Capteur comprenant un élément piézo-électrique La présente invention concerne un capteur comprenant un élément piézoélectrique, comme un capteur de pression cylindre ou un capteur de cliquetis qui sont utilisés dans le secteur automobile. On connaît un capteur du type comprenant un empilement sensible qui comprend un élément piézo-électrique, un premier élément de contact situé d'un côté de l'élément piézo-électrique et en contact électrique avec ce dernier, et un deuxième élément de contact disposé de l'autre côté de l'élément piézo-électrique et en contact électrique avec ce dernier. De façon connue, un tel capteur comprend également une embase métallique sur laquelle sont disposés les deux éléments de contact et l'élément piézo-électrique, une masse sismique destinée à amplifier mécaniquement le signal, ainsi que des éléments isolants permettant d'isoler électriquement les deux éléments de contact et l'élément piézo-électrique de l'embase ou d'autres éléments du capteur dont le contact provoquerait un court-circuit. Lors de la réalisation du capteur, les différents éléments sont montés sur l'embase et solidarisés à celle-ci par l'intermédiaire d'un écrou assurant leur maintien en position, puis cet assemblage est surmoulé à l'aide d'une matière isolante. Or, durant la phase d'assemblage et de solidarisation, les différents éléments doivent rester correctement centrés les uns par rapport aux autres afin de préserver un empilement de qualité nécessaire au bon fonctionnement du capteur. Pour éviter un décentrage des éléments, il est nécessaire d'utiliser un outillage spécifique comprenant des mors de serrage et de centrage. Un but de la présente invention est de réaliser un capteur sans utiliser d'outillage destiné à garantir le centrage des éléments, tout en conservant la qualité de l'empilement. Selon un premier aspect de l'invention, au moins un des éléments de l'empilement du capteur du type précité comprend des organes de centrage adaptés à empêcher tout décentrage d'au moins un des éléments de l'empilement qui lui est adjacent. En outre, la présente invention concerne également un élément adapté à être disposé dans l'empilement sensible d'un tel capteur. Selon cet aspect de l'invention, cet élément comprend des organes de centrage adaptés à empêcher tout décentrage d'au moins un des éléments de l'empilement qui lui est adjacent. D'autres particularités apparaîtront dans la description détaillée de deux modes de réalisation de capteur conformes à la présente invention, donnés à titre d'exemples non limitatifs et représentés dans les figures mises en annexe. La figure 1 est une vue en perspective d'un premier mode de réalisation d'un élément de capteur conforme à l'invention ;
La figure 2 est une vue semblable à la figure 1 d'un second mode de réalisation d'un élément de capteur ; La figure 3 est une vue en perspective d'un premier mode de réalisation d'un capteur assemblé, avant surmoulage, conforme à l'invention ; La figure 4 est une vue en coupe partielle du capteur illustré à la figure 3 ; La figure 5 est une vue semblable à la figure 3 d'un second mode de réalisation d'un capteur conforme à l'invention ; et La figure 6 est une vue semblable à la figure 4 du capteur illustré à la figure 5 ; Comme on peut le voir aux figures 3 à 6, un capteur 1 tel qu'un capteur de cliquetis, utilisé dans le domaine automobile, comprend un empilement sensible 2 qui est disposé sur une embase 3. L'empilement 2 comprend un élément piézo-électrique 4, une masse sismique 5, un premier élément de contact 6 qui est en contact électrique avec l'élément piézo-électrique 4 et qui est placé entre ce dernier 4 et l'embase 3, et un deuxième élément de contact 7 qui est en contact électrique avec l'élément piézo-électrique 4 et qui est placé entre ce dernier 4 et la masse sismique 5. Les deux éléments de contact 6,7 sont placés de chaque côté de l'élément piézo-électrique 4 de façon à permettre la mesure de la différence de potentiel générée par la pression exercée sur l'élément piézoélectrique 4. Afin d'éviter tout court-circuit, les deux éléments de contact 6,7 et l'élément piézo-électrique 4 sont isolés électriquement de l'embase 3 métallique. Afin de transmettre l'information électrique, chaque élément de contact comprend 6,7 comprend une broche 8,9 destinée à réaliser la connexion avec un circuit électrique. Dans les modes de réalisation illustrés, l'embase 3 métallique est formée d'un cylindre creux 10 muni d'un épaulement