WO2005038723A1 - Image display device, image display method, image display program, and computer-readable recording medium containing the image display program - Google Patents

Image display device, image display method, image display program, and computer-readable recording medium containing the image display program Download PDF

Info

Publication number
WO2005038723A1
WO2005038723A1 PCT/JP2004/012917 JP2004012917W WO2005038723A1 WO 2005038723 A1 WO2005038723 A1 WO 2005038723A1 JP 2004012917 W JP2004012917 W JP 2004012917W WO 2005038723 A1 WO2005038723 A1 WO 2005038723A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
point
points
model
image display
Prior art date
Application number
PCT/JP2004/012917
Other languages
French (fr)
Japanese (ja)
Inventor
Takayoshi Ishii
Original Assignee
Digital Fashion Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digital Fashion Ltd. filed Critical Digital Fashion Ltd.
Publication of WO2005038723A1 publication Critical patent/WO2005038723A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/16Cloth

Definitions

  • Image display device image display method, image display program, and computer-readable recording medium on which image display program is recorded
  • the present invention relates to an image display device that displays a three-dimensional model, an image display method, an image display program, and a computer-readable recording medium that stores the image display program.
  • the process of once free-falling all the masses of the 3D model that composes the clothing and then correcting each mass moved by the influence of gravity is performed one by one. Therefore, the processing time was long and it was difficult to display in real time.
  • the implicit method has a problem in that the calculation is stable and accurate, but the calculation takes time.
  • the explicit method is used to simulate clothing displayed in real time. However, the calculation is fast, but it has the problem that the calculation stability and calculation accuracy are poor.
  • the constraint satisfaction method has the stability of the implicit method in addition to the explicit method described above.However, since it requires convergence calculation, it has the problem that it takes a long time to guarantee high calculation accuracy. I have. Disclosure of the invention
  • the present invention has been made in order to solve the above-described problems, and an image display device, an image display method, an image display program, and a computer readable by an image recording program which can reduce a processing time are recorded. It is intended to provide a recording medium.
  • An image display device is an image display device that displays a three-dimensional model, wherein each vertex of a plurality of polygons constituting the three-dimensional model is a material point, and a material point to be fixed from among the material points is a fixed point.
  • Fixed point determining means for determining as a mass point, a mass point extracting means for extracting one mass point from the mass points, and the influence of gravity acting on the mass point extracted by the mass point extracting means are determined by the fixed point determining means.
  • Gravity calculating means for calculating based on the fixed points, correction means for sequentially correcting movement of a mass point due to the influence of gravity calculated by the gravity calculating means by constraint processing, and each of the correction means corrected by the correcting means.
  • Display means for displaying a three-dimensional model formed by connecting the mass points.
  • each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points.
  • the effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3
  • the dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process of correcting each mass moved by the influence one by one, The amount of movement due to the effect of gravity can be reduced, and the processing time for correcting each mass can be shortened.
  • the fixed point determining means determines a material point sequentially corrected by the correcting means as a fixed point.
  • the sequentially corrected mass points are determined as fixed points, so that all the mass points of the three-dimensional model can be sequentially corrected by the constraint processing based on the fixed points.
  • distance calculating means for all the material points of the plurality of polygons constituting the three-dimensional model, distance calculating means for calculating a distance between one material point and another material point; and A storage unit that stores the calculated distance between one mass point and another mass point in association with each other as a correspondence table, and refers to the correspondence table stored in the storage unit to determine the gravity by the gravity calculation unit. And a processing order determining means for determining a processing order for calculating the influence of the plurality of polygons constituting the three-dimensional model in accordance with the processing order determined by the processing order determining means. It is preferable to extract one mass point from.
  • the distance between one mass point and another mass point is calculated for all the mass points of a plurality of polygons forming the three-dimensional model, and the calculated distance between one mass point and another mass point is calculated.
  • a processing order for calculating the effect of gravity is determined, and a plurality of three-dimensional models constituting the three-dimensional model are determined according to the determined processing order.
  • One mass point is extracted from the mass points of the polygon. Therefore, by creating a correspondence table in which the distance between one mass point and another mass point is associated with each other, the influence of gravity acting on each mass point of a plurality of polygons constituting the 3D model is calculated.
  • the processing order can be easily determined.
  • the three-dimensional model includes a human body model representing a human body and a clothing model representing clothes worn by the human body
  • the fixed point determining unit includes a plurality of parts constituting the clothing model.
  • Each vertex of the polygon is set as a mass point, and a mass point to be fixed from the mass points is determined as a fixed point.
  • the mass point extraction unit extracts one mass point from the mass points
  • the gravity calculation unit includes The influence of gravity acting on the mass point extracted by the mass point extraction means is added to the fixed point determined by the fixed point determination means.
  • the correction means sequentially corrects the movement of the mass point due to the influence of gravity calculated by the gravity calculation means by constraint processing, and the display means connects each mass point corrected by the correction means. It is preferable that the clothing model formed by the above and the human body model are combined and displayed.
  • each vertex of a plurality of polygons constituting a clothing model representing clothes worn by the human body is set as a mass point, and a mass point to be fixed from the mass points is determined as a fixed point, and one of the mass points is determined as a fixed point.
  • Mass points are extracted, the influence of gravity acting on the extracted mass points is calculated based on the fixed points, the movement of the mass points due to the calculated gravity is sequentially corrected by the constraint processing, and the corrected mass points are connected.
  • the clothing model and the human body model representing the human body are synthesized and displayed.
  • the process of calculating the effect of gravity for each mass point of the clothing model and correcting it by the constraint process is performed sequentially, so that each mass point of the clothing model is once dropped freely and then moved by the influence of gravity.
  • the amount of movement due to the influence of gravity can be reduced, and the processing time for correcting each mass point can be shortened, providing a realistic feeling.
  • the fitting state can be displayed in real time.
  • the image display device further includes a collision processing unit that performs a collision process with the human body model for each mass point of the plurality of polygons constituting the clothing model.
  • the collision process with the human body model is performed for each mass point of a plurality of polygons constituting the clothing model, so that the problem that the clothing model enters the human body model is eliminated, and a more realistic fitting state. Can be displayed in real time.
  • the collision processing means sets at least a collision determination model large enough to cover the human body model, and generates a repulsive force acting on the mass point as the mass approaches the collision determination model. It is preferable to perform the collision processing with a larger size.
  • a collision determination model at least large enough to cover the human body model is set, and the collision processing is performed by increasing the repulsive force acting on the mass point as the mass approaches the collision determination model. Can be easily performed.
  • the collision processing means includes the mass point and the person When collision is detected with a plurality of polygon surfaces constituting the body model, and when it is detected that the mass point collides with the polygon surface constituting the human body model, collision processing between the mass point and the polygon surface constituting the human body model is performed. Is preferably performed.
  • a collision between the mass point and a plurality of polygon surfaces forming the human body model is detected, and when it is detected that the mass point collides with the polygon surface forming the human body model, the mass point and the human body model are formed.
  • a collision process with the polygon surface to be performed is performed. Therefore, a collision between a mass point and a plurality of polygon surfaces forming the human body model is detected, and when it is detected that the mass point collides with a polygon surface forming the human body model, the polygon forming the mass point and the human body model is detected. Since the collision process with the surface is performed, the collision process can be performed more reliably, and the problem that the clothes model enters the human body model can be more reliably eliminated.
  • An image display method is an image display method for displaying a three-dimensional model, wherein a computer sets each vertex of a plurality of polygons constituting the three-dimensional model as a mass point and fixes the mass point from the mass points.
  • a fixed point determining step of determining a mass point; a combi-shot is a mass extraction step of extracting one mass point from the mass points; and a computer is a gravity point acting on the mass point extracted in the mass point extraction step.
  • a gravity calculation step of calculating the influence based on the fixed point determined in the fixed point determination step; and a computer in which the computer sequentially corrects the movement of the mass point due to the gravity calculated in the gravity calculation step by a constraint process.
  • a three-dimensional model formed by connecting each mass point corrected in the correction step. Displaying a file.
  • each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points.
  • the effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3
  • the dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process of correcting each mass moved by the influence one by one, The amount of movement due to the effect of gravity can be reduced, and the processing time for correcting each mass can be shortened.
  • An image display program is an image display program for displaying a three-dimensional model, wherein each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point and a fixed mass point is determined from the mass points.
  • Fixed point determining means a mass point extracting means for extracting one mass point from the mass points, and an influence of gravity acting on the mass point extracted by the mass point extracting means.
  • Gravity calculating means for calculating based on the points; correcting means for sequentially correcting movement of mass points due to the influence of gravity calculated by the gravity calculating means by constraint processing; and each mass point corrected by the correcting means.
  • the computer functions as display means for displaying the three-dimensional model formed by the connection.
  • each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points.
  • the effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3
  • the dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process that corrects each point moved by the influence one point at a time, the amount of movement by the influence of gravity can be reduced, and the processing time for correcting each point can be shortened .
  • a computer-readable recording medium that stores the image display program according to the present invention is a computer-readable storage medium that stores an image display program that displays a three-dimensional model.
  • Each vertex of the polygon is a material point, and fixed point determining means for determining a material point to be fixed from the material points; material point extracting means for extracting one material point from the material points; and the material point extracting means.
  • Gravity calculation means for calculating the influence of gravity acting on the extracted mass point based on the fixed point determined by the fixed point determination means, and movement of the mass point due to the gravity effect calculated by the gravity calculation means.
  • Correction means for sequentially correcting by constraint processing;
  • the computer functions as display means for displaying a three-dimensional model formed by connecting the mass points corrected by the correction means.
  • each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points.
  • the effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3
  • the dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process that corrects each point moved by the influence one point at a time, the amount of movement by the influence of gravity can be reduced, and the processing time for correcting each point can be shortened .
  • FIG. 1 is a diagram showing a hardware configuration of an image display device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining functions of the image display device according to the present invention.
  • FIG. 3 is a flowchart for explaining image display processing by the image display device shown in FIG.
  • FIG. 4 is a diagram for explaining a geometric distance between each mass point of a plurality of polygons constituting a clothing model.
  • FIG. 5 is a diagram for explaining the determination of the processing order.
  • FIG. 6 is a diagram for explaining gravity calculation processing for calculating the influence of gravity acting on each mass point.
  • FIG. 7 is a diagram for explaining a process of sequentially correcting mass points of a plurality of polygons constituting a clothing model.
  • FIG. 8 is a diagram for explaining the collision processing.
  • FIG. 9 is a diagram for explaining a repulsive force acting on a mass point of the clothing model.
  • FIG. 10 is a diagram for explaining a collision ball in the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a display screen displayed on the display unit.
  • FIG. 12 is a diagram comparing processing by the conventional image display device with processing by the image display device according to the present invention.
  • FIG. 1 is a diagram showing a hardware configuration of an image display device according to an embodiment of the present invention.
  • the image display device shown in Fig. 1 is composed of a normal computer, and has an input device 1, a ROM (read only memory) 2, a CPU (central processing unit) 3, a RAM (random access memory) 4, and an external storage device 5. , Display device 6 and recording medium drive device 7. Each block is connected to an internal bus, and various data and the like are input / output via this bus, and various processes are executed under the control of the CPU 3.
  • the input device 1 includes a keyboard, a mouse, and the like, and is used by an operator to input various data, operation commands, and the like.
  • the ROM 2 stores system programs such as B IOS (Basic Input / Output System).
  • the external storage device 5 is configured by a hard disk drive or the like, and stores a predetermined ⁇ S (Operating System), an image display program described later, and the like.
  • the RAM 4 is used as a work area of the CPU 3 and the like.
  • the display device 6 includes a liquid crystal display device, a cathode ray tube (CRT), and the like, and displays a virtual fitting state created by executing an image display program under the control of the CPU 3.
  • the recording medium drive 7 includes a DVD-ROM drive, a CD-ROM drive, a flexible disk drive, and the like.
  • the image display program is recorded on a computer-readable recording medium 8 such as a DVD-ROM, a CD-ROM, or a flexible disk, and the recording medium driving device 7 reads out the image processing program from the recording medium 8 and externally stores the image processing program. Install and run on device 5 May be.
  • the image display device includes a communication device or the like and the image display program is stored in another computer connected via a communication network, the image display program is downloaded from the computer via the network. May be executed.
  • FIG. 2 is a block diagram for explaining functions of the image display device according to the present invention.
  • the image display device includes a program execution unit 100, a storage unit 200, and a display unit 300.
  • the program execution unit 100 is realized by the CPU 3 executing an image display program, and includes a three-dimensional data acquisition unit 101, a distance calculation unit 102, a correspondence table creation unit 103, and fixed point determination.
  • the storage unit 200 includes a RAM 4 and the like, is realized by the CPU 3 executing an image display program, and includes a three-dimensional data storage unit 201 and a correspondence table storage unit 202. You.
  • the three-dimensional data storage unit 201 stores, in a virtual three-dimensional space, three-dimensional data of a human body model composed of a plurality of polygons and three-dimensional data of a clothing model composed of a plurality of polygons. ing.
  • the three-dimensional data storage unit 201 stores, as three-dimensional data, the coordinates of each vertex of the polygons that make up the human body model in the three-dimensional space, and forms a clothing model that represents the clothes worn by the human body.
  • the coordinates of each vertex in the 3D space of the polygon are stored as 3D data.
  • the three-dimensional data acquisition unit 101 acquires the three-dimensional data of the human body model and the three-dimensional data of the clothing model stored in the three-dimensional data storage unit 201. Note that the vertices of a plurality of polygons constituting the clothing model are taken as mass points.
  • the distance calculation unit 102 calculates the geometric distance between one mass point and another mass point for all the mass points of a plurality of polygons constituting the clothing model acquired by the three-dimensional data acquisition unit 101. Is calculated.
  • the geometric distance represents the number of ridge lines connecting one mass point and another mass point in a plurality of polygons constituting the clothing model. That is, the distance calculation unit 102 connects the one mass point and the other mass points with the shortest distance to all the mass points of the polygons constituting the clothing model acquired by the three-dimensional data acquisition unit 101. Calculate the number of edges.
  • the correspondence table creation unit 103 creates a correspondence table in which the geometric distances between one mass point calculated by the distance calculation unit 102 and another mass point are associated with each other.
  • the correspondence table creation unit 103 is a two-dimensional table format that includes the number of ridges connecting the one mass point calculated by the distance calculation unit 102 and the other mass point in the shortest time, which is composed of rows and columns. Create as a table.
  • the correspondence table storage unit 202 stores a correspondence table created by the correspondence table creation unit 103 and correlating the geometric distance between one mass point and another mass point.
  • the fixed point determining unit 104 determines a fixed point from among the mass points of a plurality of polygons constituting the clothes model.
  • the fixed point is a point that is not affected by gravity, and the fixed point determining unit 104 selects a material point at which the human body model and the clothing model come into contact from among a plurality of polygons constituting the clothing model. Is detected, and the detected mass point is determined as a fixed point.
  • the processing order determination unit 105 refers to the correspondence table stored in the correspondence table storage unit 202 to determine the processing order of the mass points for which the gravity calculation unit 107 calculates the influence of gravity. Specifically, the processing order determining unit 105 refers to the correspondence table stored in the correspondence table storage unit 202, and determines the fixed point determined by the fixed point determining unit 104 and the fixed point other than the fixed point. The value that minimizes the geometric distance associated with each mass point is determined, and the processing order is determined in ascending order of the determined values.
  • the material point extracting unit 106 extracts material points of a plurality of polygons constituting the clothing model according to the processing order determined by the processing order determining unit 105.
  • the gravity calculation unit 107 determines the influence of gravity acting on each mass point of a plurality of polygons constituting the clothing model extracted by the mass point extraction unit 106 by the fixed point determination unit 104. Calculate sequentially based on fixed points.
  • the gravity calculation unit 107 is configured to correct the gravity acting on the mass point linked to the fixed point determined by the fixed point determination unit 104, and the gravity calculation unit 107 is configured to calculate the gravity calculated by the gravity calculation unit 107.
  • the movement of the mass point due to the influence of is gradually corrected by the constraint processing according to the shape of the human body model. That is, the correction unit 108 corrects the mass point moved by the action of gravity to a position corresponding to the shape of the human body model by the constraint processing.
  • the collision processing unit 109 calculates the influence exerted on the clothes model by colliding the mass points of the polygons constituting the clothes model with the human body model, and based on the calculated influence, calculates the influence of the clothes model. Move the mass. Further, the collision processing unit 109 sets a collision judgment model at least large enough to cover the human body model, and increases the repulsive force acting on the mass point as the mass point of the clothing model approaches the collision judgment model. Perform collision processing. Further, when the distance between the mass point of the clothes model and the collision determination model becomes equal to or less than a predetermined distance, the collision processing unit 109 detects a collision between the mass point and the collision determination model, and the collision of the mass point occurs. If collision is detected with the judgment model, collision processing is performed.
  • the display control unit 110 combines the clothing model formed by connecting the mass points sequentially corrected by the correction unit 108 with the human body model obtained by the three-dimensional data obtaining unit 101.
  • the display is controlled so as to be displayed on the display section 300.
  • the display unit 300 is constituted by a display device 6 and the like, is realized by the CPU 3 executing an image display program, and is formed by connecting the mass points sequentially corrected by the correction unit 108. And a virtual fitting state in which the human body model obtained by the three-dimensional data obtaining unit 101 is synthesized.
  • FIG. 3 is a flowchart for explaining image display processing by the image display device shown in FIG.
  • step S1 the three-dimensional data acquisition unit 101 acquires the three-dimensional image (human body model) of the human body stored in the three-dimensional data storage unit 201, and acquires the three-dimensional data storage unit 201. Get the 3D image (clothes model) of the clothes stored in.
  • step S2 the distance calculation unit 102 compares one mass point and another mass point with respect to all the mass points of a plurality of polygons constituting the clothes model acquired by the three-dimensional data acquisition unit 101. Calculate the number of ridge lines connecting the shortest.
  • step S3 the correspondence table creation unit 103 creates a correspondence table in which the geometric distances between one mass point calculated by the distance calculation unit 102 and another mass point are associated with each other,
  • the created correspondence table is stored in the correspondence table storage unit 202.
  • FIG. 4 shows the geometrical shape between the mass points of the polygons that make up the clothes model.
  • FIG. 4 (a) is a diagram illustrating an example of a plurality of polygons constituting a clothing model
  • FIG. 4 (b) is a diagram illustrating a clothing model shown in FIG. 4 (a).
  • FIG. 6 is a diagram showing a correspondence table of geometric distances of each mass point in the embodiment.
  • a plurality of polygons constituting the clothing model have mass points a to j.
  • the geometric distance from mass a to mass b, c, d, e, f, g is the mass of mass a and mass b, c, d, e, f, g Since the number of ridge lines connecting the shortest to is one, each is 1. Also, the geometric distance from the point a to the points h, i, j is 2 because the number of ridge lines connecting the points a, h, i, j with the shortest is two.
  • the geometric distance from point b to points a, c, and d is 1, and the geometric distance from point b to points e, f, g, and h. Are 2 respectively, and the geometric distance from mass point b to mass points i and j is 3 respectively.
  • the distance calculation unit 102 determines the shortest distance between one mass point and another mass point for all the mass points of the polygons forming the clothes model acquired by the three-dimensional data acquisition unit 101.
  • the correspondence table creation unit 103 comprises the number of ridge lines connecting the one mass point and the other mass point calculated by the distance calculation unit 102 as short as possible from rows and columns. Create as a two-dimensional table format correspondence table. That is, as shown in FIG. 4 (b), the correspondence table creation unit 103 calculates the number of ridge lines connecting the mass point a calculated by the distance calculation unit 102 and the other mass points b to j in the shortest.
  • the fixed point determining unit 104 detects a mass point at which the human body model and the clothing model are in contact from among the mass points of a plurality of polygons constituting the clothing model, and detects the detected mass point. Is determined as a fixed point that does not reflect the effect of gravity. For example, if the clothing is a dress or a shirt, the mass from the neck to the shoulder is determined as the fixed point.
  • the fixed point determining unit 104 determines, as a fixed point, a material point at which the human body model and the clothing model are in contact from among the plurality of polygons constituting the clothing model.
  • the present invention is not particularly limited thereto.
  • a clothing model is displayed on the display device 6, and the user operates the input device 1 with respect to the displayed clothing model.
  • the fixed point may be set by using this.
  • step S5 the processing order determination unit 105 refers to the correspondence table stored in the correspondence table storage unit 202, and refers to the fixed point determined by the fixed point determination unit 104 and the fixed point. The value that minimizes the geometric distance associated with each point other than the point is determined, and the processing order is determined in ascending order of the determined value.
  • FIG. 5 is a diagram for explaining the determination of the processing order.
  • FIG. 5 (a) is a diagram showing an example of a plurality of polygons constituting a clothing model
  • FIG. FIG. 5 is a diagram showing a correspondence table between the fixed points b and c when the mass points b and c shown in (a) are fixed points and the mass points a and d to j other than the fixed points b and c.
  • (c) is a diagram showing the minimum values of rows b and c in FIG. 5 (b) in association with mass points a to j.
  • the geometric distance between the fixed point b and the mass point a is 1, and the geometric distance between the fixed point c and the mass point a is 1.
  • the minimum value of the mass point a corresponding to the points b and c is 1, the geometric distance between the fixed point b and the mass point d is 1, and the geometric distance between the fixed point c and the mass point d is 2. Therefore, the minimum value of the mass point d corresponding to the fixed points b and c is 1.
  • the minimum value of the mass point e corresponding to the fixed points b and c is 1
  • the minimum value of the mass point f corresponding to the fixed points b and c is 2, and the minimum value of the mass point g corresponding to the fixed points b and c.
  • the value is 2, the minimum value of the mass point h corresponding to the fixed points b and c is 2, the minimum value of the mass point i corresponding to the fixed points b and c is 3, and the mass j corresponding to the fixed points b and c The minimum value of is 3.
  • the processing order determination unit 105 refers to the correspondence table stored in the correspondence table storage unit 202, and refers to the correspondence table stored in the correspondence table storage unit 202.
  • the processing order is determined in the order of a, mass d, mass e, mass f, mass g, mass h, mass i and mass j.
  • the mass point extraction unit 106 selects a plurality of polygons of the plurality of polygons constituting the clothing model in accordance with the processing order determined by the processing order determination unit 105.
  • the mass point extraction unit 106 first extracts the mass point a, and then extracts the mass points in the order of mass point d, mass point e, mass point, mass point g, mass point h, mass point i, and mass point j. Will be done.
  • step S7 the gravity calculation unit 107 calculates the influence of gravity on the mass points extracted by the mass point extraction unit 106.
  • the gravity calculation processing by the gravity calculation unit 107 will be described.
  • FIG. 6 is a diagram for explaining gravity calculation processing for calculating the influence of gravity acting on each mass point.
  • the mass points of a plurality of polygons constituting the clothing model are set to a1, a2, a3, b1> b2, b3, cl, c2, and c3.
  • a case where the mass points a l, a 2, and a 3 are fixed points and gravity calculation processing is performed on the mass point b 2 will be described.
  • the gravity calculation unit 107 calculates the influence of gravity acting on the mass point b 2 linked to the fixed points a 1, a 2, a 3 determined by the fixed point determination unit 104, as fixed points al, a 2, Calculate based on a3. That is, when performing gravity calculation on the mass point b 2, the gravity calculation unit 107 only determines the relationship between the fixed points a 1, a 2, a 3 linked to the mass point b 2 and the position of the mass point b 2 Is calculated.
  • step S8 the correction unit 108 performs convergence processing on the mass point calculated by the gravity calculation unit 107 to thereby move the mass point (so-called elongation).
  • the collision processing unit 109 performs a collision process with the human body model on each mass point of a plurality of polygons constituting the clothing model.
  • the correction unit 108 sequentially corrects the movement of the mass point by performing convergence processing on the mass point b2 calculated by the gravity calculation unit 107, and Move the mass to a position along the shape. Further, the corrected mass point b2 is used as a fixed point in the gravity calculation process for the mass points c1, c2 and c3 linked to the mass point b2.
  • FIG. 7 is a diagram for explaining a process of sequentially correcting the mass points of a plurality of polygons constituting the clothes model
  • FIG. 7 (a) is a diagram illustrating a plurality of polygons constituting the clothes model
  • Fig. 7 (b) is a diagram showing the state of mass points of the gon
  • Fig. 7 (b) is a diagram showing the state of mass points of a plurality of polygons constituting the clothing model after the gravity calculation processing
  • Fig. 7 (c) is FIG. 6 is a diagram showing a state of mass points of a plurality of polygons constituting the clothing model of FIG.
  • the clothing model shown in FIG. 7A has mass points v l to v 5, wl to w5, xl to x5, and y l to y5.
  • Fig. 7 (a) when the effect of gravity on the mass point w2 of the clothes model composed of multiple polygons is calculated, as shown in Fig. 7 (b), the mass point w2 becomes lower due to the effect of gravity.
  • the correction unit 108 performs a process of sequentially correcting the mass point w2 moved downward by the action of gravity by the constraint process.
  • the constraint processing will be described.
  • a distance constraint between mass points and a bending constraint between mass points.
  • the latter bending constraint between mass points can be reduced to the former distance constraint between mass points. Therefore, in the present embodiment, only the distance constraint between mass points is used as a constraint condition.
  • the distance constraint between mass points can be realized by simply listing the positional relationship between the two mass points. That is, the correction amount dE of the position of the mass point can be expressed by the following equation (1), and the correction amount dV of the vector of the mass point can be expressed by the following equation (2).
  • dV represents the correction amount (vector) of the mass point
  • V represents the difference vector between the two mass points
  • dE represents the correction amount of the mass point
  • i1 represents the initial length between the two mass points
  • C 1 represents the current length of the two mass points
  • 1 amb da represents a fixed value for the correction amount.
  • the correction unit 108 obtains the correction amount of the mass point w2 moved downward by the action of gravity by the constraint processing, and corrects the position based on the obtained correction amount.
  • the mass point w 2 moves upward and moves to a position along the shape of the human body model. In this way, the movement amount due to the gravity acting on the mass point from the fixed point is calculated, and the position of the mass point is moved based on the calculated movement amount, Restriction processing for correcting the position of the mass point is performed for each mass point.
  • step S8 the collision processing unit 109 sets a collision ball (corresponding to a collision determination model) that covers at least the periphery of the human body model, and as the mass point of the clothing model approaches the set collision ball, The repulsion, which represents the force to push back the clothes, is increased to perform the collision process between the mass point and the collision ball.
  • a collision ball corresponding to a collision determination model
  • Fig. 8 is a diagram for explaining the collision process.
  • Fig. 8 (a) is a diagram showing the state of the clothing model before the collision
  • Fig. 8 (b) is a diagram showing the state of the clothing model after the collision.
  • FIG. 8 (a) is a diagram showing the state of the clothing model before the collision
  • Fig. 8 (b) is a diagram showing the state of the clothing model after the collision.
  • the collision processing unit 109 performs a collision process, and maps the mass points v5, w5, and x5 respectively. 8 Move as shown in (b). As a result, it is possible to prevent an unnatural state in which the clothes model enters the human body model.
  • FIG. 9 is a diagram for explaining a repulsive force acting on a mass point of the clothing model.
  • the repulsive force acting on the mass from the position (R + b) away from the center of the collision ball S to the position in contact with the collision ball S is K-T It is represented by 3 .
  • T (R + b-1) / b, 1 represents the distance between the center of the collision sphere S and the mass point, R represents the radius of the collision sphere S, and b represents the area around the collision sphere S. Represents the attenuation region.
  • the collision processing unit 109 increases the repulsive force representing the force that pushes the clothes back from the human body, and the repulsive force on the straight line connecting the collision ball S and the mass point. Then, the mass is moved based on the obtained correction amount.
  • FIG. 10 is a diagram for explaining a collision sphere in the present embodiment.
  • FIG. 10 (a) is a diagram showing a human body model
  • FIG. 10 (b) is a diagram showing a collision sphere.
  • FIG. 10 (c) is a diagram in which the human body model shown in FIG. 10 (a) and the impact ball shown in FIG. 10 (b) are superimposed.
  • the collision processing unit 109 reads out the collision sphere SM corresponding to the human body model JM from the storage unit 200, and uses the composite model GM obtained by superimposing the read collision sphere SM and the human body model JM. Perform collision processing.
  • the collision sphere SM has a width corresponding to the gap between the clothes and the human body, and extends from the neck of the human body model JM to the left and right fingertips and the left and right ankles. It is set in advance to cover. Therefore, as shown in Fig. 10 (c), when the human body model JM and the collision sphere SM are superimposed, the human body model JM has a width equal to the gap between the clothes and the human body. In particular, the area from the neck to the left and right fingertips and the left and right ankles is covered with the collision sphere SM, and the collision sphere SM and the mass point of the clothing model are subjected to collision processing.
  • collision processing with the human body model is performed for each mass point of a plurality of polygons that make up the clothing model, thereby eliminating the problem of the clothing model entering the human body model and realizing a more realistic fitting state in real time. Can be displayed.
  • the mass point subjected to the collision processing is determined as a fixed point
  • the mass point moved by the collision is determined as the fixed point, and the movement due to the influence of gravity acting on the mass point linked to the fixed point becomes small.
  • the time required for the calculation to undo the effect of gravity on the mass point can be reduced.
  • a collision sphere SM collision determination model
  • the collision processing unit 109 sets a collision ball S covering at least the periphery of the human body model, and pushes the clothes back from the human body as the mass point of the clothing model approaches the set collision ball S.
  • the collision processing between the mass point and the collision sphere S is performed by increasing the repulsive force representing the force.
  • the present invention is not particularly limited to this.
  • a collision process between the mass point and the polygon surface constituting the human body model may be performed. That is, the collision processing unit 109 detects a collision between the mass point and the polygon surface forming the human body model, and If it is detected that a collision occurs with the polygon surface constituting the polygon, collision processing is performed based on the relationship between the incident angle at which the mass point enters the polygon surface and the reflection angle at which the mass point reflects from the polygon surface.
  • a collision between the mass point and a plurality of polygon surfaces constituting the human body model is detected, and when it is detected that the mass point collides with the polygon surface constituting the human body model, the collision between the mass point and the polygon surface constituting the human body model is performed. Since the collision processing is performed, the collision processing can be performed more reliably, and the problem that the clothes model enters the human body model can be more reliably eliminated.
  • the collision processing unit 109 sets a collision judgment model at least large enough to cover the human body model, and increases the repulsive force acting on the mass point as the mass approaches the collision judgment model to perform the collision processing. After that, the collision between the mass point and the polygon surfaces that make up the human body model is detected, and if it is detected that the mass point collides with the polygon surface that makes up the human body model, the collision between the mass point and the polygon surface that makes up the human body model is detected. Perform collision processing.
  • collision processing is performed by increasing the repulsive force acting on the mass.
  • the mass and the polygons that make up the human body model JM are further increased.
  • collision processing between the mass point and the polygon surface constituting the human body model is performed.
  • step S9 the correction unit 108 determines whether or not the correction processing has been completed for all the mass points of a plurality of polygons constituting the clothing model. If it is determined that the correction processing has been completed for all the mass points (YE S in step S9), the process proceeds to step SI0, and if it is determined that the correction processing has not been completed for all the mass points ( (NO in step S9), and the process returns to step S4. Then, in step S4, the fixed point determination unit 104 newly determines the material point after the correction processing as a fixed point, and executes the processing in step S5 and subsequent steps.
  • step S10 the correction unit 108 applies all the mass points of the clothes model
  • the collision processing unit 109 collectively performs the collision processing on all the mass points of the clothes model. Note that the processing here is performed by performing correction processing and collision processing for all mass points collectively, in case the correction processing and collision processing for each mass point in Step S8 fail to complete the correction. It is more reliable to correct the mass point.
  • step S11 the display control unit 110 combines the clothes model subjected to the collision processing by the collision processing unit 109 with the human body model acquired by the three-dimensional data acquisition unit 101.
  • the synthesized three-dimensional data is output to the display unit 300.
  • the display unit 300 displays a state in which the human body model is virtually trying on the clothing model according to the three-dimensional data output from the display control unit 110.
  • the process from step S4 to step S11 is repeatedly performed at a predetermined frame rate, for example, 30 fps (frame per second), thereby displaying the fitting state in real time. be able to. '
  • FIG. 11 is a diagram showing an example of a display screen displayed on the display unit 300.
  • a state in which the human body model JM is virtually trying on the clothing model IM is displayed.
  • the influence of gravity acting on the mass point of the clothing model IM is calculated based on the fixed point, and the movement of the mass point due to the calculated gravity effect is successively corrected by the constraint process, so that the clothing model IM is a human body model JM. Will be displayed along the shape of.
  • FIG. 12 is a diagram comparing the processing by the conventional image display device with the processing by the image display device according to the present invention.
  • FIG. 12 (a) illustrates the processing by the conventional image display device.
  • FIG. 12 (b) is a cross-sectional view for explaining the processing by the image display device according to the present invention.
  • the mass points A1 to G1 of the clothing model IM are calculated by calculating the influence of gravity, and the points A2 to G2 Go to Then, the points A2 to G2 are moved to the points A3 to G3 by being corrected by the constraint processing.
  • each of the masses A 2 -G 2 which have been once dropped freely on all the masses A 1 to G 1 of the clothing model IM and then moved by the influence of gravity.
  • the mass point A1 is determined as a fixed point, and the mass point A1 is determined as the fixed point. It moves to point B2 by calculating the effect of gravity acting on B1. Point B2 moves to point B3 by being modified by the constraint processing. Then, the point B3 is newly determined as a fixed point, and the influence of gravity acting on the mass point C1 is calculated from the point B3 newly determined as the fixed point.
  • the mass point A1 of the clothing model IM is set as a fixed point, the mass point B1 is dropped freely from the mass point A1, and then the mass point B moved under the influence of gravity. 2 is corrected to position B3 along the shape of the human body model JM. Then, the corrected point B 3 is set as a fixed point, and the mass point C 2 is moved free from the mass point B 3 to the mass point C 1, and then moved to the position C along the shape of the human body model JM. Corrected to 3.
  • FIG. 12 (a) is larger, and as a result, the processing time for correcting point G2 to point G3 is longer in FIG. 12 (a) than in FIG. 12 (b).
  • the vertices of a plurality of polygons constituting the clothing model IM representing the clothes worn by the human body are set as the mass points, and the fixed mass point is determined as the fixed point from among the mass points.
  • Mass points are extracted, and the influence of gravity acting on the extracted mass points is calculated based on the fixed points.
  • the movement of the mass due to the calculated influence of gravity is sequentially corrected by constraint processing, and the corrected mass points are connected.
  • the clothing model IM formed by this and the human body model JM representing the human body are combined and displayed. Therefore, the effect of gravity is calculated based on the fixed point for each mass point of the clothing model IM, and the processing of correcting by the constraint processing is sequentially performed.
  • the amount of movement due to gravity can be reduced compared to conventional processing that corrects each point moved by the influence of gravity point by point, reducing the processing time for correcting each point Display a realistic fitting state in real time can do.
  • the sequentially corrected mass points are determined as fixed points by the fixed point determining unit 104, all the mass points of the clothes model can be sequentially corrected by the constraint processing based on the fixed points.
  • the geometric distance between one mass point and another mass point is calculated for all the mass points of the polygons constituting the clothing model, and the geometric distance between the calculated one mass point and another mass point is calculated.
  • the distances are associated with each other and stored as a correspondence table.
  • a processing order for calculating the effect of gravity is determined, and a clothing model is constructed according to the determined processing order.
  • One mass point is extracted from the mass points of multiple polygons. Therefore, by creating a correspondence table in which the geometric distance between one mass point and another mass point is associated with each other, the influence of gravity acting on each mass point of a plurality of polygons constituting the clothing model is calculated.
  • the processing order can be easily determined.
  • the present embodiment has been described using a clothes model representing clothes worn by a human body, the present invention is not particularly limited to this.
  • a soft cloth such as a cloth to which one end of a curtain or a flag is fixed is used. It can also be applied to 3D models representing materials.
  • the image display device, the image display method, the image display program, and the recording medium on which the image display program according to the present invention is recorded can be read all over the mass point of the three-dimensional model.
  • the amount of movement due to gravity can be reduced, and the processing time for correcting each mass can be reduced, as compared to the conventional processing in which each mass moved by the influence of gravity is corrected point by point. It is useful as an image display device that displays a three-dimensional model, an image display method, an image display program, and a computer-readable recording medium that stores the image display program.

Abstract

There are provided an image display device, an image display method, an image display program, and a computer-readable recording medium containing the image display program. The image display device displaying a 3-dimensional model includes: a fixed point decision section (104) for deciding a fixing mass point among mass points of polygons as a fixed point; a mass point extraction section (106) for extracting one mass point from the mass points; a gravitation calculation section (107) for calculating the affect of gravitation to the mass point extracted by the mass point extraction section (106) according to the fixed point decided by the fixed point decision section (104); a correction section (108) for successively correcting the shift of the mass points by the affect of the gravitation calculated by the gravitation calculation section (107) by way of constraint processing; and a display control section (110) for controlling a display section (300) to display a virtual try-on state obtained by combining a clothing model formed by connecting the mass points corrected by the correction section (108) and a human body model.

Description

明 細 書 画像表示装置、 画像表示方法、 画像表示プログラム及び画像表示プログラムを 記録したコンピュータ読み取り可能な記録媒体 技術分野  Description Image display device, image display method, image display program, and computer-readable recording medium on which image display program is recorded
本発明は、 3次元モデルを表示する画像表示装置、 画像表示方法、 画像表示プ ログラム及び画像表示プログラムを記録したコンピュータ読み取り可能な記録媒 体に関するものである。 背景技術  The present invention relates to an image display device that displays a three-dimensional model, an image display method, an image display program, and a computer-readable recording medium that stores the image display program. Background art
従来、 3次元空間内において、 人間が衣服を着用した状態を仮想的にシミュレ ーションする画像表示装置が知られている。 このような従来の画像表示装置では、 より現実に近い衣服を表現するために動力学に基づくシミュレーションが行われ る。 この動力学に基づくシミュレーションとは、 例えば、 重力の作用や人体と衣 服との衝突等を考慮した衣服の表示である。 この従来技術は、 例えば、 特開平 9 - 3 4 9 5 2号公報又は特開 2 0 0 2 - 1 1 7 4 1 4号公報に開示されている。 ここで、 従来の衣服のシミュレーションにおける処理について説明すると、 衣 服を構成する 3次元モデルのすべての質点に対して一旦自由落下させてから、 重 力の影響で移動した (伸びた) 各質点を一点一点制約処理により修正する処理を 行うことによって、 人体の形状に沿った自然な衣服を表現することができるよう になる。  2. Description of the Related Art Conventionally, there has been known an image display device that virtually simulates a state where a person wears clothes in a three-dimensional space. In such a conventional image display device, simulation based on dynamics is performed in order to represent clothes that are more realistic. The simulation based on the dynamics is, for example, the display of clothes in consideration of the action of gravity, the collision between the human body and the clothes, and the like. This prior art is disclosed, for example, in Japanese Patent Application Laid-Open No. 9-34952 or Japanese Patent Application Laid-Open No. 2002-174174. Here, the processing in the conventional clothing simulation will be described. First, each mass point of the 3D model of the clothing is dropped freely and then moved (extended) under the influence of gravity. By performing the correction process by the point-by-point constraint process, it becomes possible to express natural clothes that conform to the shape of the human body.
また、 このような衣服のシミュレーションでは、 硬い微分方程式の数値積分を どのように行うかが計算時間に影響を与える。 衣服のシミュレーションでは、 陰 解法、 陽解法及び制約充足法などの様々な計算手法が用いられる。 '  Also, in such clothing simulations, how to perform numerical integration of hard differential equations affects the calculation time. In the simulation of clothes, various calculation methods such as implicit method, explicit method and constraint satisfaction method are used. '
しかしながら、 従来の衣服のシミュレーションでは、 衣服を構成する 3次元モ デルのすべての質点に対して一旦自由落下させてから、 重力の影響で移動した各 質点を一点一点修正する処理を行っているので、 処理時間が長くなり、 リアル夕 ィムで表示することが困難であった。 また、 陰解法は、 計算が安定しており、 正確な計算ができる反面、 計算に時間 がかかるという問題を有している。 一方、 陽解法は、 リアルタイムに表示する衣 服のシミュレーションに用いられているが、 計算が速い反面、 計算の安定性及び 計算の精度に劣るという問題を有している。 また、 制約充足法は、 上述の陽解法 に陰解法の安定性を併せ持つものであるが、 収束計算を必要とするため、 高い計 算精度を保証するには計算時間がかかるという問題を有している。 発明の開示 However, in the conventional simulation of clothes, the process of once free-falling all the masses of the 3D model that composes the clothing and then correcting each mass moved by the influence of gravity is performed one by one. Therefore, the processing time was long and it was difficult to display in real time. In addition, the implicit method has a problem in that the calculation is stable and accurate, but the calculation takes time. On the other hand, the explicit method is used to simulate clothing displayed in real time. However, the calculation is fast, but it has the problem that the calculation stability and calculation accuracy are poor. In addition, the constraint satisfaction method has the stability of the implicit method in addition to the explicit method described above.However, since it requires convergence calculation, it has the problem that it takes a long time to guarantee high calculation accuracy. I have. Disclosure of the invention
本発明は、 上記の問題を解決するためになされたもので、 処理時間を短縮する ことができる画像表示装置、 画像表示方法、 画像表示プログラム及び画像表示プ 口グラムを記録したコンピュー夕読み取り可能な記録媒体を提供することを目的 とするものである。  The present invention has been made in order to solve the above-described problems, and an image display device, an image display method, an image display program, and a computer readable by an image recording program which can reduce a processing time are recorded. It is intended to provide a recording medium.
本発明に係る画像表示装置は、 3次元モデルを表示する画像表示装置であって、 前記 3次元モデルを構成する複数のポリゴンの各頂点を質点とし、 当該質点の中 から固定する質点を固定点として決定する固定点決定手段と、 前記質点の中から 一の質点を抽出する質点抽出手段と、 前記質点抽出手段によって抽出された質点 に作用する重力の影響を、 前記固定点決定手段によって決定された固定点に基づ いて計算する重力計算手段と、 前記重力計算手段によって計算された重力の影響 による質点の移動を制約処理により逐次修正する修正手段と、 前記修正手段によ つて修正された各質点を結ぶことで形成される 3次元モデルを表示する表示手段 とを備える。  An image display device according to the present invention is an image display device that displays a three-dimensional model, wherein each vertex of a plurality of polygons constituting the three-dimensional model is a material point, and a material point to be fixed from among the material points is a fixed point. Fixed point determining means for determining as a mass point, a mass point extracting means for extracting one mass point from the mass points, and the influence of gravity acting on the mass point extracted by the mass point extracting means are determined by the fixed point determining means. Gravity calculating means for calculating based on the fixed points, correction means for sequentially correcting movement of a mass point due to the influence of gravity calculated by the gravity calculating means by constraint processing, and each of the correction means corrected by the correcting means. Display means for displaying a three-dimensional model formed by connecting the mass points.
この構成によれば、 3次元モデルを構成する複数のポリゴンの各頂点を質点と し、 当該質点の中から固定する質点が固定点として決定され、 質点の中から一の 質点が抽出され、 抽出された質点に作用する重力の影響が固定点に基づいて計算 され、 計算された重力の影響による質点の移動が制約処理により逐次修正され、 修正された各質点が結ばれることで形成される 3次元モデルが表示される。 した がって、 3次元モデルの質点毎に重力の影響を計算して制約処理により修正する 処理が逐次行われるので、 3次元モデルの全ての質点に対して一旦自由落下させ てから、 重力の影響で移動した各質点を一点一点修正する従来の処理に比して、 重力の影響で移動する量を少なくすることができ、 各質点を修正するための処理 時間を短縮することができる。 According to this configuration, each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points. The effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3 The dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process of correcting each mass moved by the influence one by one, The amount of movement due to the effect of gravity can be reduced, and the processing time for correcting each mass can be shortened.
また、 上記の画像表示装置において、 前記固定点決定手段は、 前記修正手段に よつて逐次修正された質点を固定点として決定することが好ましい。  Further, in the above image display device, it is preferable that the fixed point determining means determines a material point sequentially corrected by the correcting means as a fixed point.
この構成によれば、 逐次修正された質点が固定点として決定されるので、 3次 元モデルが有する全ての質点について、 固定点に基づく制約処理による逐次修正 を行うことができる。  According to this configuration, the sequentially corrected mass points are determined as fixed points, so that all the mass points of the three-dimensional model can be sequentially corrected by the constraint processing based on the fixed points.
また、 上記の画像表示装置において、 前記 3次元モデルを構成する複数のポリ ゴンの全ての質点に対し、 一の質点と他の質点との距離を算出する距離算出手段 と、 前記距離算出手段によって算出された一の質点と他の質点との距離を れぞ れ対応付けて対応表として記憶する記憶手段と、 前記記憶手段に記憶されている 対応表を参照して、 前記重力計算手段によって重力の影響を計算する処理順序を 決定する処理順決定手段とをさらに備え、 前記質点抽出手段は、 処理順決定手段 によって決定された処理順序に従って、 前記 3次元モデルを構成する複数のポリ ゴンの質点の中から一の質点を抽出することが好ましい。  Further, in the above image display device, for all the material points of the plurality of polygons constituting the three-dimensional model, distance calculating means for calculating a distance between one material point and another material point; and A storage unit that stores the calculated distance between one mass point and another mass point in association with each other as a correspondence table, and refers to the correspondence table stored in the storage unit to determine the gravity by the gravity calculation unit. And a processing order determining means for determining a processing order for calculating the influence of the plurality of polygons constituting the three-dimensional model in accordance with the processing order determined by the processing order determining means. It is preferable to extract one mass point from.
この構成によれば、 3次元モデルを構成する複数のポリゴンの全ての質点に対 し、 一の質点と他の質点との距離が算出され、 算出された一の質点と他の質点と の距離がそれぞれ対応付けられて対応表として記憶され、 記憶されている対応表 を参照して、 重力の影響を計算する処理順序が決定され、 決定された処理順序に 従って、 3次元モデルを構成する複数のポリゴンの質点の中から一の質点が抽出 される。 したがって、 一の質点と他の質点との距離がそれぞれ対応付けられた対 応表を作成することで、 3次元モデルを構成する複数のポリゴンの各質点毎に作 用する重力の影響を計算する処理順序を容易に決定することができる。  According to this configuration, the distance between one mass point and another mass point is calculated for all the mass points of a plurality of polygons forming the three-dimensional model, and the calculated distance between one mass point and another mass point is calculated. Are associated with each other and stored as a correspondence table. With reference to the stored correspondence table, a processing order for calculating the effect of gravity is determined, and a plurality of three-dimensional models constituting the three-dimensional model are determined according to the determined processing order. One mass point is extracted from the mass points of the polygon. Therefore, by creating a correspondence table in which the distance between one mass point and another mass point is associated with each other, the influence of gravity acting on each mass point of a plurality of polygons constituting the 3D model is calculated. The processing order can be easily determined.
また、 上記の画像表示装置において、 前記 3次元モデルは、 人体を表す人体モ デルと、 人体が着用する衣服を表す衣服モデルとを含み、 前記固定点決定手段は、 前記衣服モデルを構成する複数のポリゴンの各頂点を質点とし、 当該質点の中か ら固定する質点を固定点として決定し、 前記質点抽出手段は、 前記質点の中から 一の質点を抽出し、 前記重力計算手段は、 前記質点抽出手段によって抽出された 質点に作用する重力の影響を、 前記固定点決定手段によって決定された固定点に 基づいて計算し、 前記修正手段は、 前記重力計算手段によって計算された重力の 影響による質点の移動を制約処理により逐次修正し、 前記表示手段は、 前記修正 手段によって修正された各質点を結ぶことで形成される衣服モデルと前記人体モ デルとを合成して表示することが好ましい。 Further, in the above image display device, the three-dimensional model includes a human body model representing a human body and a clothing model representing clothes worn by the human body, and the fixed point determining unit includes a plurality of parts constituting the clothing model. Each vertex of the polygon is set as a mass point, and a mass point to be fixed from the mass points is determined as a fixed point.The mass point extraction unit extracts one mass point from the mass points, and the gravity calculation unit includes The influence of gravity acting on the mass point extracted by the mass point extraction means is added to the fixed point determined by the fixed point determination means. The correction means sequentially corrects the movement of the mass point due to the influence of gravity calculated by the gravity calculation means by constraint processing, and the display means connects each mass point corrected by the correction means. It is preferable that the clothing model formed by the above and the human body model are combined and displayed.
この構成によれば、 人体が着用する衣服を表す衣服モデルを構成する複数のポ リゴンの各頂点を質点とし、 当該質点の中から固定する質点が固定点として決定 され、 質点の中から一の質点が抽出され、 抽出された質点に作用する重力の影響 が固定点に基づいて計算され、 計算された重力の影響による質点の移動が制約処 理により逐次修正され、 修正された各質点が結ばれることで形成される衣服モデ ルと人体を表す人体モデルとが合成して表示される。 したがって、 衣服モデルの 質点毎に重力の影響を計算して制約処理により修正する処理が逐次行われるので 、 衣服モデルの全ての質点に対して一旦自由落下させてから、 重力の影響で移動 した各質点を一点一点修正する従来の処理に比して、 重力の影響で移動する量を 少なくすることができ、 各質点を修正するための処理時間を短縮することができ 、 現実感のある試着状態をリアルタイムに表示することができる。  According to this configuration, each vertex of a plurality of polygons constituting a clothing model representing clothes worn by the human body is set as a mass point, and a mass point to be fixed from the mass points is determined as a fixed point, and one of the mass points is determined as a fixed point. Mass points are extracted, the influence of gravity acting on the extracted mass points is calculated based on the fixed points, the movement of the mass points due to the calculated gravity is sequentially corrected by the constraint processing, and the corrected mass points are connected. The clothing model and the human body model representing the human body are synthesized and displayed. Therefore, the process of calculating the effect of gravity for each mass point of the clothing model and correcting it by the constraint process is performed sequentially, so that each mass point of the clothing model is once dropped freely and then moved by the influence of gravity. Compared with the conventional process of correcting each mass point by point, the amount of movement due to the influence of gravity can be reduced, and the processing time for correcting each mass point can be shortened, providing a realistic feeling. The fitting state can be displayed in real time.
また、 上記の画像表示装置において、 前記衣服モデルを構成する複数のポリゴ ンの各質点毎に前記人体モデルとの衝突処理を行う衝突処理手段をさらに備える ことが好ましい。  Further, in the image display device described above, it is preferable that the image display device further includes a collision processing unit that performs a collision process with the human body model for each mass point of the plurality of polygons constituting the clothing model.
この構成によれば、 衣服モデルを構成する複数のポリゴンの各質点毎に人体モ デルとの衝突処理が行われるので、 衣服モデルが人体モデルに入り込む不具合が 解消され、 より現実感のある試着状態をリアルタイムに表示することができる。 また、 上記の画像表示装置において、 前記衝突処理手段は、 少なくとも前記人 体モデルを覆う大きさの衝突判定モデルを設定し、 前記質点が当該衝突判定モデ ルに近づくにつれて当該質点に作用する斥力を大きくして衝突処理を行うことが 好ましい。  According to this configuration, the collision process with the human body model is performed for each mass point of a plurality of polygons constituting the clothing model, so that the problem that the clothing model enters the human body model is eliminated, and a more realistic fitting state. Can be displayed in real time. Further, in the above image display device, the collision processing means sets at least a collision determination model large enough to cover the human body model, and generates a repulsive force acting on the mass point as the mass approaches the collision determination model. It is preferable to perform the collision processing with a larger size.
この構成によれば、 少なくとも人体モデルを覆う大きさの衝突判定モデルが設 定され、 質点が当該衝突判定モデルに近づくにつれて当該質点に作用する斥力を 大きくして衝突処理が行われるので、 衝突処理を容易に行うことができる。  According to this configuration, a collision determination model at least large enough to cover the human body model is set, and the collision processing is performed by increasing the repulsive force acting on the mass point as the mass approaches the collision determination model. Can be easily performed.
また、 上記の画像表示装置において、 前記衝突処理手段は、 前記質点と前記人 体モデルを構成する複数のポリゴン面との衝突検出を行い、 前記質点が前記人体 モデルを構成するポリゴン面に衝突すると検出された場合、 前記質点と前記人体 モデルを構成するポリゴン面との衝突処理を行うことが好ましい。 Further, in the above image display device, the collision processing means includes the mass point and the person When collision is detected with a plurality of polygon surfaces constituting the body model, and when it is detected that the mass point collides with the polygon surface constituting the human body model, collision processing between the mass point and the polygon surface constituting the human body model is performed. Is preferably performed.
この構成によれば、 質点と人体モデルを構成する複数のポリゴン面との衝突検 出が行われ、 質点が人体モデルを構成するポリゴン面に衝突すると検出された場 合、 質点と人体モデルを構成するポリゴン面との衝突処理が行われる。 したがつ て、 質点と人体モデルを構成する複数のポリゴン面との衝突検出が行われ、 質点 が人体モデルを構成するポリゴン面に衝突すると検出された場合に質点と人体モ デルを構成するポリゴン面との衝突処理が行われるので、 より確実に衝突処理を 行うことができ、 衣服モデルが人体モデルに入り込む不具合をより確実に解消す ることができる。  According to this configuration, a collision between the mass point and a plurality of polygon surfaces forming the human body model is detected, and when it is detected that the mass point collides with the polygon surface forming the human body model, the mass point and the human body model are formed. A collision process with the polygon surface to be performed is performed. Therefore, a collision between a mass point and a plurality of polygon surfaces forming the human body model is detected, and when it is detected that the mass point collides with a polygon surface forming the human body model, the polygon forming the mass point and the human body model is detected. Since the collision process with the surface is performed, the collision process can be performed more reliably, and the problem that the clothes model enters the human body model can be more reliably eliminated.
本発明に係る画像表示方法は、 3次元モデルを表示する画像表示方法であって、 コンピュータが、 前記 3次元モデルを構成する複数のポリゴンの各頂点を質点と し、 当該質点の中から固定する質点を決定する固定点決定ステップと、 コンビュ 一夕が、 前記質点の中から一の質点を抽出する質点抽出ステップと、 コンピュ一 夕が、 前記質点抽出ステップにおいて抽出された質点に作用する重力の影響を、 前記固定点決定ステップにおいて決定された固定点に基づいて計算する重力計算 ステップと、 コンピュータが、 前記重力計算ステップにおいて計算された重力の 影響による質点の移動を制約処理により逐次修正する修正ステップと、 コンピュ 一夕が、 前記修正ステップにおいて修正された各質点を結ぶことで形成される 3 次元モデルを表示する表示ステップとを含む。  An image display method according to the present invention is an image display method for displaying a three-dimensional model, wherein a computer sets each vertex of a plurality of polygons constituting the three-dimensional model as a mass point and fixes the mass point from the mass points. A fixed point determining step of determining a mass point; a combi-shot is a mass extraction step of extracting one mass point from the mass points; and a computer is a gravity point acting on the mass point extracted in the mass point extraction step. A gravity calculation step of calculating the influence based on the fixed point determined in the fixed point determination step; and a computer in which the computer sequentially corrects the movement of the mass point due to the gravity calculated in the gravity calculation step by a constraint process. A three-dimensional model formed by connecting each mass point corrected in the correction step. Displaying a file.
この構成によれば、 3次元モデルを構成する複数のポリゴンの各頂点を質点と し、 当該質点の中から固定する質点が固定点として決定され、 質点の中から一の 質点が抽出され、 抽出された質点に作用する重力の影響が固定点に基づいて計算 され、 計算された重力の影響による質点の移動が制約処理により逐次修正され、 修正された各質点が結ばれることで形成される 3次元モデルが表示される。 した がって、 3次元モデルの質点毎に重力の影響を計算して制約処理により修正する 処理が逐次行われるので、 3次元モデルの全ての質点に対して一旦自由落下させ てから、 重力の影響で移動した各質点を一点一点修正する従来の処理に比して、 重力の影響で移動する量を少なくすることができ、 各質点を修正するための処理 時間を短縮することができる。 According to this configuration, each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points. The effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3 The dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process of correcting each mass moved by the influence one by one, The amount of movement due to the effect of gravity can be reduced, and the processing time for correcting each mass can be shortened.
本発明に係る画像表示プログラムは、 3次元モデルを表示する画像表示プログ ラムであって、 前記 3次元モデルを構成する複数のポリゴンの各頂点を質点とし、 当該質点の中から固定する質点を決定する固定点決定手段と、 前記質点の中から 一の質点を抽出する質点抽出手段と、 前記質点抽出手段によって抽出された質点 に作用する重力の影響を、 前記固定点決定手段によって決定された固定点に基づ いて計算する重力計算手段と、 前記重力計算手段によって計算された重力の影響 による質点の移動を制約処理により逐次修正する修正手段と、 前記修正手段によ つて修正された各質点を結ぶことで形成される 3次元モデルを表示する表示手段 としてコンピュータを機能させる。  An image display program according to the present invention is an image display program for displaying a three-dimensional model, wherein each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point and a fixed mass point is determined from the mass points. Fixed point determining means, a mass point extracting means for extracting one mass point from the mass points, and an influence of gravity acting on the mass point extracted by the mass point extracting means. Gravity calculating means for calculating based on the points; correcting means for sequentially correcting movement of mass points due to the influence of gravity calculated by the gravity calculating means by constraint processing; and each mass point corrected by the correcting means. The computer functions as display means for displaying the three-dimensional model formed by the connection.
この構成によれば、 3次元モデルを構成する複数のポリゴンの各頂点を質点と し、 当該質点の中から固定する質点が固定点として決定され、 質点の中から一の 質点が抽出され、 抽出された質点に作用する重力の影響が固定点に基づいて計算 され、 計算された重力の影響による質点の移動が制約処理により逐次修正され、 修正された各質点が結ばれることで形成される 3次元モデルが表示される。 した がって、 3次元モデルの質点毎に重力の影響を計算して制約処理により修正する 処理が逐次行われるので、 3次元モデルの全ての質点に対して一旦自由落下させ てから、 重力の影響で移動した各質点を一点一点修正する従来の処理に比して、 重力の影響で移動する量を少なくすることができ、 各質点を修正するための処理 時間を短縮することができる。  According to this configuration, each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points. The effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3 The dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process that corrects each point moved by the influence one point at a time, the amount of movement by the influence of gravity can be reduced, and the processing time for correcting each point can be shortened .
本発明に係る画像表示プログラムを記録したコンピュータ読み取り可能な記録 媒体は、 3次元モデルを表示する画像表示プログラムを記録したコンピュータ読 み取り可能な記録媒体であつて、 前記 3次元モデルを構成する複数のポリゴンの 各頂点を質点とし、 当該質点の中から固定する質点を決定する固定点決定手段と、 前記質点の中から一の質点を抽出する質点抽出手段と、 前記質点抽出手段によつ て抽出された質点に作用する重力の影響を、 前記固定点決定手段によって決定さ れた固定点に基づいて計算する重力計算手段と、 前記重力計算手段によって計算 された重力の影響による質点の移動を制約処理により逐次修正する修正手段と、 前記修正手段によつて修正された各質点を結ぶことで形成される 3次元モデルを 表示する表示手段としてコンピュータを機能させる。 A computer-readable recording medium that stores the image display program according to the present invention is a computer-readable storage medium that stores an image display program that displays a three-dimensional model. Each vertex of the polygon is a material point, and fixed point determining means for determining a material point to be fixed from the material points; material point extracting means for extracting one material point from the material points; and the material point extracting means. Gravity calculation means for calculating the influence of gravity acting on the extracted mass point based on the fixed point determined by the fixed point determination means, and movement of the mass point due to the gravity effect calculated by the gravity calculation means. Correction means for sequentially correcting by constraint processing; The computer functions as display means for displaying a three-dimensional model formed by connecting the mass points corrected by the correction means.
この構成によれば、 3次元モデルを構成する複数のポリゴンの各頂点を質点と し、 当該質点の中から固定する質点が固定点として決定され、 質点の中から一の 質点が抽出され、 抽出された質点に作用する重力の影響が固定点に基づいて計算 され、 計算された重力の影響による質点の移動が制約処理により逐次修正され、 修正された各質点が結ばれることで形成される 3次元モデルが表示される。 した がって、 3次元モデルの質点毎に重力の影響を計算して制約処理により修正する 処理が逐次行われるので、 3次元モデルの全ての質点に対して一旦自由落下させ てから、 重力の影響で移動した各質点を一点一点修正する従来の処理に比して、 重力の影響で移動する量を少なくすることができ、 各質点を修正するための処理 時間を短縮することができる。  According to this configuration, each vertex of a plurality of polygons constituting the three-dimensional model is set as a mass point, a mass point to be fixed is determined from the mass points as a fixed point, and one mass point is extracted from the mass points. The effect of gravity acting on the corrected mass is calculated based on the fixed point, the movement of the mass due to the calculated gravity is corrected successively by the constraint processing, and the corrected masses are formed by connecting each mass 3 The dimensional model is displayed. Therefore, the process of calculating the effect of gravity for each mass point of the 3D model and correcting it by constraint processing is performed sequentially. Compared to the conventional process that corrects each point moved by the influence one point at a time, the amount of movement by the influence of gravity can be reduced, and the processing time for correcting each point can be shortened .
本発明の目的、 特徴、 局面、 及び利点は、 以下の詳細な説明と添付図面とによ つて、 より明白となる。 図面の簡単な説明  The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings. Brief Description of Drawings
図 1は、 本発明の一実施形態による画像表示装置のハードウエア構成を示す図 である。  FIG. 1 is a diagram showing a hardware configuration of an image display device according to an embodiment of the present invention.
図 2は、 本発明に係る画像表示装置の機能を説明するためのブロック図である。 図 3は、 図 2に示す画像表示装置による画像表示処理を説明するためのフロー チャートである。  FIG. 2 is a block diagram for explaining functions of the image display device according to the present invention. FIG. 3 is a flowchart for explaining image display processing by the image display device shown in FIG.
図 4は、 衣服モデルを構成する複数のポリゴンの各質点間における幾何学的な 距離を説明するための図である。  FIG. 4 is a diagram for explaining a geometric distance between each mass point of a plurality of polygons constituting a clothing model.
図 5は、 処理順序の決定について説明するための図である。  FIG. 5 is a diagram for explaining the determination of the processing order.
図 6は、 各質点毎に作用する重力の影響を計算する重力計算処理について説明 するための図である。  FIG. 6 is a diagram for explaining gravity calculation processing for calculating the influence of gravity acting on each mass point.
図 7は、 衣服モデルを構成する複数のポリゴンの質点を逐次修正する処理につ いて説明するための図である。  FIG. 7 is a diagram for explaining a process of sequentially correcting mass points of a plurality of polygons constituting a clothing model.
図 8は、 衝突処理について説明するための図である。 図 9は、 衣服モデルの質点に働く斥力について説明するための図である。 FIG. 8 is a diagram for explaining the collision processing. FIG. 9 is a diagram for explaining a repulsive force acting on a mass point of the clothing model.
図 10は、 本実施形態における衝突球について説明するための図である。  FIG. 10 is a diagram for explaining a collision ball in the present embodiment.
図 11は、 表示部に表示される表示画面の一例を示す図である。  FIG. 11 is a diagram illustrating an example of a display screen displayed on the display unit.
図 12は、 従来の画像表示装置による処理と、 本発明に係る画像表示装置によ る処理とを比較する図である。 発明を実施するための最良の形態  FIG. 12 is a diagram comparing processing by the conventional image display device with processing by the image display device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい実施の形態について、 図面を参照しながら説明する。 図 1は、 本発明の一実施形態による画像表示装置のハードウエア構成を示す図 である。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a hardware configuration of an image display device according to an embodiment of the present invention.
図 1に示す画像表示装置は、 通常のコンピュータから構成され、 入力装置 1、 ROM (リードオンリメモリ) 2、 CPU (中央演算処理装置) 3、 RAM (ラ ンダムアクセスメモリ) 4、 外部記憶装置 5、 表示装置 6及び記録媒体駆動装置 7を備えて構成される。 各ブロックは内部のバスに接続され、 このバスを介して 種々のデータ等が入出力され、 CPU 3の制御の下、 種々の処理が実行される。 入力装置 1は、 キーボード、 マウス等から構成され、 操作者が種々のデータ及 び操作指令等を入力するために使用される。  The image display device shown in Fig. 1 is composed of a normal computer, and has an input device 1, a ROM (read only memory) 2, a CPU (central processing unit) 3, a RAM (random access memory) 4, and an external storage device 5. , Display device 6 and recording medium drive device 7. Each block is connected to an internal bus, and various data and the like are input / output via this bus, and various processes are executed under the control of the CPU 3. The input device 1 includes a keyboard, a mouse, and the like, and is used by an operator to input various data, operation commands, and the like.
ROM2には、 B IOS (Basic Input/Output System) 等のシステムプログラ ム等が記憶されている。 外部記憶装置 5は、 ハードディスクドライブ等から構成 され、 所定の〇S (Operating System) 及び後述する画像表示プログラム等が記 憶されている。 RAM 4は、 CPU 3の作業領域等として用いられる。  The ROM 2 stores system programs such as B IOS (Basic Input / Output System). The external storage device 5 is configured by a hard disk drive or the like, and stores a predetermined ΔS (Operating System), an image display program described later, and the like. The RAM 4 is used as a work area of the CPU 3 and the like.
表示装置 6は、 液晶表示装置、 CRT (陰極線管) 等から構成され、 CPU 3 の制御の基、 画像表示プログラムが実行されることによって作成される仮想的な 試着状態を表示する。  The display device 6 includes a liquid crystal display device, a cathode ray tube (CRT), and the like, and displays a virtual fitting state created by executing an image display program under the control of the CPU 3.
記録媒体駆動装置 7は、 DVD— ROMドライブ、 CD— ROMドライブ、 フ レキシブルディスクドライブ等から構成される。 なお、 画像表示プログラムを、 DVD— ROM、 CD-ROM, フレキシブルディスク等のコンピュータ読み取 り可能な記録媒体 8に記録し、 記録媒体駆動装置 7により記録媒体 8から画像処 理プログラムを読み出して外部記憶装置 5にインストールして実行するようにし てもよい。 また、 画像表示装置が通信装置等を備え、 画像表示プログラムが通信 ネットワークを介して接続された他のコンピュータに記憶されている場合、 当該 コンピュータからネットヮ一クを介して画像表示プログラムをダウン口一ドして 実行するようにしてもよい。 The recording medium drive 7 includes a DVD-ROM drive, a CD-ROM drive, a flexible disk drive, and the like. The image display program is recorded on a computer-readable recording medium 8 such as a DVD-ROM, a CD-ROM, or a flexible disk, and the recording medium driving device 7 reads out the image processing program from the recording medium 8 and externally stores the image processing program. Install and run on device 5 May be. When the image display device includes a communication device or the like and the image display program is stored in another computer connected via a communication network, the image display program is downloaded from the computer via the network. May be executed.
図 2は、 本発明に係る画像表示装置の機能を説明するためのブロック図である。 図 2に示すように、 画像表示装置は、 プログラム実行部 1 0 0、 記憶部 2 0 0及 び表示部 3 0 0を備えて構成される。 プログラム実行部 1 0 0は、 C P U 3が画 像表示プログラムを実行することにより実現され、 3次元データ取得部 1 0 1、 距離算出部 1 0 2、 対応表作成部 1 0 3、 固定点決定部 1 0 4、 処理順決定部 1 0 5、 質点抽出部 1 0 6、 重力計算部 1 0 7、 修正部 1 0 8、 衝突処理部 1 0 9 及び表示制御部 1 1 0を備えて構成される。 記憶部 2 0 0は、 RAM 4等から構 成され、 C P U 3が画像表示プログラムを実行することにより実現され、 3次元 データ記憶部 2 0 1及び対応表記憶部 2 0 2を備えて構成される。  FIG. 2 is a block diagram for explaining functions of the image display device according to the present invention. As shown in FIG. 2, the image display device includes a program execution unit 100, a storage unit 200, and a display unit 300. The program execution unit 100 is realized by the CPU 3 executing an image display program, and includes a three-dimensional data acquisition unit 101, a distance calculation unit 102, a correspondence table creation unit 103, and fixed point determination. Unit 104, processing order determination unit 105, mass point extraction unit 106, gravity calculation unit 107, correction unit 108, collision processing unit 109, and display control unit 110 Is done. The storage unit 200 includes a RAM 4 and the like, is realized by the CPU 3 executing an image display program, and includes a three-dimensional data storage unit 201 and a correspondence table storage unit 202. You.
3次元データ記憶部 2 0 1は、 仮想 3次元空間内において、 複数のポリゴンで 構成される人体モデルの 3次元データと、 複数のポリゴンで構成される衣服モデ ルの 3次元データとを記憶している。 3次元データ記憶部 2 0 1は、 人体モデル を構成するポリゴンの 3次元空間内における各頂点の座標を 3次元データとして 記憶しているとともに、 人体によって着用される衣服を表す衣服モデルを構成す るポリゴンの 3次元空間内における各頂点の座標を 3次元データとして記憶して いる。  The three-dimensional data storage unit 201 stores, in a virtual three-dimensional space, three-dimensional data of a human body model composed of a plurality of polygons and three-dimensional data of a clothing model composed of a plurality of polygons. ing. The three-dimensional data storage unit 201 stores, as three-dimensional data, the coordinates of each vertex of the polygons that make up the human body model in the three-dimensional space, and forms a clothing model that represents the clothes worn by the human body. The coordinates of each vertex in the 3D space of the polygon are stored as 3D data.
3次元データ取得部 1 0 1は、 3次元データ記憶部 2 0 1に記憶されている人 体モデルの 3次元データ及び衣服モデルの 3次元データを取得する。 なお、 衣服 モデルを構成する複数のポリゴンの頂点を質点とする。  The three-dimensional data acquisition unit 101 acquires the three-dimensional data of the human body model and the three-dimensional data of the clothing model stored in the three-dimensional data storage unit 201. Note that the vertices of a plurality of polygons constituting the clothing model are taken as mass points.
距離算出部 1 0 2は、 3次元データ取得部 1 0 1によって取得された衣服モデ ルを構成する複数のポリゴンの全ての質点に対し、 一の質点と他の質点との幾何 学的な距離を算出する。 幾何学的な距離とは、 衣服モデルを構成する複数のポリ ゴンにおける一の質点と他の質点とを結ぶ稜線の数を表している。 つまり、 距離 算出部 1 0 2は、 3次元データ取得部 1 0 1によって取得された衣服モデルを構 成する複数のポリゴンの全ての質点に対し、 一の質点と他の質点とを最短で結ぶ 稜線の数を算出する。 The distance calculation unit 102 calculates the geometric distance between one mass point and another mass point for all the mass points of a plurality of polygons constituting the clothing model acquired by the three-dimensional data acquisition unit 101. Is calculated. The geometric distance represents the number of ridge lines connecting one mass point and another mass point in a plurality of polygons constituting the clothing model. That is, the distance calculation unit 102 connects the one mass point and the other mass points with the shortest distance to all the mass points of the polygons constituting the clothing model acquired by the three-dimensional data acquisition unit 101. Calculate the number of edges.
対応表作成部 1 0 3は、 距離算出部 1 0 2によって算出された一の質点と他の 質点との幾何学的な距離をそれぞれ対応付けた対応表を作成する。 対応表作成部 1 0 3は、 距離算出部 1 0 2によって算出された一の質点と他の質点とを最短で 結ぶ稜線の数を行と列とから構成される 2次元の表形式の対応表として作成する。 対応表記憶部 2 0 2は、 対応表作成部 1 0 3によって作成された一の質点と他 の質点との幾何学的な距離をそれぞれ対応付けた対応表を記憶する。  The correspondence table creation unit 103 creates a correspondence table in which the geometric distances between one mass point calculated by the distance calculation unit 102 and another mass point are associated with each other. The correspondence table creation unit 103 is a two-dimensional table format that includes the number of ridges connecting the one mass point calculated by the distance calculation unit 102 and the other mass point in the shortest time, which is composed of rows and columns. Create as a table. The correspondence table storage unit 202 stores a correspondence table created by the correspondence table creation unit 103 and correlating the geometric distance between one mass point and another mass point.
固定点決定部 1 0 4は、 衣服モデルを構成する複数のポリゴンの質点の中から 固定する点を決定する。 固定点は、 重力の影響を受けることがない点であり、 固 定点決定部 1 0 4は、 衣服モデルを構成する複数のポリゴンの質点の中から、 人 体モデルと衣服モデルとが接触する質点を検出し、 検出された質点を固定点とし て決定する。  The fixed point determining unit 104 determines a fixed point from among the mass points of a plurality of polygons constituting the clothes model. The fixed point is a point that is not affected by gravity, and the fixed point determining unit 104 selects a material point at which the human body model and the clothing model come into contact from among a plurality of polygons constituting the clothing model. Is detected, and the detected mass point is determined as a fixed point.
処理順決定部 1 0 5は、 対応表記憶部 2 0 2に記憶されている対応表を参照し て、 重力計算部 1 0 7によって重力の影響を計算する質点の処理順序を決定する。 具体的に、 処理順決定部 1 0 5は、 対応表記憶部 2 0 2に記憶されている対応表 を参照して、 固定点決定部 1 0 4によって決定された固定点と、 固定点以外の各 質点とに対応付けられている幾何学的な距離が最小となる値を求め、 求めた値の 小さい順に処理順序を決定する。  The processing order determination unit 105 refers to the correspondence table stored in the correspondence table storage unit 202 to determine the processing order of the mass points for which the gravity calculation unit 107 calculates the influence of gravity. Specifically, the processing order determining unit 105 refers to the correspondence table stored in the correspondence table storage unit 202, and determines the fixed point determined by the fixed point determining unit 104 and the fixed point other than the fixed point. The value that minimizes the geometric distance associated with each mass point is determined, and the processing order is determined in ascending order of the determined values.
質点抽出部 1 0 6は、 処理順決定部 1 0 5によって決定された処理順序に従つ て、 衣服モデルを構成する複数のポリゴンの質点を抽出する。  The material point extracting unit 106 extracts material points of a plurality of polygons constituting the clothing model according to the processing order determined by the processing order determining unit 105.
重力計算部 1 0 7は、 質点抽出部 1 0 6によって抽出された衣服モデルを構成 する複数のポリゴンの各質点に作用する重力の影響を、 固定点決定部 1 0 4によ つて決定された固定点に基づいて逐次計算する。 なお、 重力計算部 1 0 7は、 固 定点決定部 1 0 4によって決定された固定点とリンクする質点に作用する重力の 修正部 1 0 8は、 重力計算部 1 0 7によって計算された重力の影響による質点 の移動を制約処理により人体モデルの形状に応じて逐次修正する。 すなわち、 修 正部 1 0 8は、 重力が作用することによって移動した質点を制約処理により人体 モデルの形状に応じた位置に修正する。 衝突処理部 1 0 9は、 衣服モデルを構成する複数のポリゴンの質点と人体モデ ルとが衝突することによって衣服モデルが受ける影響力を計算し、 計算された影 響力に基づいて衣服モデルの質点を移動させる。 また、 衝突処理部 1 0 9は、 少 なくとも人体モデルを覆う大きさの衝突判定モデルを設定し、 衣服モデルの質点 が当該衝突判定モデルに近づくにつれて当該質点に作用する斥力を大きくして衝 突処理を行う。 さらに、 衝突処理部 1 0 9は、 衣服モデルの質点と衝突判定モデ ルとの距離が、 所定の距離以下になった場合、 当該質点と衝突判定モデルとの衝 突検出を行い、 質点が衝突判定モデルに衝突すると検出された場合、 衝突処理を 行う。 The gravity calculation unit 107 determines the influence of gravity acting on each mass point of a plurality of polygons constituting the clothing model extracted by the mass point extraction unit 106 by the fixed point determination unit 104. Calculate sequentially based on fixed points. In addition, the gravity calculation unit 107 is configured to correct the gravity acting on the mass point linked to the fixed point determined by the fixed point determination unit 104, and the gravity calculation unit 107 is configured to calculate the gravity calculated by the gravity calculation unit 107. The movement of the mass point due to the influence of is gradually corrected by the constraint processing according to the shape of the human body model. That is, the correction unit 108 corrects the mass point moved by the action of gravity to a position corresponding to the shape of the human body model by the constraint processing. The collision processing unit 109 calculates the influence exerted on the clothes model by colliding the mass points of the polygons constituting the clothes model with the human body model, and based on the calculated influence, calculates the influence of the clothes model. Move the mass. Further, the collision processing unit 109 sets a collision judgment model at least large enough to cover the human body model, and increases the repulsive force acting on the mass point as the mass point of the clothing model approaches the collision judgment model. Perform collision processing. Further, when the distance between the mass point of the clothes model and the collision determination model becomes equal to or less than a predetermined distance, the collision processing unit 109 detects a collision between the mass point and the collision determination model, and the collision of the mass point occurs. If collision is detected with the judgment model, collision processing is performed.
表示制御部 1 1 0は、 修正部 1 0 8によって逐次修正された各質点を結ぶこと で形成される衣服モデルと、 3次元データ取得部 1 0 1によって取得された人体 モデルとを合成して表示部 3 0 0に表示するよう制御する。  The display control unit 110 combines the clothing model formed by connecting the mass points sequentially corrected by the correction unit 108 with the human body model obtained by the three-dimensional data obtaining unit 101. The display is controlled so as to be displayed on the display section 300.
表示部 3 0 0は、 表示装置 6等から構成され、 C P U 3が画像表示プログラム を実行することにより実現され、 修正部 1 0 8によって逐次修正された各質点を 結ぶことで形成される衣服モデルと、 3次元データ取得部 1 0 1によって取得さ れた人体モデルとを合成した仮想的な試着状態を表示する。 ' 図 3は、 図 2に示す画像表示装置による画像表示処理を説明するためのフロー チヤ一卜である。  The display unit 300 is constituted by a display device 6 and the like, is realized by the CPU 3 executing an image display program, and is formed by connecting the mass points sequentially corrected by the correction unit 108. And a virtual fitting state in which the human body model obtained by the three-dimensional data obtaining unit 101 is synthesized. FIG. 3 is a flowchart for explaining image display processing by the image display device shown in FIG.
ステツプ S 1において、 3次元データ取得部 1 0 1は、 3次元データ記憶部 2 0 1に記憶されている人体の 3次元画像 (人体モデル) を取得するとともに、 3 次元データ記憶部 2 0 1に記憶されている衣服の 3次元画像 (衣服モデル) を取 得する。  In step S1, the three-dimensional data acquisition unit 101 acquires the three-dimensional image (human body model) of the human body stored in the three-dimensional data storage unit 201, and acquires the three-dimensional data storage unit 201. Get the 3D image (clothes model) of the clothes stored in.
ステツプ S 2において、 距離算出部 1 0 2は、 3次元データ取得部 1 0 1によ つて取得された衣服モデルを構成する複数のポリゴンの全ての質点に対し、 一の 質点と他の質点とを最短で結ぶ稜線の数を算出する。  In step S2, the distance calculation unit 102 compares one mass point and another mass point with respect to all the mass points of a plurality of polygons constituting the clothes model acquired by the three-dimensional data acquisition unit 101. Calculate the number of ridge lines connecting the shortest.
ステップ S 3において、 対応表作成部 1 0 3は、 距離算出部 1 0 2によって算 出された一の質点と他の質点との幾何学的な距離をそれぞれ対応付けた対応表を 作成し、 作成した対応表を対応表記憶部 2 0 2に記憶する。  In step S3, the correspondence table creation unit 103 creates a correspondence table in which the geometric distances between one mass point calculated by the distance calculation unit 102 and another mass point are associated with each other, The created correspondence table is stored in the correspondence table storage unit 202.
図 4は、 衣服モデルを構成する複数のポリゴンの各質点間における幾何学的な 距離を説明するための図であり、 図 4 ( a ) は、 衣服モデルを構成する複数のポ リゴンの一例を示す図であり、 図 4 ( b) は、 図 4 ( a ) に示す衣服モデルにお ける各質点の幾何学的な距離の対応表を示す図である。 Figure 4 shows the geometrical shape between the mass points of the polygons that make up the clothes model. FIG. 4 (a) is a diagram illustrating an example of a plurality of polygons constituting a clothing model, and FIG. 4 (b) is a diagram illustrating a clothing model shown in FIG. 4 (a). FIG. 6 is a diagram showing a correspondence table of geometric distances of each mass point in the embodiment.
図 4 ( a ) に示すように、 衣服モデルを構成する複数のポリゴンは、 質点 a〜 jを有している。 ここで、 質点 aについて見てみると、 質点 aから質点 b , c , d , e, f , gまでの幾何学的な距離は、 質点 aと質点 b , c , d , e , f , g とを最短で結ぶ稜線の数が 1つなので、 それぞれ 1となる。 また、 質点 aから質 点 h , i, jまでの幾何学的な距離は、 質点 aと質点 h , i , jとを最短で結ぶ 稜線の数が 2つなので、 それぞれ 2となる。 また、 質点 bについて見てみると、 質点 bから質点 a, c , dまでの幾何学的な距離は、 それぞれ 1となり、 質点 b から質点 e , f , g , hまでの幾何学的な距離は、 それぞれ 2となり、 質点 bか ら質点 i , jまでの幾何学的な距離は、 それぞれ 3となる。  As shown in FIG. 4 (a), a plurality of polygons constituting the clothing model have mass points a to j. Here, looking at mass a, the geometric distance from mass a to mass b, c, d, e, f, g is the mass of mass a and mass b, c, d, e, f, g Since the number of ridge lines connecting the shortest to is one, each is 1. Also, the geometric distance from the point a to the points h, i, j is 2 because the number of ridge lines connecting the points a, h, i, j with the shortest is two. Looking at point b, the geometric distance from point b to points a, c, and d is 1, and the geometric distance from point b to points e, f, g, and h. Are 2 respectively, and the geometric distance from mass point b to mass points i and j is 3 respectively.
このように、 距離算出部 1 0 2は、 3次元データ取得部 1 0 1によって取得さ れた衣服モデルを構成する複数のポリゴンの全ての質点に対し、 一の質点と他の 質点とを最短で結ぶ稜線の数を算出し、 対応表作成部 1 0 3は、 距離算出部 1 0 2によって算出された一の質点と他の質点とを最短で結ぶ稜線の数を行と列とか ら構成される 2次元の表形式の対応表として作成する。 すなわち、 図 4 ( b) に 示すように、 対応表作成部 1 0 3は、 距離算出部 1 0 2によって算出された質点 aと他の質点 b〜 jとを最短で結ぶ稜線の数を行と列とから構成される 2次元の 表形式の対応表として作成し、 作成した対応表を対応表記憶部 2 0 2に記憶する。 図 3に戻って、 ステップ S 4において、 固定点決定部 1 0 4は、 衣服モデルを 構成する複数のポリゴンの質点の中から、 人体モデルと衣服モデルとが接触する 質点を検出し、 検出された質点を重力の作用を反映させない固定点として決定す る。 例えば、 衣服がワンピースやシャツなどである場合、 首部分から肩部分にか けての質点が固定点として決定される。  As described above, the distance calculation unit 102 determines the shortest distance between one mass point and another mass point for all the mass points of the polygons forming the clothes model acquired by the three-dimensional data acquisition unit 101. The correspondence table creation unit 103 comprises the number of ridge lines connecting the one mass point and the other mass point calculated by the distance calculation unit 102 as short as possible from rows and columns. Create as a two-dimensional table format correspondence table. That is, as shown in FIG. 4 (b), the correspondence table creation unit 103 calculates the number of ridge lines connecting the mass point a calculated by the distance calculation unit 102 and the other mass points b to j in the shortest. It is created as a two-dimensional table-type correspondence table composed of and a column, and the created correspondence table is stored in the correspondence table storage unit 202. Returning to FIG. 3, in step S4, the fixed point determining unit 104 detects a mass point at which the human body model and the clothing model are in contact from among the mass points of a plurality of polygons constituting the clothing model, and detects the detected mass point. Is determined as a fixed point that does not reflect the effect of gravity. For example, if the clothing is a dress or a shirt, the mass from the neck to the shoulder is determined as the fixed point.
なお、 本実施形態では、 固定点決定部 1 0 4は、 衣服モデルを構成する複数の ポリゴンの質点の中から、 人体モデルと衣服モデルとが接触する質点を固定点と して決定しているが、 本発明は特にこれに限定されず、 例えば、 表示装置 6に衣 服モデルを表示し、 表示されている衣服モデルに対して、 ユーザが入力装置 1を 用いて固定点を設定してもよい。 In the present embodiment, the fixed point determining unit 104 determines, as a fixed point, a material point at which the human body model and the clothing model are in contact from among the plurality of polygons constituting the clothing model. However, the present invention is not particularly limited thereto. For example, a clothing model is displayed on the display device 6, and the user operates the input device 1 with respect to the displayed clothing model. The fixed point may be set by using this.
ステップ S 5において、 処理順決定部 1 0 5は、 対応表記憶部 2 0 2に記憶さ れている対応表を参照して、 固定点決定部 1 0 4によって決定された固定点と、 固定点以外の各 点とに対応付けられている幾何学的な距離が最小となる値を求 め、 求めた値の小さい順に処理順序を決定する。  In step S5, the processing order determination unit 105 refers to the correspondence table stored in the correspondence table storage unit 202, and refers to the fixed point determined by the fixed point determination unit 104 and the fixed point. The value that minimizes the geometric distance associated with each point other than the point is determined, and the processing order is determined in ascending order of the determined value.
図 5は、 処理順序の決定について説明するための図であり、 図 5 ( a ) は、 衣 服モデルを構成する複数のポリゴンの一例を示す図であり、 図 5 ( b) は、 図 5 ( a ) に示す質点 b、 cを固定点とした場合の固定点 b , cと、 固定点 b , c以 外の各質点 a , d〜jとの対応表を示す図であり、 図 5 ( c ) は、 図 5 ( b) の b行及び c行のうちの最小値を、 質点 a〜 jに対応付けて示す図である。  FIG. 5 is a diagram for explaining the determination of the processing order. FIG. 5 (a) is a diagram showing an example of a plurality of polygons constituting a clothing model, and FIG. FIG. 5 is a diagram showing a correspondence table between the fixed points b and c when the mass points b and c shown in (a) are fixed points and the mass points a and d to j other than the fixed points b and c. (c) is a diagram showing the minimum values of rows b and c in FIG. 5 (b) in association with mass points a to j.
図 5 ( a ) に示す質点 bと質点 cとを固定点とすると、 固定点 bから固定点 b 以外の質点 a, c〜 jまでの幾何学的な距離、 及び固定点 cから固定点 c以外の 質点 a, b , d〜jまでの幾何学的な距離は、 図 5 ( b) に示すように対応付け られる。 そして、 固定点 b, じと、 固定点 b, c以外の各質点 a , d〜;) 'とに対 応付けられている幾何学的な距離が最小となる値は、 図 5 ( c ) に示すように対 応付けられる。 すなわち、 図 5 ( c ) に示すように、 固定点 bと質点 aとの幾何 学的な距離は 1であり、 固定点 cと質点 aとの幾何学的な距離は 1であるため、 固定点 b, cに対応する質点 aの最小値は 1となり、 固定点 bと質点 dとの幾何 学的な距離は 1であり、 固定点 cと質点 dとの幾何学的な距離は 2であるため、 固定点 b, cに対応する質点 dの最小値は 1となる。 同様に、 固定点 b , cに対 応する質点 eの最小値は 1となり、 固定点 b, cに対応する質点 fの最小値は 2 となり、 固定点 b , cに対応する質点 gの最小値は 2となり、 固定点 b, cに対 応する質点 hの最小値は 2となり、 固定点 b, cに対応する質点 iの最小値は 3 となり、 固定点 b, cに対応する質点 jの最小値は 3となる。  Assuming that the fixed points b and c shown in Fig. 5 (a) are fixed points, the geometric distance from fixed point b to the points a and c to j other than fixed point b, and fixed point c to fixed point c The geometric distances to the other mass points a, b, and d to j are associated as shown in Fig. 5 (b). Then, the value that minimizes the geometric distance associated with the fixed points b and j and the mass points a and d to other than the fixed points b and c) is as shown in Fig. 5 (c). Corresponding as shown in That is, as shown in Fig. 5 (c), the geometric distance between the fixed point b and the mass point a is 1, and the geometric distance between the fixed point c and the mass point a is 1. The minimum value of the mass point a corresponding to the points b and c is 1, the geometric distance between the fixed point b and the mass point d is 1, and the geometric distance between the fixed point c and the mass point d is 2. Therefore, the minimum value of the mass point d corresponding to the fixed points b and c is 1. Similarly, the minimum value of the mass point e corresponding to the fixed points b and c is 1, the minimum value of the mass point f corresponding to the fixed points b and c is 2, and the minimum value of the mass point g corresponding to the fixed points b and c. The value is 2, the minimum value of the mass point h corresponding to the fixed points b and c is 2, the minimum value of the mass point i corresponding to the fixed points b and c is 3, and the mass j corresponding to the fixed points b and c The minimum value of is 3.
このように、 処理順決定部 1 0 5は、 対応表記憶部 2 0 2に記憶されている対 応表を参照して、 固定点決定部 1 0 4によって決定された固定点 b, じと、 固定 点 b , c以外の各質点 a , d〜: iとに対応付けられている幾何学的な距離が最小 となる値を求め、 求めた値の小さい順、 つまり図 5の例では質点 a、 質点 d、 質 点 e、 質点 f、 質点 g、 質点 h、 質点 i及び質点 jの順番で処理順序を決定する。 図 3に戻って、 ステップ S 6において、 質点抽出部 1 0 6は、 処理順決定部 1 0 5によって決定された処理順序に従って、 衣服モデルを構成する複数のポリゴ ンの複数の質点の中から、 1の質点を抽出する。 すなわち、 図 5の例では、 質点 抽出部 1 0 6は、 質点 aをまず抽出し、 その後、 質点 d、 質点 e、 質点 、 質点 g、 質点 h、 質点 i及び質点 jの順番で質点を抽出することとなる。 In this way, the processing order determination unit 105 refers to the correspondence table stored in the correspondence table storage unit 202, and refers to the correspondence table stored in the correspondence table storage unit 202. , The fixed points b and c, except for the mass points a and d ~: The value that minimizes the geometric distance associated with i is determined. In the example shown in FIG. The processing order is determined in the order of a, mass d, mass e, mass f, mass g, mass h, mass i and mass j. Returning to FIG. 3, in step S6, the mass point extraction unit 106 selects a plurality of polygons of the plurality of polygons constituting the clothing model in accordance with the processing order determined by the processing order determination unit 105. , 1 to extract the mass point. That is, in the example of FIG. 5, the mass point extraction unit 106 first extracts the mass point a, and then extracts the mass points in the order of mass point d, mass point e, mass point, mass point g, mass point h, mass point i, and mass point j. Will be done.
ステップ S 7において、 重力計算部 1 0 7は、 質点抽出部 1 0 6によって抽出 された質点について重力の影響を計算する。 ここで、 重力計算部 1 0 7による重 力計算処理について説明する。  In step S7, the gravity calculation unit 107 calculates the influence of gravity on the mass points extracted by the mass point extraction unit 106. Here, the gravity calculation processing by the gravity calculation unit 107 will be described.
図 6は、 各質点毎に作用する重力の影響を計算する重力計算処理について説明 するための図である。 図 6では、 衣服モデルを構成する複数のポリゴンの質点を a l、 a 2、 a 3、 b 1 > b 2、 b 3、 c l、 c 2及び c 3としている。 ここで、 質点 a l , a 2 , a 3を固定点とし、 質点 b 2に重力計算処理を施す場合につい て説明する。  FIG. 6 is a diagram for explaining gravity calculation processing for calculating the influence of gravity acting on each mass point. In FIG. 6, the mass points of a plurality of polygons constituting the clothing model are set to a1, a2, a3, b1> b2, b3, cl, c2, and c3. Here, a case where the mass points a l, a 2, and a 3 are fixed points and gravity calculation processing is performed on the mass point b 2 will be described.
重力計算部 1 0 7は、 固定点決定部 1 0 4によって決定された固定点 a 1, a 2 , a 3とリンクする質点 b 2に作用する重力の影響を、 固定点 a l, a 2 , a 3に基づいて計算する。 すなわち、 重力計算部 1 0 7は、 質点 b 2に重力計算処 理を施す場合、 質点 b 2にリンクしている固定点 a 1 , a 2 , a 3と質点 b 2の 位置との関係のみを計算する。  The gravity calculation unit 107 calculates the influence of gravity acting on the mass point b 2 linked to the fixed points a 1, a 2, a 3 determined by the fixed point determination unit 104, as fixed points al, a 2, Calculate based on a3. That is, when performing gravity calculation on the mass point b 2, the gravity calculation unit 107 only determines the relationship between the fixed points a 1, a 2, a 3 linked to the mass point b 2 and the position of the mass point b 2 Is calculated.
図 3に戻って、 ステップ S 8において、 修正部 1 0 8は、 重力計算部 1 0 7に よって計算された質点に対して収束処理を行うことによって質点の移動 (いわゆ る、 伸び) を逐次修正するとともに、 衝突処理部 1 0 9は、 衣服モデルを構成す る複数のポリゴンの各質点に人体モデルとの衝突処理を行う。  Returning to FIG. 3, in step S8, the correction unit 108 performs convergence processing on the mass point calculated by the gravity calculation unit 107 to thereby move the mass point (so-called elongation). In addition to the sequential correction, the collision processing unit 109 performs a collision process with the human body model on each mass point of a plurality of polygons constituting the clothing model.
すなわち、 図 6に示すように、 修正部 1 0 8は、 重力計算部 1 0 7によって計 算された質点 b 2に対して収束処理を行うことによって質点の移動を逐次修正し、 人体モデルの形状に沿う位置に質点を移動させる。 また、 修正された質点 b 2は、 固定点として、 質点 b 2にリンクしている質点 c 1、 質点 c 2及び質点 c 3にお ける重力計算処理に用いられる。  That is, as shown in FIG. 6, the correction unit 108 sequentially corrects the movement of the mass point by performing convergence processing on the mass point b2 calculated by the gravity calculation unit 107, and Move the mass to a position along the shape. Further, the corrected mass point b2 is used as a fixed point in the gravity calculation process for the mass points c1, c2 and c3 linked to the mass point b2.
図 7は、 衣服モデルを構成する複数のポリゴンの質点を逐次修正する処理につ いて説明するための図であり、 図 7 ( a ) は、 衣服モデルを構成する複数のポリ ゴンの質点の状態を示す図であり、 図 7 (b) は、 重力計算処理後の衣服モデル を構成する複数のポリゴンの質点の状態を示す図であり、 図 7 (c) は、 修正後 の衣服モデルを構成する複数のポリゴンの質点の状態を示す図である。 FIG. 7 is a diagram for explaining a process of sequentially correcting the mass points of a plurality of polygons constituting the clothes model, and FIG. 7 (a) is a diagram illustrating a plurality of polygons constituting the clothes model. Fig. 7 (b) is a diagram showing the state of mass points of the gon, Fig. 7 (b) is a diagram showing the state of mass points of a plurality of polygons constituting the clothing model after the gravity calculation processing, and Fig. 7 (c) is FIG. 6 is a diagram showing a state of mass points of a plurality of polygons constituting the clothing model of FIG.
図 7 (a) に示す衣服モデルは、 質点 v l〜v 5, wl〜w5, xl〜x5, y l〜y5を有している。 図 7 (a) において、 複数のポリゴンで構成される衣 服モデルの質点 w 2に対して重力による影響を計算すると、 図 7 (b) に示すよ うに、 質点 w2は、 重力の作用により下方に移動する。 そして、 修正部 108は、 重力の作用により下方に移動した質点 w 2に対して、 制約処理により逐次修正す る処理を行う。  The clothing model shown in FIG. 7A has mass points v l to v 5, wl to w5, xl to x5, and y l to y5. In Fig. 7 (a), when the effect of gravity on the mass point w2 of the clothes model composed of multiple polygons is calculated, as shown in Fig. 7 (b), the mass point w2 becomes lower due to the effect of gravity. Go to Then, the correction unit 108 performs a process of sequentially correcting the mass point w2 moved downward by the action of gravity by the constraint process.
ここで、 制約処理について説明する。 本実施形態における制約処理の制約条件 には、 質点間の距離制約と質点間の曲げ制約との 2つがある。 このうち、 後者の 質点間の曲げ制約は、 前者の質点間の距離制約に落とし込むことができるので、 本実施形態では、 質点間の距離制約のみを制約条件とする。 質点間の距離制約は、 単純に 2つの質点の位置関係を列挙することで実現することができる。 つまり、 質点の位置の修正量 dEは、 下記の (1) 式で表すことができ、 質点のベクトル の修正量 dVは、 下記の (2) 式で表すことができる。  Here, the constraint processing will be described. There are two types of constraints in the constraint processing in this embodiment, a distance constraint between mass points and a bending constraint between mass points. Among them, the latter bending constraint between mass points can be reduced to the former distance constraint between mass points. Therefore, in the present embodiment, only the distance constraint between mass points is used as a constraint condition. The distance constraint between mass points can be realized by simply listing the positional relationship between the two mass points. That is, the correction amount dE of the position of the mass point can be expressed by the following equation (1), and the correction amount dV of the vector of the mass point can be expressed by the following equation (2).
dE= (i 1— c 1) /c 1 * 1 ambd a · · · · (1)  dE = (i 1— c 1) / c 1 * 1 ambd a
dV=v* dE · · · · (2)  dV = v * dE
ただし、 dVは質点の修正量 (ベクトル) を表し、 Vは 2つの質点間の差分べ クトルを表し、 dEは質点の修正量を表し、 i 1は 2つの質点間の初期の長さを 表し、 c 1は 2つの質点の現在の長さを表し、 1 amb d aは修正量に対する固 定値を表している。  Where dV represents the correction amount (vector) of the mass point, V represents the difference vector between the two mass points, dE represents the correction amount of the mass point, and i1 represents the initial length between the two mass points. , C 1 represents the current length of the two mass points, and 1 amb da represents a fixed value for the correction amount.
そして、 1つの質点に対して n個の質点が接続されているので、 1回の制約処 理で修正される量は、 ∑dVとなる。  Then, since n mass points are connected to one mass point, the amount corrected by one constraint processing is ∑dV.
図 7 (c) に示すように、 修正部 108は、 重力の作用により下方に移動した 質点 w 2に対して、 制約処理により修正量を求め、 求められた修正量に基づいて その位置を修正することによって、 質点 w 2は上方に移動し、 人体モデルの形状 に沿った位置に移動することとなる。 このように、 固定点から質点に作用する重 力による移動量を計算し、 計算された移動量に基づいて質点の位置を移動させ、 質点の位置を修正する制約処理が各質点毎に行われる。 したがって、 全ての質点 について一括して重力による移動量を計算し、 計算された移動量に基づいて全て の質点の位置を移動させ、 一点一点修正する処理を行う従来の処理に比べて、 重 力の作用によつて移動する質点の移動量が小さくなるため、 重力の作用によって 移動した質点を修正する処理に要する処理時間を短縮することができ、 全体の処 理時間を短縮することができる。 As shown in FIG. 7 (c), the correction unit 108 obtains the correction amount of the mass point w2 moved downward by the action of gravity by the constraint processing, and corrects the position based on the obtained correction amount. As a result, the mass point w 2 moves upward and moves to a position along the shape of the human body model. In this way, the movement amount due to the gravity acting on the mass point from the fixed point is calculated, and the position of the mass point is moved based on the calculated movement amount, Restriction processing for correcting the position of the mass point is performed for each mass point. Therefore, compared to the conventional process of calculating the movement amount due to gravity collectively for all mass points, moving the positions of all mass points based on the calculated movement amount, and correcting each point one by one, Since the amount of movement of the mass moved by the action of gravity is reduced, the processing time required to correct the mass moved by the action of gravity can be reduced, and the overall processing time can be reduced. it can.
また、 ステップ S 8において、 衝突処理部 109は、 少なくとも人体モデルの 周囲を覆う衝突球 (衝突判定モデルに相当する) を設定し、 設定された衝突球に 衣服モデルの質点が近づくにつれて、 人体から衣服を押し返す力を表す斥力を大 きくして質点と衝突球との衝突処理を行う。  Also, in step S8, the collision processing unit 109 sets a collision ball (corresponding to a collision determination model) that covers at least the periphery of the human body model, and as the mass point of the clothing model approaches the set collision ball, The repulsion, which represents the force to push back the clothes, is increased to perform the collision process between the mass point and the collision ball.
図 8は、 衝突処理について説明するための図であり、 図 8 (a) は、 衝突前の 衣服モデルの状態を示す図であり、 図 8 (b) は、 衝突後の衣服モデルの状態を 示す図である。  Fig. 8 is a diagram for explaining the collision process. Fig. 8 (a) is a diagram showing the state of the clothing model before the collision, and Fig. 8 (b) is a diagram showing the state of the clothing model after the collision. FIG.
図 8 (a) に示す衣服モデルに対して、 図 8 (b) に示す衝突球 Sを衝突させ ると、 衝突処理部 109は、 衝突処理を行い、 質点 v5, w5, x 5をそれぞれ 図 8 (b) に示すように移動させる。 その結果、 衣服モデルが人体モデルに入り 込むといった不自然な状態を防ぐことができる。  When the colliding sphere S shown in FIG. 8 (b) collides with the clothing model shown in FIG. 8 (a), the collision processing unit 109 performs a collision process, and maps the mass points v5, w5, and x5 respectively. 8 Move as shown in (b). As a result, it is possible to prevent an unnatural state in which the clothes model enters the human body model.
図 9は、 衣服モデルの質点に働く斥力について説明するための図である。 図 9 に示すように、 斥力の上限値を Kとすると、 衝突球 Sの中心から (R+b) だけ 離れた位置から衝突球 Sに接触する位置までの質点に働く斥力は、 K一 T3で表さ れる。 なお、 T= (R + b— 1) /bであり、 1は衝突球 Sの中心と質点との距 離を表し、 Rは衝突球 Sの半径を表し、 bは衝突球 Sの周りの減衰領域を表して いる。 FIG. 9 is a diagram for explaining a repulsive force acting on a mass point of the clothing model. As shown in Fig. 9, assuming that the upper limit of the repulsive force is K, the repulsive force acting on the mass from the position (R + b) away from the center of the collision ball S to the position in contact with the collision ball S is K-T It is represented by 3 . Note that T = (R + b-1) / b, 1 represents the distance between the center of the collision sphere S and the mass point, R represents the radius of the collision sphere S, and b represents the area around the collision sphere S. Represents the attenuation region.
すなわち、 衝突処理部 109は、 あらかじめ設定された衝突球 Sに衣服モデル の質点が近づくにつれて、 人体から衣服を押し返す力を表す斥力を大きくし、 衝 突球 Sと質点とを結ぶ直線上において斥力による修正量を求め、 求めた修正量に 基づいて質点を移動させる。  That is, as the mass point of the clothing model approaches the collision ball S set in advance, the collision processing unit 109 increases the repulsive force representing the force that pushes the clothes back from the human body, and the repulsive force on the straight line connecting the collision ball S and the mass point. Then, the mass is moved based on the obtained correction amount.
• 図 10は、 本実施形態における衝突球について説明するための図であり、 図 1 0 (a) は、 人体モデルを示す図であり、 図 10 (b) は、 衝突球を示す図であ り、 図 1 0 ( c ) は、 図 1 0 ( a ) に示す人体モデルと、 図 1 0 ( b ) に示す衝 突球とを重ね合わせた図である。 • FIG. 10 is a diagram for explaining a collision sphere in the present embodiment. FIG. 10 (a) is a diagram showing a human body model, and FIG. 10 (b) is a diagram showing a collision sphere. FIG. 10 (c) is a diagram in which the human body model shown in FIG. 10 (a) and the impact ball shown in FIG. 10 (b) are superimposed.
衝突処理部 1 0 9は、 人体モデル J Mに対応する衝突球 S Mを記憶部 2 0 0か ら読み出し、 読み出された衝突球 S Mと人体モデル J Mとを重ね合わせた合成モ デル GMを用いて衝突処理を行う。 図 1 0 ( b) に示すように、 衝突球 S Mは、 衣服と人体との間隙の分だけ幅を持たせるとともに、 人体モデル J Mの首部分か ら左右の指先部分及び左右の足首部分までを覆うように予め設定されている。 し たがって、 図 1 0 ( c ) に示すように、 人体モデル J Mと衝突球 S Mとを重ね合 わせた場合、 人体モデル J Mは、 衣服と人体との間隙の分だけ幅を持たせるとと もに、 首部分から左右の指先部分及び左右の足首部分までが衝突球 S Mで覆われ、 この衝突球 S Mと衣服モデルの質点との衝突処理を行う。  The collision processing unit 109 reads out the collision sphere SM corresponding to the human body model JM from the storage unit 200, and uses the composite model GM obtained by superimposing the read collision sphere SM and the human body model JM. Perform collision processing. As shown in Fig. 10 (b), the collision sphere SM has a width corresponding to the gap between the clothes and the human body, and extends from the neck of the human body model JM to the left and right fingertips and the left and right ankles. It is set in advance to cover. Therefore, as shown in Fig. 10 (c), when the human body model JM and the collision sphere SM are superimposed, the human body model JM has a width equal to the gap between the clothes and the human body. In particular, the area from the neck to the left and right fingertips and the left and right ankles is covered with the collision sphere SM, and the collision sphere SM and the mass point of the clothing model are subjected to collision processing.
このように、 衣服モデルを構成する複数のポリゴンの各質点毎に人体モデルと の衝突処理が行われるので、 衣服モデルが人体モデルに入り込む不具合が解消さ れ、 より現実感のある試着状態をリアルタイムに表示することができる。  In this way, collision processing with the human body model is performed for each mass point of a plurality of polygons that make up the clothing model, thereby eliminating the problem of the clothing model entering the human body model and realizing a more realistic fitting state in real time. Can be displayed.
また、 衝突処理が行われた質点が固定点として決定されるので、 衝突によって 移動した質点が固定点として決定され、 この固定点とリンクする質点に作用する 重力の影響による移動は小さくなるので、 質点の重力の影響を元に戻す計算に要 する時間を短縮することができる。  In addition, since the mass point subjected to the collision processing is determined as a fixed point, the mass point moved by the collision is determined as the fixed point, and the movement due to the influence of gravity acting on the mass point linked to the fixed point becomes small. The time required for the calculation to undo the effect of gravity on the mass point can be reduced.
また、 少なくとも人体モデル J Mを覆う大きさの衝突球 S M (衝突判定モデ ル) が設定され、 質点が当該衝突球 S Mに近づくにつれて当該質点に作用する斥 力を大きくして衝突処理が行われるので、 衝突処理を容易に行うことができる。 なお、 本実施形態では、 衝突処理部 1 0 9は、 少なくとも人体モデルの周囲を 覆う衝突球 Sを設定し、 設定された衝突球 Sに衣服モデルの質点が近づくにつれ て、 人体から衣服を押し返す力を表す斥力を大きくして質点と衝突球 Sとの衝突 処理を行っているが、 本発明は特にこれに限定されず、 衝突処理部 1 0 9ば、 質 点と人体モデルを構成する複数のポリゴン面との衝突検出を行い、 質点が人体モ デルを構成するポリゴン面に衝突すると検出された場合、 質点と人体モデルを構 成するポリゴン面との衝突処理を行ってもよい。 つまり、 衝突処理部 1 0 9は、 質点と人体モデルを構成するポリゴン面との衝突検出を行い、 質点が人体モデル を構成するポリゴン面に衝突すると検出された場合、 質点がポリゴン面に入射す る入射角及び質点がポリゴン面から反射する反射角の関係により衝突処理を行う。 この場合、 質点と人体モデルを構成する複数のポリゴン面との衝突検出が行わ れ、 質点が人体モデルを構成するポリゴン面に衝突すると検出された場合に質点 と人体モデルを構成するポリゴン面との衝突処理が行われるので、 より確実に衝 突処理を行うことができ、 衣服モデルが人体モデルに入り込む不具合をより確実 に解消することができる。 Also, a collision sphere SM (collision determination model) large enough to cover at least the human body model JM is set, and as the mass approaches the collision sphere SM, the repulsive force acting on the mass is increased to perform collision processing. However, collision processing can be easily performed. In the present embodiment, the collision processing unit 109 sets a collision ball S covering at least the periphery of the human body model, and pushes the clothes back from the human body as the mass point of the clothing model approaches the set collision ball S. The collision processing between the mass point and the collision sphere S is performed by increasing the repulsive force representing the force. However, the present invention is not particularly limited to this. When a collision is detected with a polygon surface of the human body model and it is detected that the mass point collides with a polygon surface constituting the human body model, a collision process between the mass point and the polygon surface constituting the human body model may be performed. That is, the collision processing unit 109 detects a collision between the mass point and the polygon surface forming the human body model, and If it is detected that a collision occurs with the polygon surface constituting the polygon, collision processing is performed based on the relationship between the incident angle at which the mass point enters the polygon surface and the reflection angle at which the mass point reflects from the polygon surface. In this case, a collision between the mass point and a plurality of polygon surfaces constituting the human body model is detected, and when it is detected that the mass point collides with the polygon surface constituting the human body model, the collision between the mass point and the polygon surface constituting the human body model is performed. Since the collision processing is performed, the collision processing can be performed more reliably, and the problem that the clothes model enters the human body model can be more reliably eliminated.
また、 上述した 2つの衝突処理方法を組み合わせてもよい。 すなわち、 衝突処 理部 1 0 9は、 少なくとも前記人体モデルを覆う大きさの衝突判定モデルを設定 し、 前記質点が当該衝突判定モデルに近づくにつれて当該質点に作用する斥力を 大きくして衝突処理を行った後、 質点と人体モデルを構成する複数のポリゴン面 との衝突検出を行い、 質点が人体モデルを構成するポリゴン面に衝突すると検出 された場合、 質点と人体モデルを構成するポリゴン面との衝突処理を行う。  Further, the two collision processing methods described above may be combined. That is, the collision processing unit 109 sets a collision judgment model at least large enough to cover the human body model, and increases the repulsive force acting on the mass point as the mass approaches the collision judgment model to perform the collision processing. After that, the collision between the mass point and the polygon surfaces that make up the human body model is detected, and if it is detected that the mass point collides with the polygon surface that makes up the human body model, the collision between the mass point and the polygon surface that makes up the human body model is detected. Perform collision processing.
この場合、 まず、 質点が衝突球 S Mに近づくにつれて当該質点に作用する斥力 を大きくして衝突処理が行われ、 この衝突処理が行われた後さらに、 質点と人体 モデル J Mを構成する複数のポリゴン面との衝突検出を行い、 質点が人体モデル J Mを構成するポリゴン面に衝突 (交差) すると検出された場合、 質点と人体モ デルを構成するポリゴン面との衝突処理が行われる。 このように、 2つの衝突処 理を組み合わせることで、 前者の衝突処理で質点が人体モデル内に入り込んでし まったとしても、 後者の衝突処理でそれを解消することができ、 衣服モデルが人 体モデルに入り込んでしまう不具合をより確実に解消することができる。  In this case, first, as the mass approaches the collision sphere SM, collision processing is performed by increasing the repulsive force acting on the mass. After the collision processing is performed, the mass and the polygons that make up the human body model JM are further increased. When a collision with a surface is detected and a particle is detected to collide (intersect) with a polygon surface constituting the human body model JM, collision processing between the mass point and the polygon surface constituting the human body model is performed. In this way, by combining the two collision processes, even if the mass enters the human body model in the former collision process, it can be resolved by the latter collision process. The inconvenience of getting into the body model can be more reliably eliminated.
図 3に戻って、 ステップ S 9において、 修正部 1 0 8は、 衣服モデルを構成す る複数のポリゴンの全ての質点について修正処理が終了したか否かを判断する。 ここで、 全ての質点について修正処理が終了したと判断されると (ステップ S 9 で YE S ) 、 ステップ S I 0に移行し、 全ての質点について修正処理が終了して いないと判断されると (ステップ S 9で N O) 、 ステップ S 4に戻ることとなる。 そして、 ステップ S 4において、 固定点決定部 1 0 4は、 修正処理が終了した質 点を新たに固定点として決定し、 ステップ S 5以下の処理を実行する。  Returning to FIG. 3, in step S9, the correction unit 108 determines whether or not the correction processing has been completed for all the mass points of a plurality of polygons constituting the clothing model. If it is determined that the correction processing has been completed for all the mass points (YE S in step S9), the process proceeds to step SI0, and if it is determined that the correction processing has not been completed for all the mass points ( (NO in step S9), and the process returns to step S4. Then, in step S4, the fixed point determination unit 104 newly determines the material point after the correction processing as a fixed point, and executes the processing in step S5 and subsequent steps.
ステップ S 1 0において、 修正部 1 0 8は、 衣服モデルが有する全ての質点に ついて一括して修正処理を行うとともに、 衝突処理部 1 0 9は、 衣服モデルが有 する全ての質点について一括して衝突処理を行う。 なお、 ここでの処理は、 ステ ップ S 8における質点毎の修正処理及び衝突処理で修正し切れなかった場合のた めに、 全ての質点について一括して修正処理及び衝突処理を行うことで、 より確 実に質点を修正するものである。 In step S10, the correction unit 108 applies all the mass points of the clothes model The collision processing unit 109 collectively performs the collision processing on all the mass points of the clothes model. Note that the processing here is performed by performing correction processing and collision processing for all mass points collectively, in case the correction processing and collision processing for each mass point in Step S8 fail to complete the correction. It is more reliable to correct the mass point.
ステップ S 1 1において、 表示制御部 1 1 0は、 衝突処理部 1 0 9によって衝 突処理が施された衣服モデルと、 3次元データ取得部 1 0 1によって取得された 人体モデルとを合成し、 合成した 3次元データを表示部 3 0 0に出力する。 表示 部 3 0 0は、 表示制御部 1 1 0から出力される 3次元データに応じて、 人体モデ ルが衣服モデルを仮想的に試着している状態を表示する。 そして、 ステップ S 4 に戻り、 ステップ S 4からステップ S 1 1までの処理が、 所定のフレームレート、 例えば 3 0 f p s (frame per second) で繰り返し行われることによって、 リア ルタイムに試着状態を表示することができる。 '  In step S11, the display control unit 110 combines the clothes model subjected to the collision processing by the collision processing unit 109 with the human body model acquired by the three-dimensional data acquisition unit 101. The synthesized three-dimensional data is output to the display unit 300. The display unit 300 displays a state in which the human body model is virtually trying on the clothing model according to the three-dimensional data output from the display control unit 110. Then, returning to step S4, the process from step S4 to step S11 is repeatedly performed at a predetermined frame rate, for example, 30 fps (frame per second), thereby displaying the fitting state in real time. be able to. '
図 1 1は、 表示部 3 0 0に表示される表示画面の一例を示す図である。 図 1 1 に示すように、 表示画面 H Gには、 人体モデル J Mが衣服モデル I Mを仮想的に 試着している状態が表示される。 衣服モデル I Mが有する質点に作用する重力の 影響が固定点に基づいて計算され、 計算された重力の影響による質点の移動が制 約処理により逐次修正されるので、 衣服モデル I Mは、 人体モデル J Mの形状に 沿って表示されることとなる。  FIG. 11 is a diagram showing an example of a display screen displayed on the display unit 300. As shown in FIG. As shown in FIG. 11, on the display screen HG, a state in which the human body model JM is virtually trying on the clothing model IM is displayed. The influence of gravity acting on the mass point of the clothing model IM is calculated based on the fixed point, and the movement of the mass point due to the calculated gravity effect is successively corrected by the constraint process, so that the clothing model IM is a human body model JM. Will be displayed along the shape of.
図 1 2は、 従来の画像表示装置による処理と、 本発明に係る画像表示装置によ る処理とを比較する図であり、 図 1 2 ( a ) は、 従来の画像表示装置による処理 を説明するための断面図であり、 図 1 2 ( b ) は、 本発明に係る画像表示装置に よる処理を説明するための断面図である。  FIG. 12 is a diagram comparing the processing by the conventional image display device with the processing by the image display device according to the present invention. FIG. 12 (a) illustrates the processing by the conventional image display device. FIG. 12 (b) is a cross-sectional view for explaining the processing by the image display device according to the present invention.
図 1 2 ( a ) に示すように、 従来の画像表示装置による処理において、 衣服モ デル I Mが有する質点 A 1〜G 1は、 重力による影響が計算されることにより、 点 A 2〜G 2に移動する。 そして、 点 A 2 ~ G 2は、 制約処理によって修正され ることにより、 点 A 3〜G 3に移動する。 このように、 従来の画像表示装置によ る処理では、 衣服モデル I Mの全ての質点 A 1〜G 1に対して一旦自由落下させ てから、 重力の影響で移動した各質点 A 2 -G 2を一点一点人体モデル J Mの形 状に沿った位置に修正している。 As shown in Fig. 12 (a), in the processing by the conventional image display device, the mass points A1 to G1 of the clothing model IM are calculated by calculating the influence of gravity, and the points A2 to G2 Go to Then, the points A2 to G2 are moved to the points A3 to G3 by being corrected by the constraint processing. As described above, in the processing by the conventional image display device, each of the masses A 2 -G 2 which have been once dropped freely on all the masses A 1 to G 1 of the clothing model IM and then moved by the influence of gravity. The shape of the human body model JM Corrected to the position along the shape.
これに対して、 図 12 (b) に示すように、 本発明に係る画像表示装置による 処理では、 まず、 質点 A 1が固定点として決定され、 固定点として決定された質 点 A 1から質点 B 1に作用する重力の影響が計算されることにより、 点 B 2に移 動する。 点 B2は、 制約処理によって修正されることにより、 点 B 3に移動する。 そして、 点 B3は、 新たに固定点として決定され、 新たに固定点として決定され た点 B 3から質点 C 1に作用する重力の影響が計算される。 このように、 本発明 に係る画像表示装置による処理では、 衣服モデル I Mの質点 A 1を固定点とし、 質点 B 1に対して質点 A1から自由落下させてから、 重力の影響で移動した質点 B 2を人体モデル J Mの形状に沿った位置 B 3に修正している。 そして、 修正さ れた点 B 3を固定点とし、 質点 C 1に対して質点 B 3から自由落下させてから、 重力の影響で移動した質点 C 2を人体モデル J Mの形状に沿った位置 C 3に修正 している。  On the other hand, as shown in FIG. 12 (b), in the processing by the image display device according to the present invention, first, the mass point A1 is determined as a fixed point, and the mass point A1 is determined as the fixed point. It moves to point B2 by calculating the effect of gravity acting on B1. Point B2 moves to point B3 by being modified by the constraint processing. Then, the point B3 is newly determined as a fixed point, and the influence of gravity acting on the mass point C1 is calculated from the point B3 newly determined as the fixed point. As described above, in the processing by the image display device according to the present invention, the mass point A1 of the clothing model IM is set as a fixed point, the mass point B1 is dropped freely from the mass point A1, and then the mass point B moved under the influence of gravity. 2 is corrected to position B3 along the shape of the human body model JM. Then, the corrected point B 3 is set as a fixed point, and the mass point C 2 is moved free from the mass point B 3 to the mass point C 1, and then moved to the position C along the shape of the human body model JM. Corrected to 3.
ここで、 図 12 (a) における質点 G1と図 12 (b) における質点 G1とを 比較すると、 質点 G1が、 重力の影響が計算されることにより移動する移動量は、 図 12 (b) より図 12 (a) の方が大きくなつており、 その結果、 点 G2から 点 G 3に修正するための処理時間も図 12 (b) より図 12 (a) の方が長くな つている。  Here, comparing the mass point G1 in Fig. 12 (a) with the mass point G1 in Fig. 12 (b), the amount of movement of the mass point G1 due to the calculation of the effect of gravity is shown in Fig. 12 (b). FIG. 12 (a) is larger, and as a result, the processing time for correcting point G2 to point G3 is longer in FIG. 12 (a) than in FIG. 12 (b).
このように、 人体が着用する衣服を表す衣服モデル I Mを構成する複数のポリ ゴンの各頂点を質点とし、 当該質点の中から固定する質点が固定点として決定さ れ、 質点の中から 1の質点が抽出され、 抽出された質点に作用する重力の影響が 固定点に基づいて計算され、 計算された重力の影響による質点の移動が制約処理 により逐次修正され、 修正された各質点が結ばれることで形成される衣服モデル I Mと人体を表す人体モデル J Mとが合成して表示される。 したがって、 衣服モ デル I Mの質点毎に重力の影響を固定点に基づいて計算して制約処理により修正 する処理が逐次行われるので、 衣服モデル I Mの全ての質点に対して一旦自由落 下させてから、 重力の影響で移動した各質点を一点一点修正する従来の処理に比 して、 重力の影響で移動する量を少なくすることができ、 各質点を修正するため の処理時間を短縮することができ、 現実感のある試着状態をリアルタイムに表示 することができる。 In this way, the vertices of a plurality of polygons constituting the clothing model IM representing the clothes worn by the human body are set as the mass points, and the fixed mass point is determined as the fixed point from among the mass points. Mass points are extracted, and the influence of gravity acting on the extracted mass points is calculated based on the fixed points.The movement of the mass due to the calculated influence of gravity is sequentially corrected by constraint processing, and the corrected mass points are connected. The clothing model IM formed by this and the human body model JM representing the human body are combined and displayed. Therefore, the effect of gravity is calculated based on the fixed point for each mass point of the clothing model IM, and the processing of correcting by the constraint processing is sequentially performed. The amount of movement due to gravity can be reduced compared to conventional processing that corrects each point moved by the influence of gravity point by point, reducing the processing time for correcting each point Display a realistic fitting state in real time can do.
また、 固定点決定部 1 0 4によって、 逐次修正された質点が固定点として決定 されるので、 衣服モデルが有する全ての質点について、 固定点に基づく制約処理 による逐次修正を行うことができる。  In addition, since the sequentially corrected mass points are determined as fixed points by the fixed point determining unit 104, all the mass points of the clothes model can be sequentially corrected by the constraint processing based on the fixed points.
さらに、 衣服モデルを構成する複数のポリゴンの全ての質点に対し、 一の質点 と他の質点との幾何学的な距離が算出され、 算出された一の質点と他の質点との 幾何学的な距離がそれぞれ対応付けられて対応表として記憶され、 記憶されてい る対応表を参照して、 重力の影響を計算する処理順序が決定され、 決定された処 理順序に従って、 衣服モデルを構成する複数のポリゴンの質点の中から 1の質点 が抽出される。 したがって、 一の質点と他の質点との幾何学的な距離がそれぞれ 対応付けられた対応表を作成することで、 衣服モデルを構成する複数のポリゴン の各質点に作用する重力の影響を計算する処理順序を容易に決定することができ る。  Furthermore, the geometric distance between one mass point and another mass point is calculated for all the mass points of the polygons constituting the clothing model, and the geometric distance between the calculated one mass point and another mass point is calculated. The distances are associated with each other and stored as a correspondence table. With reference to the stored correspondence table, a processing order for calculating the effect of gravity is determined, and a clothing model is constructed according to the determined processing order. One mass point is extracted from the mass points of multiple polygons. Therefore, by creating a correspondence table in which the geometric distance between one mass point and another mass point is associated with each other, the influence of gravity acting on each mass point of a plurality of polygons constituting the clothing model is calculated. The processing order can be easily determined.
なお、 本実施形態では、 人体が着用する衣服を表す衣服モデルを用いて説明し ているが、 本発明は特にこれに限定されず、 例えば、 カーテンや旗などの一端を 固定した布などのやわらかい素材を表す 3次元モデルにも適用可能である。  Although the present embodiment has been described using a clothes model representing clothes worn by a human body, the present invention is not particularly limited to this. For example, a soft cloth such as a cloth to which one end of a curtain or a flag is fixed is used. It can also be applied to 3D models representing materials.
本発明は詳細に説明されたが、 上記した説明は、 全ての局面において、 例示で あって、 本発明がそれに限定されるものではない。 例示されていない無数の変形 例が、 この発明の範囲から外れることなく想定され得るものと解される。 産業上の利用可能性  Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that innumerable modifications not illustrated are conceivable without departing from the scope of the present invention. Industrial applicability
本発明に係る画像表示装置、 画像表示方法、 画像表示プログラム及び画像表示 プログラムを記録したコンビュ一夕読み取り可能な記録媒体は、 3次元モデルの 全ての質点に対して一旦自由落下させてから、 重力の影響で移動した各質点を一 点一点修正する従来の処理に比して、 重力の影響で移動する量を少なくすること ができ、 各質点を修正するための処理時間を短縮することができ、 3次元モデル を表示する画像表示装置、 画像表示方法、 画像表示プログラム及び画像表示プロ グラムを記録したコンピュータ読み取り可能な記録媒体等として有用である。  The image display device, the image display method, the image display program, and the recording medium on which the image display program according to the present invention is recorded can be read all over the mass point of the three-dimensional model. The amount of movement due to gravity can be reduced, and the processing time for correcting each mass can be reduced, as compared to the conventional processing in which each mass moved by the influence of gravity is corrected point by point. It is useful as an image display device that displays a three-dimensional model, an image display method, an image display program, and a computer-readable recording medium that stores the image display program.

Claims

請 求 の 範 囲 The scope of the claims
1. 3次元モデルを表示する画像表示装置であって、 1. An image display device for displaying a three-dimensional model,
前記 3次元モデルを構成する複数のポリゴンの各頂点を質点とし、 当該質点の 中から固定する質点を固定点として決定する固定点決定手段と、  Fixed point determining means for determining each vertex of a plurality of polygons constituting the 3D model as a mass point, and determining a mass point to be fixed from among the mass points as a fixed point;
前記質点の中から一の質点を抽出する質点抽出手段と、  Mass extraction means for extracting one mass from the mass,
前記質点抽出手段によって抽出された質点に作用する重力の影響を、 前記固定 点決定手段によって決定された固定点に基づいて計算する重力計算手段と、 前記重力計算手段によって計算された重力の影響による質点の移動を制約処理 により逐次修正する修正手段と、  Gravity calculation means for calculating the influence of gravity acting on the mass point extracted by the mass point extraction means based on the fixed point determined by the fixed point determination means, and by the influence of gravity calculated by the gravity calculation means Correction means for sequentially correcting the movement of the mass by constraint processing;
前記修正手段によって修正された各質点を結ぶことで形成される 3次元モデル を表示する表示手段とを備えることを特徴とする画像表示装置。  A display unit for displaying a three-dimensional model formed by connecting the respective mass points corrected by the correction unit.
2 . 前記固定点決定手段は、 前記修正手段によって逐次修正された質点を固 定点として決定することを特徴とする請求項 1記載の画像表示装置。  2. The image display device according to claim 1, wherein the fixed point determining unit determines the mass points sequentially corrected by the correcting unit as fixed points.
3 . 前記 3次元モデルを構成する複数のポリゴンの全ての質点に対し、 一の 質点と他の質点との距離を算出する距離算出手段と、  3. distance calculating means for calculating a distance between one mass point and another mass point with respect to all mass points of the plurality of polygons constituting the three-dimensional model;
前記距離算出手段によって算出された一の質点と他の質点との距離をそれぞれ 対応付けて対応表として記憶する記憶手段と、  Storage means for storing the correspondence between the one mass point calculated by the distance calculation means and the other mass point as a correspondence table,
前記記億手段に記億されている対応表を参照して、 前記重力計算手段によって 重力の影響を計算する処理順序を決定する処理順決定手段とをさらに備え、 前記質点抽出手段は、 処理順決定手段によって決定された処理順序に従って、 前記 3次元モデルを構成する複数のポリゴンの質点の中から 1の質点を抽出する ことを特徴とする請求項 1記載の画像表示装置。  A processing order determining unit that determines a processing order of calculating the influence of gravity by the gravity calculating unit with reference to a correspondence table stored in the storing unit; 2. The image display device according to claim 1, wherein one mass point is extracted from mass points of a plurality of polygons forming the three-dimensional model in accordance with the processing order determined by the determination unit.
4. 前記 3次元モデルは、 人体を表す人体モデルと、 人体が着用する衣服を 表す衣服モデルとを含み、  4. The three-dimensional model includes a human body model representing a human body and a clothing model representing clothes worn by the human body,
前記固定点決定手段は、 前記衣服モデルを構成する複数のポリゴンの各頂点を 質点とし、 当該質点の中から固定する質点を固定点として決定し、  The fixed point determining means determines each vertex of a plurality of polygons constituting the clothes model as a material point, and determines a material point to be fixed from among the material points as a fixed point,
前記質点抽出手段は、 前記質点の中から一の質点を抽出し、  The mass point extracting means extracts one mass point from the mass points,
前記重力計算手段は、 前記質点抽出手段によって抽出された質点に作用する重 力の影響を、 前記固定点決定手段によって決定された固定点に基づいて計算し、 前記修正手段は、 前記重力計算手段によって計算された重力の影響による質点 の移動を制約処理により逐次修正し、 The gravity calculation means includes a weight acting on the mass point extracted by the mass point extraction means. Calculating the influence of the force based on the fixed point determined by the fixed point determination means, the correction means sequentially corrects the movement of the mass point due to the influence of gravity calculated by the gravity calculation means by constraint processing,
前記表示手段は、 前記修正手段によつて修正された各質点を結ぶことで形成さ れる衣服モデルと前記人体モデルとを合成して表示することを特徴とする請求項  The said display means combines and displays the clothing model formed by connecting each mass point corrected by the correction means with the human body model.
5 . 前記衣服モデルを構成する複数のポリゴンの各質点に前記人体モデルと の衝突処理を行う衝突処理手段をさらに備えることを特徴とする請求項 4記載の 5. The method according to claim 4, further comprising: a collision processing unit configured to perform a collision process with the human body model on each mass point of the plurality of polygons constituting the clothing model.
6 . 前記衝突処理手段は、 少なくとも前記人体モデルを覆う大きさの衝突判 定モデルを設定し、 前記質点が当該衝突判定モデルに近づくにつれて当該質点に 作用する斥力を大きくして衝突処理を行うことを特徴とする請求項 5記載の画像 6. The collision processing means sets a collision judgment model at least large enough to cover the human body model, and performs a collision process by increasing a repulsive force acting on the mass point as the mass approaches the collision judgment model. The image according to claim 5, characterized in that:
7 . 前記衝突処理手段は、 前記質点と前記人体モデルを構成する複数のポリ ゴン面との衝突検出を行い、 前記質点が前記人体モデルを構成するポリゴン面に 衝突すると検出された場合、 前記質点と前記人体モデルを構成するポリゴン面と の衝突処理を行うことを特徴とする請求項 5記載の画像表示装置。 7. The collision processing means detects collision between the mass point and a plurality of polygon surfaces constituting the human body model, and when it is detected that the mass point collides with a polygon surface constituting the human body model, 6. The image display device according to claim 5, wherein a collision process is performed between the polygon surface and the human body model.
8 . 3次元モデルを表示する画像表示方法であつて、  8. An image display method for displaying a three-dimensional model,
コンピュータが、 前記 3次元モデルを構成する複数のポリゴンの各頂点を質点 とし、 当該質点の中から固定する質点を決定する固定点決定ステップと、  A computer determining each vertex of the plurality of polygons constituting the three-dimensional model as a mass point, and determining a fixed mass point from the mass points;
コンピュータが、 前記質点の中から一の質点を抽出する質点抽出ステップと、 コンピュータが、 前記質点抽出ステップにおいて抽出された質点に作用する重 力の影響を、 前記固定点決定ステップにおいて決定された固定点に基づいて計算 する重力計算ステップと、  A computer extracting a mass point from the mass points; andthe computer determines the influence of the weight acting on the mass point extracted in the mass point extraction step by the fixed point determined in the fixed point determination step. A gravity calculation step that calculates based on points,
コンピュータが、 前記重力計算ステップにおいて計算された重力の影響による 質点の移動を制約処理により逐次修正する修正ステツプと、  A correction step in which the computer sequentially corrects the movement of the mass point due to the influence of gravity calculated in the gravity calculation step by a constraint process;
コンピュータが、 前記修正ステップにおいて修正された各質点を結ぶことで形 成される 3次元モデルを表示する表示ステツプとを含むことを特徴とする画像表 示方法。 A computer displaying a three-dimensional model formed by connecting the mass points corrected in the correction step.
9 . 3次元モデルを表示する画像表示プログラムであって、 前記 3次元モデルを構成する複数のポリゴンの各頂点を質点とし、 当該質点の 中から固定する質点を決定する固定点決定手段と、 9. An image display program for displaying a three-dimensional model, wherein each vertex of a plurality of polygons constituting the three-dimensional model is set as a material point, and fixed point determining means for determining a material point to be fixed from the material points,
前記質点の中から一の質点を抽出する質点抽出手段と、  Mass extraction means for extracting one mass from the mass,
前記質点抽出手段によって抽出された質点に作用する重力の影響を、 前記固定 点決定手段によって決定された固定点に基づいて計算する重力計算手段と、 前記重力計算手段によって計算された重力の影響による質点の移動を制約処理 により逐次修正する修正手段と、  Gravity calculation means for calculating the influence of gravity acting on the mass point extracted by the mass point extraction means based on the fixed point determined by the fixed point determination means, and by the influence of gravity calculated by the gravity calculation means Correction means for sequentially correcting the movement of the mass by constraint processing;
前記修正手段によって修正された各質点を結ぶことで形成される 3次元モデル を表示する表示手段としてコンピュータを機能させることを特徴とする画像表示 プログラム。  An image display program for causing a computer to function as display means for displaying a three-dimensional model formed by connecting the respective mass points corrected by the correction means.
1 0 . 3次元モデルを表示する画像表示プログラムを記録したコンピュータ 読み取り可能な記録媒体であって、  10. A computer-readable recording medium recording an image display program for displaying a three-dimensional model,
前記 3次元モデルを構成する複数のポリゴンの各頂点を質点とし、 当該質点の 中から固定する質点を決定する固定点決定手段と、  Fixed point determining means for determining each vertex of the plurality of polygons constituting the three-dimensional model as a mass point and determining a mass point to be fixed from among the mass points;
前記質点の中から一の質点を抽出する質点抽出手段と、  Mass extraction means for extracting one mass from the mass,
前記質点抽出手段によって抽出された質点に作用する重力の影響を、 前記固定 点決定手段によって決定された固定点に基づいて計算する重力計算手段と、 前記重力計算手段によって計算された重力の影響による質点の移動を制約処理 により逐次修正する修正手段と、  Gravity calculation means for calculating the influence of gravity acting on the mass point extracted by the mass point extraction means based on the fixed point determined by the fixed point determination means, and by the influence of gravity calculated by the gravity calculation means Correction means for sequentially correcting the movement of the mass by constraint processing;
前記修正手段によって修正された各質点を結ぶことで形成される 3次元モデル を表示する表示手段としてコンピュータを機能させるための画像表示プログラム を記録したコンピュータ読み取り可能な記録媒体。  A computer-readable recording medium that stores an image display program for causing a computer to function as a display unit that displays a three-dimensional model formed by connecting the mass points corrected by the correction unit.
PCT/JP2004/012917 2003-10-17 2004-08-31 Image display device, image display method, image display program, and computer-readable recording medium containing the image display program WO2005038723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003358243A JP2005122558A (en) 2003-10-17 2003-10-17 Device, method and program for image display and computer readable recording medium with image display program thereon
JP2003-358243 2003-10-17

Publications (1)

Publication Number Publication Date
WO2005038723A1 true WO2005038723A1 (en) 2005-04-28

Family

ID=34463286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012917 WO2005038723A1 (en) 2003-10-17 2004-08-31 Image display device, image display method, image display program, and computer-readable recording medium containing the image display program

Country Status (2)

Country Link
JP (1) JP2005122558A (en)
WO (1) WO2005038723A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218773A (en) * 2011-11-09 2013-07-24 索尼公司 Information processing apparatus, display control method, and program
CN106887035A (en) * 2017-01-12 2017-06-23 深圳市衣梦科技有限公司 A kind of intelligent dressing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314709A (en) * 2011-08-31 2012-01-11 深圳市美丽同盟科技有限公司 Matching method of dress and human body in three dimensional virtual fitting and apparatus thereof
WO2016151691A1 (en) 2015-03-20 2016-09-29 株式会社 東芝 Image processing device, image processing system, image processing method, and program
WO2020230748A1 (en) 2019-05-11 2020-11-19 株式会社キテミル Image generation device, method, and program, and virtual try-on system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08235383A (en) * 1995-03-01 1996-09-13 Atr Tsushin Syst Kenkyusho:Kk Device for generating movement of three-dimensional model
JPH09223247A (en) * 1996-02-19 1997-08-26 Toyobo Co Ltd Method for simulating movement of clothes
WO1997031338A1 (en) * 1996-02-20 1997-08-28 Sega Enterprises, Ltd. Image generator, image generating method and image recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08235383A (en) * 1995-03-01 1996-09-13 Atr Tsushin Syst Kenkyusho:Kk Device for generating movement of three-dimensional model
JPH09223247A (en) * 1996-02-19 1997-08-26 Toyobo Co Ltd Method for simulating movement of clothes
WO1997031338A1 (en) * 1996-02-20 1997-08-28 Sega Enterprises, Ltd. Image generator, image generating method and image recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218773A (en) * 2011-11-09 2013-07-24 索尼公司 Information processing apparatus, display control method, and program
CN103218773B (en) * 2011-11-09 2017-09-01 索尼公司 Message processing device, display control method and program
CN106887035A (en) * 2017-01-12 2017-06-23 深圳市衣梦科技有限公司 A kind of intelligent dressing device

Also Published As

Publication number Publication date
JP2005122558A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US7492362B2 (en) Virtual space rendering/display apparatus and virtual space rendering/display method
US9050538B2 (en) Collision detection and motion simulation in game virtual space
US7308332B2 (en) Virtual clothing modeling apparatus and method
JP3769747B2 (en) Virtual image generation apparatus and method
JP4500632B2 (en) Virtual reality presentation apparatus and information processing method
US8154544B1 (en) User specified contact deformations for computer graphics
EP2016983A1 (en) Program, information storing medium and image generating system
JP5303068B2 (en) Image processing apparatus, image processing method, and image processing program
WO2002101655A1 (en) Image processing method, image processing apparatus, and program for emphasizing object movement
JP2004267247A (en) 3d video game apparatus, control method for virtual camera in 3d video game and program and recording medium
US8909506B2 (en) Program, information storage medium, information processing system, and information processing method for controlling a movement of an object placed in a virtual space
US20150339850A1 (en) Multi-view drawing apparatus of three-dimensional objects, and method
CN108196669A (en) Modification method, device, processor and the head-mounted display apparatus of avatar model
EP1505546B1 (en) Method for drawing a three-dimensional image by modeling a second object connected to a first object
KR20220066774A (en) Method and apparatus for online fitting
WO2005038723A1 (en) Image display device, image display method, image display program, and computer-readable recording medium containing the image display program
JP2002216146A (en) Display object generating method in information processor, program to execute and control the same and recording medium in which the same program is stored
JPH10302085A (en) Operation recording system for cg model
JP5089147B2 (en) Camera control method and CG game apparatus incorporating the camera control
JP4161613B2 (en) Image processing method
JP3822929B2 (en) Image composition method and image composition apparatus
JP6697573B2 (en) Hairstyle simulation device, hairstyle simulation method, and computer program
US11138783B2 (en) Image processing apparatus, image processing method, and image prodessing program for aligning a polygon model with a texture model
JP2012247953A (en) Program, information storage medium, information processing system and information processing method
Doxon et al. Force and contact location shading methods for use within two-and three-dimensional polygonal environments

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase