WO2005033183A1 - Process for producing copolyacetal - Google Patents

Process for producing copolyacetal Download PDF

Info

Publication number
WO2005033183A1
WO2005033183A1 PCT/JP2004/010691 JP2004010691W WO2005033183A1 WO 2005033183 A1 WO2005033183 A1 WO 2005033183A1 JP 2004010691 W JP2004010691 W JP 2004010691W WO 2005033183 A1 WO2005033183 A1 WO 2005033183A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
producing
polyacetal
molecule
melt
Prior art date
Application number
PCT/JP2004/010691
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Nakao
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Publication of WO2005033183A1 publication Critical patent/WO2005033183A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/04Copolyoxymethylenes

Definitions

  • the present invention also relates to a method for producing a polyacetal copolymer. More specifically, the polyacetal resin obtained with the thiothion polymerization catalyst is melted with a polymer having a specific reactive functional group, etc., while the growth end of the polymer or the used catalyst is active.
  • the present invention relates to a method for producing a polymer. Background art
  • Polyacetal resin has a good balance of mechanical properties, chemical resistance, slidability, etc., and is easy to calose, making it a typical engineering plastic. Widely used mainly for parts.
  • rate of crystallization and the degree of crystallization have been reduced by the addition of plasticizers and modification by copolymerization to improve workability into films, sheets, fibers, etc., and to increase toughness. Many attempts have been made.
  • Japanese Patent Publication No. 35-2194 discloses that formaldehyde is polymerized in the presence of a polymer such as polytetramethylene glycol and a vinyl acetate copolymer to obtain a block copolymer of polyacetylene. It has been proposed. However, although the toughness of this block copolymer is slightly improved, the strength is significantly reduced.
  • Japanese Patent Publication No. 62-0202203 discloses that a hydroxyl group, a hydroxyl group, A production method in which formaldehyde is polymerized to an elastomer having two functional groups selected from amino groups is described.
  • blocking due to polymerization is a polymerization due to a long reaction time due to reactivity with one elastomer component and a chain transfer to a reactive functional group. It is expected that control of polymerization will be difficult.
  • This publication also describes a method for producing a blocked polyacetal in which an elastomer having a reactive functional group is introduced by a reaction together with polyoxymethylene and a cyclic ether.
  • Japanese Patent Publication No. Sho 61-0533369 describes a method for producing stabilized polyoxymethylene by reacting polyoxymethylene with polyalkylene oxide in the presence of a Lewis acid catalyst.
  • This method can be either a solvent or a non-solvent system, but it requires a new addition of Lewis acid in the reaction with polyoxymethylene, and it is undeniable that excess catalyst may be a factor in reducing the molecular weight during the reaction.
  • this publication intends to stabilize the polymer, and does not mention at all the change in mechanical properties due to the reaction.
  • Japanese Patent Application Laid-Open No. Hei 7-224274 discloses a method for producing a polyoxymethylene-polyurethane alloy, and Japanese Patent Application Laid-Open No. Hei 3-214624 uses a diisocyanate coupling agent.
  • isocyanate has high reactivity and shows an excellent effect as a reactant in polymer modification, it has recently been shunned as an environmentally harmful substance, and a method using no isocyanate compound is desired. Disclosure of the invention
  • the present invention has been made in view of the above prior art, and has been made of a polyacetone resin having flexibility and excellent impact resistance.
  • Leju J3 In the production of Leju J3, the objective is to produce a flexible and impact-resistant polyacetal copolymer by a simpler and more versatile method of modification by reaction with a polymer.
  • a polyacetal resin obtained by cationic polymerization can be mixed with a polymer having a specific reactive functional group or a conjugate before passing through the quenche process. It has been found that the desired polymer modification can be performed without addition of a solvent, a reactant, or a catalyst or an initiator for accelerating the reaction by melt mixing, and the present invention has been completed. .
  • the present invention provides a method for producing a polyacetal resin (A) obtained by polymerization using a cationic polymerization catalyst without performing the cation growth terminal and the deactivation treatment of the polymerization catalyst by the following (B-1) to (B-1).
  • This is a method for producing a polyacetal copolymer, which is characterized by being melt-mixed with a substance (B) selected from B-4).
  • B-3 Polymer obtained by formalizing an aliphatic polyether having a hydroxyl group in the molecule or an aliphatic polyester having a hydroxyl group in the molecule
  • B-4 A compound obtained by formalizing an alkyl monool having 6 or more carbon atoms or an alkylene diol having 6 or more carbon atoms.
  • Po Li acetal resin as its base (A) is the main constituent of Okishimechiren units (one CH 2 0-)
  • a polyacetal homopolymer or a polyacetal copolymer containing one unit of another comonomer besides oxymethylene groups may be used as long as it is a polymer compound having a unit and is produced using a cationic polymerization catalyst.
  • the polyacetal resin (A) may have a branched structure as well as a linear structure, and may have a crosslinked structure. The degree of polymerization is not particularly limited as long as it can be melt-processed.
  • the comonomer units constituting the copolymer include oxyalkylene units having about 2 to 6 carbon atoms, such as oxyethylene groups (—CH 2 CH 2 ⁇ -1) oxypropylene group, oxytetramethylene group, etc. S are included.
  • the content of the comonomer unit needs to be an amount that does not significantly impair the crystallinity of the polyacetal resin (A).
  • the oxymethylene unit 100 which is a main constituent unit of the polyacetal resin (A), may be used.
  • the polyacetal copolymer is obtained by mixing trioxane (a-1) with a cyclic ether compound (a-2) selected from ethylene oxide, 1,3-dioxolane, 1,4-butanediol formal and methylene glycol formal. It is convenient and preferable to obtain the copolymer by using a cationic polymerization catalyst.
  • the polyacetal resin (A) serving as the base is a polyacetal homopolymer
  • such a homopolymer can be obtained by homopolymerizing trioxane / tetraoxane, which is a cyclic oligomer of formaldehyde, using a cationic polymerization catalyst.
  • Examples of the cationic polymerization medium used in the production of the above-mentioned polyacetal resin (A) include lead tetrachloride, tin tetrachloride, titanium tetrachloride, aluminum trichloride, zinc chloride, vanadium dichloride, antimony trichloride, and pentafluoroethylene.
  • inorganic and organic acids such as perchloric acid, acetylbutyl chloride, t_butylpropyl chloride, hydroxyacetic acid, trichloroacetic acid, trifluoroacetic acid, p-toluenesulfonic acid, triethyloxodimethyltetrafluoroborate, and triphenylmethyl Complex salt compounds such as xiafluoroantimonate, aryldiazoniumhexafluorophosphate, aryldiazotetratetrafluoroporate, and alkyls such as getyl zinc, triethyl aluminum, and getyl aluminum chloride Examples include metal salts, heteropoly acids, and isopoly acids.
  • boron trifluoride, boron trifluoride getyl etherate, boron trifluoride dibutyl etherate, boron trifluoride dioxanate, boron trifluoride acetate anhydride, boron trifluoride triethylamine complex Boron trifluoride coordination compounds such as compounds are preferred.
  • a molecular weight modifier it is also possible to use a molecular weight modifier.
  • the present invention provides a polyacetyl resin (A) obtained by polymerization using a cation polymerization catalyst as described above, without subjecting the cationic growth terminal and activation of the polymerization catalyst to a specific substance described below.
  • a basic compound is added immediately after polymerization to a polymer obtained by polymerization using a cationic polymerization catalyst, or the polymer is added to an aqueous solution thereof.
  • the cation growing end of the catalyst and the polymer is deactivated (quenched) and the product is further processed through a stabilization step.
  • the product reacts with the cation growing end of the polymer in the presence of a catalyst maintaining the activity It is characterized by further reacting with a specific substance (B) having an acidic functional group under melting.
  • the polyacetal resin (A) in which the catalyst and the like are in an active state for the reaction may be in the form of flakes obtained by polymerization, or may be melt-blended once with an antioxidant represented by hindered phenols. May be used.
  • an antioxidant represented by hindered phenols.
  • the substance (B) to be melt-mixed with and reacted with the polyacetyl resin (A) is selected from the following polymers and compounds.
  • B-3 Polymer obtained by formalizing an aliphatic polyether having a hydroxyl group in the molecule or an aliphatic polyester having a hydroxyl group in the molecule
  • B-4 Compound obtained by formalizing alkyl monool having 6 or more carbon atoms or alkylene diol having 6 or more carbon atoms
  • the polymer (B-1) to be melt-mixed with the non-quenched polyacetone resin (A) may be a polymer having an active hydrogen atom in the molecule, and may be a reactive functional group having an active hydrogen atom. And mainly include a hydroxyl group, a sulfoxyl group, an amino group, and a methylcapto group.
  • the polymer (B-1) is preferably a bifunctional polymer having such a reactive functional group having an active hydrogen atom at both ends.
  • the reactive functional group of lima (B-1) is preferably a hydroxyl group.
  • the molecular skeleton of the polymer (B-1) is preferably a soft segment component which can be an elastomer, for example, an alkylene glycol unit, a polyester or a polyether containing an aliphatic alkylylene nit, and a specific example.
  • a soft segment component which can be an elastomer, for example, an alkylene glycol unit, a polyester or a polyether containing an aliphatic alkylylene nit, and a specific example.
  • Polyethylene glycol, polypropylene alcohol, polytetramethylene glycol, and And monoalkyl ethers thereof, and furthermore, copolymers of polyalkylene glycols represented by a copolymer of polyethylene glycol and polypropylene glycol, and monoalkyl ethers thereof are also effective.
  • polytrimethylene glycol and polyhexamethylene glycol which are ring-opening polymers of oxetane dioxepane, and their monoalkyl ethers, and aliphatic polyesters represented by poly ⁇ -force prolactone and poly ⁇ -valerolactone
  • the polymer include a polymer having a structure and a terminal group having a monool or diol.
  • the polymer has an active hydrogen at the terminal, particularly a hydroxyl group
  • gen-based polymers such as polybutadiene and polyisoprene having a hydroxyl group at one end or at both ends in addition to the above, and hydrogenated gen-based polymers thereof. Elastomers may be used.
  • bisphenol A or a polymer having a hydrogenated bisphenol A structure or the like can be used as a copolymerization component in one polymer unit.
  • polymers (B-1) particularly preferably any one of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polycaprolactone diol, poly (dioxolane) diol, poly (dioxepane) diol, and monoalkyl thereof It is an ether derivative.
  • the polymer (B-1) preferably has a number average molecular weight of 2000 or more. If the average molecular weight is smaller than 2000, the resulting polymer will have a remarkable reduction in molecular weight due to the chain transfer reaction that occurs during melt mixing, and the desired flexible and impact-resistant polyester resin will be used. The polymer cannot be obtained.
  • the polymer (B-2) has a glycidyl group in the molecule.
  • the basic skeleton of the polymer (B-2) is a soft segment component that becomes an elastomeric element in the polyacetal copolymer as exemplified in the polymer (B-1). Is desirable.
  • Specific examples include glycidyl ethers of polyalkylene glycols represented by polyethylene glycol, polypropylene alcohol, and polytetramethylene glycol, and polyalkylene glycols represented by a copolymer of polyethylene glycol and polypropylene glycol.
  • Glycidyl ether such as a copolymer of Furthermore, polytrimethylene glycol, which is a ring-opening polymer of oxetane or oxepane, daricidyl ether of polyhexamethylene daricol, and poly- ⁇ polymer having an aliphatic polyester structure represented by ⁇ Daricidyl ether and aliphatic dalicidyl ether having a long-chain alkyl group in the molecule. Further, the above polymer containing a bisphenol A unit or a hydrogenated bisphenol A unit as an intramolecular copolymerization component may be used.
  • an aliphatic polyether having a hydroxyl group in the molecule examples include polymers obtained by formalizing an aliphatic polyester having a hydroxyl group in the molecule.
  • Examples of the aliphatic polyethers and aliphatic polyesters used in the homogenization include the polyalkylene glycols listed in section (B-1), polyesters containing aliphatic alkyl units, and polyethers. Is preferred.
  • the polymer (B-3) is a formali conjugate obtained by a dehydration reaction by heating a hydroxyl group in the polymer and an aqueous solution of formaldehyde or formalin under an acid-producing catalyst.
  • the polymer used in the formalization reaction is However, it may be a monool having one hydroxyl group in the molecule or a polyol having two or more hydroxyl groups in the molecule.
  • Polymers (B-1 3) are obtained by bimolecular reaction between polymers or by reaction between multiple molecules, Alternatively, it may be a cyclic formal formed by an intramolecular reaction, or a mixture thereof.
  • the compound (B-4) capable of being melt-mixed with the non-quench polyacetal shelf (A) to form a polyacetal copolymer is an alkyl monool having 6 or more carbon atoms or a carbon monool. It is a compound obtained by formalizing an alkylene diol of number 6 or more.
  • the diols used mainly include aliphatic alkylene diols, and linear diols such as 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, and the like. These 1,2-hydroxyl substituents are exemplified.
  • the formal irrigation compound used is preferably basically a cyclic compound formed by an intramolecular formalization reaction, but may contain a formalized compound formed by an intermolecular reaction.
  • the non-quenched polyacetal resin (A) and the substance (B) selected from the above (B-1) to (B-4) are melt-mixed and reacted to form a polyacenyl copolymer.
  • melt kneading by a known single-screw or twin-screw extruder is generally used, but the mixing method is not particularly limited. Melt mixing is performed in a temperature range of 100 to 230 ° C. However, considering that the catalyst is a reaction between a non-quenched polyacetal resin in an active state and another polymer or compound, A range of 50 to 210 ° C. is desirable.
  • the amount of the substance (B) selected from (B-1) to (B-4) used in the melt mixing is 1 to 50 parts by weight based on 100 parts by weight of the non-quenched polyacetal resin (A). It is preferably in parts by weight. If the amount is less than 1 part by weight, it is difficult to obtain the polyacetal copolymer which is the object of the present invention and is excellent in impact resistance. If the amount is more than 50 parts by weight, strength and rigidity are remarkably reduced. .
  • the polyacetone resin (A) and the specific substance (B) are melt-mixed and reacted to form a polyacetone copolymer, and the remaining polymerization catalyst is deactivated. The deactivation is performed by adding to the reaction product (polyacetal copolymer) obtained by melt mixing: a base compound or an aqueous solution thereof, or the like, and then melt-mixing the same together with these.
  • Examples of the basic compound for neutralizing and deactivating the polymerization catalyst include ammonia, amines such as triethylamine, triptylamine, triethanolamine, and tributanolylamine, or alkaline metal and alkaline earth metal. And other known catalyst deactivators. If necessary, a stabilization treatment by a known method, such as decomposition and removal of an unstable end portion by melting and mixing in the presence of a basic compound, or blocking of an unstable end by a stable substance, is performed.
  • the stabilized polyacetal copolymer can further contain various necessary stabilizers, such as hindered phenolic compounds, nitrogen-containing compounds, hydroxides of alkaline metal or alkaline earth metal, One or more of inorganic salts, carboxylate salts and the like can be mentioned. Further, as long as the present invention is not hindered, general additives for thermoplastic resins, such as coloring agents such as dyes and pigments, lubricants, nucleating agents, release agents, antistatic agents, surfactants, Alternatively, one or more kinds of organic polymer materials, inorganic or organic fibrous, powdery, and plate-like fillers can be added.
  • various necessary stabilizers such as hindered phenolic compounds, nitrogen-containing compounds, hydroxides of alkaline metal or alkaline earth metal, One or more of inorganic salts, carboxylate salts and the like can be mentioned. Further, as long as the present invention is not hindered, general additives for thermoplastic resins, such as coloring agents such as dyes and pigments
  • the method for evaluating the (B-4) polymer or compound) and the obtained polyacetal copolymer are as follows.
  • Trioxane, 1,3-dioxolane and a small amount of methylal as a chain transfer agent are fed to a twin-screw extruder-type continuous polymerization apparatus with a jacket temperature of 8 (TC), and BF is used as a cationic polymerization catalyst.
  • the polymerization was carried out by supplying 3, and flake-like polyacetal resin (A) was continuously collected from the outlet of the polymerizer.
  • the feed ratio of trioxane and 1,3-dioxolane used in the polymerization was 96: 4.
  • the obtained flake-shaped polyacetal resin (A) is a material that does not require deactivation of the catalyst with a basic compound and that suppresses the progress of chain transfer and decomposition reaction. It was temporarily stored in a freezer at 135 ° C until it was melt-mixed with (B).
  • the quench-treated polyacetal resin (A-q: unch) used in Comparative Examples 1 to 3 was prepared by converting the polyacetal resin taken out in a flake form from the outlet of the polymerization machine in the above polymerization into a 5% aqueous solution of triethylamine. After immersing the catalyst for more than an hour to deactivate the catalyst, it is dehydrated and dried, and then with a small amount (0.04% by weight) of an antioxidant (trade name “Ilganox 100”). It was prepared by melt-kneading at 100.
  • melt kneading of the non-quenched poly 7-cetal resin (A) and the selected material (B) with (B-1) to (B-4) forces is performed by a twin-screw extruder (Nippon Steel Works, Ltd.). Manufactured by TEX-30).
  • the cylinder temperature in the melt-kneading is 180 ° (: ⁇ 200 (die head part), the screw rotation is 120 rpm, and the feed rate is 6 kg / hr.
  • the obtained polyester copolymer is pelletized, Reactivate the catalyst by adding 3 parts of a 5% aqueous solution of triethylamine and 0.2 parts by weight of a hindered phenolic antioxidant (Ilganox 1010; manufactured by Ciba Specialty Chemicals) again by melt mixing. A stabilization treatment was performed together with the treatment.
  • a hindered phenolic antioxidant Ilganox 1010; manufactured by Ciba Specialty Chemicals
  • the polymer (B-1), polymer (B-2), polymer (B-3) and compound (B-4) used as the substance (B) in the examples are as follows.
  • the polymer without active hydrogen ( ⁇ ') used in the comparative example is also shown.
  • poly (dioxolane) diol was synthesized as follows. 200 g of 1,3-dioxolan was poured into a 500 ml polymerization kettle, and the internal temperature was set to 301. As a catalyst, phosphorous tungstate hydrate is added to methyl formate in a concentration 150 times
  • the solution diluted by (weight ratio) was added in an amount of 20 ppm in terms of phosphorous tungstic acid to carry out polymerization.
  • 1% of a 2% aqueous solution of dioxolane of triethylamine was added as a polymerization terminator.
  • the system was evacuated to remove unreacted monomers to obtain poly (dioxolane). Further, the obtained polymer is mixed with a 5% aqueous triethylamine solution.
  • B— 3 1) Polypropylene glycol formal (synthetic product) Holma Illui-dani performed as follows. 40 g of polypropylene glycol 400 (manufactured by Shimadama-Aldrich Co., Ltd.) and formalin aqueous solution 2 Om1 are charged into a 20 Om1 eggplant flask, a small amount of benzene (about 10 ml) is added, and 0.2 ml of sulfuric acid is added as a catalyst. did. Flask temperature 100. (: Set to, reflux for about 1 hour, attach a cooling pipe for distillation, raise the temperature in the system to 110, and azeotropically evaporate the water generated by the reaction with benzene.
  • B-4-1 Formalization of 1,9-nonanediol (Tokyo Kasei Kogyo 'Reagent') (synthetic product; see B-3-1) for synthetic procedure)
  • the obtained polyacetal copolymer was subjected to a bow I tension test using a Toshiba IS 80EPN molding machine in accordance with ISO standard conditions (9988-2) in order to evaluate tensile strength and elongation and Charpy impact test. Pieces and bending test pieces were collected. The obtained test specimen was left for 48 hours under the conditions of a temperature of 23 ° C and a humidity of 50%, and the tensile test was measured according to IS-527, and the Charpy impact test was performed using a notched bending test specimen according to ISO 179. Was done.
  • the MFR was measured using a melt indexer (Takara Kogyo Co., Ltd.) based on ISO 133 and using a piston with a load of 2160 g for 7 minutes at the temperature shown below.
  • the amount [g] of the molten resin composition to be used was evaluated by converting it per 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A process for producing a copolyacetal excellent in flexibility and impact resistance by modifying a polyacetal resin by reaction with other polymer by a simpler and highly versatile technique. A polyacetal resin (A) obtained by polymerization with the aid of a catalyst for cationic polymerization is melt-kneaded together with a specific substance (B), e.g., a polymer having active hydrogen atoms in the molecule, without deactivating the cationic growing ends and the polymerization catalyst. Thus, a copolyacetal is produced.

Description

ポリァセ夕一ル共重合体の製造方法 技術分野 Method for producing polyester copolymer
本発明 tま、 ポリアセタール共重合体の製造方法に関する。 さらに詳しくは、 力 チオン重合触媒によって得られたポリアセタール樹脂を、 そのポリマーの生長末 端や使用した触媒が活性な状態で、 さらに特定の反応性官能基を有するポリマー 等と溶融昆鍊するポリアセタール共重合体の製造方法に関する。 背景技術  The present invention also relates to a method for producing a polyacetal copolymer. More specifically, the polyacetal resin obtained with the thiothion polymerization catalyst is melted with a polymer having a specific reactive functional group, etc., while the growth end of the polymer or the used catalyst is active. The present invention relates to a method for producing a polymer. Background art
ポリアセタール樹脂は機械的性質、 耐薬品性、 摺動性等のバランスに優れ、 且 つ、 そのカロェが容易であることにより代表的なエンジニアリングプラスチックと して、 電気 '電子、 自動車、 その他の各種機械部品を中心として広く利用されて いる。 近年では、 従来の射出成形用途の他に、 可塑剤の添加や共重合による変性 によって結晶化速度や結晶化度を下げ、 フィルム ·シートや繊維等への加工性を 改善したり、 靱性を高める試みも数多くなされている。  Polyacetal resin has a good balance of mechanical properties, chemical resistance, slidability, etc., and is easy to calose, making it a typical engineering plastic. Widely used mainly for parts. In recent years, in addition to conventional injection molding applications, the rate of crystallization and the degree of crystallization have been reduced by the addition of plasticizers and modification by copolymerization to improve workability into films, sheets, fibers, etc., and to increase toughness. Many attempts have been made.
その中で、 特にポリアセタール樹脂の高靭性化の試みとして、 ポリアセタール 樹脂を構成するポリマ一鎖に他のポリマー鎖等を導入してプロック共重合体とす る例が多く開示されている。  Among them, many attempts to increase the toughness of the polyacetal resin, in particular, disclose many examples of introducing a polymer chain or the like into one polymer chain constituting the polyacetal resin to form a block copolymer.
例えば特公昭 3 5— 2 1 9 4号公報には、 ポリテトラメチレングリコール、 酢 酸ビニル共重合体等の重合体の存在下にホルムアルデヒドを重合し、 ポリアセ夕 —ルのプロック共重合体を得ることが提案されている。 しかしこのブロック共重 合体は、 靱性は若干改善されているものの強度の低下が著しい。  For example, Japanese Patent Publication No. 35-2194 discloses that formaldehyde is polymerized in the presence of a polymer such as polytetramethylene glycol and a vinyl acetate copolymer to obtain a block copolymer of polyacetylene. It has been proposed. However, although the toughness of this block copolymer is slightly improved, the strength is significantly reduced.
また特公昭 6 2 - 0 2 0 2 0 3号公報には、 末端に水酸基、 力ルポキシル基、 ァミノ基より選ばれる 2つの官能基を有するエラストマ一にホルムアルデヒドを 重合させる製造法が記載されている。 しかしながら、 このような重合によるプロ ック化は、 エラストマ一成分との反応性から反応時間が長い、 反応性官能基への 連鎖移動による重合であるため、 生成ポリマーの低分子量ィ匕などの問題もあり、 重合のコントロールが難しいと予想される。 またこの公報には、 反応' 1生官能基を 有するエラストマ一をポリオキシメチレン及び環状エーテルとともに反応により 導入するブロック化ポリアセタールの製法も記載されている。 しかし、 実施例で みる限り、 反応において溶媒を使用しており、 簡便かつ低コストの方法とはいえ ず、 実現性も低い。 さらに非溶媒系での反応も想定はしているものの、 どのよう に反応させるかの記載が実施例を含めて一切なく、 詳細が明らかでない。 In addition, Japanese Patent Publication No. 62-0202203 discloses that a hydroxyl group, a hydroxyl group, A production method in which formaldehyde is polymerized to an elastomer having two functional groups selected from amino groups is described. However, such blocking due to polymerization is a polymerization due to a long reaction time due to reactivity with one elastomer component and a chain transfer to a reactive functional group. It is expected that control of polymerization will be difficult. This publication also describes a method for producing a blocked polyacetal in which an elastomer having a reactive functional group is introduced by a reaction together with polyoxymethylene and a cyclic ether. However, as can be seen from the examples, a solvent is used in the reaction, which is not a simple and low-cost method, and the feasibility is low. Further, although a reaction in a non-solvent system is also assumed, there is no description of how to carry out the reaction, including Examples, and the details are not clear.
更に特公昭 6 1 - 0 5 3 3 6 9号公報には、 ポリオキシメチレンとポリアルキ レンォキシドをルイス酸触媒下で反応させることによる安定化ポリォキシメチレ ンの製法に関する記載がある。 この方法は溶媒、 非溶媒系何れも可能であるが、 ポリオキシメチレンとの反応においてルイス酸の新たな添加を必要としており、 過剰な触媒は反応時に分子量を低下させる要因になることは否めない。 またこの 公報ではポリマーの安定化を意図しており、 反応による機械特性の変化などにつ いては全く触れられていない。  Further, Japanese Patent Publication No. Sho 61-0533369 describes a method for producing stabilized polyoxymethylene by reacting polyoxymethylene with polyalkylene oxide in the presence of a Lewis acid catalyst. This method can be either a solvent or a non-solvent system, but it requires a new addition of Lewis acid in the reaction with polyoxymethylene, and it is undeniable that excess catalyst may be a factor in reducing the molecular weight during the reaction. . Also, this publication intends to stabilize the polymer, and does not mention at all the change in mechanical properties due to the reaction.
また特開平 7— 2 4 2 7 2 4号公報にはポリオキシメチレン一ポリウレタン系 ァロイの製造方法に関する記載が、 特開平 3— 2 1 6 2 4号公報にはジイソシァ ネートカップリング剤を用いた官能性ォキシメチレンポリマー骨格への官能性化 合物のグラフト化に関する記載があるが、 これらは何れも反応剤としてイソシァ ネ一トを使用した場合である。 イソシァネートは反応性が高く、 ポリマー変性に おける反応剤として優れた効果を示すものの、 近年環境負荷物質として敬遠され る傾向になりつつあり、イソシァネート化合物を使用しない手法が望まれている。 発明の開示 Japanese Patent Application Laid-Open No. Hei 7-224274 discloses a method for producing a polyoxymethylene-polyurethane alloy, and Japanese Patent Application Laid-Open No. Hei 3-214624 uses a diisocyanate coupling agent. There is a description about the grafting of a functional compound to a functional oxymethylene polymer skeleton, but these are all cases in which isocyanate is used as a reactant. Although isocyanate has high reactivity and shows an excellent effect as a reactant in polymer modification, it has recently been shunned as an environmentally harmful substance, and a method using no isocyanate compound is desired. Disclosure of the invention
本発明は、 上記の如き従来技術に鑑み、 柔軟かつ耐衝撃性に優れたポリアセ夕 The present invention has been made in view of the above prior art, and has been made of a polyacetone resin having flexibility and excellent impact resistance.
—ル樹 J3旨を製造するにあたり、 ポリマーとの反応による変性手法において、 より 簡便かつ汎用性の高い手法により柔軟 ·耐衝撃性ポリアセタール共重合体を製造 することを目的とする。 —In the production of Leju J3, the objective is to produce a flexible and impact-resistant polyacetal copolymer by a simpler and more versatile method of modification by reaction with a polymer.
本発明者らは、 上記目的を達成するために鋭意検討した結果、 カチオン重合に よって得たポリアセタール樹脂を、 クェンチェ程を経る前に、 特定の反応性官能 基を有するポリマー或いはィ匕合物と溶融混鍊することにより、 溶媒や反応剤、 さ らには反応を促進させるための触媒 ·開始剤などの添加なしに所望のポリマー変 性が行えることを見出し、 本発明を完成するに到つた。  As a result of intensive studies to achieve the above object, the present inventors have found that a polyacetal resin obtained by cationic polymerization can be mixed with a polymer having a specific reactive functional group or a conjugate before passing through the quenche process. It has been found that the desired polymer modification can be performed without addition of a solvent, a reactant, or a catalyst or an initiator for accelerating the reaction by melt mixing, and the present invention has been completed. .
即ち本発明は、 カチオン重合触媒を用いて重合することにより得られるポリア セタール樹脂 (A) を、 そのカチオン生長末端ならびに重合触媒の失活化処理を 行なうことなく、 下記 (B— 1 ) 〜 (B— 4 ) から選ばれる物質 (B) と溶融混 鍊することを特徴とするポリァセタール共重合体の製造方法である。  That is, the present invention provides a method for producing a polyacetal resin (A) obtained by polymerization using a cationic polymerization catalyst without performing the cation growth terminal and the deactivation treatment of the polymerization catalyst by the following (B-1) to (B-1). This is a method for producing a polyacetal copolymer, which is characterized by being melt-mixed with a substance (B) selected from B-4).
B— 1 :活性水素原子を分子内に有するポリマー  B-1: Polymer having active hydrogen atoms in the molecule
B— 2 :グリシジル基を分子内に有するポリマー  B-2: Polymer having glycidyl group in the molecule
B— 3 :分子内に水酸基を有する脂肪族ポリエーテル又は分子内に水酸基を有 する脂肪族ポリエステルを、 ホルマール化することにより得られるポリマー  B-3: Polymer obtained by formalizing an aliphatic polyether having a hydroxyl group in the molecule or an aliphatic polyester having a hydroxyl group in the molecule
B - 4:炭素数 6以上のアルキルモノオール又は炭素数 6以上のアルキレンジ オールを、 ホルマール化することにより得られる化合物 発明の詳細な説明  B-4: A compound obtained by formalizing an alkyl monool having 6 or more carbon atoms or an alkylene diol having 6 or more carbon atoms.
以下、 本発明のポリァセタール共重合体の製造方法について詳細に説明する。 本発明においてポリアセタール共重合体を製造するにあたり、 その基体となるポ リアセタール樹脂 (A) は、 ォキシメチレン単位 (一 C H20— ) を主たる構成 単位とする高分子化合物であり、 カチオン系の重合触媒を用いて製造されるもの であれば、 ポリアセタールホモポリマーでも、 ォキシメチレン基以外に他のコモ ノマ一単位を含有するポリアセタールコポリマーでもよい。 またポリアセタール 樹脂 (A) は、 線状のみならず分岐構造であっても良く、 架橋構造を有するもの でもよい。 その重合度も特に制限はなく、 溶融加工が可能であるものであればよ い。 Hereinafter, the method for producing the polyacetal copolymer of the present invention will be described in detail. In producing the polyacetal copolymer in the present invention, Po Li acetal resin as its base (A) is the main constituent of Okishimechiren units (one CH 2 0-) A polyacetal homopolymer or a polyacetal copolymer containing one unit of another comonomer besides oxymethylene groups may be used as long as it is a polymer compound having a unit and is produced using a cationic polymerization catalyst. Further, the polyacetal resin (A) may have a branched structure as well as a linear structure, and may have a crosslinked structure. The degree of polymerization is not particularly limited as long as it can be melt-processed.
基体となるポリアセタール樹脂 (A) がポリアセ夕一ルコポリマーの場合、 コ ポリマ一を構成するコモノマー単位には、 炭素数 2〜 6程度のォキシアルキレン 単位、 例えば、 ォキシエチレン基 (― C H 2 C H 2〇一) 、 ォキシプロピレン基、 ォキシテトラメチレン基等力 S含まれる。 コモノマー単位の含有量は、 ポリアセタ ール樹脂 (A) の結晶性を大きく損なわない程度の量であることが必要であり、 例えば、 ポリアセタール樹脂 (A) の主たる構成単位であるォキシメチレン単位 1 0 0モルに対して、 0 . 0 1〜2 0モル、 好ましくは 0 . 0 3〜1 Οモル、 更 に好ましくは 0 . 1〜5モルの範囲から選択できる。 かかるポリアセタールコポ リマ一は、 トリオキサン(a— 1 ) とエチレンォキシド、 1 , 3—ジォキゾラン、 1 , 4—ブタンジオールホルマール及びジェチレングリコールホルマールから選 ばれた環状エーテル化合物 (a— 2 ) とをカチオン重合触媒を用いて共重合する ことにより得るのが簡便であり好ましい。 When the base polyacetal resin (A) is a polyacetal copolymer, the comonomer units constituting the copolymer include oxyalkylene units having about 2 to 6 carbon atoms, such as oxyethylene groups (—CH 2 CH 2 〇-1) oxypropylene group, oxytetramethylene group, etc. S are included. The content of the comonomer unit needs to be an amount that does not significantly impair the crystallinity of the polyacetal resin (A). For example, the oxymethylene unit 100, which is a main constituent unit of the polyacetal resin (A), may be used. It can be selected from the range of 0.01 to 20 mol, preferably 0.03 to 10 mol, and more preferably 0.1 to 5 mol, per mol. The polyacetal copolymer is obtained by mixing trioxane (a-1) with a cyclic ether compound (a-2) selected from ethylene oxide, 1,3-dioxolane, 1,4-butanediol formal and methylene glycol formal. It is convenient and preferable to obtain the copolymer by using a cationic polymerization catalyst.
また、 基体となるポリアセタール樹脂 (A) がポリアセタールホモポリマーの 場合、 かかるホモポリマーは、 ホルムアルデヒドの環状オリゴマーであるトリオ キサンゃテトラォキサンをカチオン重合触媒を用いて単独重合することにより得 ることができる。  When the polyacetal resin (A) serving as the base is a polyacetal homopolymer, such a homopolymer can be obtained by homopolymerizing trioxane / tetraoxane, which is a cyclic oligomer of formaldehyde, using a cationic polymerization catalyst.
上記のようなポリアセタール樹脂 (A) の製造に用いられるカチオン重合 媒 としては、 四塩化鉛、 四塩化スズ、 四塩化チタン、 三塩化アルミニウム、 塩化亜 鉛、 Ξ塩化バナジウム、三塩化アンチモン、五フツイ匕リン、五フッ化アンチモン、 三フッ化ホウ素、 三フッ化ホウ素ジェチルェ一テラート、 三フッ化ホウ素ジブチ ルエーテラ一ト、 三フッ化ホウ素ジォキサネート、 三フッ化ホウ素ァセチックァ ンハイドレート、 三フッ化ホウ素トリェチルアミン錯化合物等の三フッ化ホウ素 配位化合物、 過塩素酸、 ァセチルバ一クロレート、 t _プチルパ一クロレート、 ヒドロキシ酢酸、 トリクロ口酢酸、 トリフルォロ酢酸、 p—トルエンスルホン酸 等の無機および有機酸、 トリェチルォキソ二ゥムテトラフ口ロボレート、 卜リフ ェニルメチルへキサフロロアンチモネート、 ァリルジァゾニゥムへキサフロロホ スフェート、 ァリルジァゾ二ゥムテトラフロロポレート等の複合塩化合物、 ジェ チル亜鉛、 トリェチルアルミニウム、 ジェチルアルミニウムクロライド等のアル キル金属塩、 ヘテロポリ酸、 イソポリ酸等が挙げられる。 その中でも特に三フッ 化ホウ素、 三フッ化ホウ素ジェチルエーテラート、 三フッ化ホウ素ジブチレエ一 テラート、 三フッ化ホウ素ジォキサネート、 三フッ化ホウ素ァセチックアンハイ ドレ一ト、 三フッ化ホウ素トリェチルァミン錯化合物等の三フッ化ホウ素配位化 合物が好ましい。また、重合に際し、分子量調整剤を使用することも可能である。 本発明は、 上記の如くカチォン重合触媒を用いて重合することにより得られる ポリアセ夕一ル樹脂 (A) を、 そのカチオン生長末端ならびに重合触媒の 活化 処理を行なうことなく、 以下説明する特定の物質 (B) と溶融混鍊し反応させる ことを特徴とするポリアセタール共重合体の製造方法である。 Examples of the cationic polymerization medium used in the production of the above-mentioned polyacetal resin (A) include lead tetrachloride, tin tetrachloride, titanium tetrachloride, aluminum trichloride, zinc chloride, vanadium dichloride, antimony trichloride, and pentafluoroethylene. Dani phosphorus, antimony pentafluoride, Boron trifluoride, boron trifluoride diethyl etherate, boron trifluoride dibutyl etherate, boron trifluoride dioxanate, boron trifluoride acetate dihydrate, boron trifluoride triethylamine complex compound, etc. To coordination compounds, inorganic and organic acids such as perchloric acid, acetylbutyl chloride, t_butylpropyl chloride, hydroxyacetic acid, trichloroacetic acid, trifluoroacetic acid, p-toluenesulfonic acid, triethyloxodimethyltetrafluoroborate, and triphenylmethyl Complex salt compounds such as xiafluoroantimonate, aryldiazoniumhexafluorophosphate, aryldiazotetratetrafluoroporate, and alkyls such as getyl zinc, triethyl aluminum, and getyl aluminum chloride Examples include metal salts, heteropoly acids, and isopoly acids. Among them, boron trifluoride, boron trifluoride getyl etherate, boron trifluoride dibutyl etherate, boron trifluoride dioxanate, boron trifluoride acetate anhydride, boron trifluoride triethylamine complex Boron trifluoride coordination compounds such as compounds are preferred. In the polymerization, it is also possible to use a molecular weight modifier. The present invention provides a polyacetyl resin (A) obtained by polymerization using a cation polymerization catalyst as described above, without subjecting the cationic growth terminal and activation of the polymerization catalyst to a specific substance described below. A method for producing a polyacetal copolymer, which is characterized by melt-mixing and reacting with (B).
市販されている通常のポリアセタール樹脂の製造においては、 カチオン重合触 媒を用いて重合して得られたポリマーに、 重合後直ちに塩基性化合物を添カロする 、 或いはその水溶液中などにポリマーを添加して触媒及びポリマーのカチオン 生長末端を失活化 (クェンチ) し、 さらに安定化工程を経て製品とされる 、 本 発明においては、 活性を保持した触媒の存在下で、 ポリマーのカチオン生長末端 と反応性官能基を有する特定の物質 (B) とを溶融下でさらに反応させることを 特徴とするものである。 反応に供する、 触媒等が活性状態にあるポリアセタール樹脂 (A) は、 重合に よって得られるフレーク状のものでも、 またさらにヒンダ一ドフエノール類に代 表される酸化防止剤とともに一度溶融混鍊したペレツト状のものでもよい。 触媒 の活性をより好ましい状態に保持するためには、反応性官能基を有する物質(B) と溶融混鍊するまでは、 触媒の失活化を生じる塩基性成分との接触 ·混合を避け る必要がある。 In the production of a commercially available ordinary polyacetal resin, a basic compound is added immediately after polymerization to a polymer obtained by polymerization using a cationic polymerization catalyst, or the polymer is added to an aqueous solution thereof. In the present invention, the cation growing end of the catalyst and the polymer is deactivated (quenched) and the product is further processed through a stabilization step. In the present invention, the product reacts with the cation growing end of the polymer in the presence of a catalyst maintaining the activity It is characterized by further reacting with a specific substance (B) having an acidic functional group under melting. The polyacetal resin (A) in which the catalyst and the like are in an active state for the reaction may be in the form of flakes obtained by polymerization, or may be melt-blended once with an antioxidant represented by hindered phenols. May be used. In order to maintain the activity of the catalyst in a more favorable state, avoid contact and mixing with a basic component that causes catalyst deactivation until melt-mixing with the substance (B) having a reactive functional group. There is a need.
本発明において、 上記ポリアセ夕一ル樹脂 (A) に溶融混鍊し反応させる物質 ( B) は、 下記の如きポリマー及び化合物から選択されるものである。  In the present invention, the substance (B) to be melt-mixed with and reacted with the polyacetyl resin (A) is selected from the following polymers and compounds.
B— 1 :活性水素原子を分子内に有するポリマー  B-1: Polymer having active hydrogen atoms in the molecule
B— 2 :グリシジル基を分子内に有するポリマー  B-2: Polymer having glycidyl group in the molecule
B— 3 :分子内に水酸基を有する脂肪族ポリエーテル又は分子内に水酸基を有 する脂肪族ポリエステルを、 ホルマール化することにより得られるポリマー  B-3: Polymer obtained by formalizing an aliphatic polyether having a hydroxyl group in the molecule or an aliphatic polyester having a hydroxyl group in the molecule
B - 4:炭素数 6以上のアルキルモノオール又は炭素数 6以上のアルキレンジ オールを、 ホルマール化することにより得られる化合物  B-4: Compound obtained by formalizing alkyl monool having 6 or more carbon atoms or alkylene diol having 6 or more carbon atoms
非クェンチ状態のポリアセ夕一ル樹脂 (A) と溶融混鍊を行うポリマー (B— 1 ) は、 分子内に活性水素原子を有するポリマーであればよく、 活性水素原子を 有する反応性官能基として、 主に水酸基、 力ルポキシル基、 アミノ基、 メ Jレカプ ト基があげられる。 ポリマー (B— 1 ) は、 このような活性水素原子を有する反 応性官能基を両末端に有する 2官能性ポリマーであるのが好ましい。 また、 カチ オン重合により得たポリアセタール樹脂 (A) との反応性を考慮すると、 リマ 一 (B— 1 ) の反応性官能基としては、 水酸基であることが好ましい。  The polymer (B-1) to be melt-mixed with the non-quenched polyacetone resin (A) may be a polymer having an active hydrogen atom in the molecule, and may be a reactive functional group having an active hydrogen atom. And mainly include a hydroxyl group, a sulfoxyl group, an amino group, and a methylcapto group. The polymer (B-1) is preferably a bifunctional polymer having such a reactive functional group having an active hydrogen atom at both ends. In consideration of the reactivity with the polyacetal resin (A) obtained by cation polymerization, the reactive functional group of lima (B-1) is preferably a hydroxyl group.
ポリマー (B— 1 ) の分子骨格としては、 エラストマ一となりうるソフ卜セグ メン卜成分、 例えば、 アルキレングリコールユニットや、 脂肪族のアルキリレュニ ットを含むポリエステル、 ポリエーテル類が良く、 具体例としてはポリエチレン グリコ一ル、 ポリプロピレンダルコール、 ポリテトラメチレングリコール、 およ びそれらのモノアルキルエーテル体、 さらにはポリエチレングリコーリレとポリプ ロピレングリコ一ルの共重合体に代表されるポリアルキレングリコ一リレ同士の共 重合体およびそのモノアルキルェ一テル体も有効である。 さらにォキセタンゃォ キセパンの開環重合体であるポリトリメチレングリコールやポリへキサメチレン グリコールとそれらのモノアルキルエーテル体や、 またポリ ε—力プロラクトン やポリ δ—バレロラクトンに代表される脂肪族ポリエステル構造を有し、 末端基 がモノオール又はジオールのポリマーなどが挙げられる。 さらにポリエ一テルと して、 [-0 (CH2) n-0CHr] (ここで n=2以上) を繰り返し単位とするポリマーも有 効である。 例を挙げると、 ポリ (ジォキソラン) ジオール、 ポリ (ジォキセパン) ジオールなどである。 また末端に活性水素、 特に水酸基を有するポリマーであれ ば、 上己の他に片末端又は両末端に水酸基を有するポリブタジエン、 ポリイソプ レン等のジェン系重合体類およびこれらの水素添加ジェン系重合体などのエラス トマ一でもよい。 またさらに上記ポリマ一ユニット中に共重合成分として、 ビス フエノール Aや水素添加ビスフエノール A構造を有するポリマーなども用いるこ とが出来る。 The molecular skeleton of the polymer (B-1) is preferably a soft segment component which can be an elastomer, for example, an alkylene glycol unit, a polyester or a polyether containing an aliphatic alkylylene nit, and a specific example. Polyethylene glycol, polypropylene alcohol, polytetramethylene glycol, and And monoalkyl ethers thereof, and furthermore, copolymers of polyalkylene glycols represented by a copolymer of polyethylene glycol and polypropylene glycol, and monoalkyl ethers thereof are also effective. Furthermore, polytrimethylene glycol and polyhexamethylene glycol, which are ring-opening polymers of oxetane dioxepane, and their monoalkyl ethers, and aliphatic polyesters represented by poly ε-force prolactone and poly δ-valerolactone Examples of the polymer include a polymer having a structure and a terminal group having a monool or diol. Further, a polymer having a repeating unit of [-0 (CH 2 ) n-0 CH r ] (where n = 2 or more) is also effective as a polyester. Examples include poly (dioxolane) diol and poly (dioxepane) diol. In addition, if the polymer has an active hydrogen at the terminal, particularly a hydroxyl group, gen-based polymers such as polybutadiene and polyisoprene having a hydroxyl group at one end or at both ends in addition to the above, and hydrogenated gen-based polymers thereof. Elastomers may be used. Further, bisphenol A or a polymer having a hydrogenated bisphenol A structure or the like can be used as a copolymerization component in one polymer unit.
これらポリマー (B— 1 ) の中で、 特に好ましくはポリエチレングリコール、 ポリプロピレングリコール、 ポリテトラメチレングリコール、 ポリ力プロラクト ンジオール、 ポリ (ジォキソラン) ジオール、 ポリ (ジォキセパン) ジオールの 何れか、およびそれらのモノアルキルエーテル誘導体である。さらにポリマー (B - 1 ) の平均分子量は数平均で 2 0 0 0以上のものが好ましい。 平均分子量が 2 0 0 0より小さいと、 溶融混鍊時に発生する連鎖移動反応により、 生成するポリ マーの低分子量化が顕著となり、 目的とする柔軟で耐衝撃性にすぐれたポリァセ 夕ール共重合体を得ることが出来ない。  Of these polymers (B-1), particularly preferably any one of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polycaprolactone diol, poly (dioxolane) diol, poly (dioxepane) diol, and monoalkyl thereof It is an ether derivative. Further, the polymer (B-1) preferably has a number average molecular weight of 2000 or more. If the average molecular weight is smaller than 2000, the resulting polymer will have a remarkable reduction in molecular weight due to the chain transfer reaction that occurs during melt mixing, and the desired flexible and impact-resistant polyester resin will be used. The polymer cannot be obtained.
次に非クェンチ状態のポリアセタール樹脂(A)と溶融混鍊を行うポリマー(B - 2 ) について具体例を示す。 ポリマー (B— 2 ) は分子内にグリシジル基を有 するポリマーであればその種類を問わないが、ポリマー(B— 2 )の基本骨格は、 ポリマー (B— 1 ) で例示したようにポリアセタール共重合体におけるエラス ト マー的要素となるソフトセグメント成分となりうるものであることが望ましい。 具体例を挙げると、 ポリエチレングリコール、 ポリプロピレンダルコール、 ポリ テトラメチレングリコールに代表されるポリアルキレングリコールのグリシジ レ エーテル、 ポリエチレングリコールとポリプロピレングリコ一ルの共重合体にィ弋 表されるポリアルキレングリコール同士の共重合体などのグリシジルエーテルで ある。 さらにォキセタンやォキセパンの開環重合体であるポリトリメチレング υ コールやポリへキサメチレンダリコールのダリシジルエーテル、 ポリ ε一力プ ϋ ラク卜ンに代表される脂肪族ポリエステル構造を有するポリマーのダリシジルュ —テル、 長鎖アルキル基を分子内に有する脂肪族のダリシジルエーテルなどであ る。 またさらに分子内共重合成分として、 ビスフエノール Aユニットや水添ビス フエノール Aュニットを含む上記ポリマ一であつても良い。 Next, specific examples of the polymer (B-2) to be melt-blended with the non-quenched polyacetal resin (A) will be described. The polymer (B-2) has a glycidyl group in the molecule. The basic skeleton of the polymer (B-2) is a soft segment component that becomes an elastomeric element in the polyacetal copolymer as exemplified in the polymer (B-1). Is desirable. Specific examples include glycidyl ethers of polyalkylene glycols represented by polyethylene glycol, polypropylene alcohol, and polytetramethylene glycol, and polyalkylene glycols represented by a copolymer of polyethylene glycol and polypropylene glycol. Glycidyl ether such as a copolymer of Furthermore, polytrimethylene glycol, which is a ring-opening polymer of oxetane or oxepane, daricidyl ether of polyhexamethylene daricol, and poly-ε polymer having an aliphatic polyester structure represented by 力Daricidyl ether and aliphatic dalicidyl ether having a long-chain alkyl group in the molecule. Further, the above polymer containing a bisphenol A unit or a hydrogenated bisphenol A unit as an intramolecular copolymerization component may be used.
さらに非クェンチ状態のポリアセタール樹脂 (A) と溶融混鍊してポリアセタ —ル共重合体を形成させることが可能なポリマー (B— 3 ) として、 分子内に水 酸基を有する脂肪族ポリエーテル又は分子内に水酸基を有する脂肪族ポリエステ ルを、 ホルマ一ル化することによって得られるポリマーが挙げられる。 このホ レ マ一ル化に用いられる脂肪族ポリエーテル、 脂肪族ポリエステルとしては、 ポリ マ一 (B - 1 ) 項に列挙したポリアルキレングリコールや、 脂肪族のアルキルュ ニットを含むポリエステル、 ポリエーテル類が好ましい。 このポリマー(B— 3 ) は、 ポリマー中の水酸基とホルムアルデヒドないしホルマリン水溶液などを酸†生 触媒下で加熱することにより脱水反応によって得られるホルマールイ匕合物であり、 ホルマール化反応に用いられるポリマーは、 分子内に 1つの水酸基を有するモノ オールでも分子内に 2つ以上の水酸基を有するポリオールでもよい。ポリマー(B 一 3 ) は、 ポリマー間の 2分子反応や、 多分子間の反応によって得られるもの、 または分子内反応による環状ホルマールでもよく、 またこれらの混合物であって も良い。 Further, as a polymer (B-3) capable of being melt-blended with a non-quenched polyacetal resin (A) to form a polyacetal copolymer, an aliphatic polyether having a hydroxyl group in the molecule or Examples include polymers obtained by formalizing an aliphatic polyester having a hydroxyl group in the molecule. Examples of the aliphatic polyethers and aliphatic polyesters used in the homogenization include the polyalkylene glycols listed in section (B-1), polyesters containing aliphatic alkyl units, and polyethers. Is preferred. The polymer (B-3) is a formali conjugate obtained by a dehydration reaction by heating a hydroxyl group in the polymer and an aqueous solution of formaldehyde or formalin under an acid-producing catalyst. The polymer used in the formalization reaction is However, it may be a monool having one hydroxyl group in the molecule or a polyol having two or more hydroxyl groups in the molecule. Polymers (B-1 3) are obtained by bimolecular reaction between polymers or by reaction between multiple molecules, Alternatively, it may be a cyclic formal formed by an intramolecular reaction, or a mixture thereof.
さらに、 非クェンチ状態のポリアセタール棚旨 (A) と溶融混鍊してポリアセ 夕一ル共重合体を形成させることが可能な化合物 (B— 4) は、 炭素数 6以上の アルキルモノオール又は炭素数 6以上のアルキレンジオールを、 ホルマール化す ることにより得られる化合物である。 用いられるジオール類としては、 おもに脂 肪族のアルキレンジオール類が挙げられ、 1 , 9—ノナンジオール、 1, 1 0— デカンジオール、 1, 1 2—ドデカンジオールなどの直鎖状のジオールや、 これ らの 1, 2—水酸基置換体などが挙げられる。 アルキレン鎖が 6以上の炭素数を 有していれば、分岐構造があっても環状ォレフィンュニットを有していても良レ^ ポリアセ夕一ル樹脂 (A) との溶融混練による反応に用いられるホルマ一ルイ匕 物は、 基本的には分子内ホルマール化反応による環状体が望ましいが、 分子間反 応によるホルマール化物を含んでいても良い。  Further, the compound (B-4) capable of being melt-mixed with the non-quench polyacetal shelf (A) to form a polyacetal copolymer is an alkyl monool having 6 or more carbon atoms or a carbon monool. It is a compound obtained by formalizing an alkylene diol of number 6 or more. Examples of the diols used mainly include aliphatic alkylene diols, and linear diols such as 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, and the like. These 1,2-hydroxyl substituents are exemplified. As long as the alkylene chain has 6 or more carbon atoms, even if it has a branched structure or has a cyclic alignment unit, it can be reacted with the polyacetylene resin (A) by melt-kneading. The formal irrigation compound used is preferably basically a cyclic compound formed by an intramolecular formalization reaction, but may contain a formalized compound formed by an intermolecular reaction.
非クェンチ状態のポリアセ夕一ル樹脂 (A) と、 上記 (B— 1 ) 〜 (B— 4 ) から選ばれる物質 (B) とを溶融混鍊し反応させてポリアセ夕一ル共重合体を製 造するにあたっては、 公知の一軸または二軸押出機による溶融混練が一般的であ るが、 混鍊法については特にこれに限定されるものではない。 溶融混鍊 «; 1 0 0 ~ 2 3 0 °Cの温度範囲で行われるが、 触媒が活性状態にある非クェンチのポリア セタール樹脂と他のポリマーや化合物との反応であることを考慮すると 1 5 0〜 2 1 0 °Cの範囲が望ましい。  The non-quenched polyacetal resin (A) and the substance (B) selected from the above (B-1) to (B-4) are melt-mixed and reacted to form a polyacenyl copolymer. In the production, melt kneading by a known single-screw or twin-screw extruder is generally used, but the mixing method is not particularly limited. Melt mixing is performed in a temperature range of 100 to 230 ° C. However, considering that the catalyst is a reaction between a non-quenched polyacetal resin in an active state and another polymer or compound, A range of 50 to 210 ° C. is desirable.
溶融混鍊に用いられる (B— 1 ) 〜 (B— 4) から選ばれる物質 (B) の配合 量は、 非クェンチ状のポリアセタール樹脂 (A) 1 0 0重量部に対し、 1〜5 0 重量部であることが好ましい。 1重量部未満であると、 本発明の目的とする柔軟 で耐衝撃性に優れたポリアセタール共重合体を得ることが難しく、 5 0重量部を 越えると、 強度 ·剛性が著しく低下するため好ましくない。 上記のようにしてポリアセ夕一ル樹脂 (A) と特定物質 (B) を溶融混鍊し反 応させてポリアセ夕一ル共重合体とした後、 残存する重合触媒の失活化を行う。 失活は溶融混鍊によって得られた反応生成物 (ポリアセタール共重合体) に:^基 性化合物、 あるいはその水溶液等を加える力、、 これらとともに再度溶融混鍊する ことによって行う。 The amount of the substance (B) selected from (B-1) to (B-4) used in the melt mixing is 1 to 50 parts by weight based on 100 parts by weight of the non-quenched polyacetal resin (A). It is preferably in parts by weight. If the amount is less than 1 part by weight, it is difficult to obtain the polyacetal copolymer which is the object of the present invention and is excellent in impact resistance. If the amount is more than 50 parts by weight, strength and rigidity are remarkably reduced. . As described above, the polyacetone resin (A) and the specific substance (B) are melt-mixed and reacted to form a polyacetone copolymer, and the remaining polymerization catalyst is deactivated. The deactivation is performed by adding to the reaction product (polyacetal copolymer) obtained by melt mixing: a base compound or an aqueous solution thereof, or the like, and then melt-mixing the same together with these.
重合触媒を中和し失活するための塩基性化合物としては、アンモニア、或いは、 トリェチルァミン、 トリプチルァミン、 トリエタノールァミン、 トリブタノーリレ アミン等のアミン類、或いは、アル力リ金属、アル力リ土類金属の水酸化物塩類、 その他公知の触媒失活剤が用いられる。 また塩基性化合物の存在下で溶融混離す ることにより不安定末端部の分解除去、 ないし安定物質による不安定末端の封止 等、 必要に応じて公知の方法による安定化処理が行われる。  Examples of the basic compound for neutralizing and deactivating the polymerization catalyst include ammonia, amines such as triethylamine, triptylamine, triethanolamine, and tributanolylamine, or alkaline metal and alkaline earth metal. And other known catalyst deactivators. If necessary, a stabilization treatment by a known method, such as decomposition and removal of an unstable end portion by melting and mixing in the presence of a basic compound, or blocking of an unstable end by a stable substance, is performed.
安定化処理されたポリァセタール共重合体には、 さらに必要な各種安定剤を配 合することも可能で、 ヒンダートフエノール系化合物、 窒素含有化合物、 アル力 リ或いはアルカリ土類金属の水酸化物、 無機塩、 カルボン酸塩等のいずれか 1種 または 2種以上を挙げることができる。 更に、 本発明を阻害しない限り、 必要に 応じて、 熱可塑性樹脂に対する一般的な添加剤、 例えば染料、 顔料等の着色剤、 滑剤、 核剤、 離型剤、 帯電防止剤、 界面活性剤、 或いは、 有機高分子材料、 無機 または有機の繊維状、 粉体状、 板状の充填剤等を 1種または 2種以上添加するこ とができる。 実施例  The stabilized polyacetal copolymer can further contain various necessary stabilizers, such as hindered phenolic compounds, nitrogen-containing compounds, hydroxides of alkaline metal or alkaline earth metal, One or more of inorganic salts, carboxylate salts and the like can be mentioned. Further, as long as the present invention is not hindered, general additives for thermoplastic resins, such as coloring agents such as dyes and pigments, lubricants, nucleating agents, release agents, antistatic agents, surfactants, Alternatively, one or more kinds of organic polymer materials, inorganic or organic fibrous, powdery, and plate-like fillers can be added. Example
以下、 実施例により、 本発明を具体的に説明するが、 本発明はこれに限定され るものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
実施例 1〜: L 7及び比較例 1〜 7 Examples 1 to: L7 and Comparative Examples 1 to 7
表 1〜 3の如く、 非クェンチ状態あるいはクェンチ状態のポリァセタール樹月旨 (A) に、 各種ポリマ一ないし化合物を溶融混鍊し、 ポリアセタール共重合体を 調製し評価した。 結果を表 1〜 3に示す。 As shown in Tables 1-3, the polyacetal tree in non-quenched or quenched state In (A), various polymers or compounds were melt-blended, and a polyacetal copolymer was prepared and evaluated. The results are shown in Tables 1-3.
使用したポリアセタール樹脂 (A) の調製方法、 溶融混練によるポリアセター ル共重合体の調製方法、 溶融混練による反応に用いた物質 (B ) ( (B— 1 ) 〜 The method for preparing the used polyacetal resin (A), the method for preparing the polyacetal copolymer by melt-kneading, the substances used for the reaction by melt-kneading (B) ((B-1) ~
( B— 4 ) のポリマー又は化合物) 、 および得られたポリアセタール共重合体の 評価方法は、 下記の通りである。 The method for evaluating the (B-4) polymer or compound) and the obtained polyacetal copolymer are as follows.
[ポリアセタール樹脂 (A) の調製]  [Preparation of polyacetal resin (A)]
1— 1 ) 非クェンチ状態のポリアセタール樹脂 (A) 1— 1) Non-quenched polyacetal resin (A)
ジャケット温度を 8 (TCに設定した二軸の押出し機型の連続式重合装置に、 ト リオキサン、 1 , 3—ジォキソランならびに少量の連鎖移動剤としてメチラ一ル をフィードし、 さらにカチオン重合触媒として B F 3を供給して重合を行い、 重 合機排出口よりフレーク状のポリアセタール樹脂 (A) を連続的に採取した。 重 合に用いたトリオキサンと 1, 3—ジォキゾランの供給比は 9 6 : 4モレ%比で ある。 得られたフレーク状のポリアセタール樹脂 (A) は、 塩基性化合物による 触媒の失活化処理を行なうことなく、 また、 連鎖移動や分解反応の進行を抑制す るため、 物質 (B) との溶融混鍊を行うまでの間、 一 3 5 °Cの冷凍庫に一時保管 した。 Trioxane, 1,3-dioxolane and a small amount of methylal as a chain transfer agent are fed to a twin-screw extruder-type continuous polymerization apparatus with a jacket temperature of 8 (TC), and BF is used as a cationic polymerization catalyst. The polymerization was carried out by supplying 3, and flake-like polyacetal resin (A) was continuously collected from the outlet of the polymerizer.The feed ratio of trioxane and 1,3-dioxolane used in the polymerization was 96: 4. The obtained flake-shaped polyacetal resin (A) is a material that does not require deactivation of the catalyst with a basic compound and that suppresses the progress of chain transfer and decomposition reaction. It was temporarily stored in a freezer at 135 ° C until it was melt-mixed with (B).
1 - 2 ) クェンチ処理のポリアセタール樹脂 (A—クェンチ)  1-2) Quench-treated polyacetal resin (A-Quench)
比較例 1〜 3にて用いたクェンチ処理のポリァセタール樹脂 (A—ク: ンチ) は、 上記の重合において重合機排出口よりフレーク状で取り出したポリアセター ル樹脂を、 トリェチルァミンの 5 %水溶液に 2 4時間以上浸して触媒の失活化を 行なった後、 これを脱水 ·乾燥処理し、 さらに少量 (0 . 0 4重量%) の酸化防 止剤 (商品名 「ィルガノックス 1 0 1 0」 ) とともに 2 0 0でで溶融混練するこ とにより調製した。  The quench-treated polyacetal resin (A-q: unch) used in Comparative Examples 1 to 3 was prepared by converting the polyacetal resin taken out in a flake form from the outlet of the polymerization machine in the above polymerization into a 5% aqueous solution of triethylamine. After immersing the catalyst for more than an hour to deactivate the catalyst, it is dehydrated and dried, and then with a small amount (0.04% by weight) of an antioxidant (trade name “Ilganox 100”). It was prepared by melt-kneading at 100.
[溶融混鍊によるポリァセタール共重合体の調製] 非クェンチ状態のポリ 7セタ一ル樹脂 (A) と (B—1) 〜 (B— 4) 力、ら選 ばれた物質 (B) との溶融混練は、 二軸の押出し機 (日本製鋼所製; TEX- 30) を 用いて行なった。 溶融混練におけるシリンダー温度は 180° (:〜 200で (ダイヘッド 部) 、 スクリュー回転は 120 r pm、 フィード量は 6 k g/h rである。 得ら れたポリァセ夕一リレ共重合体はペレタイズし、 再度溶融混鍊にてトリェチルァミ ンの 5 %水溶液を 3 %とヒンダードフエノ一ル系酸化防止剤 (ィルガノックス 1 010 ;チバスべシャリティ ·ケミカルズ製) を 0. 2重量部添加して、 触媒の 失活化処理と共に安定化処理を行った。 [Preparation of polyacetal copolymer by melt mixing] The melt kneading of the non-quenched poly 7-cetal resin (A) and the selected material (B) with (B-1) to (B-4) forces is performed by a twin-screw extruder (Nippon Steel Works, Ltd.). Manufactured by TEX-30). The cylinder temperature in the melt-kneading is 180 ° (: ~ 200 (die head part), the screw rotation is 120 rpm, and the feed rate is 6 kg / hr. The obtained polyester copolymer is pelletized, Reactivate the catalyst by adding 3 parts of a 5% aqueous solution of triethylamine and 0.2 parts by weight of a hindered phenolic antioxidant (Ilganox 1010; manufactured by Ciba Specialty Chemicals) again by melt mixing. A stabilization treatment was performed together with the treatment.
比較例 1〜3においては、 クェンチ処理したポリアセタール樹脂 (A—クェン チ) を用い、 上記と同様の溶融混練を行なった。 但し、 再溶融混練におけるトリ ェチルァミン水溶液の添加は行なわなかった。  In Comparative Examples 1 to 3, the same melt-kneading as described above was performed using a quenched polyacetal resin (A-quench). However, the addition of the aqueous solution of triethylamine in the remelting kneading was not performed.
[溶融混練による反応に用いた物質 (B) ]  [Material used for the reaction by melt-kneading (B)]
実施例において物質 (B) として使用したポリマ一 (B— 1) 、 ポリマー (B -2) 、 ポリマー (B— 3) 及び化合物 (B— 4) は下記の通りである。  The polymer (B-1), polymer (B-2), polymer (B-3) and compound (B-4) used as the substance (B) in the examples are as follows.
比較例に用いた活性水素を有さないポリマー (Β' ) も併せて示す。  The polymer without active hydrogen (Β ') used in the comparative example is also shown.
(Β - 1)  (Β-1)
Β— 1— 1) ポリエチレングリコール 20000 (キシダ化学品 ·試薬) Β— 1— 1) Polyethylene glycol 20000 (Kishida Chemicals / Reagents)
B—1— 2) ポリプロピレングリコール ジオール型 3000 (和光純薬品 '試 薬) B-1-2) Polypropylene glycol diol type 3000 (Wako Pure Chemicals' reagent)
Β— 1— 3) ポリプロピレングリコールモノブチルエーテル (Μη = 4000) Β— 1— 3) Polypropylene glycol monobutyl ether (Μη = 4000)
(アルドリッチ品 ·試薬) ) (Aldrich products and reagents))
Β- 1 -4) PEG— PPG— PEG (ブロックポリマー; Mn = 580 0) (シ ダマアルドリッチ品 ·試薬) Β- 1 -4) PEG— PPG— PEG (block polymer; Mn = 580 0) (Sydama Aldrich product / reagent)
B-1-5) ポリ力プロラクトン (ジオール型) 「ブラクセル H 5」 (ダイセル 化学工業製) B- 1 -6) ポリテトラメチレングリコール 「PTG3000」 (保土谷化 ェ 業製) B-1-5) Polycaprolactone (diol type) "BRAXEL H5" (manufactured by Daicel Chemical Industries) B- 1 -6) Polytetramethylene glycol “PTG3000” (manufactured by Hodogaya Chemical)
B-1 -7) ポリ (3—ヒドロキシ酪酸) ジオール (シグマアルドリッチ品 ·試 薬)  B-1 -7) Poly (3-hydroxybutyric acid) diol (Sigma-Aldrich product / agent)
B— 1— 8) ポリブタジエン 「G3000」 (日本曹達製) 、 両末端水酸基品 B— 1— 9) ポリ (ジォキソラン) ジオール (合成品)  B-1-8) Polybutadiene "G3000" (manufactured by Nippon Soda), hydroxyl-terminated at both ends B-1-9) Poly (dioxolane) diol (synthetic product)
ポリ (ジォキソラン) ジオールの合成は次のように行った。 1, 3—ジォキソ ラン 200gを 500mlの重合釜に注ぎ、 内部温度を 301になるよう設定し た。 ここに触媒としてリン ·タングステン酸水和物をギ酸メチルに 150倍濃度 The synthesis of poly (dioxolane) diol was performed as follows. 200 g of 1,3-dioxolan was poured into a 500 ml polymerization kettle, and the internal temperature was set to 301. As a catalyst, phosphorous tungstate hydrate is added to methyl formate in a concentration 150 times
(重量比) で希釈した溶液を、 リン ·タングステン酸換算で 20 p pmなる量を 添加して重合を行った。 系内の粘度が十分に上昇したところで、 重合停止剤とし てトリエチルァミンのジォキゾラン 2%水溶液を 1 O c c添加した。 さらに 15 分攪拌後、 系内を真空にし、 未反応のモノマ一を除去することにより、 ポリ (ジ ォキソラン) を得た。 更に、 得られたポリマーを 5%のトリエチルァミン水溶液The solution diluted by (weight ratio) was added in an amount of 20 ppm in terms of phosphorous tungstic acid to carry out polymerization. When the viscosity in the system was sufficiently increased, 1% of a 2% aqueous solution of dioxolane of triethylamine was added as a polymerization terminator. After stirring for another 15 minutes, the system was evacuated to remove unreacted monomers to obtain poly (dioxolane). Further, the obtained polymer is mixed with a 5% aqueous triethylamine solution.
(3%添加) と共に溶融混練し、 不安定末端を除去することにより、 安定な水酸 基末端を有するポリマーを得た。 (3% added) and melt kneading to remove the unstable terminal, thereby obtaining a polymer having a stable hydroxyl terminal.
(B - 2)  (B-2)
B— 2— 1) ポリエチレングリコールジグリシジルエーテル、 Mn=526 (シ ダマアルドリッチ品 ·試薬)  B— 2-1) Polyethylene glycol diglycidyl ether, Mn = 526 (Shimad Aldrich product / reagent)
B- 2一 2)ポリプロピレングリコールジグリシジルェ一テル、 Mn = 640 (ァ ルドリッチ品,試薬)  B-2-1-2) Polypropylene glycol diglycidyl ether, Mn = 640 (Aldrich product, reagent)
B- 2 - 3) エポキシ/ヒドロキシル化ポリブタジエン、 Mn = 2600 (アル ドリツチ品 ·試薬)  B- 2-3) Epoxy / hydroxylated polybutadiene, Mn = 2600 (Aldrich product / reagent)
(B - 3)  (B-3)
B— 3— 1) ポリプロピレングリコールホルマール (合成品) ホルマ一ルイ匕は次のよう して行った。 ポリプロピレングリコール 400 (シ ダマ ·アルドリッチ製 ·試薬) 40 gとホルマリン水溶液 2 Om 1を 20 Om 1 のナスフラスコに仕込み、 さらにベンゼンを少量 (10ml程度) 加え、 触媒と して硫酸を 0. 2ml添加した。 フラスコ温度を 100。(:に設定し、 1時間程還 流を行ったのち、 蒸留用の冷却管をとり付け、 さらに系内の温度を 1 10でにあ げ、 反応によって生成する水分をベンゼンと共沸させながらフラスコ系外に留去 した。 ベンゼンは必要に応じ系内に随時加え、 水の留出がなくなるまで反応を続 けた。 反応終了後、 KOHにて系内を中和し、 アセトンを添加して塩を沈殿させ これを除去した。さらにァセトンと微量の水分をエバポレー夕一により除去した。 得られた反応物は1 H— NMRの <5 = 4. 75 p pm付近のピークを検出した。 このホルマールュニットの存在によりホルマール化反応を確認した。 B— 3— 1) Polypropylene glycol formal (synthetic product) Holma Illui-dani performed as follows. 40 g of polypropylene glycol 400 (manufactured by Shimadama-Aldrich Co., Ltd.) and formalin aqueous solution 2 Om1 are charged into a 20 Om1 eggplant flask, a small amount of benzene (about 10 ml) is added, and 0.2 ml of sulfuric acid is added as a catalyst. did. Flask temperature 100. (: Set to, reflux for about 1 hour, attach a cooling pipe for distillation, raise the temperature in the system to 110, and azeotropically evaporate the water generated by the reaction with benzene. Benzene was added to the system as needed, and the reaction was continued until no more water distilled out After the reaction was completed, the system was neutralized with KOH, and acetone was added. Acetone and a trace amount of water were removed by evaporation, and the resulting reaction product detected a 1 H-NMR peak at <5 = 4.75 ppm. The formalization reaction was confirmed by the presence of formal unitite.
B— 3— 2) ポリプロピレングリコールモノプチルェ一テル (アレドリッチ品 . 試薬) のホルマール化物 (合成品;合成手順は B— 3— 1) 参照) B—3—2) Formal compound of polypropylene glycol monobutyl ether (Aldrich product. Reagent) (synthetic product; see B-3-1) for synthesis procedure)
(B - 4)  (B-4)
B— 4一 1) 1, 9ーノナンジオール (東京化成工業品 '試薬) のホルマール化 (合成品;合成手順は B -3-1) 参照)  B-4-1 1) Formalization of 1,9-nonanediol (Tokyo Kasei Kogyo 'Reagent') (synthetic product; see B-3-1) for synthetic procedure)
B-4-2) 1, 12—ドデカンジオール (東京化成工業品'試薬) のホルマ一 ル化 (合成品;合成手順は B -3-1) 参照)  B-4-2) Formalization of 1,12-dodecanediol (Tokyo Kasei Kogyo's reagent) (synthetic product; see B-3-1) for synthetic procedure)
(Β' ) 活性水素を有さないポリマー  (Β ') Polymer without active hydrogen
B' ― 1) ポリエチレングリコールジメチルエーテル、 Μη = 5 00 (シグマァ ルドリッチ品 ·試薬)  B '― 1) Polyethylene glycol dimethyl ether, Μη = 500 (Sigma-rich product / reagent)
B' -2) ポリプロピレングリコールジァクリレート、 Μη = 9 00 (アルドリ ッチ品 ·試薬)  B '-2) Polypropylene glycol diacrylate, Μη = 900 (Aldrich product / reagent)
B' — 3) ポリブタジエン 「Β 3000」 (日本曹達製) 、 両末¾メチル型 B' —4) ポリプロピレン 「ノーブレン W101」 (住友化学社製) [ポリァセ夕一ル共重合体の分析 ·評価] B '— 3) Polybutadiene “Β3000” (manufactured by Nippon Soda), both ends ¾methyl type B' —4) Polypropylene “Noblen W101” (manufactured by Sumitomo Chemical Co., Ltd.) [Analysis and evaluation of polyester copolymer]
得られたポリァセタール共重合体ポリマー 3 Omgを一度へキサフルォロイソ プロパノールに溶解させた後、 溶融混練 (反応) に用いたポリマ一ないし化合物 (B— 1) 〜 (B— 4) 又は (Β' ) が可溶な溶媒に再沈させ、 未反応の (Β— 1) 〜 (Β— 4) 又は (Β' ) を除去して分析を行った。 再沈処理したポリアセ タール共重合体は、 ポリマーへキサフルォロイソプロパノール d2 0. 6mlに 溶解して、 'H— NMRにて分析を行うことにより、ポリァセタ一ル主鎖中への(B — 1) 〜 (B— 4) 成分の導入量を算出した。  After dissolving 3 Omg of the obtained polyacetal copolymer polymer in hexafluoroisopropanol, the polymer or compound (B-1) to (B-4) or (Β ') used for melt-kneading (reaction) is dissolved. The precipitate was reprecipitated in a soluble solvent, and unreacted (Β-1) to (Β-4) or (Β ') was removed and analyzed. The re-precipitated polyacetal copolymer was dissolved in 0.6 ml of polymer hexafluoroisopropanol d2 and analyzed by 'H-NMR to obtain (B- 1) to (B-4) The amounts of components introduced were calculated.
さらに、 得られたポリアセタール共重合体は、 引張り強度ノ伸度ならびにシャ ルピー衝撃試験評価を行うべく、 I SO規格条件 (9988— 2) に準じて東芝 I S 80EPN成形機を用い、 弓 I張り試験片ならびに曲げ試験片を採取した。 得 られた試験片は温度 23 °C、 湿度 50%の条件下に 48時閎放置し、 引張り試験 は I S〇 527、 シャルピー衝撃試験はノツチ付きの曲げ試験片にて I S O 17 9に準じて測定を行った。  Furthermore, the obtained polyacetal copolymer was subjected to a bow I tension test using a Toshiba IS 80EPN molding machine in accordance with ISO standard conditions (9988-2) in order to evaluate tensile strength and elongation and Charpy impact test. Pieces and bending test pieces were collected. The obtained test specimen was left for 48 hours under the conditions of a temperature of 23 ° C and a humidity of 50%, and the tensile test was measured according to IS-527, and the Charpy impact test was performed using a notched bending test specimen according to ISO 179. Was done.
さらに MFRの測定は、 I SOI 133に基づき、 メルトインデックス装置 (宝 工業社製) を使用し、 荷重 2160 gのピストンを用いて、 以下に示す温度にて 7分間滞留後、 ピストンの荷重によって押出される溶融樹脂組成物量 [g] を 1 0分間あたりに換算して評価した。  The MFR was measured using a melt indexer (Takara Kogyo Co., Ltd.) based on ISO 133 and using a piston with a load of 2160 g for 7 minutes at the temperature shown below. The amount [g] of the molten resin composition to be used was evaluated by converting it per 10 minutes.
結果を表 1〜3に示す。 The results are shown in Tables 1-3.
表 1 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例Table 1 Example Example Example Example Example Example Example Example Example Example Example Example
1 2 3 4 5 6 7 8 9 1 0 リアセタ-ル樹脂 (A) 重量% 9 5 9 0 95 9 0 9 5 9 5 9 5 9 5 9 5 9 5 リマ- B - 1 - 1) 5 1 0 1 2 3 4 5 6 7 8 9 1 0 Riacetar resin (A) wt% 9 5 9 0 95 9 0 9 5 9 5 9 5 9 5 9 5 9 5 Lima-B-1-1) 5 1 0
B- 1 -2) 5  B- 1 -2) 5
B - 1 - 3) 1 0  B-1-3) 1 0
B- 1 -4) 5  B- 1 -4) 5
B - 1 -5) 5  B-1 -5) 5
B - 1 -6) 5  B-1 -6) 5
B- 1 -7) 5  B- 1 -7) 5
B- 1 -8) 5  B- 1 -8) 5
B- 1 -9) 5 B- 1 -9) 5
(B)成分の導入量 重量% 2. 1 4. 5 2. 4 4. 9 2. 5 4. 2 3. 0 3. 0 2. 6 4. 8(B) Introduced amount of component Weight% 2.1.4.2.4.4.92.5.4.2.3.03.02.6.4.8
M F R g/10tnin 4. 4 6. 3 5. 5 6. 6 3. 9 3. 1 5. 0 6. 4 5. 1 3. 6 引張り強度 MPa 55 50 54 51 54 56 54 54 52 55 引張り伸度 MPa 59 55 67 53 60 65 62 60 78 50 シャルビ-衝撃 (ノッチ付き) kJ/m2 1 0. 5 1 2.5 1 1.9 1 1.0 1 1.5 1 3.3 1 2.0 1 0.8 1 2.5 1 0.0 MFR g / 10tnin 4. 4 6. 3 5. 5 6. 6 3. 9 3. 1 5. 0 6. 4 5. 1 3.6 Tensile strength MPa 55 50 54 51 54 56 54 54 52 55 Tensile elongation MPa 59 55 67 53 60 65 62 60 78 50 Charvi-impact (with notch) kJ / m 2 1 0.5 1 2.5 1 1.9 1 1.0 1 1.5 1 3.3 1 2.0 1 0.8 1 2.5 1 0.0
¾+ ·· ¾ +
1 実施例 実施例 実施例 実施例 実施例 実施例 実施例1 Example Example Example Example Example Example Example Example Example
1 1 1 2 1 3 1 4 1 5 1 6 1 7 ホ'リアセタ -ル樹脂 (A) 重量% 95 95 95 95 95 95 95 1 1 1 2 1 3 1 4 1 5 1 6 1 7 Polyacetal resin (A) Weight% 95 95 95 95 95 95 95
5  Five
B-2-2) 5  B-2-2) 5
B-2-3) 5  B-2-3) 5
B-3-1) 5  B-3-1) 5
B-3-2) 5  B-3-2) 5
化合物 B- 4 - 1) 3 Compound B- 4-1) 3
B-4-2) 3 B-4-2) 3
(B)成分の導入量 重量% 3. 8 3. 5 2. 9 3. 5 4. 4 2. 1 2. 3(B) Introduced amount of component Weight% 3.8 3. 5. 2. 9. 3. 5. 4. 4 2. 1 2. 3
M F R g/IOmin 3. 5 3. 4 3. 7 4. 2 4. 4 3. 4 3. 7 引張り強度 MPa 53 53 52 54 55 56 56 引張り伸度 MPa 63 67 78 60 53 55 60 シャルビ-衝撃 ( チ付き) kJ/m2 1 2. 0 1 2. 8 1 4. 0 1 2. 1 1 0. 5 1 0. 2 1 0. 3 MFR g / IOmin 3.5 5.3.4 3.7 4.2 4.4 3.4 3.7 Tensile strength MPa 53 53 52 54 55 56 56 Tensile elongation MPa 63 67 78 60 53 55 60 KJ / m 2 1 2.0 1 2. 8 1 4.0 1 2. 1 1 0.5 1 0. 2 1 0.3
表 3 Table 3
比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 比較例 τ ホ。リアセタ -ル樹脂 (A) 重量% 95 95 95 95 ホ°リアセタ -ル樹脂 (A-ク Iンチ品) 1 00 95 95 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example τ e. Riacetar-resin (A) Weight% 95 95 95 95 White Riacetar-resin (A-inch) 1 00 95 95
ホ。リマ- B - 1-1) 5 E. Lima B-1-1) 5
B-2-1) 5  B-2-1) 5
B'-1) 5  B'-1) 5
B'-2) 5  B'-2) 5
B'-3) 5  B'-3) 5
B 4) 5 B 4) 5
(B)成分の導入量 重量% ― 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0(B) Introduced amount of component (% by weight)-0.0 0 0 0 0 0 0 0 0 0.0 0 0.0
M F R g/10min 3. 3 3. 4 3. 4 3. 2 3. 3 3. 5 4. 5 引張り強度 MPa 61 60 60 60 60 61 60 引張り伸度 Pa 46 45 43 45 46 49 46 シャルピ-衝撃 (ノッチ付き) kJ/m2 8. 5 8. 4 8. 6 8. 8 8. 6 8. 8 8. 5 MFR g / 10min 3.3 3.3.4 3.4.3 3.3.3 3.3.5.4.5 Tensile strength MPa 61 60 60 60 60 61 60 Tensile elongation Pa 46 45 43 45 46 49 46 Charpy impact ( Notch) kJ / m 2 8.5 8. 4 8. 6 8. 8 8. 6 8. 8 8.5

Claims

請求の範囲 The scope of the claims
1 . カチオン重合触媒を用いて重合することにより得られるポリアセタール樹 脂 (A) を、 そのカチオン生長末端ならびに重合触媒の失活化処理を行なうこと なく、 下記 (B— 1 ) 〜 (B— 4 ) から選ばれる物質 (B) と溶融混鍊すること を特徴とするポリァセタール共重合体の製造方法。 1. The polyacetal resin (A) obtained by polymerization using a cationic polymerization catalyst is converted into the following (B-1) to (B-4) A process for producing a polyacetal copolymer, which is melt-blended with a substance (B) selected from the group consisting of:
B— 1 :活性水素原子を分子内に有するポリマー  B-1: Polymer having active hydrogen atoms in the molecule
B - 2 :グリシジル基を分子内に有するポリマ一  B-2: A polymer having a glycidyl group in the molecule
B— 3 :分子内に水酸基を有する脂肪族ポリエーテル又は分子内に水酸基を有 する脂肪族ポリエステルを、 ホルマール化することにより得られるポリマー B-3: Polymer obtained by formalizing an aliphatic polyether having a hydroxyl group in the molecule or an aliphatic polyester having a hydroxyl group in the molecule
B— 4:炭素数 6以上のアルキルモノオール又は炭素数 6以上のアルキレンジ オールを、 ホ レマール化することにより得られる化合物 B-4: Compound obtained by formalizing alkyl monool having 6 or more carbon atoms or alkylene diol having 6 or more carbon atoms
2 . ポリマー (B— 1 ) が、 両末端に活性水素原子を有する 2官能性ポリマー である請求項 1記載のポリァセタール共重合体の製造方法。  2. The method for producing a polyacetal copolymer according to claim 1, wherein the polymer (B-1) is a bifunctional polymer having active hydrogen atoms at both ends.
3 . ポリマー (B— 1 ) の活性水素原子が水酸基に由来するものである請求項 1または 2記載のポリァセタール共重合体の製造方法。  3. The method for producing a polyacetal copolymer according to claim 1, wherein the active hydrogen atom of the polymer (B-1) is derived from a hydroxyl group.
4. ポリマ一 (B— 1 ) 力 脂肪族ポリエーテル骨格又は脂肪族ポリエステル 骨格を有するものである言冑求項 1〜 3の何れか 1項に記載のポリァセタール共重 合体の製造方法。  4. Polymer (B-1) force The method for producing a polyacetal copolymer according to any one of claims 1 to 3, which has an aliphatic polyether skeleton or an aliphatic polyester skeleton.
5 . ポリマー (B - 1 ) が、 ポリエチレングリコ一ル、 ポリプロピレングリコ ール、 ポリテ卜ラメチレングリコール、 ポリ力プロラクトンジオール、 ポリ (ジ ォキゾラン) ジオール、 ポリ (ジォキセパン) ジオール及びこれらのモノアルキ ルエーテル誘導体から選ばれたものである請求項 1 ~ 3の何れか 1項に記載のポ リァセ夕一ル共重合体の製造方法。  5. The polymer (B-1) is polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polycaprolactone diol, poly (dioxolane) diol, poly (dioxepane) diol and monoalkyl ether derivatives thereof. 4. The method for producing a polyester copolymer according to claim 1, wherein the copolymer is selected from the group consisting of:
6 . ポリマー (B— 2 ) が、 脂肪族ポリエーテル骨格又は脂肪族ポリエステル O 2005/033183 骨格を有するものである請求項 1記載のポリァセタール共重合体の製造方法。6. The polymer (B-2) is an aliphatic polyether skeleton or aliphatic polyester O 2005/033183 The method for producing a polyacetal copolymer according to claim 1, which has a skeleton.
7. ポリアセタール樹脂 (A) が、 トリオキサン (a— 1) とエチレンォキシ ド、 1, 3—ジォキソラン、 1, 4一ブタンジオールホルマール及びジエチレン グリコールホルマールから選ばれた環状エーテル化合物 (a— 2) とをカチオン 重合触媒を用いて共重合することにより得られたものである請求項 1〜6の何れ か 1項に記載のポリアセタール共重合体の製造方法。 7. The polyacetal resin (A) is composed of trioxane (a-1) and a cyclic ether compound (a-2) selected from ethylene oxide, 1,3-dioxolan, 1,4-butanediol formal and diethylene glycol formal. The method for producing a polyacetal copolymer according to any one of claims 1 to 6, which is obtained by copolymerization using a cationic polymerization catalyst.
8. ポリアセタール樹脂 (A) 100重量部に対し、 (B—1) 〜 (B— 4) から選ばれる物質 (B) 1〜50重量部を溶融混鍊するものである請求項 1〜7 の何れか 1項に記載のポリァセタール共重合体の製造方法。  8. The method according to claim 1, wherein 1 to 50 parts by weight of a substance (B) selected from (B-1) to (B-4) is melt mixed with 100 parts by weight of the polyacetal resin (A). The method for producing the polyacetal copolymer according to any one of claims 1 to 7.
PCT/JP2004/010691 2003-09-30 2004-07-21 Process for producing copolyacetal WO2005033183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003339608A JP4472302B2 (en) 2003-09-30 2003-09-30 Process for producing polyacetal copolymer
JP2003-339608 2003-09-30

Publications (1)

Publication Number Publication Date
WO2005033183A1 true WO2005033183A1 (en) 2005-04-14

Family

ID=34419157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010691 WO2005033183A1 (en) 2003-09-30 2004-07-21 Process for producing copolyacetal

Country Status (2)

Country Link
JP (1) JP4472302B2 (en)
WO (1) WO2005033183A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354495B2 (en) 2008-04-16 2013-01-15 Ticona Gmbh Process for the preparation of oxymethylene polymers and apparatus suitable for this purpose
US8993709B2 (en) 2011-07-15 2015-03-31 Ticona Gmbh Process for producing oxymethylene polymers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829843A (en) * 1971-08-18 1973-04-20
JP2000169668A (en) * 1998-12-02 2000-06-20 Polyplastics Co Polyacetal resin composition and molded product obtained therefrom
JP2002003696A (en) * 2000-06-22 2002-01-09 Polyplastics Co Polyacetal resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829843A (en) * 1971-08-18 1973-04-20
JP2000169668A (en) * 1998-12-02 2000-06-20 Polyplastics Co Polyacetal resin composition and molded product obtained therefrom
JP2002003696A (en) * 2000-06-22 2002-01-09 Polyplastics Co Polyacetal resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354495B2 (en) 2008-04-16 2013-01-15 Ticona Gmbh Process for the preparation of oxymethylene polymers and apparatus suitable for this purpose
US8993709B2 (en) 2011-07-15 2015-03-31 Ticona Gmbh Process for producing oxymethylene polymers

Also Published As

Publication number Publication date
JP2005105103A (en) 2005-04-21
JP4472302B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US3980734A (en) Thermoplastic moulding compositions based on poly (oxymethylene)
EP1508592B1 (en) Polyacetal resin composition
WO2005003232A1 (en) Polyacetal resin composition
EP1215245B1 (en) Polyacetal resin composition
WO2001042326A1 (en) Polyacetal copolymer
WO2005033183A1 (en) Process for producing copolyacetal
EP1273624B1 (en) Branched polyacetal resin composition
JP4937436B2 (en) Polyacetal copolymer and process for producing the same
JP2001031732A (en) Novel polyacetal resin
JP4467669B2 (en) Branched polyacetal resin composition
JP2002003694A (en) Polyacetal resin composition
JP3208353B2 (en) Method for producing polyacetal resin
JP2002003696A (en) Polyacetal resin composition
JP4979856B2 (en) Polyacetal resin composition
SE406772B (en) POLY (OXIMETHYLENE) POLY (OXIMETHYLENE) THERMOPLASTIC PRESS MASSES AND PROCEDURES FOR THE MANUFACTURE
JP2000169668A (en) Polyacetal resin composition and molded product obtained therefrom
JP4429536B2 (en) Polyacetal copolymer and process for producing the same
WO2000055227A1 (en) Polyacetal copolymer and method for producing the same
JPS59129247A (en) Polyoxymethylene composition
JP2001002886A (en) Branched polyacetal resin composition
WO2000005285A1 (en) Copolyacetal
JP3957893B2 (en) Sliding parts
JP2001240639A (en) Modified polyacetal resin and method of manufacturing the same
JP3883750B2 (en) Polyacetal copolymer
JP2001163942A (en) Polyacetal copolymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase