WO2005038342A1 - Backlight device - Google Patents

Backlight device Download PDF

Info

Publication number
WO2005038342A1
WO2005038342A1 PCT/JP2004/015139 JP2004015139W WO2005038342A1 WO 2005038342 A1 WO2005038342 A1 WO 2005038342A1 JP 2004015139 W JP2004015139 W JP 2004015139W WO 2005038342 A1 WO2005038342 A1 WO 2005038342A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight device
guide plate
coating film
heat radiation
Prior art date
Application number
PCT/JP2004/015139
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Kato
Kazutaka Takasai
Masahiro Machida
Yuuichi Deushi
Koichiro Shimizu
Toshihiro Suzuki
Tetsuya Hamada
Mari Hodate
Original Assignee
Oki Electric Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co., Ltd. filed Critical Oki Electric Industry Co., Ltd.
Publication of WO2005038342A1 publication Critical patent/WO2005038342A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer

Definitions

  • the present invention relates to a backlight device used for an optical device such as an optical component or an optical device, and a liquid crystal display device having the same.
  • a reflector in which a light emitting source is installed is provided on a side end surface of a light guide plate, and a light incident end face force of the light is applied to the back surface of the light guide plate.
  • the light is scattered and reflected by the reflection sheet provided on the light emitting surface and is emitted from the light exit surface on the opposite side of the reflection sheet, and is used as a backlight of an optical display device such as a liquid crystal panel.
  • the reflective sheet is formed by applying a binder resin containing fine particles to a polymer film made of an organic material such as polyethylene terephthalate and dispersing the fine particles on one surface of the polymer film. It is formed by covering a metal such as silver with a metal thin film layer vacuum-deposited.
  • a metal such as silver
  • the inside of the above-mentioned polymer film or sheet contains acrylic resin or the like.
  • a reflection sheet having scattering reflection characteristics is formed by dispersing a fine filler made of an organic material.
  • a reflection sheet in which a fine filler is dispersed inside a polymer material film which also has an organic material such as polyethylene terephthalate is formed on the inner surface of a reflector such as aluminum.
  • the inner surface of the reflector is used for reflection of light that emits light
  • the polymer film of the organic material turns yellow due to the ultraviolet rays of the light from the light source, causing so-called yellowing.
  • the reflectance may decrease.
  • display quality such as luminance, contrast, and color unevenness is deteriorated, and it is difficult to maintain the display quality for a long period of time.
  • the reliability of the backlight device is reduced. .
  • An object of the present invention is to provide a knock light device and a liquid crystal display device that can maintain display quality for a long period of time.
  • the light source unit in which a light source unit is disposed on a side end surface of a light guide plate, the light source unit includes a light emitting source and a reflector, and the inner surface of the reflector has light resistance and An optical reflection coating having heat radiation is formed!
  • a direct-type backlight including a lamp house and a plurality of light-emitting sources installed inside the lamp house
  • an inner surface of the lamp house is coated with an optical reflection coating having light resistance and heat radiation.
  • a film is formed.
  • a liquid crystal display device including such a backlight is provided.
  • the present invention semi-permanently maintains display quality by preventing yellowing or the like with an optically reflective coating made of an inorganic material against ultraviolet rays irradiated from a light source.
  • the reliability of the backlight is improved.
  • the optical reflection coating film is also excellent in heat radiation, it is possible to suppress a decrease in the luminous efficiency of the luminous source, which has a high cooling effect. Therefore, the current supplied to the light emitting source can be increased, and high luminance can be achieved. Heat leakage to the liquid crystal panel is also suppressed, which improves the display quality of the liquid crystal panel.
  • FIG. 1 is a schematic cross-sectional side view showing a cross section of an embodiment of a liquid crystal display device according to the present invention
  • FIG. 2 is a schematic cross-sectional side view similar to FIG. 1, showing a cross section of a liquid crystal display device according to another embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional side view showing a cross section of a light source section according to still another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a liquid crystal display device according to still another embodiment of the present invention, similar to FIG. Schematic cross-sectional side view of
  • FIG. 7 is a view for explaining a state of formation of a light absorbing coating film in the example shown in FIG. 5, [FIG. 8] and
  • FIG. 9 is an exploded view showing a light source unit and a light guide plate according to still another embodiment of the present invention. Perspective view,
  • ⁇ 15 A schematic cross-sectional side view showing still another embodiment of the backlight device according to the present invention.
  • ⁇ 16] A state of forming a light absorbing coating film on the optical reflection coating film in the embodiment shown in FIG. Figure for the
  • FIG. 17 A schematic view showing still another embodiment of the backlight device according to the present invention.
  • FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. 17;
  • ⁇ 20 is a schematic view for explaining an example of the formation of the protrusions in the embodiment shown in FIG. 19;
  • FIG. 21 is a schematic exploded side view showing a cross section of still another embodiment of the liquid crystal display device according to the present invention.
  • FIG. 22 is a top view showing the top surface of the embodiment shown in FIG. 21;
  • FIG. 24 A schematic side view similar to FIG. 17 showing still another embodiment of the knock light device according to the present invention.
  • FIG. 25 is a top view showing the top surface of the embodiment shown in FIG. 24;
  • ⁇ 26 Exploded perspective view showing a light source unit in still another embodiment of the present invention.
  • ⁇ 27 Schematic diagram for explaining a light source unit in still another embodiment of the present invention.
  • FIG. 28 is a top view showing the top surface of the embodiment shown in FIG. 27;
  • FIG. 31 is a top view showing a light source unit according to still another embodiment of the present invention.
  • Embodiment 1 of the liquid crystal display device according to the present invention is a liquid crystal display device using a sidelight type backlight device.
  • the liquid crystal display device 1 has a liquid crystal panel 2, and a polarizing plate 3 is disposed on the front and back surfaces.
  • the liquid crystal display device 1 further includes a reflector 4, which is formed in a box shape with one surface opened by a metal plate such as aluminum.
  • a cold cathode tube 5 as a light emitting source is disposed inside the box as shown in the figure.
  • This is a tubular cold-cathode fluorescent lamp, one or more of which are installed inside the reflector 4, and emits visible light, ultraviolet light, and infrared light when energized.
  • one cold cathode tube is provided.
  • the light emitting source 5 is not limited to the one described above, and may be, for example, a hot cathode fluorescent lamp.
  • the liquid crystal display device 1 also has a light guide plate 6, which is made of a transparent material having a low light absorption and is formed in a substantially rectangular parallelepiped, and has one side end provided with an internal portion as described above.
  • the reflector 4 in which the light emitting source 5 is installed is joined and attached by fitting or butting.
  • the side end surface functions as a light incident end surface 6a where light from the light emitting source 5 enters the light source 4 directly.
  • the reflector 4 and the light source having the same strength as the cold-cathode tube 5 as the light-emitting source are joined and attached to the light guide plate 6 by fitting.
  • the light that has entered the light guide plate 6 from the light incident end surface 6a is reflected by the reflection sheet 7 provided on the back surface 6b of the light guide plate 6, and the surface on the opposite side, that is, the light exit surface 6c also has a force. Inject.
  • This light is applied to the liquid crystal panel 2 via the lens sheet 8, the diffusion sheet 9 as a light diffusion member, and the polarizing plate 3.
  • the reflection sheet 7 of the present embodiment is a light-reflective sheet member having a scattered reflection characteristic by dispersing a fine filler in the sheet.
  • An optical reflection coating 10 is provided on the inner surface of the reflector 4. This is because after applying a paint containing a liquid binder containing an inorganic filler formed as fine particles of white metal oxide, white metal nitride, white metal carbide or white metal sulfide, This is a white coating film formed by drying this.
  • the reflector 4 the light source unit having the same power as the light emitting source 5, the light guide plate 6, the reflection sheet 7, the lens sheet 8, and the diffusion sheet 9 constitute a sidelight type backlight device. .
  • the white metal oxide used as the inorganic filler of the optical reflection coating 10 is magnesium oxide, alumina, silicon oxide, calcium oxide, titanium oxide, yttrium oxide, zinc oxide, or the like. Use at least one of these materials, such as zirconium oxide.
  • the white metal nitride 2b may be silicon nitride, niobium nitride, molybdenum nitride, or the like, and at least one of them is used.
  • As the white metal carbide 2c use at least one of silicon carbide and titanium carbide.
  • the white metal sulfide 2d is a sulfuric acid barrier or the like.
  • a transparent coating film formed of inorganic material formed when the solvent contained in the binder is evaporated by drying after application has a bonding function, and the bonding between inorganic fillers is shown in FIG. It exerts a function such as adhesion to an object such as the inner surface of the reflector 4.
  • the paint for forming the optical reflection coating film 10 is basically composed of an inorganic filler and a liquid binder.
  • the inorganic filler is a white metal oxide, metal nitride, metal carbide, or the like. It is sufficient for the metal sultanate to contain at least one of them. It is desirable that the ratio of the inorganic filler to the paint is 5% by weight or more and 85% by weight or less.
  • the binder having such a configuration when applied alone and dried, forms a transparent coating film made of an inorganic material, and has a heat-radiating transparent property of radiating absorbed heat to the outside by heat radiation. It can be used as a coating film. Such a coating film will be described later as a heat-radiating transparent coating film 11. Since the binder is made of the above-mentioned inorganic material, it can maintain its transparency semipermanently without yellowing even with ultraviolet rays or the like.
  • the optical reflection coating film 10 has excellent scattering reflection characteristics due to unevenness of the surface of the coating film and a white inorganic filler.
  • the optical reflection coating 10 is also an inorganic material in which an inorganic filler is bonded by a transparent coating made of an inorganic material, and thus has excellent light resistance. In particular, it has extremely excellent light resistance to ultraviolet light as compared to organic materials, and can maintain its reflection characteristics semipermanently without yellowing even when irradiated with ultraviolet light for a long time.
  • an inorganic filler such as a metal oxide included as a constituent material of the optical reflection coating film 10 as a white coating film has a function of converting infrared light or far infrared light into heat, and a function of converting heat from infrared light or infrared light. It has the function of converting into far-infrared rays and radiating it. Therefore, it has superior heat radiation properties as compared with a normal white coating film or a heat-radiating transparent coating film 11, and has a function of releasing absorbed heat to the outside by heat radiation.
  • the inner surface of the reflector 4 on which the optical reflective coating film 11 is formed may be a reflective surface such as a metal mirror surface or a non-reflective surface. In short, if the optical reflection coating 11 is formed on the inner surface of the reflector 4, the above-mentioned function can be exhibited.
  • a metallic reflector provided with a reflection-enhancing film or the like is excellent in heat conduction but inferior in heat radiation. For this reason, if such a metal rearrangement area is provided, the temperature of the light source section is high, which exceeds the optimal temperature of the cold cathode fluorescent lamp 5, and the luminous efficiency of the cold cathode fluorescent lamp 5 is reduced, resulting in low brightness. In other words, heat near the light source would be transmitted to the liquid crystal panel 2, and the contrast and transmittance of the liquid crystal panel 2 would be reduced, which would have caused the display quality to be lowered.
  • the optical reflective coating film 10 of the present embodiment also has excellent heat radiation as described above, the cooling effect due to heat radiation is added to the cooling effect due to the high thermal conductivity of the reflector 4, and the cooling effect is increased. A decrease in the luminous efficiency of the cold cathode tube 5 can be suppressed. Therefore, it is also possible to increase the current supplied to the cold cathode tube 5 to increase the luminance. Further, heat outflow to the liquid crystal panel 2 can be suppressed, and display quality can be improved.
  • a liquid crystal display device 2 according to another embodiment of the present invention has an optical reflection coating 10 formed on the outer surface of a reflector 4.
  • the same elements are denoted by the same reference numerals, and redundant description will be omitted.
  • the following effects are further obtained by forming such an optical reflection coating film 10. That is, due to the action of converting the heat of the optical reflection coating film 10 into infrared rays, the heat radiation on the outer surface of the reflector 4 is improved, and the cooling effect of the light source unit is further enhanced. Ma In addition, it is possible to further suppress the performance deterioration of the cold-cathode tube 5 and increase the brightness, and further improve the display quality of the liquid crystal panel 2.
  • the coating film formed on the outer surface of the reflector 4 is not limited to the heat-radiating transparent coating film 11 described above, but may be any heat-radiating coating film. A cooling effect according to the degree is obtained.
  • Such a heat-radiating coating may be an optically opaque coating.
  • the embodiment of the light source section has a reflection-enhancing film 20, which is formed by depositing a metal such as silver on the inner surface of the reflector 4 by vapor deposition or the like. It reflects light from the sky.
  • a heat-radiating transparent coating film 11 is formed on the inner surface of the reflection-enhancing film 20, as shown in FIG.
  • the heat radiation property of the reflector 4 is improved by the heat radiation transparent coating film 11, which can maintain transparency semipermanently, without hindering the reflection characteristics of the enhanced reflection film 20.
  • the heat radiation transparent coating film 11 which can maintain transparency semipermanently, without hindering the reflection characteristics of the enhanced reflection film 20.
  • the heat-radiating transparent coating film 11 is also formed on the outer surface of the reflector 4, the above-mentioned effect can be further enhanced.
  • the liquid crystal display device 1 of this embodiment has a light absorbing coating film 2 which is a coating film of a paint having a predetermined light absorption.
  • the light-absorbing film 2 is formed by fitting the reflector 4 and the light guide plate 6 by fitting, and provided at or near the fitting portion and Z.
  • the predetermined light absorption may be, for example, about 5 to 20% in terms of light absorption.
  • the state of formation of the light absorbing coating film in this example will be described.
  • the light absorbing coating film 21 may be formed on the fitting portion of the inner surface of the optical reflection coating film 10 formed on the inner surface of the reflector 4 and at or near Z.
  • the light guide plate 6 is formed at the fitting portion of the light guide plate 6 with the reflector 4 and at or near Z.
  • the light immediately after entering the light guide plate does not have uniform light intensity depending on the location.
  • the shape of the edge portion of the light guide plate near the edge of the light incident end surface may be indeterminate. In such a case, there is light that also emits the light exit surface force of the light guide plate due to the edge portion.
  • a region having a high luminance is generated near the light source portion of the liquid crystal panel, and the display quality is deteriorated.
  • the light absorbing coating film 21 is formed at the fitting portion of the reflector 4 and at or near Z, the brightness of the backlight near the light source portion is reduced by a predetermined amount, and the display quality is reduced. Further improve.
  • the light absorbing coating film 21 is formed on the fitting portion of the light guide plate 6 and on the light exit surface 6c and the back surface 6b at or near Z.
  • it may be formed over the entire circumference of the fitting portion, or may be formed only on a part of the fitting portion, for example, only a portion where the luminance needs to be improved.
  • the light-absorbing coating film 21 on the inner surface of the reflector 4 may be formed by coating the optical reflection coating film 10 formed on the inner surface of the reflector 4 as described above, The portions where the coating film 10 and the light absorbing coating film 21 are formed may be adjacent to each other and formed separately.
  • the light absorbing coating film 21 is formed in the vicinity of the abutting portion and the abutting portion of the reflectors 4 and Z or the light guide plate 6 in the same manner as described above.
  • the light guide plate 6 has both light guide plate side end surfaces 6d adjacent to the light incident end surface 6a and the opposite side end surface 6e of the light guide plate 6 facing the light incident end surface 6a.
  • An optical reflection coating 10 is formed on the substrate.
  • the cooling effect of the light guide plate 6 is enhanced by the heat radiation property of the optical reflection coating film 10, so that heat leakage to the liquid crystal panel 2 can be suppressed, and the display quality can be improved.
  • the same effect can be obtained by forming such an optical reflection coating film 10 on any of the three side end surfaces described above.
  • a heat radiation transparent coating film 11 may be formed instead of the optical reflection coating film 10, and the heat radiation property of the heat radiation transparent coating film 11 can enhance the cooling effect of the light guide plate 6.
  • the coating film 11 is formed, the same effect as in the above-described example can be obtained.
  • the opposing end face 6e of the light guide plate 6 may be slightly extended in order to obtain a fitting portion or abutting portion for joining.
  • the backlight device of this embodiment has a fine pattern 22.
  • This is a dot-like pattern formed by the optical reflection coating 10 and is printed in a dot shape on the surface opposite to the light exit surface 6c of the light guide plate 6, that is, on the back surface 6b using the optical reflection coating 10.
  • the fine pattern 22 is formed so that the density of dots is low in the vicinity A1 of the light source portion and the density increases as the power of the light source portion increases (A2). In this way, the degree of density is set so that the luminance distribution on the light exit surface 6c becomes uniform as a whole.
  • the fine pattern 22 is not limited to the dot shape as described above, and may be a line shape in the longitudinal direction of the cold cathode tube 5. Further, in the example in which the light source units are arranged on both sides, the fine pattern may be formed such that the fine pattern substantially at the center is dense and becomes sparser toward the light source unit side.
  • the fine pattern 22 is peeled off by mechanical rubbing. Can be prevented.
  • the backlight device of this embodiment has a base sheet 23, which is a film of a resin material or a metal material that can withstand the drying temperature when forming the optical reflection coating film 10.
  • a base sheet 23 is a film of a resin material or a metal material that can withstand the drying temperature when forming the optical reflection coating film 10.
  • the base sheet 23 is formed on the entire surface of one surface of the optical reflection coating 10, and the optical reflection coating 10 is opposed to the surface on the opposite side of the light exit surface 6c of the light guide plate 6, that is, the back surface 6b. And is arranged instead of the reflection sheet 7.
  • the base sheet 23 is a metal plate such as aluminum.
  • the base of the metal plate can be pressed by force if semi-permanently good backlight efficiency can be maintained by the scattering reflection characteristics of the optical reflection coating film 10 that does not cause yellowing. Due to the heat conductivity of the sheet 23 and the heat radiation property of the optical reflection coating 10, the heat of the light guide plate 6, in particular, the heat of the light source part is efficiently radiated to the rear surface 6 b side of the light guide plate 6, and is transmitted to the liquid crystal panel 2 And the display quality is improved by suppressing the heat leakage.
  • a heat-radiating transparent coating 11 is formed on the back surface 6 b side of the light guide plate 6 of the optical reflection coating 10 formed on the base sheet 23 to protect the optical reflection coating 10. May be. This prevents damage such as peeling of the optical reflection coating 10 and falling off of the inorganic filler due to mechanical influences such as rubbing between the light guide plate 6 and the optical reflection coating 10 without affecting the optical characteristics. can do.
  • the backlight device shown in FIG. 12 is housed in a housing 24 formed of a metal plate or the like of aluminum or the like.
  • the optical reflection coating film 10 is formed directly on the back surface 6b side of the light guide plate 6 of the housing 24, and the base sheet 23 shown in FIG. 12 is omitted.
  • FIG. 15 shows an example in which the heat-radiating transparent coating film 11 is formed as in the example shown in FIG.
  • an optical reflection coating 10 and a heat-radiating transparent coating 11 may be formed outside the base sheet 23 and the housing 24. By doing so, the cooling effect of the light guide plate 6 can be enhanced from the respective heat radiation properties.
  • FIG. 16 shows a state in which the light absorbing coating film 21 in the embodiment shown in FIG. 5 is formed on the light source side B of the optical reflection coating film 10. More specifically, the light-absorbing coating 21 is bonded to the base sheet 23 viewed from the back surface 6b side of the light guide plate 6 in FIG. 12 or to the light source portion of the optical reflection coating 10 formed on the housing 24 in FIG. It is formed near the portion. That is, in the case of joining by butting, it is formed at the butting portion and its vicinity, and in the case of joining by fitting, it is formed at or near the fitting portion and Z.
  • the light absorbing coating 21 may be provided on each light source unit side. The same applies to the case where the light-absorbing coating film 21 is provided on the light guide plate 6 as shown in FIG.
  • the cold cathode tube 5 is applied as a light source of the sidelight type backlight device of the liquid crystal display device 1.
  • problems such as a reduction in luminous efficiency and life may occur unless the temperature of the cold cathode tube 5 is optimized as described above. That is, the cold-cathode tube 5 has an optimal temperature range in which the luminous efficiency is maximized. This temperature range is generally 70-80 ° C. Either lower or higher will decrease the luminous efficiency.
  • the life when the temperature increases, the electrode deteriorates, and the life is shortened.
  • the cold cathode tube 5 When the cold cathode tube 5 is cooled, if the entire cold cathode tube 5 is uniformly cooled, the life can be prolonged. However, if the vicinity of the electrode of the cold-cathode tube 5 is cooled so as to be the coldest due to manufacturing variations, etc., the mercury inside the cold-cathode tube 5 tends to collect near the electrode when the lamp is turned off, and the lamp is turned on again. In some cases, mercury is consumed by electrode sputtering, and the luminous efficiency and life of the cold cathode tube 5 may be reduced. Therefore, it is desirable to locally cool a portion of the cold-cathode tube 5 where the electrode strength is far, and to keep the entire tube at an optimum temperature.
  • the luminous efficiency of the cold cathode tube 5 depends on the mercury vapor pressure of mercury present in the cold cathode tube 5. For this reason, if it is not necessary to cool the entire cold-cathode tube 5, the heat generated due to the light emission of the cold-cathode tube 5 is suppressed by local cooling, and if the temperature is maintained in an optimum temperature range, the above fear is wiped out, and the cooling is performed. The life of the cathode tube 5 can be extended.
  • FIG. 17 still another embodiment of the knock light device according to the present invention is shown in a state where the light guide plate 6 is also viewed from the light exit surface 6c side.
  • One-dot chain line in FIG. 17 is shown in a state where the light guide plate 6 is also viewed from the light exit surface 6c side.
  • FIG. 1 A cross section taken along XVII-XVII is shown in FIG.
  • the backlight device of the embodiment has a heat radiating section 30.
  • heat The radiating portion 30 is formed by the optical reflection coating film 10, and is a surface of the inner surface of the reflector 4 which faces the light incident end surface 6 a of the light guide plate 6, that is, substantially the middle of the light incident end surface facing surface 31 in the longitudinal direction of the cold cathode tube 5.
  • the light incident end face facing surface 31 is provided over substantially the entire length in a direction orthogonal to the longitudinal direction of the cold cathode tubes 5.
  • the length of the heat radiating portion 30 formed by the optical reflection coating film 10 is lmm or more, and preferably about 20mm. Also, a thickness of 10 m or more is sufficient.
  • the end is located at a predetermined distance C from the electrode 5a of the cold-cathode tube 5, preferably at a distance of 20 mm or more.
  • the inner surface of the reflector 4 is a metal mirror surface or the enhanced reflection film 20 up to a range including the light incident end surface facing surface 31.
  • the heat radiating section 30 may be formed of the heat radiating transparent coating film 11. In this case, the same local cooling as described above is realized by the heat radiation.
  • a knock light device according to still another embodiment of the present invention is shown in a state where the force on the light exit surface 6c of the light guide plate 6 is also viewed.
  • the knock light device 6 has a projection 32 formed.
  • the convex portion 32 is located at a substantially central portion in the longitudinal direction of the cold cathode tube 5 on the light incident end face opposing surface 31 of the inner surface of the reflector 4 in the longitudinal direction of the cold cathode tube 5, protrudes toward the cold cathode tube 5, and
  • the end facing surface 31 is provided over substantially the entire length in a direction perpendicular to the longitudinal direction of the cold cathode tubes 5.
  • the length of the convex portion 32 is lmm or more, and preferably about 20mm. Its height is not less than 10 / z m and is set so as not to be in contact with the cold cathode tube 5.
  • the end is located at a predetermined distance C from the electrode 5a of the cold-cathode tube 5, preferably at least 20 mm.
  • an optical reflection coating 10 is formed on the entire surface including the convex portion 32.
  • the distance between the protruding portion 32 and the cold cathode tube 5 is short.
  • the cold-cathode tube 5 tends to cool down in the area, and local cooling is realized while maintaining the optical characteristics due to scattered reflection semipermanently by the optical reflection coating film 10 which does not yellow.
  • the projections 32 may be formed by embossing the optical reflection coating film 10 as shown in FIG. By doing so, similarly to the case shown in FIG. 19, the light from the cold cathode tube 5 is scattered and reflected by the optical reflection coating 10, and the reflection characteristics of the convex portions 32 formed by the optical reflection coating 10 are different from those of the other cases. Because the distance between the projection 32 and the cold cathode tube 5 is short, the cold-cathode tube 5 does not cool down and does not immediately turn yellow. Optical characteristics due to scattering reflection are maintained semipermanently, and local cooling is realized.
  • optical reflection coating film 10 on the inner surface of the reflector 4 provided with the projection 32 may be omitted, and a metal mirror surface or the enhanced reflection film 20 may be used. In this case, too, local cooling is realized because the distance between the convex portion 32 and the cold cathode tube 5 is short.
  • the optical reflection coating film 10 and the heat-radiating transparent coating film 11 were applied to the sidelight type knock light device used in the liquid crystal display device 1.
  • liquid crystal display devices of about 20 inches or more generally have a direct type in which a light source unit is disposed immediately below a liquid crystal panel.
  • the optical reflection coating 10 and the heat-radiating transparent coating 11 are applied to a direct-type backlight device will be described.
  • FIG. 21 still another embodiment of the present invention is a liquid crystal display device having the direct-type backlight device.
  • This liquid crystal display device has a lamp house 40, on which an optical reflection coating film 10 is formed.
  • a plurality of cold cathode tubes 5 are installed inside the lamp house 40, and light from the cold cathode tubes 5 is scattered and reflected by the optical reflection coating 10 on the inner surface of the lamp house 40.
  • the reflected light is emitted to the liquid crystal panel 2 via a diffusion plate 41 as a light diffusion member and a polarizing plate 3 installed in the opening of the lamp house 40.
  • FIG. 22 shows an upper surface from which the diffusion plate 41, the liquid crystal panel 2, and the polarizing plate 3 have been removed.
  • the light source section of the direct type apparatus is configured by a lamp house 40, a plurality of cold cathode tubes 5, and the like, and the knock light apparatus is configured by the light source section, a diffusion plate 41, and the like.
  • the optically reflective coating film 10 which also has an inorganic material having a reflective property and which is also an organic material
  • the reflection sheet which is conventionally disposed on the inner surface of the lamp house 40 and which also has an organic material can be yellowed by ultraviolet rays.
  • the problem of deterioration in reflection characteristics is solved, and the reflection characteristics without yellowing due to long-term irradiation with ultraviolet rays are maintained semipermanently.
  • the lamp house 40 is made of aluminum. Conductivity and optics Due to the heat radiation of the reflective coating film 10, it is efficiently released to the outside and has a high cooling effect. In addition, it is possible to suppress a decrease in the luminous efficiency of the cold cathode tube 5, and to increase the current supplied to the cold cathode tube 5, thereby achieving higher luminance. In addition, heat outflow to the liquid crystal panel 2 can be suppressed, and the display quality is improved.
  • the liquid crystal display device 1 having the direct-type backlight device is thinned.
  • the base sheet 23 is an aluminum plate.
  • the optical reflection coating film 10 is formed on one surface thereof, and is disposed on the inner surface of the lamp house 40 by bonding or the like.
  • the hole can be closed by the base sheet 23 in addition to the effects of the embodiment shown in FIG. This prevents light from leaking from the outside to the outside and intrusion of dust and the like by external force. Further, a circuit board or the like can be easily attached to the outer surface of the lamp nozzle 40.
  • a conventional reflection sheet 7 is disposed on the inner surface of a lamp 40 and a mouse 40.
  • An optical reflection coating film 10 is formed in a region of the reflection sheet 7 near each cold cathode tube 5 facing the cold cathode tube 5, that is, in the facing region 43.
  • FIG. 25 shows the upper surface in a state where the diffusion plate 41 is removed.
  • the optical reflection coating film 10 made of an inorganic material prevents the reflection sheet 7 from yellowing in the facing region 43 where the strongest ultraviolet light is irradiated from the cold cathode tubes 5.
  • the reflection sheet 7 can sufficiently withstand the irradiation. For this reason, even if a conventional material is applied to the reflection sheet 7 where the optical characteristics such as luminance do not decrease, the life can be extended.
  • a heat-radiating transparent coating film 11 is further formed on the optical reflection coating film 10 in the facing area 43, the optical characteristics can be maintained as it is, and the optical reflection coating film 10 can be further prevented from peeling off. I can do it.
  • the lamp holder 44 of the embodiment is made of a resin material, a synthetic rubber, a nonmetal material, or the like, and fixes both sides of the plurality of cold cathode tubes 5.
  • the lamp holder 44 is made of a resin material.
  • An optical reflection coating 10 is formed on the surface of the lamp holder 44 to which the cold cathode tube 5 is fixed.
  • the lamp holder 44 is also fixed inside the lamp house 40 having the optical reflection coating 10 formed on the inner surface.
  • the cold cathode tube 5 is applied as a light emitting source of the direct type backlight device of the liquid crystal display device 1. Similar to the case where such a cold cathode tube 5 is used as a light source of a side-light type backlight device, even when the cold cathode tube 5 is used as a light source of a direct-type knock light device, a cold cathode tube is also used. If the temperature of the tube 5 is not optimized, there is a possibility that luminous efficiency and life will be reduced, and the same applies to cooling near the electrode.
  • the light source section in still another embodiment of the present invention has a heat radiation area 50, which is formed by the optical reflection coating 10. I have.
  • the heat radiating area 50 is provided on the inner surface of the lamp house 40 as shown in FIG.
  • the surface facing the diffusion plate 41 as the light diffusion member in the example, that is, the reflection surface 51 is located substantially at the center of the cold cathode tube 5 in the longitudinal direction, and is orthogonal to the reflection surface 51 in the longitudinal direction of the cold cathode tube 5. It is provided over substantially the entire length in the direction.
  • the length of the heat radiation region 50 formed by the optical reflection coating film 10 is 1 mm or more, preferably about 20 mm. A thickness of at least 10 m is sufficient. Further, the end is disposed at a position separated from the electrode 5a of the cold cathode tube 5 by a predetermined distance C, preferably 20 mm or more.
  • the reflection sheet 7 is bonded to the inner surface of the lamp nose 40 including the reflection surface 51.
  • an optical reflection coating film 10 that does not cause yellowing may be formed on the inner surface of the lamp house 40.
  • the reflecting surface 51 may be included.
  • the reflection characteristics can be maintained semi-permanently, and the heat radiation allows heat to be radiated from the inner surface of the lamp house 40, thereby increasing the cooling effect of the entire backlight device and
  • local cooling of the cold-cathode tube 5 is also realized by the optical reflection coating 10 in the heat radiation region 50 located near the surface of the cold-cathode tube 5.
  • the heat radiation region 50 may be formed of the heat radiation transparent coating film 11. In this case, local cooling can be achieved in the same manner as described above due to its heat radiation.
  • the light source unit in still another embodiment of the present invention has a convex portion 32.
  • the convex portion 32 projects toward the cold cathode tube 5 at a substantially central portion in the longitudinal direction of the cold cathode tube 5 of the reflecting surface 51 on the inner surface of the lamp house 40 in the longitudinal direction of the cold cathode tube 5 so as to face the cold cathode tube 5.
  • the cathode tube 5 is provided over substantially the entire length in a direction orthogonal to the longitudinal direction.
  • the length of the convex portion 32 is lmm or more, and preferably about 20mm.
  • the height is set to a value not less than 10 / zm and not in contact with the cold cathode tube 5.
  • the end is located at a predetermined distance C from the electrode 5a of the cold-cathode tube 5, preferably 20 mm or more.
  • an optical reflection coating film 10 is formed on the entire inner surface of the lamp house 40 including the projections 32.
  • the convex portions 32 may be formed by pressing the optical reflection coating film 10 as shown in Fig. 30 or may be formed by embossing the optical reflection coating film 10 by coating. Good. Also in this case, similarly to the case of FIG. 29, the light from the cold cathode tube 5 is scattered and reflected by the optical reflection coating 10. The reflection characteristics of the projections 32 formed by the optical reflection coating film 10 are the same as those at other places. Further, since the distance between the convex portion 32 and the cold cathode tube 5 is short, the same effects as described above can be obtained.
  • the reflection sheet 7 may be provided by omitting the optical reflection coating film 10 on the inner surface of the lamp house 40 provided with the projections 32. Also in this case, since the distance between the convex portion 32 and the cold cathode tube 5 is short, local cooling is achieved.
  • the light source unit has a plurality of heat radiation regions 50a to 50h as can be seen from the top view.
  • These heat radiating regions 50a to 50h are obtained by dividing the heat radiating regions 50 in the embodiment described with reference to FIG. 28 and displacing the positions thereof corresponding to the plurality of cold cathode tubes 5, respectively. It corresponds to the state.
  • the ends of the heat radiation regions 50a to 50h are arranged at the above-mentioned predetermined distance C from the electrode 5a of each cold cathode tube 5, that is, at a position separated by 20 mm or more.
  • the embodiments shown in Fig. 21 and thereafter may be combined as appropriate, whereby the effects of the respective embodiments are obtained in a superimposed manner.
  • the optical reflection coating film and the heat-radiating transparent coating film were formed by directly applying to the reflector 4 and the lamp house 40.
  • the formation of the optical reflection coating or the heat-radiating transparent coating on the reflector 4 or the lamp nose 40 is not limited to this.
  • an optical reflection coating or a heat-radiating transparent coating may be applied to a base sheet or the like in the examples shown in FIGS. May be formed and bonded together.
  • the base sheet is preferably transparent when it is a heat-radiating transparent coating film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

In a side light-type backlight device where a light source section is provided at a side end face of a light guide plate, an optical reflection coating film having light resistance and heat radiation ability is provided on the inner surface of the reflector. In a directly under-type backlight device that has a lamp house and light emission sources arranged inside the lamp house, the optical reflection coating film is provided on the inner surface of the lamp house. The structures above provide backlight devices and liquid crystal display devices capable of maintaining display quality over a long period.

Description

明 細 書  Specification
ノ ックライト装置  Knock light device
技術分野  Technical field
[0001] 本発明は、光学部品や光学機器等の光学装置に用いられるバックライト装置およ びそれを有する液晶表示装置に関する。  The present invention relates to a backlight device used for an optical device such as an optical component or an optical device, and a liquid crystal display device having the same.
背景技術  Background art
[0002] 従来のサイドライト型のバックライト装置は、発光源が内部に設置されたリフレクタが 導光板の側端面に設けられ、その入光端面力 導光板に導いかれた光を導光板の 裏面に設けた反射シートにより散乱反射させて反射シートの反対側の光射出面から 射出させるものであり、液晶パネル等の光学的表示装置のバックライトとして用いられ ている。  [0002] In a conventional sidelight type backlight device, a reflector in which a light emitting source is installed is provided on a side end surface of a light guide plate, and a light incident end face force of the light is applied to the back surface of the light guide plate. The light is scattered and reflected by the reflection sheet provided on the light emitting surface and is emitted from the light exit surface on the opposite side of the reflection sheet, and is used as a backlight of an optical display device such as a liquid crystal panel.
[0003] この場合、反射シートは、微粒子を含有したバインダ榭脂をポリエチレンテレフタレ ート等の有機材料カゝらなる高分子フィルムに塗布して微粒子を高分子フィルムの一 方の面に分散させ、これに銀等の金属を真空蒸着した金属薄膜層で覆って形成され ている。または、例えば、特開 2003-279714号公報の、主に第 4頁一第 6頁右欄およ び図 2に記載のように、上述の高分子フィルムやシートの内部にアクリル榭脂等の有 機材料の微細なフイラを分散させて、散乱反射特性を有する反射シートが形成され ている。  [0003] In this case, the reflective sheet is formed by applying a binder resin containing fine particles to a polymer film made of an organic material such as polyethylene terephthalate and dispersing the fine particles on one surface of the polymer film. It is formed by covering a metal such as silver with a metal thin film layer vacuum-deposited. Alternatively, for example, as described in JP-A-2003-279714, mainly as shown in the right column of page 4 to page 6 and in FIG. 2, the inside of the above-mentioned polymer film or sheet contains acrylic resin or the like. A reflection sheet having scattering reflection characteristics is formed by dispersing a fine filler made of an organic material.
[0004] し力しながら、上述した従来の技術では、ポリエチレンテレフタレート等の有機材料 力もなる高分子材料フィルムの内部に微細なフイラを分散させた反射シートがアルミ -ゥム等のリフレクタの内面に貼合されているため、リフレクタの内面を発光源力もの 光の反射に利用する場合は、有機材料の高分子材料フィルムが発光源力ゝらの紫外 線により黄色く変色し、いわゆる黄変を生じて、反射率が低下することがある。これに よって、輝度、コントラストおよび色のムラ等の表示品質の低下を引き起こし、長期に わたって表示品質を維持することが困難であり、バックライト装置の信頼性が低下す るという問題があった。  [0004] However, in the above-described conventional technology, a reflection sheet in which a fine filler is dispersed inside a polymer material film which also has an organic material such as polyethylene terephthalate is formed on the inner surface of a reflector such as aluminum. When the inner surface of the reflector is used for reflection of light that emits light, the polymer film of the organic material turns yellow due to the ultraviolet rays of the light from the light source, causing so-called yellowing. As a result, the reflectance may decrease. As a result, display quality such as luminance, contrast, and color unevenness is deteriorated, and it is difficult to maintain the display quality for a long period of time. As a result, the reliability of the backlight device is reduced. .
発明の概要 [0005] 本発明は、長期にわたって表示品質を維持することができるノ ックライト装置および 液晶表示装置を提供することを目的とする。 Summary of the Invention An object of the present invention is to provide a knock light device and a liquid crystal display device that can maintain display quality for a long period of time.
[0006] 本発明によれば、導光板の側端面に光源部が配置されたサイドライト型のバックラ イトにおいて、光源部は、発光源とリフレクタとを含み、リフレクタの内面には、耐光性 および熱放射性を有する光学反射塗膜が形成されて!ヽる。 According to the present invention, in a sidelight type backlight in which a light source unit is disposed on a side end surface of a light guide plate, the light source unit includes a light emitting source and a reflector, and the inner surface of the reflector has light resistance and An optical reflection coating having heat radiation is formed!
[0007] また、ランプハウスと、ランプハウスの内部に設置された複数の発光源とを含む直下 型のバックライトにおいて、ランプハウスの内面には、耐光性および熱放射性を有す る光学反射塗膜が形成されて ヽる。 [0007] In a direct-type backlight including a lamp house and a plurality of light-emitting sources installed inside the lamp house, an inner surface of the lamp house is coated with an optical reflection coating having light resistance and heat radiation. A film is formed.
[0008] さらに、このようなバックライトを含む液晶表示装置が提供される。 [0008] Further, a liquid crystal display device including such a backlight is provided.
[0009] こうして、本発明は、発光源カゝら照射される紫外線に対して無機材料カゝらなる光学 反射塗膜で黄変等を防止することによって、半永久的に表示品質を維持し、バックラ イトの信頼性が向上する。 [0009] Thus, the present invention semi-permanently maintains display quality by preventing yellowing or the like with an optically reflective coating made of an inorganic material against ultraviolet rays irradiated from a light source. The reliability of the backlight is improved.
[0010] また、光学反射塗膜は熱放射性にも優れているため、冷却効果が高ぐ発光源の 発光効率の低下を抑えことができる。したがって、発光源へ供給する電流を増やすこ とが可能で、高輝度が達成される。液晶パネルへの熱流出も抑えられ、これによつて も液晶パネルの表示品質が向上する。 [0010] Further, since the optical reflection coating film is also excellent in heat radiation, it is possible to suppress a decrease in the luminous efficiency of the luminous source, which has a high cooling effect. Therefore, the current supplied to the light emitting source can be increased, and high luminance can be achieved. Heat leakage to the liquid crystal panel is also suppressed, which improves the display quality of the liquid crystal panel.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明による液晶表示装置の実施例の断面を示す模式的断側面図、  FIG. 1 is a schematic cross-sectional side view showing a cross section of an embodiment of a liquid crystal display device according to the present invention;
[図 2]本発明の他の実施例の液晶表示装置の断面を示す、図 1と同様の模式的断側 面図、  FIG. 2 is a schematic cross-sectional side view similar to FIG. 1, showing a cross section of a liquid crystal display device according to another embodiment of the present invention;
[図 3]および  [Figure 3] and
[図 4]本発明のさらに他の実施例における光源部の断面を示す模式的断側面図、 [図 5]本発明のさらに他の実施例の液晶表示装置の断面を示す、図 1と同様の模式 的断側面図、  FIG. 4 is a schematic cross-sectional side view showing a cross section of a light source section according to still another embodiment of the present invention. FIG. 5 is a cross-sectional view of a liquid crystal display device according to still another embodiment of the present invention, similar to FIG. Schematic cross-sectional side view of
[図 6]および  [Figure 6] and
[図 7]図 5に示す実施例における光吸収塗膜の形成状態を説明するための図、 [図 8]および  FIG. 7 is a view for explaining a state of formation of a light absorbing coating film in the example shown in FIG. 5, [FIG. 8] and
[図 9]本発明のさらに他の実施例における光源部および導光板をそれぞれ示す分解 斜視図、 FIG. 9 is an exploded view showing a light source unit and a light guide plate according to still another embodiment of the present invention. Perspective view,
[図 10]および  [Figure 10] and
圆 11]本発明によるバックライト装置の実施例を説明するための図、 [11] A diagram for explaining an embodiment of a backlight device according to the present invention,
[図 12]および [Figure 12] and
圆 13]本発明によるバックライト装置の他の実施例を示す模式的断側面図、 圆 13] A schematic cross-sectional side view showing another embodiment of the backlight device according to the present invention,
[図 14]および [Figure 14] and
圆 15]本発明によるバックライト装置のさらに他の実施例を示す模式的断側面図、 圆 16]図 12に示す実施例における光学反射塗膜への光吸収塗膜の形成状態を説 明するための図、 圆 15] A schematic cross-sectional side view showing still another embodiment of the backlight device according to the present invention. 圆 16] A state of forming a light absorbing coating film on the optical reflection coating film in the embodiment shown in FIG. Figure for the
圆 17]本発明によるバックライト装置のさらに他の実施例を示す模式図、 [17] A schematic view showing still another embodiment of the backlight device according to the present invention.
[図 18]図 17における線 XVIII-XVIIIにおける断面図、  FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. 17;
圆 19]本発明によるバックライト装置のさらに他の実施例を示す模式図、 [19] Schematic diagram showing still another embodiment of the backlight device according to the present invention,
圆 20]図 19に示す実施例における凸部の形成例を説明するための模式図、 圆 20] is a schematic view for explaining an example of the formation of the protrusions in the embodiment shown in FIG. 19;
[図 21]本発明による液晶表示装置のさらに他の実施例の断面を示す模式的分解断 側面図、  FIG. 21 is a schematic exploded side view showing a cross section of still another embodiment of the liquid crystal display device according to the present invention;
[図 22]図 21に示す実施例の上面を示す上面図、  FIG. 22 is a top view showing the top surface of the embodiment shown in FIG. 21;
圆 23]本発明によるバックライト装置のさらに他の実施例を示す模式的側面図、 [図 24]本発明によるノ ックライト装置のさらに他の実施例を示す、図 17と同様の模式 的側面図、 [23] A schematic side view showing still another embodiment of the backlight device according to the present invention. [FIG. 24] A schematic side view similar to FIG. 17 showing still another embodiment of the knock light device according to the present invention. ,
[図 25]図 24に示す実施例の上面を示す上面図、  FIG. 25 is a top view showing the top surface of the embodiment shown in FIG. 24;
圆 26]本発明のさらに他の実施例における光源部を説明的に示す分解斜視図、 圆 27]本発明のさらに他の実施例における光源部を説明するための模式図、 圆 26] Exploded perspective view showing a light source unit in still another embodiment of the present invention. 圆 27] Schematic diagram for explaining a light source unit in still another embodiment of the present invention.
[図 28]図 27に示す実施例の上面を示す上面図、 FIG. 28 is a top view showing the top surface of the embodiment shown in FIG. 27;
[図 29]および [Fig.29] and
圆 30]本発明のさらに他の実施例における光源部を説明するための模式図、 [30] A schematic diagram for explaining a light source unit in still another embodiment of the present invention,
[図 31]本発明のさらに他の実施例における光源部を示す上面図である。 FIG. 31 is a top view showing a light source unit according to still another embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
次に添付図面を参照して本発明によるバックライト装置の実施例を詳細に説明する 。図 1を参照すると、本発明による液晶表示装置の実施例 1は、サイドライト型のバッ クライト装置を用いた液晶表示装置である。液晶表示装置 1は液晶パネル 2を有し、 その表面および裏面には偏光板 3が配置されている。 Next, an embodiment of a backlight device according to the present invention will be described in detail with reference to the accompanying drawings. . Referring to FIG. 1, Embodiment 1 of the liquid crystal display device according to the present invention is a liquid crystal display device using a sidelight type backlight device. The liquid crystal display device 1 has a liquid crystal panel 2, and a polarizing plate 3 is disposed on the front and back surfaces.
[0013] 液晶表示装置 1はさらにリフレクタ 4を有し、これはアルミニウム等の金属板により一 方の面を開放した箱型に成形されている。この箱型の内部には発光源として冷陰極 管 5が図示のように配設されている。これは、管状の冷陰極型の蛍光ランプであって 、リフレクタ 4の内部に 1本または複数本設置され、通電により可視光線および紫外線 、赤外線を発光する。本実施例では 1本の冷陰極管が設置されている。発光源 5は、 上述のものに限らず、例えば熱陰極型の蛍光ランプであってもよい。  [0013] The liquid crystal display device 1 further includes a reflector 4, which is formed in a box shape with one surface opened by a metal plate such as aluminum. A cold cathode tube 5 as a light emitting source is disposed inside the box as shown in the figure. This is a tubular cold-cathode fluorescent lamp, one or more of which are installed inside the reflector 4, and emits visible light, ultraviolet light, and infrared light when energized. In this embodiment, one cold cathode tube is provided. The light emitting source 5 is not limited to the one described above, and may be, for example, a hot cathode fluorescent lamp.
[0014] 液晶表示装置 1はまた、導光板 6を有し、これは、光吸収の少な!/、透明な材料で略 直方体に製作され、一方の側端部には、上述のように内部に発光源 5が設置されたリ フレクタ 4が嵌合または突合により接合されて取付けられている。その側端面は、発 光源 4に正対して発光源 5からの光が入光する入光端面 6aとして機能する。本実施 例では、リフレクタ 4や発光源として冷陰極管 5等力 成る光源部が嵌合により導光板 6に接合されて取り付けられて!/、る。  [0014] The liquid crystal display device 1 also has a light guide plate 6, which is made of a transparent material having a low light absorption and is formed in a substantially rectangular parallelepiped, and has one side end provided with an internal portion as described above. The reflector 4 in which the light emitting source 5 is installed is joined and attached by fitting or butting. The side end surface functions as a light incident end surface 6a where light from the light emitting source 5 enters the light source 4 directly. In the present embodiment, the reflector 4 and the light source having the same strength as the cold-cathode tube 5 as the light-emitting source are joined and attached to the light guide plate 6 by fitting.
[0015] この入光端面 6aから導光板 6に入光した光は、導光板 6の裏面 6bに設けられた反 射シート 7により反射されて、その反対側の表面、つまり光射出面 6c力も射出する。こ の光がレンズシート 8、光拡散部材としての拡散シート 9、偏光板 3を介して液晶パネ ル 2に照射される。本実施例の反射シート 7は、シート中に微細なフイラを分散させて 散乱反射特性を有するようにした光反射性シート部材である。  The light that has entered the light guide plate 6 from the light incident end surface 6a is reflected by the reflection sheet 7 provided on the back surface 6b of the light guide plate 6, and the surface on the opposite side, that is, the light exit surface 6c also has a force. Inject. This light is applied to the liquid crystal panel 2 via the lens sheet 8, the diffusion sheet 9 as a light diffusion member, and the polarizing plate 3. The reflection sheet 7 of the present embodiment is a light-reflective sheet member having a scattered reflection characteristic by dispersing a fine filler in the sheet.
[0016] リフレクタ 4の内面には光学反射塗膜 10が配設されている。これは、白色の金属酸 化物、白色の金属窒化物、白色の金属炭化物または白色の金属硫化物の微細な粒 子として形成された無機フイラを液状のバインダに含有させた塗料を塗布した後に、 これを乾燥させて形成された白色の塗膜である。  An optical reflection coating 10 is provided on the inner surface of the reflector 4. This is because after applying a paint containing a liquid binder containing an inorganic filler formed as fine particles of white metal oxide, white metal nitride, white metal carbide or white metal sulfide, This is a white coating film formed by drying this.
[0017] このように、リフレクタ 4と、発光源 5等力 成る光源部と、導光板 6、反射シート 7、レ ンズシート 8、拡散シート 9とによりサイドライト型のバックライト装置が構成されている。  As described above, the reflector 4, the light source unit having the same power as the light emitting source 5, the light guide plate 6, the reflection sheet 7, the lens sheet 8, and the diffusion sheet 9 constitute a sidelight type backlight device. .
[0018] 光学反射塗膜 10の無機フイラとして用いる白色の金属酸ィ匕物は、酸化マグネシウム 、アルミナ、酸化珪素、酸ィ匕カルシウム、酸化チタン、酸化イットリウム、酸化亜鉛また は酸ィ匕ジルコニウム等でよぐこれらのうち少なくとも 1種を用いる。 [0018] The white metal oxide used as the inorganic filler of the optical reflection coating 10 is magnesium oxide, alumina, silicon oxide, calcium oxide, titanium oxide, yttrium oxide, zinc oxide, or the like. Use at least one of these materials, such as zirconium oxide.
[0019] 白色の金属窒化物 2bは、窒化シリコン、窒化ニオブまたは窒化モリブデン等でよく 、これらのうち少なくとも 1種を用いる。白色の金属炭化物 2cは、炭化シリコンまたは炭 化チタン等でよぐこのうち少なくとも 1種を用いる。白色の金属硫ィ匕物 2dは、硫酸バリ ゥム等である。 The white metal nitride 2b may be silicon nitride, niobium nitride, molybdenum nitride, or the like, and at least one of them is used. As the white metal carbide 2c, use at least one of silicon carbide and titanium carbide. The white metal sulfide 2d is a sulfuric acid barrier or the like.
[0020] 上述したバインダは、シリコーンェマルジヨン、シリコーンレジン等でよぐこれらのう ちの少なくとも一種を用いる。塗料状態の場合はこれらの少なくとも 1種を液状として 用いる。  [0020] As the binder described above, at least one of these used in silicone emulsion, silicone resin or the like is used. In the case of paint, at least one of them is used as a liquid.
[0021] ノインダは、塗布後に乾燥してバインダに含まれる溶剤を蒸発させた時に形成され る無機材料力 なる透明な塗膜が結合機能を有し、無機フイラの間の結合および図 1 に示すリフレクタ 4の内面等の対象物への接着等の機能を発揮する。  [0021] In the case of Noinder, a transparent coating film formed of inorganic material formed when the solvent contained in the binder is evaporated by drying after application has a bonding function, and the bonding between inorganic fillers is shown in FIG. It exerts a function such as adhesion to an object such as the inner surface of the reflector 4.
[0022] 光学反射塗膜 10を形成するための塗料は、基本的には、無機フイラと液状のバイン ダとで構成され、無機フイラである白色の金属酸化物、金属窒化物、金属炭化物、金 属硫ィ匕物については、これらのうちの少なくとも 1種を含有していれば足りる。また、無 機フイラがこの塗料に占める割合は、 5重量パーセント以上、 85重量パーセント以下 であることが望ましい。  [0022] The paint for forming the optical reflection coating film 10 is basically composed of an inorganic filler and a liquid binder. The inorganic filler is a white metal oxide, metal nitride, metal carbide, or the like. It is sufficient for the metal sultanate to contain at least one of them. It is desirable that the ratio of the inorganic filler to the paint is 5% by weight or more and 85% by weight or less.
[0023] このような構成のバインダは、単独で塗布して乾燥させると無機材料カゝらなる透明な 塗膜を形成し、吸熱した熱を熱放射により外部へ放射する熱放射性を有する透明な 塗膜として用いることができる。このような塗膜は、熱放射性透明塗膜 11として後述す る。ノインダはまた、上述のような無機材料で構成されているため、紫外線等に対し ても黄変することがなぐ半永久的にその透明性を保つことができる。  [0023] The binder having such a configuration, when applied alone and dried, forms a transparent coating film made of an inorganic material, and has a heat-radiating transparent property of radiating absorbed heat to the outside by heat radiation. It can be used as a coating film. Such a coating film will be described later as a heat-radiating transparent coating film 11. Since the binder is made of the above-mentioned inorganic material, it can maintain its transparency semipermanently without yellowing even with ultraviolet rays or the like.
[0024] 光学反射塗膜 10は、その塗膜の表面の凹凸や白色の無機フイラによって散乱反射 特性に優れている。光学反射塗膜 10はまた、無機フイラを無機材料カゝらなる透明な 塗膜で結合した無機材料であるので、耐光特性に優れている。とくに紫外線に対す る耐光特性が有機材料に較べて極めて優れ、長期にわたる紫外線光の照射に対し ても黄変することなぐ半永久的にその反射特性を維持することができる。  [0024] The optical reflection coating film 10 has excellent scattering reflection characteristics due to unevenness of the surface of the coating film and a white inorganic filler. The optical reflection coating 10 is also an inorganic material in which an inorganic filler is bonded by a transparent coating made of an inorganic material, and thus has excellent light resistance. In particular, it has extremely excellent light resistance to ultraviolet light as compared to organic materials, and can maintain its reflection characteristics semipermanently without yellowing even when irradiated with ultraviolet light for a long time.
[0025] また、白色の塗膜である光学反射塗膜 10がその構成材料として含有する金属酸ィ匕 物等の無機フイラは、赤外線や遠赤外線を熱に変換する作用、および熱を赤外線や 遠赤外線に変換して放射する作用を有している。したがって、通常の白色の塗膜や 熱放射性透明塗膜 11に較べて優れた熱放射性を有し、吸熱した熱を熱放射により外 部へ放出する機能を有して 、る。 [0025] In addition, an inorganic filler such as a metal oxide included as a constituent material of the optical reflection coating film 10 as a white coating film has a function of converting infrared light or far infrared light into heat, and a function of converting heat from infrared light or infrared light. It has the function of converting into far-infrared rays and radiating it. Therefore, it has superior heat radiation properties as compared with a normal white coating film or a heat-radiating transparent coating film 11, and has a function of releasing absorbed heat to the outside by heat radiation.
[0026] この光学反射塗膜 11を上に形成するためのリフレクタ 4の内面は、金属鏡面等の反 射性を有する面であっても、また反射性を有しない面であってもよい。要はリフレクタ 4の内面に光学反射塗膜 11を形成すれば、上述した機能を発揮させることができる。  [0026] The inner surface of the reflector 4 on which the optical reflective coating film 11 is formed may be a reflective surface such as a metal mirror surface or a non-reflective surface. In short, if the optical reflection coating 11 is formed on the inner surface of the reflector 4, the above-mentioned function can be exhibited.
[0027] このような構成の液晶表示装置の作用を説明する。冷陰極管 5から発光される光は 、導光板 6の入光端面 6a力 直接、導光板 6の内部へ進む光と、リフレクタ 4の内面に 形成されている白色の光学反射塗膜 10で散乱反射されながら導光板 6へ入光する 光とがある。冷陰極管 5からは、紫外線も出ているが、光学反射塗膜 10は、上述のよう に無機材料であるので、黄変等が生ずることがなぐ半永久的に表示品質を維持す ることができ、ノ ックライト装置の信頼性を向上させることができる。  [0027] The operation of the liquid crystal display device having such a configuration will be described. Light emitted from the cold cathode tube 5 is scattered by light entering the light guide plate 6 directly into the light guide plate 6 and by the white optical reflection coating 10 formed on the inner surface of the reflector 4. There is light that enters the light guide plate 6 while being reflected. Ultraviolet rays are also emitted from the cold cathode tube 5, but the optical reflection coating 10 is an inorganic material as described above, so that display quality can be maintained semi-permanently without yellowing or the like. Therefore, the reliability of the knock light device can be improved.
[0028] ところで、増反射膜等を設けた金属性リフレクタは、熱伝導には優れるものの熱放 射に劣る。このため、そのような金属整理触れ区他を設けたとすると、光源部の温度 が高いことで、冷陰極管 5の最適温度を超えて、冷陰極管 5の発光効率が低下して 輝度が低くなつたり、光源部近傍の熱が液晶パネル 2まで伝わり、液晶パネル 2のコ ントラストや透過率が低下し、表示品質の低下等を引き起こしたであろう。しかし、本 実施例の光学反射塗膜 10は、上述のように熱放射性も優れているため、リフレクタ 4 の高熱伝導性による冷却効果に熱放射による冷却効果が加わって、冷却効果が高 まり、冷陰極管 5の発光効率の低下を抑えことができる。したがって、冷陰極管 5へ供 給する電流を増やして高輝度化を図ることもできる。また、液晶パネル 2への熱流出 も抑えることができ、表示品質を向上させることができる。  By the way, a metallic reflector provided with a reflection-enhancing film or the like is excellent in heat conduction but inferior in heat radiation. For this reason, if such a metal rearrangement area is provided, the temperature of the light source section is high, which exceeds the optimal temperature of the cold cathode fluorescent lamp 5, and the luminous efficiency of the cold cathode fluorescent lamp 5 is reduced, resulting in low brightness. In other words, heat near the light source would be transmitted to the liquid crystal panel 2, and the contrast and transmittance of the liquid crystal panel 2 would be reduced, which would have caused the display quality to be lowered. However, since the optical reflective coating film 10 of the present embodiment also has excellent heat radiation as described above, the cooling effect due to heat radiation is added to the cooling effect due to the high thermal conductivity of the reflector 4, and the cooling effect is increased. A decrease in the luminous efficiency of the cold cathode tube 5 can be suppressed. Therefore, it is also possible to increase the current supplied to the cold cathode tube 5 to increase the luminance. Further, heat outflow to the liquid crystal panel 2 can be suppressed, and display quality can be improved.
[0029] 図 2を参照すると、本発明の他の実施例による液晶表示装置 2は、リフレクタ 4の外 面にも光学反射塗膜 10が形成されているものである。なお、本明細書において、同 様の要素は、同一の符号を付して、冗長な説明を省略する。  Referring to FIG. 2, a liquid crystal display device 2 according to another embodiment of the present invention has an optical reflection coating 10 formed on the outer surface of a reflector 4. In this specification, the same elements are denoted by the same reference numerals, and redundant description will be omitted.
[0030] 本実施例は、このような光学反射塗膜 10が形成されていることによって、さらに次の ような効果がある。すなわち、光学反射塗膜 10の熱の赤外線への変換作用により、リ フレクタ 4の外面における熱放射性が向上し、光源部の冷却効果がさらに高まる。ま た、冷陰極管 5の性能低下の抑制や高輝度化をさらに図ることができるとともに、液晶 パネル 2の表示品質がさらに向上する。 In the present embodiment, the following effects are further obtained by forming such an optical reflection coating film 10. That is, due to the action of converting the heat of the optical reflection coating film 10 into infrared rays, the heat radiation on the outer surface of the reflector 4 is improved, and the cooling effect of the light source unit is further enhanced. Ma In addition, it is possible to further suppress the performance deterioration of the cold-cathode tube 5 and increase the brightness, and further improve the display quality of the liquid crystal panel 2.
[0031] なお、リフレクタ 4の外面に熱放射性透明塗膜 11を形成しても、その熱放射性による 冷却効果を得ることができる。この場合に、リフレクタ 4の外面に形成する塗膜は、前 記の熱放射性透明塗膜 11に限らず、熱放射性を有する塗膜であればどのようなもの であっても、その熱放射性の程度に応じた冷却効果が得られる。このような熱放射性 塗膜は、光学的に不透明な塗膜であってもよい。  [0031] Even if the heat-radiating transparent coating film 11 is formed on the outer surface of the reflector 4, the cooling effect by the heat radiation can be obtained. In this case, the coating film formed on the outer surface of the reflector 4 is not limited to the heat-radiating transparent coating film 11 described above, but may be any heat-radiating coating film. A cooling effect according to the degree is obtained. Such a heat-radiating coating may be an optically opaque coating.
[0032] 図 3を参照すると、光源部の実施例は増反射膜 20を有し、これは、リフレクタ 4の内 面に銀等の金属を蒸着等により膜状に形成され、冷陰極管 5からの光を反射するも のである。この実施例では、同図に示すように増反射膜 20の内面に熱放射性透明塗 膜 11が形成されている。  Referring to FIG. 3, the embodiment of the light source section has a reflection-enhancing film 20, which is formed by depositing a metal such as silver on the inner surface of the reflector 4 by vapor deposition or the like. It reflects light from the sky. In this embodiment, a heat-radiating transparent coating film 11 is formed on the inner surface of the reflection-enhancing film 20, as shown in FIG.
[0033] このような構成では、半永久的に透明性を保つことができる熱放射性透明塗膜 11に より、増反射膜 20の反射特性を妨げることなくリフレクタ 4の熱放射性が改善される。こ れによって、冷陰極管 5の発光効率の低下の抑制や高輝度化を図れるとともに、液 晶パネル 2への熱流出も抑えることができ、表示品質が向上する。なお、図 4に示す ように、リフレクタ 4の外面にも熱放射性透明塗膜 11を形成すれば、上述の効果をさら に高めることができる。  [0033] In such a configuration, the heat radiation property of the reflector 4 is improved by the heat radiation transparent coating film 11, which can maintain transparency semipermanently, without hindering the reflection characteristics of the enhanced reflection film 20. As a result, it is possible to suppress a decrease in the luminous efficiency of the cold-cathode tube 5 and to increase the brightness, and also to suppress a heat outflow to the liquid crystal panel 2, thereby improving the display quality. In addition, as shown in FIG. 4, if the heat-radiating transparent coating film 11 is also formed on the outer surface of the reflector 4, the above-mentioned effect can be further enhanced.
[0034] 図 5を参照すると、この実施例の液晶表示装置 1は光吸収塗膜 2を有し、これは、所 定の光吸収を有する塗料の塗膜である。この光吸収膜 2は、リフレクタ 4と導光板 6と が嵌合により接合されて 、る嵌合部および Zもしくはその近傍に設けられて 、る。所 定の光吸収は、例えば光の吸収率で 5— 20パーセント程度でよい。  Referring to FIG. 5, the liquid crystal display device 1 of this embodiment has a light absorbing coating film 2 which is a coating film of a paint having a predetermined light absorption. The light-absorbing film 2 is formed by fitting the reflector 4 and the light guide plate 6 by fitting, and provided at or near the fitting portion and Z. The predetermined light absorption may be, for example, about 5 to 20% in terms of light absorption.
[0035] 図 6および図 7を参照して、この実施例における光吸収塗膜の形成状態を説明する 。この光吸収塗膜 21の形成は、図 6に示すように、リフレクタ 4の内面に形成された光 学反射塗膜 10の内面の嵌合部および Zもしくはその近傍に形成してよい。また、図 7 に示すように、導光板 6のリフレクタ 4との嵌合部および Zもしくはその近傍に形成す るようにしてちょい。  With reference to FIGS. 6 and 7, the state of formation of the light absorbing coating film in this example will be described. As shown in FIG. 6, the light absorbing coating film 21 may be formed on the fitting portion of the inner surface of the optical reflection coating film 10 formed on the inner surface of the reflector 4 and at or near Z. Also, as shown in FIG. 7, the light guide plate 6 is formed at the fitting portion of the light guide plate 6 with the reflector 4 and at or near Z.
[0036] 一般に、導光板に入光した直後の光は、場所による光の強度が均一ではな 、。ま た、導光板の入光端面のエッジ近傍でそのエッジ部の形状が不定形なことがあり、そ のような場合、エッジ部により導光板の光射出面力も射出する光がある。これによつて 従来、液晶パネルの光源部近傍で輝度の高い領域が生じ、表示品質が低下すること かあつた。 In general, the light immediately after entering the light guide plate does not have uniform light intensity depending on the location. In addition, the shape of the edge portion of the light guide plate near the edge of the light incident end surface may be indeterminate. In such a case, there is light that also emits the light exit surface force of the light guide plate due to the edge portion. As a result, conventionally, a region having a high luminance is generated near the light source portion of the liquid crystal panel, and the display quality is deteriorated.
[0037] しかし本実施例では、リフレクタ 4の嵌合部および Zもしくはその近傍に光吸収塗膜 21が形成されているので、光源部近傍のバックライトの輝度が所定量下がり、表示品 質がさらに改善する。  However, in this embodiment, since the light absorbing coating film 21 is formed at the fitting portion of the reflector 4 and at or near Z, the brightness of the backlight near the light source portion is reduced by a predetermined amount, and the display quality is reduced. Further improve.
[0038] なお、図 6および図 7に示す実施例では、光吸収塗膜 21は、導光板 6の嵌合部およ び Zもしくはその近傍の光射出面 6cおよび裏面 6bに形成されていた。しかし、これに 代わって、嵌合部の全周にわたって形成してもよぐまた、その一部、例えば輝度の 改善を要する部位のみに形成するようにしてもょ 、。  In the embodiment shown in FIGS. 6 and 7, the light absorbing coating film 21 is formed on the fitting portion of the light guide plate 6 and on the light exit surface 6c and the back surface 6b at or near Z. . However, instead of this, it may be formed over the entire circumference of the fitting portion, or may be formed only on a part of the fitting portion, for example, only a portion where the luminance needs to be improved.
[0039] また、リフレクタ 4の内面への光吸収塗膜 21は、上述のようにリフレクタ 4の内面に形 成された光学反射塗膜 10に塗り重ねて形成してもよぐまたは、光学反射塗膜 10と光 吸収塗膜 21との形成部位を隣接させて、別に形成するようにしてもよい。  The light-absorbing coating film 21 on the inner surface of the reflector 4 may be formed by coating the optical reflection coating film 10 formed on the inner surface of the reflector 4 as described above, The portions where the coating film 10 and the light absorbing coating film 21 are formed may be adjacent to each other and formed separately.
[0040] リフレクタ 4が突合により接合されて組み付けられる場合は、その突合部とリフレクタ 4および Zもしくは導光板 6の突合部の近傍に、上述したのと同様に光吸収塗膜 21を 形成すればょ 、。これにより同様の効果を得ることができる。  When the reflector 4 is joined and assembled by abutting, the light absorbing coating film 21 is formed in the vicinity of the abutting portion and the abutting portion of the reflectors 4 and Z or the light guide plate 6 in the same manner as described above. Yeah. Thereby, a similar effect can be obtained.
[0041] 図 8を参照すると、この実施例では、導光板 6は、入光端面 6aに隣接する両方の導 光板側端面 6dと入光端面 6aに対向する導光板 6の対向側端面 6eとに光学反射塗膜 10が形成されている。  Referring to FIG. 8, in this embodiment, the light guide plate 6 has both light guide plate side end surfaces 6d adjacent to the light incident end surface 6a and the opposite side end surface 6e of the light guide plate 6 facing the light incident end surface 6a. An optical reflection coating 10 is formed on the substrate.
[0042] このように構成することによって、導光板 6に入射した光が対向側端面 6eや両方の 導光板側端面 6dに当っても、その光が有効に反射され、再度、導光板 6の内部を進 行する。このため、これらの反射光が有効に利用され、しかも光学反射塗膜 10が黄変 することがないので、ノ ックライトの半永久的な高輝度化を図ることができる。また、光 学反射塗膜 10の熱放射性により導光板 6の冷却効果が高まり、液晶パネル 2への熱 流出を抑えて、表示品質を向上させることができる。  With this configuration, even if the light incident on the light guide plate 6 hits the opposing end surface 6e or both the light guide plate end surfaces 6d, the light is effectively reflected, and the light guide plate 6 Go inside. Therefore, the reflected light is effectively used, and the optical reflection coating film 10 is not yellowed, so that the knock light can be semi-permanently increased in brightness. In addition, the cooling effect of the light guide plate 6 is enhanced by the heat radiation property of the optical reflection coating film 10, so that heat leakage to the liquid crystal panel 2 can be suppressed, and the display quality can be improved.
[0043] このような光学反射塗膜 10は、上述した 3つの側端面のいずれかに形成すれば、 同様の効果を得ることができる。また、光学反射塗膜 10に代えて、熱放射性透明塗 膜 11を形成してもよぐその熱放射性により導光板 6の冷却効果を高めることができる [0044] 図 9に示すように、対向側端面 6eにも光源 5を設けた例では、上述の例と同様に、 導光板側端面 6dの一方または両方に光学反射塗膜 10または熱放射性透明塗膜 11 を形成すれば、上述の例と同様の効果を奏する。なお、対向側端面 6eに光源を設け る場合は、接合のための嵌合部または突合部を得るために、導光板 6の対向側端面 6e側を少し延長するとよい。 [0043] The same effect can be obtained by forming such an optical reflection coating film 10 on any of the three side end surfaces described above. In addition, a heat radiation transparent coating film 11 may be formed instead of the optical reflection coating film 10, and the heat radiation property of the heat radiation transparent coating film 11 can enhance the cooling effect of the light guide plate 6. As shown in FIG. 9, in the example in which the light source 5 is also provided on the opposite end surface 6e, similarly to the above-described example, one or both of the light guide plate end surfaces 6d have the optical reflection coating 10 or the heat-radiating transparent film. When the coating film 11 is formed, the same effect as in the above-described example can be obtained. When a light source is provided on the opposing end face 6e, the opposing end face 6e of the light guide plate 6 may be slightly extended in order to obtain a fitting portion or abutting portion for joining.
[0045] 図 10を参照すると、この実施例のバックライト装置は、微細パターン 22を有している 。これは、光学反射塗膜 10により形成されたドット状のパターンであって、導光板 6の 光射出面 6cの反対側の面、つまり裏面 6bに光学反射塗膜 10を用いてドット状に印刷 されている。微細パターン 22は、図 11に矢印 Aで示すように光源部近傍 A1ではドット の密度が疎であり、光源部力も遠ざかる (A2)につれて密になるように形成されている 。こうして、光射出面 6cでの輝度分布が全体として均一になるように、疎密の程度が 設定されている。  Referring to FIG. 10, the backlight device of this embodiment has a fine pattern 22. This is a dot-like pattern formed by the optical reflection coating 10 and is printed in a dot shape on the surface opposite to the light exit surface 6c of the light guide plate 6, that is, on the back surface 6b using the optical reflection coating 10. Have been. As shown by an arrow A in FIG. 11, the fine pattern 22 is formed so that the density of dots is low in the vicinity A1 of the light source portion and the density increases as the power of the light source portion increases (A2). In this way, the degree of density is set so that the luminance distribution on the light exit surface 6c becomes uniform as a whole.
[0046] このように構成することによって、黄変することがない光学反射塗膜 10の散乱反射 特性により、良好なバックライト効率が半永久的に維持される。これとともに、その熱 放射性より導光板 6の冷却効果が高まり、液晶パネル 2への熱流出を抑えて表示品 質が向上する。  With this configuration, good backlight efficiency is maintained semipermanently due to the scattering and reflection characteristics of the optical reflection coating film 10 that does not cause yellowing. At the same time, the cooling effect of the light guide plate 6 is enhanced due to the heat radiation, and the heat leakage to the liquid crystal panel 2 is suppressed, and the display quality is improved.
[0047] 微細パターン 22は、上述したようなドット状に限らず、冷陰極管 5の長手方向のライ ン状であってもよい。また、両側に光源部を配置した例では、その実質的に中央部の 微細パターンを密とし、光源部側に近づくにつれて疎となるように、構成してもよい。  The fine pattern 22 is not limited to the dot shape as described above, and may be a line shape in the longitudinal direction of the cold cathode tube 5. Further, in the example in which the light source units are arranged on both sides, the fine pattern may be formed such that the fine pattern substantially at the center is dense and becomes sparser toward the light source unit side.
[0048] さらに、導光板 6の裏面 6bに、微細パターン 22を覆うように熱放射性透明塗膜 11を 形成すれば、その熱放射性の効果に加えて、微細パターン 22の機械的擦れによる 剥れを防止することができる。  Further, if the heat-radiating transparent coating film 11 is formed on the back surface 6b of the light guide plate 6 so as to cover the fine pattern 22, in addition to the heat radiation effect, the fine pattern 22 is peeled off by mechanical rubbing. Can be prevented.
[0049] 図 12を参照すると、この実施例のバックライト装置はベースシート 23を有し、これは、 光学反射塗膜 10を形成する際の乾燥温度に耐える榭脂材料または金属材料のフィ ルムゃシート、板等の部材である。図示のようにベースシート 23は、光学反射塗膜 10 の一方の面の全面に形成され、光学反射塗膜 10を導光板 6の光射出面 6cの反対側 の面、つまり裏面 6bに対向させて反射シート 7に代えて配置されている。本実施例の ベースシート 23は、アルミニウム等の金属板である。 Referring to FIG. 12, the backlight device of this embodiment has a base sheet 23, which is a film of a resin material or a metal material that can withstand the drying temperature when forming the optical reflection coating film 10.部 材 Sheets and plates. As shown in the figure, the base sheet 23 is formed on the entire surface of one surface of the optical reflection coating 10, and the optical reflection coating 10 is opposed to the surface on the opposite side of the light exit surface 6c of the light guide plate 6, that is, the back surface 6b. And is arranged instead of the reflection sheet 7. Of this embodiment The base sheet 23 is a metal plate such as aluminum.
[0050] このように構成することによって、黄変することがない光学反射塗膜 10の散乱反射 特性により良好なバックライト効率を半永久的に維持することができるば力りでなぐ 金属板のベースシート 23の熱伝導性と光学反射塗膜 10の持つ熱放射性とにより、導 光板 6の熱、とくに光源部力 の熱が導光板 6の裏面 6b側力 効率よく放射され、液 晶パネル 2への熱流出を抑えて表示品質が向上する。  [0050] With this configuration, the base of the metal plate can be pressed by force if semi-permanently good backlight efficiency can be maintained by the scattering reflection characteristics of the optical reflection coating film 10 that does not cause yellowing. Due to the heat conductivity of the sheet 23 and the heat radiation property of the optical reflection coating 10, the heat of the light guide plate 6, in particular, the heat of the light source part is efficiently radiated to the rear surface 6 b side of the light guide plate 6, and is transmitted to the liquid crystal panel 2 And the display quality is improved by suppressing the heat leakage.
[0051] また、図 13に示すように、ベースシート 23に形成した光学反射塗膜 10の導光板 6の 裏面 6b側に熱放射性透明塗膜 11を形成して光学反射塗膜 10を保護してもよい。こう すれば、光学特性に影響を与えることなぐ導光板 6と光学反射塗膜 10との間の擦れ 等の機械的影響による光学反射塗膜 10の剥がれや無機フイラの脱落等の損傷を防 止することができる。  As shown in FIG. 13, a heat-radiating transparent coating 11 is formed on the back surface 6 b side of the light guide plate 6 of the optical reflection coating 10 formed on the base sheet 23 to protect the optical reflection coating 10. May be. This prevents damage such as peeling of the optical reflection coating 10 and falling off of the inorganic filler due to mechanical influences such as rubbing between the light guide plate 6 and the optical reflection coating 10 without affecting the optical characteristics. can do.
[0052] 図 14を参照すると、この実施例では、図 12に示されたバックライト装置がアルミ-ゥ ム等の金属板等で成形されたハウジング 24に収納されている。この場合、光学反射 塗膜 10は、ハウジング 24の導光板 6の裏面 6b側に直接、形成され、図 12に示されて いるベースシート 23は省略されている。また、図 15は、図 13に示した例と同様に熱放 射性透明塗膜 11が形成された実施例を示して ヽる。  Referring to FIG. 14, in this embodiment, the backlight device shown in FIG. 12 is housed in a housing 24 formed of a metal plate or the like of aluminum or the like. In this case, the optical reflection coating film 10 is formed directly on the back surface 6b side of the light guide plate 6 of the housing 24, and the base sheet 23 shown in FIG. 12 is omitted. FIG. 15 shows an example in which the heat-radiating transparent coating film 11 is formed as in the example shown in FIG.
[0053] このように構成することによって、上述したのと同様の効果にカ卩えて、ベースシート 23が省略され、ノ ックライト装置の製作コストが低減される。  With this configuration, the same effect as described above is obtained, the base sheet 23 is omitted, and the manufacturing cost of the knock light device is reduced.
[0054] なお、図 12—図 15に示す実施例において、ベースシート 23やハウジング 24の外側 に光学反射塗膜 10や熱放射性透明塗膜 11を形成してもよい。このようにすれば、そ れぞれの熱放射性より導光板 6の冷却効果を高めることができる。  In the embodiment shown in FIGS. 12 to 15, an optical reflection coating 10 and a heat-radiating transparent coating 11 may be formed outside the base sheet 23 and the housing 24. By doing so, the cooling effect of the light guide plate 6 can be enhanced from the respective heat radiation properties.
[0055] 図 16は、図 5に示す実施例における光吸収塗膜 21が光学反射塗膜 10の光源部側 Bに形成された状態を示す。光吸収塗膜 21は、より詳細には、図 12における導光板 6 の裏面 6b側から見たベースシート 23に、または図 14におけるハウジング 24に形成した 光学反射塗膜 10の光源部との接合部の近傍に形成されている。つまり、突合による 接合の場合は突合部とその近傍に、また嵌合による接合の場合は嵌合部および Zも しくはその近傍に形成されて 、る。  FIG. 16 shows a state in which the light absorbing coating film 21 in the embodiment shown in FIG. 5 is formed on the light source side B of the optical reflection coating film 10. More specifically, the light-absorbing coating 21 is bonded to the base sheet 23 viewed from the back surface 6b side of the light guide plate 6 in FIG. 12 or to the light source portion of the optical reflection coating 10 formed on the housing 24 in FIG. It is formed near the portion. That is, in the case of joining by butting, it is formed at the butting portion and its vicinity, and in the case of joining by fitting, it is formed at or near the fitting portion and Z.
[0056] これにより、導光板 6の光源部近傍とそれ以外の部位との間の輝度差力 S小さくなり、 図 5に示す実施例と同様の効果が得られる。 As a result, the difference S in luminance between the vicinity of the light source portion of the light guide plate 6 and the other portions is reduced. The same effect as the embodiment shown in FIG. 5 can be obtained.
[0057] なお、図 9に示したように光源部が導光板 6の両側に配置されている場合は、それ ぞれの光源部側に光吸収塗膜 21を設ければよい。図 7に示すように導光板 6に光吸 収塗膜 21が設けられている場合も、同様である。  When the light source units are arranged on both sides of the light guide plate 6 as shown in FIG. 9, the light absorbing coating 21 may be provided on each light source unit side. The same applies to the case where the light-absorbing coating film 21 is provided on the light guide plate 6 as shown in FIG.
[0058] 上述の各実施例は、液晶表示装置 1のサイドライト型のバックライト装置の発光源と して冷陰極管 5が適用されている。この冷陰極管 5を用いた場合は、前述のように冷 陰極管 5の温度を最適にしないと、発光効率や寿命の低下などの問題を引き起こす 可能性がある。つまり、冷陰極管 5は発光効率最大となる最適な温度範囲を有してい る。この温度範囲は、一般には 70— 80°Cである。これより低くても高くても、発光効率 は低下する。また、寿命に関しては、温度が高くなると電極劣化が進み、寿命が短く なる。  In each of the above-described embodiments, the cold cathode tube 5 is applied as a light source of the sidelight type backlight device of the liquid crystal display device 1. When this cold cathode tube 5 is used, problems such as a reduction in luminous efficiency and life may occur unless the temperature of the cold cathode tube 5 is optimized as described above. That is, the cold-cathode tube 5 has an optimal temperature range in which the luminous efficiency is maximized. This temperature range is generally 70-80 ° C. Either lower or higher will decrease the luminous efficiency. As for the life, when the temperature increases, the electrode deteriorates, and the life is shortened.
[0059] 従来の液晶表示装置では、冷陰極管 5の冷却が不足することが多ぐ冷陰極管 5の 温度が最適範囲を超えて高めになってしまう問題があった。この問題点は、上述の各 実施例で解決されている。  In the conventional liquid crystal display device, there is a problem that the cooling of the cold cathode tubes 5 is often insufficient, and the temperature of the cold cathode tubes 5 becomes higher than the optimum range. This problem has been solved in the above embodiments.
[0060] 冷陰極管 5を冷却する場合には、冷陰極管 5の全体が均一に冷却されていれば長 寿命化が図れる。しかし、製作時のばらつき等により、冷陰極管 5の電極近傍が最も 冷えるように冷却された場合は、消灯時に冷陰極管 5の内部の水銀が電極近傍にた まりやすくなり、再度、点灯したときに、電極スパッタにより水銀が消耗し、冷陰極管 5 の発光効率や寿命が低下する恐れがある。したがって、冷陰極管 5の電極力 遠い 部位を局所的に冷却し、かつ管全体を最適な温度に保つことが望ましい。  When the cold cathode tube 5 is cooled, if the entire cold cathode tube 5 is uniformly cooled, the life can be prolonged. However, if the vicinity of the electrode of the cold-cathode tube 5 is cooled so as to be the coldest due to manufacturing variations, etc., the mercury inside the cold-cathode tube 5 tends to collect near the electrode when the lamp is turned off, and the lamp is turned on again. In some cases, mercury is consumed by electrode sputtering, and the luminous efficiency and life of the cold cathode tube 5 may be reduced. Therefore, it is desirable to locally cool a portion of the cold-cathode tube 5 where the electrode strength is far, and to keep the entire tube at an optimum temperature.
[0061] 換言すれば、冷陰極管 5の発光効率は、冷陰極管 5内に存在する水銀の水銀蒸気 圧に依存する。このため、冷陰極管 5全体を冷やす必要はなぐ局所的な冷却により 冷陰極管 5の発光に伴う発熱を抑制して、最適な温度範囲に維持すれば、上述の恐 れが払拭され、冷陰極管 5の長寿命化が図れる。  [0061] In other words, the luminous efficiency of the cold cathode tube 5 depends on the mercury vapor pressure of mercury present in the cold cathode tube 5. For this reason, if it is not necessary to cool the entire cold-cathode tube 5, the heat generated due to the light emission of the cold-cathode tube 5 is suppressed by local cooling, and if the temperature is maintained in an optimum temperature range, the above fear is wiped out, and the cooling is performed. The life of the cathode tube 5 can be extended.
[0062] さて、図 17を参照すると、本発明によるノ ックライト装置のさらに他の実施例が導光 板 6を光射出面 6c側力も見た状態で示されている。同図における一点鎖線  Referring to FIG. 17, still another embodiment of the knock light device according to the present invention is shown in a state where the light guide plate 6 is also viewed from the light exit surface 6c side. One-dot chain line in FIG.
XVII-XVIIにおける断面が図 18に示されている。  A cross section taken along XVII-XVII is shown in FIG.
[0063] これらの図から分力るように、実施例のバックライト装置は熱放射部 30を有する。熱 放射部 30は、光学反射塗膜 10により形成され、リフレクタ 4の内面の導光板 6の入光 端面 6aと対向する面、すなわち入光端面対向面 31の冷陰極管 5の長手方向の略中 央部に、入光端面対向面 31の冷陰極管 5の長手方向に直交する方向に略全長にわ たって設けられている。 As can be seen from these figures, the backlight device of the embodiment has a heat radiating section 30. heat The radiating portion 30 is formed by the optical reflection coating film 10, and is a surface of the inner surface of the reflector 4 which faces the light incident end surface 6 a of the light guide plate 6, that is, substantially the middle of the light incident end surface facing surface 31 in the longitudinal direction of the cold cathode tube 5. In the central part, the light incident end face facing surface 31 is provided over substantially the entire length in a direction orthogonal to the longitudinal direction of the cold cathode tubes 5.
[0064] この例では、光学反射塗膜 10により形成された熱放射部 30の長さは lmm以上であ り、好ましくは 20mm程度である。また、厚みは 10 m以上あれば足りる。またその端部 は、冷陰極管 5の電極 5aから所定の距離 C、好ましくは 20mm以上離れた位置に配置 されている。また、リフレクタ 4の内面は、入光端面対向面 31を含む範囲まで金属鏡 面または増反射膜 20となって 、る。  [0064] In this example, the length of the heat radiating portion 30 formed by the optical reflection coating film 10 is lmm or more, and preferably about 20mm. Also, a thickness of 10 m or more is sufficient. The end is located at a predetermined distance C from the electrode 5a of the cold-cathode tube 5, preferably at a distance of 20 mm or more. Further, the inner surface of the reflector 4 is a metal mirror surface or the enhanced reflection film 20 up to a range including the light incident end surface facing surface 31.
[0065] このように構成することによって、光学反射塗膜 10により形成された熱放射部 30に 光が当っても、その光は散乱反射され、光吸収はほとんど発生しない。したがって、 輝度低下などの恐れはない。また、光学反射塗膜 10の熱放射性がリフレクタ 4の基材 、例えばアルミニウム材よりも高いため、冷陰極管 5が冷えやすい状況にあり、この部 分での局所冷却が実現されて ヽる。  [0065] With this configuration, even if light hits the heat radiating portion 30 formed by the optical reflection coating 10, the light is scattered and reflected, and light absorption hardly occurs. Therefore, there is no danger of luminance drop. Further, since the heat radiation of the optical reflection coating film 10 is higher than that of the base material of the reflector 4, for example, an aluminum material, the cold cathode tube 5 is in a state of being easily cooled, and local cooling in this portion is realized.
[0066] なお、熱放射部 30は、熱放射性透明塗膜 11により形成してもよい。こうすれば、そ の熱放射性により上述したのと同様の局所冷却が実現される。  The heat radiating section 30 may be formed of the heat radiating transparent coating film 11. In this case, the same local cooling as described above is realized by the heat radiation.
[0067] 図 19を参照すると、本発明のさらに他の実施例によるノ ックライト装置が導光板 6の 光射出面 6c側力も見た状態で示されている。同図において、ノ ックライト装置 6は、凸 部 32が形成されている。凸部 32は、冷陰極管 5の長手方向のリフレクタ 4の内面の入 光端面対向面 31の冷陰極管 5の長手方向における略中央部にあって冷陰極管 5に 向かって突出し、入光端面対向面 31の冷陰極管 5の長手方向に直交する方向に略 全長にわたって設けられている。  Referring to FIG. 19, a knock light device according to still another embodiment of the present invention is shown in a state where the force on the light exit surface 6c of the light guide plate 6 is also viewed. In the figure, the knock light device 6 has a projection 32 formed. The convex portion 32 is located at a substantially central portion in the longitudinal direction of the cold cathode tube 5 on the light incident end face opposing surface 31 of the inner surface of the reflector 4 in the longitudinal direction of the cold cathode tube 5, protrudes toward the cold cathode tube 5, and The end facing surface 31 is provided over substantially the entire length in a direction perpendicular to the longitudinal direction of the cold cathode tubes 5.
[0068] この例では、凸部 32の長さは lmm以上であり、好ましくは 20mm程度である。その高 さは 10 /z m以上で、冷陰極管 5に接しない高さに設定されている。またその端部は、 冷陰極管 5の電極 5aから所定の距離 C、好ましくは 20mm以上離れた位置に配置され ている。本実施例のリフレクタ 4の内面には、その凸部 32を含む全面に光学反射塗膜 10が形成されている。  [0068] In this example, the length of the convex portion 32 is lmm or more, and preferably about 20mm. Its height is not less than 10 / z m and is set so as not to be in contact with the cold cathode tube 5. The end is located at a predetermined distance C from the electrode 5a of the cold-cathode tube 5, preferably at least 20 mm. On the inner surface of the reflector 4 of the present embodiment, an optical reflection coating 10 is formed on the entire surface including the convex portion 32.
[0069] このように構成することによって、凸部 32の冷陰極管 5との距離が短ぐそのため、こ の部分で冷陰極管 5が冷えやすい傾向にあり、黄変することがない光学反射塗膜 10 により散乱反射による光学特性を半永久的に維持しつつ、局所冷却が実現される。 [0069] With such a configuration, the distance between the protruding portion 32 and the cold cathode tube 5 is short. The cold-cathode tube 5 tends to cool down in the area, and local cooling is realized while maintaining the optical characteristics due to scattered reflection semipermanently by the optical reflection coating film 10 which does not yellow.
[0070] この凸部 32は、図 20に示すように光学反射塗膜 10を塗り重ねることにより盛りあげて 形成してもよい。こうすることによって、図 19に示す場合と同様に、冷陰極管 5からの 光は光学反射塗膜 10で散乱反射され、光学反射塗膜 10により形成した凸部 32の反 射特性は他の場所と同じであり、また、凸部 32と冷陰極管 5との距離が短くなつている ため、この部分では冷陰極管 5が冷えやすぐ黄変することがない光学反射塗膜 10に より散乱反射による光学特性が半永久的に維持され、かつ局所冷却が実現される。  [0070] The projections 32 may be formed by embossing the optical reflection coating film 10 as shown in FIG. By doing so, similarly to the case shown in FIG. 19, the light from the cold cathode tube 5 is scattered and reflected by the optical reflection coating 10, and the reflection characteristics of the convex portions 32 formed by the optical reflection coating 10 are different from those of the other cases. Because the distance between the projection 32 and the cold cathode tube 5 is short, the cold-cathode tube 5 does not cool down and does not immediately turn yellow. Optical characteristics due to scattering reflection are maintained semipermanently, and local cooling is realized.
[0071] なお、凸部 32が設けられたリフレクタ 4の内面の光学反射塗膜 10を省略して、金属 鏡面または増反射膜 20としてもよい。これによつても、凸部 32と冷陰極管 5との距離が 短いことにより、局所冷却が実現される。  Note that the optical reflection coating film 10 on the inner surface of the reflector 4 provided with the projection 32 may be omitted, and a metal mirror surface or the enhanced reflection film 20 may be used. In this case, too, local cooling is realized because the distance between the convex portion 32 and the cold cathode tube 5 is short.
[0072] 上述した各実施例は適宜に組み合わせてもよぐこれにより各実施例の効果が並 行して達成される。  The respective embodiments described above may be combined as appropriate, whereby the effects of the respective embodiments are achieved in parallel.
[0073] 上述の実施例は、液晶表示装置 1に用いるサイドライト型のノ ックライト装置に光学 反射塗膜 10や熱放射性透明塗膜 11が適用されたものであった。ところで、概ね 20型 以上の液晶表示装置は一般に、液晶パネルの直下に光源部が配置された直下型が 多い。以下に、直下型のバックライト装置に光学反射塗膜 10や熱放射性透明塗膜 11 が適用された実施例を説明する。  In the above embodiment, the optical reflection coating film 10 and the heat-radiating transparent coating film 11 were applied to the sidelight type knock light device used in the liquid crystal display device 1. By the way, generally, liquid crystal display devices of about 20 inches or more generally have a direct type in which a light source unit is disposed immediately below a liquid crystal panel. Hereinafter, an example in which the optical reflection coating 10 and the heat-radiating transparent coating 11 are applied to a direct-type backlight device will be described.
[0074] 図 21を参照すると、本発明のさらに他の実施例は、この直下型のバックライト装置を 有する液晶表示装置である。同図には、その断面が示されている。この液晶表示装 置はランプハウス 40を有し、これは、その内面に光学反射塗膜 10が形成されている。 ランプハウス 40の内部には、複数の冷陰極管 5が設置され、冷陰極管 5からの光は、 ランプハウス 40の内面の光学反射塗膜 10により散乱反射される。反射された光は、ラ ンプハウス 40の開口部に設置された光拡散部材としての拡散板 41および偏光板 3を 介して液晶パネル 2に射出する。図 22には、拡散板 41、液晶パネル 2および偏光板 3 を除去した上面が示されて 、る。  Referring to FIG. 21, still another embodiment of the present invention is a liquid crystal display device having the direct-type backlight device. The same drawing shows a cross section thereof. This liquid crystal display device has a lamp house 40, on which an optical reflection coating film 10 is formed. A plurality of cold cathode tubes 5 are installed inside the lamp house 40, and light from the cold cathode tubes 5 is scattered and reflected by the optical reflection coating 10 on the inner surface of the lamp house 40. The reflected light is emitted to the liquid crystal panel 2 via a diffusion plate 41 as a light diffusion member and a polarizing plate 3 installed in the opening of the lamp house 40. FIG. 22 shows an upper surface from which the diffusion plate 41, the liquid crystal panel 2, and the polarizing plate 3 have been removed.
[0075] なお、直下型装置の光源部は、ランプハウス 40と複数の冷陰極管 5等により構成さ れ、ノ ックライト装置は、この光源部と拡散板 41等により構成されている。 [0076] このように反射特性を有する無機材料力もなる光学反射塗膜 10を用いることによつ て、従来よりランプハウス 40の内面に配置されていた有機材料力もなる反射シートが 紫外線で黄変して反射特性が低下する問題が解決され、紫外線の長期間の照射で 黄変することなぐ反射特性が半永久的に維持される。 The light source section of the direct type apparatus is configured by a lamp house 40, a plurality of cold cathode tubes 5, and the like, and the knock light apparatus is configured by the light source section, a diffusion plate 41, and the like. [0076] By using the optically reflective coating film 10 which also has an inorganic material having a reflective property and which is also an organic material, the reflection sheet which is conventionally disposed on the inner surface of the lamp house 40 and which also has an organic material can be yellowed by ultraviolet rays. As a result, the problem of deterioration in reflection characteristics is solved, and the reflection characteristics without yellowing due to long-term irradiation with ultraviolet rays are maintained semipermanently.
[0077] また、光学反射塗膜 10は熱放射性も優れて ヽるため、ランプハウス 40がアルミ-ゥ ムで形成されて 、る場合は、冷陰極管 5からの熱がランプハウス 40の熱伝導性と光学 反射塗膜 10の熱放射性により効率よく外部へ放出されて、冷却効果が高い。また、 冷陰極管 5の発光効率の低下を抑えことができるとともに、冷陰極管 5へ供給する電 流を増やして高輝度化が図れる。また、液晶パネル 2への熱流出も抑えることができ 、表示品質が向上する。  [0077] In addition, since the optical reflection coating film 10 is also excellent in heat radiation, the lamp house 40 is made of aluminum. Conductivity and optics Due to the heat radiation of the reflective coating film 10, it is efficiently released to the outside and has a high cooling effect. In addition, it is possible to suppress a decrease in the luminous efficiency of the cold cathode tube 5, and to increase the current supplied to the cold cathode tube 5, thereby achieving higher luminance. In addition, heat outflow to the liquid crystal panel 2 can be suppressed, and the display quality is improved.
[0078] さらに、このように冷陰極管 5とランプノヽウス 40との距離が短ぐしたがって、直下型 のバックライト装置を有する液晶表示装置 1が薄型化される。  Further, since the distance between the cold cathode tube 5 and the lamp nose 40 is short, the liquid crystal display device 1 having the direct-type backlight device is thinned.
[0079] なお、ランプハウス 40の外面には、図 2を参照して説明した実施例で示したのと同 様にして光学反射塗膜 10や熱放射性透明塗膜 11等を形成すれば、それぞれの熱放 射性に応じた一層の冷却効果が達成される。  [0079] On the outer surface of the lamp house 40, if the optical reflection coating 10 and the heat-radiating transparent coating 11 are formed in the same manner as in the embodiment described with reference to Fig. 2, A further cooling effect corresponding to each heat radiation property is achieved.
[0080] 図 23を参照すると、この実施例のバックライト装置は、ベースシート 23がアルミ-ゥ ム板である。これは、図 12を参照して前述した実施例と同様に、その一方の面に光学 反射塗膜 10が形成され、ランプハウス 40の内面に貼合等により配置されている。  Referring to FIG. 23, in the backlight device of this embodiment, the base sheet 23 is an aluminum plate. In this case, similarly to the embodiment described above with reference to FIG. 12, the optical reflection coating film 10 is formed on one surface thereof, and is disposed on the inner surface of the lamp house 40 by bonding or the like.
[0081] このように構成することによって、図 21に示す実施例の効果にカ卩えて、ランプノヽウス 40に穴を開けてもその穴をベースシート 23により塞ぐことができ、冷陰極管 5からの外 部への光の漏れや外部力 のゴミ等の侵入が防止される。また、ランプノヽウス 40の外 面には、回路基板等を容易に取り付けることができる。  With such a configuration, even if a hole is formed in the lamp nose 40, the hole can be closed by the base sheet 23 in addition to the effects of the embodiment shown in FIG. This prevents light from leaking from the outside to the outside and intrusion of dust and the like by external force. Further, a circuit board or the like can be easily attached to the outer surface of the lamp nozzle 40.
[0082] 図 24を参照すると、この実施例のバックライト装置は、ランプノ、ウス 40の内面に従来 の反射シート 7が配置されて 、る。反射シート 7の各冷陰極管 5の近傍で冷陰極管 5 に正対する領域、すなわち正対領域 43には、光学反射塗膜 10が形成されている。図 25には、その拡散板 41が除去された状態の上面が示されている。  Referring to FIG. 24, in the backlight device of this embodiment, a conventional reflection sheet 7 is disposed on the inner surface of a lamp 40 and a mouse 40. An optical reflection coating film 10 is formed in a region of the reflection sheet 7 near each cold cathode tube 5 facing the cold cathode tube 5, that is, in the facing region 43. FIG. 25 shows the upper surface in a state where the diffusion plate 41 is removed.
[0083] このように構成することによって、冷陰極管 5から最も強力な紫外線が照射される正 対領域 43において、無機材料カゝらなる光学反射塗膜 10が反射シート 7の黄変を防止 し、それ以外の紫外線の照射の少な 、領域では反射シート 7が従来の材料であって も十分耐えることができる。このため、輝度等の光学特性が低下することなぐ反射シ ート 7に従来の材料を適用しても長寿命化が図れる。 With this configuration, the optical reflection coating film 10 made of an inorganic material prevents the reflection sheet 7 from yellowing in the facing region 43 where the strongest ultraviolet light is irradiated from the cold cathode tubes 5. In other areas where the irradiation of ultraviolet rays is small, even if the reflection sheet 7 is made of a conventional material, the reflection sheet 7 can sufficiently withstand the irradiation. For this reason, even if a conventional material is applied to the reflection sheet 7 where the optical characteristics such as luminance do not decrease, the life can be extended.
[0084] なお、正対領域 43の光学反射塗膜 10に、さらに熱放射性透明塗膜 11を形成すれ ば、光学特性はそのまま維持して、光学反射塗膜 10の剥れ等をさらに抑えることがで きる。 [0084] If a heat-radiating transparent coating film 11 is further formed on the optical reflection coating film 10 in the facing area 43, the optical characteristics can be maintained as it is, and the optical reflection coating film 10 can be further prevented from peeling off. I can do it.
[0085] さらに、図 26を参照すると、光源部の実施例が示され、これはランプホルダ 44を有し ている。実施例のランプホルダ 44は、榭脂材料、合成ゴム、非金属材料等で製作さ れ、複数の冷陰極管 5の両側を固定するものである。本実施例では、ランプホルダ 44 は榭脂材料で製作されて 、る。  Further, referring to FIG. 26, there is shown an embodiment of the light source unit, which has a lamp holder 44. The lamp holder 44 of the embodiment is made of a resin material, a synthetic rubber, a nonmetal material, or the like, and fixes both sides of the plurality of cold cathode tubes 5. In this embodiment, the lamp holder 44 is made of a resin material.
[0086] この冷陰極管 5を固定したランプホルダ 44の表面には、光学反射塗膜 10が形成さ れている。ランプホルダ 44は、やはり内面に光学反射塗膜 10が形成されたランプハウ ス 40の内部に固定される。  [0086] An optical reflection coating 10 is formed on the surface of the lamp holder 44 to which the cold cathode tube 5 is fixed. The lamp holder 44 is also fixed inside the lamp house 40 having the optical reflection coating 10 formed on the inner surface.
[0087] このように構成することによって、図 21に示す実施例による効果に加えて、榭脂材 料で製作されたランプホルダ 44においても冷陰極管 5からの紫外線による黄変が防 止され、液晶画面のランプホルダ 33の近傍の画面が黄色味を帯びる事態が防止され 、長寿命のバックライト装置が達成される。  With this configuration, in addition to the effect of the embodiment shown in FIG. 21, in the lamp holder 44 made of a resin material, yellowing due to ultraviolet rays from the cold cathode tube 5 is also prevented. In addition, a situation in which the screen near the lamp holder 33 of the liquid crystal screen becomes yellowish is prevented, and a long-life backlight device is achieved.
[0088] 図 21以降を参照して説明した各実施例は、液晶表示装置 1の直下型のバックライト 装置の発光源として冷陰極管 5が適用されている。このような冷陰極管 5をサイドライ ト型のバックライト装置の発光源として用いた場合と同様に、直下型のノ ックライト装 置の発光源として冷陰極管 5を用いた場合でもまた、冷陰極管 5の温度を最適にしな いと、発光効率や寿命の低下などを引き起こす可能性があり、また電極近傍の冷却 についても同様である。このため、直下型のバックライト装置の冷陰極管 5を冷却する 場合も、電極力 遠い部位を局所的に冷却し、この局所的な冷却により冷陰極管 5の 発光に伴う発熱を抑制して、最適な温度範囲を達成することが重要である。  In each of the embodiments described with reference to FIG. 21 and subsequent figures, the cold cathode tube 5 is applied as a light emitting source of the direct type backlight device of the liquid crystal display device 1. Similar to the case where such a cold cathode tube 5 is used as a light source of a side-light type backlight device, even when the cold cathode tube 5 is used as a light source of a direct-type knock light device, a cold cathode tube is also used. If the temperature of the tube 5 is not optimized, there is a possibility that luminous efficiency and life will be reduced, and the same applies to cooling near the electrode. For this reason, even when cooling the cold cathode tube 5 of the direct-type backlight device, a portion far from the electrode power is locally cooled, and the local cooling suppresses the heat generated by the light emission of the cold cathode tube 5. It is important to achieve an optimal temperature range.
[0089] 図 27およびその上面図である図 28を参照すると、本発明のさらに他の実施例にお ける光源部は熱放射領域 50を有し、これは光学反射塗膜 10により形成されている。 両図からわ力るように、熱放射領域 50は、ランプハウス 40の内面の図 21に示す実施 例における光拡散部材としての拡散板 41と対向する面、すなわち反射面 51の冷陰極 管 5の長手方向における略中央部にあって、反射面 51の冷陰極管 5の長手方向に直 交する方向の略全長にわたって設けられている。 Referring to FIG. 27 and FIG. 28 which is a top view thereof, the light source section in still another embodiment of the present invention has a heat radiation area 50, which is formed by the optical reflection coating 10. I have. As can be seen from both figures, the heat radiating area 50 is provided on the inner surface of the lamp house 40 as shown in FIG. The surface facing the diffusion plate 41 as the light diffusion member in the example, that is, the reflection surface 51 is located substantially at the center of the cold cathode tube 5 in the longitudinal direction, and is orthogonal to the reflection surface 51 in the longitudinal direction of the cold cathode tube 5. It is provided over substantially the entire length in the direction.
[0090] この実施例では、光学反射塗膜 10により形成された熱放射領域 50の長さは lmm以 上であり、好ましくは 20mm程度である。厚みは 10 m以上あれば足りる。またその端 部は、冷陰極管 5の電極 5aから所定の距離 C、好ましくは 20mm以上離れた位置に配 置されている。また、ランプノヽウス 40の内面は、反射面 51を含んで反射シート 7が貼 合されている。 [0090] In this embodiment, the length of the heat radiation region 50 formed by the optical reflection coating film 10 is 1 mm or more, preferably about 20 mm. A thickness of at least 10 m is sufficient. Further, the end is disposed at a position separated from the electrode 5a of the cold cathode tube 5 by a predetermined distance C, preferably 20 mm or more. The reflection sheet 7 is bonded to the inner surface of the lamp nose 40 including the reflection surface 51.
[0091] このように構成することによって、光学反射塗膜 10により形成された熱放射領域 50 に光が当っても、この光は散乱反射され、光吸収はほとんど発生しない。したがって、 輝度低下などの恐れはない。また、光学反射塗膜 10の熱放射性は、リフレクタ 4の基 材、例えばアルミニウム材よりも高いため、冷陰極管 5が冷えやすぐ反射シート 7を 用いる場合の局所冷却を実現することができる。  [0091] With this configuration, even if light hits the heat radiation region 50 formed by the optical reflection coating 10, this light is scattered and reflected, and light absorption hardly occurs. Therefore, there is no danger of luminance drop. In addition, since the heat radiation of the optical reflection coating film 10 is higher than the base material of the reflector 4, for example, an aluminum material, it is possible to realize local cooling when the cold cathode tube 5 cools down or the reflection sheet 7 is used immediately.
[0092] ランプハウス 40の内面に、黄変することがない光学反射塗膜 10を形成してもよい。こ の場合、反射面 51を含んでよい。そのようにすれば、反射特性を半永久的に維持す ることができる他、その熱放射性によりランプハウス 40の内面からも熱放射させえるこ とができ、バックライト装置全体の冷却効果が高まるとともに、冷陰極管 5の管表面に 近い位置にある熱放射領域 50の光学反射塗膜 10により、冷陰極管 5の局所冷却も実 現される。  [0092] On the inner surface of the lamp house 40, an optical reflection coating film 10 that does not cause yellowing may be formed. In this case, the reflecting surface 51 may be included. By doing so, the reflection characteristics can be maintained semi-permanently, and the heat radiation allows heat to be radiated from the inner surface of the lamp house 40, thereby increasing the cooling effect of the entire backlight device and In addition, local cooling of the cold-cathode tube 5 is also realized by the optical reflection coating 10 in the heat radiation region 50 located near the surface of the cold-cathode tube 5.
[0093] また、熱放射領域 50は、熱放射性透明塗膜 11で形成してもよい。こうすれば、その 熱放射性により上述したのと同様に局所冷却を達成することができる。  [0093] The heat radiation region 50 may be formed of the heat radiation transparent coating film 11. In this case, local cooling can be achieved in the same manner as described above due to its heat radiation.
[0094] さらに図 29を参照すると、本発明のさらに他の実施例における光源部は凸部 32を 有する。凸部 32は、冷陰極管 5の長手方向においてランプハウス 40の内面の反射面 51の冷陰極管 5の長手方向における略中央部に冷陰極管 5に向力つて突出し、反射 面 51の冷陰極管 5の長手方向に直交する方向の略全長にわたって設けられている。  Referring to FIG. 29, the light source unit in still another embodiment of the present invention has a convex portion 32. The convex portion 32 projects toward the cold cathode tube 5 at a substantially central portion in the longitudinal direction of the cold cathode tube 5 of the reflecting surface 51 on the inner surface of the lamp house 40 in the longitudinal direction of the cold cathode tube 5 so as to face the cold cathode tube 5. The cathode tube 5 is provided over substantially the entire length in a direction orthogonal to the longitudinal direction.
[0095] この実施例では、凸部 32の長さは lmm以上であり、好ましくは 20mm程度である。高 さは、 10 /z m以上で冷陰極管 5に接しない高さに設定する。またその端部は、冷陰極 管 5の電極 5aカゝら所定の距離 C、好ましくは 20mm以上離れた位置に配置されている 。また、ランプハウス 40の凸部 32を含む内面には、全面に光学反射塗膜 10が形成さ れている。 [0095] In this embodiment, the length of the convex portion 32 is lmm or more, and preferably about 20mm. The height is set to a value not less than 10 / zm and not in contact with the cold cathode tube 5. The end is located at a predetermined distance C from the electrode 5a of the cold-cathode tube 5, preferably 20 mm or more. . Further, an optical reflection coating film 10 is formed on the entire inner surface of the lamp house 40 including the projections 32.
[0096] このように構成することで、凸部 32の冷陰極管 5との距離が短 、ため、この部分では 冷陰極管 5が冷えやすぐ黄変することがない光学反射塗膜 10により反射特性が半 永久的に維持されるとともに、局所冷却が達成される。  [0096] With such a configuration, since the distance between the convex portion 32 and the cold cathode tube 5 is short, the optically reflective coating film 10 in which the cold cathode tube 5 does not cool down or immediately turns yellow in this portion. Local cooling is achieved while the reflective properties are maintained semi-permanently.
[0097] 上記の凸部 32は、図 30に示すように光学反射塗膜 10を押し加工して形成してもよく 、または光学反射塗膜 10を塗り重ねることにより盛りあげて形成してもよい。この場合 も、図 29の場合と同様に、冷陰極管 5からの光は光学反射塗膜 10で散乱反射される 。光学反射塗膜 10により形成された凸部 32の反射特性は、他の場所と同じである。ま た、凸部 32と冷陰極管 5との距離が短いため、上述したのと同様の効果がえられる。  [0097] The convex portions 32 may be formed by pressing the optical reflection coating film 10 as shown in Fig. 30 or may be formed by embossing the optical reflection coating film 10 by coating. Good. Also in this case, similarly to the case of FIG. 29, the light from the cold cathode tube 5 is scattered and reflected by the optical reflection coating 10. The reflection characteristics of the projections 32 formed by the optical reflection coating film 10 are the same as those at other places. Further, since the distance between the convex portion 32 and the cold cathode tube 5 is short, the same effects as described above can be obtained.
[0098] なお、凸部 32を設けたランプハウス 40の内面の光学反射塗膜 10を省略して、反射 シート 7を設けてもよい。このようにしても、凸部 32と冷陰極管 5との距離が短いので、 局所冷却が達成される。  [0098] The reflection sheet 7 may be provided by omitting the optical reflection coating film 10 on the inner surface of the lamp house 40 provided with the projections 32. Also in this case, since the distance between the convex portion 32 and the cold cathode tube 5 is short, local cooling is achieved.
[0099] 最後に、図 31を参照すると、本発明のさらに他の実施例の光源部は、この上面図か ら分かるように、複数の熱放射領域 50a— 50hを有している。これらの熱放射領域 50a 一 50hは、図 28を参照して説明した実施例における熱放射領域 50を分割したものを 複数の冷陰極管 5のそれぞれに対応してその位置を互いにずらして配置した状態に 相当している。各熱放射領域 50a— 50hの端部は、各冷陰極管 5の電極 5aから前述の 所定の距離 C、すなわち 20mm以上離れた位置に配置されて ヽる。  [0099] Lastly, referring to Fig. 31, the light source unit according to still another embodiment of the present invention has a plurality of heat radiation regions 50a to 50h as can be seen from the top view. These heat radiating regions 50a to 50h are obtained by dividing the heat radiating regions 50 in the embodiment described with reference to FIG. 28 and displacing the positions thereof corresponding to the plurality of cold cathode tubes 5, respectively. It corresponds to the state. The ends of the heat radiation regions 50a to 50h are arranged at the above-mentioned predetermined distance C from the electrode 5a of each cold cathode tube 5, that is, at a position separated by 20 mm or more.
[0100] このように構成することによつても、図 28に示す実施例と同様の局所冷却効果が得 られる。光学反射塗膜 10の形成された熱放射領域 50a— 50hがずらして分散配置され ているので、ランプノヽウス 40の内面に反射シート 7が設けられ反射シート 7と光学反射 塗膜 10との間の反射特性が相違する場合でも、バックライトの輝度ムラや色ムラの発 生が軽減され、表示品質を保つことができる。  With such a configuration, a local cooling effect similar to that of the embodiment shown in FIG. 28 can be obtained. Since the heat radiation areas 50a to 50h on which the optical reflection coating 10 is formed are dispersedly arranged, the reflection sheet 7 is provided on the inner surface of the lamp nose 40, and between the reflection sheet 7 and the optical reflection coating 10. However, even when the reflection characteristics are different, the occurrence of luminance unevenness and color unevenness of the backlight is reduced, and the display quality can be maintained.
[0101] なお、図 29に示す実施例における凸部 32を同様に分割して配置しても、図 29の実 施例と同様の局所冷却効果が得られる。  Note that the same local cooling effect as in the embodiment of FIG. 29 can be obtained even if the protrusions 32 in the embodiment shown in FIG. 29 are divided and arranged in the same manner.
[0102] 図 21以降に示した実施例を適宜に組み合わせてもよぐこれにより各実施例の効果 が重畳して得られる。 [0103] これらの実施例は、光学反射塗膜や熱放射性透明塗膜がリフレクタ 4やランプハウ ス 40に直接塗布して形成されたものであった。しかし、リフレクタ 4やランプノヽウス 40へ の光学反射塗膜や熱放射性透明塗膜の形成は、これのみに限定されない。たとえば 、光学反射塗膜や熱放射性透明塗膜をシート状に成形した後に貼合してもよぐ図 12や図 23に示す実施例におけるベースシート等に光学反射塗膜や熱放射性透明塗 膜を形成して、これを貼合してもよい。その場合、ベースシートは、熱放射性透明塗 膜のときは透明なものがよい。 [0102] The embodiments shown in Fig. 21 and thereafter may be combined as appropriate, whereby the effects of the respective embodiments are obtained in a superimposed manner. [0103] In these examples, the optical reflection coating film and the heat-radiating transparent coating film were formed by directly applying to the reflector 4 and the lamp house 40. However, the formation of the optical reflection coating or the heat-radiating transparent coating on the reflector 4 or the lamp nose 40 is not limited to this. For example, an optical reflection coating or a heat-radiating transparent coating may be applied to a base sheet or the like in the examples shown in FIGS. May be formed and bonded together. In that case, the base sheet is preferably transparent when it is a heat-radiating transparent coating film.
[0104] 西暦 2003年 10月 17日に出願された日本国特許出願、特願 2003-358318号の明細 書、請求の範囲、添付図面および要約書を含むすべての開示内容は、この明細書 にそのすべてが含まれて、参照される。  [0104] All disclosures including Japanese patent application, Japanese Patent Application No. 2003-358318, filed on October 17, 2003, including the specification, claims, accompanying drawings, and abstract, are incorporated herein by reference. All of that is included and referenced.
[0105] 本発明を特定の実施例を参照して説明したが、本発明はこれらの実施例に限定さ れるものではない。いわゆる当業者は、本発明の範囲および概念カゝら逸脱しない範 囲で、これらの実施例を変更または修正することができることは、認識されるべきであ る。  [0105] Although the present invention has been described with reference to specific examples, the present invention is not limited to these examples. It should be recognized that those skilled in the art can change or modify these embodiments without departing from the scope and concept of the invention.

Claims

請求の範囲 The scope of the claims
[1] 導光板の側端面に光源部が配置されたサイドライト型のバックライト装置において、 前記光源部は、発光源とリフレクタとを含み、該リフレクタの内面には、耐光性および 熱放射性を有する光学反射塗膜が形成されていることを特徴とするバックライト装置  [1] In a sidelight type backlight device in which a light source unit is arranged on a side end surface of a light guide plate, the light source unit includes a light emitting source and a reflector, and the inner surface of the reflector has light resistance and heat radiation. Backlight device having an optical reflection coating film having the same
[2] 請求項 1に記載の装置において、前記リフレクタの外面には、前記光学反射塗膜が 形成されて!ヽることを特徴とするバックライト装置。 [2] The apparatus according to claim 1, wherein the optical reflection coating is formed on an outer surface of the reflector! A backlight device characterized in that the backlight device is provided.
[3] 請求項 1に記載の装置において、前記リフレクタの外面には、熱放射性を有する透 明な塗膜が形成されていることを特徴とするバックライト装置。 3. The backlight device according to claim 1, wherein a transparent coating film having a heat radiation property is formed on an outer surface of the reflector.
[4] 請求項 1に記載の装置において、前記リフレクタの内面の前記導光板との突合部 およびその近傍には、所定の光吸収を有する塗膜が形成されていること特徴とする ノ ックライト装置。 [4] The knock light device according to claim 1, wherein a coating film having a predetermined light absorption is formed on a portion of the inner surface of the reflector that abuts with the light guide plate and in the vicinity thereof. .
[5] 請求項 1に記載の装置において、前記導光板の外面の前記リフレクタとの嵌合部 および Zもしくは嵌合部の近傍には、所定の光吸収を有する塗膜が形成された領域 が設けられて 、ることを特徴とするバックライト装置。  [5] The device according to claim 1, wherein a coating film having a predetermined light absorption is formed in the outer surface of the light guide plate near the fitting portion with the reflector and the Z or the fitting portion. A backlight device, which is provided.
[6] 導光板の側端面に光源部が配置されたサイドライト型のバックライト装置において、 前記光源部は、発光源とリフレクタとを含み、該リフレクタの内面には、熱放射性を有 する透明な塗膜が形成され、前記リフレクタの外面には、耐光性および熱放射性を 有する光学反射塗膜が形成されていることを特徴とするバックライト装置。  [6] In a backlight device of a sidelight type in which a light source unit is disposed on a side end surface of a light guide plate, the light source unit includes a light emitting source and a reflector, and an inner surface of the reflector has a heat-radiating transparent surface. A backlight device characterized in that a light-resistant and heat-radiating optical reflection film is formed on an outer surface of the reflector.
[7] 請求項 6に記載の装置において、前記リフレクタの内面の前記導光板との突合部 およびその近傍には、所定の光吸収を有する塗膜が形成されていること特徴とする ノ ックライト装置。  7. The knock light device according to claim 6, wherein a coating film having a predetermined light absorption is formed on a portion of the inner surface of the reflector that abuts with the light guide plate and in the vicinity thereof. .
[8] 請求項 6に記載の装置において、前記導光板の外面の前記リフレクタとの嵌合部 および Zもしくは嵌合部の近傍には、所定の光吸収を有する塗膜が形成された領域 が設けられて 、ることを特徴とするバックライト装置。  [8] The device according to claim 6, wherein a region where a coating film having a predetermined light absorption is formed is formed on the outer surface of the light guide plate near the fitting portion and the Z or the fitting portion with the reflector. A backlight device, which is provided.
[9] 導光板の側端面に光源部が配置されたサイドライト型のバックライト装置において、 前記光源部は、発光源とリフレクタとを含み、該リフレクタの内面および外面には、熱 放射性を有する透明な塗膜が形成されていることを特徴とするバックライト装置。 [9] In a sidelight type backlight device in which a light source unit is disposed on a side end surface of a light guide plate, the light source unit includes a light emitting source and a reflector, and the inner and outer surfaces of the reflector have heat radiation properties. A backlight device having a transparent coating film formed thereon.
[10] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されたサイドライト型のバックライト装置にお いて、前記導光板の入光端面に隣接する両方の導光板側端面および該入光端面に 対向する対向側端面のうちの少なくとも 1つの側端面には、耐光性および熱放射性 を有する光学反射塗膜が形成されていることを特徴とするバックライト装置。 [10] A sidelight-type backlight device including a light source unit and a light guide plate having a light incident end surface into which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In this case, at least one of the two light guide plate side end surfaces adjacent to the light incident end surface of the light guide plate and the opposing side end surface facing the light incident end surface has light resistance and heat radiation. A backlight device having a reflective coating formed thereon.
[11] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されたサイドライト型のバックライト装置にお いて、前記導光板の入光端面に隣接する両方の導光板側端面および該入光端面に 対向する対向側端面のうちの少なくとも 1つの側端面には、熱放射性を有する透明な 塗膜が形成されていることを特徴とするバックライト装置。  [11] A sidelight-type backlight device including a light source unit and a light guide plate having a light incident end face through which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In this case, at least one of the two light guide plate side end surfaces adjacent to the light incident end surface of the light guide plate and the opposite side end surface facing the light incident end surface has a heat-radiating transparent coating film. A backlight device, characterized in that a backlight is formed.
[12] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されたサイドライト型のバックライト装置にお いて、前記導光板の入光端面から入光した光を射出する光射出面の反対側の面に は、耐光性および熱放射性を有する光学反射塗膜からなるドット状の微細パターン が設けられ、該微細パターンは、前記光源部から遠くなるに従って密度が高くなるこ とを特徴とするバックライト装置。  [12] A sidelight-type backlight device including a light source unit and a light guide plate having a light incident end surface through which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In this case, a dot-like fine pattern made of an optical reflection coating film having light resistance and heat radiation is provided on a surface opposite to a light exit surface from which light incident from the light incident end surface of the light guide plate exits. And a density of the fine pattern increases as the distance from the light source increases.
[13] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されたサイドライト型のバックライト装置にお いて、前記導光板の入光端面から入光した光を射出する光射出面の反対側の面に は、耐光性および熱放射性を有する光学反射塗膜からなるライン状の微細パターン が設けられ、該微細パターンは、前記光源部から遠くなるに従って密度が高くなるこ とを特徴とするバックライト装置。  [13] A sidelight-type backlight device including a light source unit and a light guide plate having a light incident end face through which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In this case, a line-shaped fine pattern made of an optically reflective coating film having light resistance and heat radiation is provided on a surface of the light guide plate opposite to a light exit surface from which light enters from the light incident end surface. And a density of the fine pattern increases as the distance from the light source increases.
[14] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されたサイドライト型のバックライト装置にお いて、該装置は、一方の面に耐光性および熱放射性を有する光学反射塗膜が形成 されたベースシートが設けられ、前記導光板の入光端面から入光した光を射出する 光射出面の反対側の面には、前記ベースシートに形成された光学反射塗膜が対向 して配置されて 、ることを特徴とするバックライト装置。 [14] A sidelight-type backlight device including a light source unit and a light guide plate having a light incident end surface through which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In this device, the device includes a base sheet on one side of which a light-reflective and heat-radiating optical reflection coating is formed, and emits light incident from a light incident end face of the light guide plate. A backlight device, wherein an optical reflection coating film formed on the base sheet is disposed to face the surface opposite to the surface.
[15] 請求項 14に記載の装置において、前記光学反射塗膜の前記導光板の側には、熱 放射性を有する透明な塗膜が形成されていることを特徴とするバックライト装置。 15. The backlight device according to claim 14, wherein a transparent film having a heat radiation property is formed on a side of the light reflection plate of the optical reflection coating.
[16] 請求項 14に記載の装置において、前記光学反射塗膜の前記光源部側の接合部と その近傍には、所定の光吸収を有する塗膜が形成された領域が設けられて!/ヽること を特徴とするバックライト装置。  [16] In the apparatus according to [14], a region where a coating film having a predetermined light absorption is formed is provided in the vicinity of the light-source-unit-side joint portion of the optical reflection coating film and in the vicinity thereof. A backlight device comprising:
[17] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されたサイドライト型のバックライト装置にお いて、該装置は、前記導光板を収納するハウジングが設けられ、前記導光板の入光 端面力 入光した光を射出する光射出面の反対側の面に対向する前記ハウジング の内面には、耐光性および熱放射性を有する光学反射塗膜が形成されていることを 特徴とするバックライト装置。  [17] A sidelight-type backlight device including a light source unit and a light guide plate having a light incident end surface through which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In the apparatus, a housing for accommodating the light guide plate is provided, and a light incident end face force of the light guide plate is provided on an inner surface of the housing opposed to a surface on a side opposite to a light exit surface for emitting the incident light. The backlight device according to claim 1, wherein an optical reflection coating film having light resistance and heat radiation property is formed.
[18] 請求項 17に記載の装置において、前記光学反射塗膜の前記導光板の側には、熱 放射性を有する透明な塗膜が形成されていることを特徴とするバックライト装置。  18. The backlight device according to claim 17, wherein a transparent coating film having a heat radiation property is formed on the optical reflection coating film on the side of the light guide plate.
[19] 請求項 17に記載の装置において、前記光学反射塗膜の前記光源部側の接合部と その近傍には、所定の光吸収を有する塗膜が形成された領域が設けられて!/ヽること を特徴とするバックライト装置。  [19] The device according to claim 17, wherein a region where a coating film having a predetermined light absorption is formed is provided in a vicinity of the light-reflecting-portion-side joint portion of the optical reflection coating film and in the vicinity thereof. A backlight device comprising:
[20] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されているサイドライト型のバックライト装置 において、前記光源部は、冷陰極管とリフレクタとを含み、該リフレクタの内面の入光 端面対向面の前記冷陰極管の長手方向における実質的に中央部には、熱放射部 が設けられ、該熱放射部は、前記リフレクタの基材より高い熱放射性を有することを 特徴とするバックライト装置。  [20] A sidelight-type backlight including a light source unit and a light guide plate having a light incident end surface through which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In the device, the light source unit includes a cold cathode tube and a reflector, and a heat radiating unit is provided at a substantially central portion in a longitudinal direction of the cold cathode tube on a light incident end face of an inner surface of the reflector. The backlight device, wherein the heat radiating portion has a higher heat radiating property than a base material of the reflector.
[21] 請求項 20に記載の装置にお 、て、前記熱放射部には、耐光性および熱放射性を 有する光学反射塗膜が形成されていることを特徴とするバックライト装置。  21. The backlight device according to claim 20, wherein the heat radiation portion is formed with an optical reflection coating having light resistance and heat radiation.
[22] 請求項 20に記載の装置において、前記熱放射部には、熱放射性を有する透明な 塗膜が形成されていることを特徴とするバックライト装置。  22. The backlight device according to claim 20, wherein a heat-radiating transparent coating film is formed on the heat radiating portion.
[23] 請求項 20に記載の装置において、前記熱放射部は、前記冷陰極管の電極部から 20mm以上離れた位置に配置されていることを特徴とするノ ックライト装置。 23. The knock light device according to claim 20, wherein the heat radiating portion is arranged at a position at least 20 mm away from an electrode portion of the cold cathode tube.
[24] 請求項 20に記載の装置にお 、て、該装置は、前記発光源の両端を保持するランプ ホルダが設けられ、該ランプホルダの表面には、前記光学反射塗膜が形成されてい ることを特徴とするバックライト装置。 [24] The apparatus according to claim 20, wherein the apparatus is provided with a lamp holder for holding both ends of the light emitting source, and the optical reflection coating is formed on a surface of the lamp holder. A backlight device characterized in that:
[25] 光源部と、該光源部からの光が入光する入光端面を有する導光板とを含み、前記 光源部が前記導光板の入光端面に配置されているサイドライト型のバックライト装置 において、前記光源部は、冷陰極管とリフレクタとを含み、該リフレクタの内面の入光 端面対向面の前記冷陰極管の長手方向における実質的に中央部には、前記冷陰 極管に向力 て突出する凸部が設けられていることを特徴とするバックライト装置。  [25] A sidelight-type backlight including a light source unit and a light guide plate having a light incident end surface through which light from the light source unit enters, wherein the light source unit is disposed on the light incident end surface of the light guide plate. In the apparatus, the light source unit includes a cold cathode tube and a reflector, and a light-receiving end face of an inner surface of the reflector substantially at a central portion in a longitudinal direction of the cold cathode tube on an end surface facing the cold cathode tube. A backlight device comprising a convex portion protruding in a directional force.
[26] 請求項 25に記載の装置において、前記リフレクタの凸部を含む内面が金属鏡面で あることを特徴とするバックライト装置。  26. The backlight device according to claim 25, wherein an inner surface of the reflector including the convex portion is a metal mirror surface.
[27] 請求項 25に記載の装置において、前記リフレクタの凸部を含む内面には、増反射 膜が設けられて 、ることを特徴とするバックライト装置。  27. The backlight device according to claim 25, wherein an enhanced reflection film is provided on an inner surface of the reflector including the convex portion.
[28] 請求項 25に記載の装置において、前記リフレクタの凸部を含む内面には、耐光性 および熱放射性を有する光学反射塗膜が形成されていることを特徴とするバックライ ト装置。  28. The backlight device according to claim 25, wherein an optical reflection coating film having light resistance and heat radiation is formed on an inner surface of the reflector including the convex portion.
[29] 請求項 25に記載の装置において、前記リフレクタの凸部を含む内面には、熱放射 性を有する透明な塗膜が形成されていることを特徴とするバックライト装置。  29. The backlight device according to claim 25, wherein a transparent coating film having a heat radiation property is formed on an inner surface of the reflector including the convex portion.
[30] 請求項 25に記載の装置にお 、て、前記凸部は、耐光性および熱放射性を有する 光学反射塗膜で形成されていることを特徴とするバックライト装置。 30. The backlight device according to claim 25, wherein the convex portion is formed of an optical reflection coating having light resistance and heat radiation.
[31] 請求項 25に記載の装置において、前記凸部は、熱放射性を有する透明な塗膜で 形成されて!ヽることを特徴とするバックライト装置。 [31] The device according to claim 25, wherein the convex portion is formed of a transparent coating film having a heat radiation property. A backlight device characterized in that the backlight device is provided.
[32] 請求項 25に記載の装置において、前記凸部の幅は、少なくとも lmmであり、前記凸 部の端部は、前記冷陰極管の電極部力も 20mm以上離れて 、ることを特徴とするバッ クライト装置。 32. The apparatus according to claim 25, wherein the width of the projection is at least lmm, and the end of the projection is separated from the electrode portion of the cold cathode tube by 20 mm or more. Backlight device.
[33] ランプハウスと、該ランプハウスの内部に設置された複数の発光源とを含む直下型 のバックライト装置において、前記ランプハウスの内面には、耐光性および熱放射性 を有する光学反射塗膜が形成されていることを特徴とするバックライト装置。  [33] In a direct-type backlight device including a lamp house and a plurality of light-emitting sources installed inside the lamp house, an optical reflection coating having light resistance and heat radiation property is formed on an inner surface of the lamp house. A backlight device, characterized in that a backlight is formed.
[34] ランプハウスと、該ランプハウスの内部に設置された複数の発光源とを含む直下型 のノ ックライト装置において、該装置は、一方の面に耐光性および熱放射性を有す る光学反射塗膜が形成されたベースシートが設けられ、該光学反射塗膜は、前記発 光源に向けて前記ランプハウスの内部に配置されて 、ることを特徴とするノ ックライト 装置。 [34] A direct-type including a lamp house and a plurality of light sources installed inside the lamp house In this knock light device, the device is provided with a base sheet on one side of which a light-reflective and heat-radiating optical reflection coating is formed, and the optical reflection coating faces the light source. A knock light device, which is disposed inside the lamp house.
[35] ランプハウスと、該ランプハウスの内部に設置された複数の発光源とを含む直下型 のノ ックライト装置において、前記ランプハウスの内面には反射シートが設けられ、該 反射シートの前記発光源と正対する正対領域には、耐光性および熱放射性を有する 光学反射塗膜が形成されていることを特徴とするバックライト装置。  [35] In a direct-type knock light device including a lamp house and a plurality of light emitting sources installed inside the lamp house, a reflection sheet is provided on an inner surface of the lamp house, and the light emission of the reflection sheet is provided. A backlight device, wherein an optical reflection coating having light resistance and heat radiation is formed in a region directly facing the light source.
[36] ランプハウスと、該ランプハウスの開口部に設置された光拡散部材と、該ランプハウ スの内部に設置された複数の冷陰極管とを含む直下型のバックライト装置において、 前記ランプハウスの内面には反射シートが設けられ、前記内面の前記光拡散部材と 対向する反射面の前記冷陰極管の長手方向における実質的に中央部には熱放射 領域が設けられ、該熱放射領域には、耐光性および熱放射性を有する光学反射塗 膜が形成されて 、ることを特徴とするバックライト装置。  [36] A direct-type backlight device including a lamp house, a light diffusing member provided at an opening of the lamp house, and a plurality of cold cathode tubes provided inside the lamp house, A reflection sheet is provided on the inner surface of the cold cathode tube, and a heat radiation area is provided substantially at the center of the reflection surface of the inner surface facing the light diffusing member in the longitudinal direction of the cold cathode tube. The backlight device according to claim 1, wherein an optical reflection coating film having light resistance and heat radiation property is formed.
[37] 請求項 36に記載の装置において、前記熱放射領域には、熱放射性を有する透明 な塗膜が形成されていることを特徴とするバックライト装置。  37. The backlight device according to claim 36, wherein a heat-radiating transparent coating film is formed in the heat radiation region.
[38] 請求項 36に記載の装置において、前記熱放射部は、前記冷陰極管の電極部から 20mm以上離れた位置に配置されていることを特徴とするノ ックライト装置。  38. The knock light device according to claim 36, wherein the heat radiating portion is arranged at a position separated from the electrode portion of the cold cathode tube by 20 mm or more.
[39] 請求項 36に記載の装置において、前記熱放射領域は、前記複数の冷陰極管に対 応して設けられ、該熱放射領域は、相互にずれた位置に配置されていることを特徴と するバックライト装置。  [39] The apparatus according to claim 36, wherein the heat radiating region is provided corresponding to the plurality of cold cathode tubes, and the heat radiating regions are arranged at positions shifted from each other. The backlight device that is the feature.
[40] ランプハウスと、該ランプハウスの開口部に設置された光拡散部材と、該ランプハウ スの内部に設置された複数の冷陰極管とを含む直下型のバックライト装置において、 前記ランプハウスの内面には、耐光性および熱放射性を有する光学反射塗膜が形 成され、前記内面の前記光拡散部材に対向する反射面の前記冷陰極管の長手方 向における実質的に中央部には熱放射領域が設けられ、該熱放射領域には、耐光 性および熱放射性を有する光学反射塗膜が形成されていることを特徴とするバックラ イト装置。 [40] A direct-type backlight device including a lamp house, a light diffusing member installed at an opening of the lamp house, and a plurality of cold cathode tubes installed inside the lamp house, wherein the lamp house An optical reflection coating having light resistance and heat radiation is formed on the inner surface of the cold cathode fluorescent lamp, and a reflection surface of the inner surface facing the light diffusing member is substantially at a central portion in a longitudinal direction of the cold cathode tube. A backlight device comprising a heat radiation area, and an optical reflection coating having light resistance and heat radiation formed on the heat radiation area.
[41] 請求項 40に記載の装置において、前記熱放射領域には、熱放射性を有する透明 な塗膜が形成されていることを特徴とするバックライト装置。 41. The backlight device according to claim 40, wherein a transparent coating film having heat radiation is formed in the heat radiation region.
[42] 請求項 40に記載の装置にお 、て、前記熱放射部は、前記冷陰極管の電極部から42. The apparatus according to claim 40, wherein the heat radiating section is connected to an electrode section of the cold cathode tube.
20mm以上離れた位置に配置されていることを特徴とするノ ックライト装置。 Knock light device characterized by being located at a distance of 20 mm or more.
[43] 請求項 40に記載の装置において、前記熱放射領域は、前記複数の冷陰極管に対 応して設けられ、該熱放射領域は、相互にずれた位置に配置されていることを特徴と するバックライト装置。 43. The apparatus according to claim 40, wherein the heat radiating region is provided corresponding to the plurality of cold cathode tubes, and the heat radiating regions are arranged at positions shifted from each other. The backlight device that is the feature.
[44] ランプハウスと、該ランプハウスの開口部に設置された光拡散部材と、該ランプハウ スの内部に設置された複数の冷陰極管とを含む直下型のバックライト装置において、 前記内面の前記光拡散部材に対向する反射面の前記冷陰極管の長手方向におけ る実質的に中央部には、前記冷陰極管に向力つて突出する凸部が設けられているこ とを特徴とするバックライト装置。  [44] In a direct-type backlight device including a lamp house, a light diffusing member provided at an opening of the lamp house, and a plurality of cold cathode tubes provided inside the lamp house, At a substantially central portion in a longitudinal direction of the cold-cathode tube of the reflection surface facing the light diffusion member, a convex portion protruding toward the cold-cathode tube is provided. Backlight device.
[45] 請求項 44に記載の装置において、前記ランプハウスの凸部を含む内面には、反射 シートが設けられていることを特徴とするバックライト装置。  45. The backlight device according to claim 44, wherein a reflection sheet is provided on an inner surface of the lamp house including the projection.
[46] 請求項 44に記載の装置において、前記ランプハウスの凸部を含む内面には、耐光 性および熱放射性を有する光学反射塗膜が形成されていることを特徴とするバックラ イト装置。  46. The backlight device according to claim 44, wherein an optical reflection coating having light resistance and heat radiation is formed on an inner surface of the lamp house including the convex portion.
[47] 請求項 44に記載の装置において、前記凸部の幅は、少なくとも lmmであり、該凸部 の端部は、前記冷陰極管の電極部力 20mm以上離れて 、ることを特徴とするバック ライト装置。  47. The apparatus according to claim 44, wherein the width of the projection is at least lmm, and an end of the projection is separated from the cold cathode tube by an electrode force of 20 mm or more. Backlighting device.
[48] 請求項 44に記載の装置において、前記凸部は、前記複数の冷陰極管に対応して 設けられ、該凸部は、相互にずれた位置に配置されていることを特徴とするバックライ ト装置。  48. The apparatus according to claim 44, wherein the projections are provided corresponding to the plurality of cold cathode tubes, and the projections are arranged at positions shifted from each other. Backlight device.
[49] 導光板の側端面に光源部が配置されたサイドライト型のバックライト装置を含む液 晶表示装置において、前記光源部は、発光源とリフレクタとを含み、該リフレクタの内 面には、耐光性および熱放射性を有する光学反射塗膜が形成されて!ヽることを特徴 とする液晶表示装置。  [49] In a liquid crystal display device including a sidelight type backlight device in which a light source unit is disposed on a side end surface of a light guide plate, the light source unit includes a light emitting source and a reflector, and an inner surface of the reflector has A liquid crystal display device, wherein an optical reflection coating film having light resistance and heat radiation property is formed.
[50] 導光板の側端面に光源部が配置されたサイドライト型のバックライト装置を含む液 晶表示装置において、前記光源部は、発光源とリフレクタとを含み、該リフレクタの内 面には、熱放射性を有する透明な塗膜が形成され、前記リフレクタの外面には、耐光 性および熱放射性を有する光学反射塗膜が形成されていることを特徴とする液晶表 示装置。 [50] A liquid containing a sidelight type backlight device in which a light source unit is disposed on a side end surface of a light guide plate In the crystal display device, the light source unit includes a light emitting source and a reflector, a transparent coating film having a heat radiation property is formed on an inner surface of the reflector, and light resistance and heat radiation property are formed on an outer surface of the reflector. A liquid crystal display device, wherein an optical reflection coating having the following is formed.
[51] ランプハウスと、該ランプハウスの内部に設置された複数の発光源とを含む直下型 のノ ックライト装置を含む液晶表示装置において、前記ランプハウスの内面には、耐 光性および熱放射性を有する光学反射塗膜が形成されていることを特徴とする液晶 表示装置。  [51] In a liquid crystal display device including a direct-type knock light device including a lamp house and a plurality of light-emitting sources installed inside the lamp house, an inner surface of the lamp house has light resistance and heat radiation. A liquid crystal display device, wherein an optical reflection coating having the following is formed.
[52] ランプハウスと、該ランプハウスの内部に設置された複数の発光源とを含む直下型 のノ ックライト装置を含む液晶表示装置において、該装置は、一方の面に耐光性お よび熱放射性を有する光学反射塗膜が形成されたベースシートが設けられ、該光学 反射塗膜は、前記発光源に向けて前記ランプハウスの内部に配置されて 、ることを 特徴とする液晶表示装置。  [52] In a liquid crystal display device including a direct-type knock light device including a lamp house and a plurality of light-emitting sources installed inside the lamp house, the device has light resistance and heat radiation property on one surface. A liquid crystal display device, comprising: a base sheet provided with an optical reflection coating having the following formula: wherein the optical reflection coating is disposed inside the lamp house toward the light emitting source.
[53] ランプハウスと、該ランプハウスの内部に設置された複数の発光源とを含む直下型 のノ ックライト装置を含む液晶表示装置において、前記ランプハウスの内面には反射 シートが設けられ、該反射シートの前記発光源と正対する正対領域には、耐光性お よび熱放射性を有する光学反射塗膜が形成されていることを特徴とする液晶表示装 置。  [53] In a liquid crystal display device including a direct-type knock light device including a lamp house and a plurality of light-emitting sources installed inside the lamp house, a reflective sheet is provided on an inner surface of the lamp house, A liquid crystal display device, wherein an optical reflection coating film having light resistance and heat radiation is formed in a region directly facing the light emitting source of the reflection sheet.
[54] ランプハウスと、該ランプハウスの開口部に設置された光拡散部材と、該ランプハウ スの内部に設置された複数の冷陰極管とを含む直下型のバックライト装置を含む液 晶表示装置において、前記ランプハウスの内面には反射シートが設けられ、前記内 面の前記光拡散部材と対向する反射面の前記冷陰極管の長手方向における実質 的に中央部には熱放射領域が設けられ、該熱放射領域には、耐光性および熱放射 性を有する光学反射塗膜が形成されていることを特徴とする液晶表示装置。  [54] A liquid crystal display including a direct-type backlight device including a lamp house, a light diffusing member installed at an opening of the lamp house, and a plurality of cold cathode tubes installed inside the lamp house. In the apparatus, a reflection sheet is provided on an inner surface of the lamp house, and a heat radiating region is provided at a substantially central portion in a longitudinal direction of the cold cathode tube on a reflection surface of the inner surface facing the light diffusing member. A liquid crystal display device, wherein an optical reflection coating having light resistance and heat radiation is formed in the heat radiation region.
PCT/JP2004/015139 2003-10-17 2004-10-14 Backlight device WO2005038342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003358318A JP4165704B2 (en) 2003-10-17 2003-10-17 Backlight
JP2003-358318 2003-10-17

Publications (1)

Publication Number Publication Date
WO2005038342A1 true WO2005038342A1 (en) 2005-04-28

Family

ID=34463294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015139 WO2005038342A1 (en) 2003-10-17 2004-10-14 Backlight device

Country Status (3)

Country Link
JP (1) JP4165704B2 (en)
TW (1) TW200532327A (en)
WO (1) WO2005038342A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI326343B (en) * 2007-06-06 2010-06-21 I Chiun Precision Ind Co Ltd Backlight module with lamp reflector and lamp reflector manufacture method
JP4533414B2 (en) 2007-09-05 2010-09-01 株式会社日立製作所 LIGHTING DEVICE AND DISPLAY DEVICE USING THE LIGHTING DEVICE
CN102197256A (en) * 2008-10-23 2011-09-21 夏普株式会社 Illuminating device, planar light source device, display device and television receiver
JP5588945B2 (en) * 2011-09-15 2014-09-10 京セラドキュメントソリューションズ株式会社 Optical scanning device and image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258020A (en) * 2001-02-19 2002-09-11 Three M Innovative Properties Co Reflecting sheet and reflecting film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258020A (en) * 2001-02-19 2002-09-11 Three M Innovative Properties Co Reflecting sheet and reflecting film

Also Published As

Publication number Publication date
JP4165704B2 (en) 2008-10-15
JP2005123087A (en) 2005-05-12
TW200532327A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
US7738053B2 (en) Backlight unit and liquid crystal display device
JP3379043B2 (en) Planar lighting device
US9465156B2 (en) Backlight module and display device
US20060050534A1 (en) Prism sheet, backlight assembly and liquid crystal display device having the same
JP2012504253A (en) Light guide device
WO2009128164A1 (en) Optical device, uniform illumination device, optical sheet, backlight unit, and display unit
TWI657293B (en) Backlight module
JP2012114067A (en) Backlight unit and display device using it
WO2003056236A1 (en) Illumination unit and liquid crystal display device using the unit
KR20010062374A (en) Light pipe, plane light source unit and liquid-crystal display device
CN111273487A (en) Backlight module and display device
TWI395021B (en) Backlight module for liquid crystal display
JP2009086208A (en) Optical sheet, backlight unit, and display device
WO2010095305A1 (en) Illuminating device, surface light source, and liquid crystal display device
JP2002008424A (en) Reflector type screen lighting device
US20190108786A1 (en) Backlight unit
JP7446065B2 (en) display device
WO2005038342A1 (en) Backlight device
JP4271928B2 (en) Light reflecting material and light source device using the same
JP2010032781A (en) Optical device, optical diffusion device, optical sheet, back light unit and display device
JP4321659B1 (en) Optical device, optical uniform device, optical sheet, backlight unit and display device
JPH0756022A (en) Illuminator using light transmission plate
JP3472510B2 (en) Surface emitting device
JP3127236U (en) Edge type backlight module
CN114397780A (en) Backlight module and display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP