WO2005024111A1 - Method and equipment for manufacturing reinforced fiber textile - Google Patents

Method and equipment for manufacturing reinforced fiber textile Download PDF

Info

Publication number
WO2005024111A1
WO2005024111A1 PCT/JP2003/011343 JP0311343W WO2005024111A1 WO 2005024111 A1 WO2005024111 A1 WO 2005024111A1 JP 0311343 W JP0311343 W JP 0311343W WO 2005024111 A1 WO2005024111 A1 WO 2005024111A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
yarn
warp
reinforcing fiber
weft
Prior art date
Application number
PCT/JP2003/011343
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Homma
Akira Nishimura
Ikuo Horibe
Eisuke Wadahara
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to CNB038270196A priority Critical patent/CN100543218C/en
Priority to PCT/JP2003/011343 priority patent/WO2005024111A1/en
Priority to AU2003261953A priority patent/AU2003261953B2/en
Priority to US10/570,701 priority patent/US7779870B2/en
Priority to AT03818577T priority patent/ATE488631T1/en
Priority to DE60335041T priority patent/DE60335041D1/en
Priority to EP03818577A priority patent/EP1662033B1/en
Publication of WO2005024111A1 publication Critical patent/WO2005024111A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C15/00Calendering, pressing, ironing, glossing or glazing textile fabrics

Definitions

  • the present invention relates to a method for producing a reinforcing fiber woven fabric and an improvement in an apparatus for producing the same. More specifically, the present invention relates to a method for producing a reinforcing fiber woven fabric in which a fiber width is increased in producing a reinforcing fiber woven fabric useful as a base material for a fibrous plastic, and to an improvement in a manufacturing apparatus therefor.
  • Background art
  • the reinforcing woven yarn is used as the warp yarn and the weft yarn in order to minimize the crimp caused by the crossing of the warp yarn and the weft yarn and to exhibit high strength.
  • the reinforcing fibers are carbon fiber yarns
  • thin yarns have become expensive reinforcing fabrics due to low productivity of the yarns and fabrics, and have been mainly used for aircraft applications, which have a large weight-reducing effect.
  • Japanese Patent Application Laid-Open No. 6-136632 proposes a carbon fiber flat yarn woven fabric in which thick carbon fiber yarns are interwoven in a flat shape.
  • This woven fabric is woven at a large weaving pitch using carbon fiber yarns of large fineness, which are inexpensive to manufacture, so that the woven fabric has high productivity and can be provided at low cost. Since the crimp at the crossing point is small, it has the characteristic of exhibiting high strength.
  • carbon fiber yarns are formed by bundling a large number of multifilaments made of carbon fiber with a slight sizing agent so that the cross section of the yarn bundle becomes flat.
  • a woven fabric with gaps between the yarns. Therefore, if such a woven fabric is used to form a fiber-reinforced composite material molded product (hereinafter referred to as a molded product), the resin becomes unevenly distributed between the yarns, and the carbon fiber content is high. There is a problem that a molded article is not formed, and a portion where the resin is unevenly distributed when a stress is applied to the molded article becomes a starting point of rupture and high mechanical properties are not exhibited.
  • a molded article in which the resin is unevenly distributed has a problem that the resin is unevenly distributed due to curing shrinkage of the resin, so that the portion in which the resin is unevenly shrinks largely, so that the molded article has an uneven surface.
  • Japanese Patent Application Laid-Open No. 2-307965 discloses that after forming a woven fabric, a large number of spherical bodies are rotated and moved under pressure to open the woven fabric. Correction methods have been proposed.
  • the yarn bundle of the yarn is cut. Since the surface is converged in a substantially circular shape, the yarn width is expanded by pressing the weaving yarn with the convex portion of the spherical body, which has an effect of correcting the aperture.
  • a woven fabric having a large yarn pitch such as a flat yarn woven fabric made of the carbon fiber
  • the convex portion of the spherical body rolls along the space between the yarns, so that the action of increasing the gap between the yarns works, and the yarn width is rather narrowed.
  • the flat yarn woven fabric which has a weak binding force between the warp and the weft and is easily misaligned, has a misalignment caused by the movement of the spherical body. There are problems that can easily occur.
  • An object of the present invention is to solve the conventional problems described above, and to manufacture a reinforcing fiber woven fabric using a flat yarn as a woven yarn, by adding an effective yarn width widening method during the manufacturing process.
  • An object of the present invention is to provide a method for producing a reinforcing fiber woven fabric in which reinforcing fibers are uniformly dispersed without any gaps between them and an apparatus for producing the same. Disclosure of the invention
  • a method for producing a reinforcing fiber woven fabric of the present invention is as follows.
  • the cylindrical body is reciprocated in the warp yarn direction of the woven fabric while rolling the cylindrical body on the woven fabric under pressure. Characterized in that the yarn width of at least the warp yarn constituting the woven fabric is increased in the weft direction.
  • the pressure applied to the woven fabric of the cylindrical body is preferably in the range of 100 to 200 g per 1 cm of the axial length of the cylindrical body.
  • the width of the warp is preferably widened in the weft direction in a range of 2 to 50%.
  • the woven fabric has a thick non-twisted reinforcing fiber yarn having a fineness in a range of 400 to 4000 TEX at a woven yarn pitch in a range of 5 to 32 mm. It is preferable to use a woven fabric in which the relationship between the fineness of the reinforcing fiber yarn and the pitch of the woven yarn has the following relationship.
  • T Fineness of captive fiber
  • the woven fabric may be a warp yarn having a fineness in a range of 400 to 4000 TEX and a thick non-twisted reinforcing fiber yarn in a range of 4 to 16 mm.
  • the strong fibers are preferably carbon fibers.
  • the number of filaments of the carbon fiber is preferably in the range of 6,000 to 500,000.
  • the cylindrical body is arranged in a plurality in a staggered manner in the warp direction to increase the yarn width of the woven fabric.
  • the woven fabric is moved in the warp direction along the surface of the rotatable guide roller, and the yarn width is continuously increased on the woven fabric in surface contact with the guide roller. Is preferred.
  • the average speed at which the cylindrical body is reciprocated is preferably in the range of 50 to 30 Omm / sec.
  • the woven fabric is a flat yarn woven fabric having a flat structure in which a warp and a weft are made of carbon fiber yarn, and the weft is injected by jet jet from injection holes arranged in the weft direction of the woven fabric. It is preferable to perform a spreading process and a widening process, and then widen the yarn width in the weft direction by any of the methods described above.
  • the method for producing a reinforcing fiber woven fabric according to any of the above-described methods (of course, the production method includes a widening step) is further provided on one side or both sides of the reinforcing fiber woven fabric.
  • a guide roller that rotates while being in surface contact with a continuously passing reinforcing fabric at a predetermined winding angle; a plurality of cylindrical bodies rotatably supported on the fabric in contact with the surface; And a drive unit for reciprocating the body in the warp direction of the woven fabric.
  • the cylindrical body has a diameter of
  • the cylindrical body is in the range of 10 to 40 mm and the length thereof is in the range of 10 to 50 mm, and the cylindrical bodies are arranged in a staggered manner in the warp direction of the woven fabric.
  • FIG. 1 is a schematic perspective view for explaining the production method of the present invention.
  • FIG. 2 is a partial cross-sectional view for explaining the principle of the manufacturing method of the present invention.
  • FIG. 3 is a perspective view of one embodiment in which the production method of the present invention is continuously performed on a loom.
  • FIG. 4 is a plan view illustrating a method for arranging cylindrical bodies according to the present invention.
  • FIG. 5 is a partial cross-sectional view for explaining one embodiment of the manufacturing apparatus of the present invention.
  • FIG. 1 is a perspective view for explaining a method for producing a reinforcing fiber woven fabric using a yarn width widening method which is a feature of the production method of the present invention.
  • reference numeral 1 denotes a woven fabric used as a reinforcing woven fabric in a fiber-reinforced plastic, which is a so-called two-way woven fabric in which warp yarns 2 and weft yarns 3 of reinforcing yarns are woven by being crossed with each other. Since the weaving method of the two-way fabric 1 itself can be woven using a well-known, for example, Levia weaving machine, the description up to the weaving step here is omitted.
  • Reference numeral 4 denotes a dumbbell-shaped cylindrical body for widening the woven fabric 1 in the weft 3 direction (the direction of arrow A in the figure).
  • a plurality of yarns are arranged in parallel with each other so that their rotation axes are aligned with the weft direction of the fabric, and are pressed in the direction of the warp yarn 2 from above the fabric 1 with an appropriate pressing force applied to the fabric 1.
  • the width is increased by reciprocating (direction of arrow B). By this widening step, the width of each woven yarn is widened, and a uniform woven fabric having no gap between the woven yarns can be obtained.
  • the pressing can be performed by a spring-air cylinder.
  • the pressure it is preferable that the pressure is as high as possible because the widening effect is large, but if it is too high, there is a problem that fluff is generated, especially when the reinforcing fiber is carbon fiber. It is preferable that a load of 100 to 2000 g per 1 cm of the length of the cylindrical body is applied vertically to the surface of the fabric.
  • the reciprocating speed (product of amplitude (mm) and frequency (times / second)) is preferably in the range of 50 to 300 mm / second.
  • the reciprocating speed product of amplitude (mm) and frequency (times / second)
  • the reciprocating speed is preferably in the range of 50 to 300 mm / second.
  • arranging multiple rows of cylindrical bodies is the same as moving the same part of the fabric several times with one reciprocation. High effect can be obtained with low frequency.
  • the widening effect can be obtained even if the amplitude is reduced and the frequency is increased as the widening condition.However, since the widening effect needs to be widened within a very short distance, it is sufficient. It cannot be widened.
  • the yarn when the amplitude is increased, the yarn is expanded sequentially over a long distance, so that the width can be uniformly and largely expanded.
  • the preferred range of the amplitude is about 10 to 10 Omm, more preferably about 20 to 50 mm.
  • Fig. 1 shows the case where the woven fabric is in a stationary state.
  • the cylindrical body 4 is sequentially moved in the direction of the arrow C while reciprocating in the direction of the arrow B, and the yarn width is increased at a certain fabric interval.
  • the fabric can be intermittently moved by an appropriate means.
  • the cylindrical body 4 itself may be moved forward and backward while rolling, or may be moved in one direction without reciprocating, but moving the same portion of the fabric a plurality of times may result in a larger width. It is preferable to move while reciprocating since the effect can be obtained.
  • FIG. 2 is a partial cross-sectional view for explaining the principle of widening the yarn in the width direction, and shows a cut surface of the weft 3 of the woven fabric 1 in contact with the cylindrical body 4 in the direction of 3. is there.
  • the narrow width W1 of the warp yarn 2 means that the cross-section of the reinforcing fiber bundle has an elliptical shape close to a circle, and rises in the thickness direction of the woven fabric.
  • the width is widened to W2. If the cylindrical body 4 is rolled in the direction of the warp 2 in such a state, the width of the warp 2 can be increased in the direction of the weft 3.
  • the warp yarn 2 and the weft yarn 3 are both reinforcing fibers and each has a woven structure in which the yarns are crossed with each other, since the crossing increases the width of the yarns, they become resistance to each other. It is difficult to increase the yarn width only by moving the yarns until the gap between the yarns is completely eliminated. Therefore, it is preferable to sequentially increase the yarn width by passing the same portion several times in the cylindrical body 4 to sequentially widen the yarn width. For this purpose, it is preferable to reciprocate the cylindrical body 4 in the warp yarn direction.
  • the yarn pitch is as large as 5 to 32 mm, even though it is a thick non-twisted captive fiber yarn having a fineness of 400 to 4000 TEX.
  • This is effective when producing a flat yarn woven fabric, which is a low-weight woven fabric of 80 to 300 g / m 2 woven with a woven fabric. That is, the low-weight woven fabric made of such thick reinforcing fiber yarns has a problem that the woven yarns are liable to be bundled during weaving and are likely to become fine yarns, and a gap is generated between the woven yarns. According to the method, the generation of such a gap is suppressed, and a woven fabric having no gap between the yarns can be manufactured.
  • Reinforcing fiber yarns used in the method for producing a reinforcing fiber woven fabric of the present invention include: Carbon fibers, glass fibers, aramide fibers, high-strength synthetic fibers, and the like can be used, and among them, carbon fibers having high specific strength and specific elastic modulus are preferable.
  • Carbon fibers, glass fibers, aramide fibers, high-strength synthetic fibers, and the like can be used, and among them, carbon fibers having high specific strength and specific elastic modulus are preferable.
  • the yarn width can be increased even when the sizing agent is attached to the carbon fiber yarn and the fibers are fixed to each other. It has features that can be.
  • the sizing agent is effective for widening the yarn width of a reinforcing woven fabric composed of carbon fiber yarns to which 0.5 to 2.0% is attached.
  • the binding force of the warp yarn 2 and the weft yarn 3 is very weak, and there is almost no resistance that inhibits the spreadability due to the crossing. As a result, it can be easily spread in the plane direction of the fabric.
  • the flat yarn woven fabric 1 made of the carbon fiber has a warp yarn 2 having a fineness of at least 400 to 4,000 TEX and a filament number of 6,000 to 500,000 thick yarns. It is preferable that the woven carbon fiber yarn is a woven fabric in which large woven yarn pitches of 5 to 32 mm are arranged.
  • the woven yarn pitch relates to the fineness of the carbon fiber yarn used, and is preferably a carbon fiber flat yarn woven fabric having the following relationship.
  • the above formula indicates that the woven yarn pitch should be relatively small when using carbon fiber yarns with small fineness, and that the woven yarn pitch should be large when using carbon fiber yarns with high fineness. Is shown.
  • the range of the constant k is important, and when it is less than 18 ⁇ 10, the weave yarn pitch becomes small and it approaches a normal carbon fiber woven fabric. Since the gap between the yarns is small, it is not necessary to increase the width of the yarn.
  • thick non-twisted reinforcing fibers having a fineness of 400 to 4000 TEX are arranged in the warp yarn 2 direction in a woven yarn pitch of 4 to 16 mm, and the fineness is 1 to 30
  • T fineness of Totsuyo fiber (TEX) k: (1 0 ⁇ 2 8) X 1 0 one 2
  • the weft consisting of the auxiliary yarn in the unidirectional fabric is the warp yarn of the reinforcing fiber yarn.
  • the main purpose is to integrate the warp yarns that are arranged in an interlaced manner, and the weft yarn, which is an auxiliary yarn, is a fine fiber yarn in order to minimize the crimp of the force-absorbing fiber yarn due to the interlacing. It is preferable that
  • weft is thinner than 1 TEX, there is a problem that the strength is insufficient to integrate the warp of the reinforcing fiber, and the weft is cut off with a slight external force. The purpose of integration cannot be achieved.
  • the fineness of the weft yarn exceeds 30 TEX, the warp yarn of the reinforcing fiber yarn is crimped due to the crossing, and the weft yarn appears in a convex shape on the surface of the reinforcing fabric, and the unevenness of the surface becomes large.
  • a more preferable range of the weft fineness is 1 to 10 TEX.
  • the relationship between the fineness of the reinforcing fibers and the pitch when limited to the unidirectional woven fabric is basically the same as described above, but the weft of the unidirectional woven fabric in the present invention has a very fine fineness.
  • the constant k is preferably in the range of 0.01 to 0.28, which is a smaller value than the case described above.
  • the reinforcing fiber using the yarn width expanding method which is a feature of the present invention is used.
  • the method of manufacturing the woven fabric is a method of expanding the yarn width while rolling the cylindrical body from above the woven fabric in a pressurized state.
  • the manufacturing method of the present invention is a method in which the cylindrical body 4 is reciprocated in the direction of the warp yarn 2 to widen the width. Therefore, for the warp yarn 2, the cross section of the yarn bundle where the filaments are gathered is continuous in the yarn axis direction.
  • the width of the weft yarn 3 can be effectively widened because the yarn is expanded sequentially, but the weft yarn 3 is only crushed instantaneously in the cross section of the yarn bundle, so the effect of expanding the width is smaller than that of the warp yarn.
  • weft yarn 3 was spread by air jet injection beforehand, and then expanded by a cylindrical body.
  • the method of widening the warp width is more preferable because the cylindrical body can be smoothly rolled and the warp and weft yarn widths can be reliably widened.
  • Such a spreader and spreader using an air jet uses, for example, a nozzle on a loom in which air injection holes having a diameter of 0.2 to 0.5 mm are arranged at a pitch of several mm in parallel with the weft direction of a woven fabric. It is installed to face the fabric surface.
  • the weft yarn When the fabric passes while injecting air, the weft yarn is opened and the yarn ⁇ ; At this time, since the take-up tension is applied to the warp yarn 2, it is difficult to increase the warp yarn width by the air jet. In this way, if the weft yarn 3 is expanded in advance, the cylindrical body 4 can spread the warp yarn having a narrow yarn width while rotating smoothly. At the same time, it is possible to expand the part where the expansion is slightly insufficient due to the air opening.
  • the woven structure is not particularly limited, and may be a flat structure, a twill structure, or a satin structure.
  • a plain weave in which one warp yarn and one weft yarn are alternately interlaced is preferable because misalignment is less likely when the cylindrical body is reciprocated.
  • the low-melting resin fibers are inserted in the warp or weft direction, and after forming a woven fabric, the reinforcing fibers are fixed to each other by heating to a temperature higher than the softening point or the melting point of the low-melting resin fibers.
  • the cylindrical body is rolled on the woven fabric into which the low-melting-point resin fiber has been inserted while reciprocating in the warp direction of the woven fabric while rolling the woven fabric under pressure.
  • the woven yarn is fixed in a widened state, so that the fabric structure does not change during subsequent handling.
  • a molded woven fabric base material can be provided.
  • the method for introducing the low-melting-point resin fiber in the case of a bidirectional woven fabric, it is aligned with the warp and / or weft of carbon fiber during weaving.
  • low-melting resin fibers may be drawn together with the yarn yarns, and auxiliary yarns may be used.
  • the core yarn of the core / sheath coated yarn is a fiber yarn that hardly undergoes thermal shrinkage at the heating temperature at which the low melting point resin is melted by heat, and shrinks at 150 ° C dry heat.
  • the ratio is preferably 1% or less, and fineness yarn made of glass fiber, aramide fiber yarn, and vinylon fiber is preferable.
  • low melting point resin examples include copolymerized polyester resin having a melting point of 90 to 180 ° C.
  • a powdery or fibrous resin is applied and adhered to one or both surfaces of the woven fabric to stabilize the morphology of the woven fabric, or to provide an adhesive function between the laminated products or to strengthen the interlayer between the molded products.
  • a composite base material in which reinforcing fibers are uniformly dispersed by applying and attaching a powdery or fibrous resin after the weaving yarn widening step. it can.
  • the resin to be applied and adhered is a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin is epoxy, phenol, unsaturated polyester, butyl ester, etc., which contains a curing agent or a catalyst. Is also included.
  • the thermoplastic resin include polyesters, polyamides, polyurethanes, polyether sulfones, and the like, copolymers and modified products thereof, and mixtures of two or more kinds.
  • the amount of powder or fibrous resin adhered at this time is preferably 2 to 20% by weight, although it depends on the purpose. From the viewpoint of the morphological stability of the woven fabric, it is preferable that the resin adhesion amount is large. However, if the resin adhesion amount exceeds 20% by weight, the entire surface of the woven fabric will be covered with the resin. Impregnation, it takes a long time to impregnate, There is a problem to be formed.
  • the resin adhesion amount is less than 2% by weight, the powder or fibrous resin cannot be uniformly dispersed on the fabric surface, and there are portions where the reinforcing fibers do not adhere to each other. Since the retention property is insufficient, the optimum amount of adhesion is within the above range.
  • the powder resin is uniformly applied on the woven fabric in which the yarn width of the yarn is widened, and then applied to the woven fabric surface by heating. be able to. It is also possible to adhere by passing through a heating roller.
  • a heating roller In the case of a fibrous form, it can be formed into a nonwoven fabric and attached to the woven fabric by heat fusion or needling.
  • Non-woven fabrics are melt blown, spun pounds, and the like. In the case of heat fusion, it is possible to adhere at a relatively low temperature by mixing 10 to 40% by weight of a low melting point resin. As described above, by adhering a powdery or fibrous resin to the surface of the woven fabric, the entire surface of the woven fabric is not covered with the resin, so the flow path of the matrix resin is secured and the resin is impregnated. The problem that hinders does not occur.
  • FIG. 3 a fabric manufacturing apparatus according to the present invention will be described with reference to FIGS. 3 to 5.
  • FIG. 3 a fabric manufacturing apparatus according to the present invention will be described with reference to FIGS. 3 to 5.
  • FIG. 3 is a perspective view of a preferred arrangement example of the cylindrical body 4 shown in FIG. 1, and the fabric 1 is moved along the surface of the rotatable guide roller 5 in the direction C in FIG.
  • the cylindrical body 4 By reciprocating the cylindrical body 4 at a constant amplitude in the warp direction on the woven fabric 1 which is in surface contact with 5, the yarn width of the individual yarns constituting the woven fabric is continuously increased.
  • the cylindrical body 4 is rotatably supported on both ends of one shaft by appropriate bearings, and is supported in the center portion of the shaft to reciprocate in the warp direction. round trip It can be moved, and the pressure applied to the fabric 1 can be appropriately adjusted by the pressurizing means.
  • the guide roller 5 is a cylindrical rotary roller having a diameter of about 100 to 50 O mm and a smooth surface, and rotates in a negative direction according to the movement of the fabric by frictional force by contacting the surface of the guide roller 5. .
  • the woven fabric 1 is arranged along the outer peripheral curved surface of the guide roller 5 at an appropriate winding angle, the pulling force of the woven fabric 1 in the warp direction acts on the center axis direction of the guide roller 5.
  • a high frictional force acts on the contact surface between the guide roller surface and the fabric 1, and even when the cylindrical body 4 (widening roller) is reciprocated from above, the weft of the fabric 1 is not displaced, and the weft yarn is not shifted. It can be widened.
  • the arrangement of the cylindrical body 4 may be a single one over the entire width of the fabric, but it is difficult to apply pressure uniformly over the entire width of the fabric with such a long cylindrical body. Therefore, although not shown in the present embodiment, the length of the cylindrical body is preferably in the range of 10 to 200 mm, and more preferably in the range of 10 to 5 Omm.
  • two cylindrical bodies are attached to both ends of the shaft in a rotatable state by bearings, and each shaft supports the center part so that a load acts. Uniform pressure can be applied to the fabric with rollers.
  • two cylindrical bodies 4 are arranged in a two-cut row, and they are arranged as a set in two rows before and after.In this method, however, two cylindrical bodies 4 are arranged between the two cylindrical bodies. It is necessary to provide a support for supporting the shaft, and there is a gap between the two cylindrical bodies that does not involve the pressing of the rollers. Therefore, as shown in FIG. 4, it is a preferable embodiment that two cylindrical bodies 4 are arranged in a staggered manner in the traveling direction of the woven fabric so that the yarn can be uniformly spread over the entire width of the woven fabric. .
  • the moving speed of the fabric 1 in the B direction that is, the weaving speed of the fabric
  • the speed is preferably as low as possible, but the range of 0.2 to 2.0 m / min is preferable in order not to affect the manufacturing cost.
  • the widening device is installed in a separate process in the same loom. This is a preferred embodiment because it can be provided without any modification.
  • a guide roller 5 is provided, on which the yarn width can be increased.
  • FIG. 5 is a partial side view of a device for reciprocating a pair of front and rear two-width widening rollers 4 in the warp direction while applying an appropriate pressing force to the surface of the fabric 1 on the guide rollers 5.
  • the cylindrical body 4 is fixed at the center of the shaft to which the cylindrical body is attached to a U-shaped support arm 6, and one support arm 6 has a 4-unit cylindrical body 4 attached thereto. I have.
  • Each support arm 6 is connected to a pressing member 8, and the pressing member 8 is reciprocated by a reciprocating drive connecting rod 7 around a rotation axis 0.
  • the driving member 8 is capable of oscillating in a concentric manner in parallel with the arc of the guide roller 5 by a guide 9 (not shown), and a compression panel is provided between the support arm 6 and the pressing member 8.
  • the compression spring 10 presses the roller 5 in the direction of the roller 5 so that the cylindrical body 4 applies pressure to the fabric 1 surface. It is preferable that the diameter of the cylindrical body 4 is as small as possible because a high linear pressure can be applied with the same pressing load, but the minimum diameter is determined from the bearing size in order to incorporate the bearing for smooth rotation.
  • the diameter of the cylindrical body is 12 to 60 mm, more preferably 12 to 20 mm.
  • the diameter is less than 12 mm, there is a problem that the bearing becomes small and cannot withstand a high pressing pressure. Therefore, the diameter needs to be 12 mm or more.
  • the length of the cylindrical body 4 is preferably large from the viewpoint of manufacturing, but is preferably 200 mm or less in order to distribute a uniform load in the length direction of the cylindrical body. It is more preferably O mm or less.
  • the surface of the cylindrical body is preferably smooth to avoid damaging the carbon fiber, and the end is preferably chamfered.
  • the surface of the carbon fiber may be rubber-coated because the fiber has a high elastic modulus and the fiber is brittle and the fiber is easily damaged.
  • the woven fabric 1 is a woven fabric in which the reinforcing fiber yarns are the warp yarns 2 and the weft yarns 3, and the size of the reinforcing fiber yarns is 400 to 4,000 TEX, which is thick, non-twisted, and arranged at a large pitch. Things.
  • the fineness of the reinforcing fiber yarn and the weft pitch have the following relationship, the opening ratio at the intersection of the warp and weft of the woven fabric is 0.3 or less, and the size of one opening is 1 mm 2 or less.
  • T Fineness of reinforcing fiber
  • the reinforcing fiber is a carbon fiber, since a fiber-reinforced plastic having a high specific strength and a specific elastic modulus can be obtained.
  • the fineness of the carbon fiber is 400 to 4000 TEX, thick carbon fiber yarn, and the fineness of the conventional carbon fiber is less than 200 TEX.
  • There was a basis weight that is to 8 0 to 3 0 0 g / low basis weight carbon fiber fabric of m 2 the productivity of the woven material is 2 to become 2 0 fold, also thick carbon fibers are inexpensive manufacturing cost
  • a low-cost carbon fiber fabric can be provided.
  • the carbon fiber is a thick carbon fiber and the cross section of the yarn is flat and intersects with each other, a carbon fiber reinforced plastic having a small crimp of the yarn and exhibiting high mechanical properties is expected.
  • the measurement of the aperture ratio is performed by sampling a warp yarn 2 and a weft yarn 3 from at least 10 different places of a 1-m long woven fabric so that at least 10 or more warp yarns and weft yarns 3 enter the warp yarn and the warp yarn from each sample.
  • the interval and width of 10 weft yarns can be measured with a vernier caliper to 0.1 mm, and the average value of each can be obtained by the following formula (1).
  • the opening area is the value of the numerator in the above equation.
  • the yarn spacing should be The distance between the center lines of the woven yarns to be determined is the distance from the end in the yarn width direction to the end of the adjacent yarn in obtaining the opening ratio and opening area of the present invention.
  • the opening ratio of the woven fabric of the present invention is 0.3% or less, and the area of one opening is 1 mm 2 or less.
  • the pre-predator has a large opening. Therefore, if the area of the opening is 1 mm 2 or less, may include a tree fat enough in the opening, the opening since surface tension acts even resin present in the opening during the drying of the solvent It doesn't grow.
  • a carbon fiber flat yarn having a filament count of 12,000, a tensile strength of 480 MPa, a tensile modulus of 230 GPa, and a yarn width of 6 mm was used.
  • a warp yarn 2 and a weft yarn 3 are used, and a flat-textured flat yarn woven fabric 1 having a density of 8.3 mm for the warp yarn and the weft yarn is 8.3 mm, respectively.
  • the weft yarn 3 is spread and widened by air jetting at a supply air pressure of 0.5 Pa, and then the weft yarn 3 is processed by the cylindrical body 4 described in FIG.
  • Widening processing was performed by the widening method.
  • the widening processing conditions are as follows: the pressing force applied to the widening roller 4 is approximately 200 g per 1 cm length of one widening roller, and the amplitude (direction B in the figure) is 50 mm in four rows of widening rollers. Then, the vibration was performed twice at Z seconds.
  • the size of the cylindrical body 4 was 12 mm in diameter and 15 mm in length.
  • Table 1 shows the evaluation results of the woven fabric before and after the air treatment and the woven fabric obtained by widening the yarn width of the woven fabric by the cylindrical body widening method of the present invention.
  • the weft yarn width is greatly widened by the agitating process, but the warp yarn width is slightly narrowed by the agitating process, and the warp yarn width is greatly widened in the A direction by the yarn width widening method by the widening roller process.
  • a very uniform fabric was obtained in which the widths of both the warp and weft yarns were widened, and where there was no gap at the intersection of the warp and weft yarns.
  • Example 2 a woven fabric which was woven by the same method as in Example 1 but did not use the manufacturing method of the present invention in the spreading and widening process by air jetting and the widening process by the cylindrical body 4 was used.
  • the woven fabric obtained by subjecting the woven fabric to the weft opening process only by air jet (a woven fabric not using the manufacturing method of the present invention in the process of widening by the cylindrical body 4) is shown in the following table as Comparative Example 2.
  • the yarn width of the woven fabric of Comparative Example 1 was slightly wider than that of the carbon fiber flat yarn used, but the width of the warp yarn and the weft yarn crossed each other because it was narrower than the weft yarn interval. There was a gap in the fabric, the opening ratio was 3.3%, and the maximum opening area was 4.5 mm 2 .
  • the weft yarn was widened by an air jet and the weft yarn width was increased. Although the width of the warp was narrow, the width of the warp was narrow, so that the cross section of the warp and the weft was smaller than the fabric of Comparative Example 1, but the opening ratio was 0.4%. Further, although the opening ratio of the woven fabric of Comparative Example 2 was small, the warp yarn portion became convex with respect to the woven fabric surface due to the narrow warp yarn width, and the woven fabric had an uneven surface.
  • the invention according to the present invention is a manufacturing method and a manufacturing apparatus for reciprocating a woven fabric made of reinforcing fibers in a warp direction while rolling the woven fabric made of a reinforcing fiber against the woven fabric in a pressurized state. It can be spread in the width direction of the fabric. Therefore, a fiber-reinforced plastic product in which reinforcing fibers are uniformly dispersed can be obtained as a reinforcing base material of a final product.
  • the widening method used in the method for producing a reinforcing fiber woven fabric of the present invention is a method for producing a reinforcing fiber woven fabric, which is a woven fabric which is easily misaligned, such as a carbon fiber flat yarn woven fabric. Since the width of the yarn is increased by reciprocating the yarn while rolling in the warp direction, the yarn width can be surely increased without disturbing the arrangement of the yarn as in the prior art. Therefore, a woven fabric having no gap between the yarns can be obtained. Further, since the manufacturing method and apparatus of the present invention is a very simple method, it is possible to continuously perform a yarn width widening process on a loom. '
  • the production method and the production apparatus of the present invention can be widely used in fields such as aircraft members and general industrial applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Materials For Medical Uses (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A method and equipment for manufacturing reinforced textile (1) formed by weaving reinforced fibers at least as the warp (2), the method characterized by comprising the steps of reciprocatingly moving cylindrical bodies (4) in the direction of the warp (2) of the textile while rolling on the textile (1) in a pressed state against the textile (1) to increase the width of at least the warp (2) forming the textile in the direction of the weft (3); the equipment comprising guide rollers (5) rotating in surface-contact with the textile (1) continuously passed therethrough, the plurality of cylindrical bodies (4) rotatably supported on the textile in surface-contact with the guide rollers, and drive parts (6 to 10) reciprocatingly moving the cylindrical bodies in the direction of the warp (2) of the textile.

Description

明 細 書 捕強繊維織物の製造方法および製造装置 技 分野  Description Manufacturing method and manufacturing apparatus for strong fiber woven fabric
本発明は、 補強繊維織物の製造方法およびその製造装置の改良に関す る。 詳しく は繊維プラスチック用基材と して有用な補強繊維織物を製造 するに際し、 その糸幅を拡幅する点に改善を加えた補強織物の製造方法 およびその製造装置の改良に関する。 背景技術  The present invention relates to a method for producing a reinforcing fiber woven fabric and an improvement in an apparatus for producing the same. More specifically, the present invention relates to a method for producing a reinforcing fiber woven fabric in which a fiber width is increased in producing a reinforcing fiber woven fabric useful as a base material for a fibrous plastic, and to an improvement in a manufacturing apparatus therefor. Background art
従来より、 繊維強化プラスチックを製造する際の中間基材と して、 織 物の形態のものが多用されている。 その捕強用織物は、 たて糸とよこ糸 の交錯によるク リ ンブをできるだけ小さく して高い強度発現を発揮させ る目的で、 上記たて糸とよこ糸には細い補強繊維糸が用いられている。 特に補強繊維が炭素繊維糸の場合、 細い糸は、 糸および織物の生産性 が低いために高価な補強織物になり、 主と して軽量化効果の大きい航空 機用途などで用いられていた。  2. Description of the Related Art Conventionally, as an intermediate base material for producing fiber reinforced plastic, a woven form has been widely used. The reinforcing woven yarn is used as the warp yarn and the weft yarn in order to minimize the crimp caused by the crossing of the warp yarn and the weft yarn and to exhibit high strength. In particular, when the reinforcing fibers are carbon fiber yarns, thin yarns have become expensive reinforcing fabrics due to low productivity of the yarns and fabrics, and have been mainly used for aircraft applications, which have a large weight-reducing effect.
しかしながら、 最近の航空機産業の低迷もあって、 材料の低コス ト化 が強く打ち出され、 安価な炭素繊維織物の出現が望まれている。  However, due to the recent slump in the aircraft industry, the cost of materials has been strongly reduced, and the emergence of inexpensive carbon fiber fabrics is desired.
そのような状況下で、 例えば特開平 6— 1 3 6 6 3 2号公報には、 太 い炭素繊維糸を扁平状で交錯させた炭素繊維扁平糸織物が提案されてい る。 この織物は、 製造コス トが安価である太い繊度の炭素繊維糸を用い て、 大きな織り ピッチで織られた織物であるから、 織物の生産性も高く、 安価な織物が提供でき、 また織糸の交錯部でのク リ ンプも小さいので高 い強度発現を発揮する特徴がある。 しかし、 炭素繊維糸は、 炭素繊維からなる多数本のマルチフィラメン トが僅かなサイジング剤でその糸束断面が扁平状になるように集束され たものであるから、 製織工程によってその扁平状の糸束断面が潰されて 細糸化し、 織糸間に隙間が生じた織物となる。 したがって、 そのような 織物を用いて繊維強化複合材料成形品 (以下、 成形品という。 ) に成形 すると、 織糸間に樹脂が偏在した成形品となってしまい、 炭素繊維の含 有率の高い成形品にならないし、 また成形品に応力が作用した際に樹脂 が偏在した部分が破壌の起点になって高い力学的特性が発揮されないと いう問題がある。 また、 樹脂が偏在した成形品は、 樹脂の硬化収縮によ つて樹脂が偏在した箇所が大きく収縮するために窪み、 表面に凹凸が生 じた成形品になってしまう問題がある。 Under such circumstances, for example, Japanese Patent Application Laid-Open No. 6-136632 proposes a carbon fiber flat yarn woven fabric in which thick carbon fiber yarns are interwoven in a flat shape. This woven fabric is woven at a large weaving pitch using carbon fiber yarns of large fineness, which are inexpensive to manufacture, so that the woven fabric has high productivity and can be provided at low cost. Since the crimp at the crossing point is small, it has the characteristic of exhibiting high strength. However, carbon fiber yarns are formed by bundling a large number of multifilaments made of carbon fiber with a slight sizing agent so that the cross section of the yarn bundle becomes flat. The cross-section of the bundle is crushed and turned into a thin yarn, resulting in a woven fabric with gaps between the yarns. Therefore, if such a woven fabric is used to form a fiber-reinforced composite material molded product (hereinafter referred to as a molded product), the resin becomes unevenly distributed between the yarns, and the carbon fiber content is high. There is a problem that a molded article is not formed, and a portion where the resin is unevenly distributed when a stress is applied to the molded article becomes a starting point of rupture and high mechanical properties are not exhibited. In addition, a molded article in which the resin is unevenly distributed has a problem that the resin is unevenly distributed due to curing shrinkage of the resin, so that the portion in which the resin is unevenly shrinks largely, so that the molded article has an uneven surface.
ところで、 織糸間に隙間ができる要因と しては、 以下のものが挙げら れる。  By the way, the following can be cited as factors that cause a gap between the yarns.
(1)炭素繊維扁平糸自身の糸幅変動により、 糸幅の狭い細糸の周りに 隙間が生じる。  (1) Due to the fluctuation of the yarn width of the carbon fiber flat yarn, a gap is created around the narrow yarn with a narrow yarn width.
(2)炭素繊維糸が卷かれたポビンを解舒した際、 卷き癖により仮撚が 織り込まれて、 その撚り部が細糸になって織糸糸間に隙間が生じる。  (2) When unwinding the pobin on which the carbon fiber yarn is wound, false twist is woven due to the winding habit, and the twisted portion becomes a fine yarn and a gap is generated between the yarns.
(3)たて糸を開口する綜銑が箴羽との関係位置がずれてたて糸幅が狭 くなり、 織糸間に隙間が生じる。  (3) The position of the pig iron that opens the warp is shifted from the position of the pig iron, and the width of the warp is reduced, resulting in a gap between the yarns.
(4)よこ糸が簇打ちされる際に、 よこ糸幅が狭くなつてよこ糸間に隙 間が生じる。  (4) When the weft yarn is strung, a gap is generated between the weft yarns because the width of the weft yarn becomes narrow.
従来、 このような問題点に対して、 特開平 2— 3 0 7 9 6 5号公報に は、 織物にした後に多数個の球状体を加圧状態下で回転移動させて織物 の目開きを矯正する方法が提案されている。  Conventionally, in order to solve such a problem, Japanese Patent Application Laid-Open No. 2-307965 discloses that after forming a woven fabric, a large number of spherical bodies are rotated and moved under pressure to open the woven fabric. Correction methods have been proposed.
この矯正方法によれば、 フィラメント数が 3 . 0 0 0本程度の細い炭 素繊維糸が小さい織糸ピツチで織られた織物においては、 織糸の糸束断 面がほぼ円形状に集束されているため、 その織糸を球状体の凸部で押し 圧されることにより糸幅が拡がり、 目開きが矯正させる効果はある。 According to this straightening method, in a woven fabric in which a fine carbon fiber yarn having a number of filaments of about 3.00 is woven with a small yarn pitch, the yarn bundle of the yarn is cut. Since the surface is converged in a substantially circular shape, the yarn width is expanded by pressing the weaving yarn with the convex portion of the spherical body, which has an effect of correcting the aperture.
しかし、 前記炭素繊維からなる扁平糸織物のように織糸ピツチが大き い織物においては、 球状体の凸部 (球の中心部) が扁平状の織糸と織糸 との間に位置する場合があり、 その際に球状体の凸部が織糸間に沿って 転がるために織糸間の隙間を大きくする作用が働き、 かえって糸幅を狭 く してしまう問題がある。 また、 球状体の回転は、 位置決めメ ッシュと の摩擦により軽快に回転しないため、 たて糸とよこ糸の拘束力が弱くて 簡単に目ずれし易い扁平糸織物においては、 球状体の移動で目ずれを起 こし易い問題がある。  However, in a woven fabric having a large yarn pitch, such as a flat yarn woven fabric made of the carbon fiber, when the convex portion (the center of the sphere) of the spherical body is located between the flat woven yarn and the woven yarn. At this time, the convex portion of the spherical body rolls along the space between the yarns, so that the action of increasing the gap between the yarns works, and the yarn width is rather narrowed. In addition, since the spherical body does not rotate lightly due to friction with the positioning mesh, the flat yarn woven fabric, which has a weak binding force between the warp and the weft and is easily misaligned, has a misalignment caused by the movement of the spherical body. There are problems that can easily occur.
このようなわけで上記従来技術には、 欠点があり、 補強繊維と して、 織糸ピッチが大きく、 非常に目ずれし易い炭素繊維製扁平糸織物を用い る場合には、 その製造方法に改善を加えた製造方法及びその製造装置の 出現が望まれていた。  For this reason, the above-mentioned prior art has a drawback. In the case where a flat yarn woven fabric made of carbon fiber, which has a large woven yarn pitch and is very easily misaligned, is used as a reinforcing fiber, the method for producing the same is difficult. There has been a demand for an improved manufacturing method and manufacturing apparatus.
本発明の目的は、 従来の上述した問題点を解決し、 扁平糸を織糸と し て補強繊維織物を製造するに際し、'製造工程中に有効な糸幅拡幅方法を 加えることにより、 織糸間に目空きがなく、 捕強繊維が均一に分散され た補強繊維織物の製造方法及びその製造装置を提供することにある。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to solve the conventional problems described above, and to manufacture a reinforcing fiber woven fabric using a flat yarn as a woven yarn, by adding an effective yarn width widening method during the manufacturing process. An object of the present invention is to provide a method for producing a reinforcing fiber woven fabric in which reinforcing fibers are uniformly dispersed without any gaps between them and an apparatus for producing the same. Disclosure of the invention
上記目的を達成するため、 本発明の捕強繊維織物の製造方法は、 次の 通りである。  In order to achieve the above object, a method for producing a reinforcing fiber woven fabric of the present invention is as follows.
補強繊維を少なく ともたて糸と して製織する捕強織物の製造方法にお いて、 前記織物上に円筒状体を織物に対して加圧状態で転がしながら、 織物のたて糸方向に往復動させることにより、 前記織物を構成する少な く ともたて糸の糸幅をよこ糸方向に拡幅させることを特徴とする捕強繊 維織物の製造方法である。 In a method for producing a compensating woven fabric in which reinforcing fibers are woven at least as warp yarns, the cylindrical body is reciprocated in the warp yarn direction of the woven fabric while rolling the cylindrical body on the woven fabric under pressure. Characterized in that the yarn width of at least the warp yarn constituting the woven fabric is increased in the weft direction. This is a method for producing textiles.
この補強繊維織物の製造方法において、 前記円筒状体の織物に対する 加圧力は、 円筒状体の軸方向長さ 1 c m当たり、 1 0 0〜 2 0 0 0 gの 範囲とするのが好ましい。  In this method for producing a reinforcing fiber woven fabric, the pressure applied to the woven fabric of the cylindrical body is preferably in the range of 100 to 200 g per 1 cm of the axial length of the cylindrical body.
この補強繊維織物の製造方法において、 前記たて糸の糸幅をよこ糸方 向に拡幅させる拡幅率は、 2〜 5 0 %の範囲とするのが好ましい。  In the method for producing a reinforcing fiber woven fabric, the width of the warp is preferably widened in the weft direction in a range of 2 to 50%.
この捕強繊維織物の製造方法において、 前記織物は、 繊度が 4 0 0〜 4, 0 0 0 T E Xの範囲の太い無撚りの補強繊維糸が、 5〜 3 2 mmの 範囲の織糸ピッチで配列されており、 かつ、 該補強繊維糸の繊度と織糸 ピッチとの関係が以下の関係にある織物を用いるのが好ましい。  In this method for producing a captive fiber woven fabric, the woven fabric has a thick non-twisted reinforcing fiber yarn having a fineness in a range of 400 to 4000 TEX at a woven yarn pitch in a range of 5 to 32 mm. It is preferable to use a woven fabric in which the relationship between the fineness of the reinforcing fiber yarn and the pitch of the woven yarn has the following relationship.
P = k . T 1/2 P = k .T 1/2
ただし、 P : 織糸ピッチ (mm)  However, P: Weft pitch (mm)
T : 捕強繊維の繊度 (T E X)  T: Fineness of captive fiber (T E X)
k : ( 1 8〜 5 0 ) X 1 0一2 k: (18 to 50) X 10 12
この補強繊維織物の製造方法において、 前記織物は、 繊度が 4 0 0〜 4, 0 0 0 T E Xの範囲の太い無撚りの補強繊維糸が 4〜 1 6 mmの範 囲の織糸ピツチでたて糸方向に配列され、 繊度が 1〜 3 0 T E Xの細い 捕助糸のよこ糸で一体化された一方向性織物であって、 該補強繊維糸の 繊度と織糸ピッチとの関係が以下の関係にある織物を用いるのが好まし レ、。  In the method for producing a reinforcing fiber woven fabric, the woven fabric may be a warp yarn having a fineness in a range of 400 to 4000 TEX and a thick non-twisted reinforcing fiber yarn in a range of 4 to 16 mm. A unidirectional woven fabric that is integrated with a weft yarn of a thin scavenging yarn having a fineness of 1 to 30 TEX, and the relationship between the fineness of the reinforcing fiber yarn and the woven yarn pitch is as follows. It is preferable to use a certain fabric.
P = k · T 1/2 P = kT 1/2
ただし、 P 織糸 (たて糸) ピッチ (mm)  However, P weft (warp) pitch (mm)
T 補強繊維の繊度 (T E X)  T Reinforcement fiber fineness (T E X)
k ( 1 0〜 2 8 ) X 1 0一2 k (1 0~ 2 8) X 1 0 one 2
この捕強繊維織物の製造方法において、 前記捕強繊維は、 炭素繊維で あることが好ましい。 この補強繊維織物の製造方法において、 前記炭素繊維のフィラメント 数は、 6, 0 0 0〜 5 0, 0 0 0本の範囲であることが好ましい。 In the method for manufacturing a strong fiber woven fabric, the strong fibers are preferably carbon fibers. In the method for producing a reinforcing fiber woven fabric, the number of filaments of the carbon fiber is preferably in the range of 6,000 to 500,000.
この補強繊維織物の製造方法において、 前記円筒状体は、 たて糸方向 に複数個千鳥状に配列して織物の糸幅を拡幅させることが好ましい。 この補強繊維織物の製造方法において、 前記織物は、 回転可能なガイ ドローラの表面に沿わせながらたて糸方向に移動させ、 そのガイ ドロー ラと面接触した織物上で連続的に糸幅を拡幅するのが好ましい。  In this method of manufacturing a reinforcing fiber woven fabric, it is preferable that the cylindrical body is arranged in a plurality in a staggered manner in the warp direction to increase the yarn width of the woven fabric. In this method for producing a reinforcing fiber woven fabric, the woven fabric is moved in the warp direction along the surface of the rotatable guide roller, and the yarn width is continuously increased on the woven fabric in surface contact with the guide roller. Is preferred.
この補強繊維織物の製造方法において、 織機の織前から織物の卷き取 りロールの間で糸幅を拡幅するのが好ましい。  In this method of manufacturing a reinforcing fiber woven fabric, it is preferable to widen the yarn width between the weaving machine and the take-up roll of the woven fabric.
この補強繊維織物の製造方法において、 前記円筒状体を往復運動させ る平均速度は、 5 0〜 3 0 O m m /秒の範囲にするのが好ましい。  In this method for producing a reinforcing fiber woven fabric, the average speed at which the cylindrical body is reciprocated is preferably in the range of 50 to 30 Omm / sec.
この補強繊維織物の製造方法において、 織物は、 たて糸とよこ糸が炭 素繊維糸からなる平組織の扁平糸織物であって、 かつ織物のよこ糸方向 に並ぶ噴射孔からのェアジエツ ト噴射により、 よこ糸の開繊 '拡幅処理を 行い、 ついで上述したいずれかに記載の方法で糸幅をよこ糸方向に拡幅 させるのが好ましい。  In this method of manufacturing a reinforcing fiber woven fabric, the woven fabric is a flat yarn woven fabric having a flat structure in which a warp and a weft are made of carbon fiber yarn, and the weft is injected by jet jet from injection holes arranged in the weft direction of the woven fabric. It is preferable to perform a spreading process and a widening process, and then widen the yarn width in the weft direction by any of the methods described above.
この捕強繊維織物の製造方法において、 たて糸またはよこ糸方向に低 融点樹脂繊維を揷入しつつ織物を製織する製織工程と、 上述したいずれ かに記載の糸幅の拡幅工程と、 前記織物を前記低融点樹脂繊維の軟化点 もしくは融点以上の温度に加熱して、 補強繊維同士または捕強繊維と補 助糸とを低融点樹脂で固着させる工程とを含むのが好ましい。  In the method for producing a strong fiber woven fabric, the weaving step of weaving the woven fabric while inserting the low-melting resin fiber in the warp or weft direction; the yarn width widening step according to any of the above; It is preferable to include a step of heating the softening point of the low melting point resin fiber or a temperature higher than the melting point to fix the reinforcing fibers to each other or the reinforcing fiber and the auxiliary yarn with the low melting point resin.
この補強繊維織物の製造方法において、 上述したいずれかに記載の補 強繊維織物の製造方法 (勿論、 この製造方法に拡幅工程は含まれてい る。 ) に、 さらに捕強繊維織物の片面または両面にパウダー状または繊 維状の樹脂を塗布および付着させる工程を含み、 前記樹脂の付着量が前 記織物の 2〜 2 0重量%の範囲とするのが好ましい。 次に、 上記目的を達成するため、 本発明の補強繊維織物の製造装置は 次の通りである。 In this method for producing a reinforcing fiber woven fabric, the method for producing a reinforcing fiber woven fabric according to any of the above-described methods (of course, the production method includes a widening step) is further provided on one side or both sides of the reinforcing fiber woven fabric. A step of applying and adhering a powdery or fiber-like resin to the woven fabric, wherein the amount of the resin adhering is preferably in the range of 2 to 20% by weight of the fabric. Next, in order to achieve the above object, an apparatus for producing a reinforcing fiber woven fabric of the present invention is as follows.
連続的に通過する補強織物と所定の巻き付け角で面接触しつつ回転す るガイ ドローラと、 その面接触した織物上に、 回転自在に支持された複 数個の円筒状体と、 前記円筒状体を織物のたて糸方向に往復動させる駆 動部とを有することを特徴とする補強繊維織物の製造装置である。  A guide roller that rotates while being in surface contact with a continuously passing reinforcing fabric at a predetermined winding angle; a plurality of cylindrical bodies rotatably supported on the fabric in contact with the surface; And a drive unit for reciprocating the body in the warp direction of the woven fabric.
この補強繊維織物の製造装置において、 前記円筒状体は、 その直径が In this apparatus for manufacturing a reinforcing fiber woven fabric, the cylindrical body has a diameter of
1 0〜 4 O m mの範囲で、 かつその長さが 1 0〜 5 0 m mの範囲であつ て、 該円筒状体が前記織物のたて糸方向に千鳥状に配置されているのが 好ましい。 図面の簡単な説明 It is preferable that the cylindrical body is in the range of 10 to 40 mm and the length thereof is in the range of 10 to 50 mm, and the cylindrical bodies are arranged in a staggered manner in the warp direction of the woven fabric. Brief Description of Drawings
第 1図は、 本発明の製造方法を説明するための概略斜視図である。 第 2図は、 本発明の製造方法の原理を説明するための部分断面図であ る。  FIG. 1 is a schematic perspective view for explaining the production method of the present invention. FIG. 2 is a partial cross-sectional view for explaining the principle of the manufacturing method of the present invention.
第 3図は、 本発明の製造方法を織機上で連続的に行う一実施例の斜視 図である。  FIG. 3 is a perspective view of one embodiment in which the production method of the present invention is continuously performed on a loom.
第 4図は、 本発明の円筒状体の配列方法を説明する平面図である。 第 5図は、 本発明の製造装置の一実施例を説明するための部分断面図 である。  FIG. 4 is a plan view illustrating a method for arranging cylindrical bodies according to the present invention. FIG. 5 is a partial cross-sectional view for explaining one embodiment of the manufacturing apparatus of the present invention.
図面中の符号の説明  Description of reference numerals in the drawings
1 : 織物  1: Fabric
2 : たて糸  2: Warp yarn
3 : よこ糸  3: weft
4 : 円筒状体  4: Cylindrical body
5 ガイ ドローラ 6 : 円筒状体支持アーム 5 Guide rollers 6: Cylindrical body support arm
: 往復動連結棒  : Reciprocating connecting rod
8 : 押圧部材  8: Pressing member
9 : ガイ ド  9: Guide
1 0 : 圧縮パネ 発明を実施するための最良の形態 10: Compression panel Best mode for carrying out the invention
以下、 本発明の実施例と比較例および添付図面を用いて、 本発明の最 良の形態を説明する。  Hereinafter, the best mode of the present invention will be described with reference to examples and comparative examples of the present invention and the accompanying drawings.
第 1図は、 本発明の製造方法の特徴である糸幅拡幅方法が用いられた 補強繊維織物の製造方法を説明するための斜視図である。  FIG. 1 is a perspective view for explaining a method for producing a reinforcing fiber woven fabric using a yarn width widening method which is a feature of the production method of the present invention.
図において、 1は、 繊維強化プラスチックに補強用織物と して用いら れる織物で、 補強糸のたて糸 2 とよこ糸 3が互いに交錯されて製織され た、 いわゆる 2方向織物である。 この 2方向織物 1 の製織方法自体は、 公知のたとえばレビア織機を用いて製織できるので、 ここでの製織工程 までの説明は省略する。  In the figure, reference numeral 1 denotes a woven fabric used as a reinforcing woven fabric in a fiber-reinforced plastic, which is a so-called two-way woven fabric in which warp yarns 2 and weft yarns 3 of reinforcing yarns are woven by being crossed with each other. Since the weaving method of the two-way fabric 1 itself can be woven using a well-known, for example, Levia weaving machine, the description up to the weaving step here is omitted.
4は、 織物 1をよこ糸 3方向 (図の矢印 A方向) に拡幅するための亜 鈴状をした円筒状体である。 本実施例では、 複数本を互いの回転軸を織 物のよこ糸方向に一致させて平行に配置し、 織物 1上から織物 1に対し て適当な押圧力の加圧状態でたて糸 2の方向に往復動 (矢印 B方向) さ せることにより拡幅するものである。 この拡幅工程により、 個々の織糸 の幅を拡幅し、 織糸間に隙間のない均一な織物が得られるものである。  Reference numeral 4 denotes a dumbbell-shaped cylindrical body for widening the woven fabric 1 in the weft 3 direction (the direction of arrow A in the figure). In the present embodiment, a plurality of yarns are arranged in parallel with each other so that their rotation axes are aligned with the weft direction of the fabric, and are pressed in the direction of the warp yarn 2 from above the fabric 1 with an appropriate pressing force applied to the fabric 1. The width is increased by reciprocating (direction of arrow B). By this widening step, the width of each woven yarn is widened, and a uniform woven fabric having no gap between the woven yarns can be obtained.
この場合の円筒状体 4の織物 1に対する加圧方法と しては、 たとえば スプリ ングゃエアシリ ンダ一により加圧することができる。 また、 加圧 力と しては、 できるだけ高い方が拡幅効果が大きくて好ましいが、 余り に高いと、 特に補強繊維が炭素繊維の場合は毛羽が発生する問題があり - 円筒状体の長さ 1 c m当たりに 1 0 0〜 2 0 0 0 gの荷重を織物面に対 して垂直方向に掛ける程度が好ましい。 In this case, as a method of pressing the woven fabric 1 of the cylindrical body 4, for example, the pressing can be performed by a spring-air cylinder. As the pressing force, it is preferable that the pressure is as high as possible because the widening effect is large, but if it is too high, there is a problem that fluff is generated, especially when the reinforcing fiber is carbon fiber. It is preferable that a load of 100 to 2000 g per 1 cm of the length of the cylindrical body is applied vertically to the surface of the fabric.
また、 円筒状体 4を往復動させる速度と しては、 速い方が織物の同じ 箇所を多く通過させることができるので高い拡幅効果が得られるが、 円 筒状体の往復動は機械的に限度があり、 往復動の速度 (振幅 (m m ) と 振動数 (回/秒) の積) は、 5 0〜 3 0 0 m m /秒の範囲であることが 好ましい。 その様な速度範囲内でできるだけ織物の同じ箇所を多く往復 動させるためには、 円筒状体を複数列並べることにより、 一回の往復動 で織物の同じ箇所を複数回移動したと同じになり、 少ない振動数で高い 効果が得られる。 拡幅条件と して、 振幅を小さく して振動数を大きくす る方法であっても拡幅効果を得ることができるが、 拡幅作用が非常に短 い距離の範囲で拡幅させ必要があるために十分に拡幅することができな い。  As for the speed at which the cylindrical body 4 is reciprocated, the higher the speed, the more the same part of the fabric can be passed, so that a high width-expanding effect can be obtained, but the reciprocating movement of the cylindrical body is mechanical. There is a limit, and the reciprocating speed (product of amplitude (mm) and frequency (times / second)) is preferably in the range of 50 to 300 mm / second. In order to reciprocate the same part of the fabric as much as possible within such a speed range, arranging multiple rows of cylindrical bodies is the same as moving the same part of the fabric several times with one reciprocation. High effect can be obtained with low frequency. The widening effect can be obtained even if the amplitude is reduced and the frequency is increased as the widening condition.However, since the widening effect needs to be widened within a very short distance, it is sufficient. It cannot be widened.
一方、 振幅を大きくすることは、 長い距離に渡って順次糸拡げを行う ので、 均一に、 かつ大きく拡幅することができる。 振幅の好ましい範囲 としては 1 0〜 1 0 O m m、 さらに好ましく は 2 0〜 5 0 m m程度であ る。  On the other hand, when the amplitude is increased, the yarn is expanded sequentially over a long distance, so that the width can be uniformly and largely expanded. The preferred range of the amplitude is about 10 to 10 Omm, more preferably about 20 to 50 mm.
第 1図は、 織物が静止状態の場合を示したもので、 その場合には円筒 状体 4を矢印 Bの方向に往復動させながら矢印 C方向に順次移動させ、 ある織物間隔の糸幅拡幅が完了すれば織物を適当な手段で間欠移動させ て行うことも可能である。 この場合、 円筒状体 4 自体は転動させつつ往 復動させてもよいし、 往復動させずそのまま一方向に移動させてもよい が、 織物の同じ箇所を複数回移動させる方が大きな拡幅効果が得られる ので往復動させつつ移動するのが好ましい。  Fig. 1 shows the case where the woven fabric is in a stationary state. In this case, the cylindrical body 4 is sequentially moved in the direction of the arrow C while reciprocating in the direction of the arrow B, and the yarn width is increased at a certain fabric interval. When the operation is completed, the fabric can be intermittently moved by an appropriate means. In this case, the cylindrical body 4 itself may be moved forward and backward while rolling, or may be moved in one direction without reciprocating, but moving the same portion of the fabric a plurality of times may result in a larger width. It is preferable to move while reciprocating since the effect can be obtained.
第 2図は、 織糸を幅方向の広げる拡幅原理を説明するための一部断面 図で、 円筒状体 4 と接する織物 1 のよこ糸 3方向の切断面を示すもので ある。 図 2 (ィ) に示すようにたて糸 2の幅 W 1が狭いという ことは補 強繊維束の断面が円形に近い楕円形をなし、 織物の厚み方向に盛り上つ ているということである。 その盛り上がり部分が円筒状体 4で矢印方向 に織物面に垂直に加圧されると、 たて糸 2の補強繊維束はよこ糸 3方向 に押し出され、 図 2 (口) に示すようによこ糸 2の糸幅が拡幅されて W 2 となる。 このよ うな状態で円筒状体 4をたて糸 2の方向に転がせば順 次たて糸 2の糸幅をよこ糸 3方向に拡幅させることができる。 ただし、 たて糸 2とよこ糸 3が共に補強繊維で、 それぞれが互いに交錯した織物 構造の場合は、 交錯によつて糸幅を拡げるのに互いがその抵抗となるの で、 円筒状体 4の 1回の移動だけでは織糸間の隙間を完全になくすまで 糸幅を拡げることが難い。 そこで、 円筒状体 4で同じ箇所を数回に通過 させて、 順次糸幅を拡幅させる手段が好ましく、 そのために円筒状体 4 をたて糸方向に往復動させることが好ましいのである。 FIG. 2 is a partial cross-sectional view for explaining the principle of widening the yarn in the width direction, and shows a cut surface of the weft 3 of the woven fabric 1 in contact with the cylindrical body 4 in the direction of 3. is there. As shown in Fig. 2 (a), the narrow width W1 of the warp yarn 2 means that the cross-section of the reinforcing fiber bundle has an elliptical shape close to a circle, and rises in the thickness direction of the woven fabric. When the raised portion is pressed perpendicularly to the fabric surface in the direction of the arrow by the cylindrical body 4, the reinforcing fiber bundle of the warp yarn 2 is pushed out in the weft 3 direction, and the weft 2 yarn is drawn as shown in Fig. 2 (mouth). The width is widened to W2. If the cylindrical body 4 is rolled in the direction of the warp 2 in such a state, the width of the warp 2 can be increased in the direction of the weft 3. However, in the case where the warp yarn 2 and the weft yarn 3 are both reinforcing fibers and each has a woven structure in which the yarns are crossed with each other, since the crossing increases the width of the yarns, they become resistance to each other. It is difficult to increase the yarn width only by moving the yarns until the gap between the yarns is completely eliminated. Therefore, it is preferable to sequentially increase the yarn width by passing the same portion several times in the cylindrical body 4 to sequentially widen the yarn width. For this purpose, it is preferable to reciprocate the cylindrical body 4 in the warp yarn direction.
上記原理により、 種々の補強繊維織物の糸幅を十分に拡幅させること ができるが、 例えば、 織糸 2、 3が高密度で織られ、 織糸同士が強固に 交錯した通常の織物の場合は、 たて糸およびよこ糸の拘束力が強く、 織 糸内の繊維が移動し難たいことになる。  According to the above principle, it is possible to sufficiently widen the yarn width of various reinforcing fiber woven fabrics.For example, in the case of a normal woven fabric in which the woven yarns 2 and 3 are woven at high density and the woven yarns are strongly interlaced with each other In addition, the binding force of the warp and the weft is strong, and the fibers in the weft are difficult to move.
そこで、 本発明の製造方法においては、 特に繊度が 4 0 0〜4, 0 0 0 T E Xと太い無撚りの捕強繊維糸でありながらも、 その織糸ピッチが 5〜 3 2 m mと大きなピッチで織られた 8 0〜3 0 0 g/m 2の低目付織物 である扁平糸織物を製造する場合に効果が発揮される。 すなわち、 かか る太い補強繊維糸からなる低目付織物は、 製織中に織糸が集束されて細 糸になり易く、 織糸間に隙間が生じる問題点があるが、 本発明の製造方 法によると、 このような隙間の発生が抑制され、 織糸間に隙間の無い織 物を製造することができる。 Therefore, in the production method of the present invention, the yarn pitch is as large as 5 to 32 mm, even though it is a thick non-twisted captive fiber yarn having a fineness of 400 to 4000 TEX. This is effective when producing a flat yarn woven fabric, which is a low-weight woven fabric of 80 to 300 g / m 2 woven with a woven fabric. That is, the low-weight woven fabric made of such thick reinforcing fiber yarns has a problem that the woven yarns are liable to be bundled during weaving and are likely to become fine yarns, and a gap is generated between the woven yarns. According to the method, the generation of such a gap is suppressed, and a woven fabric having no gap between the yarns can be manufactured.
本発明の捕強繊維織物の製造方法に用いられる補強繊維糸と しては、 炭素繊維、 ガラス繊維、 ァラミ ド繊維や高強度の合成繊維などを用いる ことができ、 なかでも比強度、 比弾性率の高い炭素繊維が好ましい。 補 強繊維の形態として、 太い炭素繊維糸からなる扁平糸を用いて扁平糸織 物を製造する場合は、 サイジングなど扁平状に形態保持された炭素繊維 扁平糸の扁平状態を保持しながら製織することが必要になるが、 扁平糸 は僅かなサイジング剤で形態保持されたものであるから、 製織工程にお ける下記要因で扁平状態が潰されたり して織糸ピッチとほぼ同幅の糸幅 を保持して織物にすることができず、 織糸が細糸化し、 織糸間にどう し ても隙間の空いた織物になってしまう。 Reinforcing fiber yarns used in the method for producing a reinforcing fiber woven fabric of the present invention include: Carbon fibers, glass fibers, aramide fibers, high-strength synthetic fibers, and the like can be used, and among them, carbon fibers having high specific strength and specific elastic modulus are preferable. When manufacturing a flat yarn fabric using a flat yarn made of a thick carbon fiber yarn as the form of the reinforcing fiber, weaving is performed while maintaining the flat state of the carbon fiber flat yarn whose shape is maintained in a flat shape such as sizing. However, since the flat yarn is kept in shape with a slight sizing agent, the flat state is crushed due to the following factors in the weaving process, and the yarn width is almost the same as the woven yarn pitch. The fabric cannot be held and made into a woven fabric, and the yarn becomes thinner, and in any case, the woven fabric has a gap between the yarns.
本発明の製造方法は、 円筒状体 4で、 加圧状態で転がしながら織糸を 拡げるので、 炭素繊維糸にサイジング剤が付着されて繊維同士が固着さ れていても糸幅を拡幅させることができる特徴を有する。 本発明におい ては、 サイジング剤が 0. 5〜 2. 0 %付着された炭素繊維糸からなる 補強織物の糸幅拡幅に有効である。  In the production method of the present invention, since the woven yarn is expanded while being rolled under pressure in the cylindrical body 4, the yarn width can be increased even when the sizing agent is attached to the carbon fiber yarn and the fibers are fixed to each other. It has features that can be. In the present invention, the sizing agent is effective for widening the yarn width of a reinforcing woven fabric composed of carbon fiber yarns to which 0.5 to 2.0% is attached.
上記炭素繊維扁平糸を捕強繊維に用いた織物は、 幸いにもたて糸 2 と よこ糸 3の拘束力が非常に弱く、 交錯による拡がり性を阻害する抵抗が ほとんどないので、 織物上から圧力を加えることによって、 織物平面方 向に容易に拡がることになる。  Fortunately, in the woven fabric using the carbon fiber flat yarn as the compensating fiber, the binding force of the warp yarn 2 and the weft yarn 3 is very weak, and there is almost no resistance that inhibits the spreadability due to the crossing. As a result, it can be easily spread in the plane direction of the fabric.
上記炭素繊維からなる扁平糸織物 1は、 少なく ともたて糸 2の繊度が 4 0 0〜4, 0 0 0 TE X、 フィラメン ト数が 6, 0 0 0〜 5 0, 0 0 0本の太い無撚りの炭素繊維糸が 5〜 3 2 mmの大きな織糸ピツチで配 列された織物であることが好ましい。 前記織糸ピッチは、 用いる炭素繊 維糸の繊度と関係し、 以下の関係にある炭素繊維扁平糸織物であること が好ましい。  The flat yarn woven fabric 1 made of the carbon fiber has a warp yarn 2 having a fineness of at least 400 to 4,000 TEX and a filament number of 6,000 to 500,000 thick yarns. It is preferable that the woven carbon fiber yarn is a woven fabric in which large woven yarn pitches of 5 to 32 mm are arranged. The woven yarn pitch relates to the fineness of the carbon fiber yarn used, and is preferably a carbon fiber flat yarn woven fabric having the following relationship.
P = k · T 1/2 P = kT 1/2
ただし P : 織糸ピッチ (mm) T : 補強繊維の繊度 (Τ Ε X) Where P: Yarn pitch (mm) T: Fineness of reinforcing fiber (Τ Ε X)
k : ( 1 8〜 5 0 ) X 1 0一2 k: (18 to 50) X 10 12
すなわち、 上式は、 繊度の小さい炭素'繊維糸を用いる場合には織糸ピ ツチが比較的小さく、 繊度の大きい炭素繊維糸を用いる場合には織糸ピ ツチの大きい織物にすべきことを示している。 上記式が適用される扁平 糸織物は、 上記常数 kの範囲が重要であり、 1 8 X 1 0 未満となる ことは織糸ピッチが小さくなって通常の炭素繊維織物に近づく ことにな り、 織糸間にできる隙間が小さい織物であるので織糸幅を拡幅する必要 のない織物である。  In other words, the above formula indicates that the woven yarn pitch should be relatively small when using carbon fiber yarns with small fineness, and that the woven yarn pitch should be large when using carbon fiber yarns with high fineness. Is shown. For the flat yarn woven fabric to which the above formula is applied, the range of the constant k is important, and when it is less than 18 × 10, the weave yarn pitch becomes small and it approaches a normal carbon fiber woven fabric. Since the gap between the yarns is small, it is not necessary to increase the width of the yarn.
」方、 常数 kが 5 0 X 1 0— 2 を越えると、 織糸の拘束力がほとんど なく非常にルーズな織物となり、 本発明の円筒状体を往復動させる方向 のたて糸については卷き取り張力が付与されているので配列が乱れるこ となく糸幅を拡幅することができるが、 よこ糸に関しては張力が付与さ れておらず、 非常に配列が乱れ易いために円筒状体の移動によってよこ 糸を蛇行させる問題がある。 "You, the constant k is greater than 5 0 X 1 0- 2, be a very loose textile binding of yarns with little, the direction of the warp yarns for reciprocating the cylindrical body of the present invention wind-up Since the tension is applied, the yarn width can be increased without disturbing the arrangement.However, the weft yarn is not tensioned, and the arrangement is very easily disturbed. There is a problem of meandering the thread.
また、 織物 1は、 繊度が 4 0 0〜 4, 0 0 0 T E Xの太い無撚りの捕 強繊維が 4〜 1 6 mmの範囲の織糸ピツチでたて糸 2方向に配列され、 繊度が 1〜 3 0 T E Xの細い補助糸からなるよこ糸 3で一体化された一 方向性織物で、 該捕強繊維糸の繊度と織糸ピッチとの関係が以下の関係 ある一方向性補強織物であることが好ましい。  In the woven fabric 1, thick non-twisted reinforcing fibers having a fineness of 400 to 4000 TEX are arranged in the warp yarn 2 direction in a woven yarn pitch of 4 to 16 mm, and the fineness is 1 to 30 A unidirectional woven fabric integrated with weft yarn 3 consisting of a thin auxiliary yarn of TEX, which may be a unidirectional reinforced woven fabric in which the relationship between the fineness of the reinforcing fiber yarn and the weft yarn pitch is as follows. preferable.
P = k . T 1/2 P = k .T 1/2
ただし P : 織糸ピッチ (mm)  Where P: Yarn pitch (mm)
T : 捕強繊維の繊度 (T E X) k : ( 1 0〜 2 8 ) X 1 0一2 T: fineness of Totsuyo fiber (TEX) k: (1 0~ 2 8) X 1 0 one 2
一方向性織物における捕助糸からなるよこ糸は、 捕強繊維糸のたて糸 と交錯してを配列されたたて糸を一体化させることを主目的とするもの で、 交錯による捕強繊維糸のク リ ンブをできる限り小さくするために補 助糸であるよこ糸は、 細繊維糸であることが好ましい。 The weft consisting of the auxiliary yarn in the unidirectional fabric is the warp yarn of the reinforcing fiber yarn. The main purpose is to integrate the warp yarns that are arranged in an interlaced manner, and the weft yarn, which is an auxiliary yarn, is a fine fiber yarn in order to minimize the crimp of the force-absorbing fiber yarn due to the interlacing. It is preferable that
よこ糸が 1 T E X未満の細い糸になると、 補強繊維のたて糸を一体化 させるに強力が不足し、 僅か外力でよこ糸が切断していまう問題があり . 一体化の目的を達成することができない。  If the weft is thinner than 1 TEX, there is a problem that the strength is insufficient to integrate the warp of the reinforcing fiber, and the weft is cut off with a slight external force. The purpose of integration cannot be achieved.
一方、 よこ糸の繊度が 3 0 T E Xを越えると、 交錯により補強繊維糸 のたて糸にクリ ンプが生じるし、 また補強織物の表面によこ糸が凸状に 現れて表面の凸凹が大きくなる。 よこ糸繊度のより好ましい範囲と して は、 1〜 1 0 T E Xである。 また、 一方向性補強織物に限定した際の補 強繊維の繊度とピッチの関係は、 基本的は前述と同様であるが、 本発明 における一方向性織物のよこ糸は、 非常に細繊度で、 たて糸とよこ糸の 交錯部における拘束力が小さくなるために常数 kは、 前述の場合より小 さい値である 0 . 0 1〜 0 . 2 8の範囲であることが好ましい。  On the other hand, when the fineness of the weft yarn exceeds 30 TEX, the warp yarn of the reinforcing fiber yarn is crimped due to the crossing, and the weft yarn appears in a convex shape on the surface of the reinforcing fabric, and the unevenness of the surface becomes large. A more preferable range of the weft fineness is 1 to 10 TEX. Further, the relationship between the fineness of the reinforcing fibers and the pitch when limited to the unidirectional woven fabric is basically the same as described above, but the weft of the unidirectional woven fabric in the present invention has a very fine fineness. In order to reduce the binding force at the intersection of the warp and the weft, the constant k is preferably in the range of 0.01 to 0.28, which is a smaller value than the case described above.
以上のよ うに、 上記炭素繊維糸の繊度と織糸ピッチの関係を有する特 に炭素繊維製扁平糸織物の製造においては、 本発明の特徴である糸幅拡 幅方法が用いられた捕強繊維織物の製造方法は、 織物上から円筒状体を 加圧状態で転がしながら糸幅を拡幅する方法であるから、 その作用効果 を大いに発揮するものである。  As described above, particularly in the production of a carbon fiber flat yarn woven fabric having a relationship between the fineness of the carbon fiber yarn and the woven yarn pitch, the reinforcing fiber using the yarn width expanding method which is a feature of the present invention is used. The method of manufacturing the woven fabric is a method of expanding the yarn width while rolling the cylindrical body from above the woven fabric in a pressurized state.
ところで、 本発明の製造方法は、 円筒状体 4をたて糸 2方向に往復動 させて拡幅する方法であるから、 たて糸 2に関してはフィラメントが集 合している糸束断面を糸軸方向に連続的に順次押し拡げていくので有効 に糸幅を拡幅させることができるが、 よこ糸 3に関しては糸束断面を瞬 間的に押し潰されるだけであるから拡幅効果はたて糸より も少ない。  By the way, the manufacturing method of the present invention is a method in which the cylindrical body 4 is reciprocated in the direction of the warp yarn 2 to widen the width. Therefore, for the warp yarn 2, the cross section of the yarn bundle where the filaments are gathered is continuous in the yarn axis direction. The width of the weft yarn 3 can be effectively widened because the yarn is expanded sequentially, but the weft yarn 3 is only crushed instantaneously in the cross section of the yarn bundle, so the effect of expanding the width is smaller than that of the warp yarn.
そこで、 この問題を改善するために、 よこ糸 3に関しては、 織物のよ こ糸を予めエアジエツ ト噴射により開繊拡幅した後、 円筒状体によりた て糸幅を拡幅する方法によって、 円筒状体を円滑に転がすことができ、 たて糸とよこ糸の糸幅を確実に拡幅させることができるのでより好まし い。 このよ うなエアジェッ トによる開繊拡幅装置は、 例えば織機上で、 製織された織物のよこ糸方向と平行に 0, 2〜0 . 5 m m直径のエア噴 射孔が数 m mピッチで配列したノズルを織物面に向かい合うように設け. エアを噴射させながら織物が通過するとよこ糸が開繊すると同時に糸 Φ; もが拡がるものである。 このときたて糸 2には、 巻き取り張力が付与さ れているので、 前記エアジェッ トではたて糸幅を拡げることは難しい。 このように、 予めよこ糸 3を拡げておく と、 円筒状体 4は円滑に回転し ながら糸幅の狭いたて糸を拡げるができる。 また同時にエア開繊で拡が りが若干不足した部分についても拡げることができる。 Therefore, in order to improve this problem, weft yarn 3 was spread by air jet injection beforehand, and then expanded by a cylindrical body. The method of widening the warp width is more preferable because the cylindrical body can be smoothly rolled and the warp and weft yarn widths can be reliably widened. Such a spreader and spreader using an air jet uses, for example, a nozzle on a loom in which air injection holes having a diameter of 0.2 to 0.5 mm are arranged at a pitch of several mm in parallel with the weft direction of a woven fabric. It is installed to face the fabric surface. When the fabric passes while injecting air, the weft yarn is opened and the yarn Φ; At this time, since the take-up tension is applied to the warp yarn 2, it is difficult to increase the warp yarn width by the air jet. In this way, if the weft yarn 3 is expanded in advance, the cylindrical body 4 can spread the warp yarn having a narrow yarn width while rotating smoothly. At the same time, it is possible to expand the part where the expansion is slightly insufficient due to the air opening.
本発明の補強繊維織物の製造方法を炭素繊維製扁平糸織物の製造方法に 用いた場合、 その織り組織と しては、 特に限定されず、 平組織、 綾組織、 朱子組織であっても良いが、 たて糸とよこ糸が 1本交互で交錯した平織 である方が円筒状体を往復動させた際に目ずれし難いので好ましい。  When the method for producing a reinforcing fiber woven fabric of the present invention is used for a method for producing a carbon fiber flat yarn woven fabric, the woven structure is not particularly limited, and may be a flat structure, a twill structure, or a satin structure. However, a plain weave in which one warp yarn and one weft yarn are alternately interlaced is preferable because misalignment is less likely when the cylindrical body is reciprocated.
本発明の製造方法において、 たて糸または あるいはよこ糸方向に低 融点樹脂繊維を揷入し、 織物にした後に前記低融点樹脂繊維の軟化点ま たは融点以上の温度に加熱して補強繊維同士を固着させる目どめ織物の 製造する場合には、 低融点樹脂繊維を挿入した織物上に円筒状体を織物 に対して加圧状態で転がしながら織物のたて糸方向に往復動させる前述 した拡幅方法で織糸を拡幅した後、 加熱することにより、 織糸が拡幅さ れた状態で固着されるので、 以後の取り扱い時に織物構造が変化するこ とない取り扱い性の優れた、 かつ補強繊維が均一に分散した成形用織物 基材が提供できる。  In the production method of the present invention, the low-melting resin fibers are inserted in the warp or weft direction, and after forming a woven fabric, the reinforcing fibers are fixed to each other by heating to a temperature higher than the softening point or the melting point of the low-melting resin fibers. When manufacturing the staple woven fabric, the cylindrical body is rolled on the woven fabric into which the low-melting-point resin fiber has been inserted while reciprocating in the warp direction of the woven fabric while rolling the woven fabric under pressure. By heating the yarn after it has been widened, the woven yarn is fixed in a widened state, so that the fabric structure does not change during subsequent handling. Thus, a molded woven fabric base material can be provided.
低融点樹脂繊維の揷入方法の一実施態様と しては、 二方向織物の場合 には、 製織時の炭素繊維のたて糸または/あるいはよこ糸に引き揃えて 供給する方法であり、 炭素繊維のたて糸に細繊度の捕助糸をよこ糸と し た一方向性織物においては、 捕助糸と一緒に低融点樹脂繊維を引き揃え ても構わないし、 補助糸を芯 Z鞘形態の被覆糸とし、 鞘部を低融点樹脂 繊維とすることで確実な揷入を行うことができる。 As one embodiment of the method for introducing the low-melting-point resin fiber, in the case of a bidirectional woven fabric, it is aligned with the warp and / or weft of carbon fiber during weaving. In the case of unidirectional woven fabrics in which weft yarns of fineness are used as weft yarns for carbon fiber warp, low-melting resin fibers may be drawn together with the yarn yarns, and auxiliary yarns may be used. By using a coated yarn in the form of a core Z and a sheath made of a low melting point resin fiber, reliable insertion can be performed.
前記、 芯/鞘形態の被覆糸の芯糸と しては、 低融点樹脂を熱溶融させ る際の加熱温度で熱収縮が殆どない繊維糸で、 1 5 0 °Cの乾熱での収縮 率が 1 %以下であることが好ましく、 ガラス繊維、 ァラミ ド繊維糸、 ビ 二ロン繊維からなる細繊度糸が好ましい。  The core yarn of the core / sheath coated yarn is a fiber yarn that hardly undergoes thermal shrinkage at the heating temperature at which the low melting point resin is melted by heat, and shrinks at 150 ° C dry heat. The ratio is preferably 1% or less, and fineness yarn made of glass fiber, aramide fiber yarn, and vinylon fiber is preferable.
また、 低融点樹脂と しては、 融点が 9 0〜 1 8 0 °Cの共重合ナイ口ン. 共重合ポリエステルなどである。  Examples of the low melting point resin include copolymerized polyester resin having a melting point of 90 to 180 ° C.
また、 本発明の製造方法において、 織物の片面または両面にパウダー 状または繊維状の樹脂を塗布および付着させ、 織物の形態安定化、 ある いは積層品同士の接着機能や成形体での層間強化を行った複合基材にお いても前記同様に織糸の拡幅工程の後にパゥダー状または繊維状の樹脂 を塗布し、 付着させることにより補強繊維が均一に分散した複合基材を 提供することができる。  In addition, in the production method of the present invention, a powdery or fibrous resin is applied and adhered to one or both surfaces of the woven fabric to stabilize the morphology of the woven fabric, or to provide an adhesive function between the laminated products or to strengthen the interlayer between the molded products. In the same manner as described above, it is possible to provide a composite base material in which reinforcing fibers are uniformly dispersed by applying and attaching a powdery or fibrous resin after the weaving yarn widening step. it can.
塗布、 および付着させる樹脂としては、 熱硬化性樹脂または熱可塑性 樹脂であり、 熱硬化性樹脂と しては、 エポキシ、 フエノール、 不飽和ポ リエステル、 ビュルエステルなどで、 硬化剤や触媒を含むものも含まれ る。 熱可塑性樹脂と しては、 ポリエステル、 ポリアミ ド、 ポリ ウレタン. ポリエーテルスルホン等や、 これらの共重合体、 変性体おょぴ 2種以上 の混合体である。 この時のパウダー状または繊維状の樹脂付着量は、 目 的にもよるが 2〜 2 0重量%であることが好ましい。 織物の形態安定性 からは前記樹脂付着量が多い方が好ましいが、 樹脂付着量が 2 0重量% を越えると、 織物の全面を樹脂で覆うことになり、 樹脂注入成形の際に マトリ ックス樹脂の含浸を阻害し、 含浸に長時間要したり、 未含浸部を 形成する問題点がある。 The resin to be applied and adhered is a thermosetting resin or a thermoplastic resin.The thermosetting resin is epoxy, phenol, unsaturated polyester, butyl ester, etc., which contains a curing agent or a catalyst. Is also included. Examples of the thermoplastic resin include polyesters, polyamides, polyurethanes, polyether sulfones, and the like, copolymers and modified products thereof, and mixtures of two or more kinds. The amount of powder or fibrous resin adhered at this time is preferably 2 to 20% by weight, although it depends on the purpose. From the viewpoint of the morphological stability of the woven fabric, it is preferable that the resin adhesion amount is large. However, if the resin adhesion amount exceeds 20% by weight, the entire surface of the woven fabric will be covered with the resin. Impregnation, it takes a long time to impregnate, There is a problem to be formed.
一方、 樹脂の付着量が 2重量%未満と少ないと、 パウダーまたは繊維 状の樹脂を織物面に均一に分散させることができず、 捕強繊維同士が固 着しない箇所が存在し、 織物の形態保持性が不十分となるので、 最適な 付着量と しては、 上記範囲である。  On the other hand, if the resin adhesion amount is less than 2% by weight, the powder or fibrous resin cannot be uniformly dispersed on the fabric surface, and there are portions where the reinforcing fibers do not adhere to each other. Since the retention property is insufficient, the optimum amount of adhesion is within the above range.
織物 1への塗布または付着方法と して、 パウダー状の場合においては 織糸の糸幅が拡幅された織物上にパウダー状の樹脂を均一に塗布し、 加 熱することにより織物面に付着させることができる。 加熱ローラを通過 させることよって付着させることも可能である。 また、 繊維状の場合、 不織布の形態にして織物に熱融着あるいはニードリ ングにより付着させ ることができる。  As a method of applying or adhering to the woven fabric 1, in the case of a powder, in the case of a powder, the powder resin is uniformly applied on the woven fabric in which the yarn width of the yarn is widened, and then applied to the woven fabric surface by heating. be able to. It is also possible to adhere by passing through a heating roller. In the case of a fibrous form, it can be formed into a nonwoven fabric and attached to the woven fabric by heat fusion or needling.
不織布と しては、 メルトブロー、 スパンポンドなどで、 熱融着させる 場合には低融点の樹脂を 1 0〜 4 0重量%混ぜておく ことにより比較的 低温で付着させることが可能である。 上記したように、 織物面にパウダ 一状あるいは繊維状の樹脂を付着させことにより織物の全面が樹脂で覆 われるようなことがないのでマ ト リ ックス樹脂の流路が確保され、 樹脂 の含浸が妨げられるような問題が起こらない。  Non-woven fabrics are melt blown, spun pounds, and the like. In the case of heat fusion, it is possible to adhere at a relatively low temperature by mixing 10 to 40% by weight of a low melting point resin. As described above, by adhering a powdery or fibrous resin to the surface of the woven fabric, the entire surface of the woven fabric is not covered with the resin, so the flow path of the matrix resin is secured and the resin is impregnated. The problem that hinders does not occur.
次に、 本発明に係る織物の製造装置を第 3図から第 5図を用いて説明 する。  Next, a fabric manufacturing apparatus according to the present invention will be described with reference to FIGS. 3 to 5. FIG.
第 3図は、 第 1図の円筒状体 4の好ましい配置例の斜視図で、 織物 1 を回転可能なガイ ドローラ 5の表面に沿わせながら図の C方向に移動さ せると ともに、 ガイ ドローラ 5 との面接触している織物 1上で円筒状体 4をたて糸方向の一定振幅で往復動させることにより、 連続的に織物を 構成する個々の糸の糸幅を拡幅するものである。 なお、 図示は省略した が、 円筒状体 4は、 1本の軸の両端に適当な軸受けで回転自在に支持さ れ、 軸の中央部を支持して往復動させる手段によつてたて糸方向に往復 動できるよ うになつており、 また、 加圧手段によって織物 1に対する加 圧力が適宜調節できるようになっている。 FIG. 3 is a perspective view of a preferred arrangement example of the cylindrical body 4 shown in FIG. 1, and the fabric 1 is moved along the surface of the rotatable guide roller 5 in the direction C in FIG. By reciprocating the cylindrical body 4 at a constant amplitude in the warp direction on the woven fabric 1 which is in surface contact with 5, the yarn width of the individual yarns constituting the woven fabric is continuously increased. Although not shown, the cylindrical body 4 is rotatably supported on both ends of one shaft by appropriate bearings, and is supported in the center portion of the shaft to reciprocate in the warp direction. round trip It can be moved, and the pressure applied to the fabric 1 can be appropriately adjusted by the pressurizing means.
前記ガイ ドローラ 5は、 直径が 1 0 0〜 5 0 O m m程度の円筒状で表 面が平滑な回転ローラであり、 ガイ ドローラ 5の表面に接触して摩擦力 で織物の移動に従って消極回転する。  The guide roller 5 is a cylindrical rotary roller having a diameter of about 100 to 50 O mm and a smooth surface, and rotates in a negative direction according to the movement of the fabric by frictional force by contacting the surface of the guide roller 5. .
この様に、 織物 1は、 ガイ ドローラ 5の外周曲面に適当な卷き付け角 度で沿わせているので、 織物 1のたて糸方向の引っ張り力がガイ ドロー ラ 5の中心軸方向に作用する。 そのためにガイ ドローラ表面と織物 1 と の接触面に高い摩擦力が作用し、 その上から円筒状体 4 (拡幅ローラ) を往復動させても織物 1のよこ糸がずれたりすることなく織糸を拡幅さ せることができる。  As described above, since the woven fabric 1 is arranged along the outer peripheral curved surface of the guide roller 5 at an appropriate winding angle, the pulling force of the woven fabric 1 in the warp direction acts on the center axis direction of the guide roller 5. As a result, a high frictional force acts on the contact surface between the guide roller surface and the fabric 1, and even when the cylindrical body 4 (widening roller) is reciprocated from above, the weft of the fabric 1 is not displaced, and the weft yarn is not shifted. It can be widened.
円筒状体 4の配置と しては、 織物全幅に渡った 1本のものでも良いが. そのような長い円筒状体では織物全幅に渡って均一に圧力を掛けること が難しい。 よって、 本実施例では図示は省略したが、 円筒状体の長さは. 1 0〜 2 0 0 m mの範囲が好ましく、 さらに好ましい範囲と しては、 1 0〜 5 O m mである。 また、 軸の両端に、 ベアリングにより回転可能な 状態で 2個の円筒状体を取り付けた構造にされ、 それぞれの軸が中央部 を支持して荷重が作用するようになっているので、 それぞれのローラで 織物に均一な圧力を掛けることができる.。 図では 2個単位の円筒状体 4 を 2ュ-ッ トー列状に並べ、 これを前後 2列で一組みにして配置したも のであるが、 この方法だと 2個の円筒状体間に軸を支持する支持体を設 ける必要があり、 2個の円筒状体間はローラの押圧が関与しない間隔が 空く ことになる。 よって、 第 4図に示すように 2個単位の円筒状体 4を 織物の進行方向に千鳥状に配置させて、 織物全幅に渡って均一に織糸を 拡幅させることができるので好ましい態様である。  The arrangement of the cylindrical body 4 may be a single one over the entire width of the fabric, but it is difficult to apply pressure uniformly over the entire width of the fabric with such a long cylindrical body. Therefore, although not shown in the present embodiment, the length of the cylindrical body is preferably in the range of 10 to 200 mm, and more preferably in the range of 10 to 5 Omm. In addition, two cylindrical bodies are attached to both ends of the shaft in a rotatable state by bearings, and each shaft supports the center part so that a load acts. Uniform pressure can be applied to the fabric with rollers. In the figure, two cylindrical bodies 4 are arranged in a two-cut row, and they are arranged as a set in two rows before and after.In this method, however, two cylindrical bodies 4 are arranged between the two cylindrical bodies. It is necessary to provide a support for supporting the shaft, and there is a gap between the two cylindrical bodies that does not involve the pressing of the rollers. Therefore, as shown in FIG. 4, it is a preferable embodiment that two cylindrical bodies 4 are arranged in a staggered manner in the traveling direction of the woven fabric so that the yarn can be uniformly spread over the entire width of the woven fabric. .
このとき、 織物 1の B方向の移動速度、 すなわち織物の製織速度は、 円筒状体 4の往復動する速度が機械的に限界があるので、 できるだけ低 速度が好ましいが、 製造コス トに影響しない範囲とするには 0 . 2〜 2 . 0 m / m i nの範囲が好ましい。 特に、 織機の織前から織物の卷き取り ロールの間で製織しながら、 第 3図に示したような糸幅拡幅装置を設け る場合には、 同一織機内で拡幅装置を別工程によらずして設けることが できるので好ましい態様である。 このよ うに織機上で拡幅を行う場合は、 織物の卷き取り装置と して織機の後方に別の卷き取り装置を設け、 その 卷き取り装置で卷き取り ロールまでの間に前述のガイ ドローラ 5を設け、 そのローラ上で織糸幅を拡幅することができる。 At this time, the moving speed of the fabric 1 in the B direction, that is, the weaving speed of the fabric, is Since the reciprocating speed of the cylindrical body 4 is mechanically limited, the speed is preferably as low as possible, but the range of 0.2 to 2.0 m / min is preferable in order not to affect the manufacturing cost. . In particular, when the yarn width expanding device as shown in FIG. 3 is provided while weaving between the weaving loom and the take-up roll of the woven fabric, the widening device is installed in a separate process in the same loom. This is a preferred embodiment because it can be provided without any modification. When widening is performed on a loom in this way, another winding device is provided at the rear of the loom as a winding device for the fabric, and the above-described winding device is used to extend the winding roll. A guide roller 5 is provided, on which the yarn width can be increased.
第 5図は、 前後 2ュュッ トの拡幅ローラ 4の一対を、 ガイ ドローラ 5 上で織物 1表面に適当な押圧力をかけつつ、 たて糸方向に往復動させる 装置の部分側面図である。 円筒状体 4は、 その円筒状体を取り付けた軸 の中央部をコの字型の支持アーム 6に固定され、 1個の支持アーム 6に は 4ュニッ トの円筒状体 4が取り付けられている。 また個々の支持ァー ム 6は押圧部材 8 と連結され、 その押圧部材 8が往復動駆動連結棒 7に より回転軸心 0を中心と してクランク往復動するようになつている。 ま た、 駆動部材 8は、 図示しないガイ ド 9によりガイ ドローラ 5の円弧と 同心円状に平行に揺動運動ができるようになつており、 また支持アーム 6 と押圧部材 8間には、 圧縮パネ 1 0が介在されており、 その圧縮バネ 1 0のローラ 5方向への押圧作用で円筒状体 4が織物 1面に対して圧力 が掛かるようになつている。 円筒状体 4の直径は、 できるだけ小さい方 が同じ押し圧荷重で高い線圧を付与することができ好ましいが、 回転を 円滑にするためベアリ ングを内蔵するためにベアリ ングサイズから最小 直径が決まり、 円筒状体の直径は、 1 2〜 6 0 m m、 さらに好ましくは 1 2〜 2 O m mである。  FIG. 5 is a partial side view of a device for reciprocating a pair of front and rear two-width widening rollers 4 in the warp direction while applying an appropriate pressing force to the surface of the fabric 1 on the guide rollers 5. The cylindrical body 4 is fixed at the center of the shaft to which the cylindrical body is attached to a U-shaped support arm 6, and one support arm 6 has a 4-unit cylindrical body 4 attached thereto. I have. Each support arm 6 is connected to a pressing member 8, and the pressing member 8 is reciprocated by a reciprocating drive connecting rod 7 around a rotation axis 0. The driving member 8 is capable of oscillating in a concentric manner in parallel with the arc of the guide roller 5 by a guide 9 (not shown), and a compression panel is provided between the support arm 6 and the pressing member 8. The compression spring 10 presses the roller 5 in the direction of the roller 5 so that the cylindrical body 4 applies pressure to the fabric 1 surface. It is preferable that the diameter of the cylindrical body 4 is as small as possible because a high linear pressure can be applied with the same pressing load, but the minimum diameter is determined from the bearing size in order to incorporate the bearing for smooth rotation. The diameter of the cylindrical body is 12 to 60 mm, more preferably 12 to 20 mm.
円筒状体 4の直径と しては、 できる限り小さい方が、 同じ押し圧であ つても高い線圧となるので好ましいが、 直径が 1 2 mm未満となると小 さなベアリ ングとなって高い押し圧に耐えられない問題点があり、 1 2 mm以上とする必要がある。 The smaller the diameter of the cylindrical body 4 is, the smaller the pressure is. However, if the diameter is less than 12 mm, there is a problem that the bearing becomes small and cannot withstand a high pressing pressure. Therefore, the diameter needs to be 12 mm or more.
また、 円筒状体 4の長さと しては、 大きい方が製作面から好ましいが、 円筒状体の長さ方向にに均一な荷重を分布させるためには 2 0 0 mm以 下が好ましく、 5 O mm以下とするのがより好ましい。 また、 円筒状体 の表面は、 炭素繊維を傷つけないために平滑面が好ましく、 端部は面取 り加工されていることが好ましい。 特に炭素繊維が高弾性率は繊維が脆 いために繊維が傷付き易いことから表面をゴムコーティングされていて も良い。  The length of the cylindrical body 4 is preferably large from the viewpoint of manufacturing, but is preferably 200 mm or less in order to distribute a uniform load in the length direction of the cylindrical body. It is more preferably O mm or less. The surface of the cylindrical body is preferably smooth to avoid damaging the carbon fiber, and the end is preferably chamfered. In particular, the surface of the carbon fiber may be rubber-coated because the fiber has a high elastic modulus and the fiber is brittle and the fiber is easily damaged.
次に、 本発明の製造方法に用いられる補強繊維織物 1について説明す る。  Next, the reinforcing fiber fabric 1 used in the production method of the present invention will be described.
織物 1は、 補強繊維糸をたて糸 2 とよこ糸 3 とする織物であって、 前 記捕強繊維糸の繊度が 4 0 0〜 4, 0 0 0 T E Xの太い無撚で、 大きな ピッチで配列したものである。 そして、 該補強繊維糸の繊度と織糸ピッ チが以下の関係にあり、 織物のたて糸とよこ糸の交錯部で生じる開口率 が 0. 3以下であり、 かつ開口部 1個の大きさが 1 mm2以下であること を特徴とする。 The woven fabric 1 is a woven fabric in which the reinforcing fiber yarns are the warp yarns 2 and the weft yarns 3, and the size of the reinforcing fiber yarns is 400 to 4,000 TEX, which is thick, non-twisted, and arranged at a large pitch. Things. The fineness of the reinforcing fiber yarn and the weft pitch have the following relationship, the opening ratio at the intersection of the warp and weft of the woven fabric is 0.3 or less, and the size of one opening is 1 mm 2 or less.
P = k . T 1/2 P = k .T 1/2
ただし P : 織糸ピッチ (mm)  Where P: Yarn pitch (mm)
T : 補強繊維の繊度 (T E X)  T: Fineness of reinforcing fiber (T E X)
k : ( 1 8〜5 0) X 1 0— 2 k: (1 8~5 0) X 1 0- 2
また、 前記補強繊維が炭素繊維であると比強度 · 比弾性率の高い繊維 強化プラスチックが得られることから好ましい。  Further, it is preferable that the reinforcing fiber is a carbon fiber, since a fiber-reinforced plastic having a high specific strength and a specific elastic modulus can be obtained.
従来技術でも説明したように、 繊度が 4 0 0〜4, 0 0 0 T E X太い 炭素繊維糸で従来繊度が 2 0 0 T E X以下の細い炭素繊維糸で織られて いた目付が 8 0〜 3 0 0 g/m 2の低目付の炭素繊維織物にすることで、 織 物の生産性が 2〜 2 0倍となり、 また太い炭素繊維は製造コス トが安価 であることから低コス トな炭素繊維織物が提供できる。 As explained in the prior art, the fineness of the carbon fiber is 400 to 4000 TEX, thick carbon fiber yarn, and the fineness of the conventional carbon fiber is less than 200 TEX. There was a basis weight that is to 8 0 to 3 0 0 g / low basis weight carbon fiber fabric of m 2, the productivity of the woven material is 2 to become 2 0 fold, also thick carbon fibers are inexpensive manufacturing cost Thus, a low-cost carbon fiber fabric can be provided.
また、 太い炭素繊維であって織糸断面が扁平状で互いに交錯するので 織糸のク リ ンプが小さく高い機械的特性を発揮する炭素繊維強化プラス チックが期待される。  In addition, since the carbon fiber is a thick carbon fiber and the cross section of the yarn is flat and intersects with each other, a carbon fiber reinforced plastic having a small crimp of the yarn and exhibiting high mechanical properties is expected.
しかしながら、 太い炭素繊維扁平糸の扁平状を保持しながら製織して、 織糸間に隙間なく炭素繊維が均一に分散した織物にすることは難しく、 どう してたて糸とよこ糸の交錯部に開口ができた織物になってしまうの が現状である。 そのような織物を上述した糸幅拡幅方法により、 たて糸 とよこ糸の交錯部に生じる開口をほとんどない状態まで至らしめること ができ、 優れた機械的特性を発揮する補強用織物が得られるものである。 ここで、 上記開口率の測定は、 1 m長の織物の異なった 3力所からたて 糸 2およびよこ糸 3が少なく とも 1 0本以上入るようにサンプルリ ング し、 それぞれのサンプルからたて糸およびよこ糸 1 0本分の間隔と糸幅 を 0 . 1 m mまでノギスで測定し、 それぞれの平均値から次の式 ( 1 ) で求めることができる。 開口率 (% )  However, it is difficult to weave while keeping the flatness of the thick carbon fiber flat yarn to make a woven fabric in which the carbon fibers are uniformly dispersed without any gaps between the yarns. At present, it is a finished woven fabric. Such a woven fabric can be made to have almost no opening at the intersection of the warp and weft yarns by the above-described yarn width widening method, and a reinforcing woven fabric exhibiting excellent mechanical properties can be obtained. . Here, the measurement of the aperture ratio is performed by sampling a warp yarn 2 and a weft yarn 3 from at least 10 different places of a 1-m long woven fabric so that at least 10 or more warp yarns and weft yarns 3 enter the warp yarn and the warp yarn from each sample. The interval and width of 10 weft yarns can be measured with a vernier caliper to 0.1 mm, and the average value of each can be obtained by the following formula (1). Aperture ratio (% )
(たて糸間隔一たて糸幅) X (よこ糸間隔一よこ糸幅)  (Warp interval-warp width) X (Weft interval-weft width)
X 1 0 0 たて糸間隔 Xよこ糸間隔  X 1 0 0 Warp spacing X Weft spacing
( 1 ) また、 開口面積は上記式の分子の値である。 なお、 糸間隔は、 隣接す る織糸の中央線間距離であるが、 本発明の開口率、 開口面積を求める上 で、 糸幅方向の端部から隣接糸の端部までの距離とする。 (1) The opening area is the value of the numerator in the above equation. The yarn spacing should be The distance between the center lines of the woven yarns to be determined is the distance from the end in the yarn width direction to the end of the adjacent yarn in obtaining the opening ratio and opening area of the present invention.
本発明の織物の開口率は、 0 . 3 %以下であり、 開口部 1個の面積が 1 m m 2以下である。 The opening ratio of the woven fabric of the present invention is 0.3% or less, and the area of one opening is 1 mm 2 or less.
そのような織物に樹脂を含浸して炭素繊維プラスチックに成形した際 に、 開口部がほとんどないので樹脂リ ッチ部が存在しない成形品が得ら れ、 高い機械的特性を発揮し、 また優れた表面品位が得られる特徴があ る。 なお、 炭素繊維強化プラスチックにおいて樹脂リ ッチ部が存在する と、 応力が作用した際に樹脂リ ツチ部が破壊に起点になり低い荷重で破 壊する問題点や、 樹脂の硬化収縮により樹脂リ ツチ部に窪みが生じる問 題点がある。 また、 織糸が扁平状で、 またたて糸とよこ糸の交錯部に大 きな開口が存在した織物を溶剤で希釈された樹脂に浸して含浸させる W E T —プリプレダ法でプリプレダを製造する場合の溶剤の乾燥工程にお いて、 樹脂の表面張力が作用すると開口部には、 樹脂膜程度しか樹脂を 含むことができないので、 その開口部の両隣の扁平状の炭素繊維糸は丸 く収束する結果になり、 開口部が大きく開いたプリプレダになる問題点 がある。 そこで、 開口部の面積が 1 m m 2以下であれば、 その開口部に樹 脂を十分含むことが可能であり、 溶剤の乾燥時に開口部に存在する樹脂 にも表面張力が働くので開口部が大きく なるようなことがない。 When such a woven fabric is impregnated with a resin and molded into a carbon fiber plastic, there is almost no opening, so a molded product without a resin rich portion can be obtained, exhibiting high mechanical properties and excellent It has the characteristic of obtaining a high surface quality. If a resin rich portion exists in carbon fiber reinforced plastic, the resin rich portion becomes the starting point of destruction when a stress is applied and breaks with a low load. There is a problem that a dent is formed in the finger. In addition, a woven fabric with a flat weave and a large opening at the intersection of warp and weft is impregnated by impregnating it with a resin diluted with a solvent. In the drying process, if the surface tension of the resin acts on the opening, only the resin film can be contained in the opening, so the flat carbon fiber yarns on both sides of the opening converge round. However, there is a problem in that the pre-predator has a large opening. Therefore, if the area of the opening is 1 mm 2 or less, may include a tree fat enough in the opening, the opening since surface tension acts even resin present in the opening during the drying of the solvent It doesn't grow.
実施例及び比較例  Examples and comparative examples
以下、 本発明の実施例と比較例を説明する。  Hereinafter, examples of the present invention and comparative examples will be described.
実施例 1  Example 1
第 1図において、 フィ ラメ ン ト数が 1 2, 0 0 0本、 引張強度が 4 8 0 0 M P a、 引張弾性率が 2 3 0 G P a、 糸幅が 6 m mの炭素繊維扁平 糸をたて糸 2 とよこ糸 3 と し、 たて糸およびよこ糸の織糸ピッチがそれ ぞれ 8 . 3 m mとなる密度で平組織の扁平糸織物 1 をレピア織機により 8 0 R P Mの回転数で製織した。 In Fig. 1, a carbon fiber flat yarn having a filament count of 12,000, a tensile strength of 480 MPa, a tensile modulus of 230 GPa, and a yarn width of 6 mm was used. A warp yarn 2 and a weft yarn 3 are used, and a flat-textured flat yarn woven fabric 1 having a density of 8.3 mm for the warp yarn and the weft yarn is 8.3 mm, respectively. Weaved at 80 RPM.
次に卷き取り工程までの間で、 供給エア圧力が 0 . 5 P aでエアジェ ッ ト噴射により、 よこ糸 3の開繊拡幅処理を行い、 ついで上記第 5図で 説明した円筒状体 4による拡幅方法で拡幅処理を行った。 拡幅処理条件 は、 拡幅ローラ 4への押し圧荷重を 1個の拡幅ローラの 1 c m長さ当た り大凡 2 0 0 g、 拡幅ローラを 4列で振幅 (図の B方向) を 5 0 m mと し、 振動数を 2回 Z秒でおこなった。  Next, until the winding step, the weft yarn 3 is spread and widened by air jetting at a supply air pressure of 0.5 Pa, and then the weft yarn 3 is processed by the cylindrical body 4 described in FIG. Widening processing was performed by the widening method. The widening processing conditions are as follows: the pressing force applied to the widening roller 4 is approximately 200 g per 1 cm length of one widening roller, and the amplitude (direction B in the figure) is 50 mm in four rows of widening rollers. Then, the vibration was performed twice at Z seconds.
なお、 円筒状体 4のサイズは、 直径が 1 2 m m、 長さが 1 5 m mとし た。 エアジヱッ ト処理前後の織物とその織物を本発明の円筒状体による 拡幅方法で糸幅拡幅した織物の評価結果を表 1に示した。  The size of the cylindrical body 4 was 12 mm in diameter and 15 mm in length. Table 1 shows the evaluation results of the woven fabric before and after the air treatment and the woven fabric obtained by widening the yarn width of the woven fabric by the cylindrical body widening method of the present invention.
その結果、 ェアジエツ ト処理により よこ糸幅が大きく拡幅されている が、 たて糸幅については、 エアジヱッ ト処理により若干狭くなり、 拡幅 ローラ処理による糸幅拡幅方法により、 たて糸幅が A方向に大きく拡幅 され、 たて糸、 よこ糸の両者の幅が拡幅された、 非常に均一で、 たて糸 とよこ糸の交錯部に隙間のない織物が得られた。  As a result, the weft yarn width is greatly widened by the agitating process, but the warp yarn width is slightly narrowed by the agitating process, and the warp yarn width is greatly widened in the A direction by the yarn width widening method by the widening roller process. A very uniform fabric was obtained in which the widths of both the warp and weft yarns were widened, and where there was no gap at the intersection of the warp and weft yarns.
比較例 1、 2  Comparative Examples 1 and 2
これに対し、 実施例 1 と同じ方法で製織したが、 ェアジヱッ ト噴射に よる開繊拡幅処理工程と、 円筒状体 4による拡幅処理工程の本発明の製 造方法を用いない織物を比較例 1 とし、 またその織物にエアジェッ トで よこ糸を開繊処理のみを施した織物 (円筒状体 4による拡幅処理工程の 本発明の製造方法を用いない織物) を比較例 2 と して下表に示した。  On the other hand, a woven fabric which was woven by the same method as in Example 1 but did not use the manufacturing method of the present invention in the spreading and widening process by air jetting and the widening process by the cylindrical body 4 was used. The woven fabric obtained by subjecting the woven fabric to the weft opening process only by air jet (a woven fabric not using the manufacturing method of the present invention in the process of widening by the cylindrical body 4) is shown in the following table as Comparative Example 2. Was.
その結果、 比較例 1の織物の糸幅は、 用いた炭素繊維扁平糸の糸幅よ り若干広くなっているが、 織糸間隔に対して共の狭いためにたて糸とよ こ糸の交錯部に隙間が生じ、 開口率が 3 . 3 %で、 最大開口面積が 4 . 5 m m 2と大きな目空きが存在した織物であった。 As a result, the yarn width of the woven fabric of Comparative Example 1 was slightly wider than that of the carbon fiber flat yarn used, but the width of the warp yarn and the weft yarn crossed each other because it was narrower than the weft yarn interval. There was a gap in the fabric, the opening ratio was 3.3%, and the maximum opening area was 4.5 mm 2 .
比較例 2の織物は、 よこ糸をェアジエツ トにより拡幅されてよこ糸幅 が広いが、 たて糸幅が狭いためにたて糸とよこ糸の交錯部に比較例 1の 織物より小さいが開口率 0 . 4 %の目空きした織物であった。 また、 比 較例 2の織物の開口率は、 小さいものの、 たて糸幅が狭いためにたて糸 部が織物面に対して凸状となり、 表面が凸凹した織物であった。 In the woven fabric of Comparative Example 2, the weft yarn was widened by an air jet and the weft yarn width was increased. Although the width of the warp was narrow, the width of the warp was narrow, so that the cross section of the warp and the weft was smaller than the fabric of Comparative Example 1, but the opening ratio was 0.4%. Further, although the opening ratio of the woven fabric of Comparative Example 2 was small, the warp yarn portion became convex with respect to the woven fabric surface due to the narrow warp yarn width, and the woven fabric had an uneven surface.
以上の実施例と比較例をまとめたのが次の表 1である。 表 1  Table 1 below summarizes the above examples and comparative examples. table 1
Figure imgf000024_0001
Figure imgf000024_0001
産業上の利用可能性 Industrial applicability
本発明に係る発明は、 補強繊維からなる織物を円筒状体で織物に対し て加圧状態でたて糸方向に転がしながら往復動させる製造方法およびそ の製造装置と したので、 織糸幅を効果的に織物の幅方向に拡げることが できる。 よって、 最終製品の補強用基材と して補強繊維が均一に分散し た繊維強化プラスチック製品を得ることができる。  The invention according to the present invention is a manufacturing method and a manufacturing apparatus for reciprocating a woven fabric made of reinforcing fibers in a warp direction while rolling the woven fabric made of a reinforcing fiber against the woven fabric in a pressurized state. It can be spread in the width direction of the fabric. Therefore, a fiber-reinforced plastic product in which reinforcing fibers are uniformly dispersed can be obtained as a reinforcing base material of a final product.
特に、 本発明の補強繊維織物の製造方法で用いている拡幅方法は、 補 強織物が炭素繊維製扁平糸織物のように目ずれを起こし易い織物であつ ても、 織物に対して円筒状体をたて糸方向に転がしながら往復動させて 織糸糸幅を拡げる拡幅方法であるので、 従来技術のように織糸の配列を 乱すことなく確実に糸幅を拡げることができる。 したがって、 織糸間に 隙間のない織物を得ることができる。 また、 本発明の製造方法及び装置は、 非常に簡単な方法であるので、 織機上において連続的に糸幅拡幅処理を行うことができる。 ' In particular, the widening method used in the method for producing a reinforcing fiber woven fabric of the present invention is a method for producing a reinforcing fiber woven fabric, which is a woven fabric which is easily misaligned, such as a carbon fiber flat yarn woven fabric. Since the width of the yarn is increased by reciprocating the yarn while rolling in the warp direction, the yarn width can be surely increased without disturbing the arrangement of the yarn as in the prior art. Therefore, a woven fabric having no gap between the yarns can be obtained. Further, since the manufacturing method and apparatus of the present invention is a very simple method, it is possible to continuously perform a yarn width widening process on a loom. '
これらにより、 本発明の製造方法及びその製造装置は、 航空機部材ゃ 一般産業用途等の分野において、 広く利用することができる。  Thus, the production method and the production apparatus of the present invention can be widely used in fields such as aircraft members and general industrial applications.

Claims

請 求 の 範 囲 The scope of the claims
1. 補強繊維を少なく ともたて糸と して製織する補強織物の製造方法 において、 前記織物上に円筒状体を織物に対して加圧状態で転がしなが ら、 織物のたて糸方向に往復動させることにより、 前記織物を構成する 少なく ともたて糸の糸幅をよこ糸方向に拡幅させることを特徴とする捕 強繊維織物の製造方法。 1. A method of manufacturing a reinforced woven fabric in which reinforcing fibers are woven at least as warp yarns, wherein the cylindrical body is reciprocated in the warp yarn direction while rolling the cylindrical body on the woven fabric in a pressurized state with respect to the woven fabric. A method for producing a reinforced fiber woven fabric, comprising increasing the width of at least the warp yarn constituting the woven fabric in the weft direction.
2. 前記円筒状体の織物に対する加圧力は、 円筒状体の軸方向長さ 1 c m当たり、 1 0 0〜 2 0 0 0 gの範囲であることを特徴とする請求の 範囲第 1項記載の補強繊維織物の製造方法。 2. The pressure applied to the fabric of the cylindrical body is in the range of 100 to 200 g per 1 cm of the axial length of the cylindrical body. Of producing a reinforcing fiber woven fabric.
3. 前記たて糸の糸幅をよこ糸方向に拡幅させる拡幅率は、 2〜 5 0 %の範囲であることを特徴とする請求の範囲第 2項記載の補強繊維織物 の製造方法。 3. The method for producing a reinforcing fiber woven fabric according to claim 2, wherein a widening ratio for widening the warp yarn width in the weft direction is in a range of 2 to 50%.
4. 前記織物は、 繊度が 4 0 0〜 4, 0 0 0 T E Xの範囲の太い無撚 りの捕強繊維糸が、 5〜 3 2 mmの範囲の織糸ピッチで配列されており . かつ、 該補強繊維糸の繊度と織糸ピッチとの関係が以下の関係にある織 物であることを特徴とする請求の範囲第 1項記載の補強繊維織物の製造 方法。  4. In the woven fabric, thick non-twisted reinforcing fiber yarns having a fineness in the range of 400 to 4000 TEX are arranged at a woven yarn pitch in the range of 5 to 32 mm. 2. The method for producing a reinforcing fiber woven fabric according to claim 1, wherein the woven fabric has the following relationship between the fineness of the reinforcing fiber yarn and the yarn pitch.
P = k · T 1/2 P = kT 1/2
ただし、 P :織糸ピッチ (mm)  However, P: Yarn pitch (mm)
T : 捕強繊維の繊度 (T E X)  T: Fineness of captive fiber (T E X)
k : ( 1 8〜 5 0 ) X 1 0一2 k: (18 to 50) X 10 12
5. 前記織物は、 繊度が 4 0 0〜 4, 0 0 0 T E Xの範囲の太い無撚 りの捕強繊維糸が 4〜 1 6 mmの範囲の織糸ピツチでたて糸方向に配列 され、 繊度が 1〜 3 0 T E Xの細い捕助糸のよこ糸で一体化された一方 向性織物であって、 該補強繊維糸の繊度と織糸ピッチとの関係が以下の 関係にある織物であることを特徴とする請求の範囲第 1項記載の補強繊 維織物の製造方法。 5. The woven fabric has a thick untwisted fineness ranging from 400 to 4000 TEX. This is a unidirectional woven fabric in which the reinforcing fiber yarns are arranged in the warp direction with a weave pitch in the range of 4 to 16 mm, and are integrated with the weft yarn of a thin auxiliary yarn with a fineness of 1 to 30 TEX. 2. The method for producing a reinforcing fiber woven fabric according to claim 1, wherein the woven fabric has the following relationship between the fineness of the reinforcing fiber yarn and the woven yarn pitch.
P = k · T 1/2 P = kT 1/2
ただし、 P : 織糸 (たて糸) ピッチ (mm)  However, P: weft (warp) pitch (mm)
T : 捕強繊維の繊度 (T E X)  T: Fineness of captive fiber (T E X)
k : ( 1 0〜2 8 ) X 1 0一2 k: (10 to 28) X 10 12
6. 前記捕強繊維が炭素繊維であることを特徴とする請求の範囲第 1 〜 5項のいずれか記載の補強繊維織物の製造方法。 6. The method for producing a reinforcing fiber woven fabric according to any one of claims 1 to 5, wherein the reinforcing fibers are carbon fibers.
7. 前記炭素繊維のフィラメ ン ト数が 6, 0 0 0〜 5 0, 0 0 0本の 範囲であることを特徴とする請求の範囲第 6項記載の補強繊維織物の製 造方法。 7. The method for producing a reinforcing fiber woven fabric according to claim 6, wherein the number of filaments of the carbon fiber is in the range of 6,000 to 500,000.
8. 前記円筒状体を、 たて糸方向に複数個千鳥状に配列して織物の糸 幅を拡幅させることを特徴とする請求の範囲第 1〜 5および 7項のいず れかに記載の補強繊維織物の製造方法。 8. The reinforcement according to any one of claims 1 to 5 and 7, wherein a plurality of the cylindrical bodies are arranged in a staggered manner in the warp direction to widen the yarn width of the woven fabric. Manufacturing method of fiber woven fabric.
9. 前記織物を、 回転可能なガイ ドローラの表面に沿わせながらたて 糸方向に移動させ、 そのガイ ドローラと面接触した織物上で連続的に糸 幅を拡幅することを特徴とする請求の範囲第 1〜 5および 7項のいずれ かに記載の捕強繊維織物の製造方法。 9. The fabric is moved in the warp direction along the surface of a rotatable guide roller, and the yarn width is continuously increased on the fabric in surface contact with the guide roller. 8. The method for producing a reinforcing fiber woven fabric according to any one of Items 1 to 5 and 7.
1 0 . 織機の織前から織物の卷き取り ロールの間で糸幅を拡幅するこ とを特徴とする請求の範囲第 1〜 5および 7項のいずれかに記載の捕強 繊維織物の製造方法。 10. The production of a strengthened fiber woven fabric according to any one of claims 1 to 5, wherein the yarn width is widened between a weaving machine loom and a take-up roll of the woven fabric. Method.
1 1 . 円筒状体を往復運動させる平均速度が 5 0〜 3 0 0 m m Z秒の 範囲であることを特徴とする請求の範囲第 1〜 5および 7項のいずれか に記載の補強繊維織物の製造方法。 11. The reinforcing fiber woven fabric according to any one of claims 1 to 5 and 7, wherein an average speed of reciprocating the cylindrical body is in a range of 50 to 300 mm Z seconds. Manufacturing method.
1 2 . 織物は、 たて糸とよこ糸が炭素繊維糸からなる平組織の扁平糸 織物であって、 かつ織物のよこ糸方向に並ぶ噴射孔からのエアジヱッ ト 噴射により、 よこ糸の開繊'拡幅処理を行い、 ついで請求の範囲第 1〜 5 および 7項のいずれかに記載の方法で糸幅をよこ糸方向に拡幅させるこ とを特徴とする補強繊維織物の製造方法。 1 2. The woven fabric is a flat-yarn woven fabric with a flat structure in which the warp and the weft are made of carbon fiber yarn, and the weft is opened and expanded by jetting air through injection holes arranged in the weft direction of the woven fabric. A method for producing a reinforcing fiber woven fabric, wherein the yarn width is increased in the weft direction by the method according to any one of claims 1 to 5 and 7.
1 3 . たて糸またはよこ糸方向に低融点樹脂繊維を揷入しつつ織物を 製織する製織工程と、 請求の範囲第 1〜 5、 および 7項のいずれかに記 載の製造方法による糸幅の拡幅工程と、 前記織物を前記低融点樹脂繊維 の軟化点もしくは融点以上の温度に加熱して、 補強繊維同士または捕強 繊維と補助糸とを低融点樹脂で固着させる工程とを含むことを特徴とす る補強繊維織物の製造方法。 13. Weaving process for weaving a woven fabric while introducing low-melting resin fibers in the warp or weft direction, and widening the yarn width by the manufacturing method described in any one of claims 1 to 5 and 7. And heating the woven fabric to a temperature equal to or higher than the softening point or melting point of the low-melting resin fiber, and fixing the reinforcing fibers to each other or the reinforcing fiber and the auxiliary yarn with the low-melting resin. Manufacturing method of reinforced fiber fabric.
1 4 . 請求の範囲第 1〜 5、 および 7項のいずれかに記載の補強繊維 織物の製造方法 (この製造方法に拡幅工程は含まれている。 ) に、 さら に捕強繊維織物の片面または両面にパウダー状または繊維状の樹脂を塗 布および付着させる工程を含み、 前記樹脂の付着量が前記織物の 2〜 2 0重量%の範囲であることを特徴とする補強繊維織物の製造方法。 14. The method for producing a reinforcing fiber woven fabric according to any one of claims 1 to 5 and 7 (the method includes a widening step). Or a step of coating and adhering a powdery or fibrous resin on both surfaces, wherein the amount of the adhering resin is 2 to 2 A method for producing a reinforcing fiber woven fabric, which is in a range of 0% by weight.
1 5. 連続的に通過する補強織物と所定の巻き付け角で面接触しつつ 回転するガイ ドローラと、 その面接触した織物上に、 回転自在に支持さ れた複数個の円筒状体と、 前記円筒状体を織物のたて糸方向に往復動さ せる駆動部とを有することを特徴とする補強繊維織物の製造装置。 1 5. A guide roller that rotates while being in surface contact with a continuously passing reinforcing fabric at a predetermined winding angle, and a plurality of cylindrical bodies rotatably supported on the fabric in contact with the surface. An apparatus for producing a reinforcing fiber woven fabric, comprising: a drive unit for reciprocating a cylindrical body in a warp direction of the woven fabric.
1 6. 前記円筒状体は、 その直径が 1 0〜 4 O mmの範囲で、 かつそ の長さが 1 0〜 5 0 mmの範囲であって、 該円筒状体が前記織物のたて 糸方向に千鳥状に配置されていることを特徴とする請求の範囲第 1 5項 記載の補強繊維織物の製造装置。 1 6. The cylindrical body has a diameter in a range of 10 to 40 mm and a length in a range of 10 to 50 mm, and the cylindrical body is formed of the fabric. 16. The apparatus for producing a reinforcing fiber woven fabric according to claim 15, wherein the reinforcing fiber woven fabric is arranged in a staggered manner in the yarn direction.
PCT/JP2003/011343 2003-09-05 2003-09-05 Method and equipment for manufacturing reinforced fiber textile WO2005024111A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CNB038270196A CN100543218C (en) 2003-09-05 2003-09-05 The manufacture method of reinforcing fibre textiles and manufacturing installation
PCT/JP2003/011343 WO2005024111A1 (en) 2003-09-05 2003-09-05 Method and equipment for manufacturing reinforced fiber textile
AU2003261953A AU2003261953B2 (en) 2003-09-05 2003-09-05 Method and equipment for manufacturing reinforced fiber textile
US10/570,701 US7779870B2 (en) 2003-09-05 2003-09-05 Method and equipment for manufacturing reinforced fiber textile
AT03818577T ATE488631T1 (en) 2003-09-05 2003-09-05 METHOD AND DEVICE FOR PRODUCING A REINFORCEMENT TEXTILE
DE60335041T DE60335041D1 (en) 2003-09-05 2003-09-05 METHOD AND DEVICE FOR PRODUCING A REINFORCING TISSUE
EP03818577A EP1662033B1 (en) 2003-09-05 2003-09-05 Method and apparatus for producing a woven fabric for reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011343 WO2005024111A1 (en) 2003-09-05 2003-09-05 Method and equipment for manufacturing reinforced fiber textile

Publications (1)

Publication Number Publication Date
WO2005024111A1 true WO2005024111A1 (en) 2005-03-17

Family

ID=34260136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011343 WO2005024111A1 (en) 2003-09-05 2003-09-05 Method and equipment for manufacturing reinforced fiber textile

Country Status (7)

Country Link
US (1) US7779870B2 (en)
EP (1) EP1662033B1 (en)
CN (1) CN100543218C (en)
AT (1) ATE488631T1 (en)
AU (1) AU2003261953B2 (en)
DE (1) DE60335041D1 (en)
WO (1) WO2005024111A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014806A1 (en) * 2006-04-28 2009-01-14 Toray Industries, Inc. Process for producing woven carbon fiber fabric
TWI697597B (en) * 2020-02-21 2020-07-01 福濃機械股份有限公司 Deflection adjustable spreading device and method for adjusting deflection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425380B2 (en) * 2007-08-10 2014-02-26 株式会社有沢製作所 How to open a fabric
CN101910484B (en) * 2008-01-11 2012-08-15 东丽株式会社 Fabric and clothes made of the fabric
FR3002928B1 (en) 2013-03-08 2015-05-01 Hexcel Reinforcements METHOD AND MACHINE FOR SPREADING A TEXTILE CLOTH OF FABRIC TYPE AND FABRICS OBTAINED
EP3290549B1 (en) * 2015-05-08 2019-10-16 Toray Industries, Inc. Method for manufacturing spun thread bundle, and method for manufacturing carbon fiber in which resulting spun thread bundle is used
CN107385594A (en) * 2016-04-05 2017-11-24 旭化成株式会社 Complex yarn and cloth and silk and their manufacture method
US20230193525A1 (en) * 2021-12-20 2023-06-22 Raytheon Technologies Corporation Fabric structure control using ultrasonic probe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932107A (en) * 1987-08-03 1990-06-12 Mitsubishi Rayon Company, Ltd. Method of reducing open spaces in woven fabrics
JPH02307965A (en) * 1989-05-22 1990-12-21 Mitsubishi Rayon Co Ltd Method for correcting opening of woven fabric and apparatus therefor
JPH04241164A (en) * 1990-12-29 1992-08-28 Arisawa Mfg Co Ltd Method for opening woven fabric
JPH04281037A (en) * 1991-03-04 1992-10-06 Toray Ind Inc Reinforcing woven carbon fiber fabric and its production
US5511395A (en) * 1993-11-22 1996-04-30 Ishikawa Prefecture Carbon fiber fabric spreading apparatus having a freely rotatable endless belt
JP2002088640A (en) * 2000-09-13 2002-03-27 Toray Ind Inc Air jet nozzle and method for enlarging yarn width of sheet with the same
JP2003268669A (en) * 2002-03-11 2003-09-25 Toray Ind Inc Method for producing reinforcing yarn woven fabric and machine for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919028A (en) * 1972-09-13 1975-11-11 Kaiser Glass Fiber Corp Method of making unidirectional webbing material
CA998233A (en) 1974-04-26 1976-10-12 Bay Mills Limited Substantially closed fabric made by compressive redistribution of the filaments of at least some yarns of an open mesh fabric
FI61146C (en) * 1975-07-15 1982-06-10 Goettsching Lothar ANORDINATION FOR THE MATERIAL OF THE MATERIAL
FR2478693A1 (en) * 1980-03-20 1981-09-25 Hexcel Corp Precompression of resin impregnated carbon fibre fabrics - to reduce number of layers necessary for an impermeable laminate
JP2955145B2 (en) 1992-09-08 1999-10-04 東レ株式会社 Flat yarn woven fabric and its manufacturing method and manufacturing apparatus
FR2698640B1 (en) 1992-11-30 1995-02-17 Brochier Sa Warp and weft fabric based on predominantly twist-free multifilament technical yarns and process for obtaining it.
WO1996027701A1 (en) 1995-03-08 1996-09-12 Toray Industries, Inc. Reinforced woven material and method and apparatus for manufacturing the same
GB9913119D0 (en) 1999-06-05 1999-08-04 Carr Reinforcing Limited Textile structures based upon multifilament fibres and method for producing same
JP4559589B2 (en) 2000-05-10 2010-10-06 三菱レイヨン株式会社 Method for producing reinforced fiber fabric

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932107A (en) * 1987-08-03 1990-06-12 Mitsubishi Rayon Company, Ltd. Method of reducing open spaces in woven fabrics
JPH02307965A (en) * 1989-05-22 1990-12-21 Mitsubishi Rayon Co Ltd Method for correcting opening of woven fabric and apparatus therefor
JPH04241164A (en) * 1990-12-29 1992-08-28 Arisawa Mfg Co Ltd Method for opening woven fabric
JPH04281037A (en) * 1991-03-04 1992-10-06 Toray Ind Inc Reinforcing woven carbon fiber fabric and its production
US5511395A (en) * 1993-11-22 1996-04-30 Ishikawa Prefecture Carbon fiber fabric spreading apparatus having a freely rotatable endless belt
JP2002088640A (en) * 2000-09-13 2002-03-27 Toray Ind Inc Air jet nozzle and method for enlarging yarn width of sheet with the same
JP2003268669A (en) * 2002-03-11 2003-09-25 Toray Ind Inc Method for producing reinforcing yarn woven fabric and machine for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014806A1 (en) * 2006-04-28 2009-01-14 Toray Industries, Inc. Process for producing woven carbon fiber fabric
EP2014806A4 (en) * 2006-04-28 2011-03-23 Toray Industries Process for producing woven carbon fiber fabric
TWI697597B (en) * 2020-02-21 2020-07-01 福濃機械股份有限公司 Deflection adjustable spreading device and method for adjusting deflection

Also Published As

Publication number Publication date
EP1662033B1 (en) 2010-11-17
EP1662033A4 (en) 2007-06-06
US7779870B2 (en) 2010-08-24
ATE488631T1 (en) 2010-12-15
CN1826444A (en) 2006-08-30
EP1662033A1 (en) 2006-05-31
CN100543218C (en) 2009-09-23
AU2003261953B2 (en) 2009-11-26
DE60335041D1 (en) 2010-12-30
US20070023099A1 (en) 2007-02-01
AU2003261953A1 (en) 2005-03-29

Similar Documents

Publication Publication Date Title
EP0756027B1 (en) Reinforced woven material and method and apparatus for manufacturing the same
JP4534409B2 (en) Multiaxial stitch base material for reinforcement, fiber reinforced plastic and method for producing the same
US9003619B2 (en) Method for spreading fiber bundles, spread fiber sheet, and method for manufacturing a fiber-reinforced sheet
KR102441754B1 (en) Partially divided fiber bundle and method for manufacturing same, and chopped fiber bundle and fiber-reinforced resin molding material using same
EP0713934B1 (en) Fiber-resin composition
EP2014806B1 (en) Process for producing woven carbon fiber fabric
JP3094835B2 (en) REINFORCED FABRIC, ITS MANUFACTURING METHOD AND MANUFACTURING APPARATUS
US20190263625A1 (en) Partially separated fiber bundle, production method for partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
JP4348892B2 (en) Reinforcing fiber fabric manufacturing method and manufacturing apparatus
US4874658A (en) Synthetic filament-reinforced polymer material sheet and process for producing the same
US11162196B2 (en) Partially separated fiber bundle, production method of partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method of fiber-reinforced resin molding material using partially separated fiber bundle
KR102595469B1 (en) Reinforced fiber bundle base material and manufacturing method thereof, and fiber-reinforced thermoplastic resin material using the same and manufacturing method thereof
KR102253926B1 (en) Method for producing partial fiber bundles, partial fiber bundles, and fiber-reinforced resin molding materials using partially branched fiber bundles, and method for producing the same
WO2005024111A1 (en) Method and equipment for manufacturing reinforced fiber textile
JP3214647B2 (en) Material for molding fiber-reinforced thermoplastic resin and method for producing the same
JP3089984B2 (en) REINFORCED FABRIC, ITS MANUFACTURING METHOD AND MANUFACTURING APPARATUS
JP3608645B2 (en) Flat yarn woven fabric and method and apparatus for manufacturing the same
JP4293663B2 (en) Reinforcing fiber fabric manufacturing method, reinforcing fiber fabric yarn opening device and reinforcing fiber fabric manufacturing machine
JP2007023431A (en) Carbon fiber woven fabric and method for producing the same
JPH0473235A (en) Production of blended yarn for use in composite material
KR102305073B1 (en) Method for providing sizing agent on carbon fiber bundle
JP3741018B2 (en) Reinforcing fiber fabric manufacturing method and manufacturing apparatus therefor
JP2000226754A (en) Method and device for producing reinforcing fiber woven fabric
JPH1112895A (en) Flat yarn fabric and its production and production system of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 03827019.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003261953

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003818577

Country of ref document: EP

Ref document number: 2007023099

Country of ref document: US

Ref document number: 10570701

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003818577

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570701

Country of ref document: US