WO2005028446A1 - Ionic liquid and method of reaction using the same - Google Patents

Ionic liquid and method of reaction using the same Download PDF

Info

Publication number
WO2005028446A1
WO2005028446A1 PCT/JP2004/013467 JP2004013467W WO2005028446A1 WO 2005028446 A1 WO2005028446 A1 WO 2005028446A1 JP 2004013467 W JP2004013467 W JP 2004013467W WO 2005028446 A1 WO2005028446 A1 WO 2005028446A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
aromatic compound
reaction
producing
catalyst
Prior art date
Application number
PCT/JP2004/013467
Other languages
French (fr)
Japanese (ja)
Inventor
Chiaki Yokoyama
Kun Qiao
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to JP2005514045A priority Critical patent/JPWO2005028446A1/en
Priority to CN2004800269737A priority patent/CN1852898B/en
Priority to DE112004001729T priority patent/DE112004001729T5/en
Publication of WO2005028446A1 publication Critical patent/WO2005028446A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/06Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/025Sulfonic acids

Definitions

  • the present invention relates to a novel ionic liquid, a reaction method using the same, and a method for producing a compound using the reaction method.
  • Reactions using this ionic liquid include alkylation, nitration, and Beckmann rearrangement.
  • ionic liquids have been recognized as promising solvents in the field of synthetic chemistry, and include Aldall reaction, Diels-Alder reaction, Claisen rearrangement reaction, Heck reaction, Beckman reaction, Friedel's Kraft reaction, It is expected that it can be used for many chemical reactions such as the Vils'Hillman reaction, nitration reaction, and asymmetric synthesis reaction.
  • An ionic liquid is an organic salt composed of an aion and an organic cation, and is numbered over one hundred. It has a melting point below C, has almost no vapor pressure, has low viscosity instead of being ionic, is heat resistant and has a wide liquid temperature range, has high ionic conductivity, can be made water-insoluble, and has acidity.
  • a new group of substances that have the characteristics of being stable, stable, etc., and have the potential to fundamentally reform existing materials and systems as reusable solvents, catalysts or electrolytes. It is academically in the spotlight and highly expected from the industrial world (see Modern Chemistry, March 2001, p.56-62).
  • ionic liquids The most important feature of ionic liquids is that the chemical and physical properties can be precisely optimized by careful selection of cations and aions, and furthermore, This means that the cations and aions can be modified by the functional groups. It is known that various compounds can be used as the ionic liquid. However, it is required that the ionic liquid has a function as a catalyst and a solvent and is not decomposed in a reaction system and can be used repeatedly. Have been. J. Am. Chem. Soc, 2002, 124, p5962-5963, reported that a Bronsted acidic ionic liquid functionalized with a kind of sulfonic acid group is suitable as a catalyst for esterification and ethereal reaction. ing.
  • BMImBF 1-n-butyl-3-methylimidazolium-tetrafluoroborate
  • BMImPF 1-n-butyl-3-methylimidazolyme-hexafluorophosphate
  • ionic liquids such as 46
  • the chloroaluminate ionic liquid also functions as an acidic catalyst, but is reactive to air and water, which is a major obstacle to practical use.
  • the cation moiety is linked to the n-Bu group and CH-SOH is linked to the N atom of imidazole.
  • An ionic liquid (la) having a combined structure and the aion part is CF SO, and a cation part
  • This reaction is said to be superior to the ionic liquid (2a) which is an esterification reaction, a dehydration dimerization reaction of alcohol, a pinacol rearrangement reaction or the like.
  • the alkylidation reaction of an aromatic hydrocarbon with an alkene using the Friedel-Crafts reaction is one of the most important reactions in the chemical industry.
  • the most typical example is the production of 1-phenyl-1-xylylethane (PXE) by alkylation of xylene with styrene.
  • PXE is a colorless synthetic oil widely used as a solvent for pressure-sensitive recording materials, plasticizers, heat transfer media, and electrical insulating oils.
  • Polycyclic aromatic hydrocarbons obtained by the alkyl reaction of alkylbenzene and styrenes have excellent compatibility, heat resistance, lubricity, and electrical properties, and include plasticizers, high-boiling solvents, Provides synthetic oils suitable for a wide range of applications, such as media, electrical insulating oils, hydraulic oils, and lubricants.
  • This synthetic oil has excellent performance for these uses, and since styrene, which is a raw material, which is a preferable raw material, has an extremely easy property to polymerize, the use of a conventional alkylation catalyst is not sufficient. Cannot be obtained in good yield.
  • JP-A-47-29351 discloses that a sulfuric acid having a concentration of 70-95% is used as a catalyst, the concentration of styrene in a reaction system is kept at 5% by weight or less, and the concentration of a product is kept at 50% by weight or less.
  • a temperature below 30 ° C A method of reacting styrene with xylene or toluene under stirring is proposed. In this method, when removing the catalyst after the reaction is completed, Na SO is by-produced to neutralize the acid with NaOH,
  • JP-A-53-135959 discloses a method of alkylating a side chain alkyl group having 14 carbon atoms with at least one type of styrene such as styrene, butyltoluene and ⁇ -methylstyrene.
  • This method does not have the post-treatment problems of the concentrated sulfuric acid catalyst method, but the styrene oligomerization product blocks the active site of the catalyst, causing rapid catalyst deactivation. Is required.
  • Chem. Comnun. 2000, p695-1696 describes a method of alkylating an aromatic compound using an ionic liquid and scandium triflate as a catalyst.
  • ionic liquid [emim] [SbF]
  • [emim] + represents 1-ethyl-3-methylimidazolium cation
  • [bmim] + represents 1-butyl-3-methylimidazolidine cation.
  • alkylation reaction of an aromatic compound with an alkene utilizing the Friedel-Crafts reaction is one of the most important reactions in the chemical industry.
  • the most typical example is the production of alkylated aromatic hydrocarbons such as ethylbenzene and octylbenzene by reacting benzene with an aliphatic olefin having 2 or more carbon atoms.
  • alkylated aromatic hydrocarbons are useful as raw materials for styrene and surfactants.
  • the alkylation reaction of an aromatic compound with an alkene utilizing the Friedel-Crafts reaction is usually carried out using a solid acid such as a protonic acid such as a mineral acid, a Lewis acid such as A: i or BF, or zeolite.
  • a solid acid such as a protonic acid such as a mineral acid, a Lewis acid such as A: i or BF, or zeolite.
  • Japanese Patent Application Laid-Open No. 8-508754 discloses that, when an aromatic hydrocarbon is reacted with an olefin in the presence of an ionic liquid to carry out alkylation, a) a formula R MX (R Haa
  • n 3-n alkyl group M is A1 or Ga
  • X is halogen
  • n is 0-2 compound
  • hydrocarbyl-substituted imidazolym halide, hydrocarbyl-substituted pyridinium halide is proposed.
  • a method for alkylating an aromatic compound using a triflate conjugate of a rare earth element as a catalyst is described, and teaches that the triflate conjugate is effective as a Friedel-Crafts reaction catalyst.
  • 2001-509134 describes a method for alkylating aromatic compounds using a catalyst in which a Lewis acid such as aluminum chloride is dissolved in an ionic liquid.
  • a Lewis acid such as aluminum chloride
  • examples of the ionic liquid include a quaternary ammonium salt, an imidazoline salt, a pyridinium salt, a sulfodium salt, and a phosphonium salt.
  • a nitrated aromatic compound represented by nitrobenzene is obtained by reacting concentrated nitric acid with an aromatic compound in the presence of a catalyst such as sulfuric acid.
  • a catalyst such as sulfuric acid.
  • sulfuric acid boron trifluoride, which is a Lewis acid, and a solid acid catalyst are known, but there is a problem in treating a waste catalyst.
  • Chem. Comnun. 1996, p469-470 describes a nitration method using acetic anhydride and zeolite, but there is a problem in the treatment of acetic anhydride and the like. is there .
  • Chem. Comnun. 1997, p 613-614 describes a nitration method using a lanthanide (III) triflate catalyst. It is necessary to use harmful solvents such as force S and dichloromethane. is there. [0018] By the way, in J. Org. Chem.
  • nitrates or salts are used as nitrating agents.
  • the Beckmann rearrangement reaction is performed by treating ketoxime or aldoxime with a strong acid such as sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, hydrogen fluoride, polyphosphoric acid, phosphorus pentachloride and similar substances.
  • a strong acid such as sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, hydrogen fluoride, polyphosphoric acid, phosphorus pentachloride and similar substances.
  • a strong acid such as sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, hydrogen fluoride, polyphosphoric acid, phosphorus pentachloride and similar substances.
  • a strong acid such as sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, hydrogen fluoride, polyphosphoric acid, phosphorus pentachloride and similar substances.
  • An example of an industrial application using the Beckmann rearrangement reaction is a method for producing a ratatum such as ketoximeca such as cyclohexanone oxime and a mopro I prolatatam.
  • Ratatams such as ⁇ -caprolactam are raw materials for nylon and are industrially important materials.
  • ⁇ - Caprolactam is industrially produced by the Beckmann rearrangement of cyclohexanone oxime using fuming sulfuric acid, and a large amount of ammonium sulfate is produced as a by-product.
  • JP-A 09-241236 cyclohexanone oxime is used as a starting material and in contact with zeolite / 3 in the gas phase in a gas phase.
  • ammonium sulfate is not produced as a by-product!
  • HC1 is a by-product during post-treatment with water
  • PC1 is used as a co-catalyst.
  • -SO H has a structure bonded to the N atom of imidazole, and the ion is CF SO
  • An object of the present invention is to provide a novel ionic liquid useful as a catalyst for the Friedel-Crafts reaction and the like. Another object is to provide a method for the Alkylic reaction of aromatic compounds by the Friedel's Clough reaction using an ionic liquid. Another object is to provide a nitration reaction method using an ionic liquid of an aromatic compound. Still another object is to provide a method for Beckmann rearrangement of ketoximes using an ionic liquid or a carrier thereof. Another object is to provide a novel method for producing alkyl-substituted aromatic compounds, nitro-substituted aromatic compounds and ratatams.
  • the present inventors have conducted intensive studies on using the ionic liquid thus obtained as a catalyst for the Friedel 'Crafts' alkylation reaction, nitration reaction, and Beckmann rearrangement reaction. , Both have excellent reactivity and are reusable As a result, the present invention was completed.
  • the present invention provides an ionic liquid represented by the following formula (1).
  • a preferable ionic liquid is represented by the following formula (2).
  • the present invention is characterized in that an aromatic compound is reacted with an olefin in the presence of the ionic liquid.
  • the present invention relates to the ionic liquid and M (OTf)
  • M represents a divalent or trivalent metal atom
  • Tf represents SOCF
  • m represents an integer of 2 or 3.
  • the present invention also provides a method for producing an alkyl-substituted aromatic compound, which comprises a step of reacting an aromatic compound with olefins in the presence of the ionic liquid.
  • the present invention provides the ionic liquid and
  • M represents a divalent or trivalent metal atom
  • Tf represents SOCF
  • m represents an integer of 2 or 3.
  • a process for producing an alkyl-substituted aromatic compound comprising the step of reacting an aromatic compound with olefins in the presence of a triflate compound represented by the formula: Further, the present invention provides a method for converting an aromatic compound into nitrogen, which comprises reacting an aromatic compound with nitric acid in the presence of the ionic liquid.
  • the present invention is a method for producing a nitro-substituted aromatic compound, which comprises a step of reacting an aromatic compound with nitric acid in the presence of the ionic liquid. Following the step of reacting this aromatic compound with nitric acid, the resulting reaction mixture Phase separating a phase containing an ionic liquid and a phase containing an aromatic compound from the compound, a step of recovering a nitro-substituted aromatic compound from a phase containing a aromatic compound, and a process containing an ionic liquid.
  • a method for producing a nitro-substituted aromatic compound which comprises a step of reusing a phase in a reaction between an aromatic compound and nitric acid after adjusting a nitric acid concentration as necessary.
  • the present invention provides a Beckmann rearrangement reaction method, which comprises subjecting oximes to Beckmann rearrangement in the presence of the ionic liquid.
  • the present invention relates to a method for producing ratatams, which comprises a step of subjecting ketoximes to Beckmann rearrangement in the presence of the ionic liquid. Following the rearrangement step, the reaction mixture is
  • a method for producing ratatams comprising a step of subjecting to supercritical extraction, a step of recovering ratatams from the extract, and a step of reusing the remaining ionic liquid without extraction for the Beckmann rearrangement reaction of ketoximes. provide.
  • the ionic liquid of the present invention is represented by the above formula (1).
  • X is a halogen atom or a hydroxyl group, preferably a chlorine atom.
  • Y— is CF SO—, BF—, PF—,
  • the force is preferably CF SO—, PF—, C1—, and more preferably CF SO—.
  • n is 2—
  • ionic liquids include the following 3a, 4a, 3b and 4b.
  • n and X are as follows.
  • 3a and 4a have properties as Bronsted acids, and 3b and 4b have properties as Lewis acids.
  • preferred ionic liquids include the following 2A and 2B, which are represented by the above formula ( In 1), R is a methyl group, and n, X and Y— are as follows. These 2A and 2B have properties as Lewis acids.
  • similarly preferred ionic liquids include the following 3C, wherein in the formula (1), R is an aryl group, and n, X and Y— are as follows. Note that this 3C has the property of Louis acid.
  • the ionic liquid of the present invention can be obtained by applying a reaction known in Chem. Comnun. 2000, pl695-1696 and the like.
  • N-methylimidazole is first reacted with 1,3-propane sultone or 1,4-butane sultone to obtain a zwitterionic compound in which (CH 2) n-SO— is bonded to the imidazole ring structure N.
  • the ionic liquid of 3a or 4a above which also has the aeon and power.
  • the ionic liquid of the above 3b or 4b is obtained by reacting the ionic liquid with the salt of the salt.
  • the ionic liquid of 3a or 4a becomes a force equilibrium reaction also obtained by hydrolyzing the ionic liquid of 3b or 4b.
  • Ionic liquids having other aions can be obtained in the same manner as described above by changing the aion source.
  • the obtained ionic liquid can be identified by NMR measurement or the like.
  • This ionic liquid is an acidic ionic liquid that is stable to air and water, and is a kind of ionic liquid having a stable function.
  • Examples of applications include an alkylation reaction catalyst and a nitration reaction. Limited to catalysts and Beckmann rearrangement catalysts or their reaction solvents It can be used for many other reaction catalysts and reaction solvents.
  • alkylation is used in a sense including aralkylation.
  • the alkylation reaction of the present invention includes a method using an ionic liquid as a catalyst and a method using a triflate compound together with an ionic liquid. First, the former method will be described.
  • the aromatic compound to be alkylated is benzene, alkylbenzene or the like having a certain power, preferably methylbenzenes having one or two methyl groups, More preferably, it is xylene.
  • One to thirteen aromatic compounds such as aromatic vinyl conjugates are substituted for one aromatic compound. This is often a compound, and is often obtained as a mixture of compounds having different substitution numbers a.
  • Ar is an aromatic group obtained by removing a bullet group from an aromatic vinyl conjugate
  • Ar ′ is an aromatic group obtained by removing a hydrogen from an aromatic hydrocarbon. If ⁇ -methylstyrene is used as the aromatic vinyl compound, this formula varies depending on the raw materials used so that the above CH (CH 2) ⁇ C (CH 2).
  • Alkylation reaction conditions vary depending on the type of the target product and the like, and are not constant.
  • the molar ratio of the aromatic compound to the olefins is in the range of about 10: 1 to 1: 2, preferably about 5: 1 to 1: 1.
  • the amount of the olefins is excessive, a homopolymer of the olefins such as an aromatic vinyl conjugate is easily formed.
  • the ionic liquid of the present invention acts as a catalyst, it is not necessary to use a separate catalyst, but it may be used if desired.
  • the amount of ionic liquid used is the raw material of the reaction It is 0.5 to 20 times (by weight), preferably about 110 times the total amount of the aromatic compound and the olefins. In this reaction, the ionic liquids 3a, 4a, 3b, and 4b all act as excellent catalysts, but the ionic liquids 3a and 4a seem to exhibit more excellent functions.
  • Preferred ionic liquids include the above 3a, 4a, 3b and 4b, more preferably 3b and 4b.
  • the triflate conjugate used together with the above ionic liquid is represented by ⁇ ( ⁇ ⁇ ) and is a compound known in the literature and the like, and is conventionally known as an alkyl sulfide catalyst or Friedel's Crafts catalyst. If they are, they can be used.
  • M represents a divalent or trivalent metal atom, preferably a rare earth metal, and more preferably scandium.
  • m corresponds to the valence of the metal atom M.
  • Tf is SO CF.
  • the ratio of the ionic liquid and the triflate conjugate used varies depending on the type of the olefin compound as the reaction raw material, and the like. The range of the degree is good.
  • the aromatic compound used as a raw material is preferably benzene, naphthalene, azulene, anthracene, phenanthrene, pyrene, fluorene or a substituted product thereof, particularly an alkyl substituted product thereof.
  • the aromatic compound may be a heterocyclic compound such as pyridine and quinoline, or a substituted product thereof. More preferred are benzene such as benzene, toluene, xylene, and ethylbenzene, and lower alkyl-substituted benzenes having 1 to 2 carbon atoms substituted with 1 to 2 lower alkyls.
  • Olefins used as the alkylating agent are preferably aliphatic olefins having 2 to 20 carbon atoms such as ethylene, butene, otaten, and dodecene, and more preferably aliphatic monoolefins having 415 carbon atoms. is there.
  • the olefins may be aromatic olefins such as benzene or alkyl-substituted benzene. Further, it is also preferable to be an aliphatic cyclic olefin.
  • the compound formed by this alkylation reaction is an alkyl-substituted aromatic compound, and the main component is a monoalkyl-substituted aromatic compound depending on the reaction conditions. But the reaction By adjusting the conditions, a polyalkyl-substituted aromatic hydrocarbon or an aromatic compound such as a dialkyl-substituted aromatic hydrocarbon can be obtained. When a monoalkyl-substituted aromatic compound is intended, the aromatic compound is preferably used in excess with respect to the olefins.
  • the alkylidation reaction conditions are not constant because they vary depending on the type of the target product and the like, but the reaction temperature is preferably 30 to 100 ° C. and the reaction time is about 0.2 to 10 hours.
  • the molar ratio of the aromatic compound to the olefins is in the range of about 10: 1 to 1: 2, preferably about 5: 1 to 1: 1.
  • the amount of the ionic liquid used is about 0.01 to 1 times, preferably about 0.02 to 0.2 times the mol of the olefins as the reaction raw materials, and the amount of the triflate conjugate used is preferably within the range.
  • the ionic liquid used in the present invention is represented by the above formula (1), preferably by the formula (2).
  • X is preferably a hydroxyl group, and Y— is preferably CF SO—
  • n is preferably 3-8, more preferably 3 or 4.
  • the ionic liquid acts as a catalyst and a solvent for the nitration reaction.
  • the raw materials for the nitration reaction are aromatic compounds and nitric acid.
  • an aromatic compound as a raw material for the nitration reaction, a compound having a hydrogen that can be substituted for an aromatic ring-constituting carbon at a nitratable position is used.
  • unsubstituted one- to three-ring aromatic hydrocarbons such as benzene, naphthalene and anthracene, and two- to three-ring aromatic hydrocarbons such as biphenyl, terphenyl and diphenylmethane, diphenyl ketone, Examples thereof include a 2- to 3-ring aromatic compound such as diphenyl sulfone and diphenyl ether, and a substituted aromatic compound obtained by substituting these with an alkyl group, halogen, or the like. More preferably, it is benzene, monoalkylbenzene or monohalogenobenzene.
  • the alkyl group is preferably a lower alkyl having 6 or less carbon atoms.
  • the present invention is characterized by the ionic liquid used in the It is widely applicable to known aromatic compounds as a raw material for torrefaction.
  • the nitric acid used as the nitrating agent is preferably concentrated nitric acid of 50 wt% or more, but the reaction proceeds even at about 30 wt%. From the viewpoint of ease of handling and reactivity, it is advantageous to use nitric acid of about 35 to 70 wt%. In the case of polynitration over dinitration or more, it is natural that a higher concentration of nitric acid is preferably used.
  • the amount of the ionic liquid used is 2 to 30 mol%, preferably about 415 mol%, based on the aromatic compound.
  • the amount of nitric acid used is about 115 times mol, preferably about 113 times mol% of the aromatic compound.
  • the nitration reaction conditions vary depending on the reaction raw materials, but when benzene or monoalkylbenzene is subjected to mono-toro-formation, the boiling point of the aromatic compound is set at 50 to 120 ° C, preferably 60 to 100 ° C or lower. It is advantageous.
  • the reaction time varies depending on the conditions such as the reaction raw materials and the reaction temperature, but it is suitably about 110 hr, preferably about 2-20 hr.
  • nitric acid For the purpose of poly-nitrolation beyond dinitration, it is preferable to use a higher concentration of nitric acid, use a larger amount of nitric acid, and adopt a higher reaction temperature or a longer reaction time. become.
  • an ionic liquid phase containing nitric acid and an aromatic compound phase there are two phases, an ionic liquid phase containing nitric acid and an aromatic compound phase, and these are stirred to progress the reaction.
  • a nitrated aromatic compound is generated and present in the aromatic compound phase, and water is by-produced to lower the nitric acid concentration in the ionic liquid phase.
  • the stirring is stopped to separate into two liquid layers of an ionic liquid phase and an aromatic compound phase. Therefore, both can be easily separated by layer separation. If necessary, a solvent or the like for facilitating layer separation can be added.
  • the aromatic compound phase separated by layer separation or the like contains a nitro-substituted aromatic compound, it is separated or purified to recover the nitro-substituted aromatic compound.
  • the reaction rate of the starting aromatic compound is preferably about 50 to 95% when a mono-toro-substituted aromatic compound is intended.
  • the separated ionic liquid phase contains the ionic liquid and nitric acid at a reduced concentration. Since the ionic liquid has almost no denaturation or loss, it is reused. Even if the concentration of nitric acid is reduced, the separated ionic liquid phase can be reused if it is still usable. If the nitric acid concentration falls below a certain level, add concentrated nitric acid, concentrate and regenerate.
  • the ionic liquid used in the present invention is represented by the above formula (1), preferably (2).
  • X is preferably a halogen atom, more preferably a chlorine atom, and n is preferably 3 or 4.
  • Specific preferred examples of the ionic liquid include the above 3b and 4b.
  • the ionic liquid used in the present invention can be used as it is, with the force ionic liquid supported on a carrier.
  • a carrier In the case of supporting or binding to a carrier, it can be obtained, for example, by dissolving an ionic liquid in a low-boiling solvent such as THF, and immersing the carrier in a relatively large specific surface area. In this case, a drying step for removing the low-boiling-point solvent can be provided if necessary, but the need for the solvent used in the rearrangement reaction is small.
  • a low-boiling solvent such as THF
  • the surface of the carrier is modified beforehand and chemically bonded to an ionic liquid.
  • an acidic carrier such as a solid acidic catalyst and a porous carrier, and any porous solid can be used.
  • the specific surface area is preferably 10 m 2 / g or more.
  • Specific examples include zeolite, silica, alumina, silica alumina, zeolite, clay minerals (such as smectite), and supported heteropolyacid catalysts.
  • a solid acid catalyst such as silica'alumina or a solid basic catalyst can be used.
  • a supported catalyst in which an ionic liquid is supported or bound to such a solid support has advantages such as easy separation from the product.
  • the loading amount of the ionic liquid is preferably in the range of 1 to 70 wt%, preferably 5 to 30 wt%.
  • the oximes used as a raw material include saturated and unsaturated, substituted or unsubstituted aliphatic ketoximes having 2 to 12 carbon atoms, aldoximes or cyclic ketoximes, and preferably cyclic ketoximes.
  • oximes include acetone oxime, acetoaldoxime, benzaldoxime, propanal oxime, butanal Oxime, butanone oxime, buten-1-oxoxime, cyclopropanone oxime, cyclohexanone oxime, cycloquatanone oxime, cyclododecanone oxime, cyclopentanone oxime, cyclododecenone oxime, 2-phenylcyclo Powers such as hexanone oxime, cyclohexenone oxime, 2-methyl-2-pentanone oxime, etc. Cyclohexanone oxime is preferred.
  • the Beckmann rearrangement reaction conditions are not constant because they vary depending on the ketoxime used, the type of the target product, and the like, but the reaction temperature is 0 to 100 ° C, more preferably 10 to 80 ° C. Preferably it is 10-50 ° C. If the temperature is lower than 0 ° C., it takes time to obtain a desired conversion. If the temperature is higher than 100 ° C, the ionic liquid or the carrier may take part in the reaction and the product may be complicated. The reaction time varies depending on the raw materials and the reaction temperature, and can be set so as to obtain a desired conversion. Usually, lmin-24hr is good.
  • the reaction temperature is preferably 0 to 50 ° C and the reaction time is preferably about 0.1 to 10 hours. If the reaction temperature is too high, the reaction solution turns black and the generation of by-products increases.
  • the amount of the ionic liquid to be used varies depending on other conditions. Even if the amount of ionic liquid used is near the equimolar amount, which is the stoichiometric amount (0.5 to 2 times mol), or even sufficiently less! The reaction proceeds well.
  • the ionic liquid acts as a reaction catalyst. However, if the ionic liquid is used in a molar amount of about 0.1 times or more, the ionic liquid also functions as a solvent, so that no special reaction solvent is required.
  • a reaction solvent is selected so as to dissolve the oxime and the target acid amide. Examples of such a solvent include benzene and the like, and supercritical CO can also be used. Supercritical
  • CO can be used to separate the reaction mixture as described below, so use a carrier
  • the reaction mixture is recovered as a solution in which the target substance is dissolved when the ionic liquid is used as it is. In some cases, unreacted raw materials and by-products may be contained. Then, the target acid amide is recovered by an operation such as extraction of the reaction mixture. When the ionic liquid is used by being supported or chemically bonded, the target acid amide can be recovered by operations such as filtration and distillation.
  • the ionic liquid in which the target substance is dissolved is collected and reused.
  • the ionic liquid in which the target substance is dissolved is collected and reused.
  • the target substance such as ⁇ -force prolatatum is extracted, and the ionic liquid remains without being extracted.
  • the ionic liquid in which the target substance is dissolved often has a high viscosity, the more advantageous
  • auxiliary extraction solvent examples include solvents such as water, ethanol, black-mouthed form, and tetrahydrocarbon, and the like. Preferred is that since chloroform has the least decrease in the activity of the recovered ionic liquid.
  • the ionic liquid When performing supercritical extraction using 2, the ionic liquid may be itself or may be a carrier.
  • the extraction conditions were 3 hours at 50 ° C and 125 MPa, the amount of CO used was 25 ° C, and 10-100 L at 0.1 MPa,
  • It is preferably about 24-82 L.
  • the target substance and the ionic liquid are recovered, and the ionic liquid can be reused.
  • Ionic liquids 3a, 4a, 3b and 4b were used.
  • the well-known ionic liquids BMImBF and BMImPF were also examined at the same time.
  • Table 1 shows the results of the Friedel 'Crafts' alkylation reaction of p-xylene with styrene under various reaction conditions. In all these cases, two main products were detected, namely monostyrenated and distyrenated. These are both industrially desirable substances.
  • p-xylene and styrene were reacted using the Lewis acidic ionic liquid 3b or 4b (Experiment No. 16), the reaction between P-xylene and styrene proceeded well, and an effective catalyst was used. It turns out that it is.
  • Lewis acidic ionic liquid 4b which has a long side chain, has a decrease in styrene conversion and clearly affects the product distribution.
  • Reaction time and the molar ratio of P-xylene to styrene are two important factors that affect styrene conversion and distribution of reactant products.
  • reaction time on the alkylation reaction it can be seen that most of the reaction between P-xylene and styrene was completed within 2 hours. Also, the product distribution does not change significantly in any of the reactions.
  • P-xylene Z-styrene molar ratio as the molar ratio increases, the styrene conversion Gradually decreases, but the selectivity of the monostyrene form greatly increases. This is probably because the dilute solution of P-xylene and styrene reduces the chance of the reaction between the monostyrene product and styrene.
  • the product in the upper layer can be easily separated from the ionic liquid by decantation. Then, the remaining ionic liquid can be reused.
  • the ionic liquid 4a retained the catalytic performance even after being used 5 times under the same conditions (Experiment No. 15). This means that the ionic liquid has reusability in the alkylation reaction of P-xylene with styrene. This reusability shows the advantage of the ionic liquid of the present invention as an industrial catalyst!
  • the alkylidation reaction was carried out in the same manner as in Example 1 by using the ionic liquid 4a as a catalyst and changing the types of the aromatic hydrocarbon and the alkene.
  • the ionic liquid of the present invention is an effective catalyst for the alkylation of benzene and toluene with styrene. Under the same conditions, it can be inferred that benzene can be formed relatively easily with toluene or p-xylene. However, very interestingly, even when the acidic ionic liquid catalyst 4a was applied to the alkylation reaction of benzene with a long-chain alkene such as hexenedodecene, the reaction did not occur.
  • the metal element symbol in the column of triflate in Table 3 indicates that the metal is a Trifle M ligated compound.
  • the triflate conjugate was Sc triflate, Y triflate, La triflate or Zn triflate.
  • the aromatic compound was subjected to the toro conversion using the ionic liquid 3a or 4a.
  • the aromatic compound used as a raw material benzene or mono-substituted benzene represented by R-Ar (where Ar represents a phenyl group and R represents H or a substituent) was used.
  • R-Ar mono-substituted benzene represented by R-Ar (where Ar represents a phenyl group and R represents H or a substituent) was used.
  • nitric acid 62% nitric acid was used.
  • 5-15 mol% of the ionic liquid relative to the aromatic compound was used, and 20 mmol of the aromatic compound and 20-60 mmol of 62% nitric acid were placed in a 50 ml round bottom flask equipped with a magnetic stirrer.
  • Table 4 shows the reaction conditions and the reaction results.
  • R means R of the above R-Ar,
  • % Indicates the used amount (mol%) of the ionic liquid, the aromatic compound Z nitric acid indicates the molar ratio, and the conversion indicates the conversion of the aromatic compound.
  • the ionic liquid is more excellent in the directional deformation ratio of 4a than 3a.
  • the conversion of the ionic liquid is superior in the order of 5%, 10%, and 15%.
  • the molar ratio of the aromatic compound nitric acid is superior in the order of 1/3, 1/2 and 1/1 in the order of transfer.
  • the reaction time it can be seen that the conversion is better for 22 hours than for 12 hours.
  • JRC-SIO-9 a reference catalyst of the Catalysis Society of Japan, was immersed in a THF solution of an ionic liquid as a carrier, immersed for lhr, then the THF solvent was removed and dried to obtain an ionic liquid carrier .
  • the composition and properties of JRC-SIO-9 are as follows.
  • the Bronsted acidic ionic liquids 4a and 3a are the same.
  • the ionic liquid and ketoxime were charged into a 10 ml test tube equipped with a magnetic stirrer, stirred for 3 minutes, and reacted at 20-80 ° C for 5 minutes-120 minutes.
  • the molar ratio of ketoxime to ionic liquid was set at 115.
  • reaction mixture viscous liquid
  • CO and chlorophos as an auxiliary extraction solvent
  • Lum was used for supercritical extraction with CO. Extract ⁇ -caprolatatam from the extract
  • the ionic liquid collected and left unextracted was recovered and reused in the next reaction. ⁇ -force Prolatatam was almost completely (> 95%) extracted. Reuse the recovered ionic liquid
  • the molar ratio of ketoxime to ionic liquid was 1, and the reaction was carried out at 40 ° C for 60 minutes.
  • the conversion ratio of the ketoxime and the selectivity of the ratatam were analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 cantilever ram 25 mx 0.32 mm).
  • the supercritical extraction conditions were achieved by flowing 15 MPa of CO at 60 ° C for 3 hours to the raw materials of oximes lg.
  • the CO used for the extraction is about 24-82 L under the conditions of 25 ° C and 0.1Mpa.
  • Table 6 shows the results of the Beckmann rearrangement reaction of ketoxime under various reaction conditions. In all of these cases, when the reaction was carried out using the Lewis acidic ionic liquid 3b or 4b (Experiment Nos. 42-47), the reaction proceeded favorably, and the transfer rate was 99% or more. This shows that the selectivity is around 99%. In the case of using the ionic liquid 4b 1 ) recovered by supercritical extraction and reused (Experiment No. 48), the conversion was slightly reduced, but the selectivity was good and the ionic liquid was recycled. It can be seen that use is possible. The reaction using the ionic liquid 4 obtained by supercritical extraction of the reaction mixture of Experiment No.
  • Table 6 shows the reaction conditions and reaction results.
  • the molar ratio indicates the molar ratio of the ketoxime Z ionic liquid
  • the selectivity indicates the ratatum selectivity.
  • CHOX indicates cyclohexanone oxime
  • TOX indicates tetralone oxime.
  • the ionic liquid represented by the general formula (1) or a supported substance thereof is an effective catalyst also for a ratatum synthesis reaction by a Beckmann rearrangement reaction of various ketoximes.
  • the reason for the slight decrease in conversion when using a reused ionic liquid is unknown, but it is thought to be due to the contamination of impurities, and by optimizing the reaction conditions, recovery of the ionic liquid, and purification conditions, It is thought that the conversion rate can be prevented from lowering and the number of reuses can be increased. available.
  • ionic liquid 2A This viscous liquid is referred to as ionic liquid 2A.
  • the component corresponding to Y— in the above formula (1) is C1—.
  • the ionic liquid 2A and cyclohexanone oxime were charged into a 10 ml test tube equipped with a magnetic stirrer, stirred for 3 minutes, and subjected to a Beckmann rearrangement reaction at 110 ° C for 5 hours.
  • the molar ratio of cyclohexanoxoxime to ionic liquid was set to 5.
  • reaction mixture was dissolved in ethanol and analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 Capillary One-Ram 25m x 0.32mm).
  • FID gas chromatography Shiadzu GC-14A, ULBON HR-52 Capillary One-Ram 25m x 0.32mm.
  • the reaction rate of cyclohexanone oxime and ⁇ The selectivity to force prolatatam is as follows.
  • Example 1 1-aryl imidazole was used instead of 1-methyl imidazole.
  • an ionic liquid 3C was obtained in the same manner except that 1,3-propane sultone was used instead of 1,4-butane sultone.
  • silica gel-60 70-230mesh; manufactured by Merck
  • MPS 3-mercaptopropyltrimethoxysilane
  • ionic liquid 3C (3.2 g), solid (1) (4.8 g), a, a, a-azoisobuty-tolyl (AIBN) (164 mg) were added, and the reaction was carried out under reflux conditions for 30 hours. . After completion of the reaction, the solid was filtered, washed with methanol, and dried. The obtained solid is referred to as an ionic liquid immobilization catalyst (1).
  • the ionic liquid-immobilized catalyst (1) (0.02 g) and cyclohexanone oxime (0.018 g) were added to toluene (1.48 g), and reacted at 100 ° C for 7 hours. After the reaction was completed, the reaction mixture was analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 Capillary Ram 25m x 0.32mm). The selection rates are as follows.
  • silica gel solid (2) was prepared in the same manner as described above except that pellet silica gel (manufactured by Nikki Chemical Co., Ltd .: Silicate Reference Catalyst JRC-SIO-9) was used.
  • an ionic liquid fixed catalyst (2) was prepared from the ionic liquid 3C and the solid (2).
  • the ionic liquid-immobilized catalyst (2) (0.92 g) and cyclohexanone oxime (0.10 g) were added to toluene (1.48 g) and reacted at 110 ° C. for 7 hours. After the reaction was completed, the reaction mixture was analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 Capillary Ram 25m x 0.32mm). The selection rates are as follows. Reaction rate 69.1%
  • the acidic ionic liquid of the present invention which is stable to air and water, is a kind of ionic liquid having a stable function, and is useful as a catalyst or a solvent for a reaction using an acidic catalyst.
  • the reaction can be performed under relatively mild conditions, the separation is easy, and the catalyst can be reused.
  • industrially useful alkyl-substituted aromatic compounds, nitro-substituted aromatic compounds, ⁇ - force prolatatam, and the like can be obtained with high yield and high selectivity.
  • the ionic liquid serving as a catalyst is a Lewis acid, which can be reused, generation of waste is suppressed and problems such as corrosion of the apparatus are reduced.

Abstract

A novel acidic ionic liquid which is useful as a catalyst for alkylation, nitration, Beckmann rearrangement, etc. and is stable to air and water. It is an ionic liquid represented by the following formula (1): (1) wherein X represents halogeno or hydroxy; Y- represents CF3SO3-, BF4-, PF6-, CH3COO-, CF3COO-, (CF3SO2)2N-, (CF3SO2)3C-, F-, Cl-, Br-, or I-; n is an integer of 2 to 16; and R represents methyl, allyl, or vinyl. This ionic liquid not only functions as a BrDnsted acid or a Lewis acid but is a liquid insoluble in many organic solvents. The liquid is hence useful as a catalyst or solvent for Friedel-Crafts reaction, nitration, and Beckmann rearrangement. It can be easily separated from the reaction mixture and reused.

Description

明 細 書  Specification
イオン性液体及びそれを使用する反応方法  Ionic liquid and reaction method using the same
技術分野  Technical field
[0001] 本発明は、新規なイオン性液体及びそれを使用する反応方法又はその反応方法 を使用する化合物の製造方法に関する。このイオン性液体を使用する反応には、ァ ルキル化反応、ニトロ化反応及びベックマン転位反応がある。  The present invention relates to a novel ionic liquid, a reaction method using the same, and a method for producing a compound using the reaction method. Reactions using this ionic liquid include alkylation, nitration, and Beckmann rearrangement.
背景技術  Background art
[0002] 近年、イオン性液体は、合成化学の分野で有望な溶媒として認知されつつあり、ァ ルドール反応、ディールス ·アルダー反応、クライゼン転位反応、ヘック反応、ベック マン反応、フリーデル 'クラフト反応、バイルス'ヒルマン反応、ニトロ化反応、不斉合 成反応等多くの化学反応に利用できる可能性が期待されている。  [0002] In recent years, ionic liquids have been recognized as promising solvents in the field of synthetic chemistry, and include Aldall reaction, Diels-Alder reaction, Claisen rearrangement reaction, Heck reaction, Beckman reaction, Friedel's Kraft reaction, It is expected that it can be used for many chemical reactions such as the Vils'Hillman reaction, nitration reaction, and asymmetric synthesis reaction.
[0003] イオン性液体は、ァ-オンと有機カチオンとからなる有機塩であり、百数十。 C以下 の融点を有し、蒸気圧がほとんどない、イオン性であるわりには粘性が低い、耐熱性 であり液体温度範囲が広い、イオン導電性が高い、水不溶性とすることができる、酸 性とすることができる、安定である等の特徴を有する新規な物質群であり、再利用が 可能な溶剤として、触媒としてあるいは電解質として、従来の材料やシステムを根本 的に改革する潜在的可能性を有しており、学術的に脚光を浴びており、産業界から も非常に期待されている(現代化学 2001年 3月号 p56-62参照)。  [0003] An ionic liquid is an organic salt composed of an aion and an organic cation, and is numbered over one hundred. It has a melting point below C, has almost no vapor pressure, has low viscosity instead of being ionic, is heat resistant and has a wide liquid temperature range, has high ionic conductivity, can be made water-insoluble, and has acidity. A new group of substances that have the characteristics of being stable, stable, etc., and have the potential to fundamentally reform existing materials and systems as reusable solvents, catalysts or electrolytes. It is academically in the spotlight and highly expected from the industrial world (see Modern Chemistry, March 2001, p.56-62).
[0004] イオン性液体の最も重要な特徴は、カチオンとァ-オンを注意深く選択することによ り化学的及び物理的特性を精密に最適化することができるということであり、更には、 異なる機能基によりカチオン、ァ-オン自身を改質できるということである。そして、ィ オン性液体にっ 、ては種々の化合物があることが知られて 、るが、触媒と溶媒として の作用を有し、しかも反応系で分解せず、繰り返し使用可能なものが求められている 。 J.Am.Chem.Soc,2002年, 124,p5962-5963では、一種のスルホン酸基で機能付与し たブレンステッド酸性イオン性液体がエステルイ匕やエーテルィ匕反応触媒として適して いることを報告している。  [0004] The most important feature of ionic liquids is that the chemical and physical properties can be precisely optimized by careful selection of cations and aions, and furthermore, This means that the cations and aions can be modified by the functional groups. It is known that various compounds can be used as the ionic liquid. However, it is required that the ionic liquid has a function as a catalyst and a solvent and is not decomposed in a reaction system and can be used repeatedly. Have been. J. Am. Chem. Soc, 2002, 124, p5962-5963, reported that a Bronsted acidic ionic liquid functionalized with a kind of sulfonic acid group is suitable as a catalyst for esterification and ethereal reaction. ing.
[0005] しかしながら、 1-n-ブチル -3-メチルイミダゾリウム-テトラフルォロボレート(BMImBF )や 1-n-ブチル -3-メチルミミダゾリゥム-へキサフルオロフォスフェート(BMImPF )のHowever, 1-n-butyl-3-methylimidazolium-tetrafluoroborate (BMImBF ) And 1-n-butyl-3-methylimidazolyme-hexafluorophosphate (BMImPF)
4 6 ような良く知られたイオン性液体は、空気や水に対し安定であるが、一般的に中性で あると見なされており、殆どの場合溶媒としてしか使用できない。クロロアルミネートイ オン性液体は、酸性触媒としても働くが、空気や水に対して反応性を有するので、実 用化の大きな障害となる。 Well-known ionic liquids, such as 46, are stable to air and water, but are generally considered neutral and can only be used as solvents in most cases. The chloroaluminate ionic liquid also functions as an acidic catalyst, but is reactive to air and water, which is a major obstacle to practical use.
[0006] アルケンを使用した芳香族炭化水素のフリーデル ·クラフツ ·アルキレーシヨン反応 例についても、クロロアルミネートイオン性液体中で反応が進行するという報告が J.Mol.Catal.A,2001年, 171,p81- 84等にある。また、 Chem.Comnun.2000年  [0006] As for the Friedel-Crafts-Alkylation reaction of aromatic hydrocarbons using alkenes, J. Mol. Catal. A, 2001, reports that the reaction proceeds in a chloroaluminate ionic liquid. , 171, p81-84. Also, Chem. Comnun. 2000
,pl695-1696では、カチオン部分が n-Bu基と C H -SO Hがイミダゾールの N原子に結  , pl695-1696, the cation moiety is linked to the n-Bu group and CH-SOH is linked to the N atom of imidazole.
4 8 3  4 8 3
合した構造を有し、ァ-オン部分が CF SOであるイオン性液体 (la)と、カチオン部分  An ionic liquid (la) having a combined structure and the aion part is CF SO, and a cation part
3 3  3 3
が P(Ph) C H SO Hであり、ァニオン部分が p- CH - C H -SOであるイオン性液体 (2a) Is P (Ph) C H SO H and the anionic part is p-CH-CH-SO (2a)
3 3 6 3 3 6 4 3 3 3 6 3 3 6 4 3
とを使用して、いくつかの反応を行っている。この反応はエステルイ匕反応、アルコー ルの脱水二量化反応、ピナコール転位反応等である力 イオン性液体 (2a)が優れる としている。  And you have done some reactions. This reaction is said to be superior to the ionic liquid (2a) which is an esterification reaction, a dehydration dimerization reaction of alcohol, a pinacol rearrangement reaction or the like.
[0007] フリーデル 'クラフツ反応を利用した芳香族炭化水素のアルケンによるアルキルィ匕 反応は、化学工業において最も重要な反応の一つである。最も典型的な例としては 、キシレンのスチレンによるアルキル化による 1-フエ-ル- 1-キシリルエタン(PXE)の 製造がある。 PXEは、感圧記録材料、可塑剤、熱媒、電気絶縁油などの溶剤として 広く使用されている無色の合成油である。  [0007] The alkylidation reaction of an aromatic hydrocarbon with an alkene using the Friedel-Crafts reaction is one of the most important reactions in the chemical industry. The most typical example is the production of 1-phenyl-1-xylylethane (PXE) by alkylation of xylene with styrene. PXE is a colorless synthetic oil widely used as a solvent for pressure-sensitive recording materials, plasticizers, heat transfer media, and electrical insulating oils.
[0008] アルキルベンゼンとスチレン類のアルキル反応により得られる多環芳香族炭化水素 は、相溶性、耐熱性、潤滑性、電気的性質に優れた特性を有し、可塑剤、高沸点溶 剤、熱媒体、電気絶縁油、作動油、潤滑剤などの広い用途に適した合成油を与える 。この合成油は、これらの用途に優れた性能を有し、好ましいものではある力 原料と なるスチレン類が極めて重合し易 ヽ特性を有するため、通常のアルキル化触媒を使 用したのでは目的とするアルキルベンゼンは収率良く得られない。  [0008] Polycyclic aromatic hydrocarbons obtained by the alkyl reaction of alkylbenzene and styrenes have excellent compatibility, heat resistance, lubricity, and electrical properties, and include plasticizers, high-boiling solvents, Provides synthetic oils suitable for a wide range of applications, such as media, electrical insulating oils, hydraulic oils, and lubricants. This synthetic oil has excellent performance for these uses, and since styrene, which is a raw material, which is a preferable raw material, has an extremely easy property to polymerize, the use of a conventional alkylation catalyst is not sufficient. Cannot be obtained in good yield.
[0009] 古くは、この反応は、硫酸の存在下において行われた。特開昭 47-29351号公報は 、触媒として 70— 95%濃度の硫酸を使用し、かつ反応系中におけるスチレンの濃度 を 5重量%以下に、生成物の濃度を 50重量%以下に保持し、 30°C以下の温度で攪 拌下にスチレンとキシレン又はトルエンを反応させる方法を提案して 、る。この方法で は、反応終了後の触媒除去の際、酸を NaOHで中和するために、 Na SOが副生し、 [0009] Anciently, this reaction was performed in the presence of sulfuric acid. JP-A-47-29351 discloses that a sulfuric acid having a concentration of 70-95% is used as a catalyst, the concentration of styrene in a reaction system is kept at 5% by weight or less, and the concentration of a product is kept at 50% by weight or less. At a temperature below 30 ° C A method of reacting styrene with xylene or toluene under stirring is proposed. In this method, when removing the catalyst after the reaction is completed, Na SO is by-produced to neutralize the acid with NaOH,
2 4 中和水洗の後処理に多大な費用をかける必要があるとともに、装置の腐食防止、廃 水による環境汚染防止の必要がある。  2 4 It is necessary to spend a great deal of money on post-processing of the neutralized water washing, and it is necessary to prevent corrosion of the equipment and environmental pollution by wastewater.
[0010] これらの問題点を克服するために、シリカ'アルミナゃゼオライトなどの固体酸触媒 を使用して、キシレンをスチレンでアルキルィ匕して PXEを合成する方法が開発された 。特開昭 53-135959号公報は、側鎖アルキル基の炭素数 1一 4のアルキルベンゼンを スチレン、ビュルトルエン、 α -メチルスチレンの少なくとも 1種のスチレン類でアルキ ルイ匕する方法において、組成、細孔径及び比面積を制御したシリカ'アルミナ固体酸 触媒層に、温度 100— 200°Cで液相にて、アルキルベンゼンとスチレン類を連続的に 供給することによるアルキルベンゼンのアルキルィ匕方法を提案して 、る。この方法で は、濃硫酸触媒法のような後処理問題はないが、スチレンのオリゴマー化生成物が 触媒の活性点をブロックすることにより急速な触媒失活が生じるため、頻繁な触媒賦 活操作が必要となる。 [0010] In order to overcome these problems, a method for synthesizing PXE by alkylating xylene with styrene using a solid acid catalyst such as silica'alumina zeolite has been developed. JP-A-53-135959 discloses a method of alkylating a side chain alkyl group having 14 carbon atoms with at least one type of styrene such as styrene, butyltoluene and α-methylstyrene. A method for alkylidene alkylbenzene by continuously supplying alkylbenzene and styrenes in a liquid phase at a temperature of 100 to 200 ° C to a silica 'alumina solid acid catalyst layer having a controlled pore size and specific area, You. This method does not have the post-treatment problems of the concentrated sulfuric acid catalyst method, but the styrene oligomerization product blocks the active site of the catalyst, causing rapid catalyst deactivation. Is required.
[0011] Chem.Comnun.2000年 ,pl695- 1696には、イオン性液体とスカンジウムトリフレートを 触媒として使用して、芳香族化合物をアルキルィ匕する方法が記載されている。ここで 、イオン性液体としては、 [emim] [SbF ]  [0011] Chem. Comnun. 2000, p695-1696 describes a method of alkylating an aromatic compound using an ionic liquid and scandium triflate as a catalyst. Here, as the ionic liquid, [emim] [SbF]
6、 [emim] [BF ] ] [OTf]や [PF ]  6, [emim] [BF]] [OTf] or [PF]
4、 [emim [bmim]  4, [emim [bmim]
6 が使用されており、これらは分解して HF等の酸を発生する恐れがある。このことは、 イオン性液体の再使用を困難とし、生成する酸による腐食が問題となる。更に、この 反応においては、イオン性液体は触媒としてではなぐ溶媒として機能しており、プロ セス化に当たっては大量のイオン性液体が必要となる。なお、ここで、 [emim]+は、 1- ェチル -3-メチルイミダゾリウムカチオンを示し、 [bmim]+は、 1-ブチル -3-メチルイミダ ゾリゥムカチ才ンを示す。  6 are used and may decompose to generate acids such as HF. This makes it difficult to reuse the ionic liquid, and corrosion by the generated acid becomes a problem. Furthermore, in this reaction, the ionic liquid functions as a solvent instead of a catalyst, and a large amount of the ionic liquid is required for processing. Here, [emim] + represents 1-ethyl-3-methylimidazolium cation, and [bmim] + represents 1-butyl-3-methylimidazolidine cation.
[0012] フリーデル 'クラフツ反応を利用した芳香族化合物のアルケンによるアルキルィ匕反 応は、化学工業において最も重要な反応の一つである。最も典型的な例としては、 ベンゼンと炭素数 2以上の脂肪族ォレフインを反応させて、ェチルベンゼン、ォクチ ルベンゼン等のアルキルィ匕芳香族炭化水素の製造がある。これらのアルキル化芳香 族炭化水素は、スチレン原料や界面活性剤原料として有用である。 [0013] フリーデル 'クラフツ反応を利用した芳香族化合物のアルケンによるアルキルィ匕反 応は、通常鉱酸のようなプロトン酸、 A :iや BFのようなルイス酸、ゼォライト等の固体 The alkylation reaction of an aromatic compound with an alkene utilizing the Friedel-Crafts reaction is one of the most important reactions in the chemical industry. The most typical example is the production of alkylated aromatic hydrocarbons such as ethylbenzene and octylbenzene by reacting benzene with an aliphatic olefin having 2 or more carbon atoms. These alkylated aromatic hydrocarbons are useful as raw materials for styrene and surfactants. [0013] The alkylation reaction of an aromatic compound with an alkene utilizing the Friedel-Crafts reaction is usually carried out using a solid acid such as a protonic acid such as a mineral acid, a Lewis acid such as A: i or BF, or zeolite.
3 3  3 3
酸触媒を使用して行われることが多い。しカゝしながら、固体酸触媒を使用する場合を 除いては、廃酸等の廃棄物が多量に発生するという問題がある。一方、固体酸触媒 を使用する方法では、反応収率や触媒寿命に問題があることが多ぐ特にアルケン の分子量が大きい場合には問題となる。  Often done using an acid catalyst. However, unless a solid acid catalyst is used, there is a problem that a large amount of waste such as waste acid is generated. On the other hand, the method using a solid acid catalyst often has problems with the reaction yield and catalyst life, particularly when the molecular weight of the alkene is large.
[0014] また、特表平 8-508754号公報は、芳香族炭化水素をイオン性液体の存在下にォレ フィンと反応させてアルキル化するに当たり、イオン性液体として a)式 R MX (Rはァ  [0014] Also, Japanese Patent Application Laid-Open No. 8-508754 discloses that, when an aromatic hydrocarbon is reacted with an olefin in the presence of an ionic liquid to carry out alkylation, a) a formula R MX (R Haa
n 3-n ルキル基、 Mは A1又は Ga、 Xはハロゲン、 nは 0— 2の化合物と、 b)ヒドロカルビル置換 イミダゾリゥムハロゲン化物、ヒドロカルビル置換ピリジ-ゥムハロゲン化物を使用する 方法を提案している力 具体的にはェチルベンゼンの製造を教えるにとどまる。  n 3-n alkyl group, M is A1 or Ga, X is halogen, n is 0-2 compound, and b) hydrocarbyl-substituted imidazolym halide, hydrocarbyl-substituted pyridinium halide is proposed. There is only teaching the production of ethylbenzene.
[0015] 特開平 11-199525号公報では、 Sc(OTl) [0015] In JP-A-11-199525, Sc (OTl)
3のような希土類元素のトリフレートイ匕合物を 触媒として芳香族化合物をアルキル化する方法が記載されており、トリフレートイ匕合 物がフリーデル 'クラフツ反応触媒として有効であることを教えている。特表  A method for alkylating an aromatic compound using a triflate conjugate of a rare earth element as a catalyst is described, and teaches that the triflate conjugate is effective as a Friedel-Crafts reaction catalyst. Special table
2001-509134号公報では、塩ィ匕アルミニウムのようなルイス酸をイオン性液体に溶解 させた触媒を使用して、芳香族化合物をアルキルィ匕する方法が記載されている。ここ で、イオン性液体としては、その塩基が第四アンモ-ゥム塩、イミダゾリン塩、ピリジ- ゥム塩、スルホ -ゥム塩又はホスホ-ゥム塩が例示されて 、る。  2001-509134 describes a method for alkylating aromatic compounds using a catalyst in which a Lewis acid such as aluminum chloride is dissolved in an ionic liquid. Here, examples of the ionic liquid include a quaternary ammonium salt, an imidazoline salt, a pyridinium salt, a sulfodium salt, and a phosphonium salt.
[0016] 一方、ニトロベンゼンに代表されるニトロ化芳香族化合物は、硫酸のような触媒の存 在下に、濃硝酸と芳香族化合物を反応させることにより得られる。しかし、このような反 応では多量の廃酸が生成し、環境上の問題が生じる。触媒としては、硫酸の他にル イス酸である三フッ化ホウ素や固体酸触媒が知られているが、廃触媒の処理等に問 題がある。 On the other hand, a nitrated aromatic compound represented by nitrobenzene is obtained by reacting concentrated nitric acid with an aromatic compound in the presence of a catalyst such as sulfuric acid. However, such a reaction generates a large amount of waste acid, and causes environmental problems. As the catalyst, besides sulfuric acid, boron trifluoride, which is a Lewis acid, and a solid acid catalyst are known, but there is a problem in treating a waste catalyst.
[0017] 再使用可能な触媒として、 Chem.Comnun.1996年 ,p469-470には、無水酢酸とゼォ ライトを使用するニトロ化方法が記載されているが、無水酢酸の処理等に問題がある 。また、 Chem.Comnun.1997年 ,p613- 614には、ランタ-ド (III)トリフレート触媒を使用 するニトロ化方法が記載されている力 S、ジクロロメタン等の有害な溶媒を使用する必 要がある。 [0018] ところで、 J.Org.Chem.2001年, 66,p35-40には、イオン性液体として [emim][X] (ここ で、 emimは 1-ェチル -3-メチルイミダゾリゥムを示し、 Xは CF COO、 NO、 AlxCly、 BF [0017] As a reusable catalyst, Chem. Comnun. 1996, p469-470 describes a nitration method using acetic anhydride and zeolite, but there is a problem in the treatment of acetic anhydride and the like. is there . Chem. Comnun. 1997, p 613-614, describes a nitration method using a lanthanide (III) triflate catalyst. It is necessary to use harmful solvents such as force S and dichloromethane. is there. [0018] By the way, in J. Org. Chem. 2001, 66, p35-40, [emim] [X] (where emim indicates 1-ethyl-3-methylimidazolym as an ionic liquid) , X is CF COO, NO, AlxCly, BF
3 3 4 3 3 4
、 PF、 OTfを示す)を使用して芳香族化合物を-トロ化する方法を開示しているが、, PF, OTf) are disclosed.
6 6
触媒としてのルイス酸の使用を必要とする他、ニトロ化剤として硝酸エステル又は塩 を使用している。  In addition to the use of Lewis acids as catalysts, nitrates or salts are used as nitrating agents.
[0019] 次に、ベックマン転位反応は、ケトォキシム又はアルドォキシムを例えば硫酸、発煙 硫酸、クロルスルホン酸、弗化水素、ポリ燐酸、五塩化燐及び類似物質のような強酸 で処理することにより行なわれる。例えば、硫酸又は発煙硫酸を用いる場合、転位反 応後に硫酸アミド複合体が得られ、その際所望のアミドは通常のアンモニアで反応混 合物を中和することによって取り出すことができ、この工程にぉ 、て多量の硫酸アン モニゥムが副生する。  Next, the Beckmann rearrangement reaction is performed by treating ketoxime or aldoxime with a strong acid such as sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, hydrogen fluoride, polyphosphoric acid, phosphorus pentachloride and similar substances. For example, when sulfuric acid or fuming sulfuric acid is used, a sulfated amide complex is obtained after the rearrangement reaction, in which case the desired amide can be removed by neutralizing the reaction mixture with ordinary ammonia, and this step is carried out. A large amount of ammonium sulfate is by-produced.
[0020] ベックマン転位反応を用いる工業的な応用例には、シクロへキサノンォキシムのよう なケトォキシムカも蛛 I力プロラタタムのようなラタタムを製造する方法がある。この ε - 力プロラタタム等のラタタム類はナイロンの原料であり工業的に重要な材料である。 ε -力プロラタタムは発煙硫酸を用いるシクロへキサノンォキシムのベックマン転位反応 により工業生産されており、多量の硫安が副生するため、硫安を副生しないプロセス の開発が望まれている。 [0020] An example of an industrial application using the Beckmann rearrangement reaction is a method for producing a ratatum such as ketoximeca such as cyclohexanone oxime and a mopro I prolatatam. Ratatams such as ε-caprolactam are raw materials for nylon and are industrially important materials. ε- Caprolactam is industrially produced by the Beckmann rearrangement of cyclohexanone oxime using fuming sulfuric acid, and a large amount of ammonium sulfate is produced as a by-product.
[0021] 特開平 09-3041号公報では、 ε -力プロラタトン等を出発原料としアンモニア、水素 、水蒸気の存在下で金属酸化物触媒を用いて気相反応することで、特開平  [0021] In Japanese Patent Application Laid-Open No. 09-3041, a gas phase reaction is carried out using a metal oxide catalyst in the presence of ammonia, hydrogen, and water vapor using ε-force prolataton or the like as a starting material.
09-241236号公報では、シクロへキサノンォキシムを出発原料とし気相で /3型ゼオラ イトと接触させることで、特許第 3254751号公報では、シクロへキサノンォキシムを出 発原料とし高シリカゼォライト触媒を用い気相でベックマン転位させることで、硫安が 副生しな!、プロセスを提案して ヽるが、高温での気相反応であることや固体酸触媒の 再生にもエネルギーを要するため、より低温反応が可能でリサイクルが容易にできる プロセスの開発が望まれて ヽる。  In JP-A 09-241236, cyclohexanone oxime is used as a starting material and in contact with zeolite / 3 in the gas phase in a gas phase. By producing Beckmann rearrangement, ammonium sulfate is not produced as a by-product! We have proposed a process.However, since it is a gas phase reaction at a high temperature and also requires energy to regenerate a solid acid catalyst, a lower temperature reaction is required. It is desirable to develop a process that is possible and easy to recycle.
[0022] Tetrahedron lett.2001年、 42、 p403- 405では、ケトォキシムのベックマン転位反応に おいて、イオン性液体である n-ブチルピリジ-ゥム-テトラフルォロボレートと PC1を触  [0022] In Tetrahedron lett. 2001, 42, p403-405, in the Beckmann rearrangement reaction of ketoxime, the ionic liquid n-butylpyridin-dimethyl-tetrafluoroborate and PC1 were touched.
5 媒として用いることにより、定量的に ε—力プロラタタムを合成できることが報告されて いる。し力しながら、水で後処理をする際に HC1が副生すること、助触媒として PC1の 5 It has been reported that ε-force prolatatam can be synthesized quantitatively by using Yes. HC1 is a by-product during post-treatment with water, and PC1 is used as a co-catalyst.
5 添加を必要とすること、触媒系の再生が困難であることから、工業的観点から十分満 足できるものとは言えない。  5 Because of the need for addition and the difficulty in regenerating the catalyst system, it cannot be said that it is sufficiently satisfactory from an industrial point of view.
[0023] J. Am. Chem. Soc、 2002年、 124、 p5962- 5963では、カチオン部分が n- Bu基と C H [0023] In J. Am. Chem. Soc, 2002, 124, p5962-5963, the cation moiety has an n-Bu group and C H
4 8 4 8
-SO Hがイミダゾールの N原子に結合した構造を有し、ァ-オン部分が CF SOである-SO H has a structure bonded to the N atom of imidazole, and the ion is CF SO
3 3 3 イオン性液体等を使用して、エステル化反応やアルコールの脱水二量化反応等の 酸触媒反応が記載されて ヽるが、これらのブレンステッド酸性イオン性液体ではケト ォキシムのベックマン転位反応は進行しな 、。 3 3 3 An acid catalyzed reaction such as an esterification reaction or a dehydration dimerization reaction of alcohol is described using ionic liquids, etc., but in these Bronsted acidic ionic liquids, the Beckmann rearrangement reaction of ketoxime is described. Does not progress.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0024] 本発明は、フリーデル 'クラフツ反応の触媒等として有用な新規なイオン性液体を 提供することを目的とする。他の目的は、イオン性液体を使用するフリーデル'クラフ ッ反応による芳香族化合物のアルキルィヒ反応方法を提供することを目的とする。また 、他の目的は、芳香族化合物のイオン性液体を使用したニトロ化反応方法を提供す ることを目的とする。更に、他の目的は、イオン性液体又はその担持物を使用したケト ォキシム類のベックマン転位反応方法を提供することを目的とする。他の目的は、ァ ルキル置換芳香族化合物、ニトロ置換芳香族化合物及びラタタム類の新規な製造方 法を提供することを目的とする。  [0024] An object of the present invention is to provide a novel ionic liquid useful as a catalyst for the Friedel-Crafts reaction and the like. Another object is to provide a method for the Alkylic reaction of aromatic compounds by the Friedel's Clough reaction using an ionic liquid. Another object is to provide a nitration reaction method using an ionic liquid of an aromatic compound. Still another object is to provide a method for Beckmann rearrangement of ketoximes using an ionic liquid or a carrier thereof. Another object is to provide a novel method for producing alkyl-substituted aromatic compounds, nitro-substituted aromatic compounds and ratatams.
課題を解決するための手段  Means for solving the problem
[0025] 発明者らは鋭意検討し、上記のようなブレンステッド酸性イオン性液体、更に塩ィ匕 チォニルと反応させれば、空気、水に対して安定である一種のルイス酸性イオン性液 体に転換することができるのではないかということを考えた。そして、上記のようなブレ ンステッド酸性イオン性液体及びこのようにして得られたルイス酸性イオン性液体は、 空気と水に対する安定性と酸性であるという特徴を同時に有しているので、合成化学 における酸性触媒として有望な触媒であることが期待された。  [0025] The inventors have studied diligently and, when reacted with the above Bronsted acidic ionic liquid and further with thionyl chloride, a kind of Lewis acidic ionic liquid that is stable to air and water. I thought that it could be converted to. Since the above-described Brentstead acidic ionic liquid and the Lewis acidic ionic liquid thus obtained have the characteristics of being stable to air and water and being acidic at the same time, they have been used in synthetic chemistry. It was expected to be a promising catalyst as an acidic catalyst.
[0026] そこで、発明者らはこのようにして得られたイオン性液体について、フリーデル 'クラ フッ 'アルキレーシヨン反応、ニトロ化反応及びベックマン転位反応の触媒として利用 する検討を鋭意行ったところ、いずれも優れた反応性を有し、しかも再使用可能な触 媒であることを見出し、本発明を完成した。 [0026] Accordingly, the present inventors have conducted intensive studies on using the ionic liquid thus obtained as a catalyst for the Friedel 'Crafts' alkylation reaction, nitration reaction, and Beckmann rearrangement reaction. , Both have excellent reactivity and are reusable As a result, the present invention was completed.
[0027] 例えば、スチレンを用いたキシレンのアルキルィ匕の場合、固体酸触媒を用いる場合 の反応温度である 100— 200°Cよりかなり低い 70°Cでも効果的に反応し、しかも再使 用可能な触媒であることを見出した。そして、反応原料と生成物のどちらもイオン性液 体とは不混和なので、反応は二液相系によって進行することになり、生成物は反応後 容易に分離できるという利点がある。発明者らが知る限りにおいては、これが空気と 水に安定なイオン性液体を触媒として用いた初めてのアルケンによる芳香族化合物 フリーデル ·クラフツ.アルキル化反応例である。しかしながら、このイオン性液体のみ を触媒とする場合、ォレフィン類の種類によっては反応が進行しな 、場合があること を見出し、これを改良するため更に種々検討したところ、このイオン性液体とトリフレ 一トイ匕合物を併用することが有効であることを見出した。  [0027] For example, in the case of alkylene xylene using styrene, it reacts effectively even at 70 ° C, which is much lower than the reaction temperature of 100-200 ° C when using a solid acid catalyst, and can be reused. Was found to be a suitable catalyst. Since both the reaction raw material and the product are immiscible with the ionic liquid, the reaction proceeds in a two-liquid phase system, and has an advantage that the product can be easily separated after the reaction. To the inventors' knowledge, this is the first example of an Friedel-Crafts alkylation reaction of an aromatic compound with an alkene using an air- and water-stable ionic liquid as a catalyst. However, when using only this ionic liquid as a catalyst, it was found that the reaction did not proceed depending on the type of the olefins, and various studies were conducted to improve this. It has been found that it is effective to use a toy dagger in combination.
[0028] また、ニトロ化反応につ!、ても、良好な-トロ化が行われ、そして、反応原料と生成 物のどちらもイオン性液体とは不混和なので、反応は二液相系によって進行すること になり、生成物は反応後容易に分離できるという利点がある。本発明者らが知る限り においては、これが空気と水に安定なイオン性液体を触媒として用いた初めて硝酸 による芳香族化合物の-トロ化反応例である。更に、各種ケトォキシムのベックマン転 位反応についても、良好な転移反応が進行しラタタム類が生成する。発明者が知る 限りにお ヽては、これが空気と水に安定なイオン性液体を触媒として用いた助触媒を 必要としない初めてのケトォキシム類のベックマン転位反応例である。  [0028] In addition, even in the nitration reaction, good toro-formation is performed, and both the reaction raw material and the product are immiscible with the ionic liquid. This has the advantage that the product can be easily separated after the reaction. To the best of the present inventors' knowledge, this is the first example of an aromatic compound toro conversion reaction with nitric acid using an ionic liquid stable in air and water as a catalyst. Further, regarding the Beckmann rearrangement reaction of various ketoximes, a favorable rearrangement reaction proceeds to generate ratatams. To the inventor's knowledge, this is the first example of a Beckmann rearrangement reaction of ketoximes that does not require a cocatalyst using an ionic liquid stable in air and water as a catalyst.
[0029] 本発明は、下記式(1)で表されるイオン性液体を提供する。  [0029] The present invention provides an ionic liquid represented by the following formula (1).
[化 1]  [Chemical 1]
Figure imgf000009_0001
Figure imgf000009_0001
(Xはハロゲン原子又はヒドロキシル基を示し、 Υは CF SO , BF (X represents a halogen atom or a hydroxyl group, Υ represents CF SO, BF
3 3 4、 PF  3 3 4, PF
6、 CH CO 3 6, CH CO 3
O—、 CF COO—、 (CF SO ) N―、 (CF SO ) C―、 F―、 CI—、 Br―、又は I—を示し、 nは 2O—, CF COO—, (CF SO) N—, (CF SO) C—, F—, CI—, Br—, or I—, where n is 2
3 3 2 2 3 2 3 3 3 2 2 3 2 3
一 16の整数を示し、 Rはメチル基、ァリル基又はビニル基を示す) 本発明において、好ましいイオン性液体は、下記式(2)で表される。 Represents an integer of 16 and R represents a methyl group, an aryl group or a vinyl group) In the present invention, a preferable ionic liquid is represented by the following formula (2).
[化 2] [Formula 2]
Figure imgf000010_0001
Figure imgf000010_0001
(Xはハロゲン原子又はヒドロキシル基を示し、 nは 3又は 4の整数を示す) また、本発明は、このイオン性液体の存在下に、芳香族化合物をォレフイン類と反 応させることを特徴とする芳香族化合物のアルキルィ匕方法を提供する。 (X represents a halogen atom or a hydroxyl group, and n represents an integer of 3 or 4.) Further, the present invention is characterized in that an aromatic compound is reacted with an olefin in the presence of the ionic liquid. To provide a method for alkylating aromatic compounds.
また、本発明は、このイオン性液体と M (OTf)  In addition, the present invention relates to the ionic liquid and M (OTf)
(Mは 2価又は 3価の金属原子を示し、 Tfは SO CFを示し、 mは 2又は 3の整数を示  (M represents a divalent or trivalent metal atom, Tf represents SOCF, and m represents an integer of 2 or 3.
2 3  twenty three
す) You)
で表されるトリフレート化合物の存在下に、芳香族化合物をォレフイン類と反応させる ことを特徴とする芳香族化合物のアルキルィ匕方法を提供する。 A method of reacting an aromatic compound with olefins in the presence of a triflate compound represented by the formula:
また、本発明は、このイオン性液体の存在下に、芳香族化合物をォレフイン類と反 応させる工程を含むことを特徴とするアルキル置換芳香族化合物の製造方法を提供 する。  The present invention also provides a method for producing an alkyl-substituted aromatic compound, which comprises a step of reacting an aromatic compound with olefins in the presence of the ionic liquid.
また、本発明は、このイオン性液体及び  Further, the present invention provides the ionic liquid and
M (OTf)  M (OTf)
(Mは 2価又は 3価の金属原子を示し、 Tfは SO CFを示し、 mは 2又は 3の整数を示  (M represents a divalent or trivalent metal atom, Tf represents SOCF, and m represents an integer of 2 or 3.
2 3  twenty three
す) You)
で表されるトリフレート化合物の存在下に、芳香族化合物をォレフイン類と反応させる 工程を含むことを特徴とするアルキル置換芳香族化合物の製造方法を提供する。 また、本発明は、このイオン性液体の存在下に、芳香族化合物と硝酸とを反応させ ることを特徴とする芳香族化合物の-トロ化方法を提供する。 A process for producing an alkyl-substituted aromatic compound, comprising the step of reacting an aromatic compound with olefins in the presence of a triflate compound represented by the formula: Further, the present invention provides a method for converting an aromatic compound into nitrogen, which comprises reacting an aromatic compound with nitric acid in the presence of the ionic liquid.
また、本発明は、このイオン性液体の存在下に、芳香族化合物と硝酸とを反応させ る工程を含むことを特徴とするニトロ置換芳香族化合物の製造方法であり、また、本 発明は、この芳香族化合物と硝酸とを反応させる工程に引き続き、得られた反応混 合物からイオン性液体を含む相と芳香族化合物を含む相とを相分離させる工程、芳 香族化合物を含む相カゝらニトロ置換芳香族化合物を回収する工程、及びイオン性液 体を含む相を、必要に応じて硝酸濃度を調整した上で芳香族化合物と硝酸との反応 に再使用する工程を有するニトロ置換芳香族化合物の製造方法を提供する。 Further, the present invention is a method for producing a nitro-substituted aromatic compound, which comprises a step of reacting an aromatic compound with nitric acid in the presence of the ionic liquid. Following the step of reacting this aromatic compound with nitric acid, the resulting reaction mixture Phase separating a phase containing an ionic liquid and a phase containing an aromatic compound from the compound, a step of recovering a nitro-substituted aromatic compound from a phase containing a aromatic compound, and a process containing an ionic liquid Provided is a method for producing a nitro-substituted aromatic compound, which comprises a step of reusing a phase in a reaction between an aromatic compound and nitric acid after adjusting a nitric acid concentration as necessary.
また、本発明は、このイオン性液体の存在下に、ォキシム類をベックマン転位させる ことを特徴とするベックマン転位反応方法を提供する。  Further, the present invention provides a Beckmann rearrangement reaction method, which comprises subjecting oximes to Beckmann rearrangement in the presence of the ionic liquid.
更に、本発明は、このイオン性液体の存在下に、ケトォキシム類をベックマン転位さ せる工程を含むことを特徴とするラタタム類の製造方法であり、更にまた、本発明は、 このケトォキシム類をベックマン転位させる工程に引き続き、反応混合物を COによる  Further, the present invention relates to a method for producing ratatams, which comprises a step of subjecting ketoximes to Beckmann rearrangement in the presence of the ionic liquid. Following the rearrangement step, the reaction mixture is
2 超臨界抽出に付す工程、抽出液からはラタタム類を回収する工程、及び抽出されず に残つたイオン性液体を、ケトォキシム類のベックマン転位反応に再使用する工程を 有するラタタム類の製造方法を提供する。  (2) A method for producing ratatams comprising a step of subjecting to supercritical extraction, a step of recovering ratatams from the extract, and a step of reusing the remaining ionic liquid without extraction for the Beckmann rearrangement reaction of ketoximes. provide.
[0031] 以下に本発明のイオン性液体について説明する。  Hereinafter, the ionic liquid of the present invention will be described.
本発明のイオン性液体は、前記式(1)で表される。式(1)中、 Xはハロゲン原子又 はヒドロキシル基である力 好ましくは塩素原子である。 Y—は CF SO―、 BF―、 PF―、  The ionic liquid of the present invention is represented by the above formula (1). In the formula (1), X is a halogen atom or a hydroxyl group, preferably a chlorine atom. Y— is CF SO—, BF—, PF—,
3 3 4 6 3 3 4 6
CH COO—、 CF COO—、 (CF SO ) N―、 (CF SO ) C―、 F―、 CI—、 Br―、又は ΓであCH COO—, CF COO—, (CF SO) N—, (CF SO) C—, F—, CI—, Br—, or Γ
3 3 3 2 2 3 2 3 3 3 3 2 2 3 2 3
る力 好ましくは CF SO―、 PF―、 C1—であり、より好ましくは CF SO—である。 nは 2—  The force is preferably CF SO—, PF—, C1—, and more preferably CF SO—. n is 2—
3 3 6 3 3  3 3 6 3 3
16の整数であるが、好ましくは 3— 8の整数であり、より好ましくは 3又は 4の整数であ る。  Although it is an integer of 16, it is preferably an integer of 3-8, and more preferably an integer of 3 or 4.
[0032] 中でも好まし 、イオン性液体としては、下記 3a、 4a、 3b及び 4bがあり、これらは前記 式(2)において、 n及び Xが次のものである。  Among them, ionic liquids include the following 3a, 4a, 3b and 4b. In the above formula (2), n and X are as follows.
3a:n= 3、X=OH  3a: n = 3, X = OH
4a:n=4、X=OH  4a: n = 4, X = OH
3b :n= 3、X=Cl (融点: 219.8K± 1.3K)  3b: n = 3, X = Cl (melting point: 219.8K ± 1.3K)
4b :n=4、X=Cl (融点: 211.8K±2.4K)  4b: n = 4, X = Cl (melting point: 211.8K ± 2.4K)
3a及び 4aはブレンステッド酸としての性質を有し、 3b及び 4bはルイス酸としての性質 を有する。  3a and 4a have properties as Bronsted acids, and 3b and 4b have properties as Lewis acids.
また、同様に好ましいイオン性液体としては、下記 2A及び 2Bがあり、これは前記式( 1)において、 Rカ チル基であり、かつ、 n、 X及び Y—が次のものである。尚、この 2A 及び 2Bはルイス酸としての性質を有する。 Similarly preferred ionic liquids include the following 2A and 2B, which are represented by the above formula ( In 1), R is a methyl group, and n, X and Y— are as follows. These 2A and 2B have properties as Lewis acids.
2A:n= 2、 X=C1、 Y— =C1—  2A: n = 2, X = C1, Y— = C1—
2B :n= 2、 X=C1、 Y— =PF―  2B: n = 2, X = C1, Y— = PF—
6  6
更に、同様に好ましいイオン性液体としては、下記 3Cがあり、これは前記式(1)に おいて、 Rがァリル基であり、かつ、 n、 X及び Y—が次のものである。尚、この 3Cはルイ ス酸としての性質を有する。  Further, similarly preferred ionic liquids include the following 3C, wherein in the formula (1), R is an aryl group, and n, X and Y— are as follows. Note that this 3C has the property of Louis acid.
3C :n= 3、 X=C1、 Y— =CF SO―  3C: n = 3, X = C1, Y— = CF SO—
3 3  3 3
[0033] 本発明のイオン性液体は、 Chem.Comnun.2000年 ,pl695-1696等で公知の反応を 応用すること〖こより得ることができる。  The ionic liquid of the present invention can be obtained by applying a reaction known in Chem. Comnun. 2000, pl695-1696 and the like.
例えば、まず N-メチルイミダゾールと、 1,3-プロパンスルトン又は 1,4-ブタンスルトン と反応させて、イミダゾール環構成 Nに (CH )n-SO—が結合した両イオン性ィ匕合物を  For example, N-methylimidazole is first reacted with 1,3-propane sultone or 1,4-butane sultone to obtain a zwitterionic compound in which (CH 2) n-SO— is bonded to the imidazole ring structure N.
2 3  twenty three
合成する。なお、 nは 3又は 4である。次に、この両イオン性化合物と等モルの CF SO  Combine. Note that n is 3 or 4. Next, an equimolar amount of CF SO
3 3 3 3
Hとを反応させて、イミダゾール環に (CH )n-SO Hが結合したカチオンと、 CF SO—で Reaction with H and the cation with (CH 2) n-SO H bonded to the imidazole ring and CF SO—
2 3 3 3 表されるァ-オンと力もなる上記 3a又は 4aのイオン性液体とする。このイオン性液体と 塩ィ匕チォニルを反応させることにより上記 3b又は 4bのイオン性液体を得る。なお、 3a 又は 4aのイオン性液体は、 3b又は 4bのイオン性液体を加水分解することによつても得 られる力 平衡反応となる。他のァ-オンを有するイオン性液体も、ァ-オン源を変更 して上記と同様の方法で得ることができる。  2 3 3 3 It is the ionic liquid of 3a or 4a above, which also has the aeon and power. The ionic liquid of the above 3b or 4b is obtained by reacting the ionic liquid with the salt of the salt. In addition, the ionic liquid of 3a or 4a becomes a force equilibrium reaction also obtained by hydrolyzing the ionic liquid of 3b or 4b. Ionic liquids having other aions can be obtained in the same manner as described above by changing the aion source.
[0034] また、イミダゾール環構成 Nに結合する (CH )n-SO—が n= 2及び 5— 16の場合につ [0034] Further, when (CH 2) n-SO— bonded to imidazole ring structure N is n = 2 and 5-16,
2 3  twenty three
いては、例えば N-メチルイミダゾールと Cn;CH )n-SO CIとを反応させることによって  For example, by reacting N-methylimidazole with Cn; CH) n-SOCI
2 2  twenty two
得ることができる。更には、上記において N-メチルイミダゾールの代わりに N-ァリルイ ミダゾールゃ N-ビュルイミダゾールを用いることによって、前記式(1)における Rがァ リル基やビュル基であるイオン性液体を得ることができる。  Obtainable. Further, by using N-arylimidazole ゃ N-bulimidazole instead of N-methylimidazole in the above, an ionic liquid in which R in the above formula (1) is an aryl group or a bullet group can be obtained. .
得られたイオン性液体は、 NMR測定等により同定することができる。  The obtained ionic liquid can be identified by NMR measurement or the like.
[0035] このイオン性液体は、空気と水に対して安定である酸性イオン性液体であり、一種 の安定した機能を有するイオン性液体であり、用途としては、アルキル化反応触媒、 ニトロ化反応触媒及びベックマン転位反応触媒又はこれらの反応溶媒に限定される ものではなぐその他の多くの反応触媒、反応溶媒等に利用することができる。 [0035] This ionic liquid is an acidic ionic liquid that is stable to air and water, and is a kind of ionic liquid having a stable function. Examples of applications include an alkylation reaction catalyst and a nitration reaction. Limited to catalysts and Beckmann rearrangement catalysts or their reaction solvents It can be used for many other reaction catalysts and reaction solvents.
[0036] 次に、本発明のイオン性液体を使用した芳香族化合物のアルキル化反応方法及 びアルキル置換芳香族化合物の製造方法について説明する。なお、アルキル化は ァラルキル化を含む意味で使用される。本発明のアルキルィ匕反応には、触媒としてィ オン性液体を使用する方法と、イオン性液体と共にトリフレート化合物を使用する方 法とがある。まず、前者の方法について説明する。  Next, a method for alkylating an aromatic compound using the ionic liquid of the present invention and a method for producing an alkyl-substituted aromatic compound will be described. In addition, alkylation is used in a sense including aralkylation. The alkylation reaction of the present invention includes a method using an ionic liquid as a catalyst and a method using a triflate compound together with an ionic liquid. First, the former method will be described.
[0037] 触媒としてイオン性液体を使用するアルキル化反応方法において、アルキル化され る芳香族化合物としては、ベンゼンやアルキルベンゼン等がある力 好ましくはメチル 基を 1又は 2個有するメチルベンゼン類であり、より好ましくはキシレンである。  [0037] In the alkylation reaction method using an ionic liquid as a catalyst, the aromatic compound to be alkylated is benzene, alkylbenzene or the like having a certain power, preferably methylbenzenes having one or two methyl groups, More preferably, it is xylene.
アルキル化剤となるォレフィン類としては、芳香族ォレフインを挙げることができるが 、ビュルベンゼン又はアルキル置換ビュルベンゼン等の芳香族ビュル化合物である のがよぐ好ましくはスチレン又はメチル基を 1又は 2個有するメチルスチレン類であり 、より好ましくはスチレンである。  Examples of the olefins that serve as the alkylating agent include aromatic olefins, and are preferably aromatic butyl compounds such as benzene or alkyl-substituted butylbenzene, and more preferably one or two styrene or methyl groups. And more preferably styrene.
[0038] このアルキル化反応で生成する化合物は、 [Ar-CH(CH )] -Ατ'で表されるような多  [0038] The compound formed by this alkylation reaction has a large number of compounds represented by [Ar-CH (CH)] -Ατ '
3 a  3a
環化合物であり、反応する芳香族化合物と芳香族ビニル化合物等のォレフィン類と のモル比によって異なる力 芳香族化合物 1個に 1一 3個の芳香族ビニルイ匕合物等の ォレフィン類が置換した化合物であることがよぐこれは置換数 aの異なる化合物の混 合物として得られることが多い。なお、上記式において、 Arは芳香族ビ-ルイ匕合物か らビュル基を除いた芳香族基であり、 Ar'は芳香族炭化水素から a個の水素を除いた 芳香族基である。なお、芳香族ビニル化合物として、 α -メチルスチレンを使用すれ ば、上記 CH(CH )«C(CH )となるように、使用する原料によってこの式は変化するこ  A ring compound that varies depending on the molar ratio between the reacting aromatic compound and the olefins such as aromatic vinyl compounds.One to thirteen aromatic compounds such as aromatic vinyl conjugates are substituted for one aromatic compound. This is often a compound, and is often obtained as a mixture of compounds having different substitution numbers a. In the above formula, Ar is an aromatic group obtained by removing a bullet group from an aromatic vinyl conjugate, and Ar ′ is an aromatic group obtained by removing a hydrogen from an aromatic hydrocarbon. If α-methylstyrene is used as the aromatic vinyl compound, this formula varies depending on the raw materials used so that the above CH (CH 2) <C (CH 2).
3 3 2  3 3 2
とは容易に理解される。  Is easily understood.
[0039] アルキル化反応条件は目的生成物の種類等により変化するため一定ではないが、 反応温度 30— 100°C、反応時間 0.2— 10hr程度がよい。また、芳香族化合物:ォレフィ ン類のモル比は 10:1— 1:2、好ましくは 5:1— 1:1程度の範囲がよい。ォレフィン類が過 剰であると、芳香族ビ-ルイ匕合物等のォレフィン類の単独重合体が生成しやすくなる 。また、本発明のイオン性液体は触媒として作用するので、別途触媒を使用する必要 はないが、所望であれば使用してもよい。イオン性液体の使用量は、反応原料である 芳香族化合物とォレフィン類の合計量の 0.5— 20倍 (重量)、好ましくは 1一 10倍程度 がよい。なお、この反応では、上記イオン性液体 3a、 4a、 3b及び 4bのいずれも優れた 触媒として作用するが、イオン性液体 3a及び 4aがより優れる作用を示すようである。 [0039] Alkylation reaction conditions vary depending on the type of the target product and the like, and are not constant. The molar ratio of the aromatic compound to the olefins is in the range of about 10: 1 to 1: 2, preferably about 5: 1 to 1: 1. When the amount of the olefins is excessive, a homopolymer of the olefins such as an aromatic vinyl conjugate is easily formed. Since the ionic liquid of the present invention acts as a catalyst, it is not necessary to use a separate catalyst, but it may be used if desired. The amount of ionic liquid used is the raw material of the reaction It is 0.5 to 20 times (by weight), preferably about 110 times the total amount of the aromatic compound and the olefins. In this reaction, the ionic liquids 3a, 4a, 3b, and 4b all act as excellent catalysts, but the ionic liquids 3a and 4a seem to exhibit more excellent functions.
[0040] 次に、イオン性液体と共にトリフレート化合物を使用するアルキル化反応について 説明する。好ましいイオン性液体としては、上記 3a、 4a、 3b及び 4bがあり、より好ましく は 3b及び 4bである。 Next, an alkylation reaction using a triflate compound together with an ionic liquid will be described. Preferred ionic liquids include the above 3a, 4a, 3b and 4b, more preferably 3b and 4b.
[0041] 上記イオン性液体と共に使用するトリフレートイ匕合物は、 Μ(ΟΤί) で表され、前記文 献等で公知の化合物であり、従来アルキルィ匕触媒又はフリーデル 'クラフツ触媒とし て知られているものであれば、使用可能である。上記式において、 Mは 2又は 3価の 金属原子を示すが、好ましくは希土類金属であり、より好ましくはスカンジウムである。 mは金属原子 Mの原子価に対応する。 Tfは SO CFである。  [0041] The triflate conjugate used together with the above ionic liquid is represented by Μ (公 知) and is a compound known in the literature and the like, and is conventionally known as an alkyl sulfide catalyst or Friedel's Crafts catalyst. If they are, they can be used. In the above formula, M represents a divalent or trivalent metal atom, preferably a rare earth metal, and more preferably scandium. m corresponds to the valence of the metal atom M. Tf is SO CF.
2 3  twenty three
[0042] イオン性液体とトリフレートイ匕合物の使用割合は、反応原料のォレフィン化合物の 種類等によって異なる力 イオン性液体 1モルに対し、トリフレートイ匕合物 0.1— 10モル 、好ましくは 0.2— 5モル程度の範囲がよい。  [0042] The ratio of the ionic liquid and the triflate conjugate used varies depending on the type of the olefin compound as the reaction raw material, and the like. The range of the degree is good.
[0043] この反応の原料として使用される芳香族化合物とォレフィン類について説明する。  [0043] The aromatic compound and the olefins used as raw materials for this reaction will be described.
原料として使用する芳香族化合物は、好ましくはベンゼン、ナフタレン、ァズレン、 アントラセン、フエナントレン、ピレン、フルオレン又はこれらの置換体、特にこれらの アルキル置換体である。また、芳香族化合物はピリジン、キノリン等の複素環化合物 又はその置換体であってもよい。より好ましくは、ベンゼン、トルエン、キシレン、ェチ ルベンゼン等のベンゼン又は炭素数 1一 6の低級アルキル力 1— 2個置換した低級ァ ルキル置換ベンゼンである。  The aromatic compound used as a raw material is preferably benzene, naphthalene, azulene, anthracene, phenanthrene, pyrene, fluorene or a substituted product thereof, particularly an alkyl substituted product thereof. Further, the aromatic compound may be a heterocyclic compound such as pyridine and quinoline, or a substituted product thereof. More preferred are benzene such as benzene, toluene, xylene, and ethylbenzene, and lower alkyl-substituted benzenes having 1 to 2 carbon atoms substituted with 1 to 2 lower alkyls.
[0044] アルキル化剤として使用するォレフイン類は、好ましくはエチレン、ブテン、オタテン 、ドデセン等の炭素数 2— 20の脂肪族ォレフインであるが、より好ましくは炭素数 4一 15の脂肪族モノォレフィンである。また、ォレフィン類はビュルベンゼン又はアルキル 置換ビュルベンゼン等の芳香族ォレフインであってもよい。また、脂肪族環式ォレフィ ン類であることも好ましい。  [0044] Olefins used as the alkylating agent are preferably aliphatic olefins having 2 to 20 carbon atoms such as ethylene, butene, otaten, and dodecene, and more preferably aliphatic monoolefins having 415 carbon atoms. is there. The olefins may be aromatic olefins such as benzene or alkyl-substituted benzene. Further, it is also preferable to be an aliphatic cyclic olefin.
[0045] このアルキル化反応で生成する化合物は、アルキル置換芳香族化合物であり、反 応条件にもよるが主成分はモノアルキル置換芳香族化合物である。しかし、反応条 件を調整することによりジアルキル置換芳香族炭化水素等のポリアルキル置換芳香 族炭化水素又は芳香族化合物を得ることも可能である。モノアルキル置換芳香族化 合物を目的とする場合は、芳香族化合物をォレフイン類に対して過剰に使用すること がよい。 [0045] The compound formed by this alkylation reaction is an alkyl-substituted aromatic compound, and the main component is a monoalkyl-substituted aromatic compound depending on the reaction conditions. But the reaction By adjusting the conditions, a polyalkyl-substituted aromatic hydrocarbon or an aromatic compound such as a dialkyl-substituted aromatic hydrocarbon can be obtained. When a monoalkyl-substituted aromatic compound is intended, the aromatic compound is preferably used in excess with respect to the olefins.
[0046] このアルキルィ匕反応条件は、 目的生成物の種類等により変化するため一定ではな いが、反応温度 30— 100°C、反応時間 0.2— 10hr程度がよい。また、芳香族化合物: ォレフィン類のモル比は 10:1— 1:2、好ましくは 5:1— 1:1程度の範囲がよい。イオン性 液体の使用量は、反応原料のォレフィン類に対して、その 0.01— 1倍モル、好ましくは 0.02— 0.2倍モル程度がよぐトリフレートイ匕合物の使用量もほぼその範囲内がよい。  The alkylidation reaction conditions are not constant because they vary depending on the type of the target product and the like, but the reaction temperature is preferably 30 to 100 ° C. and the reaction time is about 0.2 to 10 hours. The molar ratio of the aromatic compound to the olefins is in the range of about 10: 1 to 1: 2, preferably about 5: 1 to 1: 1. The amount of the ionic liquid used is about 0.01 to 1 times, preferably about 0.02 to 0.2 times the mol of the olefins as the reaction raw materials, and the amount of the triflate conjugate used is preferably within the range.
[0047] 次に、ニトロ化反応方法及び-トロ置換芳香族化合物の製造方法について説明す る。  Next, a nitration reaction method and a method for producing a -toro-substituted aromatic compound will be described.
本発明で使用するイオン性液体は、前記式(1)、好ましくは式(2)で表される。 Xは 好ましくはヒドロキシル基であり、 Y—は好ましくは CF SO―  The ionic liquid used in the present invention is represented by the above formula (1), preferably by the formula (2). X is preferably a hydroxyl group, and Y— is preferably CF SO—
3 3、 PF―  3 3, PF-
6、 C1—であり、より好ま しくは CF SO—であり、 nは好ましくは 3— 8であり、より好ましくは 3又は 4である。具体  6, C1—, more preferably CF SO—, and n is preferably 3-8, more preferably 3 or 4. Concrete
3 3  3 3
的には、上記 3a及び 4aがある。  Specifically, there are 3a and 4a described above.
[0048] このイオン性液体は、ニトロ化反応の触媒及び溶媒として作用する。ニトロ化反応の 原料は、芳香族化合物と硝酸である。ニトロ化反応の触媒又は溶媒としては、上記ィ オン性液体単独を使用することにより、その再使用が容易となる。しかし、必要により 他の触媒又は溶媒を使用する場合もあり得る。  [0048] The ionic liquid acts as a catalyst and a solvent for the nitration reaction. The raw materials for the nitration reaction are aromatic compounds and nitric acid. By using the above-mentioned ionic liquid alone as a catalyst or a solvent for the nitration reaction, it can be easily reused. However, if necessary, other catalysts or solvents may be used.
[0049] ニトロ化反応の原料としての芳香族化合物としては、ニトロ化可能な位置の芳香族 環構成炭素に置換可能な水素を有するものが使用される。好ましくは、ベンゼン、ナ フタレン、アントラセン等の無置換の 1一 3環の芳香族炭化水素、ビフエ-ル、ターフ ヱニル、ジフヱ-ルメタン等の 2— 3環の芳香族炭化水素、ジフヱ-ルケトン、ジフエ二 ルスルホン、ジフエ-ルエーテル等の 2— 3環の芳香族化合物、及びこれらに 1一 4個 のアルキル基、ハロゲン等が置換した置換芳香族化合物が挙げられる。より好ましく は、ベンゼン、モノアルキルベンゼン又はモノハロゲノベンゼンである。ここで、アルキ ル基としては、炭素数 6以下の低級アルキルが好ましく挙げられる。  [0049] As an aromatic compound as a raw material for the nitration reaction, a compound having a hydrogen that can be substituted for an aromatic ring-constituting carbon at a nitratable position is used. Preferably, unsubstituted one- to three-ring aromatic hydrocarbons such as benzene, naphthalene and anthracene, and two- to three-ring aromatic hydrocarbons such as biphenyl, terphenyl and diphenylmethane, diphenyl ketone, Examples thereof include a 2- to 3-ring aromatic compound such as diphenyl sulfone and diphenyl ether, and a substituted aromatic compound obtained by substituting these with an alkyl group, halogen, or the like. More preferably, it is benzene, monoalkylbenzene or monohalogenobenzene. Here, the alkyl group is preferably a lower alkyl having 6 or less carbon atoms.
しかし、上記したように本発明は-トロ化反応に使用するイオン性液体に特徴があ るものである力 、公知の-トロ化原料としての芳香族化合物に広く適用可能である。 However, as described above, the present invention is characterized by the ionic liquid used in the It is widely applicable to known aromatic compounds as a raw material for torrefaction.
[0050] ニトロ化剤となる硝酸としては、 50wt%以上の濃硝酸であることが好ましいが 30wt% 程度でも反応は進行する。取扱いの容易さ、反応性等の面からは 35— 70wt%程度 の硝酸であることが有利である。なお、ジニトロ化以上のポリニトロ化を目的とする場 合は、より高濃度の硝酸を使用することが好ましいことは当然である。  [0050] The nitric acid used as the nitrating agent is preferably concentrated nitric acid of 50 wt% or more, but the reaction proceeds even at about 30 wt%. From the viewpoint of ease of handling and reactivity, it is advantageous to use nitric acid of about 35 to 70 wt%. In the case of polynitration over dinitration or more, it is natural that a higher concentration of nitric acid is preferably used.
[0051] イオン性液体の使用量は、芳香族化合物に対して 2— 30モル%、好ましくは 4一 15 モル%程度である。硝酸の使用量は、芳香族化合物に対して 1一 5倍モル、好ましく は 1一 3倍モル%程度である。  [0051] The amount of the ionic liquid used is 2 to 30 mol%, preferably about 415 mol%, based on the aromatic compound. The amount of nitric acid used is about 115 times mol, preferably about 113 times mol% of the aromatic compound.
[0052] ニトロ化反応条件は、反応原料により異なるが、ベンゼンやモノアルキルベンゼンを モノ-トロ化する場合は、 50— 120°C、好ましくは 60— 100°Cで芳香族化合物の沸点 以下とすることが有利である。反応時間は、反応原料や反応温度等の条件により異 なるが、 1一 30hr、好ましくは 2— 20hr程度が適当である。  [0052] The nitration reaction conditions vary depending on the reaction raw materials, but when benzene or monoalkylbenzene is subjected to mono-toro-formation, the boiling point of the aromatic compound is set at 50 to 120 ° C, preferably 60 to 100 ° C or lower. It is advantageous. The reaction time varies depending on the conditions such as the reaction raw materials and the reaction temperature, but it is suitably about 110 hr, preferably about 2-20 hr.
なお、ジニトロ化以上のポリ-トロ化を目的とする場合は、より高濃度の硝酸を使用 し、より多量の硝酸を使用し、より高い反応温度又はより長い反応時間を採用すること が好ましいことになる。  For the purpose of poly-nitrolation beyond dinitration, it is preferable to use a higher concentration of nitric acid, use a larger amount of nitric acid, and adopt a higher reaction temperature or a longer reaction time. become.
[0053] 反応初期は、硝酸を含むイオン性液体相と芳香族化合物相との 2相が存在し、これ を攪拌して反応を進行させる。反応が進行するとニトロ化芳香族化合物が生成して芳 香族化合物相に存在すると共に、水が副生してイオン性液体相の硝酸濃度が低下 する。反応終了後、攪拌を止めることにより、イオン性液体相と芳香族化合物相との 2 液層に分かれるので、層分離により両者を容易に分離することが可能である。なお、 必要により層分離を容易にするための溶剤等を加えることも可能である力 後処理の 負荷が増える。  [0053] At the beginning of the reaction, there are two phases, an ionic liquid phase containing nitric acid and an aromatic compound phase, and these are stirred to progress the reaction. As the reaction proceeds, a nitrated aromatic compound is generated and present in the aromatic compound phase, and water is by-produced to lower the nitric acid concentration in the ionic liquid phase. After the completion of the reaction, the stirring is stopped to separate into two liquid layers of an ionic liquid phase and an aromatic compound phase. Therefore, both can be easily separated by layer separation. If necessary, a solvent or the like for facilitating layer separation can be added.
[0054] 層分離等によって分離された芳香族化合物相は、ニトロ置換芳香族化合物を含む のでこれを分離又は精製してニトロ置換芳香族化合物を回収する。原料芳香族化合 物の反応率が 100%未満のときは未反応の原料芳香族化合物が含まれるので、これ は再使用することができる。原料芳香族化合物の反応率は、モノ-トロ置換芳香族化 合物を目的とする場合は、 50— 95%程度とすることがよい。  [0054] Since the aromatic compound phase separated by layer separation or the like contains a nitro-substituted aromatic compound, it is separated or purified to recover the nitro-substituted aromatic compound. When the conversion of the raw material aromatic compound is less than 100%, unreacted raw material aromatic compounds are included, and can be reused. The reaction rate of the starting aromatic compound is preferably about 50 to 95% when a mono-toro-substituted aromatic compound is intended.
[0055] 一方、分離されたイオン性液体相は、イオン性液体と濃度が低下した硝酸を含むが 、イオン性液体の変性又は損失は殆どないので、これを再使用する。硝酸は濃度が 低下したとしても、なお使用可能であれば、分離されたイオン性液体相をそのまま再 使用することができる。硝酸濃度が一定値以下に低下した場合は、濃硝酸の追加、 濃縮、再生等の処理を行う。 [0055] On the other hand, the separated ionic liquid phase contains the ionic liquid and nitric acid at a reduced concentration. Since the ionic liquid has almost no denaturation or loss, it is reused. Even if the concentration of nitric acid is reduced, the separated ionic liquid phase can be reused if it is still usable. If the nitric acid concentration falls below a certain level, add concentrated nitric acid, concentrate and regenerate.
[0056] 次に、ベックマン転位反応について説明する。  Next, the Beckmann rearrangement reaction will be described.
本発明で使用するイオン性液体は、前記式(1)、好ましくは(2)で表される。式(1) 中、 Xは好ましくはハロゲン原子、より好ましくは塩素原子であり、 nは好ましくは 3又は 4である。具体的な好ま 、イオン性液体としては上記 3b及び 4bがある。  The ionic liquid used in the present invention is represented by the above formula (1), preferably (2). In the formula (1), X is preferably a halogen atom, more preferably a chlorine atom, and n is preferably 3 or 4. Specific preferred examples of the ionic liquid include the above 3b and 4b.
[0057] 本発明で使用するイオン性液体は、液体のままで使用することもできる力 イオン性 液体を担持物に担持させて使用することができる。担持物に担持又は結合させる場 合は、例えば THF等の低沸点溶媒にイオン性液体を溶解させ、これに比表面積が比 較的大きい担持物を浸漬することで得ることができる。この場合、必要により低沸点溶 媒を除去する乾燥工程を設けることもできるが、転位反応に使用する溶媒ともなる場 合はその必要は少ない。担持物に結合させる場合は、例えば、 Tetrahedron Lett. 26, 3361(1985)に記載のように、担持物の表面をあら力じめ修飾しておき、イオン性 液体と化学結合させる方法がある。なお、担持物としては固体酸性触媒等の酸性担 持物や多孔質担持物があり、多孔質の固体であればいずれも使用可能である。比表 面積としては 10m2/g以上であることが好ましい。具体的にはゼオライト、シリカ、アルミ ナ、シリカ アルミナ、ゼォライト、粘土鉱物 (スメクタイトなど)、担持型へテロポリ酸触 媒などが例示される。また、シリカ'アルミナなど固体酸触媒といわれている物や、固 体塩基性触媒等も使用可能であり、固体酸触媒の場合は、イオン性液体の酸触媒 効果の相乗効果も期待できる。これら固体の担持物にイオン性液体を坦持又は結合 させた坦持触媒は生成物との分離が容易となるなどの利点を有する。イオン性液体 の担持量は、 1一 70wt%、好ましくは 5— 30wt%の範囲がよい。 [0057] The ionic liquid used in the present invention can be used as it is, with the force ionic liquid supported on a carrier. In the case of supporting or binding to a carrier, it can be obtained, for example, by dissolving an ionic liquid in a low-boiling solvent such as THF, and immersing the carrier in a relatively large specific surface area. In this case, a drying step for removing the low-boiling-point solvent can be provided if necessary, but the need for the solvent used in the rearrangement reaction is small. In the case of binding to a carrier, for example, as described in Tetrahedron Lett. 26, 3361 (1985), there is a method in which the surface of the carrier is modified beforehand and chemically bonded to an ionic liquid. As the carrier, there are an acidic carrier such as a solid acidic catalyst and a porous carrier, and any porous solid can be used. The specific surface area is preferably 10 m 2 / g or more. Specific examples include zeolite, silica, alumina, silica alumina, zeolite, clay minerals (such as smectite), and supported heteropolyacid catalysts. Also, a solid acid catalyst such as silica'alumina or a solid basic catalyst can be used. In the case of a solid acid catalyst, a synergistic effect of the acid catalyst effect of the ionic liquid can be expected. A supported catalyst in which an ionic liquid is supported or bound to such a solid support has advantages such as easy separation from the product. The loading amount of the ionic liquid is preferably in the range of 1 to 70 wt%, preferably 5 to 30 wt%.
[0058] 原料として使用するォキシム類としては、飽和及び不飽和、置換又は非置換の炭 素原子数 2— 12の脂肪族ケトォキシム又はアルドォキシム又は環状ケトォキシムがあ る力 好ましくは環状ケトォキシムである。ォキシム類の例としては、アセトンォキシム 、ァセトアルドォキシム、ベンズアルドォキシム、プロパナールォキシム、ブタナール ォキシム、ブタノンォキシム、ブテン- 1-オンォキシム、シクロプロパノンォキシム、シク 口へキサノンォキシム、シクロォクタノンォキシム、シクロドデカノンォキシム、シクロべ ンタノンォキシム、シクロドデセノンォキシム、 2-フエ-ルシクロへキサノンォキシム、 シクロへキセノンォキシム、 2-メチル -2-ペンタノンォキシム等がある力 シクロへキサ ノンォキシムが好ましい。 [0058] The oximes used as a raw material include saturated and unsaturated, substituted or unsubstituted aliphatic ketoximes having 2 to 12 carbon atoms, aldoximes or cyclic ketoximes, and preferably cyclic ketoximes. Examples of oximes include acetone oxime, acetoaldoxime, benzaldoxime, propanal oxime, butanal Oxime, butanone oxime, buten-1-oxoxime, cyclopropanone oxime, cyclohexanone oxime, cycloquatanone oxime, cyclododecanone oxime, cyclopentanone oxime, cyclododecenone oxime, 2-phenylcyclo Powers such as hexanone oxime, cyclohexenone oxime, 2-methyl-2-pentanone oxime, etc. Cyclohexanone oxime is preferred.
[0059] 本発明のベックマン転位反応では、原料のォキシムに対応する酸アミドが生成する 力 環状ケトォキシムを使用した場合は、環状のラタタム類が生成する。特に、工業 的に有用なラタタムは ε -力プロラタタムである。  [0059] In the Beckmann rearrangement reaction of the present invention, when a cyclic ketoxime is used which produces an acid amide corresponding to the starting oxime, cyclic ratatams are produced. In particular, an industrially useful ratatum is ε-force prolatatum.
[0060] ベックマン転位反応条件は使用するケトォキシム類や、目的生成物の種類等により 変化するため一定ではないが、反応温度は 0— 100°C、より好ましくは 10— 80°Cであり 、更に好ましくは 10— 50°Cである。 0°C未満の場合は、所望の転化率に時間を要する 。また、 100°Cより高い温度ではイオン性液体又は担持物が反応に関与し生成物が 複雑になる場合がある。反応時間は原料、反応温度によって異なり所望の転化率と なるように設定することができる。通常は lmin— 24hr程度がよい。 ε -カプロラタタムを 目的生成物とする場合は、反応温度は 0— 50°C、反応時間は 0.1— 10hr程度がよい。 反応温度が高過ぎると、反応液が黒色となって副生物の生成が増える。  [0060] The Beckmann rearrangement reaction conditions are not constant because they vary depending on the ketoxime used, the type of the target product, and the like, but the reaction temperature is 0 to 100 ° C, more preferably 10 to 80 ° C. Preferably it is 10-50 ° C. If the temperature is lower than 0 ° C., it takes time to obtain a desired conversion. If the temperature is higher than 100 ° C, the ionic liquid or the carrier may take part in the reaction and the product may be complicated. The reaction time varies depending on the raw materials and the reaction temperature, and can be set so as to obtain a desired conversion. Usually, lmin-24hr is good. When ε-caprolatatam is used as the target product, the reaction temperature is preferably 0 to 50 ° C and the reaction time is preferably about 0.1 to 10 hours. If the reaction temperature is too high, the reaction solution turns black and the generation of by-products increases.
[0061] イオン性液体の使用量は、他の条件により異なる力 通常ォキシムに対して 0.0 1— 20倍 (重量)、好ましくは 0.05— 10倍程度がよい。イオン性液体の使用量が、理論量 である等モル量付近 (0.5— 2倍モル)であっても、それより十分に少な!/ヽ触媒量付近 ( 0.05— 0.5倍モル)であっても、反応は良好に進行する。イオン性液体は、反応触媒と して作用するが、イオン性液体を 0.1倍モル量程度以上使用すれば、溶媒としても作 用するので、格別の反応溶媒を必要としない。しかし、イオン性液体を固形の担持物 として使用する場合やイオン性液体の使用量が少ないときで反応温度が低くて原料 又は目的物又は両者を溶解しない場合は、反応溶媒を使用することが望ましい。こ の反応溶媒は、ォキシム及び目的物の酸アミドを溶解する溶媒力 選択される。かか る溶媒としてはベンゼン等が挙げられる他、超臨界 COも使用可能である。超臨界  [0061] The amount of the ionic liquid to be used varies depending on other conditions. Even if the amount of ionic liquid used is near the equimolar amount, which is the stoichiometric amount (0.5 to 2 times mol), or even sufficiently less! The reaction proceeds well. The ionic liquid acts as a reaction catalyst. However, if the ionic liquid is used in a molar amount of about 0.1 times or more, the ionic liquid also functions as a solvent, so that no special reaction solvent is required. However, when the ionic liquid is used as a solid carrier or when the amount of the ionic liquid is small and the reaction temperature is low and the raw material or the target substance or both are not dissolved, it is preferable to use a reaction solvent. . The reaction solvent is selected so as to dissolve the oxime and the target acid amide. Examples of such a solvent include benzene and the like, and supercritical CO can also be used. Supercritical
2  2
COは、後記するように反応混合物の分離にも使用可能であるので、担持物を使用 CO can be used to separate the reaction mixture as described below, so use a carrier
2 2
するとかの条件によっては有禾 IJなものとなる。 [0062] この反応終了後は、反応混合物はイオン性液体を液体のまま使用した場合は目的 物を溶解した溶液として回収される。なお、未反応原料や副生物を含む場合もある。 そして、この反応混合物抽出等の操作により目的物である酸アミドを回収する。ィォ ン性液体を担持又は化学結合させて使用した場合は、ろ過、蒸留等の操作により目 的物である酸アミドを回収することもできる。 Then, depending on the conditions, it will be an IJ. [0062] After completion of the reaction, the reaction mixture is recovered as a solution in which the target substance is dissolved when the ionic liquid is used as it is. In some cases, unreacted raw materials and by-products may be contained. Then, the target acid amide is recovered by an operation such as extraction of the reaction mixture. When the ionic liquid is used by being supported or chemically bonded, the target acid amide can be recovered by operations such as filtration and distillation.
[0063] 望ましくは、目的物を溶解したイオン性液体は回収して再使用する。有利には、目 的物を溶解したイオン性液体を、 CO  [0063] Desirably, the ionic liquid in which the target substance is dissolved is collected and reused. Advantageously, the ionic liquid in which
2を使用した超臨界抽出を行う。この場合、 ε - 力プロラタタムのような目的物が抽出され、イオン性液体は抽出されずに残る。しかし 、目的物を溶解したイオン性液体が高粘度である場合が多いので、より有利〖こは CO  Perform supercritical extraction using 2. In this case, the target substance such as ε-force prolatatum is extracted, and the ionic liquid remains without being extracted. However, since the ionic liquid in which the target substance is dissolved often has a high viscosity, the more advantageous
2 と共に粘度を下げるための補助抽出溶剤を併用することである。かかる、補助抽出溶 剤としては、水、エタノール、クロ口ホルム、四塩ィ匕炭素等の溶剤が例示される力 ク ロロホルムが回収されたイオン性液体の活性を最も下げない点で好ましい。 COを使  2 together with an auxiliary extraction solvent to lower the viscosity. Examples of such an auxiliary extraction solvent include solvents such as water, ethanol, black-mouthed form, and tetrahydrocarbon, and the like. Preferred is that since chloroform has the least decrease in the activity of the recovered ionic liquid. Use CO
2 用した超臨界抽出を行う場合、イオン性液体はそれ自体でもよいし、担持物であって もよい。抽出条件は、 50°C、 125MPaで 3hr、 CO使用量は 25°C、 O. lMPaで 10— 100L、  When performing supercritical extraction using 2, the ionic liquid may be itself or may be a carrier. The extraction conditions were 3 hours at 50 ° C and 125 MPa, the amount of CO used was 25 ° C, and 10-100 L at 0.1 MPa,
2  2
好ましくは 24— 82L程度である。  It is preferably about 24-82 L.
力かる超臨界抽出操作を行うことにより目的物の回収と、イオン性液体の回収がな され、イオン性液体の再使用が可能となる。  By performing a powerful supercritical extraction operation, the target substance and the ionic liquid are recovered, and the ionic liquid can be reused.
[0064] シクロへキサノンォキシムから ε一力プロラタタムを合成する場合、シクロへキサノン ォキシム 1モルに対し 0. 1— 2モルのイオン性液体を存在させて、 10— 50°Cで反応さ せてベックマン転位させて、 98%以上を反応させることが望ましい。そして、このように して得られた反応混合物を、 COと共に粘度を下げるための補助抽出溶剤を併用し When synthesizing ε-force prolatatam from cyclohexanone oxime, Beckman is reacted at 10 to 50 ° C. in the presence of 0.1 to 2 moles of an ionic liquid per mole of cyclohexanone oxime. It is desirable that 98% or more be reacted by rearrangement. The reaction mixture thus obtained is used together with CO together with an auxiliary extraction solvent to reduce the viscosity.
2  2
て超臨界抽出して ε一力プロラタタムを抽出し、抽出されずに残ったイオン性液体を 再使用することが望ましい。再使用回数は、反応条件にもよるが副生物の生成を可 及的に抑えれば、 5回以上、好ましくは 10回以上の再使用が可能となる。  It is desirable to extract ε-force prolatatam by supercritical extraction, and to reuse the ionic liquid left unextracted. The number of reuses depends on the reaction conditions, but if the generation of by-products is suppressed as much as possible, it can be reused 5 times or more, preferably 10 times or more.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0065] 実施例 1 Example 1
1-メチルイミダゾールと 1 ,4-ブタンスルトンを、 1: 1のモル比で攪拌しながら混合し、 室温で 24hr攪拌して反応させた。この際、 100%の収率で白色結晶を得た。次いで、 この白色結晶を粉砕したのち、ェチルエーテルで数回洗浄し、洗浄された結晶と CF 1-Methylimidazole and 1,4-butanesultone were mixed with stirring at a molar ratio of 1: 1 and reacted at room temperature with stirring for 24 hours. At this time, white crystals were obtained with a yield of 100%. Then After crushing the white crystals, washing them several times with ethyl ether, the washed crystals and CF
3 Three
SO Hとを 1: 1のモル比で混合し、 60°Cで 24hr反応させて、式(2)において n=4、 X=〇HSO H was mixed at a molar ratio of 1: 1 and reacted at 60 ° C. for 24 hours. In the formula (2), n = 4 and X = 〇H
3 Three
であるイオン性液体 4aを得た。次いで、このイオン性液体 4aを還流状態 (約 80°C)で 塩化チォ -ルを少しずつ加えて反応させて、式(2)において n=4、 X=C1であるイオン 性液体 4bを得た。  Was obtained as the ionic liquid 4a. Next, this ionic liquid 4a is added in a refluxing state (approximately 80 ° C.) with little addition of thiol chloride to cause a reaction, thereby obtaining an ionic liquid 4b in which n = 4 and X = C1 in the formula (2). Was.
[0066] イオン性液体 4aからイオン性液体 4bを得るより有利な方法を次に示す。  [0066] A more advantageous method of obtaining the ionic liquid 4b from the ionic liquid 4a will be described below.
0.12molの塩化チォ -ルを 50mlの二首フラスコに入れ、マグネチックスタラーで攪拌 しながら還流させた。還流条件下に、 O.lmolの上記イオン性液体 4aをゆっくりと滴下 し、攪拌を更に 8hr継続した。反応終了後、未反応の塩ィ匕チォ-ルを蒸留によって除 去し、粗製品となる液体を得た。この液体を冷却したのち、微量残存する塩化チォ- ルを除去するため、蒸留水で 2回洗浄を行った。次いで、この製品を 50°Cで 2hr、エバ キユエートして、精製されたイオン性液体 4bを得た。  0.12 mol of thiol chloride was placed in a 50 ml two-necked flask, and refluxed while stirring with a magnetic stirrer. Under reflux conditions, 0.1 mol of the ionic liquid 4a was slowly added dropwise, and stirring was continued for another 8 hours. After the completion of the reaction, unreacted salty diol was removed by distillation to obtain a liquid as a crude product. After cooling the liquid, it was washed twice with distilled water to remove trace amounts of residual thiochloride. Next, this product was evaporated at 50 ° C. for 2 hours to obtain a purified ionic liquid 4b.
[0067] 実施例 2  Example 2
イオン性液体 3a、 4a、 3b及び 4bを使用した。比較のために良く知られているイオン 性液体である BMImBFと BMImPFも同時に検討した。実験では、イオン性液体と p-キ  Ionic liquids 3a, 4a, 3b and 4b were used. For comparison, the well-known ionic liquids BMImBF and BMImPF were also examined at the same time. In experiments, ionic liquids and p-
4 6  4 6
シレン (30mmol)及びスチレンを、磁気攪拌子を備えた 10mlの試験管に仕込み、 70°C で 1一 5h r反応させた。スチレンのイオン性液体に対するモル比を 10とし、芳香族炭 化水素のスチレンに対するモル比は、 9:1一 3:1とした。反応終了後、上層の有機物 層を分離し、 FIDガスクロマトグラフィー(島津 GC-14A、 ULBON HR-52キヤビラリ一 カラム 25mm X 0.32mm)により分析した。  Silene (30 mmol) and styrene were charged into a 10 ml test tube equipped with a magnetic stirrer and reacted at 70 ° C. for 15 hours. The molar ratio of styrene to ionic liquid was set to 10, and the molar ratio of aromatic hydrocarbon to styrene was set to 9: 1 to 13: 1. After the completion of the reaction, the upper organic layer was separated and analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 capillary single column 25 mm x 0.32 mm).
[0068] 種々の反応条件下のスチレンによる p-キシレンのフリーデル'クラフツ'アルキル化 反応の結果を表 1に示す。これらの全てのケースにおいて、 2つの主たる生成物、す なわち、モノスチレン化物とジスチレンィ匕物が検出された。これらはどちらも工業的に 望まれて!/、る物質である。 p-キシレンとスチレンをルイス酸性イオン性液体である 3b 又は 4bを使用して反応させた場合 (実験番号 1一 6)では、 P-キシレンとスチレンの反 応が良好に進行し、有効な触媒であることが分かる。しかし、側鎖が長いルイス酸性 イオン性液体 4bは、スチレン転化率に低下が見られる他、生成物分布にも明らかに 影響を及ぼす。 一方、ブレンステッド酸性イオン性液体である 3a又は 4aで処理した場合 (実験番号 7 一 15)も、 70°Cで 5hr反応後に充分なスチレン化が達成された。これは、これらのィォ ン性液体分子に硫酸のような活性サイトが存在するためである。 Table 1 shows the results of the Friedel 'Crafts' alkylation reaction of p-xylene with styrene under various reaction conditions. In all these cases, two main products were detected, namely monostyrenated and distyrenated. These are both industrially desirable substances. When p-xylene and styrene were reacted using the Lewis acidic ionic liquid 3b or 4b (Experiment No. 16), the reaction between P-xylene and styrene proceeded well, and an effective catalyst was used. It turns out that it is. However, Lewis acidic ionic liquid 4b, which has a long side chain, has a decrease in styrene conversion and clearly affects the product distribution. On the other hand, when treated with the Bronsted acidic ionic liquid 3a or 4a (Experiment Nos. 715), sufficient styration was achieved after the reaction at 70 ° C. for 5 hours. This is due to the presence of active sites such as sulfuric acid in these ionic liquid molecules.
良く知られている中性のイオン性液体中で反応させた場合 (実験番号 16— 17)は、 これらのイオン性液体にはアルキルィ匕反応に必要な酸性点を有して L、な 、ので、当 然ながら反応は全く観察されな力つた。  When the reaction is carried out in a well-known neutral ionic liquid (Experiment No. 16-17), these ionic liquids have an acid point necessary for the alkylidation reaction. Naturally, no reaction was observed.
反応結果を表 1に示す。実験番号 1一 6及び 7 15が実施例である。  The reaction results are shown in Table 1. Experiment numbers 116 and 715 are examples.
[¾1] [¾1]
Figure imgf000021_0001
反応時間と P-キシレン対スチレンのモル比の二つは、スチレン転化率と反応物生 成物の分配に影響を与える重要な因子である。アルキル化反応に及ぼす反応時間 の影響については、殆どの P-キシレンとスチレンの反応は、 2時間以内に完了してい ることがうかがえる。また、生成物分配率は、どの反応でも大きくは変化しない。 P-キ シレン Zスチレンモル比の影響については、モル比が増すにつれ、スチレン転化率 が少しずつ低下するが、モノスチレン体の選択率が大幅に増す。 P-キシレンとスチレ ンの希釈溶液では、モノスチレン生成物とスチレン間の反応の機会が減るためである と考えられる。
Figure imgf000021_0001
Reaction time and the molar ratio of P-xylene to styrene are two important factors that affect styrene conversion and distribution of reactant products. Regarding the effect of reaction time on the alkylation reaction, it can be seen that most of the reaction between P-xylene and styrene was completed within 2 hours. Also, the product distribution does not change significantly in any of the reactions. Regarding the effect of P-xylene Z-styrene molar ratio, as the molar ratio increases, the styrene conversion Gradually decreases, but the selectivity of the monostyrene form greatly increases. This is probably because the dilute solution of P-xylene and styrene reduces the chance of the reaction between the monostyrene product and styrene.
[0071] 反応後、上層の生成物はデカンテーシヨンによりイオン性液体と容易に分離するこ とができる。そして、残ったイオン性液体は再利用することができる。例えば、同じ条 件で 5回使用した後でも、イオン性液体 4aは、触媒性能を保持していた (実験番号 15 )。このことは、このイオン性液体が、スチレンによる P-キシレンのアルキル化反応に おいて、再利用性を有していることを意味している。この再利用性は工業用触媒とし て本発明のイオン性液体の有利性を示して!/ヽる。  [0071] After the reaction, the product in the upper layer can be easily separated from the ionic liquid by decantation. Then, the remaining ionic liquid can be reused. For example, the ionic liquid 4a retained the catalytic performance even after being used 5 times under the same conditions (Experiment No. 15). This means that the ionic liquid has reusability in the alkylation reaction of P-xylene with styrene. This reusability shows the advantage of the ionic liquid of the present invention as an industrial catalyst!
[0072] 実施例 3  Example 3
イオン性液体 4aを触媒に使用して、芳香族炭化水素及びアルケンの種類を変えて 、アルキルィ匕反応を実施例 1と同様にして行った。芳香族炭化水素及びアルケンの 種類及び反応時間を表 2にその結果と共に示す。その他の条件は、反応温度 70°C、 芳香族炭化水素 30mmol、芳香族炭化水素/アルケン =3 (モル比)、アルケン /イオン 性液体 = 10 (モル比)である。反応条件及び結果を表 2に示す。  The alkylidation reaction was carried out in the same manner as in Example 1 by using the ionic liquid 4a as a catalyst and changing the types of the aromatic hydrocarbon and the alkene. Table 2 shows the types of aromatic hydrocarbons and alkenes and the reaction times together with the results. Other conditions are: reaction temperature 70 ° C, aromatic hydrocarbon 30 mmol, aromatic hydrocarbon / alkene = 3 (molar ratio), alkene / ionic liquid = 10 (molar ratio). Table 2 shows the reaction conditions and results.
[0073] [表 2] [Table 2]
Figure imgf000022_0001
Figure imgf000022_0001
[0074] 本発明のイオン性液体は、スチレンによるベンゼンやトルエンのアルキル化につい ても効果的な触媒であることがうかがえる。同じ条件では、トルエンや p-キシレンより ベンゼンの方が比較的容易にスチリルイ匕できることが推察できる。しかしながら、非常 に興味を引くことに、酸性イオン性液体触媒 4aをベンゼンとへキセンゃドデセンの様 な長鎖アルケンとのアルキルィ匕反応に適用しても、反応は起こらな力つた。理由は不 明であるが、反応は 2相方向で進行するので、スチレンと長鎖アルケンの活性度が変 化した理由として、イオン性液体中への長鎖アルケンの溶解度が減少したことに関係 してレ、るのではな!、かと考えて 、る。 [0074] It can be seen that the ionic liquid of the present invention is an effective catalyst for the alkylation of benzene and toluene with styrene. Under the same conditions, it can be inferred that benzene can be formed relatively easily with toluene or p-xylene. However, very interestingly, even when the acidic ionic liquid catalyst 4a was applied to the alkylation reaction of benzene with a long-chain alkene such as hexenedodecene, the reaction did not occur. Although the reason is unknown, the reaction proceeds in a two-phase direction, and the reason for the change in the activity of styrene and long-chain alkenes is related to the reduced solubility of long-chain alkenes in ionic liquids. I guess I don't!
[0075] 実施例 4  Example 4
10mlの試験管に、 5.2mmolのベンゼン、 2.6mmolのォレフイン、イオン性液体(ォレフ インの 5mol%に相当する量)及びトリフレートイ匕合物(ォレフインの 5mol%に相当する 量)を加えた。但し、実験番号 24では、芳香族化合物としてベンゼンの代わりに P-キ シレンを使用し、イオン性液体及びトリフレート化合物の使用量を、それぞれォレフィ ンの 10%molに相当する量とした。なお、加える順番には制限はない。反応液を攪拌 しながら 70°Cで反応させた。反応は炭化水素相(上層)とイオン性液体相(下層)の 2 相系で進行した。反応終了後、上層を分離して組成分析を行った。反応条件及び結 果を表 3に示す。  To a 10 ml test tube were added 5.2 mmol of benzene, 2.6 mmol of olefin, an ionic liquid (an amount corresponding to 5 mol% of the olefin) and a triflate conjugate (an amount corresponding to 5 mol% of the olefin). However, in Experiment No. 24, P-xylene was used instead of benzene as the aromatic compound, and the amounts of the ionic liquid and the triflate compound used were each equivalent to 10% mol of the olefin. There is no limitation on the order of addition. The reaction solution was reacted at 70 ° C. while stirring. The reaction proceeded in a two-phase system consisting of a hydrocarbon phase (upper layer) and an ionic liquid phase (lower layer). After completion of the reaction, the upper layer was separated and composition analysis was performed. Table 3 shows the reaction conditions and results.
なお、表 3におけるトリフレートの欄の金属元素記号は、その金属のトリフレー M匕合 物であることを示す。  In addition, the metal element symbol in the column of triflate in Table 3 indicates that the metal is a Trifle M ligated compound.
[0076] [表 3] [Table 3]
Figure imgf000023_0001
実施例 5
Figure imgf000023_0001
Example 5
実施例 4と同様な実験において、トリフレートイ匕合物を、 Scトリフレート、 Yトリフレート 、 Laトリフレート又は Znトリフレートを使用した。  In the same experiment as in Example 4, the triflate conjugate was Sc triflate, Y triflate, La triflate or Zn triflate.
イオン性液体 4bとの組合せ使用にお ヽて、実験番号 23と同様な条件で実験を行つ たところ、 Scトリフレートがアルキルィ匕触媒として最も良好な結果を示し、 Yトリフレート は約 4%の収率を示し、 Laトリフレート及び Znトリフレートは活性を示さな力つた。しか し、ォレフィンの種類や反応条件を変化させることにより活性を示すことが予想される そして、 Scトリフレートはイオン性液体と併用することにより、芳香族化合物とォレフィ ン、特に長鎖ォレフイン又はシクロォレフインとの反応を良好進行させる触媒作用が 優れている。 When an experiment was carried out under the same conditions as in Experiment No. 23 when using in combination with ionic liquid 4b, Sc triflate showed the best results as an alkylidani catalyst, and Y triflate was about 4%. La triflate and Zn triflate showed no activity. Only However, it is expected that the activity will be exhibited by changing the type of olefin and the reaction conditions.And, by using Sc triflate in combination with an ionic liquid, aromatic compounds and olefins, especially long-chain olefins or cycloolefins, can be used. It has excellent catalytic action to promote the reaction.
[0078] 実施例 6 Example 6
イオン性液体 3a又は 4aを使用して芳香族化合物の-トロ化を行った。原料の芳香 族化合物としては、 R-Ar (但し、 Arはフエ-ル基を示し、 Rは H又は置換基を示す)で 表されるベンゼン又はモノ置換ベンゼンを使用した。硝酸としては、 62%硝酸を使用 した。典型的には、芳香族化合物に対し 5— 15モル%のイオン性液体を使用し、芳香 族化合物 20mmolと 62%硝酸 20— 60mmolを、マグネチックスタラー付きの 50mlの丸底 フラスコに入れた。この際、芳香族化合物相と、硝酸を含むイオン性液体相の 2層に 分離した。次に、温度を 80°Cにし、 12— 22hr攪拌して反応を行った。反応中は、有機 相は黄色となった。反応終了後は、分液漏斗で有機相を分離し、これについて FID 検出器を備えた GC装置で分析した。  The aromatic compound was subjected to the toro conversion using the ionic liquid 3a or 4a. As the aromatic compound used as a raw material, benzene or mono-substituted benzene represented by R-Ar (where Ar represents a phenyl group and R represents H or a substituent) was used. As nitric acid, 62% nitric acid was used. Typically, 5-15 mol% of the ionic liquid relative to the aromatic compound was used, and 20 mmol of the aromatic compound and 20-60 mmol of 62% nitric acid were placed in a 50 ml round bottom flask equipped with a magnetic stirrer. At this time, it was separated into two layers: an aromatic compound phase and an ionic liquid phase containing nitric acid. Next, the temperature was adjusted to 80 ° C., and the reaction was performed with stirring for 12 to 22 hours. During the reaction, the organic phase turned yellow. After completion of the reaction, the organic phase was separated by a separating funnel and analyzed by a GC device equipped with an FID detector.
[0079] 反応条件及び反応結果を表 4に示す。表 4にお ヽて、 Rは前記 R-Arの Rを意味し、[0079] Table 4 shows the reaction conditions and the reaction results. In Table 4, R means R of the above R-Ar,
%はイオン性液体の使用量 (モル%)を示し、芳香族化合物 Z硝酸はモル比を示し、 転化率は芳香族化合物の転化率を示す。 % Indicates the used amount (mol%) of the ionic liquid, the aromatic compound Z nitric acid indicates the molar ratio, and the conversion indicates the conversion of the aromatic compound.
[0080] [表 4] [0080] [Table 4]
Figure imgf000025_0001
Figure imgf000025_0001
[0081] 表 4から、イオン性液体としては、 3aより 4aの方力 転ィ匕率が優れることが分かる。ま た、イオン性液体の使用量は、 5%、 10%、 15%の順に転化率が優れることが分かる 。芳香族化合物 硝酸のモル比は、 1/3、 1/2及び 1/1の順に転ィヒ率が優れることが 分かる。反応時間については、 12hrより 22hrの方が、転化率が優れることが分かる。 芳香族化合物として置換芳香族化合物を使用した場合も、多くの場合同様な反応が 起こり、オルソ体とパラ体が主成分として得られる力 置換基の種類によって転化率 に差が生じることが分かる。 [0081] From Table 4, it can be seen that the ionic liquid is more excellent in the directional deformation ratio of 4a than 3a. In addition, it can be seen that the conversion of the ionic liquid is superior in the order of 5%, 10%, and 15%. It can be seen that the molar ratio of the aromatic compound nitric acid is superior in the order of 1/3, 1/2 and 1/1 in the order of transfer. Regarding the reaction time, it can be seen that the conversion is better for 22 hours than for 12 hours. When a substituted aromatic compound is used as the aromatic compound, the same reaction occurs in many cases, and it can be seen that the conversion ratio differs depending on the type of the force substituent obtained with the ortho- and para-forms as main components.
[0082] 実施例 7  Example 7
イオン性液体を再使用する実験を行った。第 1回目の反応は実施例 6の実験番号 31と同様な条件で行った。反応終了後、硝酸を含むイオン性液体相を層分離した。 分離されたイオン性液体の量は殆ど第 1回目の反応で使用した量と同じであつたが、 硝酸濃度は低下していた。この全量をそのまま第 2回目の反応に使用したが、この際 の芳香族化合物 Z硝酸のモル比は、 1Z2に保持した。これを 5回繰り返し、転ィ匕率 の変化を測定した。  An experiment was conducted to reuse the ionic liquid. The first reaction was performed under the same conditions as in Experiment No. 31 of Example 6. After the completion of the reaction, the ionic liquid phase containing nitric acid was separated into layers. The amount of ionic liquid separated was almost the same as that used in the first reaction, but the nitric acid concentration was lower. The whole amount was used as it was in the second reaction, but the molar ratio of the aromatic compound Z nitric acid was kept at 1Z2. This was repeated five times, and the change in the transfer ratio was measured.
結果を表 5に示す。  Table 5 shows the results.
[0083] [表 5] 回数 芳香族化合物 Z硝酸 硝酸濃度 % 転化率 % [Table 5] Number of aromatic compounds Z nitric acid Nitric acid concentration% Conversion rate%
1 1/2 62 70. 1  1 1/2 62 70. 1
2 1/2 52 58. 3  2 1/2 52 58. 3
3 1/2 46 54. 1  3 1/2 46 54. 1
4 1/2 41 52. 3  4 1/2 41 52. 3
5 1/2 35 47. 3  5 1/2 35 47. 3
[0084] 表 5から、分離されたイオン性液体相を処理することなくそのまま、第 2回目以降の ニトロ化反応のみならず、第 5回まで又はそれ以降の-トロ化反応に繰り返し使用し ても良好な転ィ匕率が得られることが分力るだけでなぐ多少の反応条件の変更で実 用上十分な転化率が得られることが予想される。これは、反応を繰り返す場合、廃棄 物が大幅に低下し、触媒再生等の操作が大幅に低下することを示すものと言える。 [0084] From Table 5, it is found that the separated ionic liquid phase is used as it is without treatment not only in the second and subsequent nitration reactions but also repeatedly in the fifth or subsequent nitrification reaction. It is expected that a practically sufficient conversion rate can be obtained by slightly changing the reaction conditions, which is not enough to obtain a good conversion rate. This can be said to indicate that when the reaction is repeated, the amount of waste greatly decreases, and operations such as catalyst regeneration greatly decrease.
[0085] 実施例 8  Example 8
イオン性液体の THF溶液に、担持物として触媒学会の参照触媒である JRC-SIO-9 を浸潰し、 lhr浸潰した後、 THF溶媒を除去、乾燥することでイオン性液体担持体を 得た。 JRC-SIO-9の組成と物性は次のとおりである。  JRC-SIO-9, a reference catalyst of the Catalysis Society of Japan, was immersed in a THF solution of an ionic liquid as a carrier, immersed for lhr, then the THF solvent was removed and dried to obtain an ionic liquid carrier . The composition and properties of JRC-SIO-9 are as follows.
SiO : 99.9%、 Al: 2.3ppm、 Ti: 0.1ppm以下、 Ca: 0.5ppm、 Fe : 3.9ppm、 Na: 60ppm、 Mg SiO: 99.9%, Al: 2.3 ppm, Ti: 0.1 ppm or less, Ca: 0.5 ppm, Fe: 3.9 ppm, Na: 60 ppm, Mg
2 2
: 0.1ppm。充填密度: 0 .49g/cm3、細孔容積: 0.654 cm3/g、平均細孔径: 11.0nm、比 表面積: 336 mVgoなお、イオン性液体の担持量は、 20wt%である。 : 0.1 ppm. Packing density: 0.49 g / cm 3 , pore volume: 0.654 cm 3 / g, average pore diameter: 11.0 nm, specific surface area: 336 mVgo The ionic liquid carrying amount is 20 wt%.
[0086] イオン性液体 3bと 4b、及び上記のようにしてイオン性液体 4bを担持物に担持させた イオン性液体の担持体 4b2)を使用した。比較のために良く知られて 、るイオン性液体 である BMImBFと BMImPFの他、前記ブレンステッド酸性イオン性液体 4a及び 3aも同 [0086] Ionic liquids 3b and 4b, and using carrier 4b 2) of the ionic liquid supported on the supported material ionic liquids 4b as described above. In addition to the well-known ionic liquids BMImBF and BMImPF for comparison, the Bronsted acidic ionic liquids 4a and 3a are the same.
4 6  4 6
時に検討した。実験では、イオン性液体とケトォキシムを、磁気攪拌子を備えた 10ml の試験管に仕込み 3min間攪拌し、 20— 80°Cで 5min— 120min反応させた。ケトォキシ ムのイオン性液体に対するモル比を 1一 5とした。  Sometimes considered. In the experiment, the ionic liquid and ketoxime were charged into a 10 ml test tube equipped with a magnetic stirrer, stirred for 3 minutes, and reacted at 20-80 ° C for 5 minutes-120 minutes. The molar ratio of ketoxime to ionic liquid was set at 115.
[0087] また、反応終了後の反応混合物 (粘性液体)を、 COと補助抽出溶剤としてクロロホ [0087] Further, the reaction mixture (viscous liquid) after the reaction is completed is mixed with CO and chlorophos as an auxiliary extraction solvent.
2  2
ルムを使用して COによる超臨界抽出に付した。抽出液からは ε -カプロラタタムを回  Lum was used for supercritical extraction with CO. Extract ε-caprolatatam from the extract
2  2
収し、抽出されずに残ったイオン性液体は、回収し、次の反応に再使用した。 ε -力 プロラタタムはほぼ完全 (95%以上)に抽出された。回収したイオン性液体を再使用し 、ケトォキシムのイオン性液体に対するモル比を 1とし、 40°Cで 60min反応させた。ケト ォキシムの転ィ匕率、ラタタムの選択率は、 FIDガスクロマトグラフィー(島津 GC-14A、 ULBON HR-52キヤビラリ一力ラム 25m X 0.32mm)により分析した。超臨界抽出条件 は、原料のォキシム類 lgに対し、 60°C、 15Mpaの COを 3時間流通させることにより行 The ionic liquid collected and left unextracted was recovered and reused in the next reaction. ε-force Prolatatam was almost completely (> 95%) extracted. Reuse the recovered ionic liquid The molar ratio of ketoxime to ionic liquid was 1, and the reaction was carried out at 40 ° C for 60 minutes. The conversion ratio of the ketoxime and the selectivity of the ratatam were analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 cantilever ram 25 mx 0.32 mm). The supercritical extraction conditions were achieved by flowing 15 MPa of CO at 60 ° C for 3 hours to the raw materials of oximes lg.
2  2
つた。抽出に用いた COは 25°C、 O.lMpa条件下において約 24— 82Lである。  I got it. The CO used for the extraction is about 24-82 L under the conditions of 25 ° C and 0.1Mpa.
2  2
[0088] 種々の反応条件下におけるケトォキシムのベックマン転位反応の結果を表 6に示す 。これらの全てのケースにおいて、ルイス酸性イオン性液体である 3b又は 4bを使用し て反応させた場合 (実験番号 42— 47)では、反応が良好に進行し、 99%以上の転ィ匕 率を示し、選択率も 99%前後であることが分かる。また、超臨界抽出して回収して再 使用したイオン性液体 4b1)を用いた場合 (実験番号 48)では、若干転化率が低下する ものの、選択率は良好であり、イオン性液体の再使用が可能であることが分かる。な お、実験番号 48の反応混合物を超臨界抽出して回収したイオン性液体 4 を用いた 場合の反応、その反応から回収したイオン性液体を用いた場合の反応と順次繰り返 し再使用して同様な条件で反応を繰返したが、 4回繰返して再使用しても、ほぼ実験 番号 48と同様な結果であった。更に、イオン性液体 4bの担持物 4b2)を使用した場合( 実験番号 49)では、反応が良好に進行し、 99%以上の転ィ匕率を示すことが分かる。 [0088] Table 6 shows the results of the Beckmann rearrangement reaction of ketoxime under various reaction conditions. In all of these cases, when the reaction was carried out using the Lewis acidic ionic liquid 3b or 4b (Experiment Nos. 42-47), the reaction proceeded favorably, and the transfer rate was 99% or more. This shows that the selectivity is around 99%. In the case of using the ionic liquid 4b 1 ) recovered by supercritical extraction and reused (Experiment No. 48), the conversion was slightly reduced, but the selectivity was good and the ionic liquid was recycled. It can be seen that use is possible. The reaction using the ionic liquid 4 obtained by supercritical extraction of the reaction mixture of Experiment No. 48 and the reaction using the ionic liquid recovered from the reaction were sequentially repeated and reused. The reaction was repeated under the same conditions as above, but the result was almost the same as that of Experiment No. 48 even when it was reused four times. Furthermore, when the carrier 4b 2) of the ionic liquid 4b was used (Experiment No. 49), it was found that the reaction proceeded favorably and exhibited a transfer rate of 99% or more.
[0089] しかし、ブレンステッド酸性イオン性液体である 3a及び 4aを用いた場合や、良く知ら れている BMImBFと BMImPFの中性のイオン性液体を用いた場合(実験番号 50—  [0089] However, when the Bronsted acidic ionic liquids 3a and 4a were used, or when the well-known neutral ionic liquids of BMImBF and BMImPF were used (Experiment No. 50-
4 6  4 6
53)では、ベックマン転位反応に必要な活性を有していないので、反応は全く観察さ れなかった。  In 53), no reaction was observed since it did not have the activity required for the Beckmann rearrangement reaction.
反応条件及び反応結果を表 6に示す。なお、表中、モル比はケトォキシム Zイオン 性液体モル比を示し、選択率はラタタム選択率を示す。また、 CHOXはシクロへキサ ノンォキシムを、 TOXはテトラロンォキシムを示す。  Table 6 shows the reaction conditions and reaction results. In the table, the molar ratio indicates the molar ratio of the ketoxime Z ionic liquid, and the selectivity indicates the ratatum selectivity. Also, CHOX indicates cyclohexanone oxime, and TOX indicates tetralone oxime.
[0090] [表 6] 実験 反応条件 反応結果 [0090] [Table 6] Experiment Reaction conditions Reaction result
No. イオン性液 ケトォキシム モル比 温度 時間 転化率 選択率  No. Ionic liquid Ketoxime Molar ratio Temperature Time Conversion Selectivity
体 °C min % % Body ° C min%%
42 3b CHOX 1 20 15 99. 6 >9942 3b CHOX 1 20 15 99.6> 99
43 4b TOX 1 20 15 99. 2 >9943 4b TOX 1 20 15 99. 2> 99
44 4b CHOX 1 20 15 99. 4 〉9944 4b CHOX 1 20 15 99.4〉 99
45 4b CHOX 3 40 60 >99 98. 845 4b CHOX 3 40 60> 99 98.8
46 4b CHOX 5 40 120 >99 98. 246 4b CHOX 5 40 120> 99 98.2
47 4b CHOX 5 80 5 >99 〉9947 4b CHOX 5 80 5> 99〉 99
48 4bl! CHOX 1 40 60 71. 3 95. 648 4b l! CHOX 1 40 60 71.3 95.6
49 4b2) CHOX 5 40 120 >99 96. 849 4b 2) CHOX 5 40 120> 99 96.8
50 BMIinBF4 CHOX 3 40 60 <1 050 BMIinBF 4 CHOX 3 40 60 <1 0
51 BMImPF6 CHOX 3 40 60 <1 051 BMImPF 6 CHOX 3 40 60 <1 0
52 3a CHOX 3 40 60 <1 052 3a CHOX 3 40 60 <1 0
53 4a CHOX 3 40 60 <1 0 53 4a CHOX 3 40 60 <1 0
[0091] 実施例 9 [0091] Example 9
鎖状ォキシム 5mmolを原料として、ルイス酸性イオン性液体 4b lmmol中、表 7に示 す条件で反応させたところ、表 7に示す結果が得られた。  When 5 mmol of chain oxime was used as a raw material and reacted in 4 mmol of Lewis acidic ionic liquid under the conditions shown in Table 7, the results shown in Table 7 were obtained.
[0092] [表 7] [0092] [Table 7]
Figure imgf000028_0001
一般式(1)で表されるイオン性液体又はその担持物は、各種ケトォキシム類のべッ クマン転位反応によるラタタム類合成反応ついても効果的な触媒であることがうかが える。再使用したイオン性液体を用いた場合、転化率が若干減少する理由は不明で あるが、不純物の混入によるものと考えられ、反応条件、イオン性液体の回収、精製 条件を最適化することで転化率の低下防止や再利用回数の増加が可能であると考 えられる。
Figure imgf000028_0001
It can be seen that the ionic liquid represented by the general formula (1) or a supported substance thereof is an effective catalyst also for a ratatum synthesis reaction by a Beckmann rearrangement reaction of various ketoximes. The reason for the slight decrease in conversion when using a reused ionic liquid is unknown, but it is thought to be due to the contamination of impurities, and by optimizing the reaction conditions, recovery of the ionic liquid, and purification conditions, It is thought that the conversion rate can be prevented from lowering and the number of reuses can be increased. available.
[0094] 実施例 10  [0094] Example 10
1ーメチルイミダゾールと C卜 CH CH -SO CIを 2 : 1のモル比で攪拌しながら混合し、  1-methylimidazole and CH CH CH -SO CI are mixed at a molar ratio of 2: 1 while stirring,
2 2 2  2 2 2
氷冷中で 6時間反応させた。未反応の 1ーメチルイミダゾールをェチルエーテル抽出 により除去し、さらにェチルエーテルで数回洗浄し、黒色の粘性液体を得た。この粘 性液体をイオン性液体 2Aと称する。尚、このイオン性液体 2Aは上記式(1)における Y —に相当する成分が C1—である。  The reaction was performed for 6 hours under ice cooling. Unreacted 1-methylimidazole was removed by extraction with ethyl ether, and further washed several times with ethyl ether to obtain a black viscous liquid. This viscous liquid is referred to as ionic liquid 2A. In the ionic liquid 2A, the component corresponding to Y— in the above formula (1) is C1—.
次に、得られた黒色粘性液体と HPFとを 1 : 2のモル比で混合し、 60°Cで 24時間反  Next, the obtained black viscous liquid and HPF were mixed at a molar ratio of 1: 2, and reacted at 60 ° C for 24 hours.
6  6
応させた。未反応の HPFと C1根とを水洗浄(10回程度)により除去した後、更に中性  I responded. After removing unreacted HPF and C1 root by washing with water (about 10 times),
6  6
になるまでェチルエーテルで抽出した。得られた結晶を真空乾燥機で乾燥させた結 果、室温で茶色のスラリー状の結晶が得られた。この結晶をイオン性液体 2Bと称する 。この結晶は室温では結晶である力 110°Cでは液体であった。  Extract with ethyl ether until As a result of drying the obtained crystal with a vacuum dryer, a brown slurry crystal was obtained at room temperature. This crystal is called an ionic liquid 2B. The crystal was a liquid at room temperature with a force of 110 ° C.
[0095] イオン性液体 2Aとシクロへキサノンォキシムとを、磁気攪拌子を備えた 10mlの試験 官に仕込み 3分間攪拌し、 110°Cで 5時間ベックマン転位反応を実施した。ここでシク 口へキサノンォキシムのイオン性液体に対するモル比は 5とした。 [0095] The ionic liquid 2A and cyclohexanone oxime were charged into a 10 ml test tube equipped with a magnetic stirrer, stirred for 3 minutes, and subjected to a Beckmann rearrangement reaction at 110 ° C for 5 hours. Here, the molar ratio of cyclohexanoxoxime to ionic liquid was set to 5.
反応終了後、反応混合物をエタノールに溶解し、 FIDガスクロマトグラフィー(島津 GC- 14A、 ULBON HR-52キヤビラリ一力ラム 2 5m X 0.32mm)により分析したところ、 シクロへキサノンォキシムの反応率及び ε—力プロラタタムへの選択率は以下の通り となった。 After completion of the reaction, the reaction mixture was dissolved in ethanol and analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 Capillary One-Ram 25m x 0.32mm). The reaction rate of cyclohexanone oxime and ε The selectivity to force prolatatam is as follows.
反応率 20.1%  Reaction rate 20.1%
選択率 28.1%  Selectivity 28.1%
[0096] イオン性液体 2Αに替えてイオン性液体 2Βを用いた以外は上記と同様にして、べッ クマン転位の反応を実施した。シクロへキサノンォキシムの反応率及び ε一力プロラタ タムへの選択率は以下の通りとなった。  [0096] The reaction of Beckmann rearrangement was carried out in the same manner as described above except that 2% of the ionic liquid was used instead of 2% of the ionic liquid. The conversion of cyclohexanone oxime and the selectivity to ε-proprotamata were as follows.
反応率 39.1%  Reaction rate 39.1%
選択率 9.2%  Selectivity 9.2%
[0097] 実施例 11 [0097] Example 11
実施例 1にお 、て、 1ーメチルイミダゾールの代わりに 1ーァリルイミダゾールを使用し 、また、 1 ,4-ブタンスルトンの代わりに 1 ,3-プロパンスルトンを用いた以外は同様の方 法で、イオン性液体 3Cを得た。 In Example 1, 1-aryl imidazole was used instead of 1-methyl imidazole. In addition, an ionic liquid 3C was obtained in the same manner except that 1,3-propane sultone was used instead of 1,4-butane sultone.
他方、シリカゲル- 60 (70-230mesh ; Merck社製)と 3—メルカプトプロピルトリメトキシ シラン(MPS)を使用して、 Tetrahedron Lett. 26, 3361 (1985)記載の方法で MPS修飾 シリカゲノレを得た。  On the other hand, using silica gel-60 (70-230mesh; manufactured by Merck) and 3-mercaptopropyltrimethoxysilane (MPS), an MPS-modified silica gel was obtained by the method described in Tetrahedron Lett. 26, 3361 (1985).
具体的には、シリカゲル- 60 (4.8g)と MPS (21ml)とをピリジン及びトルエンの混合液( 混合比は、ピリジン:トルエン = 1 : 1) (20ml)に投入し、 90°Cで 24時間反応させた。ろ 過後、生成物をトルエンで洗浄し真空乾燥を行い、固体 (1)を得た。得られた個体中 の S含量は、 1.01mmol/gであった。  Specifically, silica gel-60 (4.8 g) and MPS (21 ml) were added to a mixture of pyridine and toluene (mixing ratio: pyridine: toluene = 1: 1) (20 ml), and the mixture was added at 90 ° C. Allowed to react for hours. After filtration, the product was washed with toluene and dried under vacuum to obtain a solid (1). The S content in the obtained individual was 1.01 mmol / g.
ァセトニトリルにイオン性液体 3C (3.2g)、固体 (1) (4.8g) , a , a ,一ァゾイソブチ口-ト リル (AIBN) (164mg)を添加し、還流条件下で 30時間反応を行った。反応終了後、該 固体をろ過し、メタノールで洗浄し、乾燥させた。得られた固体をイオン性液体固定 化触媒 (1)と称する。  To acetonitrile, ionic liquid 3C (3.2 g), solid (1) (4.8 g), a, a, a-azoisobuty-tolyl (AIBN) (164 mg) were added, and the reaction was carried out under reflux conditions for 30 hours. . After completion of the reaction, the solid was filtered, washed with methanol, and dried. The obtained solid is referred to as an ionic liquid immobilization catalyst (1).
[0098] イオン性液体固定化触媒 (1) (0.02g)とシクロへキサノンォキシム(0.018g)とをトルェ ン(1.48g)中へ添加し、 100°Cで 7時間反応させた。反応終了後、反応液を FIDガスク 口マトグラフィー(島津 GC- 14A、 ULBON HR- 52キヤビラリ一力ラム 25m X 0.32mm)に より分析したところ、シクロへキサノンォキシムの反応率及び ε一力プロラタタムへの選 択率は以下の通りとなった。  [0098] The ionic liquid-immobilized catalyst (1) (0.02 g) and cyclohexanone oxime (0.018 g) were added to toluene (1.48 g), and reacted at 100 ° C for 7 hours. After the reaction was completed, the reaction mixture was analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 Capillary Ram 25m x 0.32mm). The selection rates are as follows.
反応率 35.5%  Reaction rate 35.5%
選択率 73.9%  Selectivity 73.9%
[0099] 別途、上記シリカゲル- 60を用いる代わりに、ペレットシリカゲル (日揮化学社製:シリ 力参照触媒 JRC-SIO-9)を使用する以外は上記と同様の方法でシリカゲルの固体 (2)を得、イオン性液体 3Cと固体 (2)とからイオン性液体固定ィ匕触媒 (2)を調製した。 イオン性液体固定化触媒 (2) (0.92g)とシクロへキサノンォキシム(0.10g)とをトルェ ン(1.48g)中へ添加し、 110°Cで 7時間反応させた。反応終了後、反応液を FIDガスク 口マトグラフィー(島津 GC- 14A、 ULBON HR- 52キヤビラリ一力ラム 25m X 0.32mm)に より分析したところ、シクロへキサノンォキシムの反応率及び ε一力プロラタタムへの選 択率は以下の通りとなった。 反応率 69.1% [0099] Separately, instead of using the above silica gel-60, a silica gel solid (2) was prepared in the same manner as described above except that pellet silica gel (manufactured by Nikki Chemical Co., Ltd .: Silicate Reference Catalyst JRC-SIO-9) was used. Thus, an ionic liquid fixed catalyst (2) was prepared from the ionic liquid 3C and the solid (2). The ionic liquid-immobilized catalyst (2) (0.92 g) and cyclohexanone oxime (0.10 g) were added to toluene (1.48 g) and reacted at 110 ° C. for 7 hours. After the reaction was completed, the reaction mixture was analyzed by FID gas chromatography (Shimadzu GC-14A, ULBON HR-52 Capillary Ram 25m x 0.32mm). The selection rates are as follows. Reaction rate 69.1%
選択率 48.2%  Selectivity 48.2%
産業上の利用可能性 Industrial applicability
空気と水に対して安定である本発明の酸性イオン性液体は、一種の安定した機能 を有するイオン性液体であり、酸性触媒を使用する反応の触媒又は溶媒として有用 である。この酸性イオン性液体を使用したアルキルィ匕反応、ニトロ化反応、ベックマン 転位反応によれば、比較的穏やかな条件で反応可能であり、分離も容易で、再利用 可能な触媒となる。本発明によれば、工業的に有用なアルキル置換芳香族化合物、 ニトロ置換芳香族化合物及び ε一力プロラタタム等を高収率、高選択率で得ることが できる。また、触媒となるイオン性液体はルイス酸であり、その再使用が可能であるた め、廃棄物の発生が抑制され、装置の腐食等の問題が軽減される。 The acidic ionic liquid of the present invention, which is stable to air and water, is a kind of ionic liquid having a stable function, and is useful as a catalyst or a solvent for a reaction using an acidic catalyst. According to the alkylation reaction, the nitration reaction, and the Beckmann rearrangement reaction using the acidic ionic liquid, the reaction can be performed under relatively mild conditions, the separation is easy, and the catalyst can be reused. According to the present invention, industrially useful alkyl-substituted aromatic compounds, nitro-substituted aromatic compounds, ε- force prolatatam, and the like can be obtained with high yield and high selectivity. Further, since the ionic liquid serving as a catalyst is a Lewis acid, which can be reused, generation of waste is suppressed and problems such as corrosion of the apparatus are reduced.

Claims

請求の範囲 [1] 下記式(1)で表されるイオン性液体。 Claims [1] An ionic liquid represented by the following formula (1).
[化 1]  [Chemical 1]
Figure imgf000032_0001
Figure imgf000032_0001
(Xはハロゲン原子又はヒドロキシル基を示し、 Yは CF SO , BF (X represents a halogen atom or a hydroxyl group, Y represents CF SO, BF
3 3 4、 PF  3 3 4, PF
6、 CH CO 3 6, CH CO 3
O—、 CF COO—、 (CF SO ) N―、 (CF SO ) C―、 F―、 CI—、 Br―、又は I—を示し、 nは 2O—, CF COO—, (CF SO) N—, (CF SO) C—, F—, CI—, Br—, or I—, where n is 2
3 3 2 2 3 2 3 3 3 2 2 3 2 3
一 16の整数を示し、 Rはメチル基、ァリル基又はビニル基を示す。 )  One represents an integer of 16, and R represents a methyl group, an aryl group or a vinyl group. )
[2] R力メチル基である請求項 1に記載のイオン性液体。 [2] The ionic liquid according to claim 1, which is an R-force methyl group.
[3] Y—力 SCF SO—である請求項 1又は 2に記載のイオン性液体。  3. The ionic liquid according to claim 1, wherein the ionic liquid is Y—force SCF SO—.
3 3  3 3
[4] nが 3又は 4である請求項 1一 3の 、ずれかに記載のイオン性液体。  [4] The ionic liquid according to any one of claims 13 to 13, wherein n is 3 or 4.
[5] Xが塩素原子である請求項 1一 4の 、ずれかに記載のイオン性液体。  [5] The ionic liquid according to any one of claims 14 to 14, wherein X is a chlorine atom.
[6] 請求項 1一 5のいずれかに記載のイオン性液体の存在下に、芳香族化合物をォレ フィン類と反応させることを特徴とする芳香族化合物のアルキルィ匕方法。  [6] A method for alkylating an aromatic compound, comprising reacting an aromatic compound with an olefin in the presence of the ionic liquid according to any one of [15] to [15].
[7] 請求項 1一 5の 、ずれかに記載のイオン性液体及び [7] The ionic liquid according to any one of claims 1-15 and
M (OTf)  M (OTf)
(Mは 2価又は 3価の金属原子を示し、 Tfは SO CFを示し、 mは 2又は 3の整数を示  (M represents a divalent or trivalent metal atom, Tf represents SOCF, and m represents an integer of 2 or 3.
2 3  twenty three
す)  You)
で表されるトリフレート化合物の存在下に、芳香族化合物をォレフイン類と反応させる ことを特徴とする芳香族化合物のアルキルィ匕方法。  A method for alkylating an aromatic compound, comprising reacting an aromatic compound with olefins in the presence of a triflate compound represented by the formula:
[8] Mが Scであり、 mが 3である請求項 7に記載の芳香族化合物のアルキルィ匕方法。 [8] The method for alkylating an aromatic compound according to claim 7, wherein M is Sc and m is 3.
[9] ォレフィン類力 芳香族ォレフイン類である請求項 6— 8のいずれかに記載の芳香 族化合物のアルキル化方法。  [9] The method of alkylation of an aromatic compound according to any one of claims 6 to 8, which is an aromatic olefin.
[10] 芳香族ォレフイン類が、芳香族ビニル化合物である請求項 9に記載の芳香族化合 物のアルキル化方法。 [10] The method for alkylating an aromatic compound according to claim 9, wherein the aromatic olefins are aromatic vinyl compounds.
[11] 芳香族ビ-ルイ匕合物力 スチレン又はメチル基を 1又は 2個有するメチルスチレン 類である請求項 10に記載の芳香族化合物のアルキルィ匕方法。 [11] Aromatic beading compound strength Styrene or methylstyrene having one or two methyl groups 11. The method for alkylating an aromatic compound according to claim 10, which is a compound.
[12] ォレフィン類力 脂肪族ォレフイン類である請求項 6— 8のいずれかに記載の芳香 族化合物のアルキル化方法。 [12] The method of alkylating an aromatic compound according to any one of claims 6 to 8, which is an aliphatic olefin.
[13] 芳香族化合物が、メチル基を 1又は 2個有するメチルベンゼン類である請求項 6— 1[13] The claim 6-1, wherein the aromatic compound is a methylbenzene having one or two methyl groups.
2のいずれかに記載の芳香族化合物のアルキル化方法。 3. The method for alkylating an aromatic compound according to any one of 2.
[14] 請求項 1一 5のいずれかに記載のイオン性液体の存在下に、芳香族化合物をォレ フィン類と反応させる工程を含むことを特徴とするアルキル置換芳香族化合物の製 造方法。 [14] A method for producing an alkyl-substituted aromatic compound, comprising a step of reacting an aromatic compound with an olefin in the presence of the ionic liquid according to any one of [15] to [15]. .
[15] 請求項 1一 5の ヽずれかに記載のイオン性液体及び  [15] The ionic liquid according to any one of claims 1-15 and
M (OTf)  M (OTf)
(Mは 2価又は 3価の金属原子を示し、 Tfは SO CFを示し、 mは 2又は 3の整数を示  (M represents a divalent or trivalent metal atom, Tf represents SOCF, and m represents an integer of 2 or 3.
2 3  twenty three
す)  You)
で表されるトリフレートイ匕合物の存在下に、芳香族化合物をォレフイン類と反応させる 工程を含むことを特徴とするアルキル置換芳香族化合物の製造方法。  A process for producing an alkyl-substituted aromatic compound, which comprises the step of reacting an aromatic compound with olefins in the presence of a triflate conjugate represented by the formula:
[16] 芳香族化合物カ^チル基を 1又は 2個有するメチルベンゼン類であり、ォレフィン類 がスチレン又はメチル基を 1又は 2個有するメチルスチレン類である請求項 14又は 1[16] The claim 14 or 1 wherein the aromatic compound is a methylbenzene having one or two methyl groups, and the olefin is styrene or a methylstyrene having one or two methyl groups.
5に記載のアルキル置換芳香族化合物の製造方法。 6. The method for producing an alkyl-substituted aromatic compound according to 5.
[17] 請求項 1一 5のいずれかに記載のイオン性液体の存在下に、芳香族化合物と硝酸 とを反応させることを特徴とする芳香族化合物のニトロ化方法。 [17] A method for nitrating an aromatic compound, comprising reacting an aromatic compound with nitric acid in the presence of the ionic liquid according to claim 15.
[18] 芳香族化合物が、ベンゼン、モノアルキルベンゼン又はモノハロゲノベンゼンである 請求項 17に記載の芳香族化合物のニトロ化方法。 [18] The method for nitrating an aromatic compound according to claim 17, wherein the aromatic compound is benzene, monoalkylbenzene or monohalogenobenzene.
[19] イオン性液体以外の触媒の不存在下に、反応を行う請求項 17又は 18に記載の芳 香族化合物のニトロ化方法。 [19] The method for nitrating an aromatic compound according to claim 17 or 18, wherein the reaction is performed in the absence of a catalyst other than the ionic liquid.
[20] 請求項 1一 5のいずれかに記載のイオン性液体の存在下に、芳香族化合物と硝酸 とを反応させる工程を含むことを特徴とするニトロ置換芳香族化合物の製造方法。 [20] A method for producing a nitro-substituted aromatic compound, comprising a step of reacting an aromatic compound with nitric acid in the presence of the ionic liquid according to any one of claims 15 to 15.
[21] 芳香族化合物が、ベンゼン、モノアルキルベンゼン又はモノハロゲノベンゼンであり[21] the aromatic compound is benzene, monoalkylbenzene or monohalogenobenzene;
、ニトロ置換芳香族化合物がこれらのモノ-トロ化合物である請求項 20に記載の-ト 口置換芳香族化合物の製造方法。 21. The method for producing a toro-substituted aromatic compound according to claim 20, wherein the nitro-substituted aromatic compound is one of these mono-toro compounds.
[22] イオン性液体以外の触媒の不存在下に、反応を行う請求項 20又は 21に記載の- トロ置換芳香族化合物の製造方法。 22. The method for producing a nitro-substituted aromatic compound according to claim 20, wherein the reaction is performed in the absence of a catalyst other than the ionic liquid.
[23] 芳香族化合物と硝酸とを反応させる工程に引き続き、得られた反応混合物からィォ ン性液体を含む相と芳香族化合物を含む相とを相分離させる工程、芳香族化合物を 含む相から-トロ置換芳香族化合物を回収する工程、及びイオン性液体を含む相を 、必要に応じて硝酸濃度を調整した上で芳香族化合物と硝酸との反応に再使用する 工程を有する請求項 20— 22のいずれかに記載の-トロ置換芳香族化合物の製造 方法。  [23] Subsequent to the step of reacting the aromatic compound with nitric acid, a step of phase-separating the phase containing the ionic liquid and the phase containing the aromatic compound from the obtained reaction mixture, 21. A method comprising the steps of: recovering a toro-substituted aromatic compound from a tobacco; and reusing the phase containing the ionic liquid for the reaction between the aromatic compound and nitric acid after adjusting the concentration of nitric acid as necessary. — The method for producing a -toro-substituted aromatic compound according to any of 22.
[24] 請求項 1一 5のいずれかに記載のイオン性液体の存在下に、ォキシム類をベックマ ン転位させることを特徴とするベックマン転位反応方法。  [24] A Beckmann rearrangement reaction method comprising subjecting an oxime compound to Beckmann rearrangement in the presence of the ionic liquid according to claim 15.
[25] イオン性液体が担持物に担持又は結合させて用いられる請求項 24に記載のベック マン転位反応方法。 25. The Beckmann rearrangement reaction method according to claim 24, wherein the ionic liquid is used by being supported on or bonded to a carrier.
[26] ォキシム類がケトォキシム類である請求項 24又は 25に記載のベックマン転位反応 方法。  26. The method according to claim 24 or 25, wherein the oximes are ketoximes.
[27] ケトォキシム類がシクロへキサノンォキシムである請求項 26に記載のベックマン転 位反応方法。  [27] The method according to claim 26, wherein the ketoxime is cyclohexanone oxime.
[28] 請求項 1一 5のいずれかに記載のイオン性液体の存在下に、ケトォキシム類をべッ クマン転位させる工程を含むことを特徴とするラタタム類の製造方法。  [28] A method for producing ratatams, comprising a step of performing Beckmann rearrangement of ketoximes in the presence of the ionic liquid according to any one of claims 115.
[29] イオン性液体が、担持物に担持又は結合させて用いられる請求項 28に記載のラタ タム類の製造方法。  29. The method for producing a ratatum according to claim 28, wherein the ionic liquid is used by being carried on or bonded to a carrier.
[30] ケトォキシム類がシクロへキサノンォキシムであり、ラタタム類が ε -力プロラタタムで ある請求項 28又は 29に記載のラタタム類の製造方法。  [30] The method for producing ratatams according to claim 28 or 29, wherein the ketoxime is cyclohexanone oxime and the ratatams are ε-force prolatatam.
[31] イオン性液体を、シクロへキサノンォキシム 1モルに対して 0.05— 2モル使用する請 求項 28— 30のいずれかに記載のラタタム類の製造方法。 [31] The method according to any one of claims 28 to 30, wherein the ionic liquid is used in an amount of 0.05 to 2 mol per 1 mol of cyclohexanone oxime.
[32] イオン性液体を、シクロへキサノンォキシム 1モルに対して 0.1— 2モル使用する請 求項 31に記載のラタタム類の製造方法。 [32] The method for producing ratatams according to claim 31, wherein the ionic liquid is used in an amount of 0.1 to 2 mol per 1 mol of cyclohexanone oxime.
[33] ケトォキシム類をベックマン転位させる工程を 10— 80°Cの温度範囲で行う請求項 2[33] The step of performing the Beckmann rearrangement of ketoximes in a temperature range of 10 to 80 ° C.
8— 31のいずれかに記載のラタタム類の製造方法。 ケトォキシム類をベックマン転位させる工程に引き続き、反応混合物を COによる超 32. The method for producing a ratatum according to any one of 8 to 31. Following the Beckmann rearrangement of ketoxime, the reaction mixture was
2 臨界抽出に付す工程、抽出液からはラタタム類を回収する工程、及び抽出されずに 残ったイオン性液体を、ケトォキシム類のベックマン転位反応に再使用する工程を有 する請求項 28— 33のいずれかに記載のラタタム類の製造方法。  2. The method according to claim 28, further comprising a step of subjecting to a critical extraction, a step of recovering ratatams from the extract, and a step of reusing an ionic liquid remaining without extraction for the Beckmann rearrangement reaction of ketoximes. A method for producing a ratatum according to any one of the above.
PCT/JP2004/013467 2003-09-18 2004-09-15 Ionic liquid and method of reaction using the same WO2005028446A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005514045A JPWO2005028446A1 (en) 2003-09-18 2004-09-15 Ionic liquid and reaction method using the same
CN2004800269737A CN1852898B (en) 2003-09-18 2004-09-15 Ionic liquid and method of reaction using the same
DE112004001729T DE112004001729T5 (en) 2003-09-18 2004-09-15 Ionic liquid and reaction process using same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-325590 2003-09-18
JP2003325590 2003-09-18
JP2003374512 2003-11-04
JP2003-374512 2003-11-04
JP2004029219 2004-02-05
JP2004-029219 2004-02-05
JP2004036947 2004-02-13
JP2004-036947 2004-02-13

Publications (1)

Publication Number Publication Date
WO2005028446A1 true WO2005028446A1 (en) 2005-03-31

Family

ID=34382099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013467 WO2005028446A1 (en) 2003-09-18 2004-09-15 Ionic liquid and method of reaction using the same

Country Status (5)

Country Link
JP (1) JPWO2005028446A1 (en)
CN (1) CN1852898B (en)
DE (1) DE112004001729T5 (en)
TW (1) TW200517375A (en)
WO (1) WO2005028446A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237117A (en) * 2006-03-10 2007-09-20 Japan Science & Technology Agency Immobilized lewis acid catalyst coated with ionic liquid and its use
CN100374410C (en) * 2005-08-26 2008-03-12 中国科学院兰州化学物理研究所 Method of preparing amide from ketoximes by Beckmann rearrangement
WO2008145312A1 (en) 2007-05-25 2008-12-04 Dsm Ip Assets B.V. Method of making a lactam in an ionic liquid
JP2009502990A (en) * 2005-08-03 2009-01-29 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dehydration of alcohol to obtain alkenes or ethers
JP2009534181A (en) * 2006-04-26 2009-09-24 ズード−ケミー アーゲー Porous heterogeneous supported metal catalyst coated with ionic liquid, production process, and method of using the catalyst
JP2009275022A (en) * 2008-05-19 2009-11-26 Sumitomo Chemical Co Ltd Imidazolium salt and granular oxide immobilized therewith
WO2009154144A1 (en) * 2008-06-17 2009-12-23 日本ポリウレタン工業株式会社 Method for producing aromatic polyamine
WO2010004818A1 (en) * 2008-07-09 2010-01-14 日本ポリウレタン工業株式会社 Method for producing polyisocyanate
US20100063274A1 (en) * 2008-09-11 2010-03-11 CHINA PETROCHEMICAL DEVELOPMENT CORPORATION, Taipei(Taiwan) Method for preparing amide
CN101973940A (en) * 2010-09-28 2011-02-16 盐城师范学院 Continuously synthesizing method of sulfonic acid alkyl group ionic liquid
JP2011072991A (en) * 2009-09-30 2011-04-14 Chinese Petrochemical Dev Corp Catalyst composition and method for preparing amide
US20110105793A1 (en) * 2009-10-30 2011-05-05 China Petrochemical Development Corporation Method for separating amide from amino acid ionic liquid
JP2013503733A (en) * 2009-09-03 2013-02-04 テクニカル・ユニヴァーシティ・オブ・デンマーク Palladium catalyst system comprising zwitterions and / or acid functionalized ionic liquids
JP2013043176A (en) * 2011-08-26 2013-03-04 Chinese Petrochemical Dev Corp Catalyst composition for producing amide and method for producing the amide
CN103073405A (en) * 2013-02-04 2013-05-01 河北工业大学 Method for catalyzing hydrolysis reaction of cyclohexanone-oxime in acidic ionic liquid
CN103265435A (en) * 2013-06-20 2013-08-28 江苏大华化学工业有限公司 Clean preparation method of 4-chlorine-3-nitrobenzotrifluoride
US8802596B2 (en) 2005-10-07 2014-08-12 Board Of Trustees Of The University Of Alabama Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients
CN104030925A (en) * 2014-06-26 2014-09-10 扬州大学 Method for catalytically synthesizing mononitrochlorobenzene
CN105289746A (en) * 2015-11-04 2016-02-03 常州大学 Modified graphene oxide catalyst for Beckmann rearrangement reaction and preparation method thereof
US9278134B2 (en) 2008-12-29 2016-03-08 The Board Of Trustees Of The University Of Alabama Dual functioning ionic liquids and salts thereof
JP2019534278A (en) * 2016-10-21 2019-11-28 華南理工大学 Method for producing maleate ester by catalytic selective oxidation of lignin
JP7001861B1 (en) 2021-03-31 2022-01-20 第一工業製薬株式会社 Fluorine-based ionic liquid and its manufacturing method
WO2022046537A1 (en) * 2020-08-24 2022-03-03 University Of Kansas Processes for the preparation of alkylbenzenes

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970582B (en) * 2006-12-04 2010-07-14 南京大学 Poly(N- ethenyl-N'-alkyl- imidazole) ion liquid structural material and its preparation method
EP2072530A1 (en) * 2007-12-21 2009-06-24 Dow Wolff Cellulosics GmbH Method for manufacturing cellulose derivatives containing amino groups in ionic liquid
CN101250160B (en) * 2008-03-21 2011-05-25 西北师范大学 Chloride 1,3-di(2-hydroxy ethyl) imidazole ionic liquid and method for synthesizing same
CN101602673B (en) * 2009-07-14 2013-05-08 西安近代化学研究所 Method for preparing nitrobenzene in ionic liquid
CN102249927B (en) * 2010-05-20 2014-02-12 江苏大华化学工业有限公司 Clean nitration reaction of p-chlorobenzotrifluoride under catalysis of degradable functional ionic liquid
CN101838175B (en) * 2010-05-21 2013-08-21 哈尔滨师范大学 Application of ionic liquid and catalytic oxime removal method thereof
CN102229569A (en) * 2011-04-11 2011-11-02 新疆大学 Method for preparing Br[phi]nsted acidic ionic liquid based on benzimidazole cations
CN102250026A (en) * 2011-05-23 2011-11-23 浙江常山科润化学有限公司 Synthesis method of 2,4,6-tris(2,4-dihydroxyphenyl)-1,3,5-triazine
CN102295614B (en) * 2011-07-01 2013-12-25 安徽中天化工有限公司 Synthetic method of 2-methyl-4-dimethylamino-6-methoxy-1,3,5-triazine
CN103288735B (en) * 2012-02-29 2015-03-04 北京安耐吉能源工程技术有限公司 Catalyst system for Beckmann rearrangement and method for preparing caprolactam thereof
CN102633929B (en) * 2012-03-27 2013-11-06 绍兴文理学院 Preparation method of acid ionic liquid mesoporous polymeric material
CN103420747B (en) * 2012-05-14 2016-07-06 苏州奥索特新材料有限公司 The synthetic method of alkenes compounds
CN103553925B (en) * 2013-10-28 2015-05-06 河北工业大学 Process for synthesizing nitrocyclohexane by liquid phase nitration
US9416071B2 (en) 2014-05-06 2016-08-16 Uop Llc Hydrocarbon conversion processes using lactamium-based ionic liquids
CN106380418B (en) * 2016-09-07 2018-07-31 上饶师范学院 It is a kind of to use N-Methyl pyrrolidone/SOCl2The method for efficiently realizing ketoxime Beckmann rearrangement
CN109721462B (en) * 2017-10-30 2022-03-11 中国石油化工股份有限公司 Method for preparing long-chain alkyl benzene
CN108911999B (en) * 2018-08-06 2021-05-04 朱晓萍 Synthesis method of 1-aminoanthraquinone
US20220410134A1 (en) * 2019-11-15 2022-12-29 University Of Kansas Alkylation catalyst composition and related methods
CN111690004B (en) * 2020-07-17 2022-11-29 山东药石药业有限公司 Ionic liquid modified silica gel loaded aluminum chloride catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003478A (en) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt
JP2002025610A (en) * 2000-06-09 2002-01-25 Merck Patent Gmbh Ionic fluid
WO2003086605A2 (en) * 2002-04-05 2003-10-23 University Of South Alabama Functionalized ionic liquids, and methods of use thereof
JP2003313171A (en) * 2002-04-23 2003-11-06 Kuraray Co Ltd Method for producing n-alkyl-n'-alkylimidazolium salt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9402569D0 (en) * 1994-02-10 1994-04-06 Bp Chem Int Ltd Alkylation process
US5824832A (en) * 1996-07-22 1998-10-20 Akzo Nobel Nv Linear alxylbenzene formation using low temperature ionic liquid
JPH11199525A (en) * 1997-12-27 1999-07-27 Teikoku Chem Ind Corp Ltd Alkylation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025610A (en) * 2000-06-09 2002-01-25 Merck Patent Gmbh Ionic fluid
JP2002003478A (en) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt
WO2003086605A2 (en) * 2002-04-05 2003-10-23 University Of South Alabama Functionalized ionic liquids, and methods of use thereof
JP2003313171A (en) * 2002-04-23 2003-11-06 Kuraray Co Ltd Method for producing n-alkyl-n'-alkylimidazolium salt

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502990A (en) * 2005-08-03 2009-01-29 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dehydration of alcohol to obtain alkenes or ethers
CN100374410C (en) * 2005-08-26 2008-03-12 中国科学院兰州化学物理研究所 Method of preparing amide from ketoximes by Beckmann rearrangement
US8802596B2 (en) 2005-10-07 2014-08-12 Board Of Trustees Of The University Of Alabama Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients
WO2007105668A1 (en) * 2006-03-10 2007-09-20 Japan Science And Technology Agency Immobilized lewis acid catalysts coated with ionic liquids and use thereof
US8871668B2 (en) 2006-03-10 2014-10-28 Japan Science And Technology Agency Immobilized lewis acid catalysts coated with ionic liquids and use thereof
JP2007237117A (en) * 2006-03-10 2007-09-20 Japan Science & Technology Agency Immobilized lewis acid catalyst coated with ionic liquid and its use
JP2009534181A (en) * 2006-04-26 2009-09-24 ズード−ケミー アーゲー Porous heterogeneous supported metal catalyst coated with ionic liquid, production process, and method of using the catalyst
JP2010527950A (en) * 2007-05-25 2010-08-19 ディーエスエム アイピー アセッツ ビー.ブイ. Process for producing lactams in ionic liquids
WO2008145312A1 (en) 2007-05-25 2008-12-04 Dsm Ip Assets B.V. Method of making a lactam in an ionic liquid
JP2009275022A (en) * 2008-05-19 2009-11-26 Sumitomo Chemical Co Ltd Imidazolium salt and granular oxide immobilized therewith
JP2009298755A (en) * 2008-06-17 2009-12-24 Nippon Polyurethane Ind Co Ltd Method for producing aromatic polyamine
WO2009154144A1 (en) * 2008-06-17 2009-12-23 日本ポリウレタン工業株式会社 Method for producing aromatic polyamine
WO2010004818A1 (en) * 2008-07-09 2010-01-14 日本ポリウレタン工業株式会社 Method for producing polyisocyanate
US8524895B2 (en) * 2008-09-11 2013-09-03 China Petrochemical Development Corporation Method for preparing amide
US20100063274A1 (en) * 2008-09-11 2010-03-11 CHINA PETROCHEMICAL DEVELOPMENT CORPORATION, Taipei(Taiwan) Method for preparing amide
US9278134B2 (en) 2008-12-29 2016-03-08 The Board Of Trustees Of The University Of Alabama Dual functioning ionic liquids and salts thereof
JP2013503733A (en) * 2009-09-03 2013-02-04 テクニカル・ユニヴァーシティ・オブ・デンマーク Palladium catalyst system comprising zwitterions and / or acid functionalized ionic liquids
JP2011072991A (en) * 2009-09-30 2011-04-14 Chinese Petrochemical Dev Corp Catalyst composition and method for preparing amide
US8552180B2 (en) * 2009-10-30 2013-10-08 China Petrochemical Development Corporation Method for separating amide from amino acid ionic liquid
US20110105793A1 (en) * 2009-10-30 2011-05-05 China Petrochemical Development Corporation Method for separating amide from amino acid ionic liquid
JP2011093905A (en) * 2009-10-30 2011-05-12 Chinese Petrochemical Dev Corp Method of separating amide product from amino acid-type ionic liquid
CN101973940A (en) * 2010-09-28 2011-02-16 盐城师范学院 Continuously synthesizing method of sulfonic acid alkyl group ionic liquid
JP2013043176A (en) * 2011-08-26 2013-03-04 Chinese Petrochemical Dev Corp Catalyst composition for producing amide and method for producing the amide
CN103073405B (en) * 2013-02-04 2015-08-19 河北工业大学 A kind of method of catalysis of pimelinketone oxime hydrolysis reaction in acidic ionic liquid
CN103073405A (en) * 2013-02-04 2013-05-01 河北工业大学 Method for catalyzing hydrolysis reaction of cyclohexanone-oxime in acidic ionic liquid
CN103265435A (en) * 2013-06-20 2013-08-28 江苏大华化学工业有限公司 Clean preparation method of 4-chlorine-3-nitrobenzotrifluoride
CN104030925A (en) * 2014-06-26 2014-09-10 扬州大学 Method for catalytically synthesizing mononitrochlorobenzene
CN105289746A (en) * 2015-11-04 2016-02-03 常州大学 Modified graphene oxide catalyst for Beckmann rearrangement reaction and preparation method thereof
JP2019534278A (en) * 2016-10-21 2019-11-28 華南理工大学 Method for producing maleate ester by catalytic selective oxidation of lignin
WO2022046537A1 (en) * 2020-08-24 2022-03-03 University Of Kansas Processes for the preparation of alkylbenzenes
JP7001861B1 (en) 2021-03-31 2022-01-20 第一工業製薬株式会社 Fluorine-based ionic liquid and its manufacturing method
WO2022209538A1 (en) * 2021-03-31 2022-10-06 第一工業製薬株式会社 Fluorine-based ionic liquid and production method thereof
JP2022157468A (en) * 2021-03-31 2022-10-14 第一工業製薬株式会社 Fluorine-based ionic liquid and manufacturing method of the same

Also Published As

Publication number Publication date
JPWO2005028446A1 (en) 2007-11-15
CN1852898B (en) 2010-04-28
CN1852898A (en) 2006-10-25
TW200517375A (en) 2005-06-01
DE112004001729T5 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
WO2005028446A1 (en) Ionic liquid and method of reaction using the same
Corma et al. Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis
AU774373B2 (en) Immobilised ionic liquids
US7285698B2 (en) Method for manufacturing alkylate oil with composite ionic liquid used as catalyst
FI64135C (en) FOERFARANDE FOER FRAMSTAELLNING AV ALKYLAROMATISKA KOLVAETEN
US6998497B2 (en) Metal bis-triflimide compounds and methods for synthesis of metal bis-triflimide compounds
Bui et al. Alkylation of isobutane with 2-butene using ionic liquids as catalyst
FI79831C (en) Transalkylation or dealkylation process for alkyl aromatic hydrocarbons
AU2002241085A1 (en) Processes using metal bis-triflimide compounds
KR101872798B1 (en) Ionic liquid-solvent complex, preparation and applications thereof
Bhatt et al. Supported 12-tungstophosphoricacid: A recoverable solid acid catalyst for liquid phase Friedel–Crafts alkylation of phenol
US9321046B2 (en) Recovery method and recycling method for boron trifluoride complex
AU2013357218B2 (en) Process for preparing alkylate comprising an improved solids removal step
WO2015171291A2 (en) Hydrocarbon conversion process including catalyst regeneration
RU2182896C2 (en) Diarylmethane or its derivatives production process
EP0671213A1 (en) Process for the recovery of alkylation catalyst
JP3537483B2 (en) Method for alkylating aromatic compounds
Schuster et al. The acylation of 2-methoxynaphthalene with acetic anhydride over Nafion/silica composites and BEA zeolites containing Lewis acid sites
Békássy et al. Selectivity of C-versus O-acylation of diphenols by clay catalysts. I. Acylation of resorcinol with phenylacetyl chloride
CN108479849A (en) The solid-loaded ionic-liquid catalyst and preparation method and application of synthesis of alkyl diphenyl ether
JPH0583529B2 (en)
Sood The role of strongly acidic media on the formylation of toluene
EP0998453A1 (en) Sulphonation process and novel sulphonated compounds
EP0057507A1 (en) Difluoromethanesulphonic acid
WO2002092542A1 (en) Environmentally safe alkylation of aliphatic and aromatic hydrocarbons with olefins using solid hf-equivalent catalysts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026973.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514045

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120040017297

Country of ref document: DE

122 Ep: pct application non-entry in european phase