extérieur 11 ayant une surface plane sur laquelle repose les autres différents éléments 4,5,6,7 de l'empilement 2. Ces éléments 4,5,6,7 ont la forme générale d'un anneau qui entoure le cylindre creux 10 sans être en contact avec lui (voir les figures 4 et 6). L'empilement 2 du capteur 1 est réalisé dans l'ordre suivant: Pépaulement extérieur 11 de l'embase 3, le premier élément de contact 6 (qui est isolé électriquement de l'embase 3), l'élément piézo-électrique 4 (qui est en contact électrique avec le premier élément de contact 6), le second élément de contact 7 (qui est en contact électrique avec l'élément piézo-électrique 4), et la masse sismique 5. La partie creuse du cylindre 10 permet de faire passer un moyen de fixation (une vis par exemple) du capteur 1. Selon l'invention au moins un des éléments 4,5,6,7,11 de l'empilement 2 comprend des organes de centrage 12,13,14 adaptés à empêcher tout décentrage d'au moins un des éléments de l'empilement 2 qui lui est adjacent.
Dans les deux présents modes de réalisation du capteur 1 , les deux éléments de contact 6,7 comprennent des organes de centrage 12,13,14 et empêchent tout décentrage des autres éléments de l'empilement 2 (excepté de l'epaulement 11). Afin d'éviter d'éviter tout court-circuit, les organes de centrage 12,13,14 de chaque élément de contact 6,7 n'est en contact ni avec l'autre élément de contact 7,6, ni avec les organes de centrage 13,14,12 de cet autre élément de contact 7,6, ni avec l'embase 3 métallique. Comme on peut le voir aux figures 1 à 6, dans les présents modes de réalisation, les organes de centrage 12,13,14 sont formés par des ergots 12,13,14 qui s'étendent selon la direction de l'empilement 2. Les éléments adjacents 4,5 aux éléments de contact 6,7 sont conformés de sorte que les ergots 12,13,14 leur impose leur position dans le plan normal à l'axe de l'empilement 2. Dans les présents modes de réalisation, les ergots 12,13,14 sont disposés à la périphérie de l'élément de contact correspondant 6,7, l'élément adjacent correspondant 4,5 ayant un diamètre lui permettant d'être disposé entre les ergots 12,13,14 sans pouvoir dévier de l'axe de l'empilement 2. Comme on peut le voir aux figures 1 et 2, dans les présents modes de réalisation, les ergots 12,13,14 sont réalisés dans la masse de l'élément les supportant. En l'occurrence, les ergots 12,13,14 sont réalisés par un pliage de pattes saillantes qui ont été obtenues pendant l'opération d'emboutissage d'une feuille de matériau conducteur permettant la réalisation de l'anneau, comme est réalisée la broche 8,9 de connexion électrique. Dans les présents modes de réalisation, le premier élément de contact 6 est collé, d'une part à l'epaulement extérieur 11 de l'embase 3 par une colle électriquement isolante, et, d'autre part, à l'élément piézo-électrique 4 par une colle électriquement conductrice. De même, le second élément de contact 7 est collé, d'une part, à l'élément piézo-électrique 4 par une colle électriquement conductrice, et, d'autre part, à la masse sismique 5 (la colle pouvant être isolante ou conductrice, la masse sismique 5 n'étant pas en contact avec l'embase 3). L'utilisation de colle entre les différents éléments 4,5,6,7,11 de l'empilement 2 permet de les immobiliser les uns par rapport aux autres, les ergots 12,13,14 servant d'une part, à faciliter le montage en servant de guide pour le positionement précis des éléments par rapport à l'axe de l'empilement 2, et, d'autre part, d'empêcher tout décentrage des éléments tant que les différentes colles ne sont pas sèches. Comme on peut le voir à la figure 1, du fait de l'utilisation d'une couche de colle pour isoler l'epaulement extérieur 11 du premier élément de contact 6, les ergots 12 de ce dernier s'étendent tous dans un seul sens. Quand le premier élément de contact 6 est disposé sur l'embase 3, tous les ergots 12 sont dirigés à l'opposé de l'epaulement
extérieur 11. Ainsi les ergots 12 servent de guide de centrage à l'élément piézoélectrique 4 par rapport au premier élément de contact 6 (qui est correctement centré par rapport à l'axe de l'empilement 2 du fait de son collage à l'epaulement extérieur 11 de l'embase 3) sans qu'il y ait un quelconque contact électrique avec l'embase 3. Comme on peut le voir à la figure 2, le second élément de contact 7 comprend des premiers ergots 13 qui s'étendent dans un premier sens et des seconds ergots 14 qui s'étendent dans le sens opposé. Les premiers ergots 13 du second élément de contât 7 permettent de servir de guide de centrage au second élément de contact 7 par rapport à l'élément piézo-électrique 4 (qui est correctement centré par les ergots 12 du premier élément de contact e), et les seconds ergots 14 permettent de servir de guide de centrage à la masse sismique 5 par rapport au second élément de contact 7 (qui est correctement centré par ses premiers ergots 13). Dans le second mode de réalisation du capteur 1, comme on peut le voir aux figures 5 et 6, les organes de centrage 12,13,14 sont conformés de façon à empêcher toute rotation relative des éléments qu'ils servent à centrer. A cet effet, des éléments 4,5 de l'empilement 2 (en l'occurrence l'élément piézo-électrique 4 et la masse sismique 5) comprennent des organes d'immobilisation 15,16,17 adaptés à coopérer avec des organes de centrage 12,13,14 de façon à bloquer toute rotation relative des éléments de l'empilement 2. Dans le présent exemple, les organes d'immobilisation 15,16,17 de l'élément piézo-électrique 4 et de la masse sismique 5 sont formés par des logements 15,16,17 adaptés à recevoir les ergots 12,13,14 des éléments de contact 6,7. Ce présent mode de réalisation est particulièrement intéressant quand, vu le mode de réalisation de l'assemblage du capteur 1 , les différents éléments de l'empilement 2 peuvent tourner les uns par rapport aux autres (non utilisation de colle comme moyen d'immobilisation des éléments, ou utilisation d'une colle ayant un temps de prise relativement long, par exemple). En effet, les broches 8,9 du capteur 1 doivent se présenter dans une position angulaire relative précise, et de ce fait, il est important d'éviter tout décalage angulaire entre les deux éléments de contact 6,7. Ainsi, dans le présent exemple, l'élément piézo-électrique 4 comprend, d'une part, des premiers logements 15 qui reçoivent les ergots 12 du premier élément de contact 6, et, d'autre part, des seconds logements 16 qui reçoivent les premiers ergots 13 du second élément de contact 7, ce qui empêche toute rotation relative entre les deux éléments de contact 6,7. Par ailleurs, dans le présent exemple, la masse sismique 5 comprend des logements 17 qui reçoivent les seconds ergots 14 du second élément de contact 7. Une fois l'empilement du capteur 1 réalisé, de façon classique, l'ensemble est surmoulé par une matière isolante qui permet d'isoler complètement et définitivement les
deux éléments de contact 6,7 et l'élément piézo-électrique 4 du reste du capteur 1 et de l'extérieur, excepté, bien évidemment les broches 8,9 de connexion électrique. La présente invention n'est pas limitée aux modes de réalisation décrits en détail en relation avec les figures jointes. Il serait en effet possible: - que l'isolation électrique du premier élément de contact 6 avec l'embase 3 ne soit pas réalisée par de la colle isolante, mais par un élément isolant similaire aux autres éléments de l'empilement (par exemple un anneau isolant); - que les moyens d'immobilisation des éléments du contacteur ne soient pas des colles, mais, par exemple, un écrou venant se visser sur l'embase 3 et comprimer l'ensemble des éléments 4,5,6,7 contre l'epaulement extérieur 11 de l'embase 3, l'écrou (s'il est conducteur) étant alors isolé électriquement des éléments de contact 6,7 et de l'élément piézo-électrique 4 en intercalant un élément isolant similaire aux autres éléments 4,5,6,7 de l'empilement 2 (par exemple un anneau isolant) soit entre l'écrou et la masse sismique 5, soit entre la masse sismique 5 et le deuxième élément de contact 7; les moyens d'immobilisation pourraient aussi être des points de soudure; - que des éléments de l'empilement 2 autre que les éléments de contact 6,7 comprennent des organes de centrage 12,13,14, comme, par exemple, la masse sismique 5, l'élément piézo-électrique 4 ou l'embase 3 (ce qui dans ces trois cas n'écessiterait de réaliser une isolation électrique entre les organes de centrage et les éléments de contact 6,7 et l'élément piézo-électrique 4), ou encore les éventuels éléments isolants disposés entre l'embase 3 et le premier élément de contact 6, entre le second élément de contact 7 et la masse sismique 5, ou entre la masse sismique 5 et l'écrou d'immobilisation; - que des éléments de l'empilement 2 autre que la masse sismique 5 et l'élément piézo-électrique 4 comprennent des organes d'immobilisation comme, par exemple, les éléments de contact 6,7 ou encore les éventuels éléments isolants; - que le premier élément de contact 6 comprenne des ergots s'étendant dans les deux sens de la direction de l'empilement 2, notamment si un élément isolant similaire aux autres éléments de l'empilement 2 le sépare de l'embase 3, ou, si une isolation électrique spécifique est réalisée entre ces ergots et l'embase 3; Il serait aussi possible que le capteur soit en particulier utilisé comme capteur de pression cylindre et non comme capteur de cliquetis.
The present invention relates to a sensor comprising a piezoelectric element, such as a cylinder pressure sensor or a knock sensor which are used in the automotive sector. A sensor is known of the type comprising a sensitive stack which comprises a piezoelectric element, a first contact element located on one side of the piezoelectric element and in electrical contact with the latter, and a second contact element disposed on the other side of the piezoelectric element and in electrical contact with it. In a known manner, such a sensor also comprises a metal base on which the two contact elements and the piezoelectric element are arranged, a seismic mass intended for mechanically amplifying the signal, as well as insulating elements making it possible to electrically isolate the two contact elements and the piezoelectric element of the base or other sensor elements whose contact would cause a short circuit. During the production of the sensor, the various elements are mounted on the base and secured to it by means of a nut ensuring their retention in position, then this assembly is overmolded using an insulating material. . However, during the assembly and joining phase, the various elements must remain correctly centered with respect to each other in order to preserve a quality stack necessary for the correct functioning of the sensor. To avoid off-center of the elements, it is necessary to use a specific tool comprising clamping and centering jaws. An object of the present invention is to produce a sensor without using tools intended to guarantee the centering of the elements, while retaining the quality of the stack. According to a first aspect of the invention, at least one of the elements of the stack of the sensor of the aforementioned type comprises centering members adapted to prevent any off-center of at least one of the elements of the stack which is adjacent to it. In addition, the present invention also relates to an element adapted to be disposed in the sensitive stack of such a sensor. According to this aspect of the invention, this element comprises centering members adapted to prevent any off-centering of at least one of the elements of the stack which is adjacent to it. Other particularities will appear in the detailed description of two embodiments of the sensor in accordance with the present invention, given by way of nonlimiting examples and represented in the figures appended. Figure 1 is a perspective view of a first embodiment of a sensor element according to the invention; Figure 2 is a view similar to Figure 1 of a second embodiment of a sensor element; Figure 3 is a perspective view of a first embodiment of an assembled sensor, before overmolding, according to the invention; Figure 4 is a partial sectional view of the sensor illustrated in Figure 3; Figure 5 is a view similar to Figure 3 of a second embodiment of a sensor according to the invention; and Figure 6 is a view similar to Figure 4 of the sensor illustrated in Figure 5; As can be seen in Figures 3 to 6, a sensor 1 such as a knock sensor, used in the automotive field, comprises a sensitive stack 2 which is disposed on a base 3. The stack 2 comprises a piezoelectric element. electrical 4, a seismic mass 5, a first contact element 6 which is in electrical contact with the piezoelectric element 4 and which is placed between the latter 4 and the base 3, and a second contact element 7 which is in electrical contact with the piezoelectric element 4 and which is placed between the latter 4 and the seismic mass 5. The two contact elements 6,7 are placed on each side of the piezoelectric element 4 so as to allow the measurement of the potential difference generated by the pressure exerted on the piezoelectric element 4. In order to avoid any short circuit, the two contact elements 6,7 and the piezoelectric element 4 are electrically isolated from the metal base 3. In order to transmit the electrical information, each contact element comprises 6.7 includes a pin 8.9 intended to make the connection with an electrical circuit. In the illustrated embodiments, the metal base 3 is formed of a hollow cylinder 10 provided with an external shoulder 11 having a flat surface on which rests the other different elements 4,5,6,7 of the stack 2 These elements 4,5,6,7 have the general shape of a ring which surrounds the hollow cylinder 10 without being in contact with it (see FIGS. 4 and 6). The stack 2 of the sensor 1 is produced in the following order: External shoulder 11 of the base 3, the first contact element 6 (which is electrically isolated from the base 3), the piezoelectric element 4 ( which is in electrical contact with the first contact element 6), the second contact element 7 (which is in electrical contact with the piezoelectric element 4), and the seismic mass 5. The hollow part of the cylinder 10 makes it possible to passing a fixing means (a screw for example) of the sensor 1. According to the invention at least one of the elements 4,5,6,7,11 of the stack 2 comprises centering members 12,13,14 adapted to prevent any off-center of at least one of the elements of the stack 2 which is adjacent to it. In the two present embodiments of the sensor 1, the two contact elements 6, 7 include centering members 12, 13, 14 and prevent any off-centering of the other elements of the stack 2 (except for the shoulder 11). In order to avoid any short-circuit, the centering members 12,13,14 of each contact element 6,7 is in contact neither with the other contact element 7,6, nor with the members centering 13,14,12 of this other contact element 7,6, nor with the metal base 3. As can be seen in FIGS. 1 to 6, in the present embodiments, the centering members 12, 13, 14 are formed by lugs 12, 13, 14 which extend in the direction of the stack 2. The adjacent elements 4,5 to the contact elements 6,7 are shaped so that the lugs 12,13,14 impose their position on them in the plane normal to the axis of the stack 2. In the present embodiments, the pins 12,13,14 are arranged on the periphery of the corresponding contact element 6,7, the adjacent adjacent element 4,5 having a diameter allowing it to be disposed between the pins 12,13,14 without being able deviate from the axis of the stack 2. As can be seen in FIGS. 1 and 2, in the present embodiments, the lugs 12, 13, 14 are made in the mass of the element supporting them. In this case, the lugs 12, 13, 14 are produced by a folding of projecting tabs which were obtained during the stamping operation of a sheet of conductive material allowing the production of the ring, as is carried out electrical connection pin 8.9. In the present embodiments, the first contact element 6 is bonded, on the one hand to the external shoulder 11 of the base 3 by an electrically insulating adhesive, and, on the other hand, to the piezoelectric element. electric 4 by an electrically conductive adhesive. Likewise, the second contact element 7 is bonded, on the one hand, to the piezoelectric element 4 by an electrically conductive adhesive, and, on the other hand, to the seismic mass 5 (the adhesive being able to be insulating or conductive, the seismic mass 5 not being in contact with the base 3). The use of glue between the various elements 4,5,6,7,11 of the stack 2 makes it possible to immobilize them relative to each other, the pins 12,13,14 serving on the one hand, to facilitate the mounting by serving as a guide for the precise positioning of the elements relative to the axis of the stack 2, and, on the other hand, to prevent any decentering of the elements as long as the different adhesives are not dry. As can be seen in Figure 1, due to the use of a layer of adhesive to isolate the outer shoulder 11 of the first contact element 6, the pins 12 of the latter all extend in one direction . When the first contact element 6 is disposed on the base 3, all the pins 12 are directed opposite the shoulder exterior 11. Thus, the lugs 12 serve as a centering guide for the piezoelectric element 4 relative to the first contact element 6 (which is correctly centered relative to the axis of the stack 2 due to its bonding to the outer shoulder 11 of the base 3) without there being any electrical contact with the base 3. As can be seen in FIG. 2, the second contact element 7 comprises first lugs 13 which extend in a first direction and second lugs 14 which extend in the opposite direction. The first pins 13 of the second contact element 7 serve to serve as a centering guide for the second contact element 7 relative to the piezoelectric element 4 (which is correctly centered by the pins 12 of the first contact element e), and the second pins 14 make it possible to serve as a centering guide for the seismic mass 5 relative to the second contact element 7 (which is correctly centered by its first pins 13). In the second embodiment of the sensor 1, as can be seen in Figures 5 and 6, the centering members 12,13,14 are shaped so as to prevent any relative rotation of the elements they serve to center. To this end, elements 4.5 of the stack 2 (in this case the piezoelectric element 4 and the seismic mass 5) comprise immobilizing members 15, 16, 17 adapted to cooperate with members of centering 12,13,14 so as to block any relative rotation of the elements of the stack 2. In the present example, the immobilizing members 15,16,17 of the piezoelectric element 4 and of the seismic mass 5 are formed by housings 15, 16, 17 adapted to receive the pins 12, 13, 14 of the contact elements 6, 7. This present embodiment is particularly advantageous when, having regard to the embodiment of the assembly of the sensor 1, the different elements of the stack 2 can rotate with respect to each other (non-use of glue as a means of immobilizing the elements, or use of an adhesive with a relatively long setting time, for example). Indeed, the pins 8.9 of the sensor 1 must be in a precise relative angular position, and therefore, it is important to avoid any angular offset between the two contact elements 6,7. Thus, in the present example, the piezoelectric element 4 comprises, on the one hand, first housings 15 which receive the lugs 12 of the first contact element 6, and, on the other hand, second housings 16 which receive the first pins 13 of the second contact element 7, which prevents any relative rotation between the two contact elements 6,7. Furthermore, in the present example, the seismic mass 5 comprises housings 17 which receive the second lugs 14 of the second contact element 7. Once the sensor 1 has been stacked, conventionally, the assembly is overmolded by a insulating material which makes it possible to completely and definitively isolate the two contact elements 6,7 and the piezoelectric element 4 from the rest of the sensor 1 and from the outside, except, of course, the pins 8,9 for electrical connection. The present invention is not limited to the embodiments described in detail in relation to the attached figures. It would indeed be possible: - that the electrical insulation of the first contact element 6 with the base 3 is not carried out by insulating glue, but by an insulating element similar to the other elements of the stack (for example a insulating ring); - That the means for immobilizing the elements of the contactor are not adhesives, but, for example, a nut which is screwed onto the base 3 and compress all of the elements 4,5,6,7 against the shoulder outside 11 of the base 3, the nut (if it is conductive) then being electrically isolated from the contact elements 6,7 and from the piezoelectric element 4 by inserting an insulating element similar to the other elements 4,5 , 6,7 of the stack 2 (for example an insulating ring) either between the nut and the seismic mass 5, or between the seismic mass 5 and the second contact element 7; the immobilization means could also be welding points; - that elements of the stack 2 other than the contact elements 6,7 comprise centering members 12,13,14, such as, for example, the seismic mass 5, the piezoelectric element 4 or the base 3 (which in these three cases would not require electrical insulation between the centering members and the contact elements 6,7 and the piezoelectric element 4), or else the insulating elements arranged between the base 3 and the first contact element 6, between the second contact element 7 and the seismic mass 5, or between the seismic mass 5 and the immobilization nut; - that elements of the stack 2 other than the seismic mass 5 and the piezoelectric element 4 comprise immobilizing members such as, for example, the contact elements 6,7 or even the insulating elements; the first contact element 6 comprises lugs extending in both directions of the direction of the stack 2, in particular if an insulating element similar to the other elements of the stack 2 separates it from the base 3, or , if a specific electrical insulation is made between these pins and the base 3; It would also be possible for the sensor to be used in particular as a cylinder pressure sensor and not as a knock sensor.