WO2005038027A1 - Transgenic nonhuman mammal - Google Patents

Transgenic nonhuman mammal Download PDF

Info

Publication number
WO2005038027A1
WO2005038027A1 PCT/JP2004/015872 JP2004015872W WO2005038027A1 WO 2005038027 A1 WO2005038027 A1 WO 2005038027A1 JP 2004015872 W JP2004015872 W JP 2004015872W WO 2005038027 A1 WO2005038027 A1 WO 2005038027A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
mtdna
human mammal
polymerase
synthase
Prior art date
Application number
PCT/JP2004/015872
Other languages
French (fr)
Japanese (ja)
Inventor
Tadafumi Kato
Takaoki Kasahara
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2005038027A1 publication Critical patent/WO2005038027A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Definitions

  • the present invention relates to transgenic non-human mammals. More specifically, the present invention relates to a transgenic non-human mammal of a manic-depression model into which a gene encoding a mutant mtDNA synthetase (polymerase ⁇ ) has been introduced, and a method of using the same. . Background art
  • Manic Depression (Bipolar Disorder) (Since the word manic depression is ambiguous whether or not to include depression, it has recently been often referred to as bipolar disorder according to the American Psychiatric Association diagnostic criteria. ) Is a mental illness that develops in adulthood and repeats two phases, depression and manic. Approximately 20% of manic-depressed patients die from suicide, and social problems in a manic state rarely lose their social lives. Depression, on the other hand, is often stress-induced and ends in a single episode, but the-part can repeat independently of stress, and because of its power in manic-depressed families, Such recurrent depression is also considered a related disorder of manic depression.
  • drugs called mood stabilizers three include lithium, valproic acid, and carbamazepine
  • mood stabilizers three include lithium, valproic acid, and carbamazepine
  • Many patients are ineffective, and the development of new drugs is required.
  • Tools for the development of new drugs include the use of animal models. The following models are known as models of depression due to behavioral and pharmacological loads, and models of manic state due to pharmacological loads.
  • tail suspension test There are two behavioral tests used in rodents (rats) to test the effects of antidepressants: tail suspension test and forced swimming test.
  • tail suspension test the rat's tail Hang around.
  • forced swimming rats are placed in a cylindrical water tank. Animals are desperate and immobile when subjected to rappelling and forced swimming.
  • administration of existing antidepressants prolongs this immobility time.
  • this test is often used to determine whether it is effective.
  • a model of learning helplessness a rat is first placed in a box with two compartments connected by a tunnel. Initially, both boxes are shocked. The rat then escapes to another box, but finds that there is an electric shock there. The next day, an electric shock is applied to only one compartment. In this way, many rats (while knowing that the opposite box is also shocked?) Will escape to the opposite compartment anyway. However, some rats (knowing that the opposite box is also electrically shocked and giving up from the beginning) never try to escape. Rats that do not try to escape in the second experiment are called learned helpless rats, and this is a model of depression. Administering antidepressants to these helpless rats will avoid them again. Since this model looks at long-term behavioral changes after stress, it can be said to be a depression model. There are several other models that are depressed, such as models that have been forced to run for a long time and those that have become immobile due to drug administration.
  • An object of the present invention is to solve the above-mentioned problems of the conventional technology. That is, an object of the present invention is to provide an animal model of manic-depressive disorder in which a spontaneous depressive state ⁇ manic state appears. Further, the present invention has an object to provide a method for screening for a therapeutic agent and / or a prophylactic agent for manic depression using the above animal model.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a transgenic mouse that specifically expresses a mutant mt DNA synthetase (a gene encoding a polymerase by introducing the gene into the brain) is obtained.
  • the transgenic mice were successfully produced, and the activity of the transgenic mice produced was recorded over a long period of time, and behavioral analysis was performed.As a result, the transgenic mice were useful as an animal model for manic depression.
  • the present invention has been completed based on these findings.
  • a transgenic non-human gene characterized in that a gene encoding a mutant mtDNA synthetase (polymerase ⁇ ) is introduced into the brain by introducing the gene.
  • a human mammal or a portion thereof is provided.
  • the deleted short mt DNA is accumulated in the brain.
  • the transgenic non-human mammal of the invention is capable of spontaneously exhibiting periodic behavioral changes.
  • the transgenic non-human mammal of the present invention has a recombinant in which a gene encoding a mutant mtDNA synthase (polymerase y ) is incorporated under the control of a promoter that enables brain-specific expression. DNA has been introduced.
  • the promoter enabling brain-specific expression is calmodulin kinase IIa (CAMKI la) promoter or neural specific enolase (NSE) promoter.
  • the gene encoding the mutant mtDNA synthetase (polymerase y ) is obtained by substituting alanine for aspartic acid, the 18 th amino acid residue, in the gene encoding mouse mtDNA synthase. Is a gene that has been
  • the non-human mammal is a mouse.
  • a method for screening a therapeutic and / or prophylactic agent for manic depression comprising using the above-mentioned non-human mammal of the present invention or a part thereof. You. According to still another aspect of the present invention, there is provided a substance obtained by the above-described screening method. According to yet another aspect of the present invention, there is provided a therapeutic agent and / or a preventive agent for manic-depressive disease, comprising as an active ingredient a substance obtained by the above-described screening method.
  • FIG. 1 shows the structure of the recombinant vector for gene transfer used in the present invention.
  • Asparaginic acid which is the 18th amino acid residue of mouse ⁇ , was replaced with alanine by site-specific mutagenesis (adenine, the 580th base in the coding region, was replaced with cytosine). did) .
  • the construct shown in FIG. 1 was prepared by inserting the coding region of this mutant Poly into the I site of the pMM403 vector [Mayford M. et al., Science 274, 1678-1683 (1996)].
  • FIG. 2 shows the results of examining the gene expression of Poly in each tissue of the two transgenic mice prepared (line B and C).
  • FIG. 3 shows PCR-Southern plots of short, abnormal mitochondrial DNA (mtDNA) in each tissue of transgenic (Tg) and wild-type (non-Tg) mice from littermates B and C, respectively. The detection result is shown.
  • mtDNA abnormal mitochondrial DNA
  • Figure 4 shows the results of measuring the activity (number of rotations) of the mice on line B one by one in cages equipped with a rotation device over a period of about one month.
  • the activity of a representative individual is shown in a notation called a double plot.
  • the vertical direction (arrow direction) is the number of days
  • the horizontal axis is time, and displays 48 hours of data per horizontal line.
  • the first line shows the data for the first and second days
  • the second line shows the data for the second and third days.
  • a double plot is a drawing method that makes it easy to see the rhythmicity of the amount of activity by displaying such overlapping.
  • the black and white strips on each panel indicate the light conditions of the breeding box, the white time zone is lit, and the black time zone is off. Mice are active during the black hours due to nocturnal activity.
  • FIG. 5 shows the results of plotting the total amount of wheel rotation per mouse for all the measured individuals (5 each for Tg mice and non-Tg mice).
  • FIG. 6 shows the results of using the Lomb-Scarge periodic analysis method to determine the periodicity of wheeling behavior.
  • Each curve represents the rhythm of each mouse. It can be seen that there is a periodicity of 110 to 130 hours as well as a periodicity of 24 hours.
  • Figure 7 shows the measurement results of the open field test, the elevated plus maze test, and the forced swimming test.
  • the present inventors have found that the energy bill Hi is reduced in the brain of patients with manic-depressive illness, and is a type of mitochondrial disease, in which multiple deletions of mitochondrial DNA (mtDNA) accumulate throughout the body.
  • mtDNA mitochondrial DNA
  • Manic depression often affects the maternal.
  • the authors have conducted a hypothesis that the impairment of mitochondrial function due to abnormal mitochondrial DNA (mtDNA) is involved in the etiology of manic depression.
  • adCPEO has three causative genes, mtDNA synthase (polymerase y), Twinkle (mtDNA helicase), and ANT1 (adenine-knuleotide translocator-1), all of which are recurrent depression or bipolar. It has been shown to present sexual disorders. Thus, a point mutation was introduced into the mouse mtDNA synthase gene, and a mutant gene encoding a mtDNA synthase (polymerase ⁇ ) having a mutation that would synthesize abnormal mtDNA was created.
  • calmodulin kinase IIa CAMKIIa Promoter
  • the transgenic non-human mammal of the present invention is capable of brain-specifically expressing a gene encoding a mutant mtDNA synthase (polymerase) by introducing the gene. Characterized transgenic animal. More preferably, the transgenic non-human mammal of the present invention is characterized in that the deleted short mtDNA exhibits a force accumulated in the brain and / or a spontaneous periodic behavioral change. I do.
  • the expression level of the mutant mtDNA synthase can be determined by Northern plot, RT-PCR, immunohistochemical staining, or the like. Can be measured or analyzed.
  • the accumulation of the deleted mitochondrial DNA can be detected by a PCR-Southern plot method (specific examples are described in Example 3 of the present specification).
  • spontaneous periodic behavioral changes ie, bipolar disorder-like abnormalities
  • long-term recording of the activity of transgenic non-human mammals for specific examples, see (Described in Examples 4 and 5 of the book).
  • the term “gene encoding a mutant mtDNA synthase (polymerase ⁇ )” refers to a gene obtained by introducing a mutation into the mtDNA synthase (polymerase ⁇ ) gene, which is a known gene.
  • the polymerase ⁇ gene predicted by the computer from the mouse genome sequence is registered as Mm7-39468-30-112-1.
  • the mutated gene referred to in the present invention means a gene in which a mutation (for example, mutation) has occurred in the DNA sequence of the mtDNA synthase (polymerase ⁇ ) gene.
  • a gene in which a part of the base sequence in the gene is deleted, a gene in which a part of the base sequence of the gene is replaced by another base sequence, a gene in which another base sequence is inserted in a part of the gene, etc. be able to.
  • the number of bases to be deleted, substituted or added is not particularly limited, but is generally about 1 to 50, preferably about 1 to 15, and more preferably about 1 to 6. Deletion, substitution or addition of such a base sequence may result in deletion or substitution of mtDNA synthase (preferably about 1 to 5, more preferably about 1 or 2 amino acids in the amino acid sequence of a polymerase). Or an addition will occur.
  • Mutant mtDNA synthase used in the present invention (a specific example of a polymerase gene is mouse: 18 1st in the gene encoding mtDNA synthase).
  • a gene in which aspartic acid, which is an amino acid residue of the above, is substituted with alanine can be mentioned.
  • Such a mutant mtDNA synthase (polymerase ⁇ ) gene DNA is, for example, a genomic DNA encoding a known mtDNA synthase (polymerase ⁇ ) gene, and a base at the mutation site. It can be obtained by PCR or the like using a missense mutation-introducing primer substituted so as to encode the above amino acid.
  • methods such as PCR, preparation of primers, preparation of genomic DNA, cloning, and enzyme treatment can be carried out by conventional methods well known to those skilled in the art.
  • the method for producing the transgenic non-human mammal of the present invention is not particularly limited.
  • an expression vector having a mutant mt DNA synthetase (polymerase ⁇ ) gene incorporated under the control of a promoter is introduced into a fertilized egg or the like.
  • a method for producing a transgenic non-human mammal that specifically expresses the mutant mtDNA synthase (polymerase ⁇ ) gene, particularly in the brain, by introducing the gene is described below. explain.
  • a mutant mt DNA synthetase (a recombinant gene in which a polymerase gene is ligated downstream of an appropriate mammalian promoter as described above) is used.
  • a polyA signal can be ligated downstream of the mutant mt DNA synthetase (polymerase V) gene, if desired.
  • the type of mammalian promoter used for the construction of the transgene is not particularly limited.
  • a promoter capable of expressing a mutant mtDNA synthase (polymerase) gene in the brain (particularly, neurons of the brain) may be used. I like it.
  • Specific examples of such a promoter include, but are not limited to, a calmodulin kinase IIa (CAMKIIa) promoter or a nerve-specific enolase (NSE) promoter.
  • any other mammalian eg, human, A promoter of a gene derived from a heron, a dog, a cat, a monorekit, a hamster, a rat, a mouse, etc.
  • any other mammalian eg, human, A promoter of a gene derived from a heron, a dog, a cat, a monorekit, a hamster, a rat, a mouse, etc.
  • a terminator required for expression of a mutant mtDNA synthase (polymerase T /) gene may be linked to the recombinant gene used in the present invention.
  • the terminator is used as a sequence that terminates transcription of a target messenger RNA (so-called poly A) in a transgenic animal, and the sequence of each gene derived from a virus, various mammals or birds may be used. it can.
  • SV40 terminator of Simian virus can be used.
  • a splicing signal of a known gene and an enhancer region can be ligated to further enhance the expression of a mutant mt DNA synthase (polymerase gene. It is also possible to connect the region 5 'upstream of one promoter region, between the promoter region and the translation region, or 3 or downstream of the translation region.
  • mutant mtDNA synthase (polymerase ⁇ ) gene incorporated into the transgene is expressed in the cell
  • mutant mtDNA synthase (polymerase) is produced in the cell.
  • Transgenic non-human mammals that express a mutant mt DNA synthetase (polymerase 0 /) by introducing a mutant mt DNA synthase (polymerase V) gene can be used, for example, in fertilized eggs of non-human mammals.
  • the mutant mtDNA synthase (polymerase gene is introduced, the fertilized egg is transplanted into a pseudopregnant female non-human mammal, and the mutant mtDNA synthase (polymerase 0;
  • Non-human mammals into which the gene has been introduced can be produced by delivery, for example, rodents such as mice, hamsters, guinea pigs, rats, and rabbits, and the like.
  • the germinal cells and the germ cells or somatic cells are transferred to the non-human mammal or an ancestor of the animal at the stage of embryonic development (preferably, a single cell or a fertilized egg cell). In this stage, and generally before the 8-cell stage), it is produced by introducing a recombinant gene containing an exogenous mutant mtDNA synthase (polymerase ⁇ ) gene.
  • the construction of the mutant mt DNA synthase (polymerase V) gene is as described above.
  • the introduction of the mutant mtDNA synthase (polymerase) gene at the fertilized egg cell stage can be carried out so as to be maintained in all germ cells and somatic cells of the target mammal.
  • the mutated mtDNA synthase indicates that all the progeny of the produced animal have mutant mtDNA synthase (germ cells and somatic cells) in the germ cells of the animal after gene transfer. Means that the polymerase ⁇ ) gene is present
  • the offspring of this type of animal that inherits the gene have a mutant mtDNA synthase (polymerase V) gene in all of its germinal and somatic cells.
  • the transgenic animal of the present invention After confirming that the transgenic animal of the present invention stably retains the gene by mating, the transgenic animal can be subcultured in a normal breeding environment as the gene-bearing animal. By obtaining a homozygous animal having the transgene on both homologous chromosomes and mating the male and female animals, it is possible to breed the offspring so that all offspring have the gene in excess.
  • the expression of the mutant mtDNA synthase (polymerase y ) gene To identify the expression site of the mutant mtDNA synthase (polymerase y ) gene, the expression of the mutant mtDNA synthase (polymerase V) gene must be observed at the individual, organ, tissue, and cell levels. Can be done. It is also possible to measure the expression level of the mutant mtDNA synthetase (polymerase ⁇ ) by an enzyme immunoassay using an antibody to the enzyme.
  • transgenic non-human mammal will be specifically described with reference to a transgenic mouse as an example.
  • a transgene containing a mutant mt DNA synthetase (cDNA encoding the polymerase gene downstream of the promoter) was constructed, and the transgene was microinjected into the male pronucleus of a mouse fertilized egg. After culturing the obtained egg cells, the cells are transplanted into the oviduct of a pseudopregnant female mouse, and thereafter, the recipient animal is bred, and the pups having the cDNA are selected from the pups laid.
  • Nick mice can be produced.
  • the fertilized egg of the mouse for example, 129ZS V, C 57 BL / 6 N B ALB / c, C 3H, those arbitrary if those obtained by crossing mice derived from SJL / Wt or the like can be used.
  • transgenes to be injected is 100 to 3000 molecules per fertilized egg.
  • selection of pups having cDNA is performed by extracting DNA from the tail of the mouse, etc., and introducing a hybrid of the mutant: mtDNA synthase (polymerase ⁇ ) gene as a dot hybrid probe. It can be carried out by the Zession method or the PCR method using specific primers.
  • the transgenic non-human mammal of the present invention is characterized in that a mutant mt DNA synthetase (which is characterized by overexpressing a polymerase gene, and can be used for screening tests for therapeutic or preventive drugs for manic depression.
  • This model is also useful in research fields such as elucidation of the mechanism of development of manic depression.
  • transgenic non-human mammal of the present invention includes, as a part thereof, cells, intracellular organelles, tissues and organs of the non-human mammal, head, fingers, hands, feet, abdomen, And the like, all of which fall within the scope of the present invention.
  • the method for screening a therapeutic and / or prophylactic agent for manic depression according to the present invention can be performed using the transgenic non-human mammal of the present invention that overexpresses a variant mtDNA synthase (polymerase V). . That is, a test substance is administered to the transgenic non-human mammal (eg, transgenic mouse) of the present invention, and the physiological data, exercise ability, and the like of the transgenic non-human mammal are evaluated. By examining it, the therapeutic and preventive effects of the test substance on manic depression can be evaluated.
  • a test substance is administered to the transgenic non-human mammal (eg, transgenic mouse) of the present invention, and the physiological data, exercise ability, and the like of the transgenic non-human mammal are evaluated.
  • the therapeutic and preventive effects of the test substance on manic depression can be evaluated.
  • test substance is administered to the transgenic non-human mammal of the present invention, and the expression state of the mutant mtDNA synthetase (polymerase) after administration and the accumulation state of the deleted short mtDNA in the brain after administration.
  • mutant mtDNA synthetase polymerase
  • the therapeutic and preventive effects of the test substance on manic depression can be evaluated by analyzing the dynamics of the administered test substance in vivo.
  • transgenic non-human mammal of the present invention it is possible to evaluate the therapeutic effect and the preventive effect of manic-depressive disease. It can be used as a disease state evaluation model animal. For example, by using the transgenic non-human mammal of the present invention, it is possible to determine the recovery of these conditions and the severity of the disease, and to examine a method for treating this disease.
  • the expression of the mutant mt DNA synthetase (polymerase 0;) and the progress of the above-mentioned disease are analyzed to determine The mechanism of disease onset and progression can be elucidated.
  • test substance to be subjected to the screening method of the present invention includes, for example, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, Examples thereof include plasma, and these compounds may be novel compounds or known compounds.
  • Libraries containing a large number of molecules, such as peptide libraries and compound libraries, can also be used as test substances.
  • test substance for example, oral administration, intravenous injection and the like are used.
  • the dose of the test substance can be appropriately selected according to the administration method, the properties of the test substance, and the like.
  • the substance obtained by using the screening method of the present invention is a substance selected from the test substances described above, and has a preventive / therapeutic effect on manic-depressive phenomena. It can be used as a medicine such as a prophylactic agent. Further, a compound derived from the substance obtained by the above screening can also be used as a medicine.
  • the substance obtained by the screening method may form a salt, and the salt of the substance may be a physiologically acceptable acid (eg, an inorganic acid or an organic acid) or a base (eg, an alkali metal). And particularly preferably a physiologically acceptable acid addition salt.
  • the salt examples include a salt with an inorganic acid (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or an organic acid (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, Salts with tartaric acid, cunic acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) are used.
  • an inorganic acid eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acid eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, Salts with tartaric acid, cunic acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid
  • the substance obtained by the screening method can be used, for example, as a sugar-coated tablet, capsule, elixir, microcapsule, etc., orally, or water or any other pharmaceutically acceptable substance. It can be used parenterally in the form of an injection, such as a sterile solution with the resulting solution or a suspension.
  • a pharmaceutical preparation can be produced by mixing the substance with a physiologically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder and the like.
  • additives that can be mixed with tablets, capsules, and the like include binders such as gelatin, corn starch, tragacanth, and gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, and alginic acid.
  • Useful bulking agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, and flavoring agents such as peppermint, cocoa oil or cherry are used.
  • a sterile composition for injection can be formulated according to a conventional method such as dissolving or suspending an active substance in a vehicle such as water for injection, or a naturally occurring vegetable oil such as sesame oil or coconut oil.
  • a vehicle such as water for injection, or a naturally occurring vegetable oil such as sesame oil or coconut oil.
  • the aqueous solution for injection include physiological saline, isotonic solution containing glucose and other auxiliary agents (eg, D-sorbitol, D-mannitol, sodium salt, etc.), and the like.
  • Suitable dissolution aids such as alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, polyethylene glycol), non-ionic surfactants (eg, For example, polysorbate 80 TM, HCO-50) can be used in combination.
  • the oily liquid for example, sesame oil, soybean oil and the like are used, and a dissolution aid such as benzyl benzoate or benzyl alcohol
  • the therapeutic and / or prophylactic agent for manic depression includes, for example, a buffer (eg, a phosphate buffer, a sodium acetate buffer), a soothing agent (eg, benzalconium chloride, pro-chloride). And a stabilizer (eg, human serum albumin, polyethylene glycol, etc.), a preservative (eg, benzyl alcohol, phenol, etc.), an antioxidant, etc.
  • a buffer eg, a phosphate buffer, a sodium acetate buffer
  • a soothing agent eg, benzalconium chloride, pro-chloride
  • a stabilizer eg, human serum albumin, polyethylene glycol, etc.
  • a preservative eg, benzyl alcohol, phenol, etc.
  • an antioxidant etc.
  • the preparation thus obtained is safe and has low toxicity, and thus can be administered, for example, to humans and mammals.
  • the dose of the substance varies depending on the target disease, the administration subject, the administration route, and the like.
  • the compound in general, in adults, the compound should be used in an amount of about 0.1 to about L 0 per day. 0 mg, preferably about 1.0 to 50 mg is administered.
  • the single dose of the compound varies depending on the target of administration, target disease, etc.For example, when administered to an adult in the form of an injection, the compound may be administered once a day. About 0.01 to 100 mg, preferably about 0.1 to 50 mg is administered by intravenous injection.
  • DNA synthase genetically engineered mtDNA synthase (DNA synthase /). By introducing the mutation, the proofreading ability of DNA synthase ⁇ can be lost, that is, a high frequency of errors occurs when replicating mtDNA (incorporating the wrong base) [Zhang D. et al., Genomics 69, 151-161 (2000)]. If the replication reaction proceeds as it is, the error part will remain in mtDNA as a point mutation. Also, In many cases, the replication reaction stops at the same time that an error occurs.
  • transgenic mice that express mutant DNA synthase ⁇ were produced using a promoter that induces expression in nerve cells.
  • mouse DNA synthase ⁇ (mPol y) cDNA was cloned from mouse whole brain mRNA.
  • the 181st amino acid residue, aspartic acid was changed to alanine using the QuikChange site-directed mutagenesis kit from Stratagene.
  • This aspartic acid is an essential residue for binding Mg 2+, and it has been reported that mutating it to alanine significantly reduces its proofreading ability [Zhang D. et al., Genomics 69, 151-161. (2000)].
  • the sequences of the primers used at this time are as follows.
  • the promoter of the mouse CaMKII o; (calcium-calmodulin-dependent protein kinase II ⁇ ;) gene and the 5,-and 3, -intron regions were ligated. Specifically, the restriction region of the coding region of the mutant ⁇ ⁇ ⁇ ⁇ . After excising with I and blunt ends, it was inserted into the RV site of pNN265 vector [Choi T. et al., Mol. Cell. Biol. 11, 3070-3074 (1991)]. , Sfi I and Eco RV sites will disappear).
  • Not I fragment (5, -intron 'mutant mPoly coding region ⁇ 3, -intron' poly-A additional sequence linked structure) was cut out and the PMM403 vector [Mayford M. et al., Science 274]. , 1678-1683 (1996)] at ⁇ I site.
  • This construct (Fig. 1) was found to be extremely unstable in Escherichia coli (XLI Blue-MRF,, T0P10, SURE, etc.) used in ordinary molecular biology experiments, and the STBL2 strain (Invitrogen) was constructed at 30 ° C for the first time.
  • the construct was injected into the pronucleus of a fertilized egg of a C57BL / 6J mouse and transplanted into the fallopian tube of a foster parent. A total of 894 fertilized eggs were injected, of which 431 embryos were transferred. Forty litters were obtained, and 27 grew to weaning. Three of them had a transgene. The genotype was determined by PCR using genomic DNA extracted from a part of the mouse tail. The primers used at this time are as follows.
  • Real-time quantitative PCR was performed using primer sets that specifically amplify mutant or normal (endogenous) mPoly cDNA, respectively (SYBR Green Master Mix Reagent ⁇ SDS7000; Applied Biosystems) . Normalization was performed using the GAPDH mRNA amount measured at the same time.
  • the following primer sets amplify only the mutant mPol ⁇ cDM.
  • Primer sets that amplify only normal mPol ⁇ cDNA are as follows.
  • mtDNA Short abnormal mitochondrial DNA
  • Tg transgenic
  • non-Tg mice Line B mice were 12 weeks old and line C mice were 8 weeks old.
  • a DNA purifier DNA (including nuclear and mitochondrial DNA) was extracted from each tissue using Labo.
  • PCR was performed with a "short extension reaction time" using a primer set capable of amplifying the entire length of mtDNA (16.6 kbp). Only short Natsuta mtDNA to include deletion is amplified and detected the PCR product (3 ⁇ 8kbp) by Southern blot.
  • the D loop portion of mtDNA which is crucial for mtDNA replication and should always contain the deleted mtDNA, was used as a probe for Southern blot analysis.
  • the PCR conditions for “short extension reaction time” are as follows.
  • reaction solution 25 L: DNA 0.1 / g, 0.8 mM dNTP, 1 1 ⁇ 3 ⁇ 4 buffer, 0.4 ⁇ ⁇ each primer, Ex Taq 0.03U.
  • bipolar disorder (of course in humans) is one or more manic episodes, often with one or more major depressive episodes. That is, the manic episode and the major depression episode are repeated.
  • the diagnostic criteria for manic episodes are clearly present, but none are biochemical data (eg, blood levels of some substances). Because it is a standard such as "Mood is abnormal and persistently uplifted, open or irritable " I can't. Therefore, based on the basic pathology of repetition of manic episode and major depressive episode, mouse activity was We decided to examine whether the dose increased or decreased repeatedly to determine if the mice had bipolar disorder-like abnormalities.
  • Line B Tg mice and their littermate wild-type mice (non-Tg mice), each 5 (13-14 weeks old), are placed in a cage with a rotation device (Ohara Medical Sangyo) one by one, and are rotated. The amount was measured. 12 hours: Under a 12-hour light / dark cycle, food and water were freely available.
  • Tg mice and non_Tg mice showed 24-hour activity rhythms synchronized with the light-dark cycle, but in addition to this one-day cycle rhythm (the so-called dian rhythm), Tg mice also had very long rhythms. It was found to show a periodic rhythm. As shown in Fig. 4, the night after the active movement, the next night did not move much, and the activity was low for (the night) several days thereafter. And then move again and again.
  • Figure 5 plots the number of wheel rotations per day. Thus, it was found that the increase and decrease in the activity of the Tg mice was repeated about every 5 days.
  • Tg mice As a usual behavioral analysis, open field, elevated plus maze, and forced swimming tests were performed on line B Tg mice and non-Tg mice of the same litter (Fig. 7). In open field tests to determine activity in the new environment, Tg mice showed low activity and often remained in one location for long periods of time and did not move. In an elevated plus-maze test for fear and anxiety, the Tg mouse stayed on the closed arm for a long time with closed arms (there is no danger of falling down). From this, it was presumed that Tg mice had strong anxiety.
  • a transgenic non-human mammal was prepared by introducing a mutation into a causative gene of a neuromuscular disease adCPEO presenting depression and expressing it in a nerve-specific manner.
  • the transgenic non-human mammal of the present invention accumulation of mtDNA deletion in the brain, which is considered to be associated with manic depression, was confirmed.
  • the transgenic non-human mammal of the present invention spontaneously exhibited periodic behavioral changes. Therefore, the transgenic non-human mammal of the present invention is useful as an animal model for recurrent depression or manic depression.
  • the transgenic non-human mammal of the present invention is used for research and development of therapeutic drugs for mood depression and depression (mood stabilizers, antidepressants), research of pathological conditions of manic depression and depression, and research of diagnostic methods. It is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurosurgery (AREA)
  • Public Health (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Neurology (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Pain & Pain Management (AREA)
  • Biophysics (AREA)

Abstract

It is intended to provide an animal model of manic depression which spontaneously shows depressive conditions and manic conditions. Namely, a transgenic nonhuman mammal characterized by having a gene encoding a mutant mtDNA synthase (polymerase Ϝ) having been transferred thereinto and thus brain-specifically expressing this gene, or a part of the same.

Description

ジヱニック非ヒト哺乳動物 技術分野  Genetic non-human mammals Technical field
本発明は、 トランスジエニック非ヒト哺乳動物に関する。 より詳細には、 本発 明は、 変異型の m t D NA合成酵素 (ポリメラーゼ γ ) をコードする遺伝子が導 入されている躁うつ病モデルのトランスジエニック非ヒト哺乳動物、 並びにその 利用方法に関する。 背景技術  The present invention relates to transgenic non-human mammals. More specifically, the present invention relates to a transgenic non-human mammal of a manic-depression model into which a gene encoding a mutant mtDNA synthetase (polymerase γ) has been introduced, and a method of using the same. . Background art
躁うつ病 (双極性障害) (躁うつ病という言葉は、 うつ病を含めるか否かが曖 味であるため、 最近では、 アメリカ精神医学会の診断基準に従って、 双極性障害 と呼ばれることが多い。 ) は、 成人期に発症し、 うつ状態、 躁状態という、 2 つ の病相の再発を繰り返す精神疾患である。 躁うつ病患者の約 20%が自殺で死亡す る上、 躁状態における社会的問題行動によって、 社会的生命を失う場合も少なく なレ、。一方、 うつ病の多くはストレスで誘発され、単一のェピソ一ドで終わるが、 —部にはストレスと関係なく反復する場合があり、 躁うつ病の家系内で見られる こと力 ら、 このような反復性うつ病も、 躁うつ病近縁の疾患と考えられている。 躁うつ病では、 気分安定薬 (気分安定薬には、 リチウム、 バルプロ酸、 力ルバ マゼピンの 3つが含まれる。 ) と呼ばれる薬が予防効果を持つことが知られてい るが、 これらの薬剤が無効な患者も多く、 新規薬剤の開発が求められている。 新 規薬剤の開発のための手段としては、動物モデルの使用が挙げられる。行動学的、 薬理学的負荷によるうつ状態のモデル、 薬理学的負荷による躁状態のモデルとし ては以下のモデルが知られている。  Manic Depression (Bipolar Disorder) (Since the word manic depression is ambiguous whether or not to include depression, it has recently been often referred to as bipolar disorder according to the American Psychiatric Association diagnostic criteria. ) Is a mental illness that develops in adulthood and repeats two phases, depression and manic. Approximately 20% of manic-depressed patients die from suicide, and social problems in a manic state rarely lose their social lives. Depression, on the other hand, is often stress-induced and ends in a single episode, but the-part can repeat independently of stress, and because of its power in manic-depressed families, Such recurrent depression is also considered a related disorder of manic depression. In manic-depressive illness, drugs called mood stabilizers (three include lithium, valproic acid, and carbamazepine) are known to have preventive effects. Many patients are ineffective, and the development of new drugs is required. Tools for the development of new drugs include the use of animal models. The following models are known as models of depression due to behavioral and pharmacological loads, and models of manic state due to pharmacological loads.
( 1 ) 抗うつ薬の効果判定のためのモデル  (1) Model for determining the effect of antidepressants
齧歯類 (ネズミ) を用いた、 抗うつ薬の効果検定に使われている行動学的検査 は、 尾懸垂試験、 強制水泳試験の二つである。 尾懸垂試験では、 ネズミの尾をつ まんでぶら下げる。 強制水泳では、 円筒型の水槽にネズミを投入する。 懸垂、 強 制水泳を負荷された場合、 動物は次第に絶望して無動となる。 しかし、 既存の抗 うつ薬を投与すると、 この無動時間が延長する。 このため、 新規の抗うつ薬が開 発されると、この試験により、効果の有無を検定することが多い。しかしながら、 これは健康なマウスにストレスをかけて、 ストレス負荷中の行動を見ているだけ で、 うつ状態のモデルとは言えなレ、。 There are two behavioral tests used in rodents (rats) to test the effects of antidepressants: tail suspension test and forced swimming test. In the tail suspension test, the rat's tail Hang around. In forced swimming, rats are placed in a cylindrical water tank. Animals are desperate and immobile when subjected to rappelling and forced swimming. However, administration of existing antidepressants prolongs this immobility time. For this reason, when a new antidepressant is developed, this test is often used to determine whether it is effective. However, this puts stress on healthy mice and only looks at the behavior during stress, not a model of depression.
( 2 ) うつ病モデル  (2) Depression model
代表的なうつ病モデルである学習性無力モデルでは、 まずラットを 2つの区画 がトンネルでつながれた箱に入れる。最初は、両方の箱に電気ショックを加える。 するとラットは、 もう一つの箱に逃げるが、 そちらでも電気ショックがかかって いることを知る。 翌日、 今度は片方の区画だけに電気ショックを加える。 こうす ると、多くのラットは、 (反対の箱も電気ショックがかかっていると知りつつ?)、 とにかく反対の区画に逃げる。 ところが一部のラットは、 (反対の箱も電気ショ ックがかかっていると知っていて、 最初からあきらめてしまい) 、 全く逃げよう としない。 2回目の実験で逃げようとしないラットを、学習性無力ラットと呼び、 これがうつ病モデルとされる。 この学習性無力ラットに抗うつ薬を投与すると、 再び回避するようになる。 このモデルでは、 ストレス後の長期の行動変化を見て いるため、 うつ病モデルであると言うことができる。 その他にも、 強制走行を長 期間行ったモデル、 薬物投与で無動になったモデルなど、 うつ状態のモデルはい くつか存在する。  In a typical model of depression, a model of learning helplessness, a rat is first placed in a box with two compartments connected by a tunnel. Initially, both boxes are shocked. The rat then escapes to another box, but finds that there is an electric shock there. The next day, an electric shock is applied to only one compartment. In this way, many rats (while knowing that the opposite box is also shocked?) Will escape to the opposite compartment anyway. However, some rats (knowing that the opposite box is also electrically shocked and giving up from the beginning) never try to escape. Rats that do not try to escape in the second experiment are called learned helpless rats, and this is a model of depression. Administering antidepressants to these helpless rats will avoid them again. Since this model looks at long-term behavioral changes after stress, it can be said to be a depression model. There are several other models that are depressed, such as models that have been forced to run for a long time and those that have become immobile due to drug administration.
( 3 ) 躁状態のモデル  (3) Manic model
アンフェタミン、 コカインなどの精神刺激薬を投与すると、 動物は過活動にな る。 そのため、 これを躁状態の動物モデレとする考え方もある。 しかしながら、 アンフエタミンゃコカインを長期に投与しているうちに、 次第に常同行動などの 異常行動が出現し、 これは銃合失調症 (精神分裂病) の動物モデルともされてい る。 従って、 特異的なモデルとは言えない。  Animals are overactive when psychostimulants such as amphetamines and cocaine are administered. For this reason, there is a concept that this is a manic animal model. However, after long-term administration of amphetamine-cocaine, abnormal behaviors such as stereotypy appear, which is also considered an animal model for schizophrenia (schizophrenia). Therefore, it is not a specific model.
上記の通り、 行動学的、 薬理学的負荷によるうつ状態のモデル、 薬理学的負荷 による躁状態のモデルは存在する。 しかしながら、 自発的にうつ状態ゃ躁状態が 出現するモデルの報告はなく、 躁うつ病の動物モデルが存在しないことが、 躁ぅ つ病の病態研究、 新規薬剤の開発を妨げてきた。 発明の開示 As described above, behavioral and pharmacological load models of depression, pharmacological load There is a model of manic state due to However, there is no report of a model in which spontaneous depressive state ゃ manic state appears, and the absence of an animal model of manic depressive disorder has hindered research on the pathological state of manic-depressive disorder and development of new drugs. Disclosure of the invention
本発明は上記した従来技術の問題点を解消することを解決すべき課題とした。 即ち、 本発明は、 自発的にうつ状態ゃ躁状態が出現する躁うつ病の動物モデルを 提供することを解決すべき課題とした。 さらに本発明は、 上記動物モデルを利用 して躁うつ病の治療剤及ぴ Z又は予防剤のスクリ一二ング方法を提供することを 解決すべき課題とした。  An object of the present invention is to solve the above-mentioned problems of the conventional technology. That is, an object of the present invention is to provide an animal model of manic-depressive disorder in which a spontaneous depressive state ゃ manic state appears. Further, the present invention has an object to provide a method for screening for a therapeutic agent and / or a prophylactic agent for manic depression using the above animal model.
本発明者らは上記課題を解決するために鋭意検討した結果、 変異型の m t D N A合成酵素 (ポリメラーゼ をコードする遺伝子を導入することにより該遺伝 子を脳特異的に発現するトランスジエニックマウスを作製することに成功し、 さ らに作製したトランスジエニックマウスの活動量を長期記録するとともに、 行動 学的解析を行った結果、 該トランスジエニックマウスは、 躁うつ病の動物モデル として有用であることを見出した。 本発明はこれらの知見に基づいて完成したも のである。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a transgenic mouse that specifically expresses a mutant mt DNA synthetase (a gene encoding a polymerase by introducing the gene into the brain) is obtained. The transgenic mice were successfully produced, and the activity of the transgenic mice produced was recorded over a long period of time, and behavioral analysis was performed.As a result, the transgenic mice were useful as an animal model for manic depression. The present invention has been completed based on these findings.
即ち、 本発明によれば、 変異型の m t D N A合成酵素 (ポリメラーゼ γ ) をコ 一ドする遺伝子が導入されていることにより該遺伝子を脳特異的に発現すること を特徴とするトランスジエニック非ヒト哺轧動物またはその一部が提供される。 好ましくは、 本発明のトランスジエニック非ヒト哺乳動物においては、 欠失し た短い m t D N Aが脳内に蓄積している。 好ましくは、 本発明のトランスジェニ ック非ヒト哺乳動物は、 自発的に周期的な行動変化を呈することができる。 好ま しくは、 本発明のトランスジエニック非ヒト哺乳動物には、 変異型の m t D N A 合成酵素 (ポリメラーゼ y ) をコードする遺伝子を脳特異的な発現を可能とする プロモーターの制御下に組み込んだ組み換え D N Aが導入されている。 好ましく は、 脳特異的な発現を可能とするプロモーターは、 calmodulin kinase II a (CAMKI l a )のプロモーターまたは神経特異的ェノラーゼ(NSE)のプロモーターで ある。 好ましくは、 変異型の m t D NA合成酵素 (ポリメラーゼ y ) をコードす る遺伝子は、 マウス m t D NA合成酵素をコードする遺伝子において 1 8 1番目 のァミノ酸残基であるァスパラギン酸がァラニンに置換されている遺伝子である。 好ましくは、 非ヒト哺乳動物はマウスである。 That is, according to the present invention, a transgenic non-human gene characterized in that a gene encoding a mutant mtDNA synthetase (polymerase γ) is introduced into the brain by introducing the gene. A human mammal or a portion thereof is provided. Preferably, in the transgenic non-human mammal of the present invention, the deleted short mt DNA is accumulated in the brain. Preferably, the transgenic non-human mammal of the invention is capable of spontaneously exhibiting periodic behavioral changes. Preferably, the transgenic non-human mammal of the present invention has a recombinant in which a gene encoding a mutant mtDNA synthase (polymerase y ) is incorporated under the control of a promoter that enables brain-specific expression. DNA has been introduced. Preferably, the promoter enabling brain-specific expression is calmodulin kinase IIa (CAMKI la) promoter or neural specific enolase (NSE) promoter. Preferably, the gene encoding the mutant mtDNA synthetase (polymerase y ) is obtained by substituting alanine for aspartic acid, the 18 th amino acid residue, in the gene encoding mouse mtDNA synthase. Is a gene that has been Preferably, the non-human mammal is a mouse.
本発明の別の側面によれば、 上記した本発明の非ヒ ト哺乳動物またはその一部 を用いることを特徴とする、 躁うつ病の治療剤及び/又は予防剤のスクリーユン グ方法が提供される。 本発明のさらに別の側面によれば、 上記したスクリーニン グ方法により得られる物質が提供される。 本発明のさらに別の側面によれば、 上 記したスクリーニング方法により得られる物質を有効成分として含有する、 躁ぅ つ病の治療剤及び Z又は予防剤が提供される。 図面の簡単な説明  According to another aspect of the present invention, there is provided a method for screening a therapeutic and / or prophylactic agent for manic depression, comprising using the above-mentioned non-human mammal of the present invention or a part thereof. You. According to still another aspect of the present invention, there is provided a substance obtained by the above-described screening method. According to yet another aspect of the present invention, there is provided a therapeutic agent and / or a preventive agent for manic-depressive disease, comprising as an active ingredient a substance obtained by the above-described screening method. Brief Description of Drawings
図 1は、 本発明で用いた遺伝子導入用組み換えベクターの構造を示す。 部位特 異的な変異導入法によって、 マウス Ροΐ γの 1 8 1番目のアミノ酸残基であるァ スパラギン酸をァラニンに置換した (コード領域 5 8 0番目の塩基であるアデ二 ンをシトシンに置換した) 。 この変異 Pol yのコード領域を pMM403 ベクター [Mayford M. et al. , Science 274, 1678-1683 (1996)]の Iサイトに揷入す ることにより図 1に示すコンストラクトを作製した。  FIG. 1 shows the structure of the recombinant vector for gene transfer used in the present invention. Asparaginic acid, which is the 18th amino acid residue of mouse Ροΐγ, was replaced with alanine by site-specific mutagenesis (adenine, the 580th base in the coding region, was replaced with cytosine). did) . The construct shown in FIG. 1 was prepared by inserting the coding region of this mutant Poly into the I site of the pMM403 vector [Mayford M. et al., Science 274, 1678-1683 (1996)].
図 2は、 作製した 2系統 (ライン B及ぴ C) のトランスジエニックマウスに関 して、 各組織における Pol yの遺伝子発現を調べた結果を示す。  FIG. 2 shows the results of examining the gene expression of Poly in each tissue of the two transgenic mice prepared (line B and C).
図 3は、 ライン Bと Cの、 それぞれ同腹のトランスジエニック (Tg) マウスと 野生型(non- Tg)マウスに関して、各組織における短い異常なミ トコンドリア DNA (mtDNA) を PCR-サザンプロット法によって検出した結果を示す。  Figure 3 shows PCR-Southern plots of short, abnormal mitochondrial DNA (mtDNA) in each tissue of transgenic (Tg) and wild-type (non-Tg) mice from littermates B and C, respectively. The detection result is shown.
図 4は、 ライン Bのマウスを 1匹ずつ輪回し装置付きのケージで飼育し、 活動 量 (輪回し回数) を約 1ヶ月にわたって測定した結果を示す。 代表的な個体の活 動量をダブルプロットと呼ばれる表示法で図示した。縦方向(矢印方向)が日数、 横軸が時間で、 横 1行あたり 4 8時間分のデータを表示している。 1行目には 1 日目と 2日目のデータを描き、 2行目には 2日目と 3日目のデータを描いている。 このように重複して表示することによって、 行動量のリズム性を見やすくする描 画法がダブルプロットである。 各パネルの上にある白黒の帯は飼育箱の光条件を 示し、 白色の時間帯は光がついていて、 黒色の時間帯は消灯している。 マウスは 夜行性のために、 黒色の時間帯に活動する。 Figure 4 shows the results of measuring the activity (number of rotations) of the mice on line B one by one in cages equipped with a rotation device over a period of about one month. The activity of a representative individual is shown in a notation called a double plot. The vertical direction (arrow direction) is the number of days, The horizontal axis is time, and displays 48 hours of data per horizontal line. The first line shows the data for the first and second days, and the second line shows the data for the second and third days. A double plot is a drawing method that makes it easy to see the rhythmicity of the amount of activity by displaying such overlapping. The black and white strips on each panel indicate the light conditions of the breeding box, the white time zone is lit, and the black time zone is off. Mice are active during the black hours due to nocturnal activity.
図 5は、測定したすべての個体(Tgマウス、 non - Tgマウスとも 5匹ずつ) に関 して、 1ョ当たりの輪回し総量を図示した結果を示す。  FIG. 5 shows the results of plotting the total amount of wheel rotation per mouse for all the measured individuals (5 each for Tg mice and non-Tg mice).
図 6は、 Lomb- Scarge周期解析法を用いて、 輪回し行動の周期性を求めた結果 を示す。 各曲線が各マウスのリズム性を表している。 2 4時間の周期性だけでは なく、 1 1 0〜1 3 0時間の周期性があることが分かる。縦軸は周期性の強さ(確 からしさ) を表し、 グラフ中の点線の横線は p = 0 . 0 2に相当する確からしさ を示している。  Figure 6 shows the results of using the Lomb-Scarge periodic analysis method to determine the periodicity of wheeling behavior. Each curve represents the rhythm of each mouse. It can be seen that there is a periodicity of 110 to 130 hours as well as a periodicity of 24 hours. The vertical axis indicates the strength of the periodicity (probability), and the dotted horizontal line in the graph indicates the probability corresponding to p = 0.02.
図 7は、 オープンフィールドテスト、 高架式十字迷路テスト、 及ぴ強制水泳テ ストの測定結果を示す。 発明を実施するための最良の形態  Figure 7 shows the measurement results of the open field test, the elevated plus maze test, and the forced swimming test. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 本発明のトランスジエニック非ヒト哺乳動物の開発の経緯とその結果に ついて説明する。  First, the history of the development of the transgenic non-human mammal of the present invention and the results thereof will be described.
( i ) ミ トコンドリア仮説とその検証  (i) Mitochondrial hypothesis and its verification
本発明者らは、 躁うつ病患者の脳内でエネルギー代 Hi低下を見出し、 ミ トコン ドリァ病の一種で、 全身にミ トコンドリア DNA (mtDNA) の多重欠失が蓄積する 2 つの疾患、 「常染色体優性遺伝慢性進行性外眼筋麻痺 (adCPE0)」 および Wolfram 病で、 いずれも反復性うつ病ゃ躁うつ病を呈すること、 躁うつ病では、 母方が罹 患している場合が多いことなどの既報の事実と考え合わせ、 躁うつ病の病因にミ トコンドリア DNA (mtDNA) の異常による、 ミ トコンドリァ機能の障害が関与する との仮説を立てて、 検討を行ってきた。 その結果、 躁うつ病患者の死後脳では、 mtDNAの欠失が多いこと、 躁うつ病と特定の mtDNA多型が関係していることなど を報告し、 mtDNA異常が躁うつ病を起こすことについて、 多くの証拠を得た。 ( i i ) モデル動物の作製 The present inventors have found that the energy bill Hi is reduced in the brain of patients with manic-depressive illness, and is a type of mitochondrial disease, in which multiple deletions of mitochondrial DNA (mtDNA) accumulate throughout the body. Chromosomal dominant chronic progressive external ophthalmoplegia (adCPE0) '' and Wolfram disease, both exhibit recurrent depression ゃ manic depression.Manic depression often affects the maternal. In consideration of the previously reported facts, the authors have conducted a hypothesis that the impairment of mitochondrial function due to abnormal mitochondrial DNA (mtDNA) is involved in the etiology of manic depression. As a result, in the postmortem brain of patients with manic depression, The authors reported that mtDNA was frequently deleted and that manic depression was associated with specific mtDNA polymorphisms, and much evidence was obtained that mtDNA abnormalities cause manic depression. (ii) Preparation of model animals
adCPEOには 3つの原因遺伝子が存在し、各々 mtDNA合成酵素(ポリメラーゼ y )、 Twinkle (mtDNAヘリカーゼ)、 ANT1 (アデニン-クヌレオチドトランスロケータ一 1)であるが、いずれもが反復性うつ病または双極性障害を呈することが判明して いる。そこで、マウスの mtDNA合成酵素の遺伝子に点変異を導入し、異常な mtDNA を合成してしまうような変異を持つ mtDNA合成酵素 (ポリメラーゼ γ ) をコード する変異型遺伝子を作成した。 ポリメラーゼ γの変異を用いたのは、 同じ戦略で 心臓特異的に異常 mtDNA を蓄積させて、 心筋症の動物モデルを作製した研究 ( Zhang D, et al : Construction of transgenic mice with tissue-specific acceleration of mitochondria丄 DNA mutagenesis. Genomics. 2000 Oct 15 ;69 (2) : 151-61) が報告されており、 同様の戦略により、脳特異的に mtDNA欠失 が蓄積する動物モデルを作製可能と考えたからである。  adCPEO has three causative genes, mtDNA synthase (polymerase y), Twinkle (mtDNA helicase), and ANT1 (adenine-knuleotide translocator-1), all of which are recurrent depression or bipolar. It has been shown to present sexual disorders. Thus, a point mutation was introduced into the mouse mtDNA synthase gene, and a mutant gene encoding a mtDNA synthase (polymerase γ) having a mutation that would synthesize abnormal mtDNA was created. The same strategy was used to create an animal model of cardiomyopathy by accumulating abnormal mtDNA using the same strategy (Zhang D, et al: Construction of transgenic mice with tissue-specific acceleration of mitochondria 丄 DNA mutagenesis. Genomics. 2000 Oct 15; 69 (2): 151-61), and it was thought that a similar strategy could be used to create an animal model in which brain-specific mtDNA deletions accumulate. is there.
adCPEOでは、 うつ状態が出現するとはいえ、 筋肉症状が出現した場合、 うつ病 かどうかの判断が難しくなるため、この変異遺伝子を脳特異的に発現させるため、 calmodulin kinase II a (CAMKII a )のプロモーター (このプロモーター領域をク ローニングし、 特徴づけた Mark Mayford氏の許可を得て使用した。 Mayford M, et al : The 3' -untranslated region of CaMKII alpha is a cis - acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci With adCPEO, it is difficult to determine whether or not a person is depressed, even if muscle symptoms appear, but in order to express this mutant gene in the brain-specific manner, calmodulin kinase IIa (CAMKIIa) Promoter (Used with permission from Mark Mayford, who cloned and characterized this promoter region. Mayford M, et al. The 3'-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation. of mRNA in dendrites.Proc Natl Acad Sci
U S A. 1996 Nov 12 ;93 (23) : 13250 - 5) 、 または神経特異的エノラーゼ(NSE)のプ 口モーター (このプロモーター領域をクローニングし、 特徴づけた崎村健司教授 U.S.A. 1996 Nov 12; 93 (23): 13250-5) or the neuromotor-specific enolase (NSE) motor (Professor Kenji Sakimura who cloned and characterized this promoter region)
(新潟大学脳研究所) の許可を得て使用した。 Sakimura K, et al : Upstream and intron regulatory regions for expression of the rat neuron-specific enolase gene. Brain Res Mol Brain Res. 1995 Jan ; 28 (1) : 19 - 28) と連結することで、 こ の遺伝子が脳特異的に発現するようにした (図 1 ) 。 その結果、 CAMKIIひが 3ラ イン、 NSEが 7ライン確立できた。 そのうち、 CAMKII αの 2ラインで、 脳内に変 異型のポリメラーゼ γが発現していることが確認できた (図 2 ) 。 更に、 これら のうち、 CAMKII o;の 2ラインでは、 脳内に欠失型 mtDNAが蓄積していることを、 PCR-サザンブロット法により確認した (図 3 ) 。 (Niigata University Brain Research Institute) Used with permission. Sakimura K, et al: Upstream and intron regulatory regions for expression of the rat neuron-specific enolase gene.Brain Res Mol Brain Res. 1995 Jan; 28 (1): 19-28) It was specifically expressed in the brain (Fig. 1). As a result, 3 lines of CAMKII and 7 lines of NSE were established. Among them, two lines of CAMKIIα transform into the brain It was confirmed that atypical polymerase γ was expressed (Fig. 2). Furthermore, in two of these lines, CAMKII o ;, it was confirmed by PCR-Southern blotting that the deletion type mtDNA had accumulated in the brain (FIG. 3).
( i i i ) 行動解析  (i i i) Behavior analysis
上記の通り作製した動物が、 躁うつ病類似の行動異常を呈するかどうかについ て、 検討を行った。 まず、 長期間、 行動量を輪回し数により測定したところ、 こ れらのマウスは、約 5日の周期で、周期的に行動量が変化することがわかった(図 4 ) 。 これだけだと、 概日リズムが延長し、 定常的な明暗周期とのうねりにより 出現するパターンとも考えられたが、 この行動リズムパターンは、 定常喑条件で も維持されたことから、 単なる概日リズム障害ではなく、 やはり 5日周期の行動 リズムであると考えられた。 オープンフィールド試験では、 広い新規な環境に置 かれた時の行動量が、 野生型マウスに比べて低いことが判明した。 高架式十字迷 路では、 closed armに滞在する時間が延長していたことから、 このマウスは不安 が強いと考えられた。 一方、 強制水泳試験では、 予想に反し、 無動時間が短縮し ていた。 以上の結果から、 本発明のトランスジエニック動物は、 既存のうっ病モ デルとは異なる特性を有していると考えられた。 以下、 本発明の実施の形態につ いてさらに具体的に説明する。  It was examined whether the animals prepared as described above exhibited behavioral abnormalities similar to manic-depressive illness. First, long-term activity was measured by the number of rotations, and it was found that the activity of these mice changed periodically with a cycle of about 5 days (Fig. 4). It was thought that this alone would extend the circadian rhythm and appear to be a pattern that appeared due to a steady light-dark cycle and swell, but since this behavioral rhythm pattern was maintained even under a steady 喑 condition, it was simply a circadian rhythm It was not a disability, but a 5-day cycle. Open field studies have shown that locomotor activity is lower in wild and novel environments than in wild-type mice. In the elevated plus maze, the time spent in the closed arm was prolonged, suggesting that the mouse was highly anxious. On the other hand, in the forced swim test, the immobility time was shorter than expected. From the above results, it was considered that the transgenic animal of the present invention had characteristics different from those of the existing depression model. Hereinafter, embodiments of the present invention will be described more specifically.
( 1 ) 本発明のトランスジヱニック非ヒト哺乳動物の特徴 (1) Characteristics of the transgenic non-human mammal of the present invention
上記した通り、 本発明のトランスジエニック非ヒト哺乳動物は、 変異型の m t D NA合成酵素 (ポリメラーゼ ) をコードする遺伝子が導入されていることに より該遺伝子を脳特異的に発現することを特徴とするトランスジヱニック動物で ある。 さらに好ましくは、 本発明のトランスジヱニック非ヒト哺乳動物は、 欠失 した短い m t D NAが脳内に蓄積している力、 及び 又は自発的に周期的な行動 変化を呈することを特徴とする。  As described above, the transgenic non-human mammal of the present invention is capable of brain-specifically expressing a gene encoding a mutant mtDNA synthase (polymerase) by introducing the gene. Characterized transgenic animal. More preferably, the transgenic non-human mammal of the present invention is characterized in that the deleted short mtDNA exhibits a force accumulated in the brain and / or a spontaneous periodic behavioral change. I do.
本発明のトランスジェニック非ヒト哺乳動物において、 変異型の m t D NA合 成酵素の発現量は、 ノーザンプロット、 R T— P C R又は免疫組織染色などによ り測定又は分析することができる。 また、 欠失したミ トコンドリア DNAの蓄積に ついては、 PCR-サザンプロット法 (具体例としては、 本願明細書の実施例 3に記 載) などにより検出することができる。 さらに、 自発的な周期的な行動変化 (即 ち、 双極性障害様の異常) については、 トランスジエニック非ヒト哺乳動物の活 動量の長期記録や行動学的解析 (具体例としては、 本願明細書の実施例 4及び 5 に記載) などにより分析することができる。 In the transgenic non-human mammal of the present invention, the expression level of the mutant mtDNA synthase can be determined by Northern plot, RT-PCR, immunohistochemical staining, or the like. Can be measured or analyzed. In addition, the accumulation of the deleted mitochondrial DNA can be detected by a PCR-Southern plot method (specific examples are described in Example 3 of the present specification). Furthermore, for spontaneous periodic behavioral changes (ie, bipolar disorder-like abnormalities), long-term recording of the activity of transgenic non-human mammals and behavioral analysis (for specific examples, see (Described in Examples 4 and 5 of the book).
本明細書で言う 「変異型の m t D NA合成酵素 (ポリメラーゼ γ ) をコードす る遺伝子」 は公知の遺伝子である m t D NA合成酵素 (ポリメラーゼ γ ) 遺伝子 に変異を導入した遺伝子である。 公知の m t D N A合成酵素 (ポリメラーゼ γ ) 遺伝子の塩基配列及びアミノ酸配列については、 例えば、 GeneBank にヒト (薩 - —002693)、マウス(匪 _017462、又は AB121698、 BAC98463)、ラット (匪— 053528)、 出 芽 酵 母 ( NC— 001147 ) と し て 登 録 さ れ て い る (http: //www. ncbi. nlm. nih. gov/UniGene/clust. cgi?0RG=Mm&CID=3616) 。 また、 マウスゲノム配列からコンピューターが予測したポリメラーゼ γ遺伝子について は、 Mm7— 39468— 30— 112— 1として登録されている。  As used herein, the term “gene encoding a mutant mtDNA synthase (polymerase γ)” refers to a gene obtained by introducing a mutation into the mtDNA synthase (polymerase γ) gene, which is a known gene. Regarding the base sequence and amino acid sequence of known mt DNA synthetase (polymerase γ) gene, for example, GeneBank shows human (Satsu-002693), mouse (Marine _017462, or AB121698, BAC98463), rat (Marine-053528), It is registered as a budding yeast mother (NC-001147) (http: // www. Ncbi. Nlm. Nih. Gov / UniGene / clust. Cgi? 0RG = Mm & CID = 3616). The polymerase γ gene predicted by the computer from the mouse genome sequence is registered as Mm7-39468-30-112-1.
本発明で言う変異型の遺伝子とは、 m t D NA合成酵素 (ポリメラーゼ γ ) 遺 伝子の D NA配列に変異 (例えば、 突然変異など) が生じたものを意味し、 具体 的には、 該遺伝子中の塩基配列の一部が欠損した遺伝子、 該遺伝子の塩基配列の 一部が他の塩基配列で置換された遺伝子、 該遺伝子の一部に他の塩基配列が挿入 された遺伝子などを用いることができる。 欠損、 置換または付加される塩基の数 は、 特に限定されないが、 一般的には 1から 5 0個程度、 好ましくは 1から 1 5 個程度、 より好ましくは 1から 6個程度である。 このような塩基配列の欠損、 置 換または付加によって、 m t D NA合成酵素 (ポリメラーゼ のアミノ酸配列 において、 好ましくは 1ないし 5個程度、 より好ましくは 1または 2個程度のァ ミノ酸の欠損、 置換または付加が生ずることになる。  The mutated gene referred to in the present invention means a gene in which a mutation (for example, mutation) has occurred in the DNA sequence of the mtDNA synthase (polymerase γ) gene. Use a gene in which a part of the base sequence in the gene is deleted, a gene in which a part of the base sequence of the gene is replaced by another base sequence, a gene in which another base sequence is inserted in a part of the gene, etc. be able to. The number of bases to be deleted, substituted or added is not particularly limited, but is generally about 1 to 50, preferably about 1 to 15, and more preferably about 1 to 6. Deletion, substitution or addition of such a base sequence may result in deletion or substitution of mtDNA synthase (preferably about 1 to 5, more preferably about 1 or 2 amino acids in the amino acid sequence of a polymerase). Or an addition will occur.
本発明で用いる変異型の m t D NA合成酵素 (ポリメラーゼ 遺伝子の具体 例としては、 マウス: m t D NA合成酵素をコードする遺伝子において 1 8 1番目 のァミノ酸残基であるァスパラギン酸がァラニンに置換されている遺伝子を挙げ ることができる。 このような変異型の m t DNA合成酵素 (ポリメラーゼ γ) 遺 伝子の DNAは、 例えば、 公知の m t DNA合成酵素 (ポリメラーゼ γ) 遺伝子を コードするゲノム DNAを鎵型とし、 変異部位の塩基を他のアミノ酸をコードする ように置換したミスセンス変異導入プライマーを用いた PCR等によって取得する ことができる。なお、 PCR、プライマーの作製、ゲノム DNAの調製、クローニング、 酵素処理等の方法は、 当業者に周知の常法により行うことができる。 Mutant mtDNA synthase used in the present invention (a specific example of a polymerase gene is mouse: 18 1st in the gene encoding mtDNA synthase). A gene in which aspartic acid, which is an amino acid residue of the above, is substituted with alanine can be mentioned. Such a mutant mtDNA synthase (polymerase γ) gene DNA is, for example, a genomic DNA encoding a known mtDNA synthase (polymerase γ) gene, and a base at the mutation site. It can be obtained by PCR or the like using a missense mutation-introducing primer substituted so as to encode the above amino acid. In addition, methods such as PCR, preparation of primers, preparation of genomic DNA, cloning, and enzyme treatment can be carried out by conventional methods well known to those skilled in the art.
(2) 本発明のトランスジエニック非ヒト哺乳動物の作製 (2) Preparation of transgenic non-human mammal of the present invention
本発明のトランスジエニック非ヒト哺乳動物の作製方法は特に限定されないが、 例えば、 変異型の m t DNA合成酵素 (ポリメラーゼ γ) 遺伝子をプロモーター の制御下に組み込んだ発現べクターを受精卵などに導入することにより作製する ことができる、 以下、 変異型の m t DNA合成酵素 (ポリメラーゼ γ) 遺伝子の 導入により該遺伝子を、 特に脳で特異的に発現するトランスジエニック非ヒト哺 乳動物の作製方法について説明する。  The method for producing the transgenic non-human mammal of the present invention is not particularly limited. For example, an expression vector having a mutant mt DNA synthetase (polymerase γ) gene incorporated under the control of a promoter is introduced into a fertilized egg or the like. A method for producing a transgenic non-human mammal that specifically expresses the mutant mtDNA synthase (polymerase γ) gene, particularly in the brain, by introducing the gene is described below. explain.
トランスジエニック非ヒト哺乳動物の作製のために用いる導入遺伝子としては、 上記した変異型の m t DNA合成酵素 (ポリメラーゼ 遺伝子を適当な哺乳動 物用プロモーターの下流に連結した組換え遺伝子を使用することが好ましい。 当 該変異型の m t DNA合成酵素 (ポリメラーゼ V) 遺伝子の下流には、 所望によ り、 ポリ Aシグナルを連結することができる。  As a transgene used for producing a transgenic non-human mammal, a mutant mt DNA synthetase (a recombinant gene in which a polymerase gene is ligated downstream of an appropriate mammalian promoter as described above) is used. A polyA signal can be ligated downstream of the mutant mt DNA synthetase (polymerase V) gene, if desired.
導入遺伝子の構築に用いる哺乳動物用プロモーターの種類は特に制限されない 、 変異型の m t DNA合成酵素 (ポリメラーゼ ) 遺伝子を脳 (特に、 脳の神 経細胞)において発現させることができるプロモーターを用いることが好ましレ、。 このようなプロモーターの具体例としては、 calmodulin kinase II a (CAMKIIa) のプロモーターまたは神経特異的ェノラーゼ(NSE)のプロモーターなどが挙げら れるが、 これらに限定されるものではない。 その他にも、 目的遺伝子を神経細胞 で発現させることができるプロモーターであれば、各種哺乳動物(例えば、ヒト、 ゥサギ、 ィヌ、 ネコ、 モノレキット、 ハムスター、 ラヅ ト、 マウスなど) 由来遺伝 子のプロモーターを適宜使用することができる。 The type of mammalian promoter used for the construction of the transgene is not particularly limited. A promoter capable of expressing a mutant mtDNA synthase (polymerase) gene in the brain (particularly, neurons of the brain) may be used. I like it. Specific examples of such a promoter include, but are not limited to, a calmodulin kinase IIa (CAMKIIa) promoter or a nerve-specific enolase (NSE) promoter. In addition, any other mammalian (eg, human, A promoter of a gene derived from a heron, a dog, a cat, a monorekit, a hamster, a rat, a mouse, etc.) can be used as appropriate.
さらに、 本発明で用いる組換え遺伝子には、 変異型の m t DNA合成酵素 (ポ リメラーゼ T/) 遺伝子の発現に必要なターミネータ一を連結してもよい。 該ター ミネーターは、 トランスジエニック動物において、 目的とするメッセンジャー R NAの転写を終結する配列 (いわゆるポリ A) として使用され、 ウィルス由来、 各種哺乳動物または鳥類由来の各遺伝子の配列が用いることができる。 具体的に は、 シミアンウィルスの SV40ターミネータ一などを用いることができる。 そ の他、 変異型の m t DNA合成酵素 (ポリメラーゼ 遺伝子をさらに高発現さ せる目的で、 既知の遺伝子のスプライシングシグナル、 ェンハンサー領域を連結 することができる。 さらには、 真核生物遺伝子のイントロンの一部をプロモータ 一領域の 5' 上流に、 プロモーター領域と翻訳領域間あるいは翻訳領域の 3, 下 流に連結することも可能である。  Further, a terminator required for expression of a mutant mtDNA synthase (polymerase T /) gene may be linked to the recombinant gene used in the present invention. The terminator is used as a sequence that terminates transcription of a target messenger RNA (so-called poly A) in a transgenic animal, and the sequence of each gene derived from a virus, various mammals or birds may be used. it can. Specifically, SV40 terminator of Simian virus can be used. In addition, a splicing signal of a known gene and an enhancer region can be ligated to further enhance the expression of a mutant mt DNA synthase (polymerase gene. It is also possible to connect the region 5 'upstream of one promoter region, between the promoter region and the translation region, or 3 or downstream of the translation region.
上言さ導入遺伝子に組み込まれた変異型の m t DNA合成酵素(ポリメラーゼ γ ) 遺伝子が細胞内で発現すると、 細胞内に変異型の m t DNA合成酵素 (ポリメラ ーゼ が産生されるようになる。 When the mutant mtDNA synthase (polymerase γ ) gene incorporated into the transgene is expressed in the cell, the mutant mtDNA synthase (polymerase) is produced in the cell.
変異型の m t DNA合成酵素 (ポリメラーゼ V) 遺伝子の導入により変異型の mt DNA合成酵素 (ポリメラーゼ 0/) を発現するトランスジエニック非ヒト哺 乳動物は、 例えば、 非ヒト哺乳動物の受精卵に変異型の m t DN A合成酵素 (ポ リメラーゼ 遺伝子を導入し、 当該受精卵を偽妊娠雌性非ヒト哺乳動物に移植 し、 当該非ヒト哺乳動物から変異型の m t DNA合成酵素 (ポリメラーゼ 0;) 遺 伝子が導入された非ヒト哺乳動物を分娩させることにより作製することができる。 非ヒ ト哺乳動物としては、例えば、マウス、 ハムスター、 モルモット、 ラッ ト、 ゥサギ等のげつ歯類の他、 ィヌ、 ネコ、 ャギ、 ヒッジ、 ゥシ、 ブタ、 サル等を使 用することができるが、 作製、 育成及び使用の簡便さなどの観点から見て、 マウ ス、 ハムスター、 モルモッ ト、 ラット、 ゥサギ等のげつ歯類が好ましく、 そのな かでもマウスが最も好ましい。 本発明で用いるトランスジエニック非ヒ ト哺乳動物は、 胚芽細胞と、 生殖細胞 あるいは体細胞とが、 非ヒト哺乳動物またはこの動物の先祖に胚発生の段階 (好 ましくは、 単細胞または受精卵細胞の段階でかつ一般に 8細胞期以前) において 外来性の変異型の m t DNA合成酵素 (ポリメラーゼ γ ) 遺伝子を含む組み換え 遺伝子を導入することによって作出される。 変異型の mt DNA合成酵素 (ポリ メラーゼ V) 遺伝子の構築は上記した通りである。 Transgenic non-human mammals that express a mutant mt DNA synthetase (polymerase 0 /) by introducing a mutant mt DNA synthase (polymerase V) gene can be used, for example, in fertilized eggs of non-human mammals. The mutant mtDNA synthase (polymerase gene is introduced, the fertilized egg is transplanted into a pseudopregnant female non-human mammal, and the mutant mtDNA synthase (polymerase 0; Non-human mammals into which the gene has been introduced can be produced by delivery, for example, rodents such as mice, hamsters, guinea pigs, rats, and rabbits, and the like. Dogs, cats, goats, sheep, pigs, pigs, monkeys, etc. can be used, but mice, hamsters, guinea pigs, etc. Rodents such as rats, rats, and egrets are preferred, with mice being most preferred. In the transgenic non-human mammal used in the present invention, the germinal cells and the germ cells or somatic cells are transferred to the non-human mammal or an ancestor of the animal at the stage of embryonic development (preferably, a single cell or a fertilized egg cell). In this stage, and generally before the 8-cell stage), it is produced by introducing a recombinant gene containing an exogenous mutant mtDNA synthase (polymerase γ) gene. The construction of the mutant mt DNA synthase (polymerase V) gene is as described above.
受精卵細胞段階における変異型の mtDNA合成酵素 (ポリメラーゼ ) 遺伝 子の導入は、 対象哺乳動物の胚芽細胞および体細胞のすべてに存在するように維 持されるように行うことができる。遺伝子導入後の作出動物の胚芽細胞において、 変異型の mtDNA合成酵素 (ポリメラーゼ 遺伝子が存在することは、 作出 動物の後代がすべてその胚芽細胞および体細胞のすべてに変異型の m t DNA合 成酵素 (ポリメラーゼ γ) 遺伝子が存在することを意味する。 遺伝子を受け継い だこの種の動物の子孫はその胚芽細胞おょぴ体細胞のすべてに変異型の m t DN A合成酵素 (ポリメラーゼ V) 遺伝子を有する。  The introduction of the mutant mtDNA synthase (polymerase) gene at the fertilized egg cell stage can be carried out so as to be maintained in all germ cells and somatic cells of the target mammal. The mutated mtDNA synthase (the presence of the polymerase gene indicates that all the progeny of the produced animal have mutant mtDNA synthase (germ cells and somatic cells) in the germ cells of the animal after gene transfer. Means that the polymerase γ) gene is present The offspring of this type of animal that inherits the gene have a mutant mtDNA synthase (polymerase V) gene in all of its germinal and somatic cells.
本発明のトランスジヱニック動物は、 交配により遺伝子を安定に保持すること を確認した後、 当該遺伝子保有動物として通常の飼育環境で継代飼育することが できる。 導入遺伝子を相同染色体の両方に持つホモザィゴート動物を取得し、 こ の雌雄の動物を交配することによりすべての子孫が該遺伝子を過剰に有するよう に繁殖継代することができる。 変異型の mtDNA合成酵素 (ポリメラーゼ y) 遺伝子の発現部位を同定するためには変異型の m t DNA合成酵素 (ポリメラー ゼ V) 遺伝子の発現を個体、 臓器、 組織、 細胞の各レベルで観察することができ る。 また、 変異型の mtDNA合成酵素 (ポリメラーゼ γ) に対する抗体を用い た酵素免疫検定法によりその発現の程度を測定することも可能である。 After confirming that the transgenic animal of the present invention stably retains the gene by mating, the transgenic animal can be subcultured in a normal breeding environment as the gene-bearing animal. By obtaining a homozygous animal having the transgene on both homologous chromosomes and mating the male and female animals, it is possible to breed the offspring so that all offspring have the gene in excess. To identify the expression site of the mutant mtDNA synthase (polymerase y ) gene, the expression of the mutant mtDNA synthase (polymerase V) gene must be observed at the individual, organ, tissue, and cell levels. Can be done. It is also possible to measure the expression level of the mutant mtDNA synthetase (polymerase γ) by an enzyme immunoassay using an antibody to the enzyme.
以下、 トランスジエニック非ヒ ト哺乳動物がトランスジエニックマウスの場合 を例に挙げて具体的に説明する。変異型の m t DNA合成酵素(ポリメラーゼ 遺伝子をコードする cDNAをプロモーターの下流に含有する導入遺伝子を構築 し、 該導入遺伝子をマウス受精卵の雄性前核にマイクロインジェクションし、 得 られた卵細胞を培養した後、 偽妊娠雌性マウスの輸卵管に移植し、 その後被移植 動物を飼育し、 産まれた仔マウスから前記 c DN Aを有する仔マウスを選択する ことにより、 本発明のトランスジエニックマウスを作製することができる。 上記 マウスの受精卵としては、 例えば、 129ZS V、 C 57 B L/6N B ALB/ c、 C 3H、 S J L/Wt等に由来するマウスの交配により得られるものなら任 意のものを使用できる。 Hereinafter, the transgenic non-human mammal will be specifically described with reference to a transgenic mouse as an example. A transgene containing a mutant mt DNA synthetase (cDNA encoding the polymerase gene downstream of the promoter) was constructed, and the transgene was microinjected into the male pronucleus of a mouse fertilized egg. After culturing the obtained egg cells, the cells are transplanted into the oviduct of a pseudopregnant female mouse, and thereafter, the recipient animal is bred, and the pups having the cDNA are selected from the pups laid. Nick mice can be produced. The fertilized egg of the mouse, for example, 129ZS V, C 57 BL / 6 N B ALB / c, C 3H, those arbitrary if those obtained by crossing mice derived from SJL / Wt or the like can be used.
また、 注入する導入遺伝子の数は受精卵 1個当たり 100〜3000分子が適 当である。 そしてまた、 c DNAを有する仔マウスの選択は、 マウスの尻尾等よ り DNAを抽出し、 導入した変異型の: m t DN A合成酵素 (ポリメラーゼ γ) 遺 伝子をプローブとするドットハイブリダィゼーシヨン法や、 特異的プライマーを 用いた PC R法等により行うことができる。  The appropriate number of transgenes to be injected is 100 to 3000 molecules per fertilized egg. In addition, selection of pups having cDNA is performed by extracting DNA from the tail of the mouse, etc., and introducing a hybrid of the mutant: mtDNA synthase (polymerase γ) gene as a dot hybrid probe. It can be carried out by the Zession method or the PCR method using specific primers.
本発明のトランスジエニック非ヒト哺乳動物は、 変異型の m t DNA合成酵素 (ポリメラーゼ 遺伝子を過剰発現することを特徴とするものであり、 躁うつ 病の治療薬又は予防薬のスクリーニング試験に利用可能なモデルであり、 さらに 躁うつ病の発生機構の解明などの研究分野においても有用である。  The transgenic non-human mammal of the present invention is characterized in that a mutant mt DNA synthetase (which is characterized by overexpressing a polymerase gene, and can be used for screening tests for therapeutic or preventive drugs for manic depression. This model is also useful in research fields such as elucidation of the mechanism of development of manic depression.
また、 上記した本発明のトランスジエニック非ヒト哺乳動物の一部としては、 非ヒト哺乳動物の細胞、 細胞内小器官、 組織および臓器のほ力、 頭部、 指、 手、 足、 腹部、 尾などが挙げられ、 これらも全て本発明の範囲内に属する。  In addition, the transgenic non-human mammal of the present invention includes, as a part thereof, cells, intracellular organelles, tissues and organs of the non-human mammal, head, fingers, hands, feet, abdomen, And the like, all of which fall within the scope of the present invention.
( 3 ) 躁ぅつ病の治療剤及び Ζ又は予防剤のスクリーニング (3) Screening for therapeutic and / or prophylactic agents for manic-depression
本発明による躁うつ病の治療剤及び/又は予防剤のスクリーニング方法は、 変 異型の mtDNA合成酵素 (ポリメラーゼ V) を過剰発現する本発明のトランス ジエニック非ヒ ト哺乳動物を用いて行うことができる。 即ち、 本発明のトランス ジヱニック非ヒト哺乳動物 (例えば、 トランスジヱニックマウスなど) に、 被検 物質を投与し、 該トランスジエニック非ヒト哺乳動物の生理学的データや運動能 力などを評価 ·検討することにより、 該被検物質の躁うつ病に対する治療効果や 予防効果を評価することができる。 あるいはまた、 本発明のトランスジエニック非ヒ ト哺乳動物に被験物質を投与 し、投与後における変異型の m t D N A合成酵素(ポリメラーゼ )の発現状態、 欠失した短い m t D N Aの脳内における蓄積状態、 並びに、 投与した被験物質の 生体内における動態を分析することなどにより、 該被検物質の躁うつ病に対する 治療効果や予防効果を評価することもできる。 The method for screening a therapeutic and / or prophylactic agent for manic depression according to the present invention can be performed using the transgenic non-human mammal of the present invention that overexpresses a variant mtDNA synthase (polymerase V). . That is, a test substance is administered to the transgenic non-human mammal (eg, transgenic mouse) of the present invention, and the physiological data, exercise ability, and the like of the transgenic non-human mammal are evaluated. By examining it, the therapeutic and preventive effects of the test substance on manic depression can be evaluated. Alternatively, a test substance is administered to the transgenic non-human mammal of the present invention, and the expression state of the mutant mtDNA synthetase (polymerase) after administration and the accumulation state of the deleted short mtDNA in the brain after administration. In addition, the therapeutic and preventive effects of the test substance on manic depression can be evaluated by analyzing the dynamics of the administered test substance in vivo.
すなわち、本発明のトランスジエニック非ヒト哺乳動物を利用することにより、 躁うつ病の治療効果及ぴ予防効果を評価することが可能であり、 本発明のトラン スジエニック非ヒト哺乳動物は、 躁うつ病の病態評価モデル動物として利用する ことができる。 例えば、 本発明のトランスジエニック非ヒト哺乳動物を用いて、 これらの病態回復おょぴ重篤程度を判定し、 この疾患の治療方法の検討を行うこ とも可能である。  That is, by using the transgenic non-human mammal of the present invention, it is possible to evaluate the therapeutic effect and the preventive effect of manic-depressive disease. It can be used as a disease state evaluation model animal. For example, by using the transgenic non-human mammal of the present invention, it is possible to determine the recovery of these conditions and the severity of the disease, and to examine a method for treating this disease.
さらにまた、 本発明のトランスジエニック非ヒト哺乳動物を用いることによつ て、 変異型の m t D N A合成酵素 (ポリメラーゼ 0;) の発現と、 上記疾病の進行 度などを分析することにより、 該疾患の発症 ·進行のメカニズムを解明すること ができる。  Furthermore, by using the transgenic non-human mammal of the present invention, the expression of the mutant mt DNA synthetase (polymerase 0;) and the progress of the above-mentioned disease are analyzed to determine The mechanism of disease onset and progression can be elucidated.
本発明のスクリ一-ング方法に供される被験物質としては、例えば、ぺプチド、 タンパク、 非ペプチド性化合物、 合成化合物、 発酵生産物、 細胞抽出液、 植物抽 出液、 動物組織抽出液、 血漿などが挙げられ、 これら化合物は新規な化合物であ つてもよいし、 公知の化合物であってもよい。 またペプチドライブラリーや化合 物ライプラリーなど、 多数の分子を含むライブラリーを被験物質として使用する こともできる。  The test substance to be subjected to the screening method of the present invention includes, for example, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, Examples thereof include plasma, and these compounds may be novel compounds or known compounds. Libraries containing a large number of molecules, such as peptide libraries and compound libraries, can also be used as test substances.
本発明のトランスジュニック非ヒト哺乳動物に被験物質を投与する方法として は、例えば、経口投与、静脈注射などが用いられる。 また、被験物質の投与量は、 投与方法、 被験物質の性質などにあわせて適宜選択することができる。  As a method of administering a test substance to the transgenic non-human mammal of the present invention, for example, oral administration, intravenous injection and the like are used. The dose of the test substance can be appropriately selected according to the administration method, the properties of the test substance, and the like.
本発明のスクリーニング方法を用いて得られる物質は、 上記した被験物質から 選ばれた物質であり、 躁うつ病に対して予防 ·治療効果を有するので、 躁うつ病 に対する安全で低毒性な治療 ·予防剤などの医薬として使用することができる。 さらに、 上記スクリーニングで得られた物質から誘導される化合物も同様に医薬 として用いることができる。 該スクリーニング方法で得られた物質は塩を形成し ていてもよく、該物質の塩としては、生理学的に許容される酸(例えば、無機酸、 有機酸) または塩基 (例えば、 アルカリ金属) などとの塩が用いられ、 とりわけ 生理学的に許容される酸付加塩が好ましい。 The substance obtained by using the screening method of the present invention is a substance selected from the test substances described above, and has a preventive / therapeutic effect on manic-depressive phenomena. It can be used as a medicine such as a prophylactic agent. Further, a compound derived from the substance obtained by the above screening can also be used as a medicine. The substance obtained by the screening method may form a salt, and the salt of the substance may be a physiologically acceptable acid (eg, an inorganic acid or an organic acid) or a base (eg, an alkali metal). And particularly preferably a physiologically acceptable acid addition salt.
塩としては、 例えば、 無機酸 (例えば、 塩酸、 リン酸、 臭化水素酸、 硫酸) と の塩、 あるいは有機酸 (例えば、 酢酸、 ギ酸、 プロピオン酸、 フマル酸、 マレイ ン酸、 コハク酸、 酒石酸、 クェン酸、 リンゴ酸、 シユウ酸、 安息香酸、 メタンス ルホン酸、 ベンゼンスルホン酸) との塩などが用いられる。  Examples of the salt include a salt with an inorganic acid (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or an organic acid (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, Salts with tartaric acid, cunic acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) are used.
該スクリーニング方法で得られた物質は、 例えば、 必要に応じて糖衣を施した 錠剤、 カプセル剤、 エリキシル剤、 マイクロカプセル剤などとして経口的に、 あ るいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、 または懸濁 液剤などの注射剤の形で非経口的に使用できる。  The substance obtained by the screening method can be used, for example, as a sugar-coated tablet, capsule, elixir, microcapsule, etc., orally, or water or any other pharmaceutically acceptable substance. It can be used parenterally in the form of an injection, such as a sterile solution with the resulting solution or a suspension.
例えば、 該物質を生理学的に許容される担体、 香味剤、 賦形剤、 ビヒクル、 防 腐剤、 安定剤、 結合剤などと一緒に混和することによって製剤を製造することが できる。錠剤、カプセル剤などに混和することができる添加剤としては、例えば、 ゼラチン、 コーンスターチ、 トラガント、 アラビアゴムのような結合剤、 結晶性 セルロースのような賦形剤、 コーンスターチ, ゼラチン, アルギン酸などのよう な膨化剤、 ステアリン酸マグネシウムのような潤滑剤、 ショ糖, 乳糖またはサッ カリンのような甘味剤、 ペパーミント, ァカモノ油またはチェリーのような香味 剤などが用いられる。 注射のための無菌組成物は注射用水のようなビヒクル中の 活性物質、 胡麻油、 椰子油などのような天然産出植物油などを、 溶解または懸濁 させるなど常法に従って処方することができる。 注射用の水性液としては、 例え ば、 生理食塩水, ブドウ糖やその他の捕助薬を含む等張液 (例えば、 D—ソルビ トール、 D—マンニトール, 塩ィ匕ナトリウムなど) などが用いられ、 適当な溶解 補助剤、例えば、 アルコール(例えば、エタノール) 、 ポリアルコール(例えば、 プロピレングリコール、 ポリエチレングリコール) 、 非イオン性界面活性剤 (例 えば、 ポリソルベート 8 0™, H C O - 5 0 ) などを併用することもできる。 油 性液としては、 例えば、 ゴマ油, 大豆油などが用いられ、 溶解捕助剤である安息 香酸べンジル, ベンジルアルコールなどを併用してもよい。 For example, a pharmaceutical preparation can be produced by mixing the substance with a physiologically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder and the like. Examples of additives that can be mixed with tablets, capsules, and the like include binders such as gelatin, corn starch, tragacanth, and gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, and alginic acid. Useful bulking agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, and flavoring agents such as peppermint, cocoa oil or cherry are used. A sterile composition for injection can be formulated according to a conventional method such as dissolving or suspending an active substance in a vehicle such as water for injection, or a naturally occurring vegetable oil such as sesame oil or coconut oil. Examples of the aqueous solution for injection include physiological saline, isotonic solution containing glucose and other auxiliary agents (eg, D-sorbitol, D-mannitol, sodium salt, etc.), and the like. Suitable dissolution aids, such as alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, polyethylene glycol), non-ionic surfactants (eg, For example, polysorbate 80 ™, HCO-50) can be used in combination. As the oily liquid, for example, sesame oil, soybean oil and the like are used, and a dissolution aid such as benzyl benzoate or benzyl alcohol may be used in combination.
また、 上記の躁うつ病の治療剤及び/又は予防剤には、 例えば、 緩衝剤 (例え ば、 リン酸塩緩衝液、 酢酸ナトリウム緩衝液) 、 無痛化剤 (例えば、 塩化ベンザ ルコニゥム、 塩酸プロ力インなど) 、 安定剤 (例えば、 ヒト血清アルブミン, ポ リエチレングリコールなど) 、 保存剤 (例えば、 ベンジルアルコール, フエノー ルなど) 、 酸化防止剤などを配合してもよい。  The therapeutic and / or prophylactic agent for manic depression includes, for example, a buffer (eg, a phosphate buffer, a sodium acetate buffer), a soothing agent (eg, benzalconium chloride, pro-chloride). And a stabilizer (eg, human serum albumin, polyethylene glycol, etc.), a preservative (eg, benzyl alcohol, phenol, etc.), an antioxidant, etc.
このようにして得られる製剤は安全で低毒性であるので、 例えば、 ヒトや哺乳 動物に対して投与することができる。 該物質の投与量は、 対象疾患、 投与対象、 投与ルートなどにより差異はあるが、 例えば、 経口投与する場合、 一般的に成人 においては、一日につき該化合物を約 0. 1〜: L 0 0 m g、好ましくは約 1 . 0〜 5 0 m g投与する。 非経口的に投与する場合は、 該化合物の 1回投与量は投与対 象、 対象疾患などによっても異なるが、 例えば、 注射剤の形で通常成人に投与す る場合、 一日にっき該化合物を約 0 . 0 1〜1 0 0 m g程度、 好ましくは約 0 . 1〜5 O m g程度を静脈注射により投与する。  The preparation thus obtained is safe and has low toxicity, and thus can be administered, for example, to humans and mammals. The dose of the substance varies depending on the target disease, the administration subject, the administration route, and the like. For example, in the case of oral administration, in general, in adults, the compound should be used in an amount of about 0.1 to about L 0 per day. 0 mg, preferably about 1.0 to 50 mg is administered. When administered parenterally, the single dose of the compound varies depending on the target of administration, target disease, etc.For example, when administered to an adult in the form of an injection, the compound may be administered once a day. About 0.01 to 100 mg, preferably about 0.1 to 50 mg is administered by intravenous injection.
以下の実施例により本発明をさらに具体的に説明するが、 本発明は実施例によ つて限定されることはない。 実施例  The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples. Example
実施例 1 : トランスジエニックマウスの作出 Example 1: Production of transgenic mice
神経特異的にミトコンドリア DNA (mtDNA) の異常を持つマウスを作るために、 遺伝子工学的に変異を導入した mtDNAの合成酵素 (DNA合成酵素 / ) を利用する ことにした。 変異を導入することによって、 DNA合成酵素 γの校正能を失わせる ことができる、 すなわち、 mtDNA を複製する際に高頻度でエラーを起こす (間違 つた塩基を取り込む) ようになる [Zhang D. et al. , Genomics 69, 151 - 161 (2000) ]。 そのまま複製反応が進めば、 エラーの部分は点変異として mtDNAに残る。 また、 多くの場合、 エラーを起こすと同時に、 複製反応はストップしてしまう。 複製が 途中で止まってしまった mtDNAが再ぴ環状になれば、 短い mtDNA、 すなわち欠失 した mtDNAになる。 このように、 エラーを起こしやすい DNA合成酵素^を神経細 胞に発現させることによって、 神経特異的に異常な nrtDNAを蓄積させることがで きる。 そこで、 神経細胞に発現を誘導するプロモーターを利用して、 変異 DNA合 成酵素 γを発現するようなトランスジエニックマウス (Tgマウス) を作製した。 まず、 マウス DNA合成酵素 γ (mPol y ) の cDNAを、 マウス全脳 mRNAからクロ 一ユングした。 ダイデォキシヌクレオチド法によって両鎖ともシークェンスした ところ、 データベースに登録されている標準配列 (匪— 017462) との間に、塩基配 列においても、 推測されるアミノ酸配列においても違いが認められた。 そこで、 他の種の Pol cDNAと比較解析し、上記でク口一ユングした cDNAの配列が正しい mPol の配列であると結論した。 To create mice with neuronal-specific abnormalities in mitochondrial DNA (mtDNA), we decided to use genetically engineered mtDNA synthase (DNA synthase /). By introducing the mutation, the proofreading ability of DNA synthase γ can be lost, that is, a high frequency of errors occurs when replicating mtDNA (incorporating the wrong base) [Zhang D. et al., Genomics 69, 151-161 (2000)]. If the replication reaction proceeds as it is, the error part will remain in mtDNA as a point mutation. Also, In many cases, the replication reaction stops at the same time that an error occurs. When mtDNA whose replication has stopped halfway becomes recircular, it becomes a short mtDNA, that is, a deleted mtDNA. Thus, by expressing the DNA synthase ^, which is liable to cause errors, in nerve cells, it is possible to accumulate abnormal nrtDNA in a nerve-specific manner. Therefore, transgenic mice (Tg mice) that express mutant DNA synthase γ were produced using a promoter that induces expression in nerve cells. First, mouse DNA synthase γ (mPol y) cDNA was cloned from mouse whole brain mRNA. When both chains were sequenced by the dideoxynucleotide method, a difference was observed in both the base sequence and the deduced amino acid sequence from the standard sequence registered in the database (Martian 017462). . Therefore, we compared and analyzed the Pol cDNA of other species and concluded that the sequence of the cDNA cloned above was the correct mPol sequence.
Stratagene社の QuikChange site-directed mutagenesisキッ を用レヽて 181 番目のアミノ酸残基であるァスパラギン酸をァラニンに変化させた。 このァスパ ラギン酸は Mg2+を結合するために必須の残基で、 ァラニンに変異させると校正能 が著しく低下することが報告されている [Zhang D. et al. , Genomics 69, 151-161 (2000) ]。 このとき使用したプライマーの配列は以下の通りである。 The 181st amino acid residue, aspartic acid, was changed to alanine using the QuikChange site-directed mutagenesis kit from Stratagene. This aspartic acid is an essential residue for binding Mg 2+, and it has been reported that mutating it to alanine significantly reduces its proofreading ability [Zhang D. et al., Genomics 69, 151-161. (2000)]. The sequences of the primers used at this time are as follows.
mut-mPolg-F, 5' - GCCCTGGTGTTCGCCGTGGAGGTCTGC- 3 ' (配列番号 1 ) mut-mPolg-F, 5 '-GCCCTGGTGTTCGCCGTGGAGGTCTGC-3' (SEQ ID NO: 1)
mut-mPolg-R, 5' -GCAGACCTCCACGGCGAACACCAGGGC-3 ' (配列番号 2 ) mut-mPolg-R, 5'-GCAGACCTCCACGGCGAACACCAGGGC-3 '(SEQ ID NO: 2)
また、 プロモーターを付加する実験操作の都合上、 コード領域内に存在する 2 ヶ^の Not I制限酵素サイト (開始コドンから数えて 115番目と 407番目の塩基 の直後が Iで切断される) の配列を変化させ、 Not Iサイトをすべて消滅さ せた。 その際、 アミノ酸配列は変化させないように注意した。 この操作も QuikChange site-directed mutagenesisキットを用い、 そのとさ使用し 7こプフィ マーの配列は以下の通りである。  In addition, due to the experimental procedure of adding a promoter, two Not I restriction enzyme sites existing in the coding region (I is cut immediately after the 115th and 407th bases from the start codon). The sequence was altered, eliminating all Not I sites. At that time, care was taken not to change the amino acid sequence. This procedure was also performed using the QuikChange site-directed mutagenesis kit, and the sequence of the primer was used as follows.
mPolg-xNotll-F, 5 ' - GTCCCCAGCGACGGTCGGCCGCCGTC- 3 ' (配列番号 3 ) mPolg-xNotll-R, 5 ' - GACGGCGGCCGACCGTCGCTGGGGAC- 3 ' (配列番号 4 ) mPolg-xNotI2-F, 5, - CCTTACTTGGAGGCTGCCGCCTCG- 3, (配列番号 5 ) mPolg-xNotll-F, 5 '-GTCCCCAGCGACGGTCGGCCGCCGTC-3' (SEQ ID NO: 3) mPolg-xNotll-R, 5 '-GACGGCGGCCGACCGTCGCTGGGGAC- 3' (SEQ ID NO: 4) mPolg-xNotI2-F, 5,-CCTTACTTGGAGGCTGCCGCCTCG-3, (SEQ ID NO: 5)
mPolg- xNotI2- R, 5, -CGAGGCGGCAGCCTCCAAGTAAGG-3 ' (配列番号 6 ) mPolg-xNotI2-R, 5, -CGAGGCGGCAGCCTCCAAGTAAGG-3 '(SEQ ID NO: 6)
変異 mPol y cDNAの ード領域部分のみを次のプライマーを用いた PCRで取り出 し、 いったん pCR Blunt II - T0P0ベクター (Invitrogen) にサブクローユングし た。  Only the nucleotide region of the mutated mPoly cDNA was extracted by PCR using the following primers, and was once subcloned into the pCR Blunt II-TOP0 vector (Invitrogen).
XhoI-mPolg-F, 5, -CTCGAGCCATGAGCCGCCTGCTCTGGAAGAAG-3 ' (配列番号 7 ) Sfil-mPolg-R, 5, -GGCCAATTGGGCCTTCCGTTAGGAGGAC-3 ' (配列番号 8 )  XhoI-mPolg-F, 5, -CTCGAGCCATGAGCCGCCTGCTCTGGAAGAAG-3 '(SEQ ID NO: 7) Sfil-mPolg-R, 5, -GGCCAATTGGGCCTTCCGTTAGGAGGAC-3' (SEQ ID NO: 8)
シークェンスをチェックした後、 マウス CaMKII o; (カルシウム ·カルモジユリ ン依存性蛋白キナーゼ II α; ) 遺伝子のプロモーターおよび 5, -と 3, -イントロ ン領域を連結させた。 具体的には、 変異 ηιΡοΙ γのコード領域を制限酵素 ¾。Iと で切り出し、 平滑末端化したのちに、 pNN265ベクター [Choi T. et al. , Mol. Cell. Biol. 11, 3070-3074 (1991) ]の RVサイトに揷入した (この操作で J¾o I、 Sfi I、 Eco RVのいずれのサイトも消滅する) 。 そこから、 Not Iフラグメン ト (5, -イントロン'変異 mPol yのコード領域 · 3, -イントロン 'ポリ A付加配 列が連結した構造)を切り出し、 PMM403ベクター [Mayford M. et al. , Science 274, 1678-1683 (1996) ]の οί Iサイトに挿入した。 このコンストラクト (図 1 ) は、 通常の分子生物学的実験に用いられている大腸菌 (XLI Blue- MRF, 、 T0P10, SURE など) 内では極めて不安定であることが判明し、 STBL2株 (Invitrogen) を 30°C で培養して初めてコンストラクトを作製することができた。  After checking the sequence, the promoter of the mouse CaMKII o; (calcium-calmodulin-dependent protein kinase II α;) gene and the 5,-and 3, -intron regions were ligated. Specifically, the restriction region of the coding region of the mutant ηι 制 限 οΙγ. After excising with I and blunt ends, it was inserted into the RV site of pNN265 vector [Choi T. et al., Mol. Cell. Biol. 11, 3070-3074 (1991)]. , Sfi I and Eco RV sites will disappear). From there, Not I fragment (5, -intron 'mutant mPoly coding region · 3, -intron' poly-A additional sequence linked structure) was cut out and the PMM403 vector [Mayford M. et al., Science 274]. , 1678-1683 (1996)] at οί I site. This construct (Fig. 1) was found to be extremely unstable in Escherichia coli (XLI Blue-MRF,, T0P10, SURE, etc.) used in ordinary molecular biology experiments, and the STBL2 strain (Invitrogen) Was constructed at 30 ° C for the first time.
完成したコンストラクトから制限酵素 Iでベクター部分を削除したのち、 C57BL/6Jマウスの受精卵前核にインジェクションして仮親の卵管に移植した。合 計 894の受精卵にインジェクションし、 そのうち 431個の胚を移植した。 40匹の 産仔が得られ、 離乳まで生育したのは 27匹であった。 そのうち、 3匹がトランス ジーンを持っていた。 ジエノタイプの判定は、 マウスの尻尾の一部から抽出した ゲノム DNAを用いた PCRで行った。 このとき使用したプライマーは以下の通りで ある。  After deleting the vector portion from the completed construct with restriction enzyme I, the construct was injected into the pronucleus of a fertilized egg of a C57BL / 6J mouse and transplanted into the fallopian tube of a foster parent. A total of 894 fertilized eggs were injected, of which 431 embryos were transferred. Forty litters were obtained, and 27 grew to weaning. Three of them had a transgene. The genotype was determined by PCR using genomic DNA extracted from a part of the mouse tail. The primers used at this time are as follows.
raPolgTg-F, 5, -TTGAGGTTTTCCAGCAGCAG-3 ' (配列番号 9 ) mPolgTg-R, 5' -AAGGACTCGATGGCTCTGTAGG-3 ' (配列番号 1 0 ) ただし、 得られた Tgマウスの 3ライン (A, B, C) のうち、 ライン Aはほとん ど Tgマウスが生まれない (約 70匹の産仔のうち 2匹のみが Tg) ため、 以降の解 析は行わなかった。 実施例 2 :遺伝子導入した変異 Pol の発現 raPolgTg-F, 5, -TTGAGGTTTTCCAGCAGCAG-3 '(SEQ ID NO: 9) mPolgTg-R, 5'-AAGGACTCGATGGCTCTGTAGG-3 '(SEQ ID NO: 10) However, among the three lines (A, B, C) of the obtained Tg mice, line A hardly produces Tg mice (about 70 Since only two of the offspring were Tg), no further analysis was performed. Example 2: Expression of transfected mutant Pol
残りの 2系統 (ライン Bと C) に関して、 各組織における ιηΡοΙ γの遺伝子発現 を調べた。 全 RNAを Trizol試薬(Invitrogen) を用いて抽出し、 逆転写反応を行 つて cDNA を作製した。 変異型あるいは (元から持っている内在性の) 正常型の mPol y cDNAをそれぞれ特異的に増幅するプライマーセットを用い、 リアルタイム 定量的 PCR を行った (SYBR Green マスターミックス試薬 · SDS7000; Applied Biosystems) 。 同時に測定した GAPDH mRNA量を用いて正規化した。  The remaining two lines (lines B and C) were examined for ιηιοΙγ gene expression in each tissue. Total RNA was extracted using Trizol reagent (Invitrogen), and reverse transcription was performed to produce cDNA. Real-time quantitative PCR was performed using primer sets that specifically amplify mutant or normal (endogenous) mPoly cDNA, respectively (SYBR Green Master Mix Reagent · SDS7000; Applied Biosystems) . Normalization was performed using the GAPDH mRNA amount measured at the same time.
変異型 mPol · cDMのみを増幅するプライマーセットは以下の通り。 The following primer sets amplify only the mutant mPol · cDM.
mutPolg-TMF, 5, - CTGCCTTACTTGGAGGCT- 3' (配列番号 1 1 ) mutPolg-TMF, 5,-CTGCCTTACTTGGAGGCT-3 '(SEQ ID NO: 11)
mutPolg-TMR, 5' -CAAGCAGACCTCCACGG-3' (配列番号 1 2 ) mutPolg-TMR, 5'-CAAGCAGACCTCCACGG-3 '(SEQ ID NO: 12)
正常型 mPol · cDNAのみを増幅するプライマーセットは以下の通り。 Primer sets that amplify only normal mPol · cDNA are as follows.
wtPolg-TMF, 5, -CTGCCTTACTTGGAGGCG-3' (配列番号 1 3 ) wtPolg-TMF, 5, -CTGCCTTACTTGGAGGCG-3 '(SEQ ID NO: 13)
wtPolg-TMF, 5' -CAAGCAGACCTCCACGT-3' (配列番号 1 4 ) wtPolg-TMF, 5'-CAAGCAGACCTCCACGT-3 '(SEQ ID NO: 14)
その結果、 変異 mPol y mRNAは、 ライン Bの神経組織に強い発現が見られたが、 それ以外の組織やライン C のマウスにおいては発現量が少ないことが判明した (図 2 ) 。 実施例 3 :欠失したミ トコンドリア DNAの蓄積  As a result, it was found that the mutant mPol y mRNA had strong expression in the nerve tissue of line B, but had low expression in other tissues and mice of line C (Fig. 2). Example 3: Accumulation of deleted mitochondrial DNA
ライン B と C の、 それぞれ同腹のトランスジエニック (Tg) マウスと野生型 (non-Tg) マウスに関して、 各組織における短い異常なミ トコンドリア DNA (mtDNA) を PCR-サザンプロット法によって検出した。 ライン Bのマウスは 1 2 週齢、 ライン Cのマウスは 8週齢であった。 具体的には、 まず、 DNA精製機 (ク ラボウ) を用いて各組織から DNA (核とミ トコンドリアの DNAを含む) を抽出し た。 次に、 もし PCRの伸長時聞が十分に長ければ mtDNAの全長 (16. 6kbp) を増幅 できるプライマーセットを用い、 「短い伸長反応時間」 の PCRを行った。 欠失を 含むために短くなつた mtDNAのみが増幅され、その PCR産物(3〜8kbp) をサザン プロットによって検出した。 mtDNAの複製に重要なために欠失 mtDNAでも必ず含 んでいるはずの mtDNAの Dループ部分を、 サザンプロット解析のプローブとして 用いた。 「短い伸長反応時間」 の PCRの条件は、 以下の通りである。 Short abnormal mitochondrial DNA (mtDNA) in each tissue of transgenic (Tg) and wild-type (non-Tg) mice of lines L and C, respectively, was detected by PCR-Southern plot. Line B mice were 12 weeks old and line C mice were 8 weeks old. Specifically, first, a DNA purifier ( DNA (including nuclear and mitochondrial DNA) was extracted from each tissue using Labo. Next, if the extension time of the PCR was sufficiently long, PCR was performed with a "short extension reaction time" using a primer set capable of amplifying the entire length of mtDNA (16.6 kbp). Only short Natsuta mtDNA to include deletion is amplified and detected the PCR product (3 ~8kbp) by Southern blot. The D loop portion of mtDNA, which is crucial for mtDNA replication and should always contain the deleted mtDNA, was used as a probe for Southern blot analysis. The PCR conditions for “short extension reaction time” are as follows.
反応液 (25 L) の組成: DNA 0. 1 / g、 0. 8mM dNTP、 1 ΧτΕτ ¾ バッファー、 各 0. 4 μ Μプライマー、 Ex Taq 0. 03U。 Composition of reaction solution (25 L): DNA 0.1 / g, 0.8 mM dNTP, 1 1τΕτ¾ buffer, 0.4 μ 各 each primer, Ex Taq 0.03U.
温度と時間: 94°C X 1分一 (94°C X 20秒一 65°C X 30秒一 72°C X 2. 5分) X 33サイ クル。 Temperature and time: 94 ° C x 1 min (94 ° C x 20 sec-65 ° C x 30 sec-72 ° C x 2.5 min) x 33 cycles.
ramtDNAdel-F, 5, -GAGGTGATGTTTTTGGTAAACAGGCGGGGT-3' (配列番号 1 5 ) mmtDNAdel-R, 5' -GGTTCGTTTGTTCAACGATTAAAGTCCTACGTG-3' (配列番号 1 6 ) その結果、ライン Bの Tgマウスの神経組織において、欠失した mtDNAがより蓄 積していることが判明した。ライン Cの Tgマウスにおいては、明らかな欠失 mtDNA の蓄積は認めることができなかった。 この結果は、 遺伝子導入した変異 Pol yの 発現量を反映していると考えられた (図 3 ) 。 実施例 4: Tgマウスの活動量の長期記録 ramtDNAdel-F, 5, -GAGGTGATGTTTTTGGTAAACAGGCGGGGT-3 '(SEQ ID NO: 15) mmtDNAdel-R, 5' -GGTTCGTTTGTTCAACGATTAAAGTCCTACGTG-3 '(SEQ ID NO: 16) It turned out that mtDNA was more accumulated. No clear mtDNA accumulation was observed in line C Tg mice. This result was considered to reflect the expression level of the transfected mutant Pol y (Fig. 3). Example 4: Long-term recording of activity in Tg mice
双極性障害 (もちろんヒ トの場合) の基本的な特徴は、 1 回以上の躁病ェピソ ードであり、 しばしば 1回以上の大うつ病エピソードを伴う。 すなわち、 躁病ェ ピソ一ドと大うつ病ェピソ一ドを反復する。 躁病おょぴ大うつェピソ一ドの診断 基準は、 それぞれ明確に存在するが、 いずれも生化学的なデータ (例えば、 何ら かの物質の血中濃度) ではない。 「気分が異常かつ持続的に高揚し、 開放的また は易怒的. . .」 といった基準 [DSM- IV精神疾患の診断 ·統計マニュアル 医学書院 (1996) ]であるために、そのままマウスに応用することはできない。そこで、躁病 ェピソ一ドと大うつ病ェピソ一ドを反復する基本的病態をもとに、 マウスの活動 量が反復的に増減するかどうかを調べ、 マウスが双極性障害様の異常を呈してい るかどうかを判断することにした。 The basic feature of bipolar disorder (of course in humans) is one or more manic episodes, often with one or more major depressive episodes. That is, the manic episode and the major depression episode are repeated. The diagnostic criteria for manic episodes are clearly present, but none are biochemical data (eg, blood levels of some substances). Because it is a standard such as "Mood is abnormal and persistently uplifted, open or irritable ..." I can't. Therefore, based on the basic pathology of repetition of manic episode and major depressive episode, mouse activity was We decided to examine whether the dose increased or decreased repeatedly to determine if the mice had bipolar disorder-like abnormalities.
ライン Bの Tgマウスとその同腹の野生型マウス(non- Tgマウス)の各 5匹(13 〜14週齢) を、 輪回し装置付きケージ (小原医科産業) に 1匹ずつ入れ、 輪回し 行動量を測定した。 12時間: 12時間の明暗周期下で、摂餌ゃ飲水は自由にできる ようにした。  Line B Tg mice and their littermate wild-type mice (non-Tg mice), each 5 (13-14 weeks old), are placed in a cage with a rotation device (Ohara Medical Sangyo) one by one, and are rotated. The amount was measured. 12 hours: Under a 12-hour light / dark cycle, food and water were freely available.
その結果、 Tgマウス、 non_Tgマウスとも、 明暗周期に同調した 24時間周期の 活動リズムを示したが、この 1日周期のリズム(いわゆるサ一力ディアンリズム) に加えて Tgマウスには非常に長周期のリズムを示すことがわかった。図 4に示す ように、 活発に動いた夜の、 次の夜は余り動かなく、 そのあと数日間 (の夜) は 活動量が低かった。 し力、し、 その後、 再び活発に動くようになる。 図 5に、 1 日 ごとの輪回し回数をプロットした。 このように、 Tgマウスの活動量の増減が約 5 日おきに反復することが判明した。 この周期の長さを正確に求めるために、 Lomb-Scargle 周期解析法を用いて輪回し量の周期性を求めたところ、 110〜130 時間周期であることがわかった (図 6 ) 。 この結果から、 この Tgマウスは、 自発 的に活動の増減を繰り返すマウスであり、 ヒトの双極性障害のモデル動物になり うると考えられた。 実施例 5 :常套的な行動学的解析  As a result, both Tg mice and non_Tg mice showed 24-hour activity rhythms synchronized with the light-dark cycle, but in addition to this one-day cycle rhythm (the so-called dian rhythm), Tg mice also had very long rhythms. It was found to show a periodic rhythm. As shown in Fig. 4, the night after the active movement, the next night did not move much, and the activity was low for (the night) several days thereafter. And then move again and again. Figure 5 plots the number of wheel rotations per day. Thus, it was found that the increase and decrease in the activity of the Tg mice was repeated about every 5 days. To determine the length of this cycle accurately, we used the Lomb-Scargle periodic analysis method to determine the periodicity of the wheel rotation amount, and found that the cycle was 110 to 130 hours (Fig. 6). These results suggest that this Tg mouse is a mouse that repeatedly increases and decreases in activity spontaneously and can be a model animal for human bipolar disorder. Example 5: Routine behavioral analysis
通常行われる行動学的な解析として、 オープンフィールド ·高架式十字迷路 · 強制水泳の各テストを、 ライン Bの Tgマウスとその同腹の non- Tgマウスに対し て行った (図 7 ) 。 新規環境における活動性を調べるオープンフィールドテスト では、 Tgマウスの活動量は低く、 1ケ所に長時間とどまって動かないことがしば しば観察された。 恐怖や不安の感じやすさを調べる高架式十字迷路テストでは、 Tgマウスはクローズドアーム (壁があって下に落ちる心配がない) により長時間 とどまつていた。 このことから、 Tgマウスは不安が強いと推測された。  As a usual behavioral analysis, open field, elevated plus maze, and forced swimming tests were performed on line B Tg mice and non-Tg mice of the same litter (Fig. 7). In open field tests to determine activity in the new environment, Tg mice showed low activity and often remained in one location for long periods of time and did not move. In an elevated plus-maze test for fear and anxiety, the Tg mouse stayed on the closed arm for a long time with closed arms (there is no danger of falling down). From this, it was presumed that Tg mice had strong anxiety.
抗うつ薬のスクリーニングとして広く用いられている強制水泳テストを行った。 つかまる所がないプールにマウスを入れると必死に泳ぐが、 やがて (おそらく) 絶望状態のため泳ぐのをやめて浮かぶにまかせて無動となる。 その様子を測定し た結果、 Tgマウスは、 non- Tgよりも無動になるまでに時間を要した。この結果は、 うつ病モデル通常言われている他の動物モデルがより早く無動になる傾向とは反 対であり、 本 Tgマウスがユニークなマウスであることがわかった。 ヒ トの場合、 抗うつ薬は双極性障害のうつ状態を (対症療法的に) 改善するが、 抗うつ薬投与 によって躁とうつの反復性を増強することが知られている。 産業上の利用可能性 A forced swimming test, widely used as a screen for antidepressants, was performed. The mouse swims desperately when the mouse is put into a pool where there is no place to catch, but eventually (probably) in despair it stops swimming and leaves it floating and becomes immobile. As a result of the measurement, Tg mice took longer to become immobile than non-Tg. This result is contrary to the tendency of other animal models, which are commonly referred to as a depression model, to become immobile sooner, indicating that the present Tg mouse is a unique mouse. In humans, antidepressants improve the depression of bipolar disorder (symptomatically), but are known to enhance the repetitiveness of manic and depression by antidepressant administration. Industrial applicability
本発明においては、うつ病を呈する神経筋疾患 adCPEOの原因遺伝子に変異を導 入し、 これを神経特異的に発現させたトランスジェニック非ヒト哺乳動物を作製 した。 本発明のトランスジエニック非ヒト哺乳動物においては、 躁うつ病と関連 していると考えられている脳内の mtDNA欠失体の蓄積が確認された。 また、 本発 明のトランスジエニック非ヒト哺乳動物は、 自発的に周期的な行動変化を呈して いた。 従って、 本発明のトランスジヱニック非ヒト哺乳動物は、 反復性うつ病ま たは躁うつ病の動物モデルとして有用である。 本発明のトランスジエニック非ヒ ト哺乳動物は、躁うつ病 ·うつ病の治療薬(気分安定薬、抗うつ薬) の開発研究、 躁うつ病 · うつ病の病態研究、 診断法研究に利用可能である。  In the present invention, a transgenic non-human mammal was prepared by introducing a mutation into a causative gene of a neuromuscular disease adCPEO presenting depression and expressing it in a nerve-specific manner. In the transgenic non-human mammal of the present invention, accumulation of mtDNA deletion in the brain, which is considered to be associated with manic depression, was confirmed. In addition, the transgenic non-human mammal of the present invention spontaneously exhibited periodic behavioral changes. Therefore, the transgenic non-human mammal of the present invention is useful as an animal model for recurrent depression or manic depression. The transgenic non-human mammal of the present invention is used for research and development of therapeutic drugs for mood depression and depression (mood stabilizers, antidepressants), research of pathological conditions of manic depression and depression, and research of diagnostic methods. It is possible.

Claims

請求の範囲 The scope of the claims
1. 変異型の mtDNA合成酵素 (ポリメラーゼ をコードする遺伝子が 導入されていることにより該遺伝子を脳特異的に発現することを特徴とするトラ ンスジエニック非ヒト哺乳動物またはその一部。 1. A mutated mtDNA synthase (a transgenic non-human mammal or a part thereof characterized in that the gene encoding a polymerase is introduced into the brain specifically when the gene is introduced).
2. 欠失した短い mtDNAが脳内に蓄積している、 請求項 1に記載のトラ ンスジエニック非ヒト哺乳動物またはその一部。  2. The transgenic non-human mammal or part thereof according to claim 1, wherein the deleted short mtDNA is accumulated in the brain.
3. 自発的に周期的な行動変化を呈する、 請求項 1又は 2に記載のトランス ジエニック非ヒト哺乳動物またはその一部。  3. The transgenic non-human mammal or part thereof according to claim 1 or 2, which exhibits spontaneous periodic behavioral changes.
4. 変異型の m t DNA合成酵素(ポリメラーゼ γ)をコードする遺伝子を、 脳特異的な発現を可能とするプロモーターの制御下に組み込んだ組み換え D N A が導入されている、 請求項 1から 3の何れかに記載のトランスジエニック非ヒト 哺乳動物またはその一部。  4. A recombinant DNA comprising a gene encoding a mutant mt DNA synthetase (polymerase γ) incorporated under the control of a promoter that enables brain-specific expression. Or the transgenic non-human mammal or a part thereof.
5. 脳特異的な発現を可能とするプロモーターが、 calmodulin kinase II α (CAMKII α)のプロモーターまたは神経特異的エノラーゼ(NSE)のプロモーターで ある、 請求項 1から 4の何れかに記載のトランスジエニック非ヒト哺乳動物また はその一部。  5. The transgene according to any one of claims 1 to 4, wherein the promoter capable of brain-specific expression is a calmodulin kinase II α (CAMKII α) promoter or a neuron-specific enolase (NSE) promoter. Nick non-human mammals or parts thereof.
6. 変異型の m t DNA合成酵素(ポリメラーゼ をコードする遺伝子が、 マウス m t DNA合成酵素をコードする 伝子において 181番目のアミノ酸残 基であるァスパラギン酸がァラニンに置換されている遺伝子である、 請求項 1か ら 5の何れかに記載のトランスジエニック非ヒト哺乳動物またはその一部。  6. Mutant mtDNA synthase (The gene encoding the polymerase is a gene in which aspartic acid, which is the 181st amino acid residue in the gene encoding the mouse mtDNA synthase, is substituted with alanine. Item 6. The transgenic non-human mammal according to any one of Items 1 to 5, or a part thereof.
7. 非ヒト哺乳動物がマウスである、 請求項 1から 6の何れかに記載のトラ ンスジエニック非ヒト哺乳動物またはその一部。  7. The transgenic non-human mammal or a part thereof according to any one of claims 1 to 6, wherein the non-human mammal is a mouse.
8. 請求項 1から 7の何れかに記載の非ヒト哺乳動物またはその一部を用い ることを特^ [とする、躁うつ病の治療剤及ぴ 又は予防剤のスクリーニング方法。  8. A method for screening for a therapeutic and / or prophylactic agent for manic depression, comprising using the non-human mammal according to any one of claims 1 to 7 or a part thereof.
9. 請求項 8に記載のスクリ一ユング方法により得られる物質。  9. A substance obtained by the screening method according to claim 8.
10. 請求項 8に記載のスクリ一二ング方法により得られる物質を有効成分 として含有する、 躁うつ病の治療剤及び z又は予防剤。 10. A substance obtained by the screening method according to claim 8 as an active ingredient As a therapeutic and / or prophylactic agent for manic depression.
PCT/JP2004/015872 2003-10-21 2004-10-20 Transgenic nonhuman mammal WO2005038027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003360679A JP3817638B2 (en) 2003-10-21 2003-10-21 Transgenic non-human mammal
JP2003-360679 2003-10-21

Publications (1)

Publication Number Publication Date
WO2005038027A1 true WO2005038027A1 (en) 2005-04-28

Family

ID=34463418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015872 WO2005038027A1 (en) 2003-10-21 2004-10-20 Transgenic nonhuman mammal

Country Status (2)

Country Link
JP (1) JP3817638B2 (en)
WO (1) WO2005038027A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KATO T. ET AL.: "Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder", BIOL. PSYCHIATRY, vol. 42, 1997, pages 871 - 875, XP002984217 *
MAYFORD M. ET AL.: "The 3'-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites", PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 13250 - 13255, XP002918895 *
SAKIMURA K. ET AL.: "Upstream and intron regulatory regions for expression of the rat neuron-specific enolase gene", BRAIN RES. MOL. BRAIN RES., vol. 28, 1995, pages 19 - 28, XP002984218 *
ZHANG D. ET AL.: "Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis", GENOMICS, vol. 69, 2000, pages 151 - 161, XP004437794 *

Also Published As

Publication number Publication date
JP2005124412A (en) 2005-05-19
JP3817638B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
Zekri et al. Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP
WO2008071201A1 (en) Transgenic animal model for modelling pathological anxiety, a method for identifying compounds for treatment of diseases or disorders caused by pathological anxiety and a method for using wfsl protein as a target for identifying effective compounds against pathological anxiety
JP2007534323A (en) Transgenic model of Alzheimer's disease and its use in the treatment of various neurodegenerative diseases
JP4292401B2 (en) Utilization of histamine receptor H3 gene involved in regulation of body weight or food intake
US5789654A (en) Transgenic animals deficient in endogenous β3 -adrenergic receptor and uses thereof
US6984771B2 (en) Mice heterozygous for WFS1 gene as mouse models for depression
JP5099550B2 (en) Transgenic non-human mammal that reproduces the pathology of human rheumatoid arthritis
WO2014023672A1 (en) Transgenic animal
EP1224861A1 (en) Animal with the mass expression of human gene and test method by using the animal
JP5939487B2 (en) Epo-deficient GFP anemia mouse
JP3817638B2 (en) Transgenic non-human mammal
JP5888693B2 (en) Interstitial pneumonia model and its use
US20110173706A1 (en) Novel gpr101 transgenic mice and methods of use thereof
US20120227118A1 (en) Mo-1 conditional knock-out non-human animal and uses thereof
US20020188961A1 (en) Non human transgenic animal in which the expression of the gene coding for insulin is deleted
JPWO2007043589A1 (en) Schizophrenia animal model
Yamanaka Animal models for neurodegenerative disorders
Syding et al. Generation and Characterization of a Novel Angelman Syndrome Mouse Model with a Full Deletion of the Ube3a Gene. Cells 2022, 11, 2815
JP2004267002A (en) Senescence marker protein 30-deficient animal, antibody and method for preparing the antibody
US20090320147A1 (en) Nonhuman transgenic animal as type 2 diabetes model
Caviola Impatto dell’ambiente materno precoce e del sesso sul comportamento e metabolismo in due modelli murini KO
JP2009225697A (en) Abca12 GENE FUNCTION-DEFICIENT MOUSE
JP2004154135A (en) Knockout non-human animal
JP2008237072A (en) Genetically manipulated non-human animal and method for developing psychotropic drug
Aigner et al. Animal Models for the Study of Human Disease: Chapter 32. Genetically Tailored Pig Models for Translational Biomedical Research

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase