WO2005036579A1 - Device having relay - Google Patents

Device having relay Download PDF

Info

Publication number
WO2005036579A1
WO2005036579A1 PCT/JP2004/014728 JP2004014728W WO2005036579A1 WO 2005036579 A1 WO2005036579 A1 WO 2005036579A1 JP 2004014728 W JP2004014728 W JP 2004014728W WO 2005036579 A1 WO2005036579 A1 WO 2005036579A1
Authority
WO
WIPO (PCT)
Prior art keywords
main bimetal
heater
main
bimetal
current
Prior art date
Application number
PCT/JP2004/014728
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Yamada
Mikio Sahashi
Masahiko Niino
Katsumi Furuyama
Katsuyuki Fukao
Akihiko Matsuya
Makoto Yamaguchi
Kazuo Itoh
Original Assignee
Yamada Electric Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Electric Mfg. Co., Ltd. filed Critical Yamada Electric Mfg. Co., Ltd.
Publication of WO2005036579A1 publication Critical patent/WO2005036579A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/002Structural combination of a time delay electrothermal relay with an electrothermal protective relay, e.g. a start relay

Definitions

  • the present invention relates to a device including a relay suitable for protecting a compressor constituting a refrigeration cycle, such as an air conditioner and an electric refrigerator.
  • Compressor motors used in air conditioners, etc. are designed to prevent leakage of refrigerant, short-circuit or disconnection of the operating capacitor, and restart in the event of an instantaneous power failure. Under severe conditions, a device that can respond quickly is required. In such a case, the compressor of the air conditioner heats up, but the current of the motor often does not increase so much. Therefore, it was impossible to protect the conventional protector which mainly responds only to the current.
  • thermal protectors of Patent Documents 1 and 2 have been proposed in which a main protector P having a plate-shaped main bimetal B and the like, which can be installed in a compressor, and a temperature switch TH are integrally provided. This will be described below.
  • FIG. 10 shows a circuit diagram of Patent Document 1.
  • a thermoswitch TH1 that closes when the temperature rises to a predetermined temperature with a normally open circuit, and a resistor R1 that is energized by this switch are installed near the main bimetal B of the main protector P, and a series circuit of the thermoswitch TH1 and the resistor R1 is loaded. Is connected in parallel with the motor M.
  • the motor M is connected in series to the power supply E via the terminals a and b at both ends of the main bimetal B of the main protector P, and one end of the resistor R1 is connected to the output terminal b of the main bimetal B.
  • the other end is connected to thermoswitch TH1 via lead c, and the other end of this thermoswitch is connected to other phases of the power supply by lead d!
  • the main bimetal B inverts due to the temperature rise of the main bimetal B due to the overcurrent, as in a normal protector.
  • the thermoswitch TH1 is closed, the current is passed to the resistor R1 to generate heat, and the circuit is shut off by inverting the main bimetal B.
  • FIG. 11 shows a circuit diagram of Patent Document 2.
  • Normally closed thermoswitch TH2 and main switch Protector P is connected in series with motor M, which is the load.
  • the main protector P is provided with a heater wire R2 near the main bimetal B, and always heats this bimetal B. If only the temperature rises, the thermoswitch TH2 opens to prevent the motor M from burning. Wear.
  • Patent Document 1 Japanese Utility Model Laid-Open No. 79240
  • Patent Document 2 Japanese Patent Application Laid-Open No. 7-262895
  • An object of the present invention is to provide a device provided with a relay in which the ratio of the operating currents at the time of overload and at the time of locking is reduced.
  • the invention of claim 1 relates to an apparatus provided with a relay made of a main bimetallic cable that interrupts a current by increasing an energized current,
  • a positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
  • a heater connected in series to the main bimetal and heating the main bimetal; and a thermometer connected in parallel to the heater and connecting a contact as the temperature increases. It is a technical feature to include a switch portion.
  • the invention according to claim 2 is an apparatus provided with a main bimetallic relay for interrupting a current by increasing an energized current.
  • a positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
  • thermoswitch unit connected in parallel to the heater to disconnect the contact at low temperature, connect the contact at medium temperature, and disconnect the contact at high temperature.
  • the invention according to claim 3 is an apparatus provided with a relay composed of a main bimetallic force that interrupts a current by increasing an energized current.
  • a positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
  • Technical features include a heater connected in series to the main bimetal for heating the main bimetal, and a negative temperature coefficient thermistor element connected in parallel to the heater.
  • the invention according to claim 4 is an apparatus provided with a relay composed of a main bimetallic force that interrupts a current by increasing an energized current.
  • a positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
  • a heater connected in series to the main bimetal for heating the main bimetal; and a heater connected to a side where power is supplied to the main bimetal without passing through the heater due to an increase in temperature, and the temperature is reduced. And a thermo-switch unit connected to the side to be energized through the heater.
  • a heater for heating the main bimetal is connected in series with the main bimetal, and the heater is connected at room temperature by a thermoswitch unit and cut off at high temperature. Therefore, if an overcurrent flows without the motor rotating (locked state) at startup at normal temperature, current flows to the heater side, and the main bimetal is immediately Cut off the current (shortening the SZT (relay operation time during lock) and suppressing the temperature rise of the motor winding at this time). After the motor starts, the temperature becomes high, the thermoswitch turns on, and the heater is short-circuited. Therefore, even if an overcurrent flows momentarily during the operation of the motor,
  • thermoswitch section when the temperature is low, a current is supplied to the heater side by the thermoswitch section to shorten the operation time of the main bimetal, so that the temperature rise of the motor, which initially rises sharply, can be suppressed.
  • a current is supplied to the heater side by the thermoswitch section to shorten the operation time of the main bimetal, so that the temperature rise of the motor, which initially rises sharply, can be suppressed.
  • a heater for heating the main bimetal is connected in series with the main bimetal, and the heater is connected at a low temperature by a thermoswitch unit and cut off at a medium temperature. If the motor does not rotate (locked state) and an overcurrent flows during startup at low temperatures, current flows to the heater side, and the main bimetal immediately shuts off the current due to the heating of the heater. After the motor starts, the temperature becomes medium (operating temperature), the thermoswitch turns on, and the heater is short-circuited. For this reason, even if an overcurrent flows instantaneously during motor operation, the main bimetal is not disconnected and stable operation can be performed.
  • the main bimetal can immediately cut off the current by heating the heater by connecting the heater with the thermoswitch portion.
  • the positive temperature coefficient thermistor element connected in parallel with the main bimetal does not damage the motor even if the constrained state continues.
  • a heater for heating the main bimetal is connected in series to the main bimetal, and a negative temperature coefficient thermistor element is connected in parallel to the heater, so that the starting at normal temperature is performed.
  • the motor does not rotate (locked state) and an overcurrent flows, the current flows mainly to the heater side due to the high resistance of the negative characteristic thermistor element, , The main bimetal immediately shuts off the current.
  • the temperature becomes high, the resistance of the negative temperature coefficient thermistor element decreases, and the amount of current to the heater decreases. For this reason, even if an overcurrent flows instantaneously, the main bimetal is not disconnected, and stable operation can be performed.
  • the positive temperature coefficient thermistor element connected in parallel to the main bimetal does not damage the motor even if the locked state continues.
  • FIG. 1 is a front view of the thermal relay cut along a center line.
  • the thermal relay 10 is attached to an outer surface of a protected body such as a compressor.
  • the outer shell 12 made of an insulating material also has a cylindrical case 13 whose lower end is open and a cover force for closing the open end.
  • the cover comprises a thermo base 14 of a thermo switch section 40 and a cap 16. Inside the cylindrical case 13, a protector section 20, a normally open thermoswitch section 40 that closes at a predetermined temperature, and a flexible insulating material 15 are housed.
  • the protector section 20 includes a dish-shaped main bimetal 21, an adjustment screw 22, and a coil spring 25.
  • the main bimetal 21 is pressed against and held by a head 23 of the adjustment screw 22.
  • the adjusting screw 22 is composed of a screw portion 22A and a head 23, and is fixed with a heat-soluble metal 24.
  • the main bimetal 21 is connected to the tab terminal 30 via a fixed contact described later.
  • a heater 33 such as a chrome wire, for heating the main bimetal 21 from above is arranged, and below the main bimetal 21, an annular positive electrode that also heats the main bimetal 21 downward.
  • the characteristic thermistor element 50 is provided.
  • the thermo switch section 40 includes a thermo movable contact 45 attached to a movable contact plate 44, a movable terminal 43 supporting the movable contact plate 44, a fixed contact 42 in contact with the thermo movable contact 45, and a movable contact plate. It consists of a dish-shaped thermo-bimetal 46 that swings 44.
  • the thermo-bimetal 46 transfers the heat of the protected body such as a compressor through the cap 16, and keeps the thermo movable contact 45 and the fixed contact 42 disconnected at a low temperature of 40 ° C. Turns over when C exceeds The moving contact 45 and the fixed contact 42 are brought into contact.
  • Thermobimetal 46 reverses again when the temperature drops below 30 ° C.
  • the fixed contact 42 is connected to the tab terminal 47 as described later.
  • FIG. 2 is a circuit diagram of the thermal relay 10.
  • the thermal relay 10 is arranged between the AC power supply E and the motor M of the compressor.
  • a positive characteristic thermistor element 50 is connected in parallel with the main bimetal 21
  • a heater 33 is connected in series with the main bimetal 21
  • a thermoswitch section 40 is connected in parallel with the heater. That is, the above-described tab terminal 30 is connected to the movable contact 3 la of the main bimetal 21 via the fixed contact 29 a on the main bimetal 21 side.
  • the movable contact 31b of the main bimetal 21 is connected to the heater 33 via a fixed contact 29b.
  • the heater 33 is connected to the tab terminal 47 side!
  • a heater 33 for heating the main bimetal 21 is connected in series with the main bimetal 21, and the heater 33 is connected at normal temperature by a thermoswitch unit 40 and is turned off at high temperature, so that the motor M is started at the time of normal temperature. If an overcurrent flows without rotating (locked state), current flows to the heater 33 side, and due to the caloric heat of the heater 33, the plate-shaped main bimetal 21 immediately reaches the operating temperature of 160 ° C and is inverted and fixed.
  • the contacts 29a and 29b are separated from the movable contacts 3 la and 3 lb to cut off the current. That is, SZT (relay operation time at the time of locking) can be shortened, and the temperature rise of the motor winding at this time can be suppressed.
  • thermoswitch section 40 On the other hand, after the motor M is started, heat is transmitted from the compressor, and when the thermoswitch section 40 reaches 40 ° C., the thermoswitch section 40 is turned on and the heater 33 is short-circuited. For this reason, during the operation of the motor, Even if an overcurrent flows, the main bimetal 21 is not disconnected, so that stable operation can be performed. That is, UTC (overload operating current) can be increased, and the ratio of the current value of SZT (relay operation time during lock) to UTC can be reduced.
  • the vertical axis indicates the operating current of the main bimetal 21
  • the horizontal axis indicates the operating temperature
  • the broken line indicates the case with a heater
  • the dashed line indicates the case without a heater.
  • UTC characteristics when there is a heater are taken, and when it exceeds 40 ° C., UTC characteristics when there is no heater are taken.
  • the thermal relay 10 of the first embodiment when the main bimetal 21 is cut off, a current flows to the side of the PTC thermistor element 50 connected in parallel. 21 is heated and the recovery time is delayed. Therefore, even if the main bimetal 21 is repeatedly turned on and off after the motor M is kept in the constrained state, the current does not continue to flow through the motor winding for a long time, so that the motor M is not damaged.
  • the vertical axis represents the temperature of the motor
  • the horizontal axis represents time
  • the solid line represents a conventional relay, such as Patent Document 1.
  • the broken line indicates the case where the heater 33 is turned on and off by the thermoswitch unit 40.
  • the temperature of the compressor rises after the motor temperature rises, and the thermo-switch section 40 comes into force contact with a further delay. Therefore, by flowing a current to the heater 33 side by the thermoswitch section 40 and shortening the operation time of the main bimetal 21, the initial operation time becomes longer in a low temperature state, and the phenomenon that the temperature of the winding rapidly rises is reduced. Can be suppressed.
  • the dashed line indicates the case where the heater 33 is turned on and off by the thermoswitch section 40 and the main bimetal 21 is heated by the positive characteristic thermistor element 50.
  • the main bimetal 21 is heated by the positive temperature coefficient thermistor element 50, and the recovery time is delayed. That is, the off time becomes longer than the on time. Therefore, even if the main bimetal 21 repeatedly turns on and off after the restraining state of the motor M continues, current does not continue to flow through the motor winding for a long time. The temperature rise of the motor can be suppressed.
  • the use of the positive temperature coefficient thermistor element 50 that generates a large amount of heat at a low temperature and can secure a heat generation close to the rated value even when the voltage is reduced enables the voltage drop at a low temperature. Even if the occurrence of occurs, it is possible to reliably protect the motor.
  • thermoswitch section 40 includes only one thermo-bimetal (bimetal for improving characteristics) 46, but in the second embodiment, the thermoswitch section 40 includes only one bimetal (for improving characteristics) 46.
  • gas leak detection metal 52 is placed back to back.
  • the thermo-bimetal (bimetal for property improvement) 46 reverses at 40 ° C / 30 ° C as in the first embodiment, and the bimetal 52 for gas leak detection is designed to detect high temperatures when gas leaks from the compressor. It is set to reverse at 120 ° C / 60 ° C.
  • FIG. 5 (A) shows a low temperature (initial) state!
  • the thermometal (metal for improving characteristics) 46 is convex downward, and the bimetal 52 for gas leak detection is convex upward, and the movable contact 45 and the fixed contact 42 of the thermoswitch 40 are disconnected. Electricity to heater 33 is being supplied.
  • the main bimetal 21 can be operated immediately as described above with reference to FIG.
  • FIG. 5B shows a medium temperature (operating) state.
  • the gas leak detection bimetal 52 continues to protrude upward, but the thermometal (metal for property improvement) 46 protrudes upward (reversed), and the movable contact 45 Is in contact with the fixed contact 42, and the heater 33 is short-circuited.
  • the main bimetal 21 can be prevented from operating even when the overload current flows instantaneously.
  • FIG. 5 (C) shows a high temperature (gas leak) state!
  • the temperature of the thermo bimetal (bimetal for property improvement) 46 is upwardly convex (reversed), and the temperature rises to 120 ° C or more due to gas leakage, so that the bimetal 52 for gas leakage detection becomes convex downward.
  • the thermoswitch section 40 is turned off, the power is supplied to the heater 33, and the main bimetal 21 is operated immediately.
  • the second embodiment only the temperature is increased without increasing the current due to refrigerant leakage or the like. Even when the motor rises, the motor can be quickly protected.
  • thermoswitch unit 40 is connected in parallel with the heater 33.
  • a negative characteristic thermistor element 54 is connected in parallel with the heater 33.
  • a heater 33 for heating the main bimetal 21 is connected in series to the main bimetal 21, and a negative characteristic thermistor element 54 is connected in parallel to the heater 33, so that the normal bimetal 21 is connected. If the motor M does not rotate at startup and an overcurrent flows (locked state), the current flows mainly to the heater 33 because the negative-characteristic thermistor element 54 has a high resistance. Bimetal 21 shuts off current immediately. After the motor is started, the temperature becomes high and the resistance of the negative characteristic thermistor element 54 decreases, and the amount of current to the heater 33 decreases. For this reason, even if an overcurrent flows instantaneously, the main bimetal 21 is not disconnected and stable operation can be performed.
  • the UTC characteristics of the relay according to the third embodiment will be described with reference to the graph of FIG.
  • the vertical axis shows the operating current of the main bimetal 21
  • the horizontal axis shows the operating temperature.
  • an intermediate UTC characteristic between a case with a heater and a case without a heater is taken.
  • the operating current value of the main bimetal 21 during operation high temperature
  • the operating current value of the main bimetal 21 during startup low temperature
  • the negative-characteristic thermistor element 54 is used instead of the thermoswitch section 40 using contacts, there is a high reliability IJ point.
  • thermoswitch unit 40 is connected in parallel with the heater 33.
  • thermoswitch section 56 is connected to the side where the power is supplied to the main bimetal 21 without passing through the heater 33 due to the increase in the temperature, and the heater 33 is connected to the side where the temperature decreases. It is configured to be connected to the side to be energized through. This operation is the same as in the first embodiment described above with reference to FIG. To do.
  • thermoswitch unit 40 is connected in parallel with the heater 33.
  • the heater and the thermoswitch section are omitted. Even when only the positive temperature coefficient thermistor element 50 is used as in the fifth embodiment, as the return time of the main bimetal 21 increases, the duty ratio to the motor decreases, and as shown by the broken line in FIG. The temperature rise of the wire can be suppressed.
  • thermoswitch section 40 even when only the thermoswitch section 40 is used without using the positive temperature coefficient thermistor element as an example in which the positive temperature coefficient thermistor element and the thermoswitch section 40 are used in combination, FIG. As shown by the broken line in (A), the peak value of the temperature rise of the winding at the start in the motor locked state can be suppressed.
  • FIG. 1 is a front view of a relay according to a first embodiment of the present invention, cut off at a center line.
  • FIG. 2 is an electric circuit diagram of the relay according to the first embodiment.
  • FIG. 3 is a graph showing UTC characteristics of the relay according to the first embodiment.
  • FIG. 4 (A) is a graph showing SZT characteristics of the relay of the first embodiment.
  • (B) is a graph showing SZT characteristics of the relay of the fifth embodiment.
  • FIG. 5 is an explanatory diagram illustrating an operation of a thermoswitch unit according to a second embodiment.
  • FIG. 6 is an electric circuit diagram of a relay according to a third embodiment.
  • FIG. 7 is a graph showing UTC characteristics of the relay according to the third embodiment.
  • FIG. 8 is an electric circuit diagram of a relay according to a fourth embodiment.
  • FIG. 9 is an electric circuit diagram of a relay according to a fifth embodiment.
  • FIG. 10 is an electric circuit diagram of the relay of Patent Document 1.
  • FIG. 11 is an electric circuit diagram of a relay of Patent Document 2.

Abstract

A device having a relay exhibiting a reduced ratio of the operation current during an overload and that during a lock. A heater (33) is provided such that a thermo-switch part (40) is in a contact position during ordinary temperatures and in a noncontact position during high temperatures. If an excessive current flows without rotation of a motor (M) at a startup, a current flows into the heater (33) side, so that a heating of the heater (33) causes a main bimetal (21) to immediately interrupt the current. After a start of the motor (M), a conveyance of heat from a compressor turns on the thermo-switch part (40), thereby short-circuiting the heater (33) side. In this way, even if an excessive current instantaneously flows during driving of the motor, the main bimetal (21) is inhibited from being placed in the noncontact position.

Description

明 細 書  Specification
継電器を備えた機器  Equipment with relay
技術分野  Technical field
[0001] 本発明は、空調機器や電気冷蔵庫等の冷凍サイクルを構成する圧縮機を保護す るのに好適な継電器を備えた機器に関する。  The present invention relates to a device including a relay suitable for protecting a compressor constituting a refrigeration cycle, such as an air conditioner and an electric refrigerator.
背景技術  Background art
[0002] 空調機器等に使用される圧縮機モータは、モータ回転子拘束の時や過負荷運転 時の保護のみでなぐ冷媒の漏れ、運転コンデンサの短絡又は断線、瞬時停電時の 再起動等の過酷な条件に於いて、敏速に対応する装置が要求されている。この様な 場合、空調機の圧縮機は加熱するが、モータの電流はさほど増カロしない場合が多く 、従来の主として電流のみに応動するプロテクタでは保護が不可能であった。  [0002] Compressor motors used in air conditioners, etc. are designed to prevent leakage of refrigerant, short-circuit or disconnection of the operating capacitor, and restart in the event of an instantaneous power failure. Under severe conditions, a device that can respond quickly is required. In such a case, the compressor of the air conditioner heats up, but the current of the motor often does not increase so much. Therefore, it was impossible to protect the conventional protector which mainly responds only to the current.
[0003] そこで圧縮機に設置できる皿型の主バイメタル B等力 成る主プロテクタ Pと温度ス イッチ THを一体的に配設した特許文献 1、特許文献 2のサーマルプロテクタが提案 されていた。これについて以下に説明する。  [0003] Therefore, thermal protectors of Patent Documents 1 and 2 have been proposed in which a main protector P having a plate-shaped main bimetal B and the like, which can be installed in a compressor, and a temperature switch TH are integrally provided. This will be described below.
[0004] 特許文献 1の回路図を図 10に示す。常時開路で所定温度に上昇の時に閉成する サーモスイッチ TH1と、これより通電される抵抗器 R1を主プロテクタ Pの主バイメタル Bの近傍に設け、サーモスイッチ TH1と抵抗器 R1の直列回路を負荷であるモータ M と並列に接続するものである。  [0004] Fig. 10 shows a circuit diagram of Patent Document 1. A thermoswitch TH1 that closes when the temperature rises to a predetermined temperature with a normally open circuit, and a resistor R1 that is energized by this switch are installed near the main bimetal B of the main protector P, and a series circuit of the thermoswitch TH1 and the resistor R1 is loaded. Is connected in parallel with the motor M.
[0005] 即ち、電源 Eに主プロテクタ Pの主バイメタル B両端の端子 a、 bを介してモータ Mが 直列接続されており、抵抗器 R1は、一端が主バイメタル Bの出力端子 bに接続され、 他端はリード線 cを介してサーモスイッチ TH1に接続され、このサーモスイッチの他端 はリード線 dにより電源の他の相に接続されて!、る。  [0005] That is, the motor M is connected in series to the power supply E via the terminals a and b at both ends of the main bimetal B of the main protector P, and one end of the resistor R1 is connected to the output terminal b of the main bimetal B. The other end is connected to thermoswitch TH1 via lead c, and the other end of this thermoswitch is connected to other phases of the power supply by lead d!
[0006] これによつて、モータ Mが過負荷や回転子拘束等の場合には、通常のプロテクタの ように、過電流による主バイメタル Bの温度上昇により主バイメタル Bが反転動作して 回路が遮断され、電流が正常値で温度のみが上昇した時にはサーモスイッチ TH1 が閉成して、抵抗器 R1に通電させて発熱させ、主バイメタル Bを反転動作させること で回路を遮断する。  [0006] With this, when the motor M is overloaded or the rotor is restrained, the main bimetal B inverts due to the temperature rise of the main bimetal B due to the overcurrent, as in a normal protector. When the current is normal and only the temperature rises, the thermoswitch TH1 is closed, the current is passed to the resistor R1 to generate heat, and the circuit is shut off by inverting the main bimetal B.
[0007] 次に、特許文献 2の回路図を図 11に示す。常時閉路のサーモスイッチ TH2と主プ ロテクタ Pとが負荷であるモータ Mと直列接続されている。主プロテクタ Pは、その主 バイメタル Bの近傍にヒータ線 R2が設けられ常時このバイメタル Bを加熱し、もしも温 度のみが上昇の場合にはサーモスイッチ TH2が開路してモータ Mの焼損を防止で きる。 Next, FIG. 11 shows a circuit diagram of Patent Document 2. Normally closed thermoswitch TH2 and main switch Protector P is connected in series with motor M, which is the load. The main protector P is provided with a heater wire R2 near the main bimetal B, and always heats this bimetal B. If only the temperature rises, the thermoswitch TH2 opens to prevent the motor M from burning. Wear.
特許文献 1:実開平 1 79240号公報  Patent Document 1: Japanese Utility Model Laid-Open No. 79240
特許文献 2:特開平 7-262895号公報参照  Patent Document 2: Japanese Patent Application Laid-Open No. 7-262895
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、特許文献 1,特許文献 2のサーマルプロテクタでは、始動時にモータ が拘束状態 (ロック状態)であった際の保護特性を重視するため、過負荷動作電流が 小さくなり、予期される通常動作でも主バイメタルが動作するという課題があった。即 ち、低温の始動時にモータが拘束状態である際に、主バイメタルが断となるまでに時 間が掛カると、低温状態で抵抗値の低いモータに過大な電流が流れ、焼損する虞が あるので、主バイメタルの動作電流を小さめに設定せざるを得なかった。このために、 運転時の過電流が流れた際の主バイメタルの動作電流 (過負荷動作電流)が小さく なり、通常の運転にも支障を来すことがあった。例えば、庫内が常温となっている冷 蔵庫の運転を開始する際には、庫内温度を下げるまでの間、過負荷動作電流を越え る電流が流れ主バイメタルが動作してしまい、モータのオン、オフを繰り返す不具合 が生じる場合があった。 [0008] However, in the thermal protectors of Patent Documents 1 and 2, while emphasizing protection characteristics when the motor is in a locked state (locked state) at the time of starting, the overload operating current is reduced. There is a problem that the main bimetal operates even in the expected normal operation. In other words, if it takes time before the main bimetal is disconnected while the motor is in the constrained state at the time of low-temperature start, excessive current flows through the motor with low resistance in the low-temperature state, which may cause burnout. Therefore, the operating current of the main bimetal had to be set lower. For this reason, the operating current (overload operating current) of the main bimetal when overcurrent flows during operation was reduced, which sometimes hindered normal operation. For example, when starting the operation of a refrigerator where the inside of the refrigerator is at room temperature, a current exceeding the overload operating current flows until the temperature in the refrigerator decreases, and the main bimetal operates, and the motor There was a case where the malfunction of turning on and off repeatedly occurred.
[0009] 本発明の目的は、過負荷時とロック時の動作電流の比を小さくした継電器を備えた 機器を提供することにある。  [0009] An object of the present invention is to provide a device provided with a relay in which the ratio of the operating currents at the time of overload and at the time of locking is reduced.
課題を解決するための手段  Means for solving the problem
[0010] 上記目的を達成するため、請求項 1の発明は、通電される電流が増大することによ つて電流を遮断する主バイメタルカゝら成る継電器を備えた機器において、 [0010] In order to achieve the above object, the invention of claim 1 relates to an apparatus provided with a relay made of a main bimetallic cable that interrupts a current by increasing an energized current,
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 前記ヒータに並列に接続され、温度が増大することによって接点を接続するサーモ スィッチ部とを備えることを技術的特徴とする。 A heater connected in series to the main bimetal and heating the main bimetal; and a thermometer connected in parallel to the heater and connecting a contact as the temperature increases. It is a technical feature to include a switch portion.
[0011] 請求項 2の発明は、通電される電流が増大することによって電流を遮断する主バイ メタル力 成る継電器を備えた機器にぉ 、て、  [0011] The invention according to claim 2 is an apparatus provided with a main bimetallic relay for interrupting a current by increasing an energized current.
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 前記ヒータに並列に接続され、低温時に接点を断、中温時に接点を接続、高温時 に接点を断するサーモスイッチ部とを備えることを技術的特徴とする。  A heater connected in series to the main bimetal to heat the main bimetal; and a thermoswitch unit connected in parallel to the heater to disconnect the contact at low temperature, connect the contact at medium temperature, and disconnect the contact at high temperature. This is a technical feature.
[0012] 請求項 3の発明は、通電される電流が増大することによって電流を遮断する主バイ メタル力 成る継電器を備えた機器にぉ 、て、 [0012] The invention according to claim 3 is an apparatus provided with a relay composed of a main bimetallic force that interrupts a current by increasing an energized current.
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 前記ヒータに並列に接続された負特性サーミスタ素子とを備えることを技術的特徴 とする。  Technical features include a heater connected in series to the main bimetal for heating the main bimetal, and a negative temperature coefficient thermistor element connected in parallel to the heater.
[0013] 請求項 4の発明は、通電される電流が増大することによって電流を遮断する主バイ メタル力 成る継電器を備えた機器にぉ 、て、  [0013] The invention according to claim 4 is an apparatus provided with a relay composed of a main bimetallic force that interrupts a current by increasing an energized current.
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 温度が増大することによって前記主バイメタルへの通電を前記ヒータを通さずに行 う側に接続し、温度が低下することで前記ヒータを通して通電する側に接続させるサ 一モスイッチ部と、を備えることを技術的特徴とする。  A heater connected in series to the main bimetal for heating the main bimetal; and a heater connected to a side where power is supplied to the main bimetal without passing through the heater due to an increase in temperature, and the temperature is reduced. And a thermo-switch unit connected to the side to be energized through the heater.
発明の効果  The invention's effect
[0014] 請求項 1及び請求項 4の継電器を備えた機器では、主バイメタルに直列に該主バイ メタルを加熱するヒータを接続し、該ヒータをサーモスイッチ部により常温時に接、高 温時に断とすることで、常温状態である始動時にモータが回転せず (ロック状態)に過 電流が流れると、ヒータ側に電流が流れ、ヒータの加熱により、主バイメタルが直ちに 電流を遮断する(SZT (ロック時の継電器動作時間)を短縮し、この際のモータ卷線 の温度上昇を抑制できる)。モータの始動後は、高温となって、サーモスイッチ部がォ ンしヒータ側が短絡される。このため、モータの運転中に瞬時的に過電流が流れても[0014] In the equipment provided with the relay according to claims 1 and 4, a heater for heating the main bimetal is connected in series with the main bimetal, and the heater is connected at room temperature by a thermoswitch unit and cut off at high temperature. Therefore, if an overcurrent flows without the motor rotating (locked state) at startup at normal temperature, current flows to the heater side, and the main bimetal is immediately Cut off the current (shortening the SZT (relay operation time during lock) and suppressing the temperature rise of the motor winding at this time). After the motor starts, the temperature becomes high, the thermoswitch turns on, and the heater is short-circuited. Therefore, even if an overcurrent flows momentarily during the operation of the motor,
、主バイメタルが断とならないので、安定した動作を行うことができる (UTC (過負荷 動作電流)を大きくできる)。ここで、主バイメタルが断となると、並列に接続された正 特性サーミスタ素子側に電流が流れるため、正特性サーミスタ素子により主バイメタ ルが加熱されて復帰時間が遅くなる。従って、モータの拘束状態が続いて、主バイメ タルがオン、オフを繰り返しても、卷線に長時間電流が流れ続けることがないため、モ ータを破損させることがない。更に、低温時には、サーモスイッチ部によりヒータ側に 電流を流し、主バイメタルの動作時間を短くすることで、最初に急激に高くなるモータ の温度上昇を抑えることができる。ここで、低温時の発熱量が大きぐまた、電圧が低 下しても定格に近 、発熱量を確保できる正特性サーミスタ素子を用いることで、低温 時、電圧降下が発生していても、モータを確実に保護することが可能になる。 Since the main bimetal is not interrupted, stable operation can be performed (UTC (overload operating current) can be increased). Here, when the main bimetal is disconnected, a current flows to the side of the PTC thermistor element connected in parallel, so that the main bimetal is heated by the PTC thermistor element and the recovery time is delayed. Therefore, even if the main bimetal is repeatedly turned on and off while the motor is kept in a constrained state, the current does not continue to flow through the winding for a long time, so that the motor is not damaged. Furthermore, when the temperature is low, a current is supplied to the heater side by the thermoswitch section to shorten the operation time of the main bimetal, so that the temperature rise of the motor, which initially rises sharply, can be suppressed. Here, even if the calorific value at low temperature is large and the temperature is close to the rating even when the voltage is reduced, and a positive temperature coefficient thermistor element that can secure the calorific value is used, even if the voltage drop occurs at low temperature, It is possible to reliably protect the motor.
[0015] 請求項 2の継電器を備えた機器では、主バイメタルに直列に該主バイメタルを加熱 するヒータを接続し、該ヒータをサーモスイッチ部により低温時に接、中温時に断とす ることで、低温状態である始動時にモータが回転せず (ロック状態)に過電流が流れ ると、ヒータ側に電流が流れ、ヒータの加熱により、主バイメタルが直ちに電流を遮断 する。モータの始動後は、中温 (運転温度)となって、サーモスイッチ部がオンしヒータ 側が短絡される。このため、モータ運転中に瞬時的に過電流が流れても、主バイメタ ルが断とならないので、安定した動作を行うことができる。一方、コンプレッサ力も冷媒 が漏れて、電流量が増えないまま高温になると、ヒータをサーモスイッチ部により接に することで、ヒータの加熱により、主バイメタルが直ちに電流を遮断することができる。 ここで、主バイメタルに並列に接続された正特性サーミスタ素子側により、拘束状態 が続 、てもモータを破損させることがな 、。  [0015] In the apparatus provided with the relay according to claim 2, a heater for heating the main bimetal is connected in series with the main bimetal, and the heater is connected at a low temperature by a thermoswitch unit and cut off at a medium temperature. If the motor does not rotate (locked state) and an overcurrent flows during startup at low temperatures, current flows to the heater side, and the main bimetal immediately shuts off the current due to the heating of the heater. After the motor starts, the temperature becomes medium (operating temperature), the thermoswitch turns on, and the heater is short-circuited. For this reason, even if an overcurrent flows instantaneously during motor operation, the main bimetal is not disconnected and stable operation can be performed. On the other hand, when the compressor power becomes high without leakage of the refrigerant and the amount of current is increased, the main bimetal can immediately cut off the current by heating the heater by connecting the heater with the thermoswitch portion. Here, the positive temperature coefficient thermistor element connected in parallel with the main bimetal does not damage the motor even if the constrained state continues.
[0016] 請求項 3の継電器を備えた機器では、主バイメタルに直列に該主バイメタルを加熱 するヒータを接続し、該ヒータに負特性サーミスタ素子を並列に接続することで、常温 状態である始動時にモータが回転せず (ロック状態)に過電流が流れると、負特性サ 一ミスタ素子が高抵抗であるためヒータ側に主として電流が流れ、ヒータの加熱により 、主バイメタルが直ちに電流を遮断する。モータの始動後は、高温となって、負特性 サーミスタ素子の抵抗値が下がり、ヒータ側への電流量が減少する。このため、瞬時 的に過電流が流れても、主バイメタルが断とならないので、安定した動作を行うことが できる。ここで、主バイメタルに並列に接続された正特性サーミスタ素子側により、拘 束状態が続 、てもモータを破損させることがな 、。 [0016] In the device provided with the relay according to claim 3, a heater for heating the main bimetal is connected in series to the main bimetal, and a negative temperature coefficient thermistor element is connected in parallel to the heater, so that the starting at normal temperature is performed. When the motor does not rotate (locked state) and an overcurrent flows, the current flows mainly to the heater side due to the high resistance of the negative characteristic thermistor element, , The main bimetal immediately shuts off the current. After the motor is started, the temperature becomes high, the resistance of the negative temperature coefficient thermistor element decreases, and the amount of current to the heater decreases. For this reason, even if an overcurrent flows instantaneously, the main bimetal is not disconnected, and stable operation can be performed. Here, the positive temperature coefficient thermistor element connected in parallel to the main bimetal does not damage the motor even if the locked state continues.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] [第 1実施形態]  [First Embodiment]
本発明の継電器を備えた機器を熱動継電器に適用した第 1実施形態を図 1一図 4 を参照して説明する。図 1は熱動継電器を中心線で切断した正面図である。  A first embodiment in which a device equipped with a relay of the present invention is applied to a thermal relay will be described with reference to FIGS. FIG. 1 is a front view of the thermal relay cut along a center line.
熱動継電器 10は、圧縮機等の被保護体の外面に取り付けられる。絶縁物製の外 郭 12は、下端側が開放された筒状ケース 13と、その開放端を閉じるカバー力も成る 。このカバーは、サーモスイッチ部 40のサーモベース 14とキャップ 16とから成る。筒 状ケース 13の内部には、プロテクタ部 20と、所定の温度で閉路する常時開路のサ一 モスイッチ部 40と力 可とう性の絶縁材 15を挟んで収容されている。  The thermal relay 10 is attached to an outer surface of a protected body such as a compressor. The outer shell 12 made of an insulating material also has a cylindrical case 13 whose lower end is open and a cover force for closing the open end. The cover comprises a thermo base 14 of a thermo switch section 40 and a cap 16. Inside the cylindrical case 13, a protector section 20, a normally open thermoswitch section 40 that closes at a predetermined temperature, and a flexible insulating material 15 are housed.
[0018] プロテクタ部 20の機械的構成について説明する。プロテクタ部 20は、皿型の主バ ィメタル 21、調節ねじ 22、コイルばね 25を備え、主バイメタル 21は、調節ねじ 22の 頭部 23に押し当て保持されている。この調節ねじ 22は、ねじ部 22Aと頭部 23から成 り、熱可溶金属 24で固定されたものである。主バイメタル 21は、後述する固定接点を 介してタブ端子 30側に接続されている。主バイメタル 21の上側には、該主バイメタル 21を上側から加熱する-クロム線等のヒータ 33が配置され、主バイメタル 21の下側 には、該主バイメタル 21を下側力も加熱する環状の正特性サーミスタ素子 50が配置 されている。  [0018] A mechanical configuration of the protector unit 20 will be described. The protector section 20 includes a dish-shaped main bimetal 21, an adjustment screw 22, and a coil spring 25. The main bimetal 21 is pressed against and held by a head 23 of the adjustment screw 22. The adjusting screw 22 is composed of a screw portion 22A and a head 23, and is fixed with a heat-soluble metal 24. The main bimetal 21 is connected to the tab terminal 30 via a fixed contact described later. Above the main bimetal 21, a heater 33, such as a chrome wire, for heating the main bimetal 21 from above is arranged, and below the main bimetal 21, an annular positive electrode that also heats the main bimetal 21 downward. The characteristic thermistor element 50 is provided.
[0019] 次に、サーモスイッチ部 40の機械的構成について説明する。サーモスイッチ部 40 は、可動接点板 44に取り付けられたサーモ可動接点 45と、可動接点板 44を支持す る可動側端子 43と、該サーモ可動接点 45と接触する固定接点 42と、可動接点板 44 を揺動する皿形のサーモバイメタル 46とからなる。サーモバイメタル 46は、キャップ 1 6を介して圧縮機等の被保護体の熱が伝わり、 40° C以下の低温状態でサーモ可 動接点 45と固定接点 42とを断状態を維持し、 40° Cを越えると反転して、サーモ可 動接点 45と固定接点 42とを接触させる。サーモバイメタル 46は、温度が 30° C以下 に下がると再び反転する。固定接点 42は、後述するようにタブ端子 47側に接続され ている。 Next, a mechanical configuration of the thermoswitch section 40 will be described. The thermo switch section 40 includes a thermo movable contact 45 attached to a movable contact plate 44, a movable terminal 43 supporting the movable contact plate 44, a fixed contact 42 in contact with the thermo movable contact 45, and a movable contact plate. It consists of a dish-shaped thermo-bimetal 46 that swings 44. The thermo-bimetal 46 transfers the heat of the protected body such as a compressor through the cap 16, and keeps the thermo movable contact 45 and the fixed contact 42 disconnected at a low temperature of 40 ° C. Turns over when C exceeds The moving contact 45 and the fixed contact 42 are brought into contact. Thermobimetal 46 reverses again when the temperature drops below 30 ° C. The fixed contact 42 is connected to the tab terminal 47 as described later.
[0020] 図 2は熱動継電器 10の回路図である。交流電源 Eと圧縮機のモータ Mとの間に熱 動継電器 10は配置される。熱動継電器 10では、主バイメタル 21に並列に正特性サ 一ミスタ素子 50が接続され、主バイメタル 21に直列にヒータ 33が接続され、該ヒータ に並列にサーモスイッチ部 40が接続されている。即ち、上述したタブ端子 30は、主 バイメタル 21側の固定接点 29aを介して、主バイメタル 21の可動接点 3 laに接続し ている。主バイメタル 21の可動接点 31bは、固定接点 29bを介してヒータ 33に接続さ れて 、る。ヒータ 33はタブ端子 47側に接続されて!、る。  FIG. 2 is a circuit diagram of the thermal relay 10. The thermal relay 10 is arranged between the AC power supply E and the motor M of the compressor. In the thermal relay 10, a positive characteristic thermistor element 50 is connected in parallel with the main bimetal 21, a heater 33 is connected in series with the main bimetal 21, and a thermoswitch section 40 is connected in parallel with the heater. That is, the above-described tab terminal 30 is connected to the movable contact 3 la of the main bimetal 21 via the fixed contact 29 a on the main bimetal 21 side. The movable contact 31b of the main bimetal 21 is connected to the heater 33 via a fixed contact 29b. The heater 33 is connected to the tab terminal 47 side!
[0021] なお、この様なプロテクタ部 20に過電流が流れ主バイメタル 21が動作して接点 29a 、 29b、 31a、 31bを遮断後、温度が低下すると、主バイメタル 21が復帰して接点 29a 、 29b、 31a、 3 lbが再び閉成する。これをたびたび繰り返すと接点が溶着して主バイ メタル 21が動作不可能の危険な状態となるが、主バイメタル 21の発熱エネルギーと 被保護体圧縮機の温度上昇の両者により、調節ねじ 22の頭部 23とねじ部 22を結合 していた熱可溶金属 24が溶融し、コイルばね 25により主バイメタル 21が押し上げら れ、接点 29a、 29b、 31a、 31bが遮断される。この後は主バイメタル 21が旧位置に 戻ることなく非復帰式の動作となる。  When an overcurrent flows into such a protector section 20 and the main bimetal 21 operates to cut off the contacts 29a, 29b, 31a and 31b, and the temperature drops, the main bimetal 21 returns and the contacts 29a and 29b, 31a, 3 lbs reclose. If this is repeated many times, the contacts will be welded and the main bimetal 21 will be inoperable and dangerous.However, both the heat generated by the main bimetal 21 and the temperature rise of the compressor to be protected will cause the head of the adjusting screw 22 The heat fusible metal 24 joining the part 23 and the screw part 22 is melted, the main bimetal 21 is pushed up by the coil spring 25, and the contacts 29a, 29b, 31a, 31b are cut off. Thereafter, the main bimetal 21 does not return to the old position, and becomes a non-return type operation.
[0022] 上記説明した熱動継電器の動作について図 2を参照して説明する。  The operation of the above-described thermal relay will be described with reference to FIG.
主バイメタル 21に直列に該主バイメタル 21を加熱するヒータ 33を接続し、該ヒータ 33をサーモスイッチ部 40により常温時に接、高温時に断とすることで、常温状態であ る始動時にモータ Mが回転せず (ロック状態)に過電流が流れると、ヒータ 33側に電 流が流れ、ヒータ 33のカロ熱により、皿形の主バイメタル 21が直ちに動作温度の 160 ° Cに達し反転し、固定接点 29a、 29bと可動接点 3 la、 3 lbとを分離して電流を遮 断する。即ち、 SZT (ロック時の継電器動作時間)を短縮し、この際のモータ卷線の 温度上昇を抑制できる。  A heater 33 for heating the main bimetal 21 is connected in series with the main bimetal 21, and the heater 33 is connected at normal temperature by a thermoswitch unit 40 and is turned off at high temperature, so that the motor M is started at the time of normal temperature. If an overcurrent flows without rotating (locked state), current flows to the heater 33 side, and due to the caloric heat of the heater 33, the plate-shaped main bimetal 21 immediately reaches the operating temperature of 160 ° C and is inverted and fixed. The contacts 29a and 29b are separated from the movable contacts 3 la and 3 lb to cut off the current. That is, SZT (relay operation time at the time of locking) can be shortened, and the temperature rise of the motor winding at this time can be suppressed.
[0023] 一方、モータ Mの始動後は、圧縮機から熱が伝わり、サーモスイッチ部 40が 40° C に達すると、オンしヒータ 33側が短絡される。このため、モータの運転中に瞬時的に 過電流が流れても、主バイメタル 21が断とならないので、安定した動作を行うことがで きる。即ち、 UTC (過負荷動作電流)を大きくでき、 SZT (ロック時の継電器動作時間 )の電流値と UTCとの比を小さくすることが可能となる。 On the other hand, after the motor M is started, heat is transmitted from the compressor, and when the thermoswitch section 40 reaches 40 ° C., the thermoswitch section 40 is turned on and the heater 33 is short-circuited. For this reason, during the operation of the motor, Even if an overcurrent flows, the main bimetal 21 is not disconnected, so that stable operation can be performed. That is, UTC (overload operating current) can be increased, and the ratio of the current value of SZT (relay operation time during lock) to UTC can be reduced.
[0024] 図 3のグラフを参照して UTC特性について更に詳細に説明する。図中で縦軸に主 バイメタル 21の動作電流、横軸に動作温度を取り、破線はヒータが有る場合を示し、 一点鎖線はヒータが無い場合を示している。第 1実施形態では、 40° C以下では、ヒ ータが有る場合の UTC特性を取り、 40° Cを越えると、ヒータが無い場合の UTC特 性を取る。これにより、起動時 (低温)の主バイメタル 21の作動電流値を下げながら、 運転中(高温)での主バイメタル 21の作動電流値を高めている。  The UTC characteristics will be described in more detail with reference to the graph of FIG. In the figure, the vertical axis indicates the operating current of the main bimetal 21, the horizontal axis indicates the operating temperature, the broken line indicates the case with a heater, and the dashed line indicates the case without a heater. In the first embodiment, at 40 ° C. or lower, UTC characteristics when there is a heater are taken, and when it exceeds 40 ° C., UTC characteristics when there is no heater are taken. Thus, the operating current value of the main bimetal 21 during operation (high temperature) is increased while the operating current value of the main bimetal 21 during startup (low temperature) is reduced.
[0025] 一方、第 1実施形態の熱動継電器 10では、主バイメタル 21が断となると、並列に接 続された正特性サーミスタ素子 50側に電流が流れるため、正特性サーミスタ素子 50 により主バイメタル 21が加熱されて復帰時間が遅くなる。従って、モータ Mの拘束状 態が続いて、主バイメタル 21がオン、オフを繰り返しても、モータ卷線に長時間電流 が流れ続けることがな 、ため、モータ Mを破損させることがな 、。  On the other hand, in the thermal relay 10 of the first embodiment, when the main bimetal 21 is cut off, a current flows to the side of the PTC thermistor element 50 connected in parallel. 21 is heated and the recovery time is delayed. Therefore, even if the main bimetal 21 is repeatedly turned on and off after the motor M is kept in the constrained state, the current does not continue to flow through the motor winding for a long time, so that the motor M is not damaged.
[0026] この SZT時 (モータ始動時の拘束状態となった場合)の動作温度について図 4 (A )のグラフを参照して説明する。  The operating temperature at the time of SZT (when the motor is in a restrained state at the time of starting the motor) will be described with reference to the graph of FIG.
図中、縦軸にモータの温度を、横軸に時間を取り、実線は特許文献 1等の従来技 術の継電器を示している。破線はヒータ 33をサーモスイッチ部 40によりオン、オフし た場合を示している。ヒータ 33をサーモスイッチ部 40によりオン、オフした場合には、 モータの温度上昇に遅れて、圧縮機の温度が上昇し、さらに遅れてサーモスイッチ 部 40力接となる。従って、サーモスイッチ部 40によりヒータ 33側に電流を流し、主バ ィメタル 21の動作時間を短くすることで、低温状態では初期の動作時間が長くなり、 卷線の温度が急激に高くなる現象を抑えることができる。  In the figure, the vertical axis represents the temperature of the motor, and the horizontal axis represents time, and the solid line represents a conventional relay, such as Patent Document 1. The broken line indicates the case where the heater 33 is turned on and off by the thermoswitch unit 40. When the heater 33 is turned on and off by the thermo-switch section 40, the temperature of the compressor rises after the motor temperature rises, and the thermo-switch section 40 comes into force contact with a further delay. Therefore, by flowing a current to the heater 33 side by the thermoswitch section 40 and shortening the operation time of the main bimetal 21, the initial operation time becomes longer in a low temperature state, and the phenomenon that the temperature of the winding rapidly rises is reduced. Can be suppressed.
[0027] 更に、一点鎖線は、ヒータ 33をサーモスイッチ部 40によりオン、オフすると共に、正 特性サーミスタ素子 50で主バイメタル 21を加熱した場合を示して 、る。正特性サーミ スタ素子 50により主バイメタル 21が加熱されて復帰時間が遅くなる。即ち、オン時間 に対するオフ時間が長くなる。従って、モータ Mの拘束状態が続いて、主バイメタル 2 1がオン、オフを繰り返しても、モータ卷線に長時間電流が流れ続けることがなくなり、 モータの温度上昇を抑えることができる。 Further, the dashed line indicates the case where the heater 33 is turned on and off by the thermoswitch section 40 and the main bimetal 21 is heated by the positive characteristic thermistor element 50. The main bimetal 21 is heated by the positive temperature coefficient thermistor element 50, and the recovery time is delayed. That is, the off time becomes longer than the on time. Therefore, even if the main bimetal 21 repeatedly turns on and off after the restraining state of the motor M continues, current does not continue to flow through the motor winding for a long time. The temperature rise of the motor can be suppressed.
[0028] 更に、第 1実施形態では、低温時の発熱量が大きぐまた、電圧が低下しても定格 に近い発熱量を確保できる正特性サーミスタ素子 50を用いることで、低温時、電圧 降下が発生して 、ても、モータを確実に保護することが可能になる。  Furthermore, in the first embodiment, the use of the positive temperature coefficient thermistor element 50 that generates a large amount of heat at a low temperature and can secure a heat generation close to the rated value even when the voltage is reduced enables the voltage drop at a low temperature. Even if the occurrence of occurs, it is possible to reliably protect the motor.
[0029] [第 2実施形態]  [Second Embodiment]
図 5を参照して本発明の第 2実施形態に係る継電器について説明する。第 2実施 形態の継電器の電気回路は、図 2を参照して上述した第 1実施形態と同じである。伹 し、第 1実施形態では、サーモスイッチ部 40が、 1枚のサーモバイメタル (特性改善用 バイメタル) 46のみを備えていたが、第 2実施形態では、サーモバイメタル (特性改善 用バイメタル) 46に加えて、ガス漏れ検知用ノィメタル 52が背中合わせに重ねて配 置されている。サーモバイメタル (特性改善用バイメタル) 46は、第 1実施形態と同様 に 40° C/30° Cで反転し、ガス漏れ検知用バイメタル 52は、圧縮機のガス漏れ時 の高温を検知するように 120° C/60° Cで反転するよう設定されている。  A relay according to a second embodiment of the present invention will be described with reference to FIG. The electric circuit of the relay of the second embodiment is the same as that of the first embodiment described above with reference to FIG. However, in the first embodiment, the thermoswitch section 40 includes only one thermo-bimetal (bimetal for improving characteristics) 46, but in the second embodiment, the thermoswitch section 40 includes only one bimetal (for improving characteristics) 46. In addition, gas leak detection metal 52 is placed back to back. The thermo-bimetal (bimetal for property improvement) 46 reverses at 40 ° C / 30 ° C as in the first embodiment, and the bimetal 52 for gas leak detection is designed to detect high temperatures when gas leaks from the compressor. It is set to reverse at 120 ° C / 60 ° C.
[0030] 図 5 (A)は、低温 (初期)状態を示して!/、る。ここでは、サーモノくィメタル (特性改善 用バイメタル) 46は下側に凸状態、ガス漏れ検知用バイメタル 52は上側に凸状態で あり、サーモスイッチ部 40の可動接点 45と固定接点 42とが断となりヒータ 33への通 電がなされている。モータが始動時にロック状態である際には、図 2を参照して上述し たように直ちに主バイメタル 21を動作させることができる。  FIG. 5 (A) shows a low temperature (initial) state! Here, the thermometal (metal for improving characteristics) 46 is convex downward, and the bimetal 52 for gas leak detection is convex upward, and the movable contact 45 and the fixed contact 42 of the thermoswitch 40 are disconnected. Electricity to heater 33 is being supplied. When the motor is locked at start-up, the main bimetal 21 can be operated immediately as described above with reference to FIG.
[0031] 図 5 (B)は、中温 (運転)状態を示している。ここでは、ガス漏れ検知用バイメタル 52 は上側に凸状態を続けて 、るが、サーモノィメタル (特性改善用バイメタル) 46が上 側に凸状態 (反転)となり、サーモスイッチ部 40の可動接点 45と固定接点 42とが接と なりヒータ 33が短絡されている。図 2を参照して上述したように、瞬時的に過負荷電 流が流れても、主バイメタル 21を動作させな ヽようにできる。  FIG. 5B shows a medium temperature (operating) state. Here, the gas leak detection bimetal 52 continues to protrude upward, but the thermometal (metal for property improvement) 46 protrudes upward (reversed), and the movable contact 45 Is in contact with the fixed contact 42, and the heater 33 is short-circuited. As described above with reference to FIG. 2, the main bimetal 21 can be prevented from operating even when the overload current flows instantaneously.
[0032] 図 5 (C)は、高温 (ガス漏れ)状態を示して!/ヽる。ここでは、サーモバイメタル (特性 改善用バイメタル) 46は上側に凸状態 (反転)である力 ガス漏れにより 120° C以上 まで温度上昇することで、ガス漏れ検知用バイメタル 52は下側に凸状態となり(反転) 、サーモスイッチ部 40はオフとなりヒータ 33への通電がなされ、直ちに主バイメタル 2 1を動作させる。第 2実施形態では、冷媒漏れ等で、電流が増加せずに温度のみ上 昇する場合にも、迅速にモータの保護を図ることができる。 FIG. 5 (C) shows a high temperature (gas leak) state! Here, the temperature of the thermo bimetal (bimetal for property improvement) 46 is upwardly convex (reversed), and the temperature rises to 120 ° C or more due to gas leakage, so that the bimetal 52 for gas leakage detection becomes convex downward. (Reversed), the thermoswitch section 40 is turned off, the power is supplied to the heater 33, and the main bimetal 21 is operated immediately. In the second embodiment, only the temperature is increased without increasing the current due to refrigerant leakage or the like. Even when the motor rises, the motor can be quickly protected.
[0033] [第 3実施形態]  [0033] [Third embodiment]
図 6を参照して第 3実施形態に係る継電器の回路構成について説明する。 図 2を参照して上述した第 1実施形態では、ヒータ 33に並列にサーモスイッチ部 40 が接続されていた。これに対して、第 3実施形態では、ヒータ 33に並列に負特性サー ミスタ素子 54が接続されて 、る。  The circuit configuration of the relay according to the third embodiment will be described with reference to FIG. In the first embodiment described above with reference to FIG. 2, the thermoswitch unit 40 is connected in parallel with the heater 33. On the other hand, in the third embodiment, a negative characteristic thermistor element 54 is connected in parallel with the heater 33.
[0034] 第 3実施形態の継電器では、主バイメタル 21に直列に該主バイメタル 21を加熱す るヒータ 33を接続し、該ヒータ 33に負特性サーミスタ素子 54を並列に接続することで 、常温状態である始動時にモータ Mが回転せず (ロック状態)に過電流が流れると、 負特性サーミスタ素子 54が高抵抗であるためヒータ 33側に主として電流が流れ、ヒ ータ 33の加熱により、主バイメタル 21が直ちに電流を遮断する。モータの始動後は、 高温となって負特性サーミスタ素子 54の抵抗値が下がり、ヒータ 33側への電流量が 減少する。このため、瞬時的に過電流が流れても、主バイメタル 21が断とならないの で、安定した動作を行うことができる。  In the relay according to the third embodiment, a heater 33 for heating the main bimetal 21 is connected in series to the main bimetal 21, and a negative characteristic thermistor element 54 is connected in parallel to the heater 33, so that the normal bimetal 21 is connected. If the motor M does not rotate at startup and an overcurrent flows (locked state), the current flows mainly to the heater 33 because the negative-characteristic thermistor element 54 has a high resistance. Bimetal 21 shuts off current immediately. After the motor is started, the temperature becomes high and the resistance of the negative characteristic thermistor element 54 decreases, and the amount of current to the heater 33 decreases. For this reason, even if an overcurrent flows instantaneously, the main bimetal 21 is not disconnected and stable operation can be performed.
[0035] 図 7のグラフを参照して第 3実施形態の継電器の UTC特性について説明する。図 中で縦軸に主バイメタル 21の動作電流、横軸に動作温度を取ってある。第 3実施形 態では、、ヒータが有る場合とヒータが無い場合との中間的な UTC特性を取る。これ により、起動時 (低温)の主バイメタル 21の作動電流値を下げながら、運転中(高温) での主バイメタル 21の作動電流値を高めている。第 3実施形態では、接点を用いる サーモスイッチ部 40の代わりに負特性サーミスタ素子 54を用いるため、信頼性が高 ぃ禾 IJ点がある。  The UTC characteristics of the relay according to the third embodiment will be described with reference to the graph of FIG. In the figure, the vertical axis shows the operating current of the main bimetal 21, and the horizontal axis shows the operating temperature. In the third embodiment, an intermediate UTC characteristic between a case with a heater and a case without a heater is taken. As a result, the operating current value of the main bimetal 21 during operation (high temperature) is increased while the operating current value of the main bimetal 21 during startup (low temperature) is reduced. In the third embodiment, since the negative-characteristic thermistor element 54 is used instead of the thermoswitch section 40 using contacts, there is a high reliability IJ point.
[0036] [第 4実施形態]  [Fourth Embodiment]
図 8を参照して第 4実施形態に係る継電器の回路構成について説明する。 図 2を参照して上述した第 1実施形態では、ヒータ 33に並列にサーモスイッチ部 40 が接続されていた。これに対して、第 4実施形態では、サーモスイッチ部 56が、温度 が増大することによって主バイメタル 21への通電をヒータ 33を通さずに行う側に接続 し、温度が低下することでヒータ 33を通して通電する側に接続するよう構成されてい る。この動作は、図 2を参照して上述した第 1実施形態と同様であるため、説明を省略 する。第 4実施形態では、サーモスイッチ部 40での接点の接触状態により、ヒータ 33 - ^一部の電流が分流することを防止できる利点がある。 The circuit configuration of the relay according to the fourth embodiment will be described with reference to FIG. In the first embodiment described above with reference to FIG. 2, the thermoswitch unit 40 is connected in parallel with the heater 33. On the other hand, in the fourth embodiment, the thermoswitch section 56 is connected to the side where the power is supplied to the main bimetal 21 without passing through the heater 33 due to the increase in the temperature, and the heater 33 is connected to the side where the temperature decreases. It is configured to be connected to the side to be energized through. This operation is the same as in the first embodiment described above with reference to FIG. To do. In the fourth embodiment, there is an advantage that a part of the current of the heater 33- ^ can be prevented from being diverted due to the contact state of the contacts in the thermoswitch section 40.
[0037] [第 5実施形態]  [Fifth Embodiment]
図 9を参照して第 5実施形態に係る継電器の回路構成について説明する。 図 2を参照して上述した第 1実施形態では、ヒータ 33に並列にサーモスイッチ部 40 が接続されていた。これに対して、第 5実施形態では、ヒータ及びサーモスイッチ部が 省略されている。第 5実施形態のように、正特性サーミスタ素子 50のみを用いる場合 でも、主バイメタル 21の復帰時間が長くなつてモータへの通電率が下がり、図 4 (B) の破線で示すように、卷線の温度上昇を抑制することができる。  The circuit configuration of the relay according to the fifth embodiment will be described with reference to FIG. In the first embodiment described above with reference to FIG. 2, the thermoswitch unit 40 is connected in parallel with the heater 33. On the other hand, in the fifth embodiment, the heater and the thermoswitch section are omitted. Even when only the positive temperature coefficient thermistor element 50 is used as in the fifth embodiment, as the return time of the main bimetal 21 increases, the duty ratio to the motor decreases, and as shown by the broken line in FIG. The temperature rise of the wire can be suppressed.
[0038] なお、上述した実施形態では、正特性サーミスタ素子とサーモスイッチ部 40とを併 用する例を挙げた力 正特性サーミスタ素子を用いず、サーモスイッチ部 40のみを 用いる場合でも、図 4 (A)の破線で示すようにモータロック状態での始動時の卷線の 温度上昇のピーク値を抑制することができる。  In the above-described embodiment, even when only the thermoswitch section 40 is used without using the positive temperature coefficient thermistor element as an example in which the positive temperature coefficient thermistor element and the thermoswitch section 40 are used in combination, FIG. As shown by the broken line in (A), the peak value of the temperature rise of the winding at the start in the motor locked state can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]本発明の第 1実施形態を示す継電器を中心線で遮断した正面図である。 FIG. 1 is a front view of a relay according to a first embodiment of the present invention, cut off at a center line.
[図 2]第 1実施形態に係る継電器の電気回路図である。  FIG. 2 is an electric circuit diagram of the relay according to the first embodiment.
[図 3]第 1実施形態の継電器の UTC特性を示すグラフである。  FIG. 3 is a graph showing UTC characteristics of the relay according to the first embodiment.
[図 4] (A)は第 1実施形態の継電器の SZT特性を示すグラフである。 (B)は第 5実施 形態の継電器の SZT特性を示すグラフである。  FIG. 4 (A) is a graph showing SZT characteristics of the relay of the first embodiment. (B) is a graph showing SZT characteristics of the relay of the fifth embodiment.
[図 5]第 2実施形態のサーモスイッチ部の動作を表す説明図である。  FIG. 5 is an explanatory diagram illustrating an operation of a thermoswitch unit according to a second embodiment.
[図 6]第 3実施形態に係る継電器の電気回路図。  FIG. 6 is an electric circuit diagram of a relay according to a third embodiment.
[図 7]第 3実施形態の継電器の UTC特性を示すグラフである。  FIG. 7 is a graph showing UTC characteristics of the relay according to the third embodiment.
[図 8]第 4実施形態に係る継電器の電気回路図である。  FIG. 8 is an electric circuit diagram of a relay according to a fourth embodiment.
[図 9]第 5実施形態に係る継電器の電気回路図である。  FIG. 9 is an electric circuit diagram of a relay according to a fifth embodiment.
[図 10]特許文献 1の継電器の電気回路図である。  FIG. 10 is an electric circuit diagram of the relay of Patent Document 1.
[図 11]特許文献 2の継電器の電気回路図である。  FIG. 11 is an electric circuit diagram of a relay of Patent Document 2.
符号の説明  Explanation of symbols
[0040] 10 継電器 外郭 [0040] 10 relays Outer rim
筒状ケース  Cylindrical case
サーモベース  Thermo base
絶縁材  Insulating material
キャップ  Cap
プロテクタ部  Protector section
皿型の主バイメタル 調節ねじ Dish-shaped main bimetal adjustment screw
A ねじ部 A thread
頭部  Head
熱可溶金属  Heat-soluble metal
コィノレばね  Koinole Spring
タブ端子 Tab terminal
a, 29b 固定接点a, 31b 可動接点 a, 29b Fixed contact a, 31b Movable contact
ヒータ  Heater
サーモスイッチ部 固定側端子  Thermoswitch fixed terminal
固定接点  Fixed contact
可動側端子  Movable terminal
可動接点板  Movable contact plate
サーモ可動接点 サーモバイメタノレ タブ端子  Thermo movable contact Thermo bi-metal tab tab terminal
正特性サーミスタ素子 ガス漏れ検知用バイメタル 負特性サーミスタ素子 サーモスイッチ部  Positive characteristic thermistor element Bimetal for gas leak detection Negative characteristic thermistor element Thermo switch

Claims

請求の範囲 The scope of the claims
[1] 通電される電流が増大することによって電流を遮断する主バイメタル力 成る継電器 を備えた機器において、  [1] In a device equipped with a main bimetallic relay that cuts off the current by increasing the current flow,
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 前記ヒータに並列に接続され、温度が増大することによって接点を接続するサーモ スィッチ部と、を備えることを特徴とする継電器を備えた機器。  A relay connected in series with the main bimetal and heating the main bimetal; and a thermoswitch connected in parallel to the heater and connecting a contact when the temperature increases. Equipment.
[2] 通電される電流が増大することによって電流を遮断する主バイメタル力 成る継電器 を備えた機器において、  [2] In a device equipped with a main bimetallic relay that cuts off the current by increasing the current flowing through it,
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 前記ヒータに並列に接続され、低温時に接点を断、中温時に接点を接続、高温時 に接点を断するサーモスイッチ部と、を備えることを特徴とする継電器を備えた機器。  A heater connected in series with the main bimetal and heating the main bimetal; and a thermoswitch unit connected in parallel with the heater and configured to cut off a contact at a low temperature, connect a contact at a medium temperature, and cut a contact at a high temperature. A device provided with a relay, comprising:
[3] 通電される電流が増大することによって電流を遮断する主バイメタル力 成る継電器 を備えた機器において、 [3] In a device equipped with a main bimetallic relay that cuts off the current by increasing the current flow,
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 前記ヒータに並列に接続された負特性サーミスタ素子と、を備えることを特徴とする 継電器を備えた機器。  A device comprising a relay, comprising: a heater connected in series to the main bimetal for heating the main bimetal; and a negative characteristic thermistor element connected in parallel to the heater.
[4] 通電される電流が増大することによって電流を遮断する主バイメタル力 成る継電器 を備えた機器において、  [4] In a device equipped with a main bimetallic relay that interrupts the current by increasing the current flowing through it,
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子と、  A positive temperature coefficient thermistor element connected in parallel to said main bimetal and heating said main bimetal;
前記主バイメタルに直列に接続され該主バイメタルを加熱するヒータと、 温度が増大することによって前記主バイメタルへの通電を前記ヒータを通さずに行 う側に接続し、温度が低下することで前記ヒータを通して通電する側に接続させるサ 一モスイッチ部と、を備えることを特徴とする継電器を備えた機器。 A heater connected in series to the main bimetal for heating the main bimetal; and energizing the main bimetal without passing through the heater due to an increase in temperature. And a thermoswitch unit connected to a side to be energized through the heater when the temperature is lowered.
通電される電流が増大することによって電流を遮断する主バイメタルカゝら成る継電器 を備えた機器において、 In equipment equipped with a relay consisting of a main bimetallic cable that cuts off the current by increasing the current flow,
前記主バイメタルに並列に接続され該主バイメタルを加熱する正特性サーミスタ素 子を備えることを特徴とする継電器を備えた機器。  A device provided with a relay, comprising: a positive temperature coefficient thermistor element connected in parallel to said main bimetal for heating said main bimetal.
PCT/JP2004/014728 2003-10-08 2004-10-06 Device having relay WO2005036579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003349369 2003-10-08
JP2003-349369 2003-10-08

Publications (1)

Publication Number Publication Date
WO2005036579A1 true WO2005036579A1 (en) 2005-04-21

Family

ID=34431003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014728 WO2005036579A1 (en) 2003-10-08 2004-10-06 Device having relay

Country Status (1)

Country Link
WO (1) WO2005036579A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025001U (en) * 1973-06-29 1975-03-22
JPS5056665A (en) * 1973-09-22 1975-05-17
JPS5126341U (en) * 1974-08-15 1976-02-26
JPS5234964U (en) * 1975-09-03 1977-03-11
JPS57127532U (en) * 1981-01-30 1982-08-09
JPS6261226A (en) * 1985-09-09 1987-03-17 松下冷機株式会社 Overload protector for compressor
JPH05282977A (en) * 1992-03-30 1993-10-29 Texas Instr Japan Ltd Overcurrent protecting device
JPH08171841A (en) * 1994-08-10 1996-07-02 Thermik Geraetebau Gmbh Temperature regulator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025001U (en) * 1973-06-29 1975-03-22
JPS5056665A (en) * 1973-09-22 1975-05-17
JPS5126341U (en) * 1974-08-15 1976-02-26
JPS5234964U (en) * 1975-09-03 1977-03-11
JPS57127532U (en) * 1981-01-30 1982-08-09
JPS6261226A (en) * 1985-09-09 1987-03-17 松下冷機株式会社 Overload protector for compressor
JPH05282977A (en) * 1992-03-30 1993-10-29 Texas Instr Japan Ltd Overcurrent protecting device
JPH08171841A (en) * 1994-08-10 1996-07-02 Thermik Geraetebau Gmbh Temperature regulator

Similar Documents

Publication Publication Date Title
US5345126A (en) Positive temperature coefficient start winding protection
KR101116087B1 (en) Protection apparatus
US4092573A (en) Motor starting and protecting apparatus
JP5342641B2 (en) Thermal switch
KR0156746B1 (en) Overload protective apparatus utilizing a bimetal
USRE31367E (en) Motor starting and protecting apparatus
US3903456A (en) Protector system for an electric motor
RU2466487C1 (en) Overload protection of voltage-reducing device
US20120236441A1 (en) Compressor for an air-conditioner with a motor protector and an air-conditioner
US6239523B1 (en) Cutout start switch
EP0875914B1 (en) Motor starting device and protector module with motor starter cut-out switch
US5627506A (en) Overload protector
JP2005240596A (en) Protective device for electric compressor
JPH0731051A (en) Overcurrent protector having excessive temperature rise preventive function
WO2005036579A1 (en) Device having relay
US20060087774A1 (en) Protection system against an electric motor overload
JP5274155B2 (en) Overcurrent protection device
EP0890967B1 (en) Motor starting and protecting apparatus
US20060291821A1 (en) Series resistor assembly for an electric motor, circuit arrangement comprising a series resistor assembly for operating an electric motor and use of said assembly
JPH09511091A (en) Thermal overload protection device for small electric motor for high heat load
JP5216481B2 (en) Overcurrent protection device
JP3946175B2 (en) Power saving motor start system
JPH05244787A (en) Starting circuit for single-phase induction motor
JP4905947B2 (en) Protective device
WO2005046042A1 (en) Protecting device for an electric motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP