WO2005036925A2 - Compatible multi-channel coding/decoding - Google Patents
Compatible multi-channel coding/decoding Download PDFInfo
- Publication number
- WO2005036925A2 WO2005036925A2 PCT/EP2004/010948 EP2004010948W WO2005036925A2 WO 2005036925 A2 WO2005036925 A2 WO 2005036925A2 EP 2004010948 W EP2004010948 W EP 2004010948W WO 2005036925 A2 WO2005036925 A2 WO 2005036925A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- downmix
- side information
- original
- channels
- Prior art date
Links
- 230000005236 sound signal Effects 0.000 claims abstract description 40
- 108091006146 Channels Proteins 0.000 claims description 730
- 238000000034 method Methods 0.000 claims description 35
- 230000003595 spectral effect Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 241001137251 Corvidae Species 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000013038 hand mixing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000015108 pies Nutrition 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000013707 sensory perception of sound Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/02—Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/032—Quantisation or dequantisation of spectral components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/008—Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/03—Aspects of down-mixing multi-channel audio to configurations with lower numbers of playback channels, e.g. 7.1 -> 5.1
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/03—Application of parametric coding in stereophonic audio systems
Definitions
- a recommended multi-channel- surround representation includes, in addition to the two stereo channels L and R, an additional center channel C and two surround channels Ls, Rs.
- This reference sound format is also referred to as three/two-stereo, which means three front channels and two surround channels.
- five transmission channels are required.
- at least five speakers at the respective five different places are needed to get an optimum sweet spot in a certain distance from the five well-placed loudspeakers.
- Intensity stereo coding is described in AES preprint 3799, "Intensity Stereo Coding", J. Herre, K. H. Brandenburg, D. Lederer, February 1994, Amsterdam.
- intensity stereo is based on a main axis transform to be applied to the data of both stereophonic audio channels. If most of the data points are concentrated around the first principle axis, a coding gain can be achieved by rotating both signals by a certain angle prior to coding. This is, however, not always true for real stereophonic production techniques. Therefore, this technique is modified by excluding the second orthogonal component from transmission in the bit stream.
- the reconstructed signals for the left and right channels consist of differently weighted or scaled versions of the same transmitted signal.
- the BCC technique is described in AES convention paper 5574, "Binaural cue coding applied to stereo and multi- channel audio compression", C. Faller, F. Baumgarte, May 2002, Kunststoff.
- BCC encoding a number of audio input channels are converted to a spectral representation using a DFT based transform with overlapping windows. The resulting uniform spectrum is divided into non-overlapping partitions each having an index. Each partition has a bandwidth proportional to the equivalent rectangular bandwidth (ERB) .
- the inter-channel level differences (ICLD) and the inter- channel time differences (ICTD) are estimated for each partition for each frame k.
- the ICLD and ICTD are quantized and coded resulting in a BCC bit stream.
- the inter-channel level differences and inter-channel time differences are given for each channel relative to a reference channel. Then, the parameters are calculated in accordance with prescribed formulae, which depend on the certain partitions of the signal to be processed.
- intensity stereo coding therefore, a group of independent original channel signals is transmitted within a single portion of "carrier" data.
- the decoder then reconstructs the involved signals as identical data, which are rescaled according to their original energy-time envelopes. Consequently, a linear combination of the transmitted channels will lead to results, which are quite different from the original downmix.
- a drawback is that the stereo- compatible downmix channels Lc and Re are derived not from the original channels but from intensity stereo coded/decoded versions of the original channels. Therefore, data losses because of the intensity stereo coding system are included in the compatible downmix channels.
- Astereo- only decoder which only decodes the compatible channels rather than the enhancement intensity stereo encoded channels, therefore, provides an output signal, which is affected by intensity stereo induced data losses.
- this object is achieved by a method of processing a multi-channel audio signal, the multi-channel audio signal having at least three original channels, comprising: providing a first downmix channel and a second downmix channel, the first and the second downmix channels being derived from the original channels; calculating channel side information for a selected original channel of the original signals such that a downmix channel or a combined downmix channel including the first and the second downmix channel, when weighted using the channel side information, results in an approximation of the selected original channel; and generating output data, the output data including the chan- nel side information, the first downmix channel or a signal derived from the first downmix channel and the second down- mix channel or a signal derived from the second downmix channel.
- this object is achieved by an apparatus for inverse processing of input data, the input data including channel side information, a first downmix channel or a signal derived from the first downmix channel and a second downmix channel or a signal derived from the second downmix channel, wherein the first downmix channel and the second downmix channel are derived from at least three original channels of a multi-channel audio signal, and wherein the channel side information are calculated such that a downmix channel or a combined downmix channel including the first downmix channel and the second downmix channel, when weighted using the channel side information, results in an approximation of the selected original channel
- the apparatus comprising: an input data reader for reading the input data to obtain the first downmix channel or a signal derived from the first downmix channel and the second downmix channel or a signal derived from the second downmix channel and the channel side information; and a channel reconstructor for reconstructing the approximation of the selected original channel using the channel side information and the downmix channel or the combined downmix
- the inventive concept is advantageous in that it provides a bit-efficient multi-channel extension such that a multichannel audio signal can be played at a decoder.
- the present invention is advantageous in that it is bit- efficient, since, in contrast to the prior art, no additional carrier channel beyond the first and second downmix channels Lc, Re is required. Instead, the channel side in- formation are related to one or both downmix channels. This means that the downmix channels themselves serve as a carrier channel, to which the channel side information are combined to reconstruct an original audio channel. This means that the channel side information are preferably pa- rar ⁇ etric side information, i.e., information which do not include any subband samples or spectral coefficients. Instead, the parametric side information are information used for weighting (in time and/or frequency) the respective downmix channel or the combination of the respective down- mix channels to obtain a reconstructed version of a selected original channel.
- channel information for the original center channel are derived using the first downmix channel as well as the second downmix channel, i.e., using a combination of the two downmix channels.
- this combination is a summation.
- the groupings i.e., the relation between the channel side information and the carrier signal, i.e., the used downmix channel for providing channel side information for a selected original channel are such that, for optimum quality, a certain downmix channel is selected, which contains the highest possible relative amount of the respec- tive original multi-channel signal which is represented by means of channel side information.
- the first and the second downmix channels are used.
- the sum of the first and the second downmix channels can be used.
- the sum of the first and second downmix channels can be used for calculating channel side information for each of the original channels.
- the sum of the downmix channels is used for calculating the channel side information of the original center channel in a surround environment, such as five channel surround, seven channel surround, 5.1 surround or 7.1 surround.
- a surround environment such as five channel surround, seven channel surround, 5.1 surround or 7.1 surround.
- Using the sum of the first and second downmix channels is especially advantageous, since no additional transmission overhead has to be performed. This is due to the fact that both downmix channels are pre- sent at the decoder such that summing of these downmix channels can easily be performed at the decoder without requiring any additional transmission bits.
- the channel side information forming the multi- channel extension are input into the output data bit stream in a compatible way such that a lower scale decoder simply ignores the multi-channel extension data and only provides a stereo representation of the multi-channel audio signal. Nevertheless, a higher scale encoder not only uses two downmix channels, but, in addition, employs the channel side information to reconstruct a full multi-channel representation of the original audio signal.
- the right downmix channel and the channel side information for the right channel are used.
- the left downmix channel and the channel side information for the left surround channel are used.
- the channel side information for the right surround channel and the right downmix channel are used.
- a combined channel formed from the first downmix channel and the second downmix channel and the center channel side information are used.
- the first and second downmix channels as the left and right channels such that only three sets (out of e. g. five) of channel side information parameters have to be transmitted.
- This is, however, only advisable in situations, where there are less stringent rules with respect to quality. This is due to the fact that, normally, the left downmix channel and the right downmix channel are different from the original left channel or the original right channel. Only in situations, where one can not afford to transmit channel side information for each of the original channels, such processing is advantageous.
- Fig. 1 is a block diagram of a preferred embodiment of the inventive encoder
- Fig. 2 is a block diagram of a preferred embodiment of the inventive decoder
- Fig. 3A is a block diagram for a preferred implementation of the means for calculating to obtain frequency selective channel side information
- Fig. 3B is a preferred embodiment of a calculator imple- menting joint stereo processing such as intensity coding or binaural cue coding;
- Fig, 4 illustrates another preferred embodiment of the means for calculating channel side information, in which the channel side information are gain factors;
- Fig. 5 illustrates a preferred embodiment of an implementation of the decoder, when the encoder is implemented as in Fig. 4;
- Fig. 6 illustrates a preferred implementation of the means for providing the downmix channels
- Fig. 7 illustrates groupings of original and downmix channels for calculating the channel side infor- ation for the respective original channels
- Fig. 8 illustrates another preferred embodiment of an inventive encoder
- Fig. 9 illustrates another implementation of an inventive decoder
- Fig. 10 illustrates a prior art joint stereo encoder.
- Fig. 1 shows an apparatus for processing a multi-channel audio signal 10 having at least three original channels such as R, L and C.
- the original audio signal has more than three channels, such as five channels in the surround environment, which is illustrated in Fig. 1.
- the five channels are the left channel L, the right channel R, the center channel C, the left surround channel Ls and the right surround channel Rs .
- the inventive apparatus includes means 12 for providing a first downmix channel Lc and a second downmix channel Re, the first and the second downmix channels being derived from the original channels.
- Lc and Re For deriving the downmix channels from the original channels, there exist several possibilities.
- One possibility is to derive the downmix channels Lc and Re by means of matrixing the original channels using a matrixing operation as illus- trated in Fig. 6. This matrixing operation is performed in the time domain.
- the matrixing parameters a, b and t are selected such that they are lower than or equal to 1.
- a and b are 0.7 or 0.5.
- the overall weighting parameter t is preferably chosen such that channel clipping is avoided. .
- the downmix channels l>c and Re can also be externally supplied. This may be done, when the downmix channels Lc and Re are the result of a "hand mixing" operation.
- a sound engineer mixes the downmix channels by himself rather than by using an automated matrixing operation. The sound engineer performs creative mixing to get optimized downmix channels Lc and Re which give the best possible stereo rep- resentation of the original multi-channel audio signal.
- the means for providing does not perform a matrixing operation but simply forwards the externally supplied downmix chan- nels to a subsequent calculating means 14.
- the means for calculating channel side information is further operative to calculate the channel side information for a selected original channel such that a combined downmix channel including a combination of the first and second downmix channels, when weighted using the calculated channel side information results in an approximation of the selected original channel.
- an adder 14a and a combined channel side information calculator 14b are shown.
- the decoder input data are input into a data stream reader 24 for reading the input data to finally obtain the channel side information 26 and the left downmix channel 28 and the right downmix channel 30.
- the data stream reader 24 also includes an audio decoder, which is adapted to the audio encoder used for encoding the downmix channels.
- the audio decoder which is part of the data stream reader 24, is op- erative to generate the first downmix channel Lc and the second downmix channel Re, or, stated more exactly, a decoded version of those channels.
- signals and decoded versions thereof is only made where explicitly stated.
- the channel side information 26 and the left and right downmix channels 28 and 30 output by the data stream reader 24 are fed into a multi-channel reconstructor 32 for providing a reconstructed version 34 of the original audio signals, which can be played by means of a multi-channel player 36.
- the multi-channel reconstructor is operative in the frequency domain, the multi-channel player 36 will receive frequency domain input data, which have to be in a certain way decoded such as converted into the time domain before playing them.
- the multi-channel player 36 may also include decoding facilities.
- a lower scale decoder will only have the data stream reader 24, which only outputs the left and right downmix channels 28 and 30 to a stereo output 38.
- An enhanced inventive decoder will, however, extract the channel side information 26 and use these side information and the downmix channels 28 and 30 for reconstructing reconstructed versions 34 of the original channels using the multi-channel reconstructor 32.
- Fig. 3A shows an embodiment of the inventive calculator 14 for calculating the channel side information, which an audio encoder on the one hand and the channel side information calculator on the other hand operate on the same spectral representation of multi-channel signal.
- Fig. 1 shows the other alternative, in which the audio en- coder on the one hand and the channel side information calculator on the other hand operate on different spectral representations of the multi-channel signal.
- the Fig. 1 alternative is preferred, since filterbanks individually optimized for audio encoding and side information calculation can be used.
- the Fig. 3A alternative is preferred, since this alternative requires less computing power because of a shared utilization of elements.
- the device shown in Fig. 3A is operative for receiving two channels A, B.
- the device shown in Fig. 3A is operative to calculate a side information for channel B such that using this channel side information for the selected original channel B, a reconstructed version of channel B can be calculated from the channel signal A.
- the device shown in Fig. 3A is operative to form frequency domain channel side information, such as parameters for weighting (by multiplying or time processing as in BCC coding e. g. ) spectral values or subband samples.
- the inventive calculator includes windowing and time/frequency conversion means 140a to obtain a frequency representation of channel A at an output 140b or a frequency domain representation of channel B at an output 140c.
- the frequency domain representation of channel A which is preferably already quantized can then be directly used for entropy encoding using an entropy encoder 14Og, which may be a Huffman based encoder or an entropy encoder implementing arithmetic encoding.
- the output of the device in Fig. 3A is the side information such as lj . for one original channel (corresponding to the side information for B at the output of device 140f) .
- the entropy encoded bitstream for channel A corresponds to e. g. the encoded left downmix channel Lc' at the output of block 16 in Fig. 1.
- element 14 (Fig. 1) i.e., the calculator for calculating the channel side information and the audio encoder 16 (Fig. 1) can be implemented as separate means or can be implemented as a shared version such that both devices share several elements such as the MDCT filter bank 140a, the quantizer 140e and the entropy encoder 140g.
- the encoder 16 and the calculator 14 (Fig. 1) will be implemented in different devices such that both elements do not share the filter bank etc.
- the actual deter inator for calculating the side information may be implemented as a joint stereo module as shown in Fig.3B, which operates in accordance with any of the joint stereo techniques such as intensity stereo coding or binaural cue coding.
- the inventive determination means 140f does not have to calculate the combined channel.
- the "combined channel” or carrier channel as one can say, already exists and is the left compatible downmix channel Lc or the right compatible downmix channel Re or a combined version of these downmix channels such as Lc + Re.
- the inventive device 14Of only has to calculate the scaling information for scaling the respective downmix channel such that the en- ergy/time envelope of the respective selected original channel is obtained, when the downmix channel is weighted using the scaling information or, as one can say, the intensity directional information.
- the joint stereo module 140f in Fig 3B is illustrated such that it receives, as an input, the "combined" channel A, which is the first or second downmix channel or a combination of the downmix channels, and the original selected channel.
- This module naturally, outputs the "com- bined" channel A and the joint stereo parameters as channel side information such that, using the combined channel A and the joint stereo parameters, an approximation of the original selected channel B can be calculated.
- the joint stereo module 140f can be implemented for performing binaural cue coding.
- the joint stereo module 140f is operative to output the channel side information such that the channel side information are quantized and encoded ICLD or ICTD parameters, wherein the selected original channel serves as the actual to be processed channel, while the respective downmix channel used for calculating the side in- formation, such as the first, the second or a combination of the first and second downmix channels is used as the reference channel in the sense of the BCC coding/decoding technique.
- This device includes a frequency band selector 44 selecting a frequency band from channel A and a corresponding frequency band of channel B. Then, in both frequency bands, an energy is calculated by means of an energy calculator 42 for each branch.
- the detailed implementation of the energy calculator 42 will depend on whether the output signal from block 40 is a sub- band signal or are frequency coefficients. In other imple- mentations, where scale factors for scale factor bands are calculated, one can already use scale factors of the first and second channel A, B as energy values E a and E B or at least as estimates of the energy.
- the decoder has to calculate the actual energy of the downmix channel and the gain factor based on the downmix channel energy and the transmitted energy for channel B.
- the decoded downmix channel Lc or Re is not played back in a multi-channel enhanced decoder.
- the decoded downmix channels are only used for reconstructing the original channels.
- the decoded downmix channels are only replayed in lower scale stereo-only decoders.
- FIG. 9 shows the preferred implementation of the present invention in a sur- round/mp3 environment.
- An mp3 enhanced surround bitstream is input into a standard mp3 decoder 24, which outputs decoded versions of the original downmix channels. These downmix channels can then be directly replayed by means of a low level decoder. Alternatively, these two channels are input into the advanced joint stereo decoding device 32 which also receives the multi-channel extension data, which are preferably input into the ancillary data field in a mp3 compliant bitstream.
- Fig. 7 showing the grouping of the selected original channel and the respective downmix channel or combined downmix channel.
- the right column of the table in Fig. 7 corresponds to channel A in Fig. 3A, 3B, 4 and 5, while the column in the middle corresponds to channel B in these figures.
- the respective channel side information is explicitly stated.
- the channel side information li for the original left channel L is calculated using the left downmix channel Lc.
- the left surround channel side information lsi is determined by means of the original selected left surround channel Ls and the left downmix channel Lc is the carrier.
- the right channel side information i for the original right channel R are determined using the right downmix channel Re. Additionally, the channel side information for the right surround channel Rs are determined using the right downmix channel Re as the carrier. Finally, the channel side information ci for the center channel C are deter- mined using the combined downmix channel, which is obtained by means of a combination of the first and the second down- mix channel, which can be easily calculated in both an encoder and a decoder and which does not require any extra bits for transmission.
- the channel side information for the left channel e. g. based on a combined down- mix channel or even a downmix channel, which is obtained by a weighted addition of the first and second downmix chan- nels such as 0.7 Lc and 0.3 Re, as long as the weighting parameters are known to a decoder or transmitted accordingly.
- a normal encoder needs a bit rate of 64 kbit/s for each channel amounting to an overall bit rate of 320 kbit/s for the five channel signal.
- the left and right stereo signals require a bit rate of 128 kbit/s.
- Channels side information for one channel are between 1.5 and 2 kbit/s. Thus, even in a case, in which channel side information for each of the five channels are transmitted, this additional data add up to only 7.5 to 10 kbit/s.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Analysis (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Optimization (AREA)
- Theoretical Computer Science (AREA)
- Algebra (AREA)
- Pure & Applied Mathematics (AREA)
- Stereophonic System (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Error Detection And Correction (AREA)
- Executing Machine-Instructions (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Stereo-Broadcasting Methods (AREA)
Abstract
Description
Claims
Priority Applications (23)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2004800287769A CN1864436B (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel coding/decoding |
DE602004004168T DE602004004168T2 (en) | 2003-10-02 | 2004-09-30 | COMPATIBLE MULTICHANNEL CODING / DECODING |
CA2540851A CA2540851C (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel coding/decoding |
BRPI0414757A BRPI0414757B1 (en) | 2003-10-02 | 2004-09-30 | equipment and method for processing a multichannel audio signal, equipment for reverse processing of input data and method for reverse processing of input data |
BR122018069731-8A BR122018069731B1 (en) | 2003-10-02 | 2004-09-30 | Equipment and method for processing a multichannel audio signal, equipment for reverse processing of input data and method of reverse processing of input data. |
EP04787072A EP1668959B1 (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel coding/decoding |
AU2004306509A AU2004306509B2 (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel coding/decoding |
MXPA06003627A MXPA06003627A (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel coding/decoding. |
BR122018069730-0A BR122018069730B1 (en) | 2003-10-02 | 2004-09-30 | Equipment and method for processing a multichannel audio signal, equipment for reverse processing of input data and method of reverse processing of input data. |
DK04787072T DK1668959T3 (en) | 2003-10-02 | 2004-09-30 | Compatible multichannel coding / decoding |
JP2006530060A JP4547380B2 (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel encoding / decoding |
BR122018069728-8A BR122018069728B1 (en) | 2003-10-02 | 2004-09-30 | EQUIPMENT AND METHOD FOR PROCESSING A MULTI-CHANNEL AUDIO SIGNAL, EQUIPMENT FOR INVERT PROCESSING OF INPUT DATA AND INVERSE PROCESSING METHOD |
BR122018069726-1A BR122018069726B1 (en) | 2003-10-02 | 2004-09-30 | EQUIPMENT AND METHOD FOR PROCESSING A MULTI-CHANNEL AUDIO SIGNAL, EQUIPMENT FOR INVERT PROCESSING OF INPUT DATA AND INVERSE PROCESSING METHOD |
NO20191058A NO347074B1 (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel encoding/decoding |
IL174286A IL174286A (en) | 2003-10-02 | 2006-03-13 | Compatible multi-channel coding/decoding |
NO20061898A NO342804B1 (en) | 2003-10-02 | 2006-04-28 | Compatible multichannel encoding / decoding |
HK06113564A HK1092001A1 (en) | 2003-10-02 | 2006-12-11 | Compatible multi-channel coding/decoding |
NO20180978A NO344635B1 (en) | 2003-10-02 | 2018-07-12 | Compatible multi-channel coding / decoding |
NO20180980A NO344483B1 (en) | 2003-10-02 | 2018-07-12 | Compatible multi-channel coding / decoding |
NO20180990A NO344760B1 (en) | 2003-10-02 | 2018-07-13 | Compatible multi-channel coding / decoding. |
NO20180991A NO344091B1 (en) | 2003-10-02 | 2018-07-13 | Compatible multi-channel coding / decoding. |
NO20180993A NO344093B1 (en) | 2003-10-02 | 2018-07-13 | Compatible multi-channel coding / decoding. |
NO20200106A NO345265B1 (en) | 2003-10-02 | 2020-01-28 | Compatible multi-channel coding / decoding |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/679,085 | 2003-10-02 | ||
US10/679,085 US7447317B2 (en) | 2003-10-02 | 2003-10-02 | Compatible multi-channel coding/decoding by weighting the downmix channel |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005036925A2 true WO2005036925A2 (en) | 2005-04-21 |
WO2005036925A3 WO2005036925A3 (en) | 2005-07-14 |
Family
ID=34394093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/010948 WO2005036925A2 (en) | 2003-10-02 | 2004-09-30 | Compatible multi-channel coding/decoding |
Country Status (18)
Country | Link |
---|---|
US (11) | US7447317B2 (en) |
EP (1) | EP1668959B1 (en) |
JP (1) | JP4547380B2 (en) |
KR (1) | KR100737302B1 (en) |
CN (1) | CN1864436B (en) |
AT (1) | ATE350879T1 (en) |
BR (5) | BR122018069728B1 (en) |
CA (1) | CA2540851C (en) |
DE (1) | DE602004004168T2 (en) |
DK (1) | DK1668959T3 (en) |
ES (1) | ES2278348T3 (en) |
HK (1) | HK1092001A1 (en) |
IL (1) | IL174286A (en) |
MX (1) | MXPA06003627A (en) |
NO (8) | NO347074B1 (en) |
PT (1) | PT1668959E (en) |
RU (1) | RU2327304C2 (en) |
WO (1) | WO2005036925A2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007102674A1 (en) * | 2006-03-06 | 2007-09-13 | Samsung Electronics Co., Ltd. | Method, medium, and system synthesizing a stereo signal |
WO2007102675A1 (en) * | 2006-03-06 | 2007-09-13 | Samsung Electronics Co., Ltd. | Method, medium, and system generating a stereo signal |
JP2008517337A (en) * | 2004-11-02 | 2008-05-22 | コーディング テクノロジーズ アクチボラゲット | A method for improving the performance of prediction-based multi-channel reconstruction |
KR100848367B1 (en) * | 2004-04-16 | 2008-07-24 | 코딩 테크놀러지스 에이비 | Apparatus and method for generating a level parameter and apparatus and method for generating a multi-channel representation |
JP2008543227A (en) * | 2005-06-03 | 2008-11-27 | ドルビー・ラボラトリーズ・ライセンシング・コーポレーション | Reconfiguration of channels with side information |
JP2008542815A (en) * | 2005-05-26 | 2008-11-27 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
JP2009501957A (en) * | 2005-07-19 | 2009-01-22 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Multi-channel audio signal generation |
JP2009506706A (en) * | 2005-08-30 | 2009-02-12 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
JP2009526258A (en) * | 2006-02-07 | 2009-07-16 | エルジー エレクトロニクス インコーポレイティド | Encoding / decoding apparatus and method |
JP2009539283A (en) * | 2006-06-02 | 2009-11-12 | ドルビー スウェーデン アクチボラゲット | Binaural multichannel decoder in the context of non-energy-saving upmix rules |
US8170218B2 (en) | 2007-10-04 | 2012-05-01 | Hurtado-Huyssen Antoine-Victor | Multi-channel audio treatment system and method |
US8885854B2 (en) | 2006-08-09 | 2014-11-11 | Samsung Electronics Co., Ltd. | Method, medium, and system decoding compressed multi-channel signals into 2-channel binaural signals |
TWI462086B (en) * | 2005-09-14 | 2014-11-21 | Lg Electronics Inc | Method and apparatus for decoding an audio signal |
CN104486033A (en) * | 2014-12-03 | 2015-04-01 | 重庆邮电大学 | Downlink multimode channel coding system and method based on C-RAN platform |
US9747905B2 (en) | 2005-09-14 | 2017-08-29 | Lg Electronics Inc. | Method and apparatus for decoding an audio signal |
US9934789B2 (en) | 2006-01-11 | 2018-04-03 | Samsung Electronics Co., Ltd. | Method, medium, and apparatus with scalable channel decoding |
Families Citing this family (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0202159D0 (en) | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
US8605911B2 (en) | 2001-07-10 | 2013-12-10 | Dolby International Ab | Efficient and scalable parametric stereo coding for low bitrate audio coding applications |
EP1423847B1 (en) | 2001-11-29 | 2005-02-02 | Coding Technologies AB | Reconstruction of high frequency components |
US7240001B2 (en) * | 2001-12-14 | 2007-07-03 | Microsoft Corporation | Quality improvement techniques in an audio encoder |
SE0202770D0 (en) | 2002-09-18 | 2002-09-18 | Coding Technologies Sweden Ab | Method of reduction of aliasing is introduced by spectral envelope adjustment in real-valued filterbanks |
KR20050116828A (en) * | 2003-03-24 | 2005-12-13 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Coding of main and side signal representing a multichannel signal |
US7394903B2 (en) * | 2004-01-20 | 2008-07-01 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Apparatus and method for constructing a multi-channel output signal or for generating a downmix signal |
US7460990B2 (en) * | 2004-01-23 | 2008-12-02 | Microsoft Corporation | Efficient coding of digital media spectral data using wide-sense perceptual similarity |
KR20070001139A (en) * | 2004-02-17 | 2007-01-03 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | An audio distribution system, an audio encoder, an audio decoder and methods of operation therefore |
DE102004009628A1 (en) * | 2004-02-27 | 2005-10-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for writing an audio CD and an audio CD |
CA2992097C (en) | 2004-03-01 | 2018-09-11 | Dolby Laboratories Licensing Corporation | Reconstructing audio signals with multiple decorrelation techniques and differentially coded parameters |
US20090299756A1 (en) * | 2004-03-01 | 2009-12-03 | Dolby Laboratories Licensing Corporation | Ratio of speech to non-speech audio such as for elderly or hearing-impaired listeners |
US7813513B2 (en) * | 2004-04-05 | 2010-10-12 | Koninklijke Philips Electronics N.V. | Multi-channel encoder |
DE602005006777D1 (en) * | 2004-04-05 | 2008-06-26 | Koninkl Philips Electronics Nv | MULTI-CHANNEL CODER |
KR101183862B1 (en) * | 2004-04-05 | 2012-09-20 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Method and device for processing a stereo signal, encoder apparatus, decoder apparatus and audio system |
EP1914723B1 (en) * | 2004-05-19 | 2010-07-07 | Panasonic Corporation | Audio signal encoder and audio signal decoder |
US8843378B2 (en) * | 2004-06-30 | 2014-09-23 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Multi-channel synthesizer and method for generating a multi-channel output signal |
CN1922655A (en) * | 2004-07-06 | 2007-02-28 | 松下电器产业株式会社 | Audio signal encoding device, audio signal decoding device, method thereof and program |
US7751804B2 (en) * | 2004-07-23 | 2010-07-06 | Wideorbit, Inc. | Dynamic creation, selection, and scheduling of radio frequency communications |
TWI393120B (en) * | 2004-08-25 | 2013-04-11 | Dolby Lab Licensing Corp | Method and syatem for audio signal encoding and decoding, audio signal encoder, audio signal decoder, computer-accessible medium carrying bitstream and computer program stored on computer-readable medium |
JP4555299B2 (en) * | 2004-09-28 | 2010-09-29 | パナソニック株式会社 | Scalable encoding apparatus and scalable encoding method |
EP1710799B1 (en) * | 2005-02-01 | 2012-06-20 | Panasonic Corporation | Reproduction apparatus |
EP1691348A1 (en) * | 2005-02-14 | 2006-08-16 | Ecole Polytechnique Federale De Lausanne | Parametric joint-coding of audio sources |
MX2007011915A (en) * | 2005-03-30 | 2007-11-22 | Koninkl Philips Electronics Nv | Multi-channel audio coding. |
MX2007011995A (en) * | 2005-03-30 | 2007-12-07 | Koninkl Philips Electronics Nv | Audio encoding and decoding. |
US7961890B2 (en) * | 2005-04-15 | 2011-06-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Multi-channel hierarchical audio coding with compact side information |
DE602006011600D1 (en) * | 2005-04-28 | 2010-02-25 | Panasonic Corp | AUDIOCODING DEVICE AND AUDIOCODING METHOD |
WO2006126843A2 (en) * | 2005-05-26 | 2006-11-30 | Lg Electronics Inc. | Method and apparatus for decoding audio signal |
US8170883B2 (en) * | 2005-05-26 | 2012-05-01 | Lg Electronics Inc. | Method and apparatus for embedding spatial information and reproducing embedded signal for an audio signal |
US8494667B2 (en) * | 2005-06-30 | 2013-07-23 | Lg Electronics Inc. | Apparatus for encoding and decoding audio signal and method thereof |
CA2613731C (en) * | 2005-06-30 | 2012-09-18 | Lg Electronics Inc. | Apparatus for encoding and decoding audio signal and method thereof |
EP1908057B1 (en) * | 2005-06-30 | 2012-06-20 | LG Electronics Inc. | Method and apparatus for decoding an audio signal |
US8626503B2 (en) * | 2005-07-14 | 2014-01-07 | Erik Gosuinus Petrus Schuijers | Audio encoding and decoding |
ATE433182T1 (en) * | 2005-07-14 | 2009-06-15 | Koninkl Philips Electronics Nv | AUDIO CODING AND AUDIO DECODING |
US7562021B2 (en) * | 2005-07-15 | 2009-07-14 | Microsoft Corporation | Modification of codewords in dictionary used for efficient coding of digital media spectral data |
US7630882B2 (en) * | 2005-07-15 | 2009-12-08 | Microsoft Corporation | Frequency segmentation to obtain bands for efficient coding of digital media |
JP4568363B2 (en) * | 2005-08-30 | 2010-10-27 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
ATE455348T1 (en) * | 2005-08-30 | 2010-01-15 | Lg Electronics Inc | DEVICE AND METHOD FOR DECODING AN AUDIO SIGNAL |
US7788107B2 (en) * | 2005-08-30 | 2010-08-31 | Lg Electronics Inc. | Method for decoding an audio signal |
EP1921606B1 (en) * | 2005-09-02 | 2011-10-19 | Panasonic Corporation | Energy shaping device and energy shaping method |
US20080221907A1 (en) * | 2005-09-14 | 2008-09-11 | Lg Electronics, Inc. | Method and Apparatus for Decoding an Audio Signal |
JP2009518659A (en) * | 2005-09-27 | 2009-05-07 | エルジー エレクトロニクス インコーポレイティド | Multi-channel audio signal encoding / decoding method and apparatus |
JP5478826B2 (en) * | 2005-10-03 | 2014-04-23 | シャープ株式会社 | Display device |
CN101283249B (en) * | 2005-10-05 | 2013-12-04 | Lg电子株式会社 | Method and apparatus for signal processing and encoding and decoding method, and apparatus thereof |
US7696907B2 (en) | 2005-10-05 | 2010-04-13 | Lg Electronics Inc. | Method and apparatus for signal processing and encoding and decoding method, and apparatus therefor |
US7672379B2 (en) * | 2005-10-05 | 2010-03-02 | Lg Electronics Inc. | Audio signal processing, encoding, and decoding |
US7751485B2 (en) * | 2005-10-05 | 2010-07-06 | Lg Electronics Inc. | Signal processing using pilot based coding |
KR100878833B1 (en) * | 2005-10-05 | 2009-01-14 | 엘지전자 주식회사 | Method and apparatus for signal processing and encoding and decoding method, and apparatus therefor |
US7646319B2 (en) * | 2005-10-05 | 2010-01-12 | Lg Electronics Inc. | Method and apparatus for signal processing and encoding and decoding method, and apparatus therefor |
US7653533B2 (en) * | 2005-10-24 | 2010-01-26 | Lg Electronics Inc. | Removing time delays in signal paths |
KR100644715B1 (en) * | 2005-12-19 | 2006-11-10 | 삼성전자주식회사 | Method and apparatus for active audio matrix decoding |
US8111830B2 (en) * | 2005-12-19 | 2012-02-07 | Samsung Electronics Co., Ltd. | Method and apparatus to provide active audio matrix decoding based on the positions of speakers and a listener |
WO2007080211A1 (en) * | 2006-01-09 | 2007-07-19 | Nokia Corporation | Decoding of binaural audio signals |
KR101218776B1 (en) | 2006-01-11 | 2013-01-18 | 삼성전자주식회사 | Method of generating multi-channel signal from down-mixed signal and computer-readable medium |
US7752053B2 (en) | 2006-01-13 | 2010-07-06 | Lg Electronics Inc. | Audio signal processing using pilot based coding |
US8411869B2 (en) * | 2006-01-19 | 2013-04-02 | Lg Electronics Inc. | Method and apparatus for processing a media signal |
EP1974344A4 (en) * | 2006-01-19 | 2011-06-08 | Lg Electronics Inc | Method and apparatus for decoding a signal |
US20090177479A1 (en) * | 2006-02-09 | 2009-07-09 | Lg Electronics Inc. | Method for Encoding and Decoding Object-Based Audio Signal and Apparatus Thereof |
DE602007004451D1 (en) | 2006-02-21 | 2010-03-11 | Koninkl Philips Electronics Nv | AUDIO CODING AND AUDIO CODING |
KR100904437B1 (en) * | 2006-02-23 | 2009-06-24 | 엘지전자 주식회사 | Method and apparatus for processing an audio signal |
US8626515B2 (en) * | 2006-03-30 | 2014-01-07 | Lg Electronics Inc. | Apparatus for processing media signal and method thereof |
CN101361122B (en) * | 2006-04-03 | 2012-12-19 | Lg电子株式会社 | Method and apparatus for processing a media signal |
ES2380059T3 (en) * | 2006-07-07 | 2012-05-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for combining multiple audio sources encoded parametrically |
KR101438387B1 (en) | 2006-07-12 | 2014-09-05 | 삼성전자주식회사 | Method and apparatus for encoding and decoding extension data for surround |
US7907579B2 (en) * | 2006-08-15 | 2011-03-15 | Cisco Technology, Inc. | WiFi geolocation from carrier-managed system geolocation of a dual mode device |
US20080235006A1 (en) * | 2006-08-18 | 2008-09-25 | Lg Electronics, Inc. | Method and Apparatus for Decoding an Audio Signal |
US9319741B2 (en) | 2006-09-07 | 2016-04-19 | Rateze Remote Mgmt Llc | Finding devices in an entertainment system |
US8607281B2 (en) | 2006-09-07 | 2013-12-10 | Porto Vinci Ltd. Limited Liability Company | Control of data presentation in multiple zones using a wireless home entertainment hub |
US9386269B2 (en) | 2006-09-07 | 2016-07-05 | Rateze Remote Mgmt Llc | Presentation of data on multiple display devices using a wireless hub |
US9233301B2 (en) | 2006-09-07 | 2016-01-12 | Rateze Remote Mgmt Llc | Control of data presentation from multiple sources using a wireless home entertainment hub |
US20080061578A1 (en) * | 2006-09-07 | 2008-03-13 | Technology, Patents & Licensing, Inc. | Data presentation in multiple zones using a wireless home entertainment hub |
US8966545B2 (en) | 2006-09-07 | 2015-02-24 | Porto Vinci Ltd. Limited Liability Company | Connecting a legacy device into a home entertainment system using a wireless home entertainment hub |
US8935733B2 (en) * | 2006-09-07 | 2015-01-13 | Porto Vinci Ltd. Limited Liability Company | Data presentation using a wireless home entertainment hub |
US8005236B2 (en) * | 2006-09-07 | 2011-08-23 | Porto Vinci Ltd. Limited Liability Company | Control of data presentation using a wireless home entertainment hub |
JP5337941B2 (en) * | 2006-10-16 | 2013-11-06 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | Apparatus and method for multi-channel parameter conversion |
SG175632A1 (en) * | 2006-10-16 | 2011-11-28 | Dolby Sweden Ab | Enhanced coding and parameter representation of multichannel downmixed object coding |
KR100847453B1 (en) * | 2006-11-20 | 2008-07-21 | 주식회사 대우일렉트로닉스 | Adaptive crosstalk cancellation method for 3d audio |
US8265941B2 (en) * | 2006-12-07 | 2012-09-11 | Lg Electronics Inc. | Method and an apparatus for decoding an audio signal |
CN101578656A (en) * | 2007-01-05 | 2009-11-11 | Lg电子株式会社 | A method and an apparatus for processing an audio signal |
JP5291096B2 (en) * | 2007-06-08 | 2013-09-18 | エルジー エレクトロニクス インコーポレイティド | Audio signal processing method and apparatus |
US7761290B2 (en) | 2007-06-15 | 2010-07-20 | Microsoft Corporation | Flexible frequency and time partitioning in perceptual transform coding of audio |
US8046214B2 (en) | 2007-06-22 | 2011-10-25 | Microsoft Corporation | Low complexity decoder for complex transform coding of multi-channel sound |
US7885819B2 (en) * | 2007-06-29 | 2011-02-08 | Microsoft Corporation | Bitstream syntax for multi-process audio decoding |
KR101464977B1 (en) * | 2007-10-01 | 2014-11-25 | 삼성전자주식회사 | Method of managing a memory and Method and apparatus of decoding multi channel data |
CN101578655B (en) * | 2007-10-16 | 2013-06-05 | 松下电器产业株式会社 | Stream generating device, decoding device, and method |
US8249883B2 (en) * | 2007-10-26 | 2012-08-21 | Microsoft Corporation | Channel extension coding for multi-channel source |
KR101438389B1 (en) * | 2007-11-15 | 2014-09-05 | 삼성전자주식회사 | Method and apparatus for audio matrix decoding |
WO2009066959A1 (en) | 2007-11-21 | 2009-05-28 | Lg Electronics Inc. | A method and an apparatus for processing a signal |
WO2009075510A1 (en) * | 2007-12-09 | 2009-06-18 | Lg Electronics Inc. | A method and an apparatus for processing a signal |
TWI424755B (en) * | 2008-01-11 | 2014-01-21 | Dolby Lab Licensing Corp | Matrix decoder |
KR100998913B1 (en) * | 2008-01-23 | 2010-12-08 | 엘지전자 주식회사 | A method and an apparatus for processing an audio signal |
EP2083584B1 (en) * | 2008-01-23 | 2010-09-15 | LG Electronics Inc. | A method and an apparatus for processing an audio signal |
US8615316B2 (en) * | 2008-01-23 | 2013-12-24 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
WO2009116280A1 (en) * | 2008-03-19 | 2009-09-24 | パナソニック株式会社 | Stereo signal encoding device, stereo signal decoding device and methods for them |
KR101614160B1 (en) | 2008-07-16 | 2016-04-20 | 한국전자통신연구원 | Apparatus for encoding and decoding multi-object audio supporting post downmix signal |
EP2154911A1 (en) * | 2008-08-13 | 2010-02-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | An apparatus for determining a spatial output multi-channel audio signal |
KR101335975B1 (en) * | 2008-08-14 | 2013-12-04 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | A method for reformatting a plurality of audio input signals |
EP2351024A1 (en) * | 2008-10-01 | 2011-08-03 | GVBB Holdings S.A.R.L | Decoding apparatus, decoding method, encoding apparatus, encoding method, and editing apparatus |
EP2175670A1 (en) | 2008-10-07 | 2010-04-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Binaural rendering of a multi-channel audio signal |
WO2010042024A1 (en) * | 2008-10-10 | 2010-04-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Energy conservative multi-channel audio coding |
KR101513042B1 (en) * | 2008-12-02 | 2015-04-17 | 엘지전자 주식회사 | Method of signal transmission and signal transmission apparatus |
JP5309944B2 (en) * | 2008-12-11 | 2013-10-09 | 富士通株式会社 | Audio decoding apparatus, method, and program |
EP2380172B1 (en) | 2009-01-16 | 2013-07-24 | Dolby International AB | Cross product enhanced harmonic transposition |
US20100324915A1 (en) * | 2009-06-23 | 2010-12-23 | Electronic And Telecommunications Research Institute | Encoding and decoding apparatuses for high quality multi-channel audio codec |
US8774417B1 (en) * | 2009-10-05 | 2014-07-08 | Xfrm Incorporated | Surround audio compatibility assessment |
EP2323130A1 (en) * | 2009-11-12 | 2011-05-18 | Koninklijke Philips Electronics N.V. | Parametric encoding and decoding |
JP5604933B2 (en) * | 2010-03-30 | 2014-10-15 | 富士通株式会社 | Downmix apparatus and downmix method |
PL3779977T3 (en) * | 2010-04-13 | 2023-11-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio decoder for processing stereo audio using a variable prediction direction |
DE102010015630B3 (en) * | 2010-04-20 | 2011-06-01 | Institut für Rundfunktechnik GmbH | Method for generating a backwards compatible sound format |
MX2013010537A (en) * | 2011-03-18 | 2014-03-21 | Koninkl Philips Nv | Audio encoder and decoder having a flexible configuration functionality. |
RU2618383C2 (en) * | 2011-11-01 | 2017-05-03 | Конинклейке Филипс Н.В. | Encoding and decoding of audio objects |
US9131313B1 (en) * | 2012-02-07 | 2015-09-08 | Star Co. | System and method for audio reproduction |
EP2645748A1 (en) | 2012-03-28 | 2013-10-02 | Thomson Licensing | Method and apparatus for decoding stereo loudspeaker signals from a higher-order Ambisonics audio signal |
CN104364842A (en) * | 2012-04-18 | 2015-02-18 | 诺基亚公司 | Stereo audio signal encoder |
US9288603B2 (en) | 2012-07-15 | 2016-03-15 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding |
US9473870B2 (en) | 2012-07-16 | 2016-10-18 | Qualcomm Incorporated | Loudspeaker position compensation with 3D-audio hierarchical coding |
US9516446B2 (en) | 2012-07-20 | 2016-12-06 | Qualcomm Incorporated | Scalable downmix design for object-based surround codec with cluster analysis by synthesis |
US9761229B2 (en) | 2012-07-20 | 2017-09-12 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for audio object clustering |
JP2015529415A (en) * | 2012-08-16 | 2015-10-05 | タートル ビーチ コーポレーション | System and method for multidimensional parametric speech |
RU2676242C1 (en) * | 2013-01-29 | 2018-12-26 | Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. | Decoder for formation of audio signal with improved frequency characteristic, decoding method, encoder for formation of encoded signal and encoding method using compact additional information for selection |
US9818412B2 (en) | 2013-05-24 | 2017-11-14 | Dolby International Ab | Methods for audio encoding and decoding, corresponding computer-readable media and corresponding audio encoder and decoder |
CA3211308A1 (en) | 2013-05-24 | 2014-11-27 | Dolby International Ab | Coding of audio scenes |
US10499176B2 (en) | 2013-05-29 | 2019-12-03 | Qualcomm Incorporated | Identifying codebooks to use when coding spatial components of a sound field |
EP2830061A1 (en) | 2013-07-22 | 2015-01-28 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping |
EP2830051A3 (en) * | 2013-07-22 | 2015-03-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoder, audio decoder, methods and computer program using jointly encoded residual signals |
TWI634547B (en) | 2013-09-12 | 2018-09-01 | 瑞典商杜比國際公司 | Decoding method, decoding device, encoding method, and encoding device in multichannel audio system comprising at least four audio channels, and computer program product comprising computer-readable medium |
EP2866227A1 (en) | 2013-10-22 | 2015-04-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audio decoder |
KR102160254B1 (en) | 2014-01-10 | 2020-09-25 | 삼성전자주식회사 | Method and apparatus for 3D sound reproducing using active downmix |
US9344825B2 (en) * | 2014-01-29 | 2016-05-17 | Tls Corp. | At least one of intelligibility or loudness of an audio program |
US9922656B2 (en) | 2014-01-30 | 2018-03-20 | Qualcomm Incorporated | Transitioning of ambient higher-order ambisonic coefficients |
US10770087B2 (en) | 2014-05-16 | 2020-09-08 | Qualcomm Incorporated | Selecting codebooks for coding vectors decomposed from higher-order ambisonic audio signals |
EP3067885A1 (en) * | 2015-03-09 | 2016-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding or decoding a multi-channel signal |
WO2016142002A1 (en) | 2015-03-09 | 2016-09-15 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio encoder, audio decoder, method for encoding an audio signal and method for decoding an encoded audio signal |
EP3295687B1 (en) * | 2015-05-14 | 2019-03-13 | Dolby Laboratories Licensing Corporation | Generation and playback of near-field audio content |
PT3539127T (en) * | 2016-11-08 | 2020-12-04 | Fraunhofer Ges Forschung | Downmixer and method for downmixing at least two channels and multichannel encoder and multichannel decoder |
CN111034225B (en) * | 2017-08-17 | 2021-09-24 | 高迪奥实验室公司 | Audio signal processing method and apparatus using ambisonic signal |
CN111615044B (en) * | 2019-02-25 | 2021-09-14 | 宏碁股份有限公司 | Energy distribution correction method and system for sound signal |
CN113544774B (en) * | 2019-03-06 | 2024-08-20 | 弗劳恩霍夫应用研究促进协会 | Down-mixer and down-mixing method |
US10779105B1 (en) | 2019-05-31 | 2020-09-15 | Apple Inc. | Sending notification and multi-channel audio over channel limited link for independent gain control |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0688113A2 (en) * | 1994-06-13 | 1995-12-20 | Sony Corporation | Method and apparatus for encoding and decoding digital audio signals and apparatus for recording digital audio |
US5701346A (en) * | 1994-03-18 | 1997-12-23 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method of coding a plurality of audio signals |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5040217A (en) * | 1989-10-18 | 1991-08-13 | At&T Bell Laboratories | Perceptual coding of audio signals |
EP0631458B1 (en) * | 1993-06-22 | 2001-11-07 | Deutsche Thomson-Brandt Gmbh | Method for obtaining a multi-channel decoder matrix |
DE69428939T2 (en) * | 1993-06-22 | 2002-04-04 | Deutsche Thomson-Brandt Gmbh | Method for maintaining a multi-channel decoding matrix |
CA2124379C (en) | 1993-06-25 | 1998-10-27 | Thomas F. La Porta | Distributed processing architecture for control of broadband and narrowband communications networks |
JP3397001B2 (en) * | 1994-06-13 | 2003-04-14 | ソニー株式会社 | Encoding method and apparatus, decoding apparatus, and recording medium |
EP1251501B1 (en) | 1995-10-09 | 2004-09-08 | Matsushita Electric Industrial Co., Ltd. | An optical disk with an optical barcode and reproduction apparatus |
JP3790550B2 (en) | 1996-02-08 | 2006-06-28 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴイ | 7-channel transmission compatible with 5-channel transmission and 2-channel transmission |
US5812971A (en) * | 1996-03-22 | 1998-09-22 | Lucent Technologies Inc. | Enhanced joint stereo coding method using temporal envelope shaping |
DE19628293C1 (en) * | 1996-07-12 | 1997-12-11 | Fraunhofer Ges Forschung | Encoding and decoding audio signals using intensity stereo and prediction |
SG54379A1 (en) * | 1996-10-24 | 1998-11-16 | Sgs Thomson Microelectronics A | Audio decoder with an adaptive frequency domain downmixer |
US6449368B1 (en) * | 1997-03-14 | 2002-09-10 | Dolby Laboratories Licensing Corporation | Multidirectional audio decoding |
JP3657120B2 (en) | 1998-07-30 | 2005-06-08 | 株式会社アーニス・サウンド・テクノロジーズ | Processing method for localizing audio signals for left and right ear audio signals |
JP2000214887A (en) * | 1998-11-16 | 2000-08-04 | Victor Co Of Japan Ltd | Sound coding device, optical record medium sound decoding device, sound transmitting method and transmission medium |
US6928169B1 (en) * | 1998-12-24 | 2005-08-09 | Bose Corporation | Audio signal processing |
US6442517B1 (en) * | 2000-02-18 | 2002-08-27 | First International Digital, Inc. | Methods and system for encoding an audio sequence with synchronized data and outputting the same |
JP4304401B2 (en) * | 2000-06-07 | 2009-07-29 | ソニー株式会社 | Multi-channel audio playback device |
US20030035553A1 (en) | 2001-08-10 | 2003-02-20 | Frank Baumgarte | Backwards-compatible perceptual coding of spatial cues |
US7116787B2 (en) | 2001-05-04 | 2006-10-03 | Agere Systems Inc. | Perceptual synthesis of auditory scenes |
US7006636B2 (en) | 2002-05-24 | 2006-02-28 | Agere Systems Inc. | Coherence-based audio coding and synthesis |
JP4062905B2 (en) * | 2001-10-24 | 2008-03-19 | ヤマハ株式会社 | Digital mixer |
US7333930B2 (en) * | 2003-03-14 | 2008-02-19 | Agere Systems Inc. | Tonal analysis for perceptual audio coding using a compressed spectral representation |
US7394903B2 (en) * | 2004-01-20 | 2008-07-01 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Apparatus and method for constructing a multi-channel output signal or for generating a downmix signal |
EP1817767B1 (en) * | 2004-11-30 | 2015-11-11 | Agere Systems Inc. | Parametric coding of spatial audio with object-based side information |
-
2003
- 2003-10-02 US US10/679,085 patent/US7447317B2/en active Active
-
2004
- 2004-09-30 BR BR122018069728-8A patent/BR122018069728B1/en active IP Right Grant
- 2004-09-30 RU RU2006114742/09A patent/RU2327304C2/en active
- 2004-09-30 BR BR122018069726-1A patent/BR122018069726B1/en active IP Right Grant
- 2004-09-30 PT PT04787072T patent/PT1668959E/en unknown
- 2004-09-30 KR KR1020067006428A patent/KR100737302B1/en active IP Right Grant
- 2004-09-30 BR BR122018069730-0A patent/BR122018069730B1/en active IP Right Grant
- 2004-09-30 NO NO20191058A patent/NO347074B1/en unknown
- 2004-09-30 ES ES04787072T patent/ES2278348T3/en not_active Expired - Lifetime
- 2004-09-30 CN CN2004800287769A patent/CN1864436B/en not_active Expired - Lifetime
- 2004-09-30 BR BR122018069731-8A patent/BR122018069731B1/en active IP Right Grant
- 2004-09-30 DK DK04787072T patent/DK1668959T3/en active
- 2004-09-30 AT AT04787072T patent/ATE350879T1/en active
- 2004-09-30 EP EP04787072A patent/EP1668959B1/en not_active Expired - Lifetime
- 2004-09-30 CA CA2540851A patent/CA2540851C/en not_active Expired - Lifetime
- 2004-09-30 WO PCT/EP2004/010948 patent/WO2005036925A2/en active IP Right Grant
- 2004-09-30 JP JP2006530060A patent/JP4547380B2/en not_active Expired - Lifetime
- 2004-09-30 BR BRPI0414757A patent/BRPI0414757B1/en active IP Right Grant
- 2004-09-30 DE DE602004004168T patent/DE602004004168T2/en not_active Expired - Lifetime
- 2004-09-30 MX MXPA06003627A patent/MXPA06003627A/en active IP Right Grant
-
2006
- 2006-03-13 IL IL174286A patent/IL174286A/en active IP Right Grant
- 2006-04-28 NO NO20061898A patent/NO342804B1/en unknown
- 2006-12-11 HK HK06113564A patent/HK1092001A1/en not_active IP Right Cessation
-
2008
- 2008-09-09 US US12/206,778 patent/US8270618B2/en active Active
-
2012
- 2012-08-17 US US13/588,139 patent/US9462404B2/en active Active
-
2015
- 2015-11-19 US US14/945,693 patent/US10165383B2/en not_active Expired - Lifetime
-
2018
- 2018-07-12 NO NO20180978A patent/NO344635B1/en unknown
- 2018-07-12 NO NO20180980A patent/NO344483B1/en unknown
- 2018-07-13 NO NO20180991A patent/NO344091B1/en unknown
- 2018-07-13 NO NO20180990A patent/NO344760B1/en unknown
- 2018-07-13 NO NO20180993A patent/NO344093B1/en unknown
- 2018-08-14 US US16/103,298 patent/US10206054B2/en not_active Expired - Lifetime
- 2018-08-14 US US16/103,295 patent/US10237674B2/en not_active Expired - Lifetime
- 2018-12-04 US US16/209,451 patent/US10299058B2/en not_active Expired - Lifetime
-
2019
- 2019-04-05 US US16/376,076 patent/US10425757B2/en not_active Expired - Lifetime
- 2019-04-05 US US16/376,080 patent/US10455344B2/en not_active Expired - Lifetime
- 2019-04-05 US US16/376,084 patent/US10433091B2/en not_active Expired - Lifetime
- 2019-08-23 US US16/548,905 patent/US11343631B2/en not_active Expired - Lifetime
-
2020
- 2020-01-28 NO NO20200106A patent/NO345265B1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5701346A (en) * | 1994-03-18 | 1997-12-23 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method of coding a plurality of audio signals |
EP0688113A2 (en) * | 1994-06-13 | 1995-12-20 | Sony Corporation | Method and apparatus for encoding and decoding digital audio signals and apparatus for recording digital audio |
Non-Patent Citations (2)
Title |
---|
FALLER C ET AL: "BINAURAL CUE CODING APPLIED TO STEREO AND MULTI-CHANNEL AUDIO COMPRESSION" PREPRINTS OF PAPERS PRESENTED AT THE AES CONVENTION, XX, XX, vol. 112, no. 5574, 10 May 2002 (2002-05-10), XP009024737 * |
HERRE J ET AL: "INTENSITY STEREO CODING" PREPRINTS OF PAPERS PRESENTED AT THE AES CONVENTION, XX, XX, vol. 96, no. 3799, 26 February 1994 (1994-02-26), pages 1-10, XP009025131 * |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100848367B1 (en) * | 2004-04-16 | 2008-07-24 | 코딩 테크놀러지스 에이비 | Apparatus and method for generating a level parameter and apparatus and method for generating a multi-channel representation |
JP2008517337A (en) * | 2004-11-02 | 2008-05-22 | コーディング テクノロジーズ アクチボラゲット | A method for improving the performance of prediction-based multi-channel reconstruction |
US8515083B2 (en) | 2004-11-02 | 2013-08-20 | Dolby International Ab | Methods for improved performance of prediction based multi-channel reconstruction |
JP2008542815A (en) * | 2005-05-26 | 2008-11-27 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
US8280743B2 (en) | 2005-06-03 | 2012-10-02 | Dolby Laboratories Licensing Corporation | Channel reconfiguration with side information |
JP2008543227A (en) * | 2005-06-03 | 2008-11-27 | ドルビー・ラボラトリーズ・ライセンシング・コーポレーション | Reconfiguration of channels with side information |
TWI424754B (en) * | 2005-06-03 | 2014-01-21 | Dolby Lab Licensing Corp | Channel reconfiguration with side information |
JP2009501957A (en) * | 2005-07-19 | 2009-01-22 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Multi-channel audio signal generation |
US8160888B2 (en) | 2005-07-19 | 2012-04-17 | Koninklijke Philips Electronics N.V | Generation of multi-channel audio signals |
JP4859925B2 (en) * | 2005-08-30 | 2012-01-25 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
JP2009506706A (en) * | 2005-08-30 | 2009-02-12 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
TWI462086B (en) * | 2005-09-14 | 2014-11-21 | Lg Electronics Inc | Method and apparatus for decoding an audio signal |
TWI485698B (en) * | 2005-09-14 | 2015-05-21 | Lg Electronics Inc | Method and apparatus for decoding an audio signal |
US9747905B2 (en) | 2005-09-14 | 2017-08-29 | Lg Electronics Inc. | Method and apparatus for decoding an audio signal |
US9934789B2 (en) | 2006-01-11 | 2018-04-03 | Samsung Electronics Co., Ltd. | Method, medium, and apparatus with scalable channel decoding |
JP2009526258A (en) * | 2006-02-07 | 2009-07-16 | エルジー エレクトロニクス インコーポレイティド | Encoding / decoding apparatus and method |
US9626976B2 (en) | 2006-02-07 | 2017-04-18 | Lg Electronics Inc. | Apparatus and method for encoding/decoding signal |
JP2009526262A (en) * | 2006-02-07 | 2009-07-16 | エルジー エレクトロニクス インコーポレイティド | Encoding / decoding apparatus and method |
US9848180B2 (en) | 2006-03-06 | 2017-12-19 | Samsung Electronics Co., Ltd. | Method, medium, and system generating a stereo signal |
WO2007102675A1 (en) * | 2006-03-06 | 2007-09-13 | Samsung Electronics Co., Ltd. | Method, medium, and system generating a stereo signal |
US8620011B2 (en) | 2006-03-06 | 2013-12-31 | Samsung Electronics Co., Ltd. | Method, medium, and system synthesizing a stereo signal |
KR100773562B1 (en) * | 2006-03-06 | 2007-11-07 | 삼성전자주식회사 | Method and apparatus for generating stereo signal |
US9479871B2 (en) | 2006-03-06 | 2016-10-25 | Samsung Electronics Co., Ltd. | Method, medium, and system synthesizing a stereo signal |
KR100773560B1 (en) * | 2006-03-06 | 2007-11-05 | 삼성전자주식회사 | Method and apparatus for synthesizing stereo signal |
WO2007102674A1 (en) * | 2006-03-06 | 2007-09-13 | Samsung Electronics Co., Ltd. | Method, medium, and system synthesizing a stereo signal |
US9087511B2 (en) | 2006-03-06 | 2015-07-21 | Samsung Electronics Co., Ltd. | Method, medium, and system for generating a stereo signal |
US8948405B2 (en) | 2006-06-02 | 2015-02-03 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10091603B2 (en) | 2006-06-02 | 2018-10-02 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US12052558B2 (en) | 2006-06-02 | 2024-07-30 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US11601773B2 (en) | 2006-06-02 | 2023-03-07 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
JP4834153B2 (en) * | 2006-06-02 | 2011-12-14 | ドルビー インターナショナル アクチボラゲット | Binaural multichannel decoder in the context of non-energy-saving upmix rules |
US8027479B2 (en) | 2006-06-02 | 2011-09-27 | Coding Technologies Ab | Binaural multi-channel decoder in the context of non-energy conserving upmix rules |
JP2009539283A (en) * | 2006-06-02 | 2009-11-12 | ドルビー スウェーデン アクチボラゲット | Binaural multichannel decoder in the context of non-energy-saving upmix rules |
US9992601B2 (en) | 2006-06-02 | 2018-06-05 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving up-mix rules |
US10015614B2 (en) | 2006-06-02 | 2018-07-03 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10021502B2 (en) | 2006-06-02 | 2018-07-10 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10085105B2 (en) | 2006-06-02 | 2018-09-25 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10863299B2 (en) | 2006-06-02 | 2020-12-08 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10097940B2 (en) | 2006-06-02 | 2018-10-09 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10097941B2 (en) | 2006-06-02 | 2018-10-09 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10123146B2 (en) | 2006-06-02 | 2018-11-06 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10412526B2 (en) | 2006-06-02 | 2019-09-10 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10412525B2 (en) | 2006-06-02 | 2019-09-10 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10412524B2 (en) | 2006-06-02 | 2019-09-10 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US10469972B2 (en) | 2006-06-02 | 2019-11-05 | Dolby International Ab | Binaural multi-channel decoder in the context of non-energy-conserving upmix rules |
US8885854B2 (en) | 2006-08-09 | 2014-11-11 | Samsung Electronics Co., Ltd. | Method, medium, and system decoding compressed multi-channel signals into 2-channel binaural signals |
US8170218B2 (en) | 2007-10-04 | 2012-05-01 | Hurtado-Huyssen Antoine-Victor | Multi-channel audio treatment system and method |
CN104486033A (en) * | 2014-12-03 | 2015-04-01 | 重庆邮电大学 | Downlink multimode channel coding system and method based on C-RAN platform |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11343631B2 (en) | Compatible multi-channel coding/decoding | |
AU2005204715B2 (en) | Apparatus and method for constructing a multi-channel output signal or for generating a downmix signal | |
AU2004306509B2 (en) | Compatible multi-channel coding/decoding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480028776.9 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004787072 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 174286 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 605/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004306509 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2540851 Country of ref document: CA Ref document number: PA/a/2006/003627 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006530060 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067006428 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2004306509 Country of ref document: AU Date of ref document: 20040930 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004306509 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006114742 Country of ref document: RU |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 1020067006428 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004787072 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0414757 Country of ref document: BR |
|
WWG | Wipo information: grant in national office |
Ref document number: 2004787072 Country of ref document: EP |