WO2005035054A1 - Refractory period tracking and arrhythmia detection - Google Patents
Refractory period tracking and arrhythmia detection Download PDFInfo
- Publication number
- WO2005035054A1 WO2005035054A1 PCT/US2004/033266 US2004033266W WO2005035054A1 WO 2005035054 A1 WO2005035054 A1 WO 2005035054A1 US 2004033266 W US2004033266 W US 2004033266W WO 2005035054 A1 WO2005035054 A1 WO 2005035054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heart
- systolic
- interval
- probe pulse
- delivery
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/3621—Heart stimulators for treating or preventing abnormally high heart rate
- A61N1/3622—Heart stimulators for treating or preventing abnormally high heart rate comprising two or more electrodes co-operating with different heart regions
Definitions
- the invention relates to cardiac pacing and, more particularly, to delivery of extra- systolic stimulation and arrhythmia detection.
- the refractory period is an interval following a paced or spontaneous depolarization of the heart during which delivery of electrical stimulation to the heart is generally ineffective to cause a second depolarization.
- the refractory period is divided into an absolute refractory period during which no amount of electrical stimulation delivered to the heart will induce a corresponding depolarization, and relative refractory during which electrical stimulation delivered to the heart at an adequate energy level triggers a depolarization.
- the term "refractory period” refers to a period of time that includes both the absolute and relative refractory periods.
- a medical device such as an implantable cardiac pacemaker, can be used to deliver extra-systolic stimulation to the heart.
- extra-systolic stimulation is delivered in the form of pulses to a chamber of the heart an extra-systolic interval (ESI) after a paced or spontaneous systolic depolarization of that chamber.
- Extra-systolic Stimulation (ESS) therapy involves delivery of extra-systolic stimulation after the refractory period, and results in a second depolarization without an attendant myocardial contraction, e.g., a non- systolic depolarization.
- the extra-systolic stimulation may be referred to as "excitatory.”
- Delive y of extra-systolic stimulation within the refractory period does not result in a depolarization, and is therefore often referred to as non-excitatory stimulation (NES).
- NES non-excitatory stimulation
- the second depolarization of the chamber resulting from delivery of a ESS therapy pulse effectively slows the heart rate from its spontaneous rhythm, allowing a greater time for filling of the chamber. Further, the second depolarization of the chamber causes a augmentation of contractile force of the chamber during the heart cycle following the one in which the ESS therapy pulse is applied.
- ESS therapy and NES have been proposed as a therapy for patients with congestive heart failure (CHF) and/or left ventricular dysfunction (LVD).
- CHF congestive heart failure
- LDD left ventricular dysfunction
- the magnitude of the enhanced augmentation decreases as the extra-systolic pulse is delivered further from the end, e.g., boundary, of the refractory period.
- the length of the refractory period can vary between patients, and changes for a particular patient over time based on the physiological condition and activities of the patient. For example, the length of the refractory period can change after resuscitation of the patient, while the patient is taking medications, and while the patient is exercising.
- the invention is directed to techniques for estimating the length of the refractory period of a heart, for adjusting a parameter for delivery of extra-systolic stimulation (ESS) to the heart such as the extra-systolic interval (ESI), and for detecting an arrhythmia during delivery of ESS therapy.
- ESS extra-systolic stimulation
- EAI extra-systolic interval
- Estimations of the refractory period length using the techniques described herein could be useful in a variety of contexts.
- the estimated refractory period length could be monitored over time as an indicator of the progression of heart failure, response to medications, electrolyte disturbances, autonomic tone changes, and risk of arrhythmia.
- Estimated refractory period lengths could also be used to determine proper rate-response for rate-responsive pacing therapies, to set blanking periods and sensing thresholds used by pacemakers during delivery of pacing therapies, to identify the boundaries of ST segments within an electrogram signal, and to identify the refractory period boundary so that NES pulses can be delivered within the refractory period.
- estimation of the length of the refractory period according to the invention is described herein in the context of adjustment of a parameter for delivery of ESS therapy pulses.
- a medical device uses estimated lengths of the refractory period to adjust the ESI, e.g., to maintain a relationship between the ESI and the boundary of the refractory period despite changes in the length of the refractory period.
- a medical device adjusts the ESI to be a fixed interval longer than estimated lengths of the refractory period.
- the medical device can maintain an effective level augmentation during delivery of ESS therapy despite changes in the length of the refractory period.
- a medical device periodically delivers probe pulses to the heart to estimate the location of the end, e.g., boundary, of the refractory period, and accordingly estimate its length.
- the medical device delivers probe pulses an interval after a systolic depolarization that is less than current ESI.
- the medical device increases the interval if the previous probe pulse fails to capture the heart, and decreases the interval if the previous probe pulse captured the heart.
- the medical device determines whether two consecutive probe pulses did and did not capture the heart, respectively, and the estimates the length of the refractory period as a value between the intervals of the consecutive probe pulses.
- the medical device in response to detecting that the refractory period length has changed, e.g., determining that both of two consecutive probe pulses either captured or did not capture the heart, delivers a series of probe pulses with increasing or decreasing intervals in order to relocate boundary of the refractory period and estimate its length.
- the probe pulses of the series are delivered every cardiac cycle rather than periodically until the refractory period boundary is relocated.
- the ESI is adjusted based on a measured delay between delivery of an extra-systolic pulse and detection of an evoked response resulting from the pulse.
- the latency of the evoked response resulting from an extra-systolic pulse depends of the timing of the delivery of the pulse relative to the boundary of the refractory period. The latency decreases rapidly from the boundary to a break point. The latency does not vary substantially between pulses delivered at various intervals after the break point.
- a pair of probe pulses is delivered, each probe pulse delivered during a separate cardiac cycle. One of the probe pulses is delivered an interval after a systolic depolarization that is intended to place it between the refractory period and the latency break point. The other probe pulse is delivered an interval after a systolic depolarization that is intended to place it after the break point.
- the medical device compares the delays associated with the first and second probe pulses. If the delay associated with the first probe pulse is less than the delay associated with the second probe pulse, the medical device determines that the refractory period length has increased such that the first probe pulse is within refractory period, and increases the interval for the probe pulses and the ESI. If the delays associated with the first and second probe pulses are substantially equal, the medical device determines that the refractory period length has decreased such that the first and second probe pulses were delivered after the break point, and decreases the intervals for the probe pulses and the ESI.
- the medical device determines that the refractory period length remains substantially unchanged because the first and second probe pulses were in fact delivered on their respective sides of the break point, and does not adjust the probe pulse intervals or the ESI.
- the medical device periodically delivers a probe pulse an interval after detection of systolic depolarizations intended to place the probe pulse between the refractory period boundary and the latency break point. The medical device measures the delay between delivery of the probe pulse and the resulting evoked response, and compares the delay to thresholds.
- a medical device monitors delays between delivery of ESS therapy pulses and detection of subsequent depolarizations to detect an arrhythmia of the heart.
- a medical device delivers ESS therapy pulses after the latency break point, and, consequently, the delays between ESS therapy pulses and the evoked responses resulting from delivery of ESS therapy pulses will generally be stable.
- the medical device can treat the determination as a detection of an arrhythmia or take action to determine if the early depolarization is the result of an arrhythmia.
- the medical device compares delays resulting from coupled pulses, e.g., ESS therapy pulses delivered after an intrinsic systolic depolarization, with previous delays resulting from coupled pulses, and compares delays resulting from paired pulses, e.g., ESS therapy pulses delivered after a paced systolic depolarization, with previous delays resulting from paired pulses.
- the medical device suspends delivery of ESS therapy, e.g., for one cardiac cycle, in response to detection of an early depolarization.
- the medical device can more easily apply known arrhythmia detection algorithms while delivery of ESS therapy is suspended due to the absence of blanking intervals associated with delivery of ESS therapy pulses.
- the medical device morphologically analyzes the early depolarization to determine whether the depolarization is the result of an arrhythmia. In some embodiments where the medical device delivers probe pulses to determine adjustments to the ESI of ESS therapy pulses, the medical device does not measure the delay during cardiac cycles during which a probe pulse is delivered.
- the invention is directed to a method in which a length of a refractory period of a heart is estimated, and a parameter for delivery of extra-systolic stimulation to the heart is set based on the estimated length.
- the invention is directed to a medical device comprising electrodes and a processor.
- the processor controls delivery of extra-systolic stimulation to a heart of a patient as a function of a parameter.
- the processor estimates a length of a refractory period of the heart, and sets a value for the parameter based on the estimated length.
- the invention is directed to a computer-readable medium containing instructions.
- the instructions cause a programmable processor to estimate a length of a refractory period of a heart, and set a parameter for delivery of extra-systolic stimulation to the heart based on the estimated length.
- the invention is directed to a method in which a systolic depolarization of a heart is detected, and a probe pulse is delivered an interval after detection of the systolic depolarization. Whether the probe pulse captured the heart is determined, and a length of a refractory period of the heart is estimated based on the determination.
- the invention is directed to a medical device comprising electrodes and a processor.
- the processor detects a systolic depolarization of a heart of a patient via the electrodes, controls delivery of a probe pulse via the electrodes an interval after detection of the systolic depolarization, determines whether the probe pulse captured the heart, and estimates a length of a refractory period of the heart based on the determination.
- the invention is directed to a computer-readable medium containing instructions.
- the instructions cause a programmable processor to detect a systolic depolarization of a heart, control delivery of a probe pulse an interval after detection of the systolic depolarization, determine whether the probe pulse captured the heart, and estimate a length of a refractory period of the heart based on the dete ⁇ nination.
- the invention is directed to a method in which a delay between delivery of a pulse to a heart and detection of an evoked response resulting from delivery of the pulse is measured, and a parameter for delivery of extra-systolic stimulation to the heart is adjusted based on the delay.
- the invention is directed to a medical device comprising electrodes and a processor that controls delivery of pulses and extra-systolic stimulation to a heart of a patient and detect evoked response via the electrodes.
- the processor measures a delay between delivery of a pulse to the heart and detection of an evoked response resulting from delivery of the pulse, and adjusts a parameter for delivery of extra-systolic stimulation to the heart based on the delay.
- the invention is directed to a computer-readable medium containing instructions.
- the instructions cause a programmable processor to measure a delay between delivery of a pulse to a heart and detection of an evoked response resulting from delivery of the pulse, and adjust a parameter for delivery of extra-systolic stimulation to the heart based on the delay.
- the invention is directed to a method in which intervals between delivery of extra-systolic pulses to a heart and subsequent depolarizations of the heart are measured, and an arrhythmia of the heart is detected based on the intervals.
- the invention is directed to a medical device comprising electrodes and a processor that controls delivery of extra-systolic pulses to a heart and detects depolarizations of the heart via the electrodes.
- the processor measures intervals between delivery of extra-systolic pulses and subsequent depolarizations, and detects an arrhythmia of the heart based on the intervals.
- the invention is directed to a computer-readable medium containing instructions. The instructions cause a programmable processor to measure intervals between delivery of extra-systolic pulses to a heart and subsequent depolarizations of the heart, and detects an arrhythmia of the heart based on the intervals.
- FIG. 1 is a conceptual diagram illustrating an exemplary implantable medical device that delivers ESS therapy implanted within a patient.
- FIG. 2 is conceptual diagram further illustrating the implantable medical device of
- FIG. 1 and the heart of the patient.
- FlG. 3 is a functional block diagram further illustrating the implantable medical device of FIG. 1.
- FIG. 4 is a diagram illustrating the relationship between the extent of augmentation and the timing of delivery of an extra-systolic pulse relative to the boundary of the refractory period.
- FIG. 5 is a timing diagram illustrating an example mode of operation of the implantable medical device of FIG. 1 to estimate the length of the refractory period and set an extra-systolic interval for delivery of ESS therapy based on the estimated length.
- FIG. 6 is a flow diagram further illustrating the example mode of operation of FIG.
- FIG. 7 is a timing diagram illustrating an example mode of operation of the implantable medical device of FIG. 1 to adjust the extra-systolic interval based on delays between delivery of extra-systolic stimulation pulses and resulting evoked responses.
- FIG. 8 is a flow diagram further illustrating the example mode of operation of FIG. 7.
- FIG. 9 is a flow diagram illustrating another example mode of operation of the implantable medical device of FIG. 1 to adjust the extra-systolic interval based on delays between delivery of extra-systolic stimulation pulses and resulting evoked responses.
- FIG. 8 is a flow diagram further illustrating the example mode of operation of FIG. 7.
- FIG. 9 is a flow diagram illustrating another example mode of operation of the implantable medical device of FIG. 1 to adjust the extra-systolic interval based on delays between delivery of extra-systolic stimulation pulses and resulting evoked responses.
- FIG. 10 is a timing diagram illustrating an example mode of operation of the implantable medical device of FIG 1 to detect an arrhythmia of the heart based on delays between delivery of extra-systolic stimulation pulses and subsequent depolarizations.
- FIG. 11 is a flow diagram further illustrating the example mode of operation of FIG. 10.
- FIG. 1 is a conceptual diagram illustrating an exemplary implantable medical device (IMD) 10 implanted within patient 12. IMD 10 delivers ESS therapy to heart 16 of patient 12. In the illustrated embodiment, IMD 10 takes the form of a multi-chamber cardiac pacemaker. IMD 10 is coupled to leads 14A, 14B and 14C (collectively "leads 14") that extend into the heart 16 of patient 12.
- leads 14A, 14B and 14C collectively "leads 14"
- RV lead 14A extends through one or more veins (not shown), the superior vena cava (not shown), and right atrium 24, and into right ventricle 18.
- Left ventricular (LV) coronary sinus lead 14B extends tlirough the veins, the vena cava, right atrium 24, and into the coronary sinus 20 to a point adjacent to the free wall of left ventricle 22 of heart 16.
- Right atrial (RA) lead 14C extends through the veins and vena cava, and into the right atrium 24 of heart 16.
- Each of leads 14 includes electrodes (not shown in FIG. 1).
- IMD 10 delivers ESS therapy pulses to one or more of chambers 18, 22, and 24 via electrodes carried by one or more of leads 14.
- IMD 10 also delivers pacing pulses to one or more of chambers 18, 22, and 24 via electrodes carried by one or more of leads 14.
- ESS therapy and pacing pulses have a single phase, are biphasic, or are multiphasic.
- IMD 10 also senses electrical activity within chambers 18, 22, and 24 via - Si - electrodes carried on leads 14. The electrodes on leads 14 are unipolar or bipolar, as is well known in the art.
- IMD 10 delivers ESS therapy pulses to one or more of chambers 18, 22, and 24 an ESI after an intrinsic or paced depolarization of that chamber.
- IMD 10 delivers ESS therapy pulses continuously, periodically, in response to user activation, as a function of measured physiological parameters, or the like.
- Exemplary techniques for delivering and controlling delivery of ESS therapy are described in U.S Patent No. 5,213,098 and prior, co-pending non-provisional U.S. patent application serial number 10/322,792 (Any. Dkt. P-9854.00) filed 28 August 2002 and its corresponding PCT application (publication no. WO 02/053026) by Deno et al., both of which are hereby incorporated herein by reference, discloses a family of implantable medical devices for delivering post extra-systolic augmentation stimulation.
- IMD 10 estimates a length of the refractory period of heart 16, and adjusts the ESI based on estimated length, e.g., to maintain a relationship between the ESI and the boundary of the refractory period despite changes in the length of the refractory period.
- IMD 10 adjusts the ESI to be a fixed interval longer than estimated lengths of the refractory period.
- the IMD 10 can maintain an effective level augmentation during delivery of ESS therapy despite changes in the length of the refractory period.
- IMD 10 periodically delivers probe pulses to heart 16 via the electrodes carried on leads 14 to estimate the location of the end, e.g., boundary, of the refractory period, and accordingly estimate its length. IMD 10 estimates the location of the boundary of the refractory period based on whether the probe pulses capture heart 16. IMD 10 delivers probe pulses at various intervals after systolic depolarizations that are less than a current ESI to detect the boundary of the refractory period. In exemplary embodiments, IMD 10 delivers the probe pulses with substantially the same amplitude, width and shape as ESS therapy pulses.
- IMD 10 adjusts the ESI based on a measured delay between delivery of an extra-systolic pulse, e.g., a probe pulse and detection of an evoked response resulting from the pulse.
- IMD 10 detects evoked responses resulting from ESS therapy pulses via electrodes carried on leads 14.
- IMD 10 may employ a variety of techniques to detect evoked responses despite the application of blanking intervals following delivery of ESS therapy pulses, as will be described in greater detail below.
- IMD 10 monitors delays between delivery of ESS therapy pulses and detection of subsequent depolarizations to detect an arrhythmia of heart 16.
- IMD 10 detects an arrhythmia by detecting instability in the lengths of the delays.
- IMD 10 suspends delivery of ESS therapy, e.g., for one cardiac cycle, in response to detection of instability in the delays in order to, for example, apply an arrhythmia detection algorithm in order to determine if the instability is caused by an arrhythmia.
- the configuration of IMD 10 and leads 14 illustrated in FIG. 1 is merely exemplary. In various embodiments, IMD 10 is coupled to any number of leads 14 that extend to a variety of positions within or outside of heart 16.
- IMD 10 is coupled to a lead 14 that extends to left atrium 26 of heart 16, or epicardial leads instead of or in addition to the transvenous leads 14 illustrated in FIG 1.
- the invention is not limited to IMDs, but may instead include an external medical device that delivers ESS therapy pulses to heart 16.
- Such medical device can deliver pacing and ESS therapy pulses to heart 16 via percutaneous leads that extend through the skin of patient 12 to a variety of positions within or outside of heart 16, or transcutaneous electrodes placed on the skin of patient 12.
- FIG. 2 is a conceptual diagram further illustrating IMD 10 and heart 16 of patient 12.
- each of leads 14 includes an elongated insulative lead body carrying a number of concentric coiled conductors separated from one another by tubular insulative sheaths.
- bipolar electrode pairs 30 and 32, 34 and 36, and 38 and 40 are located adjacent distal end of leads 14A, 14B and 14C, respectively.
- electrodes 30, 34 and 38 take the form of ring electrodes
- electrodes 32, 36 and 40 take the form of extendable helix tip electrodes mounted refractably within insulative electrode heads 42, 44 and 46, respectively.
- Each of - l i the electrodes 30-40 is coupled to one of the coiled conductors within the lead body of its associated lead 14.
- IMD 10 senses electrical signals attendant to the depolarization and repolarization of heart 16 via selected ones of electrodes 30, 32, 34, 36, 38 and 40. The electrical signals are conducted to IMD 10 via leads 14. IMD 10 also delivers ESS therapy pulses, and in some embodiments pacing pulses and probe pulses, via one or more of the bipolar electrode pairs. In the illustrated embodiment, IMD 10 also includes an indifferent housing electrode 48, fo ⁇ ned integrally with an outer surface of the hermetically sealed housing 50 of IMD 10. In such embodiments, IMD 10 is capable of using any of electrodes 30, 32, 34, 36, 38 and 40 for unipolar sensing or pulse delivery in combination with housing electrode 48.
- IMD 10 delivers defibrillation and/or cardioversion shocks to heart 16 via elongated coil defibrillation electrodes (not shown) carried on one or more of leads 14.
- IMD 10 also includes a sensor 52 that generates a signal as a function of a physiological parameter of patient 12. As will be described in greater detail below, IMD 10 processes the output of sensor 52 to determine whether probe pulses captured heart 16.
- sensor 52 takes the form of an intracardiac pressure sensor. In such embodiments, IMD 10 processes the signal to measure of the derivative of the intracardiac pressure, which reflects augmentation of heart 16.
- sensor 52 is a capacitive absolute pressure sensor, as described in U.S. Pat.
- sensor 52 takes the form of an accelerometer located on the distal end of lead 14B to measure isovolumetric acceleration, or an oximeter located on lead 14A to measure oxygen saturation as a surrogate for flow changes. In each of these cases, the measured parameter reflects the intensity of augmentation. Further the invention is not limited to embodiments of IMD 10 that include a sensor that generates a signal as a function of a physiological parameter of patient 12.
- FIG 3 is a functional block diagram of IMD 10.
- IMD 10 takes the form of a multi-chamber pacemaker having a microprocessor-based architecture.
- this diagram should be taken as exemplary of the type of device in which various embodiments of the present invention may be embodied, and not as limiting, as it is believed that the invention may be practiced in a wide variety of device implementations.
- IMD 10 includes a microprocessor 60.
- Microprocessor 60 executes program instructions stored in a memory, e.g., a computer-readable medium, such as a ROM (not shown), EEPROM (not shown), and/or RAM 62 which control microprocessor 60 to perform the functions ascribed to microprocessor 50 herein.
- Microprocessor 60 is coupled to, e.g., to communicate with and/or control, various other components of EVID 10 via an address/data bus 64.
- IMD 10 senses electrical activity within heart 16, delivers ESS therapy pulses and probe pulses to heart 16, and, in some embodiments, delivers pacing pulses to heart 16.
- Pacer/timing control circuitry 66 controls delivery of ESS therapy, probe, and pacing pulses by one or more of output circuits 68-72 via electrodes 30-40.
- output circuit 68 is coupled to electrodes 30 and 32 to deliver pulses to right ventricle 18
- output circuit 70 is coupled to electrodes 34 and 34 to deliver pulses to left ventricle 22
- output circuit 72 is coupled to electrodes 38 and 40 to deliver pulses to right atrium 24.
- Output circuits 68-72 include known circuitry for storage and delivery of energy in the form of pulses, such as switches, capacitors, and the like.
- Pacer timing/control circuitry 66 includes programmable digital counters that control the timing of delivery of pulses the values of which are set based on information received from microprocessor 60 via data bus 64.
- a counters maintained by circuitry 66 reflect the ESI and the intervals between detection of a systolic depolarization and delivery of a probe pulse.
- Circuitry 66 also preferably controls escape intervals associated with pacing, such as atrial and/or ventricular escape intervals associated with a selected mode of pacing.
- IMD 10 delivers cardiac resynchronization therapy (CRT), and circuitry 66 controls a V-V interval for delivery of bi- ventricular pacing.
- Pacer/timing control circuitry 66 resets interval counters upon detection of R- waves or P-waves, or generation of pacing pulses, and thereby controls the basic timing of ESS therapy and cardiac pacing functions.
- Intervals defined by pacing circuitry 66 also include refractory periods during which sensed R-waves and P-waves are ineffective to restart timing of escape intervals. The durations of these intervals are determined by microprocessor 50 in response to data stored in RAM 62, and are communicated to circuitry 66 via address/data bus 64.
- the amplitude of the pulses is also determined by circuitry 66 under control of microprocessor 60.
- Microprocessor 60 operates as an interrupt driven device, and is responsive to interrupts from pacer timing/control circuitry 66 corresponding to the occurrence of sensed P-waves and R-waves and corresponding to the generation of cardiac pacing pulses. Those interrupts are provided via data/address bus 64. Any necessary mathematical calculations to be performed by microprocessor 60 and any updating of the values or intervals controlled by pacer timing/control circuitry 66 take place following such interrupts.
- IMD 10 senses electrical activity within heart 16 via sense amplifiers 74, 78 and 82, which sense electrical activity within right ventricle 18, left ventricle 22, and right atrium 24, respectively.
- Sense amplifiers 74, 78 and 82 take the form of automatic gain controlled amplifiers providing an adjustable sensing threshold as a function of the measured P-wave or R-wave amplitude.
- Sense amplifiers 74, 78 and 82 generate signals on RV out line 76, LV out line 80 and RA out line 84, respectively, whenever the signal sensed between the electrodes coupled thereto exceeds the present sensing threshold.
- sense amplifiers 74, 78 and 82 are used to detect intrinsic right ventricular, left ventricular, and right atrial depolarizations, e.g., R-waves and P-waves, respectively.
- sense amplifiers 74, 78 and 82 are also used to detect evoked responses resulting from delivery of ESS therapy or probe pulses.
- detection of evoked responses is complicated by the blanking of sense amplifiers 74, 78 and 82 following delivery of a pulse via the electrodes coupled to that amplifier.
- IMD 10 delivers biphasic pulses to heart 16, which result in less polarization of cardiac tissue near the electrodes used to the pulse.
- pacer timing/control circuit 66 can apply shorter blanking intervals to sense amplifiers 74, 78 and 82, allowing for more effective detection of evoked responses via sense amplifiers 74, 78 and 82.
- sense amplifiers 74, 78 and 82 detect electrical activity, e.g., an evoked response, within a chamber of heart 16 via a different set of electrodes than is used to deliver ESS therapy, probe and pacing pulses to that chamber as described in commonly assigned U.S. Application No. 10/680,695 (Arty. Dkt.
- microprocessor 60 applies known digital signal processing techniques to an electrogram signal detected by selected electrodes in order to detect evoked responses despite the presence of noise causes by myocardial tissue polarization.
- Switch matrix 86 is used to select which of the available electrodes 30-40, 48, 98 and 99 are coupled to wide band (0.5 -200 Hz) amplifier 88 for use in digital signal analysis. Selection of electrodes is controlled by microprocessor 60 via data/address bus
- IMD 10 detects ventricular and/or atrial tachycardias or fibrillations of heart 16 using tachycardia and fibrillation detection techniques and algorithms known in the art.
- the presence of a ventricular or atrial tachycardia or fibrillation can be confirmed by detecting a sustained series of short R-R or P-P intervals of an average rate indicative of tachycardia, or an unbroken series of short R-
- microprocessor 60 digitally analyzes an electrogram signal using known techniques to detect ventricular and/or atrial tachycardias or fibrillations of heart 16.
- microprocessor 60 applies a morphological analysis to some depolarizations detected subsequent to delivery of ESS therapy pulses to detect an arrhythmia.
- the morphological analysis can include, for example, an analysis of the width of the depolarization and/or a wavelet analysis.
- IMD 10 is also capable of delivering one or more anti-tachycardia pacing (ATP) therapies to heart 16, and/or defibrillation or cardioversion pulses to heart 16 via one or more of electrodes 30-40, 48, 98 and 99. Electrodes 98 and 99 are coupled to defibrillation circuit 96, which delivers defibrillation and/or cardioversion pulses under the control of microprocessor 60.
- Defibrillation circuit 96 includes energy storage circuits such as capacitors, switches for coupling the storage circuits to electrodes 98 and 99, and logic for controlling the coupling of the storage circuits to the electrodes to create pulses with desired polarities and shapes.
- Microprocessor 60 may employ an escape interval counter to control timing of such defibrillation pulses, as well as associated refractory periods.
- the invention is not limited to embodiments where IMD 10 includes defibrillator functionality.
- IMD 10 also includes a parameter monitor circuit 94.
- Parameter monitor circuit 94 processes the signal received from sensor 52, and provides a result of the processing to microprocessor 60 for use in determimng whether a probe pulse captured heart 16.
- monitor circuit 94 processes the pressure signal to provide information indicating the derivative of the pressure signal, which indicates the extent of augmentation, to microprocessor 60.
- FIG. 4 is a diagram illustrating the relationship between the extent of augmentation and the timing of delivery of an extra-systolic pulse 100 relative to the boundary 102 of the refractory period 104. Specifically, FIG. 4 includes a curve 106, which illustrates relationship between the extent of augmentation and the time of delivery of a pulse during a cardiac cycle.
- Refractory period 104 is typically less than 100 milliseconds (ms) in duration, and begins following a paced or spontaneous systolic depolarization of heart 16. Pulses delivered within refractory period 104 result in no augmentation. As shown in FIG. 4, delivery of ESS therapy pulse 100 an ESI 108 after a paced or intrinsic depolarization results in significant augmentation. However, physiological conditions of patient 12 may result in lengthening or shortening of refractory period 104, i.e., movement of boundary 102 and curve 106. If boundary 102 and curve 106 move, the augmentation resulting from delivery of ESS therapy pulse 100 according to ESI 108 can be diminished or, if ESS therapy pulse 100 is delivered during refractory period 104, lost.
- FIG. 5 is a timing diagram illustrating an example mode of operation of IMD 10 to estimate the length of the refractory period and set the ESI based on the estimated length.
- FIG. 5 illustrates a mode of operation in which IMD 10 delivers a probe pulse 110 every N cardiac cycles to detect the boundary 102 of refractory period 104 (FIG. 4).
- N is equal to 4.
- Therapy pulses 112, e.g., ESS therapy pulses are delivered the ESI after detection of a systolic depolarization during cardiac cycles in which a probe pulse 110 is not delivered.
- IMD 10 increases the interval for delivery of a subsequent probe pulse 110 upon detection that the current probe pulse 110 did not capture heart 16, and decreases the interval for delivery of a subsequent probe pulse 110 upon detection that the current probe pulse 110 captured heart 16.
- IMD 10 estimates the length of the refractory period based on a determination that consecutive probe pulses 110 transition between capturing and not capturing heart 16. IMD sets an estimated length 114 of the refractory period at a value between the intervals at which transitioning probe pulses were delivered. In the illustrated example, IMD 10 sets estimated length 114 at the average of the two intervals. In the illustrated example, the ESI is a set an amount of time longer than estimated refractory period length 114, such as 40 milliseconds. The increases and decreases in the interval for delivery of probe pulses 110 can be a constant value, such as 20 ms. As shown in FIG.
- IMD 10 maintains the current value of the ESI and estimated refractory period length 114 so long as probe pulses 110 continue to transition between capture and non-capture.
- refractory boundary 102 moves, and, consequently, a probe pulse 110 that was expected to capture heart 16 does not capture heart 16.
- IMD 10 decreases the interval for delivery of each of a series of probe pulses 110 until one of the probe pulses 110 captures heart 16.
- IMD 10 detects a capture / non-capture transition, and sets estimated refractory period length 114 and the ESI as described above.
- IMD 10 decreases or increases the interval for delivery of successive probe pulses 110 until another capture / non-capture transition is detected, e.g., until boundary 102 is found.
- IMD 10 delivers probe pulses 110 every cardiac cycle after an expected capture or non-capture does not occur in order to more quickly relocate boundary 102.
- IMD 10 applies lock-outs to avoid arriving at unsafe or undesirable ESI via the described techniques. For example, IMD 10 can prevent the ESI from exceeding or falling below certain values, such as 400 ms and 180 ms, respectively.
- IMD 10 prevents the probe pulse delivery interval and ESI from being too close to each other as IMD 10 relocates boundary 102 by, for example, adjusting the ESI to be at least 30 ms greater than the probe pulse interval.
- IMD 10 determines whether a probe pulse captures heart 16 by detecting evoked responses via sense amplifiers 74, 78 and 82 or digital processing of an electrogram signal. In other embodiments, IMD 10 determines whether a probe pulse captured the heart by comparing the augmentation resulting from consecutive probe pulses 110.
- FIG. 6 is a flow chart further illustrating the mode of operation of FIG. 5. IMD 10 detects a systolic depolarization of heart 16 (120), and determines whether a probe pulse 110 is scheduled for delivery during the current cardiac cycle (122).
- IMD 10 delivers a therapy pulse 112 the current ESI after detection of the systolic depolarization (124). If delivery of a probe pulse 110 is scheduled for this cardiac cycle, IMD 10 delivers the probe pulse 110 an interval after detection of the systolic depolarization that is determined based on the interval for a previous probe pulse 110 and whether the previous probe pulse 110 captured heart 16 (126). IMD 10 determines whether the current probe pulse 110 captured heart 16 (128). If the probe pulse 110 captured heart 16, IMD 10 decreases the probe pulse delivery interval for delivery of a subsequent probe pulse 110 (130).
- IMD 10 determines that the previous probe pulse 110 did not capture heart 16 (132)
- IMD 10 identifies a capture / non-capture transition, sets an estimated refractory period length 114 at a value between the delivery intervals for the previous and current probe pulses 110 (134), and sets the ESI to be an amount of time greater than the estimated refractory period length 114 (136). If the current probe pulse 110 did not capture heart 16, IMD 10 increases the probe pulse delivery interval for delivery of a subsequent probe pulse 110 (138).
- FIG. 7 is a timing diagram illustrating an example mode of operation of IMD 10 to adjust the ESI based on delays between delivery of extra-systolic pulses and resulting evoked responses. As illustrated by FIG.
- latency curve 150 illustrates an example relationship between evoked response latency and the time at which an extra- systolic pulse is delivered relative to the boundary of the refractory period. As illustrated in FIG. 7, the latency decreases rapidly from an initial maximum at the refractory period boundary to a break point 152. The latency does not vary substantially between pulses delivered at various intervals after break point 152.
- IMD 10 delivers probe pulses 110, measures tire delays between delivery of the probe pulses 110 and associated evoked responses, and adjusts the ESI and intervals for delivery of probe pulses based on the delays.
- IMD 10 delivers a probe pulse 110 every N cardiac cycles.
- IMD 10 delivers a first probe pulse 110A a first interval after detection of a first systolic depolarization 154, and a second probe pulse HOB a second interval after detection of a second systolic depolarization 154.
- IMD 10 compares the delays associated with the first and second probe pulses 110 to determine whether the ESI and probe pulse delivery intervals need to be adjusted.
- IMD 10 similarly adjusts the delivery intervals for probe pulses 110 and the ESI in order to maintain an interval between the refractory period boundary and ESS therapy pulses 112.
- the delivery intervals and ESI are adjusted until the first pulse 110A occurs between the refractory period boundary and break point 152, and second pulse 110B occurs after break point 152. If the delay associated with first probe pulse 110A is less than the delay associated with second probe pulse 110B, IMD 10 determines that first probe pulse 110A is within the refractory period and increases the interval for the probe pulses and the ESI.
- FIG. 8 is a flow diagram further illustrating the example mode of operation of FIG. 7.
- IMD 10 delivers the first and second probe pulses 110A and HOB at respective probe pulse delivery intervals during respective cardiac cycles (160), and compares the delays of respective evoked responses detected subsequent to delivery of the probe pulses 110 (162).
- the probe pulse delivery interval for the first probe pulse 110A is less than the probe pulse delivery interval of the second probe pulse HOB by, for example, 20 ms. If IMD 10 determines that the delay between of first probe pulse 110A and its resulting evoked response is less than the delay between second probe pulse HOB and its resulting evoked response (164), IMD 10 increases the ESI and the probe pulse delivery intervals by, for example, 10 ms (166).
- FIG. 9 is a flow diagram illustrating another example mode of operation of IMD 10 to adjust the ESI based on delays between delivery of extra-systolic stimulation pulses and resulting evoked responses. Specifically, FIG.
- IMD 10 periodically delivers probe pulses 110 a single, adjustable probe pulse delivery interval after detection of systolic depolarizations, and determines whether to adjust the ESI and the probe pulse delivery interval based on comparison of the delays between the probe pulses 110 and the evoked responses resulting from delivery of the probe pulsesllO with threshold values.
- IMD 10 is able to maintain the ESS therapy pulses on a desired portion of the latency curve and, hence, a desired distance from the boundary of the refractory period.
- IMD 10 delivers a probe pulse 110 a probe pulse delivery period after detection of a systolic depolarization (180) and measures the delay between delivery of the probe pulse 110 and a resulting evoked response. If IMD 10 does not detect an evoked response resulting from delivery of the probe pulse 110, or determines the delay is greater than a first threshold (182), IMD 10 increases the probe pulse delivery interval and the ESI (184). If IMD 10 determines that the delay is less than a second threshold (186), IMD 10 decreases the probe pulse delivery interval and the ESI (188). If IMD 10 measures a delay that is between the thresholds, IMD does not change the probe pulse delivery interval or the ESI (190). FIG.
- IMD 10 is a timing diagram illustrating an example mode of operation of IMD 10 to detect an arrhythmia of heart 16 based on delays 200 between delivery of extra-systolic stimulation pulses 202 and subsequent depolarizations 204.
- IMD 10 delivers ESS therapy pulses 202 after latency break point 152 (FIG. 7), and, consequently, the delays 200 between ESS therapy pulses 202 and the evoked responses 204A and 204B resulting from delivery of ESS therapy pulses will generally be stable.
- IMD 10 detects an arrhytlnnia of heart 16 by detecting instability of the lengths of delays 200.
- IMD 10 determines that the difference between a current delay 200C and a previous delay 200B is greater than a threshold value, e.g., the current depolarization 204C occurs earlier than expected, IMD 10 treats the detennination as a detection of an arrhytlimia or takes action to determine if the early depolarization 204C is the result of an arrhythmia.
- a threshold value e.g., the current depolarization 204C occurs earlier than expected
- IMD 10 compares delays resulting from coupled pulses, e.g., ESS therapy pulses delivered after an intrinsic systolic depolarization such as ESS therapy pulse 202B delivered after intrinsic depolarization 206B, with previous delays resulting from coupled pulses, and compares delays resulting from paired pulses, e.g., ESS therapy pulses 202A and 202C delivered after a paced systolic depolarizations 206A and 206B, with previous delays resulting from paired pulses.
- IMD 10 suspends delivery of ESS therapy, e.g., for one cardiac cycle, in response to detection of early depolarization 204C.
- IMD 10 can more easily apply known arrhythmia detection algorithms while delivery of ESS therapy is suspended due to the absence of blanking intervals associated with delivery of ESS therapy pulses 202.
- IMD 10 morphologically analyzes early depolarization 204C to determine whether depolarization 204C is the result of an arrhythmia.
- IMD 10 delivers probe pulses to determine adjustments to the ESI of ESS therapy pulses as described above, IMD 10 does not measure the delay during cardiac cycles during which a probe pulse is delivered.
- FIG. 11 is a flow diagram further illustrating the example mode of operation of FIG. 10. IMD 10 delivers a ESS therapy pulse 202 (210) and measures a delay 200 between ESS therapy pulse 202 and a subsequently detected depolarization 204 (212).
- IMD 10 compares delay 200 to a previously measured delay 200 (214), and in some embodiments selects previously measured delay 200 based on whether the current and previous ESS therapy pulses 202 are both paired or coupled. If IMD 10 detennines that the difference between current and previous ESS therapy pulses 202 exceeds a threshold value (216), IMD 10 withholds delivery of a ESS therapy pulse 202 for the next cycle (218). During that cycle, IMD 10 applies arrhythmia detection teclniiques (220), such as well-known arrhythmia detection algorithms and/or morphological analysis of the early subsequently detected depolarization 204.
- arrhythmia detection teclniiques such as well-known arrhythmia detection algorithms and/or morphological analysis of the early subsequently detected depolarization 204.
- IMD 10 determines whether an arrhythmia is occurring based on the detection techniques (222), and delivers one or more therapies, such as ATP, cardioversion and/or defibrillation therapies, in response to a determination that an airhyfhmia is occurring.
- therapies such as ATP, cardioversion and/or defibrillation therapies
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04794579A EP1684855A1 (en) | 2003-10-07 | 2004-10-07 | Refractory period tracking and arrhythmia detection |
AU2004280239A AU2004280239A1 (en) | 2003-10-07 | 2004-10-07 | Refractory period tracking and arrhythmia detection |
CA002540855A CA2540855A1 (en) | 2003-10-07 | 2004-10-07 | Refractory period tracking and arrhythmia detection |
IL174572A IL174572A0 (en) | 2003-10-07 | 2006-03-27 | Refractory period tracking and arrhythmia detection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/680,528 US7184832B2 (en) | 2003-10-07 | 2003-10-07 | Refractory period tracking and arrhythmia detection |
US10/680,528 | 2003-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005035054A1 true WO2005035054A1 (en) | 2005-04-21 |
Family
ID=34394352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/033266 WO2005035054A1 (en) | 2003-10-07 | 2004-10-07 | Refractory period tracking and arrhythmia detection |
Country Status (6)
Country | Link |
---|---|
US (1) | US7184832B2 (en) |
EP (1) | EP1684855A1 (en) |
AU (1) | AU2004280239A1 (en) |
CA (1) | CA2540855A1 (en) |
IL (1) | IL174572A0 (en) |
WO (1) | WO2005035054A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8046064B2 (en) | 2006-04-24 | 2011-10-25 | Medtronic, Inc. | Method of delivering PESP/ICC as well as adjusting the refractory period of the heart |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8165674B2 (en) | 2005-03-02 | 2012-04-24 | Backbeat Medical, Inc. | Methods and apparatus to increase secretion of endogenous naturetic hormones |
US7546161B1 (en) | 2006-01-11 | 2009-06-09 | Pacesetter, Inc. | Methods for loss of capture and fusion avoidance in biventricular pacing therapy |
US9149638B2 (en) * | 2006-01-30 | 2015-10-06 | Medtronic, Inc. | Method and system for controlling pulmonary capillary pressure |
US7801608B2 (en) * | 2006-06-05 | 2010-09-21 | Cardiac Pacemakers, Inc. | Method and apparatus for closed-loop control of anti-tachyarrhythmia pacing using hemodynamic sensor |
US7869874B2 (en) | 2006-09-25 | 2011-01-11 | G&L Consulting, Llc | Methods and apparatus to stimulate heart atria |
US20080188900A1 (en) * | 2006-12-21 | 2008-08-07 | G&L Consulting, Llc | Heart rate reduction method and system |
US8620424B2 (en) * | 2007-04-30 | 2013-12-31 | Medtronic, Inc. | Method and apparatus for providing extra systolic stimulation |
US7957799B2 (en) * | 2007-04-30 | 2011-06-07 | Medtronic, Inc. | Non-invasive cardiac potentiation therapy |
US7787942B2 (en) * | 2007-04-30 | 2010-08-31 | Medtronic, Inc. | Mechanical ventricular pacing non-capture detection for a refractory period stimulation (RPS) pacing therapy using at least one lead-based accelerometer |
US8340763B2 (en) | 2008-09-08 | 2012-12-25 | Backbeat Medical, Inc. | Methods and apparatus to stimulate heart atria |
US8504158B2 (en) * | 2011-05-09 | 2013-08-06 | Medtronic, Inc. | Phrenic nerve stimulation during cardiac refractory period |
US9008769B2 (en) | 2012-12-21 | 2015-04-14 | Backbeat Medical, Inc. | Methods and systems for lowering blood pressure through reduction of ventricle filling |
US9370662B2 (en) | 2013-12-19 | 2016-06-21 | Backbeat Medical, Inc. | Methods and systems for controlling blood pressure by controlling atrial pressure |
US10342982B2 (en) | 2015-09-11 | 2019-07-09 | Backbeat Medical, Inc. | Methods and systems for treating cardiac malfunction |
US10485658B2 (en) | 2016-04-22 | 2019-11-26 | Backbeat Medical, Inc. | Methods and systems for controlling blood pressure |
US10201710B2 (en) * | 2016-04-28 | 2019-02-12 | Medtronic, Inc. | Latency-based adaptation of anti-tachyarrhythmia pacing therapy |
CN112616031B (en) * | 2020-12-16 | 2022-11-04 | 天津大学合肥创新发展研究院 | High-speed target tracking method and system based on pulse array image sensor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5129392A (en) * | 1990-12-20 | 1992-07-14 | Medtronic, Inc. | Apparatus for automatically inducing fibrillation |
US5213098A (en) | 1991-07-26 | 1993-05-25 | Medtronic, Inc. | Post-extrasystolic potentiation stimulation with physiologic sensor feedback |
US5564434A (en) | 1995-02-27 | 1996-10-15 | Medtronic, Inc. | Implantable capacitive absolute pressure and temperature sensor |
WO2000040296A1 (en) * | 1999-01-05 | 2000-07-13 | St. Jude Medical Ab | Cardiac pacemaker |
WO2002053026A2 (en) | 2000-12-28 | 2002-07-11 | Medtronic, Inc. | Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation |
US20020115939A1 (en) * | 2000-12-28 | 2002-08-22 | Mulligan Lawrence J. | Implantable medical device for monitoring congestive heart failure |
WO2003002195A2 (en) * | 2001-06-29 | 2003-01-09 | Karl Stangl | Pacemaker with periodic modulation of individual stimulation intervals |
WO2003020364A2 (en) * | 2001-08-28 | 2003-03-13 | Medtronic, Inc. | Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US49235A (en) * | 1865-08-08 | Improvement in ditching-machines | ||
US4280502A (en) * | 1979-08-08 | 1981-07-28 | Intermedics, Inc. | Tachycardia arrester |
DE69210395T2 (en) * | 1991-04-05 | 1997-01-09 | Medtronic Inc | DETECTION SYSTEM WITH SUBCUTANEOUS MULTIPLE ELECTRODES |
US5411524A (en) * | 1993-11-02 | 1995-05-02 | Medtronic, Inc. | Method and apparatus for synchronization of atrial defibrillation pulses |
US5741310A (en) | 1995-10-26 | 1998-04-21 | Medtronic, Inc. | System and method for hemodynamic pacing in ventricular tachycardia |
US5683431A (en) | 1996-03-27 | 1997-11-04 | Medtronic, Inc. | Verification of capture by sensing evoked response across cardioversion electrodes |
US5702427A (en) * | 1996-03-28 | 1997-12-30 | Medtronic, Inc. | Verification of capture using pressure waves transmitted through a pacing lead |
US5713929A (en) * | 1996-05-03 | 1998-02-03 | Medtronic, Inc. | Arrhythmia and fibrillation prevention pacemaker using ratchet up and decay modes of operation |
SE9802151D0 (en) | 1998-06-16 | 1998-06-16 | Pacesetter Ab | Heart stimulator |
US6496730B1 (en) * | 1998-12-29 | 2002-12-17 | Medtronic, Inc. | Multi-site cardiac pacing system having conditional refractory period |
US6263242B1 (en) | 1999-03-25 | 2001-07-17 | Impulse Dynamics N.V. | Apparatus and method for timing the delivery of non-excitatory ETC signals to a heart |
US6370430B1 (en) | 1999-03-25 | 2002-04-09 | Impulse Dynamics N.V. | Apparatus and method for controlling the delivery of non-excitatory cardiac contractility modulating signals to a heart |
US6498949B2 (en) * | 2001-02-27 | 2002-12-24 | Pacesetter, Inc. | Implantable cardiac device providing repetitive non-reentrant ventriculo-atrial synchronous (RNRVAS) rhythm therapy using VA interval extension and method |
US20040220631A1 (en) * | 2003-04-29 | 2004-11-04 | Medtronic, Inc. | Method and apparatus for detecting myocardial electrical recovery and controlling extra-systolic sstimulation |
US20040220640A1 (en) * | 2003-04-29 | 2004-11-04 | Medtronic, Inc. | Method and apparatus for determining myocardial electrical resitution and controlling extra systolic stimulation |
-
2003
- 2003-10-07 US US10/680,528 patent/US7184832B2/en active Active
-
2004
- 2004-10-07 EP EP04794579A patent/EP1684855A1/en not_active Withdrawn
- 2004-10-07 WO PCT/US2004/033266 patent/WO2005035054A1/en active Application Filing
- 2004-10-07 AU AU2004280239A patent/AU2004280239A1/en not_active Abandoned
- 2004-10-07 CA CA002540855A patent/CA2540855A1/en not_active Abandoned
-
2006
- 2006-03-27 IL IL174572A patent/IL174572A0/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5129392A (en) * | 1990-12-20 | 1992-07-14 | Medtronic, Inc. | Apparatus for automatically inducing fibrillation |
US5213098A (en) | 1991-07-26 | 1993-05-25 | Medtronic, Inc. | Post-extrasystolic potentiation stimulation with physiologic sensor feedback |
US5564434A (en) | 1995-02-27 | 1996-10-15 | Medtronic, Inc. | Implantable capacitive absolute pressure and temperature sensor |
WO2000040296A1 (en) * | 1999-01-05 | 2000-07-13 | St. Jude Medical Ab | Cardiac pacemaker |
WO2002053026A2 (en) | 2000-12-28 | 2002-07-11 | Medtronic, Inc. | Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation |
US20020115939A1 (en) * | 2000-12-28 | 2002-08-22 | Mulligan Lawrence J. | Implantable medical device for monitoring congestive heart failure |
WO2003002195A2 (en) * | 2001-06-29 | 2003-01-09 | Karl Stangl | Pacemaker with periodic modulation of individual stimulation intervals |
WO2003020364A2 (en) * | 2001-08-28 | 2003-03-13 | Medtronic, Inc. | Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation |
Non-Patent Citations (1)
Title |
---|
See also references of EP1684855A1 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8046064B2 (en) | 2006-04-24 | 2011-10-25 | Medtronic, Inc. | Method of delivering PESP/ICC as well as adjusting the refractory period of the heart |
Also Published As
Publication number | Publication date |
---|---|
US7184832B2 (en) | 2007-02-27 |
US20050075676A1 (en) | 2005-04-07 |
IL174572A0 (en) | 2006-08-20 |
AU2004280239A1 (en) | 2005-04-21 |
EP1684855A1 (en) | 2006-08-02 |
CA2540855A1 (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2188010B1 (en) | Cardiac resynchronization therapy for patients with right bundle branch block | |
EP1015073B1 (en) | Apparatus for diagnosis and treatment of arrhythmias | |
EP1684864B1 (en) | Secure and efficacious therapy delivery for an extra-systolic stimulation pacing engine | |
US8024041B2 (en) | Cardiac resynchronization via left ventricular pacing | |
EP1567224B1 (en) | Atrial capture detection via atrial ventricular conduction | |
JP5047986B2 (en) | Hemodynamically controlled anti-tachyarrhythmia pacing system | |
JP4165684B2 (en) | Automatic threshold sensitivity adjustment for cardiac rhythm management devices | |
JP4865713B2 (en) | ATP treatment for tachyarrhythmia | |
US7136705B1 (en) | Method and apparatus for monitoring sensor performance during rate-responsive cardiac stimulation | |
US7184832B2 (en) | Refractory period tracking and arrhythmia detection | |
US6510342B1 (en) | Methods and apparatus for preventing atrial arrhythmias by overdrive pacing multiple heart tissue sites using an implantable cardiac stimulation device | |
WO2005018740A1 (en) | Evaluating ventricular synchrony based on phase angle between sensor signals | |
CA2524183A1 (en) | Method for elimination of ventricular pro-arrhythmic effect caused by atrial therapy | |
US6625489B2 (en) | Dynamic non-competitive atrial pacing | |
US20120101392A1 (en) | Optimization of arrhythmia detection based on patient activity | |
US7292888B2 (en) | Cardiac stimulation during a refractory period | |
US20030125775A1 (en) | Ventricular pacing for prevention of atrial fibrillation | |
US20040215257A1 (en) | Ventricular rate stabilization with cardiac resynchronization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004280239 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 174572 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2540855 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2004280239 Country of ref document: AU Date of ref document: 20041007 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004280239 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004794579 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004794579 Country of ref document: EP |