeutic agents for use in the treatment of myotonic and Sca8 dystrophies, as well as pharmaceutical formulations therefrom.
  • the therapeutic agents of the present invention are those identified using the systematic search methods described above that show a modulating activity with respect to the microsatellite expression phenotype based on the CTG sequence (or known agents that have an effect on the expression of a gene identified as a modulator of the microsatellite expression phenotype based on the CTG sequence, where non-transgenic animals described in this application are also used for the identification of these genes) .
  • pharmaceutical formulations of the therapeutic agents subject to protection are also included.
  • the agents described above are formulated in pharmaceutical compositions by combination with the appropriate and accepted excipients or diluents for the preparation of drugs, which can be formulated in preparations in solid, semi-solid, liquid or gaseous form. , such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhaled and aerosols.
  • the agents can be administered in their accepted salts for the preparation of drugs, or they can also be used alone or in the appropriate associations, as well as in combination with other active pharmacological compounds.
  • the following methods and excipients are merely examples and are by no means limiting.
  • the agents can be used alone or in combination with the appropriate excipients or additives to make tablets, powders, granules or capsules, for example, with conventional additives such as lactose, mannitol, corn starch or potato; with additive additives, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with dispersing additives, such as corn starch, potato starch or sodium carboxymethyl cellulose; with lubricants, such as magnesium stearate or talc; and if desired, with diluents, buffering agents, moisturizing agents, preservatives or artificial flavors.
  • conventional additives such as lactose, mannitol, corn starch or potato
  • additive additives such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins
  • dispersing additives such as corn starch, potato starch or sodium carboxymethyl cellulose
  • lubricants such as magnesium stearate or tal
  • the agents can be formulated in preparations for injection by dissolving, suspending them or creating emulsions in an aqueous or non-aqueous solvent, such as vegetable oils or similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
  • the agents can be used in an aerosol formulation to be administered by inhalation.
  • the compounds of the present invention can be formulated in acceptable pressurized propellants such as propane, nitrogen and the like.
  • therapeutic agents can be formulated in suppositories by mixing them with a variety of bases such as emulsifying bases or water soluble bases.
  • bases such as emulsifying bases or water soluble bases.
  • the compounds of the present invention can be administered rectally using suppositories.
  • Suppositories may include excipients such as coconut butter, polyethylene glycol and carbohydrates, which melt at body temperature but remain solid at room temperature.
  • each unit dose for example a teaspoon, a tablet or a suppository, contains a predetermined amount of the composition and may contain one or more inhibitors. .
  • unit doses in the form of injections or intravenous administration may include the inhibitor (s) in the composition as a solution in sterile water, saline or other pharmacologically acceptable means.
  • unit dose presentation refers to physically discrete units. appropriate as unit doses for human and animal individuals, each unit containing a predetermined amount of compounds of the present invention calculated as sufficient to produce the desired effect in association with the pharmacologically acceptable diluent, carrier or excipient.
  • the specifications for a new presentation of the unit dose of the present invention depend on the particular compound being used and the affect to be achieved, as well as the pharmacodynamics associated with each compound in the host.
  • Pharmacologically acceptable excipients such as carriers, adjuvants, carriers or diluents, are available to the public.
  • pharmacologically acceptable auxiliary substances such as buffering agents or for pH adjustment, agents for adjusting ionic strength, stabilizers, moisturizing agents and the like are also available to the public.
  • the agent is a polypeptide, polynucleotide, analogue or any compound that can mimic the endogenous function of any gene identified by the use of this invention (identified using the systematic mutant search analysis protocols described above) it can be introduced into tissues or host cells by several routes, which include viral infection, microinjection, vesicle fusion or myoblast mediated gene therapy (as described in Ozawa et al., 2000).
  • Jet injection can also be used for intramuscular administration, as described in Furth et al. (1992).
  • the DNA is arranged by coating gold microparticles, and is distributed intradermally by an apparatus that bombards these particles against the skin, or "gene gun," as described in the scientific literature (see, for example, Tang et al. (1992 ), where gold microprojectiles are they cover with the DNA and then the skin cells are bombarded).
  • the recommended dosage for each compound can be determined by those skilled in the art using a wide variety of means. Kits with unit doses of the active agent are provided, usually in oral or injectable doses. In these kits, in addition to the containers with unit doses there will be an informative leaflet describing the use and expected beneficial effects of the use of the drug in the treatment of the disease of interest.
  • an effective amount is meant a dose sufficient to produce a desired result, where the desired result is generally an improvement or relief, including complete cessation, of one or more symptoms of, for example, myotonic dystrophy, Sca8 or HDL2 that It is being treated.
  • the administration of the agents can be carried out in several ways, including oral, oral, parenteral, rectal, intraperitoneal, intradermal, transdermal, cutaneous, etc. You can treat a variety of guests with the methods object of protection.
  • Such hosts are mammals, where this term is used in a broad sense to describe organisms within the mammalian class, which includes the group of carnivores (for example dogs and cats), rodents (for example, mice and rats) , herbivores (for example, horses and cows) and primates (for example, humans, chimpanzees and monkeys). In many embodiments the guests will be human.
  • carnivores for example dogs and cats
  • rodents for example, mice and rats
  • herbivores for example, horses and cows
  • primates for example, humans, chimpanzees and monkeys.
  • the guests will be human.
  • the following examples are offered as mere illustrations and should not be understood as limitations at all.
  • the UAS- (CTG) 60 and UAS- (CTG) 'so (SEQ ID Nos: 1 and 2, respectively) constructs were integrated into the Drosophila melanogaster genome by standard microinjection procedures (Spradling and Rubin, 1982).
  • the source of transposase used to enable the integration of the UAS- (CTG) 6 o and UAS- (CTG) 8o constructs in the genome was provided by co-injecting the pTURBO vector (as described in adherer and Pirrota, 1986).
  • Figure 1 shows the result of this experiment in which an eye composed of wild fly is compared with that of a fly expressing UAS- (CTG) or showing a phenotype of rough eyes.
  • the images were generated by optical microscopy (AB) of adult eyes of normal individuals (Oregon R line) and eyes of individuals expressing the 48th UAS- (CTG) transgene in the eye precursors.
  • the anterior part is on the left and the dorsal part above.
  • the degree of phenotypic manifestation caused by the expression of the transgene is variable if transgenic lines are used that express different amounts of CTG repeats, Gal4 lines that express the transcriptional activator with different intensity, as well as if different cultivation temperatures are used.
  • Figure 2 shows a transgene expression experiment similar to that described in Figure 1 but using a different Gal4 line, in this case the GMR-Gal4 described in XX. Carrier flies of the Gal4 construct manifest a rough eye phenotype even in heterozygosis and are included in the figure as a control.
  • the invention object of protection provides a valuable tool for the systematic search for potentially therapeutic agents for the treatment of, for example, myotonic dystrophies, Sca8 and HDL2.
  • the advantages of using the transgenic flies of this invention for the systematic search of potential therapeutic agents include: the possibility of adapting the flies subject to protection protocols of high-performance systematic searches, the simplicity and low maintenance cost of said transgenic flies, the ability of flies of this invention to identify active therapeutic agents orally, rapid reproduction, and the ability of flies of this invention to produce large amounts of offspring.
  • This invention fills an existing gap in the arsenal of tools to carry out systematic searches of therapeutic compounds because it provides a method for performing such searches in vivo and with high performance protocols.
  • Figure 1 Eye composed of a wild fly (A) compared to the rough eye caused by expression of the UAS- (CTG) 4 80 transgene with the expression pattern of sev-Gal4 (B).
  • FIG. 3 Phenotype caused by transgene expression.
  • the phenotype of the normal individuals of the OrR (A) strain is compared against the phenotype caused by expressing the UAS- (CTG) 4 80 transgene in the P (480) 1.1 line in the adult fly musculature, following the expression pattern of MHC-Gal4 (B).
  • the MHC-Gal4 transgene follows the expression pattern of the muscle myosin heavy chain gene (line L82 belonging to the Drosophila Line Collection of the Department of Genetics of the University of Valencia). The offspring developed at 29 ° C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Environmental Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Animal Husbandry (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention relates to Drosophila transgenic animal models used to treat pathologies wherein the presence of expansions of microsatellites based on the sequence CTG has been detected, such as myotonic dystrophy of type 1 and 2, the spino-cerebellar ataxy 8 and HSL2. The invention concerns the application to a transgenic animal model of a transgene which includes totally or partially a microsatellite sequence based on a sequence CTG. This transgenic model has been obtained through the stable integration of the transgene into the melanogaster Drosophila genome. In said animals the transgene is expressed in a phenotypical and controlled manner at any of its development phases. The animal models of the invention apply to the investigation of pathogenesis mechanisms in diseases wherein the pathological states show expansions of microsatellites containing the sequence CTG, as assay devices for possible therapeutical compounds for the treatment of said diseases and as devices for the in vivo validation of potential treatments of those diseases.

Description

MODELOS ANIMALES TRANSGENICOS EN DROSOPHILA PARA ENFERMEDADES GENÉTICAS HUMANAS PROVOCADAS POR EXPANSIONES DE MICROSATELITES QUE CONTIENEN EL TRINUCLEOTIDO CTG DROSOPHILA TRANSGENIC ANIMAL MODELS FOR HUMAN GENETIC DISEASES CAUSED BY EXPANSIONS OF MICROSATELITES CONTAINING THE CTG TRINUCLEOTIDE
Sector de la técnica Esta invención tiene utilidad en el sector de la Bio edicina y en el sector Biofarmacéutico . Dentro de estos sectores, el campo específico de utilidad es el uso de animales transgénicos como modelos que permitan investigar las enfermedades hereditarias humanas, el desarrollo de tratamientos contra las mismas y la validación de tratamientos farmacológicos potenciales .Technical sector This invention has utility in the bio-edicine sector and in the biopharmaceutical sector. Within these sectors, the specific field of utility is the use of transgenic animals as models that allow the investigation of hereditary human diseases, the development of treatments against them and the validation of potential pharmacological treatments.
Estado de la técnica Las expansiones aberrantes de secuencias micro- satélite en el genoma humano, entendidos éstos como repeticiones de una secuencia de entre dos y siete nucleótidos, son el origen de un número creciente de enfermedades hereditarias. De entre ellas destacan las distrofias miotónicas (DM) , un tipo de distrofia frecuente en personas adultas, las ataxias, en especial la ataxia espinocerebelar 8State of the art The aberrant expansions of micro-satellite sequences in the human genome, understood as repetitions of a sequence of between two and seven nucleotides, are the origin of a growing number of inherited diseases. These include myotonic dystrophies (DM), a type of frequent dystrophy in adults, ataxias, especially spinocerebellar ataxia 8
(SCA8) , y una enfermedad muy semejante a la enfermedad de(SCA8), and a disease very similar to the disease of
Huntington (HDL2 o "Huntington disease-li e 2") todas ellas debidas a la expansión de un microsatélite que contiene la secuencia CTG. Las distrofias miotónicas constituyen un grupo de enfermedades autosómicas dominantes multisis- témicas que se caracterizan, principalmente, por miotonía (incapacidad para relajar los músculos) y miopatía (degeneración muscular) . Las ataxias son un grupo complejo de enfermedades neurodegenerativas que conducen a una descoordinación generalizada de extremidades, del modo de andar y el habla. Los estudios moleculares han identificado varias expansiones de microsatélites como responsables de estas enfermedades. En concreto del trinucleótido CTG en la región 3' no traducida del gen DMPK (DM tipo 1) o en una región no traducida del transcrito Sca8 (SCA8) , o el tetranucleótido CCTG en el primer intron del gen ZNF9 (DM tipo 2) . En el caso de la HDL2 la situación es menos clara, pero se sabe que por maduración alternativa de los tráns- critos primarios del gen junctofilina-3 se pueden generar transcritos que contienen entre 51 y 57 repeticiones del triplete CTG en el intron 1 o en la región 3' no traducida. En estudios recientes realizados in vitro e in vivo sobre biops as de pacientes afectados por DM (Miller y col., 2000; Mankodi y col. 2001/ Fardaei y col. 2002) se ha demostrado que las expansiones asociadas a las distrofias miotónicas se unen a las proteínas homologas a la proteína Muscleblind (Mbl) del insecto Drosophila melanogaster. Este hallazgo ha llevado a proponer el siguiente modelo de patogénesis: las expansiones secuestran todas, o parte, de las proteínas de la familia Mbl que se encuentran en el núcleo de las células humanas y este secuestro impide que las proteínas Mbl lleven a cabo su función fisiológica normal (todavía no aclarada) . De este modo, sería la ausencia de las proteínas Mbl libres la responsable del inicio de la patogénesis en los pacientes afectados por la distrofia miotónica. Esta idea viene apoyada por el hecho de que las moscas mutantes para el gen muscleblind muestran defectos similares a los que presentan los pacientes afec- tados por la distrofia miotónica, como es la ausencia de una estructura de los sarcómeros (los motores moleculares de los músculos) denominada disco Z. De manera análoga, las larvas mutantes de Drosophila presentan una hipercontrac- ción de los músculos, lo cual es homólogo a la miotonía que muestran los pacientes afectados por las distrofias miotónicas (Artero y col., 1998). Sin embargo, también se han propuesto otras rutas de patogénesis que probablemente contribuyen a la manifestación clínica de estas enfer-Huntington (HDL2 or "Huntington disease-li e 2") all due to the expansion of a microsatellite containing the CTG sequence. Myotonic dystrophies constitute a group of autosomal dominant multisisystemic diseases that are characterized mainly by myotonia (inability to relax muscles) and myopathy (muscle degeneration). Ataxias are a complex group of neurodegenerative diseases that lead to generalized uncoordination of limbs, gait and speech. Molecular studies have identified several microsatellite expansions as responsible for these diseases. Specifically of the CTG trinucleotide in the 3 'untranslated region of the DMPK gene (type 1 DM) or in a untranslated region of the Sca8 transcript (SCA8), or the CCTG tetranucleotide in the first intron of the ZNF9 gene (type 2 DM). In the case of HDL2, the situation is less clear, but it is known that by alternative maturation of the primary transcripts of the junctophyllin-3 gene, transcripts containing between 51 and 57 repetitions of the CTG triplet in intron 1 or in 3 'region not translated. Recent studies conducted in vitro and in vivo on biopses of patients affected by DM (Miller et al., 2000; Mankodi et al. 2001 / Fardaei et al. 2002) have shown that expansions associated with myotonic dystrophies bind to proteins homologous to the Muscleblind (Mbl) protein of the Drosophila melanogaster insect. This finding has led us to propose the following pathogenesis model: the expansions sequester all, or part, of the Mbl family proteins found in the nucleus of human cells and this sequestration prevents Mbl proteins from carrying out their function. normal physiological (not yet clarified). Thus, it would be the absence of free Mbl proteins responsible for the onset of pathogenesis in patients affected by myotonic dystrophy. This idea is supported by the fact that mutant flies for the muscleblind gene show defects similar to those presented by patients affected by myotonic dystrophy, such as the absence of a structure of the sarcomeres (the molecular motors of the muscles ) called disk Z. Similarly, the mutant larvae of Drosophila have a hypercontraction of the muscles, which is homologous to the myotonia shown by patients affected by myotonic dystrophies (Artero et al., 1998). However, other pathogenesis routes that probably contribute to the clinical manifestation of these diseases have also been proposed.
'medades. Así, se ha propuesto que la expansión de los microsatélites CTG en el gen DMPK podría llevar a una reducción en la proteína DMPK (hipótesis de la haploin- suficiencia de DMPK) y que el microsatélite podría tener un efecto local sobre la estructura de la cromatina conduciendo a una reducción en la expresión de genes cercanos y/o una alteración en los dominios de actuación de elementos intensificadores de la transcripción cercanos (hipótesis del efecto local sobre la cromatina) . En estos momentos no hay disponible ningún tratamiento farmacológico específico para los enfermos afectados por cualquiera de las distrofias miotónicas o por SCA8. Los únicos tratamientos disponibles están encaminados a aliviar los síntomas de los pacientes. Sin embargo, los estudios sobre el mecanismo de patogénesis de las expansiones de microsatélites que incluyen la secuencia CTG abren la puerta para encontrar posibles dianas terapéuticas. Los pasos críticos en la identificación y desarrollo de nuevos agentes terapéuticos son: (a) generar los agentes terapéuticos candidatos; y (b) la búsqueda sistemática entre los compuestos candidatos de aquellos que sean seguros y eficaces. Con la llegada de las metodologías basadas en la química combinatoria, se pueden generar grandes cantidades de compuestos potencialmente terapéuticos, conocidas como librerías (colecciones) de compuestos. Igualmente, basándonos en la diversidad biológica que presenta la Biosfera, existen colecciones de extractos de plantas, de animales marinos, etc. Dichas colecciones constituyen conjuntos ordenados de agentes terapéuticos potenciales. Tras generar los compuestos potencialmente terapéuticos, se debe buscar sistemáticamente en estas colecciones aquellos candidatos prometedores, es decir, con una actividad biológica deseada. Se han desarrollado protocolos para las búsquedas sistemáticas de alto rendimiento in vitro . Sin embargo, estos ensayos para búsquedas sistemáticas deben complemen- tarse con ensayos in vivo. Dado que no es éticamente aceptable ensayar directamente en las personas compuestos con una actividad terapéutica potencial, un paso importante en la identificación de compuestos con una actividad biológica deseable en humanos es su empleo previo en búsquedas sistemáticas en modelos animales no humanos. Como tales, los modelos animales no humanos de enfermedades hereditarias tales como las distrofias miotónicas y SCA8 pueden jugar un papel importante en el descubrimiento de agentes terapéuticos para combatir tales enfermedades. Una estrategia complementaria en la búsqueda de compuestos con una actividad biológica deseable es dilucidar la ruta molecular de patogénesis de la enfermedad. Es decir, establecer las relaciones causa- efecto que llevan al desarrollo de los síntomas de esa patología. Cuantos más elementos de la ruta de patogénesis se identifiquen y se establezcan sus relaciones causa- efecto, más posibilidades existirán de intervenir de una manera predecible en la corrección del defecto molecular. Una estrategia adecuada para dilucidar la ruta de patogénesis de una enfermedad (que además no exige ningún conocimiento a priori del mecanismo molecular de la misma) es el análisis genético. Un tipo de animal modelo no humano que se puede emplear para búsquedas sistemáticas de agentes terapéuticos para el tratamiento de enfermedades hereditarias y el análisis genético de las mismas son los modelos animales en mamíferos no humanos, por ejemplo el ratón. Sin embargo, los ratones son caros de mantener, tienen un tiempo de reproducción lento y producen una descendencia reducida. Así pues, el ratón no es un organismo ideal para las búsquedas sistemáticas de alto rendimiento ni para el análisis genético. Por todo lo anterior, existe una necesidad de describir animales modelo adicionales como modelo de las enferme- dades humanas englobadas como causadas por expansiones de microsatélites que contengan la secuencia CTG. De interés particular sería un modelo animal con una longevidad corta, un ciclo de reproducción rápido y que produzca una gran cantidad de descendencia. Preferentemente, tal animal debería ser relativamente simple y barato de mantener en el laboratorio . Patentes relevantes para esta solicitud son: Patente estadounidense "Transposable elements as transformation vectors" con número 4,670,388 y la patente estadounidense "In vivo high throughput toxicology screening method" con número 6,365,129. También es relevante la solicitud de patente Española con número P200201454 y fecha de prioridad 18 de junio de 2002 titulada "Modelos animales transgénicos en Drosophila para las distrofias miotónicas", a nombre de este mismo solicitante. Los métodos para la producción de animales transgénicos en Drosophila melanogaster se describen en: Spradling, AC, y Rubin, GM (1982) . Science 218, 341-347; Brand, AH y Perrimon, N (1993) . Development 118, 401-415; Phelps y Brand (1998) . Methods 14, 367-379; Steller y Pirrotta (1986). Mol. Cell . Biol . 6, 1640-1649. Véase también Spradling AC, P element mediated transformation in Drosophila: A practical approach (ed. D.D. Roberts, IRL Press, Oxford) (1986) pp. 175-179. Los artículos en los que se describe el gen muscleblind y sus funciones son: Artero, R.D. (1995). Caracterización molecular de la región 54A de Drosophila melanogaster. Tesis Doctoral Universitat de Valencia; Artero, R, Prokop, A, Paricio, N, Begemann, G, Pueyo, I, Mlodzik, M, Pérez-Alonso, M, Baylies, M (1998). Dev. Biol. 195, 131-143; Begemann, G, Paricio, N, Artero, R, Kiss, Pérez-Alonso, M y Mlodzik, M (1997) . Development, 124, 4321-4331. García Casado, Z (2002) . Caracterización funcional del gen muscleblind: valoración de Drosophila como modelo para el estudio de la Distrofia Miotónica.'medades. Thus, it has been proposed that the expansion of CTG microsatellites in the DMPK gene could lead to reduction in DMPK protein (DMPK haploin-sufficiency hypothesis) and that the microsatellite could have a local effect on chromatin structure leading to a reduction in the expression of nearby genes and / or an alteration in the acting domains of nearby transcription enhancing elements (hypothesis of the local effect on chromatin). At this time no specific pharmacological treatment is available for patients affected by any of the myotonic dystrophies or by SCA8. The only treatments available are aimed at relieving patients' symptoms. However, studies on the pathogenesis mechanism of microsatellite expansions that include the CTG sequence open the door to find possible therapeutic targets. The critical steps in the identification and development of new therapeutic agents are: (a) generating the candidate therapeutic agents; and (b) the systematic search among the candidate compounds of those that are safe and effective. With the advent of methodologies based on combinatorial chemistry, large quantities of potentially therapeutic compounds, known as libraries (collections) of compounds, can be generated. Likewise, based on the biological diversity presented by the Biosphere, there are collections of plant extracts, marine animals, etc. These collections constitute ordered sets of potential therapeutic agents. After generating the potentially therapeutic compounds, these promising candidates should be systematically searched for, that is, with a desired biological activity. Protocols for systematic searches of high performance in vitro have been developed. However, these trials for systematic searches must be complemented with in vivo tests. Since it is not ethically It is acceptable to test directly on compounds with a potential therapeutic activity, an important step in the identification of compounds with a desirable biological activity in humans is their prior use in systematic searches in non-human animal models. As such, non-human animal models of inherited diseases such as myotonic dystrophies and SCA8 can play an important role in the discovery of therapeutic agents to combat such diseases. A complementary strategy in the search for compounds with a desirable biological activity is to elucidate the pathogenesis molecular pathway of the disease. That is, to establish the cause-effect relationships that lead to the development of the symptoms of that pathology. The more elements of the pathogenesis pathway identified and their cause-effect relationships established, the more possibilities will exist to intervene in a predictable manner in the correction of the molecular defect. An adequate strategy to elucidate the pathogenesis pathway of a disease (which also does not require any prior knowledge of its molecular mechanism) is genetic analysis. One type of non-human model animal that can be used for systematic searches of therapeutic agents for the treatment of hereditary diseases and their genetic analysis are animal models in non-human mammals, for example the mouse. However, mice are expensive to maintain, have a slow reproduction time and produce reduced offspring. Thus, the mouse is not an ideal organism for high-performance systematic searches or for genetic analysis. For all the above, there is a need to describe additional model animals as a model of human diseases encompassed as caused by expansions of microsatellites containing the CTG sequence. Of particular interest would be an animal model with a short longevity, a rapid reproduction cycle and producing a large amount of offspring. Preferably, such an animal should be relatively simple and cheap to keep in the laboratory. Relevant patents for this application are: US Patent "Transposable elements as transformation vectors" with number 4,670,388 and US Patent "In vivo high throughput toxicology screening method" with number 6,365,129. Also relevant is the Spanish patent application with number P200201454 and priority date June 18, 2002 entitled "Transgenic animal models in Drosophila for myotonic dystrophies", in the name of this same applicant. The methods for the production of transgenic animals in Drosophila melanogaster are described in: Spradling, AC, and Rubin, GM (1982). Science 218, 341-347; Brand, AH and Perrimon, N (1993). Development 118, 401-415; Phelps and Brand (1998). Methods 14, 367-379; Steller and Pirrotta (1986). Mol. Cell Biol 6, 1640-1649. See also Spradling AC, P element mediated transformation in Drosophila: A practical approach (ed. DD Roberts, IRL Press, Oxford) (1986) pp. 175-179. The articles describing the muscleblind gene and its functions are: Artero, RD (1995). Molecular characterization of the 54A region of Drosophila melanogaster. Doctoral Thesis University of Valencia; Artero, R, Prokop, A, Paricio, N, Begemann, G, Pueyo, I, Mlodzik, M, Pérez-Alonso, M, Baylies, M (1998). Dev. Biol. 195, 131-143; Begemann, G, Paricio, N, Artero, R, Kiss, Pérez-Alonso, M and Mlodzik, M (1997). Development, 124, 4321-4331. García Casado, Z (2002). Functional characterization of the muscleblind gene: Drosophila assessment as a model for the study of Myotonic Dystrophy.
Tesis Doctoral (en preparación) . Universitat de Valencia. Los artículos en los que se describe la relación entre el comportamiento molecular de las expansiones responsables de las distrofias miotónicas y las proteínas muscleblind son: Fardaei M, Larkin K, Brook JD y Hamshere MG (2001) .Doctoral thesis (in preparation). University of Valencia Articles describing the relationship between the molecular behavior of the expansions responsible for myotonic dystrophies and muscleblind proteins are: Fardaei M, Larkin K, Brook JD and Hamshere MG (2001).
Nucleic Acids Research 29, 2766-2771; Mankodi y col. (2001) . Human Molecular Genetics 10, 2165-2170; Fardaei, M,Nucleic Acids Research 29, 2766-2771; Mankodi et al. (2001). Human Molecular Genetics 10, 2165-2170; Fardaei, M,
Rogers, MT, Thorpe, HM, Larkin, K, Hamshere, MG, Harper, PS y Brook, JD (2002) . Human Molecular Genetics 11, 805-814;Rogers, MT, Thorpe, HM, Larkin, K, Hamshere, MG, Harper, PS and Brook, JD (2002). Human Molecular Genetics 11, 805-814;
Miller, J , Urbinati, CR, Teng-umnuay, P, Stenberg, MG,Miller, J, Urbinati, CR, Teng-umnuay, P, Stenberg, MG,
Byrne, BJ, Thornton, A y S anson, MS (2000) . The EMBO J.Byrne, BJ, Thornton, A and S anson, MS (2000). The EMBO J.
19, 4439-4448. Artículos en los que se describen microsatélites como responsables de enfermedades humanas y una posible función de los microsatélites con secuencia CTG: Ranún, LP y Day,19, 4439-4448. Articles describing microsatellites as responsible for human diseases and a possible function of microsatellites with CTG sequence: Ranun, LP and Day,
JW (2002). Current Opinión in Genetics & Development 12:JW (2002). Current Opinion in Genetics & Development 12:
266-271"; Philips, AV, Timchenko, LT y Cooper, TA (1998) .266-271 " ; Philips, AV, Timchenko, LT and Cooper, TA (1998).
Science 280: 737-741; Richards, RI (2001) . Human Molecular Genetics 10: 2187-2194; Cummings, CJ, Zoghbi, HY (2000) .Science 280: 737-741; Richards, RI (2001). Human Molecular Genetics 10: 2187-2194; Cummings, CJ, Zoghbi, HY (2000).
Annu. Rev. Genomics Hum. Genet . 1: 281-328; Filippova, GN y col. (2001). Nature Genetics 28:335-343; Koob, MD y col.Annu Rev. Genomics Hum. Genet 1: 281-328; Filippova, GN et al. (2001). Nature Genetics 28: 335-343; Koob, MD et al.
(1999). Nature Genetics 21: 379-384. Artículos en los que se describen otros modelos animales para las distrofias miotónicas son: Mankodi, A et al (2000). Science 289, 1769-1772; Seznec y col. (2001).(1999). Nature Genetics 21: 379-384. Articles describing other animal models for myotonic dystrophies are: Mankodi, A et al (2000). Science 289, 1769-1772; Seznec et al. (2001).
Human Molecular Genetics 10, 2717-2726. Artículos en los que se utiliza la técnica genética de búsqueda sistemática de modificadores genéticos de un fenotipo dado son: Hays, TS y col. (1989). Molecular andHuman Molecular Genetics 10, 2717-2726. Articles in which the genetic technique of systematic search for genetic modifiers of a given phenotype is used are: Hays, TS et al. (1989). Molecular and
Cellular Biology 9, 875-84; Deuring, R, Robertson, B,Cellular Biology 9, 875-84; Deuring, R, Robertson, B,
Prout, M y Fuller, M T (1989). Mol. Cell. Biol. 9, 875-84;Prout, M and Fuller, M T (1989). Mol. Cell Biol. 9, 875-84;
Fuller, M T y col. (1989). Cell Mot . Cyto. 14, 128-35; yFuller, M T et al. (1989). Cell Mot. Cyto 14, 128-35; Y
Rottgen G, Wagner T, Hinz U (1998) . Mol. Gen. Genet. 257, 442-51. Artículos en los que se describen técnicas de terapia génica son Ozawa CR, Springer ML, Blau HM (2000) . Annu.Rottgen G, Wagner T, Hinz U (1998). Mol. Gen. Genet. 257, 442-51. Articles describing gene therapy techniques are Ozawa CR, Springer ML, Blau HM (2000). Annu
Rev. Pharmacol. Toxicol. 40, 295-317; Furth y col. (1992),Rev. Pharmacol. Toxicol 40, 295-317; Furth et al. (1992),
Anal Biochem 205, 365-368; y Tang y col. (1992), Nature 356, 152-154.Anal Biochem 205, 365-368; and Tang et al. (1992), Nature 356, 152-154.
BREVE DESCRIPCIÓN DE LA INVENCIÓN En esta invención se proporcionan animales transgé- nicos invertebrados, en particular del insecto Drosophila melanogaster. Estos animales se caracterizan porque expresan un microsatélite CTG, clonado a partir de expansiones sintéticas, en diferentes tejidos o momentos de la vida del animal. Dicho microsatélite se ha introducido de forma estable en el genoma del organismo receptor, Drosophila melanogaster, obteniendo así animales transgénicos que expresan RNAs que contienen dicho microsatélite de forma controlada. Esta expresión se puede controlar mediante el empleo del sistema Gal4/UAS. Al microsatélite introducido le denominamos en lo sucesivo "el transgén". Esta expresión del transgén genera un efecto morfológico y/o fisiológico en el insecto que depende de la cantidad de expresión que se induzca. A este efecto lo denominamos fenotipo. Se proporcionan métodos para emplear estos animales transgénicos, en los que se ha provocado un fenotipo, para las búsquedas sistemáticas de compuestos con una actividad biológica modificadora del mencionado fenotipo. Asimismo, estos animales transgénicos pueden ser empleados para la búsqueda sistemática de genes relacionados con la función alterada al expresar el transgén, utilizando para ello técnicas genéticas conocidas para una persona versada en la técnica. Finalmente, estas moscas transgénicas pueden ser empleadas para la validación de terapias farmacológicas potenciales . DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Esta invención proporciona un modelo animal invertebrado en el que es posible generar un fenotipo sensibilizado por expresión controlada de un microsatélite que contiene la secuencia CTG. Este fenotipo resulta de la expresión de un transgén en un tejido dado. Por un fenotipo sensibilizado se entiende que el modelo animal invertebrado transgénico presenta un fenotipo cuya intensidad depende del grado de expresión del transgén. Este animal transgé- nico cae dentro del ámbito de esta invención, independientemente de su estadio de desarrollo, con tal de que desarrolle un fenotipo provocado por la expresión del transgén en algún momento de su vida. Los animales transgénicos con el fenotipo sensibilizado objeto de protección se caracterizan por tener las siguientes características fenotípicas : (1) el desarrollo de un fenotipo cuyo grado de intensidad depende del grado de expresión del transgén (2) un cambio en la expresión de un gen relacionado funcionalmente con el transgén provoca una modificación en el fenotipo. Los animales transgénicos objeto de protección son animales invertebrados. De particular interés son aquellos del phylum artrópodos, y en concreto los miembros de la clase insectos. El animal transgénico objeto de protección pertenece a la especie Drosophila melanogaster. La descripción que se hace de los mismos en la presente memoria posibilita que un experto pueda reproducir la invención. No obstante, el material biológico mencionado (en total, 18 líneas de Drosophila) está a disposición del público en la Colección de Líneas de Drosophila del Departamento de Genética de Facultad de Biología de la Universidad de Valencia, Calle Doctor Moliner, n° 50 en la ciudad de Burjasot, provincia de Valencia (España) , con Números de Referencia con el formato P(60)x.y para las líneas portadoras de un transgén con 60 repeticiones y P(480)x.y - Ji para las líneas portadoras de 480 repeticiones. En ambos casos, x hace referencia al número del animal inyectado mientras que y hace referencia al número de orden del animal que muestra el marcador fenotípico de que contiene el transgén en la descendencia del cruce para detectar las moscas transgénicas . Un aspecto crítico de los animales transgénicos objeto de protección es que los animales portan un transgén integrado de forma estable en su genoma y cuya expresión puede controlarse en el espacio y en el tiempo, de tal manera que se genera un fenotipo por la interferencia que provoca la expresión del microsatélite que contiene la secuencia CTG. El término "transgén" describe un material genético que ha sido o va a ser insertado artificialmente en el genoma de la célula. Respecto a la expresión espacial del transgén, esta expresión incluye, generalmente, a los discos imagínales de la larva y estructuras embrionarias como la musculatura embrionaria. El transgén expresa un producto que, cuando se dirige en un patrón espacial apropiado, da lugar a un fenotipo sensibilizado. El transgén puede ser una secuencia larga de repeticiones del trinucleótido CTG, generalmente más de 60, bien generada artificialmente o presente ya en la naturaleza. Como tal, un transgén incluye al menos una porción de su secuencia de nucleótidos que es sustancialmente similar a los microsatélites que contienen repeticiones de CTGs presentes en la naturaleza, donde sustancialmente similar significa una secuencia de ADN con una identidad de secuencia con la versión natural de estos microsatélites de, al menos, el 40%, normalmente al menos del 50% y, más frecuentemente, al menos un 55%, donde la identidad de secuencia está determinada con el programa BLAST (Basic Local Alignment Search Tool que se puede encontrar en la siguiente dirección de internet: http://www.ncbi.nlm.nih.gov/BLAST) en sus ajustes por defecto. En realizaciones de esta invención, el transgén es un microsatélite que contiene la secuencia CTG procedente de la naturaleza o que tiene una secuencia sustancialmente similar a éste, aunque puede contener otras secuencias intercaladas, tener origen artificial o sintético y llevar secuencias adosadas (codificantes o no) tales como un gen chivato (conocido en inglés como "repórter") o una etiqueta (conocida en ingles como "tag") . Un ejemplo de ambas secuencias es la proteína fluorescente verde GFP y sus variantes. Los transgenes objeto de protección están representados por SEQ ID NO: 1 y 2 incorporadas a esta solicitud. El transgén conteniendo las repeticiones CTG está integrado de forma estable en el genoma del animal de una manera tal que su expresión está controlada en el espacio en el tipo celular deseado. Específicamente, el transgén está integrado de forma estable en el genoma del animal detrás de las secuencias UAS de levadura (SEQ ID NO: 3 y 4; representado como UAS-CTG) . Estas secuencias UAS sirven como lugares de unión del factor de transcripción Gal4 de levadura (SEQ ID NO: 7 y 8) , de modo que el patrón de expresión del transgén está determinado por el patrón de expresión del transgén Gal4. El transgén UAS-CTG puede estar bajo el control de cualquier promotor conveniente que proporcione el requisito de un patrón de expresión deseado, donde este promotor puede ser exógeno o endógeno, pero generalmente será endógeno. Un promotor adecuado es el promotor localizado en el cromosoma 2 en el genoma de Drosophila melanogaster que regula la expresión de GAL4 según el patrón normal del gen sevenless en la línea con número de referencia 2023 (número de referencia de Bloomington Drosophila Stock Center de la Universidad de Indiana, EEUU) . El transgén puede estar integrado en el genoma de este insecto de una manera tal que puede ser usado para la activación de la expresión por parte del promotor de una manera directa o indirecta, es decir, de tal manera que el promotor ejerce su activación sobre el transgén en cis o en trans. En otras palabras, la expresión del transgén puede estar mediada directamente por el promotor, o bien mediante uno o más factores transactivadores. Cuando el transgén está bajo el control directo del promotor, es decir, el promotor regula la expresión del transgén en cis, el transgén está integrado de forma estable en el genoma de la mosca en un lugar suficientemente próximo al promotor y en fase con el promotor de tal modo que la regulación en cis del promotor puede tener lugar. En otras realizaciones de esta invención donde la expresión del transgén está indirectamente mediada por un promotor endógeno, el promotor controla la expresión del transgén mediante uno o más factores transactivadores, normalmente un factor transactivador, es decir, un factor cuya expresión está controlada directamente por el promotor y el cual se une a una región del transgén de una manera apropiada para activar la expresión de ese transgén. Se puede emplear cualquier factor de transactivación conveniente, pero generalmente se usa el sistema de transacti- vación Gal4 y se hace referencia a este sistema en realizaciones de esta invención. En aquellas realizaciones de la invención objeto de protección en las cuales las moscas transgénicas utilizan el sistema de expresión dirigida Gal4/UAS, la secuencia codificante para la proteína Gal4 está integrada de forma estable en el genoma del animal de una manera tal que está unida funcionalmente al promotor endógeno que controla la expresión espacio-temporal. Un ejemplo de este tipo de animal es la línea número 2023, disponible en Bloomington Drosophila Stock Center en la Universidad de Indiana, EEUU (http://flybase.bio.indiana.edu/) . El transgén está integrado de forma estable en una posición diferente en el genoma, generalmente una posición al azar en el genoma, donde el transgén está unido funcionalmente a una secuencia activadora aguas arriba (las secuencias UAS) , a las cuales el factor de transcripción de levadura Gal4 se une y activa la expresión del transgén. Las personas conocedoras de la técnica emplean comúnmente moscas transgénicas poseedoras de un sistema de transactivación UAS/Gal4. Este sistema se describe en detalle en Brand y Perrimon (1993) .BRIEF DESCRIPTION OF THE INVENTION In this invention, invertebrate transgenic animals are provided, in particular of the Drosophila melanogaster insect. These animals are characterized by expressing a CTG microsatellite, cloned from synthetic expansions, in different tissues or moments of the animal's life. Said microsatellite has been introduced stably into the genome of the recipient organism, Drosophila melanogaster, thus obtaining transgenic animals that express RNAs containing said microsatellite in a controlled manner. This expression can be controlled by using the Gal4 / UAS system. The introduced microsatellite is hereinafter referred to as "the transgene". This expression of the transgene generates a morphological and / or physiological effect on the insect that depends on the amount of expression that is induced. We call this effect phenotype. Methods for using these transgenic animals, in which a phenotype has been caused, are provided for systematic searches of compounds with a biological activity modifying said phenotype. Likewise, these transgenic animals can be used to systematically search for genes related to altered function when expressing the transgene, using genetic techniques known to a person versed in the art. Finally, these transgenic flies can be used for the validation of potential drug therapies. DETAILED DESCRIPTION OF THE INVENTION This invention provides an invertebrate animal model in which it is possible to generate a phenotype sensitized by controlled expression of a microsatellite containing the CTG sequence. This phenotype results from the expression of a transgene in a given tissue. A sensitized phenotype means that the transgenic invertebrate animal model has a phenotype whose intensity depends on the degree of expression of the transgene. This transgenic animal falls within the scope of this invention, regardless of its stage of development, provided it develops a phenotype caused by the expression of the transgene at some point in its life. Transgenic animals with the sensitized protected phenotype are characterized by having the following phenotypic characteristics: (1) the development of a phenotype whose degree of intensity depends on the degree of transgene expression (2) a change in the expression of a related gene Functionally with the transgene causes a modification in the phenotype. The transgenic animals subject to protection are invertebrate animals. Of particular interest are those of the phylum arthropods, and specifically members of the insect class. The transgenic animal subject to protection belongs to the species Drosophila melanogaster. The description made of them herein allows an expert to reproduce the invention. However, the biological material mentioned (in total, 18 Drosophila lines) is available to the public in the Drosophila Line Collection of the Department of Genetics of the Faculty of Biology of the University of Valencia, Calle Doctor Moliner, No. 50 in the city of Burjasot, province of Valencia (Spain), with Reference Numbers with the format P (60) xy for the carrier lines of a transgene with 60 repetitions and P (480) xy - Chi for the carrier lines of 480 repetitions. In both cases, x refers to the number of the animal injected while y refers to the order number of the animal that shows the phenotypic marker that contains the transgene in the offspring of the crossing to detect the transgenic flies. A critical aspect of the transgenic animals subject to protection is that the animals carry a transgene stably integrated into their genome and whose expression can be controlled in space and time, so that a phenotype is generated by the interference it causes the microsatellite expression that contains the CTG sequence. The term "transgene" describes a genetic material that has been or will be artificially inserted into the genome of the cell. Regarding the spatial expression of the transgene, this expression generally includes the imaginary discs of the larva and embryonic structures such as embryonic musculature. The transgene expresses a product that, when directed in an appropriate spatial pattern, results in a sensitized phenotype. The transgene may be a long sequence of repetitions of the CTG trinucleotide, generally more than 60, either artificially generated or present already in nature. As such, a transgene includes at least a portion of its nucleotide sequence that is substantially similar to microsatellites that contain repeats of naturally occurring CTGs, where substantially similar means a DNA sequence with a sequence identity with the natural version of these microsatellites of at least 40%, usually at least 50% and, more frequently, at least 55%, where the sequence identity is determined with the BLAST program (Basic Local Alignment Search Tool which can be found in the following internet address: http://www.ncbi.nlm.nih.gov/BLAST) in your settings by default. In embodiments of this invention, the transgene is a microsatellite that contains the CTG sequence originating from nature or having a sequence substantially similar to this one, although it may contain other intercalated sequences, have artificial or synthetic origin and carry attached sequences (coding or not ) such as a sneak gene (known in English as "reporter") or a tag (known in English as "tag"). An example of both sequences is the green GFP fluorescent protein and its variants. The transgenes subject to protection are represented by SEQ ID NO: 1 and 2 incorporated into this application. The transgene containing the CTG repeats is stably integrated into the animal's genome in such a way that its expression is controlled in space in the desired cell type. Specifically, the transgene is stably integrated into the genome of the animal behind the UAS sequences of yeast (SEQ ID NO: 3 and 4; represented as UAS-CTG). These UAS sequences serve as binding sites for the yeast Gal4 transcription factor (SEQ ID NO: 7 and 8), so that the expression pattern of the transgene is determined by the expression pattern of the Gal4 transgene. The UAS-CTG transgene may be under the control of any convenient promoter that provides the requirement of a desired expression pattern, where this promoter may be exogenous or endogenous, but will generally be endogenous. A suitable promoter is the promoter located on chromosome 2 in the Drosophila melanogaster genome that regulates GAL4 expression according to the normal pattern of the sevenless gene in the line with reference number 2023 (reference number of the University's Bloomington Drosophila Stock Center from Indiana, USA). The transgene can be integrated into the genome of this insect in a way that can be used for the activation of expression by the promoter in a direct or indirect way, that is, in such a way that the promoter exerts its activation on the transgene in cis or trans. In other words, the expression of the transgene can be mediated directly by the promoter, or by one or more transactivating factors. When the transgene is under the direct control of the promoter, that is, the promoter regulates the expression of the transgene in cis, the transgene is stably integrated into the fly genome in a place sufficiently close to the promoter and in phase with the promoter such that the cis regulation of the promoter can take place. In other embodiments of this invention where the expression of the transgene is indirectly mediated by an endogenous promoter, the promoter controls the expression of the transgene by one or more transactivating factors, usually a transactivating factor, that is, a factor whose expression is directly controlled by the promoter and which binds to a region of the transgene in an appropriate manner to activate the expression of that transgene. Any convenient transactivation factor can be employed, but the Gal4 transaction system is generally used and reference is made to this system in embodiments of this invention. In those embodiments of the invention object of protection in which the transgenic flies use the Gal4 / UAS directed expression system, the coding sequence for the Gal4 protein is stably integrated into the genome of the animal in a manner that is functionally linked. to the endogenous promoter that controls the spatio-temporal expression. An example of this type of animal is line number 2023, available at Bloomington Drosophila Stock Center at the University of Indiana, USA. (http://flybase.bio.indiana.edu/). The transgene is stably integrated in a different position in the genome, usually a random position in the genome, where the transgene is functionally linked to an upstream activator sequence (the UAS sequences), to which the transcription factor of Gal4 yeast binds and activates the expression of the transgene. Those skilled in the art commonly employ transgenic flies possessing a UAS / Gal4 transactivation system. This system is described in detail in Brand and Perrimon (1993).
MÉTODOS PARA PRODUCIR LAS MOSCAS TRANSGÉNICAS OBJETO DE PROTECCIÓN Las moscas objeto de protección se pueden obtener utilizando cualquier protocolo adecuado para la integración estable del transgén en el genoma de la mosca de una manera que permita el requisito de la expresión espacial controlada del transgén, es decir, en aquellos lugares en los que sea de interés experimental. Se pueden emplear varias estrategias para la integración del transgén con el requisito de la expresión espacial controlada. Generalmente, los métodos para producir estas moscas transgénicas implican la integración estable del transgén en el genoma de la mosca. La integración estable se puede conseguir introduciendo primero el transgén en una célula o células de la mosca, por ejemplo, en el embrión del animal. El transgén está generalmente presente en un vector adecuado, tal como un plásmido. La introducción del transgén puede conseguirse usando un protocolo adecuado, donde protocolos adecuados pueden ser: electroporación, microinyección, y semejantes. Siguiendo a la introducción del transgén en la célula(s), el transgén se integra de forma estable en el genoma de la célula. La integración estable puede ser bien específica de lugar o al azar, pero es generalmente al azar. La integración estable del transgén en el genoma del animal puede seguirse macroscópicamente por la expresión de un gen marcador incorporado en el DNA quimérico que incluye el transgén, por ejemplo el gen white (SEQ ID: 9) , del modo estándar conocido por las personas versadas en esta la técnica.METHODS TO PRODUCE TRANSGENIC FLIES PROTECTION OBJECT Protected flies can be obtained using any protocol suitable for the stable integration of the transgene into the fly genome in a manner that allows for the requirement of controlled spatial expression of the transgene, that is, , in those places where it is of experimental interest. Several strategies for the integration of the transgene with the requirement of controlled spatial expression can be employed. Generally, the methods for producing these transgenic flies involve the stable integration of the transgene into the fly genome. Stable integration can be achieved by first introducing the transgene into a cell or fly cells, for example, in the animal's embryo. The transgene is generally present in a suitable vector, such as a plasmid. The introduction of the transgene can be achieved using a suitable protocol, where suitable protocols can be: electroporation, microinjection, and the like. Following the introduction of the transgene into the cell (s), the transgene is stably integrated into the genome of the cell. Stable integration can be either site specific or random, but it is usually random. The stable integration of the transgene in the genome of The animal can be followed macroscopically by the expression of a marker gene incorporated in the chimeric DNA that includes the transgene, for example the white gene (SEQ ID: 9), in the standard manner known to persons versed in this technique.
Cuando la integración es al azar, el transgén se integra típicamente mediante el uso de una fuente de transposasa. La transposasa es un enzima (SEQ ID NO: 6) que cataliza la integración específica de las moléculas de ADN que contengan las repeticiones invertidas terminales del elemento transponible P, tanto en transposones naturales como en transposones artificiales. En estas realizaciones experimentales, el transgén se introduce en la célula mediante un vector que incluye el requisito de poseer las repeticiones invertidas terminales (de 31 pares de bases) del elemento transponible P de Drosophila melanogaster (SEQ ID NO: 5) . Cuando la célula en la que el transgén tiene que integrarse no contiene una fuente de transposasa endógena, se incluye junto con el plásmido que contiene el transgén un vector con la secuencia codificante para la transposasa, por ejemplo, un plásmido llamado "helper" en el que se ha clonado el gen para la transposasa de Drosophila, tal como pTURBO (tal como se describe en Steller y Pirrotta, 1986) . Los métodos para la integración al azar de transgenes en el genoma de una célula (s) diana de Drosophila melanogaster se describen en Spradling (1986) y en la patente estadounidense número 4,670,388, la cual se incluye en esta solicitud como referencia. En aquellas realizaciones experimentales en las que el transgén está integrado de forma estable en el genoma de la mosca, se proporciona también la metodología necesaria para la expresión controlada del transgén durante el desarrollo de la mosca tanto en el espacio como en el tiempo. En otras palabras, se proporcionan los métodos para la expresión dirigida del transgén. Para obtener la expresión dirigida deseada de un transgén integrado al azar, se puede incluir un promotor particular aguas arriba del transgén como una sola unidad en el vector de transformación empleado. Alternativamente, se puede emplear un transactivador que regule la expresión del transgén. De interés particular es el empleo del sistema Gal4 descrito en Brand y Perrimon (1993) . En esta realización experimental particular, los animales transgénicos objeto de protección se han obtenido mediante: (1) generación de dos líneas de moscas transgé- nicas separadas: (a) una primera línea que expresa el factor de transcripción de levadura Gal4 principalmente en ojo, es decir, bajo el control de un promotor endógeno de la mosca localizado en el cromosoma 2 (tal como la línea de Drosophila con número de identificación 5793 en el Bloomington Drosophila Stock Center) ; y (b) una segunda línea en la cual el transgén está integrado de forma estable en el genoma celular y fusionado con un dominio UAS; (2) cruzar las dos líneas; y (3) identificar la progenie con el fenotipo deseado, esto es, un defecto morfológico o fisiológico observable que puede ser un ojo compuesto que presenta un aspecto externamente rugoso. Los pasos descritos arriba son de conocimiento general para aquellas personas versadas en esta técnica. Véase también Brand y Perrimon (1993) y Phelps y Brand (1998) . La estrategia anterior se emplea para obtener huevos fertilizados que incluyen un transgén integrado de forma estable en ' su genoma de manera tal que el transgén se expresa de una manera espacio-temporal apropiada para que los huevos den lugar a adultos que exhiban el efecto morfológico y/o fisiológico deseado (fenotipo) . Generalmente, se permite que los huevos fertilizados progresen en su desarrollo en las condiciones que conducen al fenotipo deseado. El fenotipo de interés de los animales se puede modular variando las condiciones en las cuales se permite a los animales madurar. Por ejemplo, se puede modificar la temperatura para modular la intensidad del fenotipo obtenido. Los embriones o larvas cultivados a 29-30 grados Celsius de temperatura suelen presentar un fenotipo más fuerte (que puede llegar incluso a la muerte del animal) que los crecidos a 25 grados y el fenotipo de éstos suele ser más fuerte que el de los individuos desarrollados a 17- 19 grados. When integration is random, the transgene is typically integrated through the use of a transposase source. Transposase is an enzyme (SEQ ID NO: 6) that catalyzes the specific integration of DNA molecules that contain the inverted terminal repeats of transposable element P, both in natural transposons and in artificial transposons. In these experimental embodiments, the transgene is introduced into the cell by a vector that includes the requirement to possess the inverted terminal repeats (of 31 base pairs) of the transposable element P of Drosophila melanogaster (SEQ ID NO: 5). When the cell in which the transgene has to be integrated does not contain an endogenous transposase source, a vector with the transposase coding sequence, for example, a plasmid called "helper", is included with the transgene plasmid that the gene for Drosophila transposase has been cloned, such as pTURBO (as described in Steller and Pirrotta, 1986). Methods for the random integration of transgenes into the genome of a Drosophila melanogaster target cell (s) are described in Spradling (1986) and in US Patent No. 4,670,388, which is included in this application as a reference. In those experimental embodiments in which the transgene is stably integrated into the fly genome, the necessary methodology for the controlled expression of the transgene during the development of the fly is also provided both in space and time. In other words, the methods for expression are provided Directed of the transgene. To obtain the desired directed expression of a randomly integrated transgene, a particular promoter can be included upstream of the transgene as a single unit in the transformation vector employed. Alternatively, a transactivator that regulates the expression of the transgene can be used. Of particular interest is the use of the Gal4 system described in Brand and Perrimon (1993). In this particular experimental embodiment, the transgenic animals subject to protection have been obtained by: (1) generation of two separate transgenic fly lines: (a) a first line expressing the Gal4 yeast transcription factor mainly in the eye, that is, under the control of an endogenous fly promoter located on chromosome 2 (such as the Drosophila line with identification number 5793 at the Bloomington Drosophila Stock Center); and (b) a second line in which the transgene is stably integrated into the cell genome and fused with a UAS domain; (2) cross the two lines; and (3) identify the progeny with the desired phenotype, that is, an observable morphological or physiological defect that can be a compound eye that has an externally rough appearance. The steps described above are of general knowledge for those people versed in this technique. See also Brand and Perrimon (1993) and Phelps and Brand (1998). The above approach is used for obtaining fertilized eggs that include a stably integrated in 'its genome such transgene wherein the transgene is expressed in a manner spatiotemporal appropriate for the eggs result in adults exhibiting the morphological effect and / or desired physiological (phenotype). Generally, fertilized eggs are allowed to progress in their development under the conditions that lead to the desired phenotype. The phenotype of interest of animals can be modulated by varying the conditions under which animals are allowed to mature. For example, the temperature can be modified to modulate the intensity of the phenotype obtained. Embryos or larvae grown at 29-30 degrees Celsius of temperature tend to have a stronger phenotype (which can even reach the death of the animal) than those grown at 25 degrees and the phenotype of these is usually stronger than that of individuals developed at 17-19 degrees.
USOS Las moscas objeto de protección pueden ser usadas en una variedad de aplicaciones, que incluyen: (1) como herramienta para dilucidar el mecanismo genético alterado en cualquier enfermedad debida, en su totalidad o en parte, a la expansión de microsatélites basados en la secuencia CTG, como por ejemplo las distrofias miotónicas, realizando búsquedas genéticas sistemáticas de genes relacionados funcionalmente con los genes responsables del fenotipo provocado por la expresión del microsatélite basado en la secuencia CTG del modo descrito más abajo; (2) como herramienta para la búsqueda sistemática de compuestos terapéuticos para el tratamiento de cualquier enfermedad debida, en su totalidad o en parte, a la expansión de microsatélites basados en la secuencia CTG, como por ejemplo las distrofias miotónicas; y (3) como herramienta para la validación in vivo de tratamientos potenciales, incluso obtenidos por cualquier otro método, de enfermedades que discurran por alteraciones en microsatélites basados en la secuencia CTG (es decir, como animales modelo de enfermedades humanas tales como la Distrofia Miotónica de tipo 1 ó 2, Sca8 o HDL2) . Tal como se ha mencionado más arriba, las moscas transgénicas objeto de protección son especialmente útiles para la búsqueda sistemática de compuestos con una actividad terapéutica contra las distrofias miotónicas. Una estrategia terapéutica potencial para aliviar los síntomas de los pacientes con distrofia miotónica consiste en potenciar la función de las proteínas humanas homologas a muscleblind (entre ellas el gen MBNLl) . Es decir, que la proteína MBNLl no unida a trinucleótidos CUG funcione más eficientemente. Otras estrategias terapéuticas potenciales consisten en activar los mecanismos moleculares que conducen a una reducción en el tamaño de las expansiones del microsatélite basado en la secuencia CTG objeto de esta patente, o diseñar péptidos sintéticos que compitan con MBNLl en su unión con las secuencias microsatélite a las que queda secuestrada en situaciones patológicas. En nuestro modelo en Drosophila sabemos que cuando aumentamos la expresión del microsatélite basado en la secuencia CTG (para ello aumentamos el nivel de expresión del transgén) el efecto fenotípico se incrementa. Por tanto, podemos emplear unas condiciones experimentales en las que tenemos un defecto morfológico intermedio y administrar una batería de compuestos con actividad biológica potencial a nuestro modelo animal. Aquellos compuestos que supriman el defecto morfológico son moléculas que pueden potencialmente colaborar en la función molecular de la proteína MBNL in vivo, inhibir el efecto patológico de las expansiones de microsatélites basados en la secuencia CTG o potenciar la pérdida de parte del microsatélite objeto de ensayo. Para confirmar la especificidad del efecto observado, podemos ensayar los compuestos con una actividad en el primer ensayo en otro tejido, por ejemplo en otros órganos tales como el ala, donde podemos realizar un ensayo cuantitativo, a fin de confirmar la observación. Asimismo, podemos validar la efectividad de un compuesto sobre la actividad de muscleblind ensayando su efecto sobre moscas mutantes para el gen muscleblind. Los compuestos que tengan un efecto positivo sobre la actividad de la proteína Muscleblind o del gen deberán mejorar el fenotipo del organismo mutante muscleblind. Así pues, mediante el uso de las moscas transgénicas objeto de protección (o células derivadas de ellas depen- diendo del tipo particular de búsqueda sistemática que se esté llevando a cabo) , se pueden identificar compuestos que tengan una actividad con respecto a las distrofias miotónicas o Sca8. Los compuestos tienen una actividad con respecto a las distrofias miotónicas o Sca8 si modulan o tienen algún efecto en al menos un parámetro o síntoma de estas enfermedades, tales como descargas miotónicas en un electromiograma o rigidez en los músculos (miotonía) , donde la actividad moduladora puede reducir o potenciar la magnitud del síntoma, dependiendo de la naturaleza de la enfer- medad y del síntoma. Además, los métodos para la búsqueda sistemática utilizando las moscas objeto de protección pueden ser empleados para identificar compuestos que modulen la progresión de la enfermedad, por ejemplo uniéndose, modulando, potenciando o reprimiendo la actividad de una proteína o péptido implicado en la progresión de la enfermedad. Con esta aproximación también podemos identificar compuestos que mejoren, alivien o incluso eliminen los síntomas de la enfermedad, donde tal actividad puede tener o no que ver con el mecanismo de patogenicidad de la enfermedad. La búsqueda sistemática de compuestos, aún sin un efecto sobre las distrofia miotónica o Sca8, o el ensayo de compuestos identificados por cualquier otro método, en las moscas objeto de protección también es de interés. Nuestra invención permite identificar compuestos que: (1) aun no estando relacionados con modular la actividad de un elemento de la ruta de patogenicidad de la enfermedad, tengan un efecto positivo con respecto de los síntomas de la enfermedad y como tales sean potencialmente terapéuticos, por ejemplo, compuestos que alivien la miotonía de los pacientes; (2) compuestos identificados por cualquier otro método (por ejemplo ensayos in vitro) que provoquen un efecto adverso con respecto a la enfermedad y por tanto deban ser evitados como agentes terapéuticos o (3) compuestos que identificados usando otros métodos alivien, mejoren o supriman totalmente los síntomas de la enfermedad y sean por tanto agentes terapéuticos de elección. En los métodos de búsquedas sistemáticas con los animales transgénicos objeto de protección, generalmente se administra oralmente a la mosca una cierta cantidad de compuesto candidato. Tras la administración oral, se deter- mina el efecto del compuesto sobre el fenotipo provocado por expresión de uno de los transgenes, ya sea un microsatélite presente en la naturaleza, de una porción del mismo, o de una versión artificial, siempre que obtengamos un fenotipo. La determinación del efecto se realiza generalmente por comparación con un control, es decir, una mosca transgénica a la cual no se ha administrado el compuesto candidato. El efecto del compuesto candidato se determina averiguando si una o más características fenotí- picas debidas a la expresión del transgén del microsatélite basado en la secuencia CTG se ven potenciadas o aliviadas en la mosca objeto de experimentación en comparación con la mosca control, donde características en las que se puede observar un cambio pueden ser la morfología del ojo del adulto, de sus alas o patas, su comportamiento (capacidad para andar, etc.), longevidad, fisiología y características semejantes. El compuesto candidato se administra oralmente a la mosca generalmente mezclando el compuesto con el medio nutritivo de la mosca, es decir, agua, una solución acuosa con elementos nutritivos adicionales, etc., y colocando el medio en presencia de la mosca, (bien sea la larva o el adulto aunque generalmente es el adulto) de tal manera que la mosca se alimenta de ese medio. La administración del compuesto también puede utilizar otras vías de adminis- tración como pueden ser la vía respiratoria o la inyección en la hemolinfa del insecto, entre otras. Generalmente se ensayan en paralelo múltiples mezclas con diferentes concentraciones del compuesto para obtener una respuesta diferente con cada concentración del agente candidato. Típicamente, una de esas concentraciones sirve como control negativo, por ejemplo, al no incorporar el compuesto candidato. Los métodos reivindicados pueden adaptarse a búsquedas sistemáticas de alto rendimiento en las cuales se ensayan un gran número de compuestos candidatos en paralelo usando un gran número de moscas. Por "un gran número" se entiende una pluralidad, donde pluralidad significa al menos 10 o 50, usualmente al menos 100, y más normalmente al menos 1000, pudiendo llegar a ser entre 10000 o 50000 o más pero que en muchas ocasiones no excederá de 5000. De particular interés en algunas realizaciones de esta invención es el uso de las moscas transgénicas objeto de protección en búsquedas sistemáticas de alto rendimiento en ensayos de toxicidad, tal como se describe en la patente americana de número 6,365,129 y que se incorpora como referencia. En tales búsquedas sistemáticas de alto rendimiento, se ensaya simultáneamente la toxicidad, si existe, de una pluralidad de compuestos, usualmente al menos 10 diferentes, poniéndolos en contacto con una población de los animales transgénicos objeto de protección que presen- tan un fenotipo debido a la expresión del microsatélite basado en la secuencia CTG, y determinando el efecto de tales compuestos en los animales . Dichas búsquedas sistemáticas de alto rendimiento resultan especialmente útiles para encontrar agentes potencialmente terapéuticos para el tratamiento de las distrofias miotónicas y Sca8 ya que sólo se identifican como positivos para estudios ulteriores aquellos compuestos que tratan la enfermedad pero son suficientemente poco tóxicos como para permitir vivir al animal . Los métodos objeto de protección pueden usarse en la búsqueda sistemática de diferentes agentes candidatos potencialmente terapéuticos. Estos agentes candidatos abarcan numerosas clases de productos químicos, aunque típicamente son moléculas orgánicas, preferentemente pequeños compuestos orgánicos con un peso molecular de más de 50 y menos de 2500 Dalton. Estos agentes candidatos presentan grupos funcionales necesarios para la interacción física con proteínas, particularmente puentes de hidrógeno, y típicamente incluyen al menos una amina, carbonilo, hidroxilo o grupo carboxilo, aunque preferentemente presentan al menos dos de los grupos químicos funcionales . Los agentes candidatos a menudo incluyen estructuras cíclicas o heterocíclicas de carbono y/o estructuras aromáticas o poliaromáticas sustituidas con uno o más de los grupos funcionales mencionados previamente. Los agentes candidatos también se encuentran entre las biomoléculas incluyendo, pero no estando limitadas a: péptidos, sacáridos, ácidos grasos, esferoides, purinas, pirimidinas, sus derivados, análogos estructurales o combinaciones de ellos. Los agentes candidatos pueden obtenerse de varias fuentes que incluyen las colecciones de compuestos naturales o sintéticos. Por ejemplo, se dispone de técnicas para la síntesis dirigida y aleatoria de una amplia variedad de compuestos orgánicos y biomoléculas, incluyendo colecciones aleatorias de oligopéptidos y oligonucleótidos . Alternativamente, se pueden obtener o producir colecciones de compuestos naturales en forma de extractos de bacterias, hongos, plantas y animales. Adicionalmente, las librerías de productos naturales o sintéticos, o sus componentes individuales, pueden modificarse mediante técnicas bioquímicas, físicas o químicas convencionales y pueden usarse para producir colecciones combinatorias. Los agentes farmacológicos conocidos pueden someterse a modificaciones químicas aleatorias o dirigidas, tales como acilación, alquilación, esterificación, amidificación, etc. para producir análogos estructurales. También se pueden crear nuevos agentes potencialmente terapéuticos usando métodos tales como el diseño racional de drogas o de bioquímica estructural . Las búsquedas sistemáticas pueden dirigirse a compuestos conocidos activos farmacológicamente o a análogos químicos de los mismos, o a agentes nuevos con propiedades desconocidas tales como aquellos creados mediante diseño racional de drogas. Los agentes candidatos con acti- vidad terapéutica con respecto a las distrofias miotónicas y Sca8 pueden identificarse sobre la base de su capacidad para potenciar uno o más aspectos del fenotipo de las moscas transgénicas objeto de protección, tales como un fenotipo de ojo rugoso, alas defectuosas, longevidad reducida, problemas locomotores y semejantes, tal como se describe más arriba. De interés particular es el uso de los métodos objeto de protección para identificar agentes terapéuticos contra las distrofias miotónicas, Sca8 y HDL2 que exhiben una baja toxicidad pero son efectivos en la potenciación de la actividad de la proteína Muscleblind. Estos métodos exigen una gran especificidad por parte del agente terapéutico para que, al mismo tiempo que ejerce un efecto sobre la función de la proteína Muscleblind, los efectos secundarios indeseables sean lo suficientemente limitados como para permitir sobrevivir a la mosca. Los métodos de búsquedas sistemáticas en moscas pueden formar parte de un proceso de búsqueda sistemática de múltiples pasos en el que la evaluación de la eficacia (y seguridad) de un agente terapéutico candidato se lleva a cabo en más de un organismo modelo. En búsquedas sistemáticas de múltiples pasos en las que se utilicen las moscas transgénicas objeto de protección, un compuesto candidato o colección de compuestos se somete a evaluación en un segundo modelo in vivo, por ejemplo un modelo en ratón. Modelos de distrofia miotónica en ratón se han generado con ratones transgénicos que expresan grados variables de la expansión CTG en el gen DMPK humano y que se describen en detalle en Mankodi y col. (2001) y en Seznec y col. (2001). Además, también se puede emplear una búsqueda sistemática in vitro previa a la utilización de animales modelo para la enfermedad. En estos casos, el compuesto se somete primero a una búsqueda sistemática in vitro, ensayando su potencial como agente terapéutico en el tratamiento de las distrofias miotónicas. Se puede emplear cualquier ensayo conveniente para una búsqueda sistemática in vitro de una actividad deseable para aliviar o eliminar síntomas asociados a las distrofias miotónicas, Sca8 u otras enfermedades genéticas causadas por la expansión de microsatélites basados en la secuencia CTG. Una persona versada en la materia conoce los ensayos convenientes.USES Protected flies can be used in a variety of applications, including: (1) as a tool to elucidate the altered genetic mechanism in any disease due, in whole or in part, to the expansion of sequence-based microsatellites CTG, such as myotonic dystrophies, performing systematic genetic searches of genes functionally related to the genes responsible for the phenotype caused by microsatellite expression based on the CTG sequence as described below; (2) as a tool for the systematic search for therapeutic compounds for the treatment of any disease due, in whole or in part, to the expansion of microsatellites based on the CTG sequence, such as myotonic dystrophies; and (3) as a tool for the in vivo validation of potential treatments, even obtained by any other method, of diseases that occur due to alterations in microsatellites based on the CTG sequence (that is, as model animals of human diseases such as Myotonic Dystrophy Type 1 or 2, Sca8 or HDL2). As mentioned above, the transgenic flies subject to protection are especially useful for the systematic search for compounds with a therapeutic activity against myotonic dystrophies. A potential therapeutic strategy to relieve the symptoms of patients with myotonic dystrophy is to enhance the function of human proteins homologous to muscleblind (including the MBNLl gene). That is, that the MBNLl protein not bound to CUG trinucleotides works more efficiently. Other potential therapeutic strategies consist of activating the molecular mechanisms that lead to a reduction in the size of the microsatellite expansions based on the CTG sequence object of this patent, or design synthetic peptides that compete with MBNLl in their union with the microsatellite sequences to which it is sequestered in pathological situations. In our model in Drosophila we know that when we increase the microsatellite expression based on the CTG sequence (for this we increase the level of transgene expression) the phenotypic effect is increased. Therefore, we can use experimental conditions in which we have an intermediate morphological defect and administer a battery of compounds with potential biological activity to our animal model. Those compounds that suppress the morphological defect are molecules that can potentially collaborate in the molecular function of the MBNL protein in vivo, inhibit the pathological effect of microsatellite expansions based on the CTG sequence or enhance the loss of part of the microsatellite being tested. To confirm the specificity of the observed effect, we can test the compounds with an activity in the first test in another tissue, for example in other organs such as the wing, where we can perform a quantitative test, in order to confirm the observation. We can also validate the effectiveness of a compound on muscleblind activity by testing its effect on mutant flies for the muscleblind gene. Compounds that have a positive effect on the activity of the Muscleblind protein or gene should improve the phenotype of the muscleblind mutant organism. Thus, by using the transgenic flies that are the object of protection (or cells derived from them depending on the particular type of systematic search being carried out), compounds that have an activity with respect to myotonic dystrophies can be identified or Sca8. The compounds have an activity with respect to myotonic dystrophies or Sca8 if they modulate or have any effect on at least one parameter or symptom of these diseases, such as myotonic discharges in an electromyogram or stiffness in the muscles (myotonia), where modulating activity can reduce or enhance the magnitude of the symptom, depending on the nature of the disease and the symptom. In addition, the methods for the systematic search using the flies subject to protection can be used to identify compounds that modulate the progression of the disease, for example by joining, modulating, enhancing or repressing the activity of a protein or peptide involved in the progression of the disease. With this approach we can also identify compounds that improve, relieve or even eliminate the symptoms of the disease, where such activity may or may not have to do with the pathogenicity mechanism of the disease. The systematic search for compounds, even without an effect on myotonic dystrophy or Sca8, or the testing of compounds identified by any other method, in the flies subject to protection is also of interest. Our invention allows the identification of compounds that: (1) not yet being related to modulating the activity of an element of the pathogenic pathway of the disease, have a positive effect with respect to the symptoms of the disease and as such are potentially therapeutic, by example, compounds that alleviate the myotonia of patients; (2) compounds identified by any other method (for example in vitro assays) that cause an adverse effect with respect to the disease and therefore should be avoided as therapeutic agents or (3) compounds that identified using other methods alleviate, improve or suppress totally the symptoms of the disease and are therefore therapeutic agents of choice. In the systematic search methods with the transgenic animals subject to protection, a certain amount of candidate compound is generally administered orally. After oral administration, it was determined It undermines the effect of the compound on the phenotype caused by the expression of one of the transgenes, either a microsatellite present in nature, a portion thereof, or an artificial version, provided we obtain a phenotype. The determination of the effect is generally performed by comparison with a control, that is, a transgenic fly to which the candidate compound has not been administered. The effect of the candidate compound is determined by finding out whether one or more phenotypic characteristics due to the expression of the microsatellite transgene based on the CTG sequence are enhanced or relieved in the fly under test compared to the control fly, where characteristics in the ones that can be observed a change can be the morphology of the adult's eye, its wings or legs, its behavior (ability to walk, etc.), longevity, physiology and similar characteristics. The candidate compound is orally administered to the fly generally by mixing the compound with the fly's nutrient medium, that is, water, an aqueous solution with additional nutritional elements, etc., and placing the medium in the presence of the fly, (either the larva or the adult although it is usually the adult) in such a way that the fly feeds on that medium. The administration of the compound can also use other routes of administration such as the respiratory route or injection into the hemolymph of the insect, among others. Generally, multiple mixtures with different concentrations of the compound are tested in parallel to obtain a different response with each concentration of the candidate agent. Typically, one of these concentrations serves as a negative control, for example, by not incorporating the candidate compound. The claimed methods can be adapted to high-performance systematic searches in which a large number of candidate compounds are tested in parallel using a large number of flies. By "a large number" is understands a plurality, where plurality means at least 10 or 50, usually at least 100, and more normally at least 1000, and may be between 10,000 or 50,000 or more but often will not exceed 5000. Of particular interest in some Embodiments of this invention are the use of transgenic flies that are the object of protection in high-performance systematic searches in toxicity tests, as described in US Patent No. 6,365,129 and which is incorporated by reference. In such high-performance systematic searches, the toxicity, if any, of a plurality of compounds, usually at least 10 different ones, is tested simultaneously, putting them in contact with a population of the transgenic animals subject to protection presenting a phenotype due to microsatellite expression based on the CTG sequence, and determining the effect of such compounds on animals. Such high-performance systematic searches are especially useful for finding potentially therapeutic agents for the treatment of myotonic and Sca8 dystrophies, since only those compounds that treat the disease but are not toxic enough to allow the animal to live are identified as positive for further studies. . The methods object of protection can be used in the systematic search for different potentially therapeutic candidate agents. These candidate agents cover numerous classes of chemicals, although typically they are organic molecules, preferably small organic compounds with a molecular weight of more than 50 and less than 2500 Daltons. These candidate agents have functional groups necessary for physical interaction with proteins, particularly hydrogen bonds, and typically include at least one amine, carbonyl, hydroxyl or carboxyl group, although preferably they have at least two of the functional chemical groups. Candidate agents often include cyclic or heterocyclic carbon structures and / or aromatic or polyaromatic structures substituted with one or more of the functional groups mentioned above. Candidate agents are also among the biomolecules including, but not limited to: peptides, saccharides, fatty acids, spheroids, purines, pyrimidines, their derivatives, structural analogues or combinations thereof. Candidate agents can be obtained from various sources that include collections of natural or synthetic compounds. For example, techniques are available for directed and random synthesis of a wide variety of organic compounds and biomolecules, including random collections of oligopeptides and oligonucleotides. Alternatively, collections of natural compounds in the form of extracts of bacteria, fungi, plants and animals can be obtained or produced. Additionally, libraries of natural or synthetic products, or their individual components, can be modified by conventional biochemical, physical or chemical techniques and can be used to produce combinatorial collections. Known pharmacological agents may undergo random or directed chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogues. New potentially therapeutic agents can also be created using methods such as rational drug design or structural biochemistry. Systematic searches may be directed to known pharmacologically active compounds or chemical analogs thereof, or to new agents with unknown properties such as those created by rational drug design. Candidate agents with therapeutic activity with respect to myotonic dystrophies and Sca8 can be identified on the basis of their ability to enhance one or more aspects of the phenotype of the transgenic flies subject to protection, such as a rough eye phenotype, defective wings, reduced longevity, locomotor problems and the like, as described more above. Of particular interest is the use of the methods of protection to identify therapeutic agents against myotonic dystrophies, Sca8 and HDL2 that exhibit low toxicity but are effective in enhancing the activity of the Muscleblind protein. These methods require great specificity on the part of the therapeutic agent so that, while exerting an effect on the function of the Muscleblind protein, the undesirable side effects are limited enough to allow the fly to survive. Methods of systematic searches in flies can be part of a multi-step systematic search process in which the evaluation of the efficacy (and safety) of a candidate therapeutic agent is carried out in more than one model organism. In systematic multi-step searches in which the protected transgenic flies are used, a candidate compound or collection of compounds is subjected to evaluation in a second in vivo model, for example a mouse model. Myotonic dystrophy models in mice have been generated with transgenic mice that express varying degrees of CTG expansion in the human DMPK gene and are described in detail in Mankodi et al. (2001) and in Seznec et al. (2001). In addition, a systematic in vitro search can also be used prior to the use of model animals for the disease. In these cases, the compound is first subjected to a systematic in vitro search, testing its potential as a therapeutic agent in the treatment of myotonic dystrophies. Can be used any convenient trial for a systematic in vitro search for a desirable activity to relieve or eliminate symptoms associated with myotonic dystrophies, Sca8 or other genetic diseases caused by the expansion of microsatellites based on the CTG sequence. A person versed in the subject knows the convenient essays.
IDENTIFICACIÓN DE DIANAS GÉNICAS Además de su uso como animales modelo para la búsqueda sistemática de agentes terapéuticos candidatos, las moscas transgénicas objeto de protección pueden emplearse en la identificación de genes implicados funcionalmente en desencadenar el fenotipo debido a expresión del transgén objeto de protección. Entre estos genes se encuentra el gen muscleblind. Los genes relevantes para el fenotipo de expresión de microsatélites basados en la secuencia CTG pueden identificarse llevando a cabo análisis tradicionales de supresores y potenciadores en las moscas objeto de protección. En estos análisis, se mutan los genes de las moscas transgénicas objeto de protección para identificar aquellos que potencian o suprimen el fenotipo de expresión del transgén. Los métodos para mutar genes y llevar a término búsquedas sistemáticas de supresores y potencia- dores son conocidos para las personas versadas en la técnica (Hays y col., 1989; Deuring y col., 1989; Fuller y col., 1989; y Rottgen y col., 1998). Los genes que mutan para suprimir el fenotipo de expresión del microsatélite basado en la secuencia CTG de una manera recesiva identifican a proteínas potencialmente terapéuticas para el tratamiento de las distrofias miotónicas, Sca8 y HDL2 ya que reducir el producto génico normal de tales genes aliviaría potencialmente la enfermedad. Se puede interferir en la actividad de estos genes mediante muchos métodos que van desde deleccionar el ADN del gen a inhibir su transcripción, su traducción o bien su actividad proteica.- Para búsquedas sistemáticas de agentes candidatos, se pueden producir pequeñas moléculas antagonistas de estos genes y evaluar su eficacia en el modelo animal mediante administración oral. Alternati- vamente, los antagonistas moleculares grandes pueden usarse mediante terapia génica tal como se describe más abajo. Los genes que mutan para potenciar el fenotipo de expresión del microsatélite basado en la secuencia CTG de una manera recesiva identifican dianas para aumentar la actividad de tales genes pues ello conllevaría potencialmente una mejora en los síntomas de las distrofias miotónicas y Sca8.IDENTIFICATION OF GENETIC TARGETS In addition to their use as model animals for the systematic search for candidate therapeutic agents, the transgenic flies subject to protection can be used to identify genes functionally involved in triggering the phenotype due to expression of the transgene being protected. Among these genes is the muscleblind gene. The genes relevant to the microsatellite expression phenotype based on the CTG sequence can be identified by performing traditional suppressor and enhancer analyzes on the flies protected. In these analyzes, the genes of the transgenic flies subject to protection are mutated to identify those that potentiate or suppress the phenotype of transgene expression. Methods for mutating genes and carrying out systematic searches of suppressors and enhancers are known to persons skilled in the art (Hays et al., 1989; Deuring et al., 1989; Fuller et al., 1989; and Rottgen et al., 1998). The genes that mutate to suppress the microsatellite expression phenotype based on the CTG sequence in a recessive manner identify potentially therapeutic proteins for the treatment of myotonic dystrophies, Sca8 and HDL2 since reducing the normal gene product of such genes would potentially alleviate disease. You can interfere with the activity of these genes through many methods that range from deleting the gene's DNA to inhibiting its transcription, translation or well its protein activity.- For systematic searches of candidate agents, small antagonistic molecules of these genes can be produced and their efficacy evaluated in the animal model by oral administration. Alternatively, large molecular antagonists can be used by gene therapy as described below. The genes that mutate to enhance the microsatellite expression phenotype based on the CTG sequence in a recessive manner identify targets to increase the activity of such genes as this would potentially lead to an improvement in the symptoms of myotonic and Sca8 dystrophies.
DISPOSITIVOS DE ENSAYO (KITS) Junto con las moscas transgénicas objeto de protección se incluyen kits utilizables para llevar a término los métodos de búsquedas sistemáticas. Tales kits incluyen una pluralidad de moscas transgénicas de esta invención, o los medios para producir tal pluralidad de moscas, es decir, una mosca macho y una mosca hembra transgénicas de la presente invención, los vectores portadores de los genes requeridos, tales como los transgenes, un gen para el gen de la transposasa, GAL4, etc. Las moscas se pueden confinar en contenedores apropiados, es decir, viales. Los presentes kits pueden también incluir un medio nutritivo para los animales, es decir, medio de cultivo para Drosophila.TEST DEVICES (KITS) Along with the transgenic flies that are the object of protection are included kits that can be used to carry out systematic search methods. Such kits include a plurality of transgenic flies of this invention, or means for producing such a plurality of flies, that is, a transgenic male fly and female fly of the present invention, the vectors carrying the required genes, such as transgenes. , a gene for the transposase gene, GAL4, etc. Flies can be confined in appropriate containers, that is, vials. The present kits may also include a nutrient medium for animals, that is, culture medium for Drosophila.
AGENTES TERAPÉUTICOS Y FORMULACIONES FARMACÉUTICAS La presente invención incluye también los agentes terapéuticos para el uso en el tratamiento de las distrofias miotónicas y Sca8, así como las formulaciones farmacéuticas a partir de ellos. Los agentes terapéuticos de la presente invención son aquellos identificados usando los métodos de búsqueda sistemática descritos más arriba que muestren una actividad moduladora con respecto al fenotipo de expresión del microsatélite basado en la secuencia CTG (o los agentes conocidos que tengan un efecto en la expresión de un gen identificado como modulador del fenotipo de expresión del microsatélite basado en la secuencia CTG, donde para la identificación de estos genes también se emplean animales no transgénicos descritos en esta solicitud) . También se incluyen las formulaciones farmacéuticas de los agentes terapéuticos objeto de protección. En las formulaciones farmacéuticas o composiciones de la presente invención, los agentes descritos anteriormente se formulan en composiciones farmacéuticas por combinación con los excipientes o diluyentes apropiados y aceptados para la preparación de fármacos, que puedan formularse en preparaciones en forma sólida, semisólida, líquida o gaseosa, tales como tabletas, cápsulas, polvos, granulos, ungüentos, soluciones, supositorios, inyecciones, inhalados y aerosoles. En sus dosis farmacéuticas, los agentes pueden administrarse en sus sales aceptadas para la preparación de fármacos, o pueden también usarse solos o en las asociaciones apropiadas, así como en combinación con otros compuestos farmacológicos activos . Los siguientes métodos y excipientes son meramente ejemplos y en ningún modo son limitantes . Para las preparaciones orales, los agentes pueden usarse solos o en combinación con los excipientes o aditivos apropiados para hacer tabletas, polvos, granulos o cápsulas, por ejemplo, con aditivos convencionales tales como lactosa, manitol, almidón de maíz o patata; con aditivos agregantes, tales como celulosa cristalina, derivados de la celulosa, acacia, almidón de maíz o gelatinas; con aditivos dispersadores, tales como almidón de maíz, almidón de patata o carboximetilcelulosa sódica; con lubricantes, tales como estearato de magnesio o talco; y si se desea, con diluyentes, agentes tamponadores, agentes hidratantes, conservadores o sabores arti iciales. Los agentes se pueden formular en preparaciones para inyección al disolverlos, suspenderlos o crear emulsiones en un solvente acuoso o no acuoso, tales como aceites vegetales o aceites similares, glicéridos ácidos alifáticos sintéticos, esteres de ácidos alifáticos superiores o propilenglicol; y si se desea, con aditivos convencionales tales como solubilizadores, agentes isotónicos, agentes para mantener en suspensión, agentes emulsificantes, estabilizantes y conservantes. Los agentes pueden utilizarse en una formulación aerosólica para ser administrados por inhalación. Los compuestos de la presente invención pueden formularse en propelentes presurizados aceptables tales como propano, nitrógeno y semejantes. Además, los agentes terapéuticos pueden formularse en supositorios al mezclarlos con una variedad de bases tales como bases emulsificantes o bases solubles en agua. Los compuestos de la presente invención pueden administrarse por vía rectal utilizando supositorios. Los supositorios pueden incluir excipientes tales como manteca de coco, polietilenglicol y carboceras, los cuales se funden a la temperatura del cuerpo pero permanecen sólidos a temperatura ambiente . En la presentación de la dosis unitaria para la administración oral o rectal, tales como jarabes, elixires y suspensiones, cada dosis unitaria, por ejemplo una cucharilla, una tableta o un supositorio, contiene una cantidad predeterminada de la composición pudiendo contener uno o más inhibidores. De modo semejante, las dosis unita- rias en forma de inyecciones o administración intravenosa pueden incluir el/los inhibidores en la composición como una solución en agua estéril, suero salino u otro medio aceptable farmacológicamente. El término "presentación de la dosis unitaria" tal como se usa aquí, se refiere a unidades físicamente discretas apropiadas como dosis unitarias para los individuos humanos y animales, cada unidad conteniendo una cantidad predeterminada de compuestos de la presente invención calculada como suficiente para producir el efecto deseado en asociación con el diluyente, vehículo o excipiente farmacológicamente aceptable. Las especificaciones para una nueva presentación de la dosis unitaria de la presente invención dependen del compuesto particular que está siendo empleado y del afecto a conseguir, así como de la farmacodinámica asociada con cada compuesto en el huésped. Los excipientes aceptables farmacológicamente, tales como vehiculantes, adyuvantes, transportadores o diluyentes, están disponibles al público. Además, también están disponibles al público las sustancias auxiliares aceptables farmacológicamente, tales como agentes tamponantes o para el ajuste del pH, agentes para ajustar la fuerza iónica, estabilizantes, agentes hidratantes y semejantes . Cuando el agente es un polipéptido, polinucleótido, análogo o cualquier compuesto que pueda mimetizar la función endógena de cualquier gen identificado mediante el uso de esta invención (identificados usando los protocolos de análisis de búsquedas sistemáticas de mutantes descritos previamente) éste puede introducirse en los tejidos o células del huésped por varias vías, las cuales incluyen la infección viral, la microinyección, la fusión de vesículas o la terapia génica mediada por mioblastos (tal como se describe en Ozawa y col., 2000) . También se puede usar para la administración intramuscular la inyección a chorro, tal como se describe en Furth y col. (1992). El ADN se dispone recubriendo micropartículas de oro, y se distribuye intradérmicamente mediante un aparato que bombardea estas partículas contra la piel, o "pistola génica", tal como se describe en la literatura científica (véase, por ejemplo, Tang y col. (1992), donde los microproyectiles de oro se recubren con el ADN y posteriormente se bombardean las células de la piel) . Las personas versadas en la técnica reconocerán que las dosis pueden variar dependiendo del compuesto especí- fico, la gravedad de los síntomas y la susceptibilidad del sujeto a los efectos secundarios. La dosificación recomendada para cada compuesto la podrán determinar aquellas personas versadas en la técnica utilizando una gran variedad de medios . Se proporcionan kits con dosis unitarias del agente activo, normalmente en dosis orales o inyectables. En estos kits, además de los recipientes con las dosis unitarias habrá un prospecto informativo que describa el uso y los efectos beneficiosos esperados del uso de la droga en el tratamiento de la enfermedad de interés .THERAPEUTIC AGENTS AND PHARMACEUTICAL FORMULATIONS The present invention also includes therapeutic agents for use in the treatment of myotonic and Sca8 dystrophies, as well as pharmaceutical formulations therefrom. The therapeutic agents of the present invention are those identified using the systematic search methods described above that show a modulating activity with respect to the microsatellite expression phenotype based on the CTG sequence (or known agents that have an effect on the expression of a gene identified as a modulator of the microsatellite expression phenotype based on the CTG sequence, where non-transgenic animals described in this application are also used for the identification of these genes) . Also included are the pharmaceutical formulations of the therapeutic agents subject to protection. In the pharmaceutical formulations or compositions of the present invention, the agents described above are formulated in pharmaceutical compositions by combination with the appropriate and accepted excipients or diluents for the preparation of drugs, which can be formulated in preparations in solid, semi-solid, liquid or gaseous form. , such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhaled and aerosols. In their pharmaceutical doses, the agents can be administered in their accepted salts for the preparation of drugs, or they can also be used alone or in the appropriate associations, as well as in combination with other active pharmacological compounds. The following methods and excipients are merely examples and are by no means limiting. For oral preparations, the agents can be used alone or in combination with the appropriate excipients or additives to make tablets, powders, granules or capsules, for example, with conventional additives such as lactose, mannitol, corn starch or potato; with additive additives, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with dispersing additives, such as corn starch, potato starch or sodium carboxymethyl cellulose; with lubricants, such as magnesium stearate or talc; and if desired, with diluents, buffering agents, moisturizing agents, preservatives or artificial flavors. The agents can be formulated in preparations for injection by dissolving, suspending them or creating emulsions in an aqueous or non-aqueous solvent, such as vegetable oils or similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives. The agents can be used in an aerosol formulation to be administered by inhalation. The compounds of the present invention can be formulated in acceptable pressurized propellants such as propane, nitrogen and the like. In addition, therapeutic agents can be formulated in suppositories by mixing them with a variety of bases such as emulsifying bases or water soluble bases. The compounds of the present invention can be administered rectally using suppositories. Suppositories may include excipients such as coconut butter, polyethylene glycol and carbohydrates, which melt at body temperature but remain solid at room temperature. In the presentation of the unit dose for oral or rectal administration, such as syrups, elixirs and suspensions, each unit dose, for example a teaspoon, a tablet or a suppository, contains a predetermined amount of the composition and may contain one or more inhibitors. . Similarly, unit doses in the form of injections or intravenous administration may include the inhibitor (s) in the composition as a solution in sterile water, saline or other pharmacologically acceptable means. The term "unit dose presentation" as used herein refers to physically discrete units. appropriate as unit doses for human and animal individuals, each unit containing a predetermined amount of compounds of the present invention calculated as sufficient to produce the desired effect in association with the pharmacologically acceptable diluent, carrier or excipient. The specifications for a new presentation of the unit dose of the present invention depend on the particular compound being used and the affect to be achieved, as well as the pharmacodynamics associated with each compound in the host. Pharmacologically acceptable excipients, such as carriers, adjuvants, carriers or diluents, are available to the public. In addition, pharmacologically acceptable auxiliary substances, such as buffering agents or for pH adjustment, agents for adjusting ionic strength, stabilizers, moisturizing agents and the like are also available to the public. When the agent is a polypeptide, polynucleotide, analogue or any compound that can mimic the endogenous function of any gene identified by the use of this invention (identified using the systematic mutant search analysis protocols described above) it can be introduced into tissues or host cells by several routes, which include viral infection, microinjection, vesicle fusion or myoblast mediated gene therapy (as described in Ozawa et al., 2000). Jet injection can also be used for intramuscular administration, as described in Furth et al. (1992). The DNA is arranged by coating gold microparticles, and is distributed intradermally by an apparatus that bombards these particles against the skin, or "gene gun," as described in the scientific literature (see, for example, Tang et al. (1992 ), where gold microprojectiles are they cover with the DNA and then the skin cells are bombarded). People versed in the art will recognize that the doses may vary depending on the specific compound, the severity of the symptoms and the susceptibility of the subject to side effects. The recommended dosage for each compound can be determined by those skilled in the art using a wide variety of means. Kits with unit doses of the active agent are provided, usually in oral or injectable doses. In these kits, in addition to the containers with unit doses there will be an informative leaflet describing the use and expected beneficial effects of the use of the drug in the treatment of the disease of interest.
MÉTODOS PARA TRATAR LAS DISTROFIAS MIOTÓNICAS, SCA8 , HDL2 Y EN GENERAL ENFERMEDADES GENÉTICAS CAUSADAS POR LA EXPANSIÓN DE MICROSATÉLITES BASADOS EN LA SECUENCIA CTG También se proporcionan los métodos para tratar las distrofias miotónicas, Sca8, HDL2 y en general enfermedades genéticas causadas por la expansión de microsatélites basados en la secuencia CTG usando los agentes activos objeto de protección. En los métodos objeto de protección, se le administra al huésped que está siendo tratado una cantidad efectiva de un agente activo de la invención objeto de protección. Por "cantidad efectiva" se entiende una dosis suficiente para producir un resultado deseado, donde el resultado deseado es generalmente una mejora o alivio, incluso el cese completo, de uno o más síntomas de, por ejemplo, la distrofia miotónica, Sca8 o HDL2 que está siendo tratada. La administración de los agentes se puede llevar a cabo de varias maneras, incluyendo vía bucal, oral, parenteral, rectal, intraperitoneal, intradérmica, transdérmica, cutánea, etc. Se puede tratar una variedad de huéspedes con los métodos objeto de protección. Generalmente tales huéspedes son mamíferos, donde este término se usa en un sentido amplio para describir los organismos dentro de la clase mamíferos, que incluye el grupo de los carnívoros (por ejemplo perros y gatos), los roedores (por ejemplo, ratones y ratas) , los herbívoros (por ejemplo, caballos y vacas) y los primates (por ejemplo, humanos, chimpancés y monos) . En muchas realizaciones los huéspedes serán humanos. Los siguientes ejemplos se ofrecen como mera ilustración y no deben entenderse en absoluto como limitaciones .METHODS TO TREAT MYOTONIC DISTROPHIES, SCA8, HDL2 AND IN GENERAL GENETIC DISEASES CAUSED BY THE EXPANSION OF MICROSATÉLITES BASED ON THE CTG SEQUENCE Methods for treating myotonic dystrophies, Sca8, HDL2 and in general genetic diseases caused by expansion are also provided microsatellites based on the CTG sequence using the active agents protected. In the methods object of protection, the host that is being treated an effective amount of an active agent of the invention object of protection is administered. By "effective amount" is meant a dose sufficient to produce a desired result, where the desired result is generally an improvement or relief, including complete cessation, of one or more symptoms of, for example, myotonic dystrophy, Sca8 or HDL2 that It is being treated. The administration of the agents can be carried out in several ways, including oral, oral, parenteral, rectal, intraperitoneal, intradermal, transdermal, cutaneous, etc. You can treat a variety of guests with the methods object of protection. Generally such hosts are mammals, where this term is used in a broad sense to describe organisms within the mammalian class, which includes the group of carnivores (for example dogs and cats), rodents (for example, mice and rats) , herbivores (for example, horses and cows) and primates (for example, humans, chimpanzees and monkeys). In many embodiments the guests will be human. The following examples are offered as mere illustrations and should not be understood as limitations at all.
Ejemplos de realización de la invenciónExamples of embodiment of the invention
A. Preparación de moscas transgénicas portadoras de la construcción UAS- (CTG) 50 y UAS-(CTG)48oA. Preparation of transgenic flies carrying the UAS- (CTG) 50 and UAS- (CTG) 48 or
Dos expansiones sintéticas del trinucleótido CTG con 60 y 480 repeticiones (descritas respectivamente en Miller y col. 2000 y Philips y col. 1998), se clonaron en el sitio de clonación múltiple de pUAST de tal manera que las secuencias UAS del vector quedaron adyacentes al extremo 5' del microsatélite (Brand y Perrimon, 1993; descrito arriba) . La transcripción de la construcción queda bajo el control de Gal4, el cual tiene que unirse a la secuencia UAS para activar la expresión de la secuencia que se ha clonado en el vector pUAST . Las construcciones UAS- (CTG) 60 y UAS- (CTG) «so (SEQ ID Nos: 1 y 2, respectivamente) se integraron en el genoma de Drosophila melanogaster mediante procedimientos de microinyección estándar (Spradling y Rubin, 1982) . La fuente de transposasa usada para posibilitar la integración de las construcciones UAS- (CTG) 6o y UAS- (CTG) 8o en el genoma se proporcionó coinyectando el vector pTURBO (tal como se describe en Steller y Pirrota, 1986) .Two synthetic expansions of the CTG trinucleotide with 60 and 480 repetitions (described respectively in Miller et al. 2000 and Philips et al. 1998), were cloned into the multiple cloning site of pUAST such that the UAS sequences of the vector were adjacent to the 5 'end of the microsatellite (Brand and Perrimon, 1993; described above). The transcription of the construct is under the control of Gal4, which has to join the UAS sequence to activate the expression of the sequence that has been cloned into the pUAST vector. The UAS- (CTG) 60 and UAS- (CTG) 'so (SEQ ID Nos: 1 and 2, respectively) constructs were integrated into the Drosophila melanogaster genome by standard microinjection procedures (Spradling and Rubin, 1982). The source of transposase used to enable the integration of the UAS- (CTG) 6 o and UAS- (CTG) 8o constructs in the genome was provided by co-injecting the pTURBO vector (as described in Steller and Pirrota, 1986).
B. Producción de moscas con un fenotipo adulto dependiente de la expresión de los transgenes UAS- (CTG) 6o y UAS- (CTG) 480B. Production of flies with an adult phenotype dependent on the expression of UAS- (CTG) 6 o and UAS- (CTG) 480 transgenes
Las moscas portadoras de las construcciones UAS- (CTG) 6o y UAS- (CTG) 48o se cruzaron independientemente con diferentes moscas productoras de Gal4 para obtener expresión dirigida del transgén en tejidos seleccionados del modo descrito en Brand y Perrimon (1993) y se permitió a su descendencia desarrollarse. Se cruzaron varias líneas transgénicas, entre ellas la P (480) 3.5 (número de referencia en la Colección de Líneas de Drosophila del Departamento de Genética de Facultad de Biología de la Universidad de Valencia) , con la línea productora de Gal4 sevenless-Gal4 (sev-Gal4; número de referencia 2023 en el Bloomington Drosophila Stock Center de la Universidad de Indiana. Véase también la dirección de internet http: //flybase.bio. indiana. edu) . Se permitió a las moscas desarrollarse hasta adultos y se documentaron los defectos morfológicos externos observados . La figura 1 muestra el resultado de este experimento en el que se compara un ojo compuesto de mosca silvestre con el de una mosca que expresa UAS- (CTG) so poniendo de manifiesto un fenotipo de ojos rugosos. Las imágenes se generaron por microscopía óptica (A-B) de ojos adultos de individuos normales (línea Oregón R) y ojos de individuos que expresan el transgén UAS- (CTG) 48o en los precursores del ojo. La parte anterior está a la izquierda y la parte dorsal arriba. El grado de manifestación fenotípica provocada por la expresión del transgén, observable de forma directa al microscopio, es variable si se emplean líneas transgénicas que expresan distintas cantidades de repeticiones CTG, líneas Gal4 que expresan el activador transcripcional con diferentes intensidad, así como si se utilizan diferentes temperaturas de cultivo . La figura 2 muestra un experimento de expresión del transgén semejante al descrito en la Figura 1 pero utili- zando una línea Gal4 diferente, en este caso la GMR-Gal4 descrita en XX. Las moscas portadoras de la construcción Gal4 manifiestan un fenotipo de ojo rugoso incluso en heterozigosis y se incluyen en la figura como control. Este fenotipo, sin embargo, se ve notablemente incrementado al expresar el transgén UAS-(CTG)48o indicando que la expresión del microsatélite que contiene la secuencia CTG del transgén está interfiriendo con el desarrollo normal del ojo de Drosophila. De modo semejante, la figura 3 muestra el fenotipo generado cuando se expresa el transgen UAS- (CTG) 48o en la musculatura de moscas Drosophila melanogaster. Para ello se empleó la línea descrita en XX que expresa Gal4 con el patrón de expresión del gen de la cadena pesada de la miosina y se permitió a la descendencia del cruce desarrollarse a 29°C. Resulta evidente de los resultados y discusión presentados más arriba que la invención objeto de protección proporciona una herramienta valiosa para la búsqueda sistemática de agentes potencialmente terapéuticos para el tra- tamiento de, por ejemplo, las distrofias miotónicas, Sca8 y HDL2. Las ventajas de usar las moscas transgénicas de esta invención para la búsqueda sistemática de agentes terapéuticos potenciales incluyen: la posibilidad de adaptar las moscas objeto de protección a protocolos de búsquedas sistemáticas de alto rendimiento, la simplicidad y bajo coste de mantenimiento de dichas moscas transgénicas, la capacidad de las moscas de esta invención de identificar agentes terapéuticos activos por vía oral, la reproducción rápida, y la capacidad de las moscas de esta invención de producir grandes cantidades de descendencia. Por todo ello, esta invención llena un vacío existente en el arsenal de herramientas para llevar a cabo búsquedas sistemáticas de compuestos terapéuticos porque proporciona un método para realizar dichas búsquedas in vivo y con protocolos de alto rendimiento. Una ventaja significativa adicional es la posibilidad de usar las moscas objeto de protección para identificar compuestos que no exhiban toxicidad (o muy baja) en células normales pero aún así sean efectivos en el tratamiento de las distrofias miotónicas, Sca8 o HDL2 u otras enfermedades en las que la expansión de repeticiones basadas en la secuencia CTG sea relevante. Como tales, los métodos de búsquedas sistemáticas objeto de protección proporcionan una manera de identificar agentes terapéuticos contra estas enfermedades que exhiban baja o nula toxicidad en las células normales. Por lo tanto, la presente invención representa un avance en el estado de la técnica. Aunque la invención presentada anteriormente se ha descrito en algún detalle mediante ilustraciones y la descripción de ejemplos en aras de la claridad, resulta evidente para las personas versadas en la técnica, y a la luz de , dichas descripciones, que se pueden realizar ciertos cambios y modificaciones en esta invención sin que ello los desvíe del espíritu y el ámbito de las siguientes reivindicaciones .The carrier flies of the UAS- (CTG) 6 o and UAS- (CTG) 4 8 constructs or crossed independently with different Gal4-producing flies to obtain targeted transgene expression in selected tissues as described in Brand and Perrimon (1993) and his offspring were allowed to develop. Several transgenic lines were crossed, including P (480) 3.5 (reference number in the Drosophila Line Collection of the Department of Genetics of the Faculty of Biology of the University of Valencia), with the Gal4 sevenless-Gal4 production line ( sev-Gal4; reference number 2023 at the Bloomington Drosophila Stock Center of the University of Indiana. See also the Internet address http: //flybase.bio. indiana. edu). Flies were allowed to develop to adults and the observed external morphological defects were documented. Figure 1 shows the result of this experiment in which an eye composed of wild fly is compared with that of a fly expressing UAS- (CTG) or showing a phenotype of rough eyes. The images were generated by optical microscopy (AB) of adult eyes of normal individuals (Oregon R line) and eyes of individuals expressing the 48th UAS- (CTG) transgene in the eye precursors. The anterior part is on the left and the dorsal part above. The degree of phenotypic manifestation caused by the expression of the transgene, directly observable under a microscope, is variable if transgenic lines are used that express different amounts of CTG repeats, Gal4 lines that express the transcriptional activator with different intensity, as well as if different cultivation temperatures are used. Figure 2 shows a transgene expression experiment similar to that described in Figure 1 but using a different Gal4 line, in this case the GMR-Gal4 described in XX. Carrier flies of the Gal4 construct manifest a rough eye phenotype even in heterozygosis and are included in the figure as a control. This phenotype, however, is markedly increased by expressing the UAS- (CTG) transgene 48 or indicating that the microsatellite expression that contains the CTG sequence of the transgene is interfering with the normal development of Drosophila's eye. Similarly, Figure 3 shows the phenotype generated when the UAS- (CTG) 48 transgene is expressed or in the musculature of Drosophila melanogaster flies. For this, the line described in XX expressing Gal4 was used with the expression pattern of the myosin heavy chain gene and the offspring of the crossing were allowed to develop at 29 ° C. It is evident from the results and discussion presented above that the invention object of protection provides a valuable tool for the systematic search for potentially therapeutic agents for the treatment of, for example, myotonic dystrophies, Sca8 and HDL2. The advantages of using the transgenic flies of this invention for the systematic search of potential therapeutic agents include: the possibility of adapting the flies subject to protection protocols of high-performance systematic searches, the simplicity and low maintenance cost of said transgenic flies, the ability of flies of this invention to identify active therapeutic agents orally, rapid reproduction, and the ability of flies of this invention to produce large amounts of offspring. For all this, This invention fills an existing gap in the arsenal of tools to carry out systematic searches of therapeutic compounds because it provides a method for performing such searches in vivo and with high performance protocols. An additional significant advantage is the possibility of using the flies subject to protection to identify compounds that do not exhibit toxicity (or very low) in normal cells but are still effective in the treatment of myotonic dystrophies, Sca8 or HDL2 or other diseases in that the expansion of repetitions based on the CTG sequence is relevant. As such, the systematic search methods subject to protection provide a way to identify therapeutic agents against these diseases that exhibit low or no toxicity in normal cells. Therefore, the present invention represents an advance in the state of the art. Although the invention presented above has been described in some detail by means of illustrations and the description of examples for the sake of clarity, it is evident to people skilled in the art, and in light of such descriptions, that certain changes and modifications can be made in this invention without deviating from the spirit and scope of the following claims.
Descripción de las figurasDescription of the figures
Figura 1. Ojo compuesto de una mosca silvestre (A) comparado con el ojo rugoso provocado por expresión del transgén UAS-(CTG)480 con el patrón de expresión de sev-Gal4 (B) .Figure 1. Eye composed of a wild fly (A) compared to the rough eye caused by expression of the UAS- (CTG) 4 80 transgene with the expression pattern of sev-Gal4 (B).
Figura 2. Resultado de la expresión del transgén UAS-Figure 2. Result of UAS- transgene expression
(CTG) 480 (línea P (480) 1.1) en un patrón general en los precursores del ojo compuesto de Drosophila. Para controlar la expresión se utilizó la línea GMR-Gal4 y los cultivos se mantuvieron a 25°C. En (A) se muestra un individuo control heterozigoto para la construcción GMR-Gal4 en el que se puede observar que esta construcción, por sí sola, da un fenotipo rugoso en el ojo compuesto. Este fenotipo, sin embargo, se ve notablemente potenciado cuando GMR-Gal4 activa el transgén UAS-(CTG) 8o como puede observarse en la imagen (B) por una reducción del tamaño del ojo y mayor presencia de omatidios colapsados .(CTG) 480 (line P (480) 1.1) in a general pattern in the precursors of the Drosophila compound eye. To control The GMR-Gal4 line expression was used and the cultures were maintained at 25 ° C. In (A) a heterozygous control individual is shown for the GMR-Gal4 construct in which it can be seen that this construct, by itself, gives a rough phenotype in the compound eye. This phenotype, however, is remarkably enhanced when GMR-Gal4 activates the UAS- (CTG) 8 transgene or as can be seen in the image (B) by a reduction in eye size and a greater presence of collapsed omitidia.
Figura 3. Fenotipo provocado por la expresión del transgén. Se compara el fenotipo de los individuos normales de la cepa OrR (A) frente al fenotipo provocado al expresar el transgén UAS-(CTG)480 en la línea P (480) 1.1 en la musculatura de moscas adultas, siguiendo el patrón de expresión de MHC-Gal4 (B) . El transgén MHC-Gal4 sigue el patrón de expresión del gen de la cadena pesada de la miosina muscular (línea L82 perteneciente a la Colección de Líneas de Drosophila del Departamento de Genética de la Universidad de Valencia) . La descendencia se desarrolló a 29°C. Figure 3. Phenotype caused by transgene expression. The phenotype of the normal individuals of the OrR (A) strain is compared against the phenotype caused by expressing the UAS- (CTG) 4 80 transgene in the P (480) 1.1 line in the adult fly musculature, following the expression pattern of MHC-Gal4 (B). The MHC-Gal4 transgene follows the expression pattern of the muscle myosin heavy chain gene (line L82 belonging to the Drosophila Line Collection of the Department of Genetics of the University of Valencia). The offspring developed at 29 ° C.

Claims

REIVINDICACIONES
1.- Transgén caracterizado porque incluye un microsatélite que contiene la secuencia CTG, seleccionado entre SEQ ID NO:l o SEQ ID NO : 2 , que se expresa en la mosca Drosophila melanogaster según el patrón de expresión del factor de transcripción de levaduras Gal4, bajo el control directo o indirecto de un promotor adecuado, exógeno o endógeno, provocando dicha expresión un efecto morfológico o fisiológico en el fenotipo de la mosca medible de forma proporcional al nivel de expresión del transgén.1.- Transgene characterized in that it includes a microsatellite containing the CTG sequence, selected from SEQ ID NO: SEQ ID NO: 2, which is expressed in the Drosophila melanogaster fly according to the expression pattern of Gal4 yeast transcription factor, under direct or indirect control of a suitable, exogenous or endogenous promoter, said expression causing a morphological or physiological effect on the phenotype of the measurable fly proportionally to the level of transgene expression.
2.- Transgén según la reivindicación 1 caracterizado porque se expresa bajo el control de cualquier promotor endógeno capaz de regular la expresión de Gal4 según el patrón normal de Drosophila melanogaster seleccionado entre otros, de genes tales como el gen sevenless o el gen apterous .2. Transgene according to claim 1 characterized in that it is expressed under the control of any endogenous promoter capable of regulating the expression of Gal4 according to the normal Drosophila melanogaster pattern selected among others, from genes such as the sevenless gene or the apterous gene.
3.- Transgén según cualquiera de las reivindicaciones 1 o 2 caracterizado porque se expresa a través de uno o más factores transactivadores, preferentemente pertenecientes al sistema de transactivación Gal4.3. Transgene according to any of claims 1 or 2 characterized in that it is expressed through one or more transactivating factors, preferably belonging to the Gal4 transactivation system.
4.- Método de obtención de moscas Drosophila melanogaster transgénicas caracterizado por: a) Generar una primera línea de moscas transgénicas que expresen el factor de transcripción de levadura Gal4, bajo el control de cualquier promotor endógeno de Drosophila melanogaster, preferentemente en el ojo de dicha mosca. b) Generar una segunda línea de moscas en la cual el transgén de las reivindicaciones 1 a 3 se encuentra integrado de forma estable y fusionado con la secuencia UAS c) Cruzar ambas líneas de moscas d) Seleccionar la progenie con el fenotipo deseado4.- Method of obtaining transgenic Drosophila melanogaster flies characterized by: a) Generating a first line of transgenic flies that express the Gal4 yeast transcription factor, under the control of any endogenous Drosophila melanogaster promoter, preferably in the eye of said fly. b) Generate a second line of flies in which the transgene of claims 1 to 3 is stably integrated and fused with the UAS sequence c) Cross both fly lines d) Select the progeny with the desired phenotype
5.- Método según la reivindicación 4 caracterizado porque la integración estable del transgén, específica o al azar, en al menos una célula de la mosca, preferentemente en estado de embrión, se hace a través de un vector adecuado, preferentemente un plásmido, según cualquiera de las tecnologías conocidas en el sector, entre otras la electro- poración y la microinyección.5. Method according to claim 4 characterized in that the stable integration of the transgene, specific or random, in at least one cell of the fly, preferably in an embryo state, is done through a suitable vector, preferably a plasmid, according to any of the technologies known in the sector, among others electroporation and microinjection.
6.- Método según la reivindicación 5 caracterizado porque cuando la integración del transgén es al azar y la célula en cuyo genoma se integra tiene una fuente endógena de transposasa, el vector que contiene el transgén posee además las repeticiones invertidas terminales de 31 pares de bases del elemento transponible P de Drosophila melanogaster .6. Method according to claim 5 characterized in that when the integration of the transgene is random and the cell whose genome is integrated has an endogenous source of transposase, the vector containing the transgene also has the terminal inverted repeats of 31 base pairs of the transposable element P of Drosophila melanogaster.
7.- Método según la reivindicación 5 caracterizado porque cuando la integración del transgén es al azar y la célula en cuyo genoma se integra no posee una fuente endógena de transposasa, el vector que contiene el transgén se inyecta conjuntamente con una secuencia codificante para la transposasa de Drosophila.7. Method according to claim 5 characterized in that when the integration of the transgene is random and the cell whose genome is integrated does not possess an endogenous source of transposase, the vector containing the transgene is injected together with a transposase coding sequence. from Drosophila.
8.- Método según la reivindicación 7 caracterizado porque el vector que contiene el transgén es preferentemente el plásmido pTURBO.8. Method according to claim 7, characterized in that the vector containing the transgene is preferably plasmid pTURBO.
9.- Moscas Drosophila melanogaster transgénicas obtenibles según el método de cualquiera de las reivindicaciones 4 a 8 caracterizadas por poseer un genoma que contiene el transgén de las reivindicaciones 1 a 3 que se expresa en diferentes tejidos y en diferentes momentos del desarrollo de las moscas utilizando el sistema de expresión Gal4/UAS, resultando en un fenotipo reconocible.9. Drosophila melanogaster transgenic flies obtainable according to the method of any of claims 4 to 8 characterized by having a genome containing the transgene of claims 1 to 3 which is expressed in different tissues and at different times of development of flies using the Gal4 / UAS expression system, resulting in a recognizable phenotype.
10.- Un modelo animal para la identificación, de manera individual o simultánea, de compuestos candidatos útiles para el tratamiento de cualquier enfermedad en cuyo estado patológico sea relevante la presencia de expansiones de microsatélites basados en la secuencia CTG, caracterizado porque comprende : a) Administrar dicho compuesto candidato a las moscas transgénicas Drosophila melanogaster de la reivindicación 9. b) Medir el efecto de dicho compuesto candidato sobre el fenotipo generado en moscas transgénicas que expresan los transgenes de las reivindicaciones 1 a 3 en un tejido dado. c) Comparar el fenotipo de las moscas transgénicas que expresan dichos transgenes en un tejido dado con el fenotipo de moscas transgénicas que expresan los mismos transgenes en idénticas condiciones pero que no recibieron el producto candidato. d) Identificar, como compuestos potencialmente terapéuticos, aquellos que son capaces de provocar un incremento o disminución del fenotipo, lo que es indicativo de una actividad potenciadora o reduc- tora, respectivamente, de la capacidad patogénica del transgén.10.- An animal model for the identification, individually or simultaneously, of candidate compounds useful for the treatment of any disease in whose pathological state the presence of microsatellite expansions based on the CTG sequence is relevant, characterized in that it comprises: a) Administering said candidate compound to the Drosophila melanogaster transgenic flies of claim 9. b) Measuring the effect of said candidate compound on the phenotype generated in transgenic flies expressing the transgenes of claims 1 to 3 in a given tissue. c) Compare the phenotype of the transgenic flies that express said transgenes in a given tissue with the phenotype of transgenic flies that express the same transgenes under identical conditions but did not receive the candidate product. d) Identify, as potentially therapeutic compounds, those that are capable of causing an increase or decrease in the phenotype, which is indicative of a potentiating or reducing activity, respectively, of the pathogenic capacity of the transgene.
11.- Un modelo para el ensayo y/o validación de compuestos candidatos útiles para el tratamiento de cualquier enfermedad en cuyo estado patológico sea relevante la presencia de expansiones de microsatélites basados en la secuencia CTG, identificados in vivo o in vitro, mediante cualquier sistema bioquímico o biológico, incluyendo el modelo de la reivindicación 10, que comprende: a) Administrar dicho compuesto candidato a las moscas transgénicas Drosophila melanogaster de la reivindicación 9. b) Medir el efecto de dicho compuesto candidato sobre el fenotipo generado en moscas transgénicas que expresan el transgén de las reivindicaciones 1 a 3 en un tejido dado. c) Comparar cuantitativamente el incremento, reducción o alteración del fenotipo de las moscas transgénicas que expresan el transgén de las reivindicaciones 1 a 3 en un tejido dado con el fenotipo de moscas transgénicas que expresan dicho transgén en condiciones idénticas pero no recibieron el producto candidato. d) Identificar, como compuestos potencialmente terapéuticos, aquéllos que son capaces de provocar un incremento o disminución del fenotipo, lo que es indicativo de una actividad potenciadora o reductora, respectivamente, de la capacidad patogé- nica in vivo del transgén de las reivindicaciones 1 a 3. e) Comparar cualitativamente el fenotipo de las moscas transgénicas que expresan el transgén de las reivindicaciones 1 a 3 en un tejido dado con el fenotipo de moscas transgénicas que expresan dicho transgén en condiciones idénticas pero no recibieron el producto candidato de forma que la aparición de un fenotipo no relacionado con el fenotipo provocado por expresión del transgén de las reivindicaciones 1 a 3 es indicativo de un efecto secundario del compuesto ensayado.11.- A model for the test and / or validation of candidate compounds useful for the treatment of any disease in whose pathological state the presence of microsatellite expansions based on the CTG sequence, identified in vivo or in vitro, by any system is relevant. biochemical or biological, including the model of claim 10, comprising: a) Administering said candidate compound to the Drosophila melanogaster transgenic flies of claim 9. b) Measuring the effect of said candidate compound on the phenotype generated in transgenic flies expressing the transgene of claims 1 to 3 in a given tissue. c) Quantitatively compare the increase, reduction or alteration of the phenotype of the transgenic flies that express the transgene of claims 1 to 3 in a given tissue with the phenotype of transgenic flies that express said transgene under identical conditions but did not receive the candidate product. d) Identify, as potentially therapeutic compounds, those that are capable of causing an increase or decrease in the phenotype, which is indicative of a potentiating or reducing activity, respectively, of the in vivo pathogenic capacity of the transgene of claims 1 to 3. e) Qualitatively compare the phenotype of the transgenic flies expressing the transgene of claims 1 to 3 in a given tissue with the phenotype of transgenic flies expressing said transgene under identical conditions but did not receive the candidate product so that the appearance of a phenotype unrelated to the phenotype caused by expression of the transgene of claims 1 to 3 is indicative of a side effect of the compound tested.
12.- Un modelo según cualquiera de las reivindicaciones 10 u 11, caracterizado porque el compuesto candidato es administrado a las moscas transgénicas Drosophila melanogaster en un medio nutritivo.12. A model according to any of claims 10 or 11, characterized in that the candidate compound is administered to Drosophila melanogaster transgenic flies in a nutritious medium.
13.- Un modelo según cualquiera de las reivindicaciones 10 u 11, caracterizado porque el compuesto candidato es administrado a las moscas transgénicas Drosophila melanogaster por vía respiratoria.13. A model according to any of claims 10 or 11, characterized in that the candidate compound is administered to the Drosophila melanogaster transgenic flies by respiratory route.
14.- Un modelo según cualquiera de las reivindicaciones 10 u 11, caracterizado porque el compuesto candidato es administrado a las moscas transgénicas Drosophila melanogaster por inyección en la cavidad corporal.14. A model according to any of claims 10 or 11, characterized in that the candidate compound is administered to the Drosophila melanogaster transgenic flies by injection into the body cavity.
15.- Un modelo según cualquiera de las reivindicaciones 10 a 14, caracterizado porque la enfermedad se selecciona entre la distrofia miotónica de tipo 1 y 2, la ataxia espinocerebelar 8 o la enfermedad HDL2.15. A model according to any of claims 10 to 14, characterized in that the disease is selected from myotonic dystrophy type 1 and 2, spinocerebellar ataxia 8 or HDL2 disease.
16.- Un modelo animal para identificar genes que poten- cialmente modulen la actividad de los transgenes descritos en las reivindicaciones 1 a 3 que comprende: a) Producir o introducir, mediante cruces genéticos, una mutación en el genoma de la mosca transgénica de la reivindicación 9. b) Determinar si dicha mutación tiene un efecto de incremento, reducción o alteración, sobre el fenotipo generado por la expresión del transgén de las reivindicaciones 1 a 3. c) Identificar el gen mutado que se introdujo en la etapa (a) o en el que se produjo la mutación. 16. An animal model for identifying genes that potentially modulate the activity of the transgenes described in claims 1 to 3 which comprises: a) Producing or introducing, by means of genetic crosses, a mutation in the genome of the transgenic fly of the claim 9. b) Determine if said mutation has an effect of increase, reduction or alteration on the phenotype generated by the expression of the transgene of claims 1 to 3. c) Identify the mutated gene that was introduced in step (a) or in which the mutation occurred.
PCT/ES2004/070085 2003-10-27 2004-10-20 Drosophila transgenic animal models for the treatment of human genetic diseases caused by expansions of microsatellites which contain the trinucleotide ctg WO2005039282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200302591 2003-10-27
ES200302591A ES2231039B1 (en) 2003-10-27 2003-10-27 TRANSGENIC ANIMAL MODELS IN DROSOPHILA FOR HUMAN GENETIC DISEASES CAUSED BY EXPANSIONS OF MICROSATELITES CONTAINING THE CTG TRINUCLEOTIDE.

Publications (1)

Publication Number Publication Date
WO2005039282A1 true WO2005039282A1 (en) 2005-05-06

Family

ID=34507902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070085 WO2005039282A1 (en) 2003-10-27 2004-10-20 Drosophila transgenic animal models for the treatment of human genetic diseases caused by expansions of microsatellites which contain the trinucleotide ctg

Country Status (2)

Country Link
ES (1) ES2231039B1 (en)
WO (1) WO2005039282A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012238A1 (en) * 1999-08-12 2001-02-22 California Institute Of Technology An animal model of polyglutamine toxicity, methods of use, and modulators of polyglutamine toxicity
WO2002058626A2 (en) * 2000-10-27 2002-08-01 Baylor College Of Medicine Methods and compositions for the identification and treatment of neurodegenerative disorders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012238A1 (en) * 1999-08-12 2001-02-22 California Institute Of Technology An animal model of polyglutamine toxicity, methods of use, and modulators of polyglutamine toxicity
WO2002058626A2 (en) * 2000-10-27 2002-08-01 Baylor College Of Medicine Methods and compositions for the identification and treatment of neurodegenerative disorders

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRAND A.H. ET AL: "Targeted gene expression as a means of altering cell fates and generating dominant phenotypes", DEVELOPMENT, vol. 118, 1993, pages 401 - 415 *
MILLER J.W. ET AL: "Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy", EMBO J., vol. 19, no. 17, 1 September 2000 (2000-09-01), pages 4439 - 4448 *
PHILIPS A.V. ET AL: "Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy", SCIENCE, vol. 280, no. 5634, 1 May 1998 (1998-05-01), pages 696 - 697 *
TAYLOR J.P.: "Abberant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are resccued by CREB-binding protein", GENES AND DEVELOPMENT, vol. 17, no. 12, 2003, pages 1463 - 1468 *

Also Published As

Publication number Publication date
ES2231039A1 (en) 2005-05-01
ES2231039B1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
Samata et al. Dosage compensation of the X chromosome: a complex epigenetic assignment involving chromatin regulators and long noncoding RNAs
Lok et al. Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing
Schmitt et al. Engineering Xenopus embryos for phenotypic drug discovery screening
St Johnston Using mutants, knockdowns, and transgenesis to investigate gene function in Drosophila
Davis et al. Drosophila retinal homeobox (drx) is not required for establishment of the visual system, but is required for brain and clypeus development
US20080189798A1 (en) Non-mammalian transgenic animal model for cellular proliferative diseases
BR112012012254B1 (en) ISOLATED EXPRESSION CONSTRUCTION AND METHODS TO PRODUCE A FEMALE FISHING LINEAGE, TO PROPAGATE TRANSGENIC FISH WITH MATERNAL STERILITY CONSTRUCTION, AND TO GENERATE A STERILE FISH GENERATION
CN107426986A (en) A kind of method for cultivating male sterility culex
D'Aniello et al. Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis
CN105636434B (en) Non-mammalian RAS transgenic animal model
Chan et al. Patterning a spiralian embryo: a segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the Ilyanassa embryo
Carpio et al. Zebrafish as a genetic model organism
Schnorr et al. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis
Medina-Martínez et al. In vivo mutagenesis of the Hoxb8 hexapeptide domain leads to dominant homeotic transformations that mimic the loss-of-function mutations in genes of the Hoxb cluster
Pham et al. The evolutionary origination of a novel expression pattern through an extreme heterochronic shift
Van Gelder Recent insights into mammalian circadian rhythms
Yan et al. Characterization of the Drosophila suzukii β2-tubulin gene and the utilization of its promoter to monitor sex separation and insemination
Guichard et al. A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins
ES2231039B1 (en) TRANSGENIC ANIMAL MODELS IN DROSOPHILA FOR HUMAN GENETIC DISEASES CAUSED BY EXPANSIONS OF MICROSATELITES CONTAINING THE CTG TRINUCLEOTIDE.
WO2003105577A1 (en) Drosophila transgenic animal models for myotonic dystrophies
Schüpbach et al. Probing for gene specificity in epithelial development
Vimal et al. Developmental Genetics
Patel et al. The generation of stable transgenic lines in the human-infective nematode Strongyloides stercoralis
Maccharles Characterizing pathogenic Robinow Syndrome-associated Dishevelled1 variants in Drosophila
Garcia Olazabal Natural Hybridization and Melanoma in Swordtail Fish: Genetic Basis and Selective Mechanisms

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: PI0415196

Country of ref document: BR