WO2005029049A1 - Method for seeking dominating conformation of optically active molecule - Google Patents

Method for seeking dominating conformation of optically active molecule Download PDF

Info

Publication number
WO2005029049A1
WO2005029049A1 PCT/JP2004/005107 JP2004005107W WO2005029049A1 WO 2005029049 A1 WO2005029049 A1 WO 2005029049A1 JP 2004005107 W JP2004005107 W JP 2004005107W WO 2005029049 A1 WO2005029049 A1 WO 2005029049A1
Authority
WO
WIPO (PCT)
Prior art keywords
conformation
optically active
active molecule
molecule
conformational
Prior art date
Application number
PCT/JP2004/005107
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Izumi
Soko Yamagami
Shigeru Futamura
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2005029049A1 publication Critical patent/WO2005029049A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism

Definitions

  • the present invention relates to a method for simply and easily searching for a superior conformation of an optically active molecule. "King skill cup end
  • the X-ray crystallography has the restriction that a solid to be a crystal is required, and the employment R analysis is accurate in general systems except for special cases such as those that show nuclear Overhauser effect. The conformation information could not be obtained.
  • VCD infrared circular dichroism
  • the present invention has the advantage that the use of VCD spectroscopy makes it possible to easily and easily determine the superior conformation of a compound having an asymmetric alkyl chain and the evenness of the number of carbon atoms in the alkyl chain with a sample having a very small number.
  • the VCD band is very complicated in this structural analysis. Therefore, it is necessary to use theoretical calculations such as density functional theory together.In this case, in consideration of the initial structure of the molecule, it is necessary to search for rotamers derived from the rotation of covalent bonds between atoms. It turned out that there was a problem of being forced.
  • Non-Patent Document 1 a conformation creation program based on molecular force field calculation is often used (Non-Patent Document 1), but the stability of the conformation of the created rotamers and the like is considered. Since there is a large gap between the predicted energy value and the actual value of, almost all conformations must be considered as initial structures when using this conformation creation program. Instead, this has the new problem of having the potential to have a significant impact on the application to higher molecular weight molecules.
  • Patent Document 1 Japanese Patent Application No. 200-3
  • Non-Patent Document 1 H. Goto et al., /. AM. Chem. Soc., 1989, 111, 8950 Disclosure of the Invention
  • the present invention overcomes the above problems, and can be applied to optically active molecules having a large molecular weight, such as biomolecules, which can have a huge number of isomeric conformations, and to be used for the initial structure. It is an object of the present invention to provide a method that can minimize the search for the rotamer, etc. of a compound to the minimum necessary, and can easily, easily, and easily search for the desired conformation of the desired optically active molecule in a short time. .
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, created a simplified model molecule of an optically active molecule, firstly performed a conformational analysis on the abbreviated structure, and obtained the obtained rotation. By statistically analyzing the correlation between each conformational structure indexed from the stereoisomeric relationship including isomerism and its energy value, the appearance pattern of a stable conformational structure of the model molecule can be extracted. By using the The present inventors have found that a superior conformation of an optically active molecule can be searched for, and have completed the present invention.
  • FIG. 1 is a typical flowchart of a method for searching for a superior conformation according to the present invention
  • FIG. 2 is a diagram showing measured and predicted VCD spectra of an asymmetric alcohol compound (I) (n is 4).
  • Fig. 3 shows the indexing of the conformational structure of the asymmetric alcohol compound (I) with isomers.
  • Fig. 4 shows the measured and predicted VCD spectra of the asymmetric alcohol compound (I) (n: 5).
  • Figure 5 shows the measured and predicted VCD spectra of permethrin compound (II).
  • the method of searching for the predominant conformation of an optically active molecule according to the present invention is based on the method of obtaining the conformational information of an optically active molecule such as an asymmetric alkyl alcohol compound or a c-permethrin compound, which can take an enormous number of conformations.
  • an optically active molecule such as an asymmetric alkyl alcohol compound or a c-permethrin compound
  • a simplified model molecule of an optically active molecule was created instead of a method in which all isomer conformational structures were successively used.
  • the conformational analysis was performed on the simplified model molecule having the abbreviated structure, and the correlation between the individual conformational structures indexed from the obtained stereoisomerism including rotational isomerism and their energy values.
  • the predominant conformation of the target optically active molecule is predicted and analyzed using this appearance pattern.
  • the search method according to the present invention can be used as a means of conformational analysis of a compound such as a biological substance or an insecticide having an enormous number of conformations. It is expected to be fully utilized in applications such as the evaluation of the effects of harmful substances on the human body and drug discovery by pharmacological proteomics.
  • the optically active molecule to be searched may be any organic compound having optical activity and having a chain structure or a cyclic structure in a part of the structure.
  • the organic compound having optical activity may be partially substituted with a functional group such as a hydroxyl group, a phenyl group, an alkene or a halogen.
  • optically active molecules for example, the following compounds can be exemplified.
  • optically active molecule examples include, for example, the following combinations.
  • the correlation between the isomer conformational structure indexed from the individual stereoisomers of the simplified model molecule and its energy value is statistically analyzed, and the appearance pattern of a stable conformational structure is extracted. Search for the superior conformation of the optically active molecule based on the appearance pattern.
  • the energy value of the indexed conformational structure there is no particular limitation on the calculation method for the energy value of the indexed conformational structure, but energy calculation by the density functional method using B3LYP functional is preferably used. Furthermore, in order to statistically analyze the correlation between the indexed isomer conformational structure and its energy value and extract the appearance pattern of a stable conformational structure, the energy value obtained by theoretical calculation must be stable. It is desirable to arrange the isomeric conformational structures in a suitable order and to statistically analyze the tags used for the indexing to extract a common appearance pattern found in the stable isomeric conformational structure. To search for the predominant conformation of the optically active molecule based on the extracted appearance pattern, only the appearance pattern extracted from the simplified model molecule is applied to the optically active molecule, and the isomer stereo conformation structure is obtained. May be narrowed down.
  • the infrared circle dichroism band measured from the actually measured infrared circular dichroism band of the optically active molecule and the infrared circular dichroism predicted from the isomer conformational structure is used.
  • the approximation method used for fitting the infrared circular dichroic band is not particularly limited, but preferably a mouth-Lentz function approximation or a Gaussian function approximation is used.
  • the method of predicting the infrared circular dichroic band is not particularly limited, but preferably the frequency calculation by the density functional method using B3LYP functional is used.
  • the isomer conformational structure used for the prediction of the infrared circular dichroic band only the superior conformation derived by the above-mentioned search method is selected from a huge number of conformations, Just fine. There is no particular limitation on the integration time of the infrared circular dichroism measurement, but 20 minutes to 4 hours are desirable to obtain sufficient S / N.
  • any of a hydrophobic solvent and a hydrophilic solvent can be used, but preferably, carbon tetrachloride, bichloroform form, methylene dichloride, didimethylsulfoxide, water, etc. Is used.
  • the target compound is a liquid, it can be measured in neat.
  • Window plate of the sample cell is either can be used as long as the material that transmits infrared radiation, preferably NaC only anti, BaF 2 plate is desirable.
  • Table 1 shows that in the stable conformation, the right end has nine appearance patterns of 12, 11 and 31, and the left end has nine appearance patterns of 22, 33, 12 and 13, 23, 31, 21, 32 and 11 Was.
  • the four-digit numerical values of the conformations in Table 1 are, from the left, the bond between the hydroxyl group and the methylene group, the bond between the adjacent methylene groups, and the bond between the adjacent methylene group and the methine group.
  • 1 means trans conformation
  • 2 means clockwise Gauche conformation
  • 3 means counterclockwise Gauche conformation.
  • FIG. 3 shows the indexing of the isomer conformational structure of the asymmetric alcohol compound represented by the chemical structural formula (I).
  • Table 1 shows that in the stable conformation, the right end has three appearance patterns of 12, 11, and 31, and the left end has nine appearance patterns of 22, 33, 12, 13, 23, 31, 21, 32, and 11. On the other hand, it was confirmed that the conformation of 1 was stable in the continuous methylene chain.
  • the four digits of the conformation in Table 1 are, from the left, the bond between the hydroxyl group and the methylene group, the bond between the adjacent methylene groups, and the bond between the adjacent methylene group and the methine group.
  • 1 means trans conformation
  • 2 means clockwise gauche conformation
  • 3 means counterclockwise gauche conformation.
  • the novel method for searching for a predominant conformation for use in infrared circular dichroic spectrum analysis according to the present invention is omitted by extracting a part of the structure from an optically active molecule.
  • Create a model molecule with a structure perform a conformational analysis on the model molecular structure, and determine the individual conformational structures indexed from the obtained stereoisomeric relationships including rotational isomerism and their energy values.
  • Statistical analysis of the correlation between the two is to extract the appearance pattern of the stable conformational structure of the model molecule, and to search for the superior conformation of the molecule as a whole.
  • the search method according to the present invention can be used as a means of conformational analysis of a compound such as a biological substance or an insecticide having an enormous number of conformations. It is expected to be fully utilized in applications such as the evaluation of the effects of harmful substances on the human body and drug discovery by pharmacological proteomics.
  • the search method according to the present invention can be used as a means of conformational analysis of a compound such as a biological substance or an insecticide having an enormous number of conformations. Therefore, it is expected that the development of the application of harmful substances to humans and the application of pharmacological proteomics to drug discovery will be sufficient.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A method for seeking a dominating conformation of an optically active molecule in which the correlation between a labeled isomer conformation structure and its energy value in consideration of the stereoisomerism of a simplified model molecule of the optically active molecule is statistically analyzed, an appearance pattern of a stable conformation structure is extracted, and a dominating conformation of the optically active molecule is sought referring to the appearance pattern. This seeking method can be applied to optically active molecules having a large molecular weight such as organic molecules and capable of having a huge number of isomer conformation structures. The time and labor required to seek isomer conformation structures used for initial structures can be decreased to an irreducible minimum limit. Thus, a desired dominating conformation of an optically active molecule can be simply and easily sought in a short time.

Description

明細書 光学活性分子の優位な立体配座の探索方法 技術分野  Description Method for searching for superior conformation of optically active molecule
本発明は、 光学活性分子の優位な立体配座を簡便かつ容易に探索する方法に関 する。 "景技杯了  The present invention relates to a method for simply and easily searching for a superior conformation of an optically active molecule. "King skill cup end
内分泌攪乱物質も薬剤も生体のもつ受容体に作用して機能するが、 その機能評 価には莫大な時間とコストがかかっている。 そのため、 いかに効率よく候補分子 を絞り込むかが課題となっており、 生体の全夕ンパク質立体構造ライブラリーと 薬物立体構造ライブラリーを活用した薬理プロテオミクスによる創薬が行われて いる。 その基盤になるのが立体構造解析であり、 これまで X線結晶解析、 醒 R解 祈の手法が主として使われてきた。  Both endocrine disruptors and drugs act by acting on receptors in the living body, and the evaluation of their functions requires enormous time and cost. Therefore, it has become an issue how to efficiently select candidate molecules, and drug discovery by pharmacological proteomics utilizing the whole-protein protein three-dimensional structure library and drug three-dimensional structure library is being performed. The foundation is the three-dimensional structure analysis, and the methods of X-ray crystallography and Awake R have been mainly used.
しかし、 X線結晶解析では結晶となる固体が必要であるという制約があり、 ま た、雇 R解析では核オーバーハウザ一効果を示す系のような特殊なケースを除き一 般の系では正確な配座情報を得ることが出来なかった。  However, the X-ray crystallography has the restriction that a solid to be a crystal is required, and the employment R analysis is accurate in general systems except for special cases such as those that show nuclear Overhauser effect. The conformation information could not be obtained.
一方、 薬剤の構造のごく一部を置換しただけでまったく薬効を示さないことが 多く、 このことから置換基の自由度を考慮した配座情報を得ることがプロテオミ クス創薬では必要とされている。  On the other hand, it is often the case that the drug does not show any medicinal effect even if only a small part of the structure of the drug is substituted.Therefore, it is necessary for proteomic drug discovery to obtain conformational information considering the degree of freedom of the substituent. I have.
本発明者らは、 これらの問題点を解消するために、 先に生体分子をはじめとす るキラリティーを有する物質の赤外円二色性(VCD)バンドが立体配座に対して極 めて敏感であることに着目し、 すでに VCD分光法を活用する新たな構造解析手法 に関する提案を行っている (特許文献 1 )。  In order to solve these problems, the present inventors have first set the infrared circular dichroism (VCD) band of chiral substances such as biomolecules to be extremely conformable. Have already proposed a new structural analysis method that utilizes VCD spectroscopy (Patent Document 1).
しかしながら、 この発明は、 VCD 分光法を活用することで不斉アルキル鎖を有 する化合物の優位な配座およびアルキル鎖炭素数の偶奇を極めて少ないサンプル により簡便かつ容易に判別しうるといった利点を有するものであるが、 その後の 本発明者等の検討によれば、 本構造解析では VCDバンドが非常に複雑であること から、 密度汎関数法のような理論計算を併用する必要があり、 その際、 分子の初 期構造を考慮する上で、 原子間の共有結合の回転から派生する回転異性体等の探 索を余儀なくされるといった問題点があることが判明した。 すなわち、 この回転 異性体等の探索法として、 分子力場計算による配座創出プログラムがよく利用さ れている (非特許文献 1 ) が、 創出された回転異性体等の立体配座の安定性に関 するエネルギー予測値と実際の値との間に大きなへだたりがあるため、 本配座創 出プログラムを利用した場合にはほとんどすべての立体配座を初期構造として考 慮しなくてはならず、 このことが分子量の大きい分子への適用に大きな影響を与 える可能性があるという新たな課題が生じたのである。 However, the present invention has the advantage that the use of VCD spectroscopy makes it possible to easily and easily determine the superior conformation of a compound having an asymmetric alkyl chain and the evenness of the number of carbon atoms in the alkyl chain with a sample having a very small number. However, according to the subsequent studies by the present inventors, the VCD band is very complicated in this structural analysis. Therefore, it is necessary to use theoretical calculations such as density functional theory together.In this case, in consideration of the initial structure of the molecule, it is necessary to search for rotamers derived from the rotation of covalent bonds between atoms. It turned out that there was a problem of being forced. That is, as a method for searching for rotamers and the like, a conformation creation program based on molecular force field calculation is often used (Non-Patent Document 1), but the stability of the conformation of the created rotamers and the like is considered. Since there is a large gap between the predicted energy value and the actual value of, almost all conformations must be considered as initial structures when using this conformation creation program. Instead, this has the new problem of having the potential to have a significant impact on the application to higher molecular weight molecules.
したがって、 前記、 VCD 分光法を活用する立体配座解析法には、 初期構造に利 用するための回転異性体等の探索が必要不可欠である。 これまで用いられてきた 配座創出手法では、 創出されるほとんどすべての立体配座を初期値として考慮す る必要があつたため、 多大な時間を要し、 適用可能な分子量に制約があった。 生 体分子のような分子量の大きな光学活性分子にも適用可能な新たな配座探索手法 が求められていた。  Therefore, in the above-mentioned conformational analysis method utilizing VCD spectroscopy, it is indispensable to search for rotamers and the like to be used for the initial structure. The conformation creation methods used up to now have to consider almost all created conformations as initial values, which requires a lot of time and limits the applicable molecular weight. There has been a need for a new conformational search method that can be applied to optically active molecules with large molecular weights such as biomolecules.
[特許文献 1 ] 特願 2 0 0 3— 3 2 2 2 8 2  [Patent Document 1] Japanese Patent Application No. 200-3
[非特許文献 1 ] H. Go t o 他、 /. AM. Chem. Soc., 1 989, 1 1 1 , 8950 発明の開示  [Non-Patent Document 1] H. Goto et al., /. AM. Chem. Soc., 1989, 111, 8950 Disclosure of the Invention
本発明は、 上記問題点を克服し、 生体分子のような分子量が大きく、 莫大な数 の異性体立体配座構造をとりうる光学活性分子にも適用することができると共に 初期構造に利用するための回転異性体等の探索を必要最小限度に抑えることがで き、 簡便かつ、 短時間で容易に所望とする光学活性分子の優位な立体配座を探索 できる方法を提供することを目的とする。  INDUSTRIAL APPLICABILITY The present invention overcomes the above problems, and can be applied to optically active molecules having a large molecular weight, such as biomolecules, which can have a huge number of isomeric conformations, and to be used for the initial structure. It is an object of the present invention to provide a method that can minimize the search for the rotamer, etc. of a compound to the minimum necessary, and can easily, easily, and easily search for the desired conformation of the desired optically active molecule in a short time. .
本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、 光学活性分子の単 純化モデル分子を作成し、 その省略化された構造についてまず立体配座解析を行 い、 得られた回転異性を含む立体異性関係から指標付けされた個々の立体配座構 造とそのエネルギー値との相関性を統計解析することでそのモデル分子の安定な 立体配座構造の出現パターンが抽出でき、 これを利用することにより、 目的とす る光学活性分子の優位な立体配座を探索することができることを見出し、 本発明 を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, created a simplified model molecule of an optically active molecule, firstly performed a conformational analysis on the abbreviated structure, and obtained the obtained rotation. By statistically analyzing the correlation between each conformational structure indexed from the stereoisomeric relationship including isomerism and its energy value, the appearance pattern of a stable conformational structure of the model molecule can be extracted. By using the The present inventors have found that a superior conformation of an optically active molecule can be searched for, and have completed the present invention.
すなわち、 本発明によれば、 以下の発明が提供される。  That is, according to the present invention, the following inventions are provided.
( 1 ) 光学活性分子の優位な立体配座を探索する方法において、 予め当該光学活 性分子の単純化モデル分子の個々の立体異性から指標付けされた異性体立体配座 構造とそのエネルギー値との相関を統計解析し、 安定な立体配座構造の出現パ夕 —ンを抽出し、 該出現パターンに基づき光学活性分子の優位な立体配座を探索す る方法。  (1) In the method of searching for the predominant conformation of an optically active molecule, the isomer conformational structure and its energy value previously indexed from the individual stereoisomers of the simplified model molecule of the optically active molecule Statistical analysis of the correlation between the two, extracting the appearance pattern of a stable conformational structure, and searching for the superior conformation of the optically active molecule based on the appearance pattern.
( 2 ) 当該光学活性分子の単純化モデル分子の個々の立体異性から指標付けされ た異性体立体配座構造の出現パターンを利用して赤外円二色性スぺクトルを解析 することを特徴とする上記 (1 ) に記載の光学活性分子の優位な立体配座の探索 方法。 図面の簡単な説明  (2) Analyze the infrared circular dichroism spectrum using the appearance pattern of the isomer conformational structure indexed from the individual stereoisomers of the simplified model molecule of the optically active molecule. The method for searching for a superior conformation of an optically active molecule according to the above (1). Brief Description of Drawings
第 1図は、 本発明に係る優位な立体配座を探索する方法の代表的なフローチヤ一 ト、 第 2図は、 不斉アルコール化合物(I) (nは 4) の実測及び予測 VCDスぺクト ル、 第 3図は、 不斉アルコール化合物(I)の異性体立体配座構造の指標付け、 第 4 図は、 不斉アルコール化合物(I) (nは 5) の実測及び予測 VCDスペクトル、 第 5 図は、 ペルメトリン化合物(I I)の実測及び予測 VCDスぺクトルである。 発明を実施するための最良の形態 FIG. 1 is a typical flowchart of a method for searching for a superior conformation according to the present invention, and FIG. 2 is a diagram showing measured and predicted VCD spectra of an asymmetric alcohol compound (I) (n is 4). Fig. 3 shows the indexing of the conformational structure of the asymmetric alcohol compound (I) with isomers. Fig. 4 shows the measured and predicted VCD spectra of the asymmetric alcohol compound (I) (n: 5). Figure 5 shows the measured and predicted VCD spectra of permethrin compound (II). BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る光学活性分子の優位な立体配座を探索する方法は、 莫大な数の配 座を取りうる、 例えば不斉アルキルアルコール化合物や c -ペルメトリン化合物 などの光学活性分子の配座情報を取り出すのに、 理論計算や全ての回転異性体等 に関する情報などのデ一夕を用いて逐次全ての異性体立体配座構造について行う 手法に代えて、 光学活性分子の単純化モデル分子を作成し、 その省略化された構 造を有する単純化モデル分子について立体配座解析を行い、 得られた回転異性を 含む立体異性関係から指標付けされた個々の立体配座構造とそのエネルギー値と の相関性を統計解析することでそのモデル分子の安定な立体配座構造の出現パタ ーンを抽出し、 この出現パターンを利用して目的とする光学活性分子の優位な立 体配座を予測解析するものである。 The method of searching for the predominant conformation of an optically active molecule according to the present invention is based on the method of obtaining the conformational information of an optically active molecule such as an asymmetric alkyl alcohol compound or a c-permethrin compound, which can take an enormous number of conformations. Instead of using a theoretical calculation and data on all rotamers, etc., in order to retrieve them, a simplified model molecule of an optically active molecule was created instead of a method in which all isomer conformational structures were successively used. The conformational analysis was performed on the simplified model molecule having the abbreviated structure, and the correlation between the individual conformational structures indexed from the obtained stereoisomerism including rotational isomerism and their energy values. Of the conformational structure of the model molecule by statistical analysis In this method, the predominant conformation of the target optically active molecule is predicted and analyzed using this appearance pattern.
従って、 本発明に係る前記探索方法は、 莫大な数の配座をとる生体関連物質や 殺虫剤のような化合物の配座解析の一手段として用いることが出来ることから、 例えば構造活性相関等を活用した、 有害物質の人体への影響評価や薬理プロテオ ミクスによる創薬などの応用面での展開が充分に期待されるものである。  Therefore, the search method according to the present invention can be used as a means of conformational analysis of a compound such as a biological substance or an insecticide having an enormous number of conformations. It is expected to be fully utilized in applications such as the evaluation of the effects of harmful substances on the human body and drug discovery by pharmacological proteomics.
本発明において、 探索対象となる光学活性分子は光学活性を有しかつ構造の一 部に鎖状構造あるいは環状構造を有する有機化合物であればよい。 前記光学活性 を有する有機化合物は一部がヒドロキシル基、 フエニル基、 アルケン、 ハロゲン のような官能基で置換されていてもかまわない。  In the present invention, the optically active molecule to be searched may be any organic compound having optical activity and having a chain structure or a cyclic structure in a part of the structure. The organic compound having optical activity may be partially substituted with a functional group such as a hydroxyl group, a phenyl group, an alkene or a halogen.
このような光学活性分子としては、 たとえば、 以下のような化合物を例示する ことができる。  As such optically active molecules, for example, the following compounds can be exemplified.
( -(+)-5_メチル - 1_ヘプ夕ノール、 ( -(+)-6-メチル -1 -才クタノール、 メチル _1_ヘプタノール、 ( -(_)-6 -メチル- 1-ォクタノール、 ( - (+)-2-ヘプ夕ノール、 (5) -(+)-2-ォクタノール、 ( - (+)-2-ノナノール、  (-(+)-5_Methyl-1_heptanol, (-(+)-6-Methyl-1 -heptanol, Methyl_1_heptanol, (-(_)-6-Methyl-1-octanol, (-(+)-2-heptanol, (5)-(+)-2-octanol, (-(+)-2-nonanol,
2-デカノール、 0?)_(-)-2-ヘプタノール、 ( - (-)-2-ォクタノ一ル、 (R) -(-) - 2 -ノナノール、 (R) - (-) _2 -デカノール、(1 & 3 -(+) -c -ペルメトリン、 ( 3 -(-) -c -ペルメトリン、 ( 3 -(+)- c/'5-3_(2,2-ジクロロビニル)- 2,2- ジメチルシクロプロパンカルボン酸べンジルエステル、 (IR, 37?)- (-) -c/5-3-(2, 2- ジクロロビニル) -2, 2-ジメチルシクロプロパンカルボン酸べンジルエステル。 また、 本発明でいう、 光学活性分子の単純化モデル分子とは、 光学活性分子を 基本構造単位に分割し、 必要とする特徴のみ有する基本構造単位を選択し組み立 てた、 省略化された構造をもつモデル分子を意味する。  2-decanol, 0?) _ (-)-2-heptanol, (-(-)-2-octanol, (R)-(-)-2-nonanol, (R)-(-) _ 2 -decanol , (1 & 3-(+)-c-permethrin, (3-(-)-c-permethrin, (3-(+)-c / '5-3_ (2,2-dichlorovinyl) -2,2) -Benzyl dimethylcyclopropanecarboxylate, (IR, 37?)-(-)-C / 5-3- (2,2-dichlorovinyl) -2,2-dimethylcyclopropanecarboxylate The simplified model molecule of the optically active molecule referred to in the invention is a model with an abbreviated structure in which the optically active molecule is divided into basic structural units, and basic structural units having only the required characteristics are selected and assembled. Means a molecule.
光学活性分子とその単純化モデル分子の例としては、 例えば、 つぎのような組 み合わせ例を挙げることができる。  Examples of the optically active molecule and its simplified model molecule include, for example, the following combinations.
( - (+)-5-メチル _1 -ヘプ夕ノール→ ( _(+)- 3-メチル - 1-ペンタノール、 ( -(+)_6 -メチル- 1-ォク夕ノール—( -(+)-3-メチル - 1-ペンタノール、 )- (_)_5_メチル -1-ヘプ夕ノ一ル→ ( -(-)-3-メチル -1-ペン夕ノール、 ( -(-)-6-メチル -卜ォク夕ノール→ 0?)- (-)-3_メチル - 1_ペン夕ノール、 (S) -(+) -2-へプタノ一ル→ (S) - (+) -2 -べン夕ノール、 ( - (!) -2 -才クタノ一ル→ ( -(+)-2-ペン夕ノール、 (S)― (+) -2-ノナノ一ル→ (5)- (+)-2-ペンタノール、 ( -(+)-2-デカノール→ ( -(+)-2-ペンタノール、 ( -(-)-2 -ヘプ夕ノール→ (R)― (-) -2-ぺン夕ノール、 め - (-) -2-ォクタノール→ (R) - (-) -2 -べン夕ノール、 (-)-2-ノナノール— (- ペンタノール、 ( -(-)-2-デカノール→(-(+)-5-Methyl_1-hepnool → (_ (+)-3-Methyl-1-pentanol, (-(+) _ 6-Methyl-1-octanol- (-(+ ) -3-Methyl-1-pentanol,)-(_) _ 5_methyl-1-hepanol → (-(-)-3-methyl-1-pentanol, (-(-)- 6-Methyl -Northanol → 0?)-(-)-3_Methyl-1_Penthanol, (S)-(+)-2-Heptanol → (S)-(+) -2 -Bennoru, (-(!) -2 -Taktanoru → (-(+)-2 -Penanol, (S)-(+)-2-nonanol → (5)-(+)-2-pentanol, (-(+)-2-decanol → (-(+)-2- Pentanol, (-(-)-2-Heptanol → (R) ― (-)-2-Pinanol, me-(-)-2-octanol → (R)-(-) -2- Ben-no-noru, (-)-2-nonanol— (-pentanol, (-(-)-2-decanol →
( 一(一)— 2— ペ ン タ ノ ー ル 、 (1&3 —(+)- '5- ペ ル メ ト リ ン → (1& 3 1)- (+) -c/5-3-(2, 2-ジク口口ビエル) -2, 2-ジメチルシク口プロパン力ルポ ン酸べンジルエステル、 - -ぺルメトリン→3 -フエノキシベンジル アルコール、 (IR, 3 - (-) -c -ペルメトリ →(\R, ?>R)-{-)-cis- -(l, 2 -ジクロ口 ビエル) -2, 2-ジメチルシクロプロパンカルボン酸べンジルエステル、 (\R, 2R)- (-) -cis~ペルメ ト リ ン→ 3-フエノキシベンジルアルコール、 (1&3 -(+) /5-3-(2, 2 -ジク口口ビニル)-2, 2-ジメチルシクロプロパン力ルポ ン酸べンジルエステル—(1& 3 -(+)- 3- (2, 2-ジク口口ビニル)- 2,2_ジメチ ルシクロプロパンカルボン酸メチルエステル、 (IJi, (-) -cis-^-(2, 2-ジクロロ ビニル) -2, 2-ジメチルシクロプロパンカルボン酸べンジルエステル→ (1 A 3 - (-) -cis-3- (2, 2-ジクロロビニル)- 2, 2-ジメチルシクロプロパン力ルポ ン酸メチルエステル。 (One (one) —2—Pentanol, (1 & 3 — (+)-'5-permethrin → (1 & 3 1 )-(+) -c / 5-3- (2 , 2-Dimethyl mouth mouth propane power propane potency Benzyl ester of sulfonate,--Permethrin → 3-phenoxybenzyl alcohol, (IR, 3--(-) -c -Permetrie → ( \ R,?> R)-{-)-cis--(l, 2-dichroic biel) -2,2-dimethylcyclopropanecarboxylic acid benzyl ester, (\ R, 2R)-(-) -cis ~ Permethrin → 3-phenoxybenzyl alcohol, (1 & 3-(+) / 5-3- (2,2-dic-mouth vinyl) -2,2-dimethylcyclopropane benzyl ester of sulfonic acid— ( 1 & 3-(+)-3- (2,2-Dimethyl vinyl) -2,2_dimethylcyclopropanecarboxylic acid methyl ester, (IJi, (-) -cis-^-(2,2-dichloro) Vinyl) -2,2-dimethylcyclopropanecarboxylic acid benzyl ester → (1 A 3-(-) -cis-3- (2 2-dichlorovinyl) - 2, 2-dimethyl-cyclopropane force Lupo phosphate methyl esters.
本発明においては、 この単純化モデル分子の個々の立体異性から指標付けされ た異性体立体配座構造とそのエネルギー値との相関を統計解析し、 安定な立体配 座構造の出現パターンを抽出し、 該出現パターンに基づき光学活性分子の優位な 立体配座を探索する。  In the present invention, the correlation between the isomer conformational structure indexed from the individual stereoisomers of the simplified model molecule and its energy value is statistically analyzed, and the appearance pattern of a stable conformational structure is extracted. Search for the superior conformation of the optically active molecule based on the appearance pattern.
本発明における、 単純化モデル分子の個々の立体配座構造とそのエネルギー値 との相関性の解析において、 相関性の解析を容易にするために回転異性をはじめ とする立体異性関係を有する部分ごとに定義づけられた数字および記号でタグを つけ、 立体配座構造の指標付けを行うことが望ましい。 具体的には、 単純化モデ ル分子の個々の立体異性から指標付けされた異性体立体配座構造を把握するのに、 たとえば結合の回転から派生する立体異性の場合、 トランス配座に 1、時計回りの ゴーシュ配座に 2、 反時計回りのゴーシュ配座に 3のような数字を割り振り、 さら に必要となる場合にはその結合の位置を示す記号を付与することで個々の異性体 立体配座を区別すればよい。 In the analysis of the correlation between the individual conformational structure of the simplified model molecule and its energy value in the present invention, for each part having a stereoisomeric relationship such as rotational isomerism in order to facilitate the analysis of the correlation. It is desirable to attach a tag with the numbers and symbols defined in, and to index the conformational structure. Specifically, in order to understand the conformational structure of isomers indexed from individual stereoisomers of the simplified model molecule, for example, in the case of stereoisomers derived from bond rotation, the trans Assign a number such as 2 to the clockwise Gauche conformation and 3 to the counterclockwise Gauche conformation, and if necessary, add a symbol indicating the position of the bond to give each isomer. Conformations may be distinguished.
また指標付けされた立体配座構造のエネルギー値に関する計算方法に特に制限 はないが、好ましくは B3LYPファンクショナルを用いた密度汎関数法によるエネル ギー計算が使用される。 さらに、 指標付けされた異性体立体配座構造とそのエネ ルギー値との相関を統計解析し、 安定な立体配座構造の出現パターンを抽出する には、理論計算で得られたエネルギー値の安定な順に異性体立体配座構造を並べ、 前記指標付けに用いられたタグを統計解析することで安定な異性体立体配座構造 にみられる共通する出現パターンを抽出することが望ましい。 また抽出された出 現パターンに基づき光学活性分子の優位な立体配座を探索するには、 単純化モデ ル分子から抽出された前記出現パターンのみ光学活性分子にあてはめ、 異性体立 体配座構造の数の絞り込みを行えばよい。  There is no particular limitation on the calculation method for the energy value of the indexed conformational structure, but energy calculation by the density functional method using B3LYP functional is preferably used. Furthermore, in order to statistically analyze the correlation between the indexed isomer conformational structure and its energy value and extract the appearance pattern of a stable conformational structure, the energy value obtained by theoretical calculation must be stable. It is desirable to arrange the isomeric conformational structures in a suitable order and to statistically analyze the tags used for the indexing to extract a common appearance pattern found in the stable isomeric conformational structure. To search for the predominant conformation of the optically active molecule based on the extracted appearance pattern, only the appearance pattern extracted from the simplified model molecule is applied to the optically active molecule, and the isomer stereo conformation structure is obtained. May be narrowed down.
探索された優位な立体配座の検証方法に特に制限はないが、 好ましくは該光学 活性分子の実測の赤外円二色性バンドと前記異性体立体配座構造から予測された 赤外円二色性パンドとの相同性の比較が使用される。  There is no particular limitation on the method of verifying the searched superior conformation, but preferably, the infrared circle dichroism band measured from the actually measured infrared circular dichroism band of the optically active molecule and the infrared circular dichroism predicted from the isomer conformational structure. A homology comparison with the chromatic band is used.
赤外円二色性バンドのフィッティングに使用する近似法に特に制限はないが、 好ましくは口一レンツ関数近似もしくはガウス関数近似が使用される。 なお、 赤 外円二色性バンドの予測方法に特に制限はないが、好ましくは B3LYPファンクショ ナルを用いた密度汎関数法による振動数計算が用いられる。 該赤外円二色性バン ドの予測に用いる異性体立体配座構造には、 莫大な数の配座の中から前記探索方 法で導き出された優位な配座のみ選択し、 対象とすればよい。 赤外円二色性測定 の積算時間に特に制限はないが、十分な S/Nを得るために 2 0分〜 4時間が望まし い。  The approximation method used for fitting the infrared circular dichroic band is not particularly limited, but preferably a mouth-Lentz function approximation or a Gaussian function approximation is used. The method of predicting the infrared circular dichroic band is not particularly limited, but preferably the frequency calculation by the density functional method using B3LYP functional is used. For the isomer conformational structure used for the prediction of the infrared circular dichroic band, only the superior conformation derived by the above-mentioned search method is selected from a huge number of conformations, Just fine. There is no particular limitation on the integration time of the infrared circular dichroism measurement, but 20 minutes to 4 hours are desirable to obtain sufficient S / N.
赤外円二色性測定に使用する溶媒は、 疎水性溶媒、 親水性溶媒いずれの溶媒も 使用できるが、 好ましくは、 四塩化炭素、 重クロ口ホルム、 重塩化メチレン、 重 ジメチルスルホキシド、 水等が使用される。 対象となる化合物が液体の場合には nea tで測定可能である。  As the solvent used for the infrared circular dichroism measurement, any of a hydrophobic solvent and a hydrophilic solvent can be used, but preferably, carbon tetrachloride, bichloroform form, methylene dichloride, didimethylsulfoxide, water, etc. Is used. When the target compound is a liquid, it can be measured in neat.
サンプルセルの窓板は赤外線を透過する材質のものであれば何れも使用できる が、 好ましくは NaCけ反、 BaF2板が望ましい。 Window plate of the sample cell is either can be used as long as the material that transmits infrared radiation, preferably NaC only anti, BaF 2 plate is desirable.
本発明に係る優位な立体配座を探索する方法の代表的なフローチャートを第 1 図に示す。 A representative flowchart of the method for searching for a superior conformation according to the present invention is shown in FIG. Shown in the figure.
実施例 Example
次に本発明を実施例により、 さらに詳細に説明する。  Next, the present invention will be described in more detail by way of examples.
実施例 1 Example 1
下記化学構造式(I)で表せる不斉アルコール化合物(nは 4)の立体配座解析を行 うため、 まずその単純化モデル分子 (nは 2) の立体配座解析を行った。 得られた 立体配座構造と安定性の相関を解析したところ、 表 1のような結果が得られた。  In order to perform the conformational analysis of the asymmetric alcohol compound (n is 4) represented by the following chemical structural formula (I), the conformational analysis of the simplified model molecule (n is 2) was first performed. When the correlation between the obtained conformational structure and stability was analyzed, the results shown in Table 1 were obtained.
Figure imgf000009_0001
Figure imgf000009_0001
表 1から安定な配座において右端は 12、 1 1、 31の 3通り、 左端は 22、 33、 1 2、 13、 23、 31、 21、 32、 1 1の 9通りの出現パターンが見られた。 一方、 連続したメ チレン鎖は 1の配座が安定であることを確認した。 そこで、 27 (= 3 X 1 X 1 X 9) 種 類の配座を初期構造として用い、 不斉アルコール化合物(I) (nは 4) の立体配座解 析を行ったところ、 表 2のような結果が得られた。 この 27配座から導き出される 予測 VCDスぺクトルと実測の VCDスぺクトルを第 2図に示す。 第 2図において両者 のスペクトルはよく一致したことから、 初期構造として可能な 729 (= 36) 配座が 27配座まで削減でき、 この手法により安定な立体配座を探索できることがわかつ た。 Table 1 shows that in the stable conformation, the right end has nine appearance patterns of 12, 11 and 31, and the left end has nine appearance patterns of 22, 33, 12 and 13, 23, 31, 21, 32 and 11 Was. On the other hand, it was confirmed that the conformation of 1 was stable in the continuous methylene chain. Therefore, the conformational analysis of the asymmetric alcohol compound (I) (n: 4) was performed using the conformations of 27 (= 3 X 1 X 1 X 9) as the initial structure. Such a result was obtained. Figure 2 shows the predicted VCD spectrum and the measured VCD spectrum derived from these 27 conformations. In Fig. 2, both Since the spectra were in good agreement, which can be an initial structure 729 (= 3 6) can be reduced to conformation 27 conformation, it was divide to explore a stable conformation by this technique.
なお、 表 1における立体配座の 4桁の数値は左から、 それぞれ、 水酸基とメチレ ン基との結合、 隣接するメチレン基とメチレン基との結合、 その隣のメチレン基 とメチン基との結合、 その隣のメチン基とェチル基の中のメチレン基との結合位 置において、 1はトランス配座、 2は時計回りのゴーシュ配座、 3は反時計回りのゴ 一シュ配座を意味する。前記化学構造式(I)で表せる不斉アルコール化合物の異性 体立体配座構造の指標付けを第 3図に示す。  The four-digit numerical values of the conformations in Table 1 are, from the left, the bond between the hydroxyl group and the methylene group, the bond between the adjacent methylene groups, and the bond between the adjacent methylene group and the methine group. In the bonding position between the adjacent methine group and the methylene group in the ethyl group, 1 means trans conformation, 2 means clockwise Gauche conformation, and 3 means counterclockwise Gauche conformation. . FIG. 3 shows the indexing of the isomer conformational structure of the asymmetric alcohol compound represented by the chemical structural formula (I).
ほ 1 ] [1]
不斉アルコール化合物の単純化モデル分子 ( I ) (ηは 2) の立体配座と安定 性の相関 Correlation between conformation and stability of simplified model molecule (I) (η is 2) for asymmetric alcohol compounds
立体配座 AG 占有率 Conformation AG occupancy
ikcal mol"1) ikcal mol " 1 )
2212 0 0.112672918  2212 0 0.112672918
2211 0.25649421 0.073082393 2211 0.25649421 0.073082393
3331 0.263390859 0.072236652 3331 0.263390859 0.072236652
1212 0.378315613 0.059500322  1212 0.378315613 0.059500322
1331 0.549545522 0.044566663 1331 0.549545522 0.044566663
1211 0.557380173 0.043981235 1211 0.557380173 0.043981235
2331 0.648259999 0.037727127 2331 0.648259999 0.037727127
3112 0.664571745 0.036702652 3112 0.664571745 0.036702652
2112 0.665112721 0.036669156 2112 0.665112721 0.036669156
2111 0.738949815 0.03237273 2111 0.738949815 0.03237273
2131 0.739037666 0.032367931 2131 0.739037666 0.032367931
3211 0.746268527 0.031975314 3211 0.746268527 0.031975314
3111 0.758292748 0.031332945 3111 0.758292748 0.031332945
3212 0.808086105 0.028807354 3212 0.808086105 0.028807354
2213 0.851526238 0.026770861 2213 0.851526238 0.026770861
3131 0.856630907 0.026541208 3131 0.856630907 0.026541208
1112 0.937067146 0.023171919  1112 0.937067146 0.023171919
3311 0.961648031 0.02223026 3311 0.961648031 0.02223026
3312 0.971902297 0.02誦 836 3312 0.971902297 0.02 recitation 836
1213 0.980356928 0.02153928  1213 0.980356928 0.02153928
1111 1 .02212.1672 0.020073273  1111 1 .02212.1672 0.020073273
2231 1 .082439564 0.018130342 2231 1 .082439564 0.018130342
1131 1 .198267745 0.014910956  1131 1 .198267745 0.014910956
1312 1 .252416587 0.013608653  1312 1 .252416587 0.013608653
3213 1 .271630378 0.013174425  3213 1 .271630378 0.013174425
1311 1 .328434968 0.011970015  1311 1 .328434968 0.011970015
1231 1 .395150388 0.010695305  1231 1 .395150388 0.010695305
3333 1 .604343396 0.007513764  3333 1 .604343396 0.007513764
3113 1 .749974788 0.005876405  3113 1 .749974788 0.005876405
[表 2 ] 不斉アルコール化合物(I ) (nは 4) の立体配座と安定性の相関 立体配座 AG 占有率 [Table 2] Correlation between conformation and stability of asymmetric alcohol compound (I) (n is 4) Conformation AG Occupancy
(kcal mol"1) (kcal mol " 1 )
331131 0 0.070238445  331131 0 0.070238445
331111 0. 14395161 0.055088419  331111 0.14395161 0.055088419
211111 0. 194699912 0.050566453  211111 0.194699912 0.050566453
221131 0.216656173 0.048726907  221131 0.216656173 0.048726907
221111 0.253004439 0.045827489  221111 0.253004439 0.045827489
331112 0.262177192 0.045123477  331112 0.262177192 0.045123477
221112 0.278889854 0.043868461  221112 0.278889854 0.043868461
231131 0.283948463 0.043495518  231131 0.283948463 0.043495518
311111 0.302233414 0.042173718  311111 0.302233414 0.042173718
321131 0.320069759 0.040923059  321131 0.320069759 0.040923059
131131 0.32703512 0.040444789  131 131 0.32703512 0.040444789
121111 0.366501545 0.037838526  121111 0.366501545 0.037838526
321111 0.36678769 0.037820257  321111 0.36678769 0.037820257
121131 0.405676869 0.035417609  121131 0.405676869 0.035417609
231112 0.406120581 0.0353画 5  231 112 0.406 120 581 0.0353 stroke 5
211112 0.408188729 0.035267776  211112 0.408188729 0.035267776
311112 0.408697388 0.035237512  311112 0.408697388 0.035237512
131111 0.476292954 0.031438267  131111 0.476292954 0.031438267
231111 0.490809268 0.030677385  231111 0.490809268 0.030677385
311131 0.493669773 0.030529636  311131 0.493669773 0.030529636
0.519201711 0.029241999  0.519201711 0.029241999
131112 0.542877601 0.028096547  131112 0.542877601 0.028096547
211131 0.583473231 0.026235957  211131 0.583473231 0.026235957
111112 0.721708726 0.020776489  111112 0.721708726 0.020776489
321112 0.7268491 0.020597017  321112 0.7268491 0.020597017
121112 0.73827361 0.020203673  121112 0.73827361 0.020203673
111131 0.782404694 0.018753522  111131 0.782404694 0.018753522
実施例 2 Example 2
前記化学構造式(I)で表せる不斉アルコール化合物 (nは 5) の立体配座解析を 行うため、 まずその単純化モデル分子 (nは 2) の立体配座解析を行った。 得られ た立体配座構造と安定性の相関を解析したところ、 実施例 1と同様の表 1のよう な結果が得られた。 In order to perform the conformational analysis of the asymmetric alcohol compound (n is 5) represented by the chemical structural formula (I), first, the conformational analysis of the simplified model molecule (n is 2) was performed. Obtained When the correlation between the conformational structure and the stability was analyzed, the same results as in Example 1 in Table 1 were obtained.
表 1から、 安定な配座において右端は 12、 11、 31 の 3通り、 左端は 22、 33、 12、 13、 23、 31、 21、 32、 11の 9通りの出現パターンが見られた。 一方、 連続し たメチレン鎖は 1 の配座が安定であることを確認した。 そこで、 27 (= 3X1X1 X1X9) 種類の配座を初期構造として用い、 不斉アルコール化合物(I) (nは 5) の立体配座解析を行ったところ、表 3のような結果が得られた。 この 27配座から 導き出される予測 VCDスぺクトルと実測の VCDスぺクトルを第 4図に示す。 第 4 図に示されるように、 予測 VCDスぺクトルと実測の VCDスぺクトルとがよく一致 したことから、 初期構造として可能な 2187 (= 37) 配座が 27配座まで削減でき ることがわかった。 Table 1 shows that in the stable conformation, the right end has three appearance patterns of 12, 11, and 31, and the left end has nine appearance patterns of 22, 33, 12, 13, 23, 31, 21, 32, and 11. On the other hand, it was confirmed that the conformation of 1 was stable in the continuous methylene chain. The conformational analysis of the asymmetric alcohol compound (I) (where n is 5) was performed using 27 (= 3X1X1 X1X9) types of conformations as the initial structure, and the results shown in Table 3 were obtained. . Figure 4 shows the predicted VCD spectrum and the measured VCD spectrum derived from these 27 conformations. As shown in Figure 4, since the predicted VCD scan Bae spectrum and measured the VCD scan Bae spectrum was in good agreement, Ru can be reduced to 2187 (= 3 7) conformation 27 conformations allowed in the initial structure I understand.
なお、 表 1における立体配座の 4桁の数値は左から、 それぞれ、 水酸基とメチ レン基との結合、 隣接するメチレン基とメチレン基との結合、 その隣のメチレン 基とメチン基との結合、 その隣のメチン基とェチル基の中のメチレン基との結合 位置において、 1はトランス配座、 2は時計回りのゴーシュ配座、 3は反時計回り のゴーシュ配座を意味する。  The four digits of the conformation in Table 1 are, from the left, the bond between the hydroxyl group and the methylene group, the bond between the adjacent methylene groups, and the bond between the adjacent methylene group and the methine group. At the bonding position between the adjacent methine group and the methylene group in the ethyl group, 1 means trans conformation, 2 means clockwise gauche conformation, and 3 means counterclockwise gauche conformation.
[表 3] [Table 3]
不斉アルコール化合物(I) (nは 5) の立体配座と安定性の相関 立体配座 AG 占有率 Correlation between conformation and stability of asymmetric alcohol compound (I) (n is 5) Conformation AG Occupancy
(kcal mol"1) (kcal mol " 1 )
2211131 0 0.075030831  2211131 0 0.075030831
3311131 0.032216301 0. 071060072  3311131 0.032216301 0.071060072
3311111 0. 116296805 0.0616589  3311111 0.116296805 0.0616589
2311131 0. 175619906 0.055784397  2311131 0.175619906 0.055784397
2211111 0. 196247666 0.053875693  2211111 0.196247666 0.053875693
1211131 0.263982476 0.048055619  1211131 0.263982476 0.048055619
3111111 0.290482286 0.045953667  3111111 0.290482286 0.045953667
2111111 0.33426278 0.042680516  2111111 0.33426278 0.042680516
3211131 0.409042456 0.03761986  3211131 0.409042456 0.03761986
2211112 0.4104253 0.03753216  2211112 0.4104253 0.03753216
2111112 0.41510163 0.037237102  2111112 0.41510163 0.037237102
2311111 0.439349683 0.035743937  2311111 0.439349683 0.035743937
1311131 0.440190547 0.035693246  1311131 0.440190547 0.035693246
3111112 0.475856709 0.033608043  3111112 0.475856709 0.033608043
3111131 0.483939289 0.033152692  3111131 0.483939289 0.033152692
1311111 0.510788559 0.031683901  1311111 0.510788559 0.031683901
2111131 0.538059014 0.030258666  2111131 0.538059014 0.030258666
3311112 0.55768075 0.029273005  3311112 0.55768075 0.029273005
3211111 0. 605973731 0.026981694  3211111 0.605973731 0.026981694
1211111 0.619174408 0.026387199  1211111 0.619174408 0.026387199
0.631537171 0.025842323  0.631537171 0.025842323
1111112 0.688420199 0.023476701  1111112 0.688420199 0.023476701
3211112 0.690187268 0.023406788  3211112 0.690187268 0.023406788
1211112 0.751612276 0.021101733  1211112 0.751612276 0.021101733
1111131 0.774074373 0.020316726  1111131 0.774074373 0.020316726
2311112 0.793472088 0.019662351  2311112 0.793472088 0.019662351
1311112 0.882394836 0.016922179  1311112 0.882394836 0.016922179
実施例 3 Example 3
下記化学構造式(I I)で表せる(1 3 -(-) -ペルメトリン化合物の立体配座 解析を行うため、まずその環状の省略化された構造をもつ単純化モデル分子(I I I) の立体配座解析を行った。
Figure imgf000015_0001
(Hi)
For the analysis of the conformation of (13-(-)-permethrin compound represented by the following chemical structural formula (II), first, the conformation of a simplified model molecule (III) having its cyclic abbreviated structure is shown. Analysis was performed.
Figure imgf000015_0001
(Hi)
Figure imgf000015_0002
Figure imgf000015_0002
3 conformers  3 conformers
Figure imgf000015_0003
Figure imgf000015_0003
3 ~ 2 ~ 2 = 12 conformers
Figure imgf000015_0004
3 ~ 2 ~ 2 = 12 conformers
Figure imgf000015_0004
selected 10 conformers 得られた立体配座構造と安定性の相関を解析したところ、 1つの安定な配座に より代表されることがわかった。 次にフエニル基で置換された構造をもつ単純化 モデル分子(IV)の立体配座解析を行い、 得られた立体配座構造と安定性の相関を 解析したところ、 3種類の安定な立体配座が見出された。 一方、 フエノキシベン ジル基の方では 4種類の配座が見出された。 さらに全体としての分子の対称性か ら最終的に 10 種類の配座を初期構造として用い、 c /'i-ペルメトリン化合物(I I) の立体配座解析を行った。その結果を表 4に示す。 またこの 10配座から導き出さ れる予測 VCDスぺクトルと実測の VCDスぺクトルを第 5図に示す。 第 5図に示さ れるように両者のスぺクトルはよく一致したことから、 初期構造として可能な 2592 0 3 X 6 X 3 X 6 X 4 X 2) 配座が 10配座まで削減できることがわかった。 selected 10 conformers When the correlation between the obtained conformational structure and stability was analyzed, it was found that it was represented by one stable conformation. Next, the conformational analysis of the simplified model molecule (IV) having a structure substituted with a phenyl group was performed, and the correlation between the obtained conformational structure and stability was analyzed. A locus has been found. On the other hand, four kinds of conformations were found in the phenoxybenzyl group. Furthermore, the conformational analysis of c / 'i-permethrin compound (II) was performed using the final 10 conformations based on the overall symmetry of the molecule. The results are shown in Table 4. Figure 5 shows the predicted VCD spectrum and the measured VCD spectrum derived from these 10 conformations. As shown in Fig. 5, the spectra of the two matched well, indicating that the 2592 0 3 X 6 X 3 X 6 X 4 X 2) conformation possible as the initial structure can be reduced to 10 conformations. Was.
4 ] cis~ぺ)レ 卜リン化合物 ( II)の.立体配座と安定性の相関  4] Correlation between conformation and stability of cis ~ ぺ) retrin compound (II)
立体配座 AG 占有率  Conformation AG occupancy
(kcal mol"1) (kcal mol " 1 )
cp10Ph1 0.495981331 0.079208757  cp10Ph1 0.495981331 0.079208757
cp10Ph2 0.104941635 0.153249832  cp10Ph2 0.104941635 0.153249832
cp10Ph3 0.566569617 0.070312565  cp10Ph3 0.566569617 0.070312565
cp10Ph4 0.5293397 0.074872437  cp10Ph4 0.5293397 0.074872437
cp20Ph1 0.232690246 0.123527031  cp20Ph1 0.232690246 0.123527031
cp20Ph2 0.512570625 0.077021766  cp20Ph2 0.512570625 0.077021766
cp20Ph3 1 .329495334 0.019400759  cp20Ph3 1.329495334 0.019400759
cp20Ph4 0.723214123 0.053977733  cp20Ph4 0.723214123 0.053977733
cp30P 1 0.05943461 0.165484011  cp30P 1 0.05943461 0.165484011
cp30Ph3 0 0. 182945109  cp30Ph3 0 0.182945109
産業上の利用可能性 Industrial applicability
本発明に係る新規な、 赤外円二色性スぺクトル解析に供する優位な立体配座を 探索する方法は、 光学活性を有する分子から構造の一部を抽出して省略化された 構造をもつモデル分子を作成し、 そのモデル分子構造について立体配座解析を行 い.、 得られた回転異性を含む立体異性関係から指標付けされた個々の立体配座構 造とそのエネルギー値との相関性を統計解析することでそのモデル分子の安定な 立体配座構造の出現パターンを抽出し、 全体としての分子の優位な立体配座を探 索するものである。 本立体配座探索法を活用すると従来法より初期値として考慮 する必要のある異性体立体配座構造の数を飛躍的に減らすことができると共に、 より分子量の大きな光学活性分子の優位な立体配座を簡便かつ容易に探索するこ とができる。 The novel method for searching for a predominant conformation for use in infrared circular dichroic spectrum analysis according to the present invention is omitted by extracting a part of the structure from an optically active molecule. Create a model molecule with a structure, perform a conformational analysis on the model molecular structure, and determine the individual conformational structures indexed from the obtained stereoisomeric relationships including rotational isomerism and their energy values. Statistical analysis of the correlation between the two is to extract the appearance pattern of the stable conformational structure of the model molecule, and to search for the superior conformation of the molecule as a whole. By utilizing this conformational search method, the number of isomeric conformational structures that need to be considered as the initial value can be dramatically reduced compared to the conventional method, and the superior conformation of optically active molecules having a larger molecular weight can be obtained. Locus can be easily and easily searched.
従って、 本発明に係る前記探索方法は、 莫大な数の配座をとる生体関連物質や 殺虫剤のような化合物の配座解析の一手段として用いることが出来ることから、 例えば構造活性相関等を活用した、 有害物質の人体への影響評価や薬理プロテオ ミクスによる創薬などの応用面での展開が充分に期待されるものである。 本発 明に係る前記探索方法は、 莫大な数の配座をとる生体関連物質や殺虫剤のような 化合物の配座解析の一手段として用いることが出来ることから、 例えば構造活性 相関等を活用した、 有害物質の人体への影響評価や薬理プロテオミクスによる創 薬などの応用面での展開が充分に期待されるものである。  Therefore, the search method according to the present invention can be used as a means of conformational analysis of a compound such as a biological substance or an insecticide having an enormous number of conformations. It is expected to be fully utilized in applications such as the evaluation of the effects of harmful substances on the human body and drug discovery by pharmacological proteomics. The search method according to the present invention can be used as a means of conformational analysis of a compound such as a biological substance or an insecticide having an enormous number of conformations. Therefore, it is expected that the development of the application of harmful substances to humans and the application of pharmacological proteomics to drug discovery will be sufficient.

Claims

請求の範囲 The scope of the claims
1 . 光学活性分子の優位な立体配座の探索方法において、 予め当該光学活性分 子の単純化モデル分子の個々の立体異性から指標付けされた異性体立体配座構造 とそのエネルギー値との相関を統計解析し、 安定な立体配座構造の出現パターン を抽出し、 該出現パターンに基づき光学活性分子の優位な立体配座を探索するこ とを特徴とする光学活性分子の優位な立体配座の探索方法。  1. In the method for searching for the predominant conformation of an optically active molecule, the correlation between the isomer conformational structure indexed in advance from the individual stereoisomers of the simplified model molecule of the optically active molecule and its energy value. Is characterized by extracting the appearance pattern of a stable conformational structure, and searching for the dominant conformation of the optically active molecule based on the appearance pattern. Search method.
2 . 当該光学活性分子の単純化モデル分子の個々の立体異性から指標付けされ た異性体立体配座構造の出現パターンを利用して赤外円二色性スぺクトルを解析 することを特徴とする請求の範囲第 1項に記載の光学活性分子の優位な立体配座 の探索方法。  2. It is characterized by analyzing the infrared circular dichroism spectrum using the appearance pattern of the isomer conformational structure indexed from the individual stereoisomers of the simplified model molecule of the optically active molecule. 3. The method for searching for a superior conformation of an optically active molecule according to claim 1.
PCT/JP2004/005107 2003-09-17 2004-04-09 Method for seeking dominating conformation of optically active molecule WO2005029049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003324999A JP3991106B2 (en) 2003-09-17 2003-09-17 Search method for dominant conformation of optically active molecule
JP2003-324999 2003-09-17

Publications (1)

Publication Number Publication Date
WO2005029049A1 true WO2005029049A1 (en) 2005-03-31

Family

ID=34372766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005107 WO2005029049A1 (en) 2003-09-17 2004-04-09 Method for seeking dominating conformation of optically active molecule

Country Status (2)

Country Link
JP (1) JP3991106B2 (en)
WO (1) WO2005029049A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119033B2 (en) 2007-03-23 2021-09-14 Hiroshi Izumi Conformation analysis device, analysis method, conformational notation device and notation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207444A (en) * 2002-01-16 2003-07-25 Japan Science & Technology Corp Method for determining absolute appangement of chiral compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207444A (en) * 2002-01-16 2003-07-25 Japan Science & Technology Corp Method for determining absolute appangement of chiral compound

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Bunshi kozo sogo toronkai koen yoshishu", HOKKAIDO UNIVERSITY, 24 September 2001 (2001-09-24), pages 41, XP002986298 *
2002 NEN HIKARI KAGAKU TORONKAI HENSHU IINKAI: "2002 nen symposium on photo chemistry", 4 September 2002, pages: 122, XP002986296 *
2002 NEN HIKARI KAGAKU TORONKAI HENSHU IINKAI: "2002 nen symposium on photo chemistry", 4 September 2002, pages: 41, XP002986297 *
IZUMI H. ET AL.: "Determination of Molecular Stereochemistry Using Vibrational Circular Dichroism Spectroscopy: Absolute Configuration and Solution Conformation of 5-Formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-carbolic Acid lactone", THE CHEMICAL RECORD, vol. 3, no. 2, 9 May 2003 (2003-05-09), pages 112 - 119, XP002986294 *
MARSHALL J.A. ET AL: "A Modular Synthesis of Annonaceous Acetogenins", J. ORG. CHEM., vol. 68, no. 5, 7 March 2003 (2003-03-07), pages 1771 - 1779, XP002986295 *
MORRISON B. ET AL.: "Tokyo kagaku dojin", 15 February 1989, pages: 99 - 598, XP002986293 *

Also Published As

Publication number Publication date
JP3991106B2 (en) 2007-10-17
JP2005091164A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
Ji et al. Predicting a molecular fingerprint from an electron ionization mass spectrum with deep neural networks
Superchi et al. Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: Basics and applications to fungal metabolites
Agrafiotis et al. Combinatorial informatics in the post-genomics era
Peltason et al. Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs
Lin et al. Screening mixtures by affinity NMR
Rainer et al. A modular and expandable ecosystem for metabolomics data annotation in R
Deursen et al. A searchable map of PubChem
Tao et al. Quotient ratio method for quantitative enantiomeric determination by mass spectrometry
Lee et al. NP analyst: an open online platform for compound activity mapping
Evans et al. Isotopically chiral probes for in situ high-throughput asymmetric reaction analysis
Xirasagar et al. CEBS object model for systems biology data, SysBio-OM
Hu et al. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically
Pickett et al. DIVSEL and COMPLIB-Strategies for the design and comparison of combinatorial libraries using pharmacophoric descriptors
Kratochvíl et al. Sachem: a chemical cartridge for high-performance substructure search
van Deursen et al. Visualisation of the chemical space of fragments, lead-like and drug-like molecules in PubChem
Trepalin et al. New diversity calculations algorithms used for compound selection
Hulleman et al. Critical assessment of the chemical space covered by LC–HRMS non-targeted analysis
Rastelli Emerging topics in structure-based virtual screening
Zhang et al. Molecular networking as a natural products discovery strategy
Trujillo et al. Maximizing tandem mass spectrometry acquisition rates for shotgun proteomics
Nguyen et al. Diversity selection of compounds based on ‘Protein Affinity Fingerprints’ improves sampling of bioactive chemical space
Klie et al. Analyzing large-scale proteomics projects with latent semantic indexing
Orsi et al. One chiral fingerprint to find them all
Madern et al. A causal model of ion interference enables assessment and correction of ratio compression in multiplex proteomics
Hansen et al. X-Hitting: an algorithm for novelty detection and dereplication by UV spectra of complex mixtures of natural products

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP