WO2005021437A1 - Porous material and method for producing same - Google Patents

Porous material and method for producing same Download PDF

Info

Publication number
WO2005021437A1
WO2005021437A1 PCT/JP2004/010455 JP2004010455W WO2005021437A1 WO 2005021437 A1 WO2005021437 A1 WO 2005021437A1 JP 2004010455 W JP2004010455 W JP 2004010455W WO 2005021437 A1 WO2005021437 A1 WO 2005021437A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoride
surface area
salt
porous metal
porous
Prior art date
Application number
PCT/JP2004/010455
Other languages
French (fr)
Japanese (ja)
Inventor
Heng-Dao Quan
Hui-E Yang
Masanori Tamura
Akira Sekiya
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to CN200480014832.3A priority Critical patent/CN1798703B/en
Publication of WO2005021437A1 publication Critical patent/WO2005021437A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • B01J35/613
    • B01J35/615

Definitions

  • the present invention relates to a raw material composition for synthesizing a porous metal fluoride, a porous metal fluoride obtained by fluorinating the raw material, a fluorine catalyst containing the porous metal fluoride, and a fluorine-containing catalyst.
  • the present invention relates to a method for producing a fluoro compound using a catalyst.
  • Porous materials having micro and meso-sized pores are widely used for catalysts, selective separation, selective reactions, sensors, and the like (Non-Patent Document 1).
  • Non-Patent Documents 2 are silicates or metal oxides. Since these silicates and metal oxides react and corrode themselves in a corrosive atmosphere such as in the presence of hydrogen fluoride, and at high temperatures the pore structure is destroyed. It has the disadvantage that it cannot be used stably.
  • Non-Patent Documents 4 and 5 porous aluminum fluoride
  • porous magnesium fluoride Non-Patent Document 6
  • porous calcium fluoride Non-Patent Documents
  • Patent Document 1 porous chromium fluoride
  • porous chromium fluoride is usually made by fluorinating chromium oxide, but the catalytic activity of the chromium fluoride catalyst is affected by the surface area of the precursor chromium oxide, and the surface area of chromium oxide is reduced. It is reported that as the size increases, the catalytic activity of fluorination improves (Patent Document 3). As described above, porous materials having a large surface area are expected to have excellent properties such as high catalytic activity. However, there has been a demand for the development of a stable porous material.
  • Non-patent document 1 Yunfeng Lu, et al., Nature, 389 (25), 364 (1997)
  • Non-Patent Document 2 Hui-suk Yun, et al "Adv. Mater., 13 (18), 1377 (2001)
  • Non-Patent Document 3 Hong Yang, et al., Nature, 379 (22), 703 (1996)
  • Non-Patent Document 4 H.D.Quan, et al "J. Fluorine Chem” 99, 176 (1999)
  • Non-Patent Document 5 H.D.Quan, et al "Tetrahedron, 57, 4111 (2001)
  • Non-Patent Document 6 M. Wojciechowska, et al "Catal. Lett., 66, 147 (2000)
  • Non-Patent Document 7 0. (311 & 11, et al "J. Fluorine Chem., 116, 65 (2002)
  • Patent Document 1 US Pat. No. 3,258,500
  • Patent Document 2 International Publication No. 98/10862 pamphlet
  • Patent Document 3 European Patent Application No. 0514932
  • a first object of the present invention is to provide a raw material composition suitably used for synthesizing a porous metal fluoride having a large surface area and being stable even in a corrosive atmosphere or the like.
  • the second object is to provide a porous metal fluoride which has a large surface area by fluorinating the raw material composition and is stable even in a corrosive atmosphere, and the third object is to provide the porous metal fluoride.
  • a fourth object is to provide a fluorination catalyst containing a fluoride, and to provide an efficient method for producing a fluoro compound using the fluorination catalyst.
  • the present inventor has conducted intensive studies to solve the above-mentioned problems, and as a result, the raw material composition containing a silicon compound in a metal compound which is a precursor of a porous metal fuzzy object is subjected to a fluorination treatment. As a result, they have found that a porous metal fluoride having a large surface area and stable even in a corrosive atmosphere or the like can be provided, and the present invention has been completed.
  • a method for producing a porous metal fluoride which comprises introducing a silicon-containing compound into a metal salt and then subjecting the metal salt to hydrogen fluoride treatment.
  • the metal salt is at least one metal compound selected from chromium, cobalt, anorenium, calcium, magnesium, nickele, titanium, zinc, indium and iron.
  • the raw material composition according to any one of the above.
  • 90m has a surface area of chromium fluoride, cobalt fluoride having a surface area of 110m 2 / g- 300m 2 / g , 80m 2 / g- 300m 2 / g with a surface area of 2 / g- 500m 2 / g
  • Anodium fluoride 100m 2 / g—Calcium fluoride with a surface area of 300m 2 / g, 70m 2 / g
  • Porous chromium fluoride characterized by a surface area of 90m 2 Zg—200m 2 / g
  • Porous metal fluoride power Selected from chromium fluoride, cobalt fluoride, aluminum fluoride, calcium fluoride, magnesium fluoride, nickel fluoride, titanium fluoride, zinc fluoride, indium fluoride and iron fluoride
  • a fluorination catalyst comprising the porous metal fluoride according to any one of (7) to (12).
  • a process for producing a fluoro compound which comprises reacting a hydrogen or fluorine compound with hydrogen fluoride in the presence of the fluorination catalyst according to (13) or (14).
  • the raw material composition according to the present invention comprising a metal compound and a silicon compound is often porous and amorphous, and its surface area may be 400 m 2 / g or more depending on the case.
  • the chemical composition turns into a fluoride of the metal by a reaction with hydrogen fluoride. Because of these characteristics, fluorination treatment gives a porous metal fluoride with a much larger surface area than conventional products and is stable even in corrosive atmospheres. . Further, the obtained porous metal fluoride has excellent fluorination catalytic activity, and when used as a catalyst for producing a fluoro compound by reacting a halide with hydrogen fluoride, it can be used in a high yield. Can be obtained.
  • the raw material composition for synthesizing a porous metal fluoride of the present invention comprises a metal compound containing a silicon compound.
  • the metal compound containing a silicon compound is not particularly limited as long as it gives a porous metal fluoride by hydrogen fluoride treatment, but chromium, cobalt, aluminum, calcium, magnesium, nickel, titanium, zinc, Indium, iron salts, or mixtures thereof are preferred. More preferably, these oxides, hydroxides, or mixtures thereof are preferred. More preferred are chromium oxides and hydroxides and salts containing these.
  • the silicon compound is not particularly limited as long as it can be applied to the present production method, but is preferably silicon dioxide (SiO 2), caustic hydrofluoric acid (H SiF), and orthocaic acid (H SiO 2). , Metasilicic acid (H SiO), ortho-dicarboxylic acid (H Si 0), meta-di-acid (H Si 0), meta-tri-carboxylic acid (H Si 0)
  • the content of silicon when the silicon compound is added to the metal compound is 0.1 to 20% by weight, preferably 115 to 5% by weight. If the content of silicon is too large, the structure may be destroyed during the treatment with hydrogen fluoride, which is not preferable.
  • the method for incorporating the silicon compound into the precursor is not particularly limited, and examples thereof include a coprecipitation method, an impregnation method, and a method of directly mixing the precursor and the silicon compound.
  • an aqueous solution of a metal salt, a silicon-containing compound and a base are mixed to precipitate a metal hydroxide containing the silicon-containing compound.
  • the base used at this time is not particularly limited as long as a hydroxide precipitate can be obtained by this method, but examples thereof include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
  • the pH at the time of precipitation is 6-9, preferably 7-8.
  • the precipitate obtained is filtered and washed with water, preferably with deionized water.
  • the precursor into which the silicon-containing compound has been introduced is fired if necessary.
  • the temperature is 300-600 ° C, preferably 400-500 ° C, and firing in air may be used, but firing in a nitrogen atmosphere is preferable.
  • the raw material composition (hereinafter also referred to as a precursor) obtained as described above is often porous and amorphous, and its surface area may be 400 m 2 / g or more in some cases. is there.
  • the metal becomes a fluoride of the metal by the reaction with hydrogen fluoride. Due to these characteristics, the surface area measured by the BET method by fluorination treatment has a larger surface area, for example, 90 m 2 / g—200 m 2 / g, and is stable even in a corrosive atmosphere. Provides a porous metal fluoride.
  • chromium fluoride having a surface area of 90 m 2 / g to 500 m 2 / g, particularly porous chromium fluoride having a surface area of 90 m 2 / g to 200 m 2 / g is preferable.
  • the hydrogen fluoride treatment may be performed by bringing the precursor into contact with hydrogen fluoride or hydrogen fluoride diluted with a diluent gas such as nitrogen gas or argon gas.
  • the temperature of the hydrogen fluoride treatment is from room temperature to 500 ° C, preferably from 50 ° C to 350 ° C. There is no particular limitation on the amount of hydrogen fluoride.
  • the remaining hydrogen fluoride can be removed by flowing a nitrogen stream.
  • the porous metal fluoride according to the present invention is obtained by fluorinating a halogen compound such as carbon black. It can be suitably used as a catalyst for producing a fluoro compound by fluorination with hydrogen fluoride. Further, a chromium salt, a cobalt salt, an iron salt, a zinc salt, a magnesium salt, a silver salt, a nickel salt, an indium salt, or a mixture thereof may be added to the porous metal fluoride. As for the method of addition, it may be added to the porous fluorinated product, or may be added to the precursor by an impregnation method or a coprecipitation method, and then subjected to a hydrogen fluoride treatment. The amount of addition is 1: 1 to 100: 1, preferably 3: 1 10: 1, in a molar ratio of the metal of the porous fluoride to the metal of the additive.
  • halogen compound which is a starting material for producing a fluoro compound examples include halogenated hydrocarbons such as chlorocarbons, fluorofluorocarbons, hydrochlorofluorocarbons, and chloroolefins.
  • Specific columns include chloromethane, dichloromethane, trichloromethane, tetrachloromethane, chlorofluoromethane, dichlorofluoromethane, chlorodifluoromethane, chloromethane, 1,1-dichloromethane, 1,2-dichloroethane, 1,1,1_trichloroethane, 1,1,2_trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, 1_black mouth 1, 1, 1-difluoro- 1, 2-difluoro-, 1_ 2, 2, 2-difluoro-, 1, 1-dichloro- 1-fluoro-, 1, 1-dichloro-2- 2-fluoro-, 1 1,2-dichloroethylene, 1,2-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 1,1-dichloro-2,2-dichloro-1,
  • the hydrogen fluoride used in these catalytic fluorination reactions is advantageously used in an excess amount with respect to the starting halogen compound, usually in an amount of 1 to 30 equivalents, preferably 3 to 10 equivalents. Preferably, it is used. In this case, hydrogen fluoride diluted with a diluent gas such as nitrogen gas or argon gas can also be used.
  • a diluent gas such as nitrogen gas or argon gas
  • the reaction temperature of the fluorination is usually 200 ° C, 450 ° C, preferably 230 ° C, 400 ° C.
  • the reaction can be carried out in either a batch system or a flow system.
  • Examples of the fluoro compound obtained by the fluorination reaction of the present invention include fluoromethane, difluoromethane, trifluoromethane, tetrafluoromethane, fluoroethane, 1,1-difluoroethane, 1,2-difluoroethane, 1,1,1, and 1_Trifluoroetan, 1,1,2—Trifluoroethan, 1,1,1,2—Tetrafluoroeethane, 1,1,2,2-Tetrafluore Lohetan and pentafunolelohetan can be mentioned.
  • Sodium silicate (NaSiO, 3g) was dissolved in 28% aqueous ammonia (114ml), and added to an aqueous solution of chromium trichloride (chromium content: about 10%, 240g) with vigorous stirring.
  • the pH after mixing was about 7.
  • the precipitate was collected by filtration, washed with deionized water, dried, and calcined at 450 ° C. under a nitrogen stream to obtain a chromium salt of a precursor containing silicon.
  • the specific surface area by BET method is 36 6m / g.
  • the specific surface area by the BET method was 176 m 2 / g.
  • a precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 9 g of sodium silicate was used.
  • the specific surface areas determined by the BET method were 470 and 169 m 2 / g, respectively, for the precursor and the porous chromium fluoride.
  • the porous chromium fluoride obtained here was used, and the gas phase fluorination of dichloromethane was carried out in the same manner as in Example 3. Table 2 shows the results.
  • a precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 9 g of sodium silicate was used and the firing temperature was 400 ° C.
  • the specific surface areas by the BET method were 407 and 187 m 2 / g for the precursor and the porous chromium fluoride, respectively.
  • gas phase fluorination of dichloromethane was carried out in the same manner as in Example 3. Table 3 shows the results.
  • a precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 15 g of sodium silicate was used and the sintering temperature was 400 ° C.
  • the specific surface areas by the BET method were 355 and 152 m 2 / g for the precursor and the porous chromium fluoride, respectively.
  • the porous chromium fluoride obtained here was used, and the gas phase fluorination of dichloromethane was carried out in the same manner as in Example 3. Table 4 shows the results.
  • a precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 0.9 g of sodium silicate was used.
  • the specific surface areas determined by the BET method were 395 and 110 m 2 / g, respectively, for the precursor and the porous chromium fluoride.
  • a porous chromium fluoride was prepared in the same manner as in Examples 1 and 2, except that sodium silicate was not used.
  • the specific surface area by the BET method was 253 and 90 m 2 / g for the precursor and the porous chromium fluoride, respectively.
  • gas phase fluorination of dichloromethane was carried out in the same manner as in Example 2. Table 6 shows the results.

Abstract

A material composition is disclosed which is preferably used for synthesizing a porous metal fluoride which has a large surface area and is stable in a corrosive environment. A porous metal fluoride obtained by subjecting such a material composition to hydrogen fluoride treatment has a larger surface area and is stable in a corrosive environment, and thus can be used as a fluorination catalyst.

Description

明 細 書  Specification
多孔性物質とその製造方法  Porous material and method for producing the same
技術分野  Technical field
[0001] 本発明は、多孔性金属フッ化物合成用原料組成物、この原料をフッ素化することに より得られる多孔性金属フッ化物及びこの多孔性金属フッ化物を含有するフッ素触 媒更には該触媒を用いたフルォロ化合物の製造方法に関する。  The present invention relates to a raw material composition for synthesizing a porous metal fluoride, a porous metal fluoride obtained by fluorinating the raw material, a fluorine catalyst containing the porous metal fluoride, and a fluorine-containing catalyst. The present invention relates to a method for producing a fluoro compound using a catalyst.
背景技術  Background art
[0002] マイクロ及びメソサイズの孔を持つ多孔性物質は触媒、選択性分離、選択的反応、 センサーなどに広く用いられている(非特許文献 1)。し力しながら、このような多孔性 物質のほとんどはケィ酸塩あるいは金属酸化物である(非特許文献 2, 3)。これらの ケィ酸塩や金属酸化物は、フッ化水素存在下のような腐食性雰囲気下ではそれ自身 反応して腐食されてしまうため、また高温においては細孔構造が破壊されてしまうた め、安定に用いることができないという欠点を持つ。  [0002] Porous materials having micro and meso-sized pores are widely used for catalysts, selective separation, selective reactions, sensors, and the like (Non-Patent Document 1). However, most of such porous materials are silicates or metal oxides (Non-Patent Documents 2, 3). Since these silicates and metal oxides react and corrode themselves in a corrosive atmosphere such as in the presence of hydrogen fluoride, and at high temperatures the pore structure is destroyed. It has the disadvantage that it cannot be used stably.
[0003] これに対して安定な多孔性物質として、多孔性フッ化アルミニウム (非特許文献 4、 5)、多孔性フッ化マグネシウム(非特許文献 6)、多孔性フッ化カルシウム(非特許文 献 7)、多孔性フッ化クロム(特許文献 1)が知られている。  [0003] On the other hand, porous aluminum fluoride (Non-Patent Documents 4 and 5), porous magnesium fluoride (Non-Patent Document 6), and porous calcium fluoride (Non-Patent Documents) are stable porous materials. 7), porous chromium fluoride (Patent Document 1) is known.
し力、しながら、これらの表面積は、多孔性フッ化アルミニウムでは 75 m2/g程度、多 孔性フッ化カルシウムでは 60 m2/g程度、多孔性フッ化マグネシウムでは 47 m2/g程度 に過ぎない。多孔性フッ化クロムは気相フッ素化反応触媒として有用であり、冷媒な どに用いられてレ、るヒドロフルォロカーボンの製造過程で使われてレ、る力 この多孔 性フッ化クロムも、その表面積は 70 m2/g程度のものしか知られていな力、つた(特許文 献 2) However, these surface areas are about 75 m 2 / g for porous aluminum fluoride, about 60 m 2 / g for porous calcium fluoride, and about 47 m 2 / g for porous magnesium fluoride. It's just Porous chromium fluoride is useful as a gas-phase fluorination reaction catalyst, and is used in the production of hydrofluorocarbons, such as in refrigerants. , Its surface area is only about 70 m 2 / g, known force (Patent Document 2)
例えば、多孔性フッ化クロムは、通常酸化クロムをフッ素処理することによって作ら れているが、フッ化クロム触媒の触媒活性は前駆体である酸化クロムの表面積に影 響され、酸化クロムの表面積が大きくなるとフッ素化の触媒活性が向上すると報告さ れている(特許文献 3)。このように、大きな表面積をもつ多孔性物質は高い触媒活性 などの優れた特性が期待されるため、より大きな表面積を持ち腐食性雰囲気下など でも安定な多孔性物質の開発が要望されていた。 For example, porous chromium fluoride is usually made by fluorinating chromium oxide, but the catalytic activity of the chromium fluoride catalyst is affected by the surface area of the precursor chromium oxide, and the surface area of chromium oxide is reduced. It is reported that as the size increases, the catalytic activity of fluorination improves (Patent Document 3). As described above, porous materials having a large surface area are expected to have excellent properties such as high catalytic activity. However, there has been a demand for the development of a stable porous material.
[0004] 非特許文献 1: Yunfeng Lu, et al., Nature, 389(25), 364 (1997)  [0004] Non-patent document 1: Yunfeng Lu, et al., Nature, 389 (25), 364 (1997)
非特許文献 2 : Hui-suk Yun, et al" Adv. Mater. , 13(18), 1377 (2001)  Non-Patent Document 2: Hui-suk Yun, et al "Adv. Mater., 13 (18), 1377 (2001)
非特許文献 3 : Hong Yang, et al., Nature, 379(22), 703 (1996)  Non-Patent Document 3: Hong Yang, et al., Nature, 379 (22), 703 (1996)
非特許文献 4 : H.D.Quan, et al" J. Fluorine Chem" 99, 176 (1999)  Non-Patent Document 4: H.D.Quan, et al "J. Fluorine Chem" 99, 176 (1999)
非特許文献 5 : H.D.Quan, et al" Tetrahedron, 57, 4111 (2001)  Non-Patent Document 5: H.D.Quan, et al "Tetrahedron, 57, 4111 (2001)
非特許文献 6 : M.Wojciechowska, et al" Catal. Lett. , 66, 147 (2000)  Non-Patent Document 6: M. Wojciechowska, et al "Catal. Lett., 66, 147 (2000)
非特許文献7 : 0. (311&11, et al" J. Fluorine Chem., 116, 65 (2002)  Non-Patent Document 7: 0. (311 & 11, et al "J. Fluorine Chem., 116, 65 (2002)
特許文献 1:米国特許第 3258500号明細書  Patent Document 1: US Pat. No. 3,258,500
特許文献 2:国際公開 98/10862号パンフレット  Patent Document 2: International Publication No. 98/10862 pamphlet
特許文献 3:欧州特許出願公開第 0514932号明細書  Patent Document 3: European Patent Application No. 0514932
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の第 1の目的は、大きな表面積を持ち腐食性雰囲気下などでも安定な多孔 性金属フッ化物を合成するために好適に使用される原料組成物を提供することであ り、第 2の目的は、該原料組成物をフッ素化することにより大きな表面積を持ち腐食 性雰囲気下などでも安定な多孔性金属フッ化物を提供することであり、第 3の目的は 、該多孔性金属フッ化物を含有してなるフッ素化触媒を提供することであり、第 4の目 的は、該フッ素化触媒を用いたフルォロ化合物の効率的な製造方法を提供すること にある。 [0005] A first object of the present invention is to provide a raw material composition suitably used for synthesizing a porous metal fluoride having a large surface area and being stable even in a corrosive atmosphere or the like. The second object is to provide a porous metal fluoride which has a large surface area by fluorinating the raw material composition and is stable even in a corrosive atmosphere, and the third object is to provide the porous metal fluoride. A fourth object is to provide a fluorination catalyst containing a fluoride, and to provide an efficient method for producing a fluoro compound using the fluorination catalyst.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、多孔性金属フツイ匕物 の前駆体である金属化合物にケィ素化合物を含有させた原料組成物はフッ素化処 理により、大きな表面積を持ち腐食性雰囲気下などでも安定な多孔性金属フッ化物 を与えることを見いだし、本発明を完成するに至った。  [0006] The present inventor has conducted intensive studies to solve the above-mentioned problems, and as a result, the raw material composition containing a silicon compound in a metal compound which is a precursor of a porous metal fuzzy object is subjected to a fluorination treatment. As a result, they have found that a porous metal fluoride having a large surface area and stable even in a corrosive atmosphere or the like can be provided, and the present invention has been completed.
(1)含ケィ素化合物を金属塩に導入した後フッ化水素処理をすることを特徴とする多 孔性金属フッ化物の製造方法。  (1) A method for producing a porous metal fluoride, which comprises introducing a silicon-containing compound into a metal salt and then subjecting the metal salt to hydrogen fluoride treatment.
(2)金属塩にケィ素化合物を含有させてなる多孔性金属フッ化物合成用原料組成 物。 (2) Raw material composition for synthesizing porous metal fluoride comprising metal compound containing silicon compound object.
(3)含ケィ素化合物が、二酸化ケイ素(SiO )、ケィフッ化水素酸 (H SiF )、正ケィ酸( (3) Silicon compounds containing silicon dioxide (SiO 2), hydrofluoric acid (H SiF), and caustic acid (
H SiO )、メタケイ酸 (H SiO )、正二ケィ酸(H Si 0 )、メタ二ケィ酸(H Si 0 )、メタ三 ケィ酸 (H Si 0 )及びこれらの各種ケィ酸の金属塩から選ばれた少なくとも一種であ ることを特徴とする上記(2)に記載の原料組成物。 H SiO), meta-silicic acid (H SiO), orthodicarboxylic acid (H Si 0), meta-di-acid (H Si 0), meta-tri-acid (H Si 0), and metal salts of these various silicic acids The raw material composition according to the above (2), which is at least one selected from the group consisting of:
(4)含ケィ素化合物が、共沈法、含浸法または直接混合により金属化合物に含有さ れることを特徴とする上記(2)または(3)に記載の原料組成物。  (4) The raw material composition according to the above (2) or (3), wherein the silicon-containing compound is contained in the metal compound by a coprecipitation method, an impregnation method or direct mixing.
(5)共沈法が、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、または 炭酸カリウムを用いる方法であることを特徴とする上記(2)乃至 (4)何れかに記載の 原料組成物。  (5) The raw material composition as described in any of (2) to (4) above, wherein the coprecipitation method is a method using ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate. .
(6)金属塩が、クロム、コバルト、ァノレミニゥム、カルシウム、マグネシウム、ニッケノレ、 チタン、亜鉛、インジウム及び鉄から選ばれた少なくとも一種の金属化合物であること を特徴とする上記(2)乃至(5)何れかに記載の原料組成物。  (6) The above (2) to (5), wherein the metal salt is at least one metal compound selected from chromium, cobalt, anorenium, calcium, magnesium, nickele, titanium, zinc, indium and iron. The raw material composition according to any one of the above.
(7) 90m2/g— 500m2/gの表面積を有するフッ化クロム、 110m2/g— 300m2/g の表面積を有するフッ化コバルト、 80m2/g— 300m2/gの表面積を有するフッ化ァ ノレミニゥム、 100m2/g— 300m2/gの表面積を有するフッ化カルシウム、 70m2/g 一 300m2/gの表面積を有するフッ化マグネシウム、 5m2/g— 300m2/gの表面積 を有するフッ化ニッケル、 5m2/g— 300m2/gの表面積を有するフッ化チタン、 5m2 /g— 300m2/gの表面積を有するフッ化亜鉛、 5m2/g— 300m2/gの表面積を有 するフッ化インジウム及び 5m2/g— 300m2/gの表面積を有するフッ化鉄から選ば れた少なくとも一種の多孔性金属フッ化物。 (7) 90m has a surface area of chromium fluoride, cobalt fluoride having a surface area of 110m 2 / g- 300m 2 / g , 80m 2 / g- 300m 2 / g with a surface area of 2 / g- 500m 2 / g Anodium fluoride, 100m 2 / g—Calcium fluoride with a surface area of 300m 2 / g, 70m 2 / g Magnesium fluoride with a surface area of 300m 2 / g, 5m 2 / g—300m 2 / g surface area nickel fluoride with, titanium fluoride having a surface area of 5m 2 / g- 300m 2 / g, zinc fluoride having a surface area of 5m 2 / g- 300m 2 / g, of 5m 2 / g- 300m 2 / g At least one porous metal fluoride selected from indium fluoride having a surface area and 5 m 2 / g—iron fluoride having a surface area of 300 m 2 / g.
(8)表面積が 90m2Zg— 200m2/gであることを特徴とする多孔性フッ化クロム (8) Porous chromium fluoride characterized by a surface area of 90m 2 Zg—200m 2 / g
(9)上記(2)乃至(6)何れかに記載の原料組成物をフッ化水素処理することにより得 られる多孔性金属フッ化物。  (9) A porous metal fluoride obtained by subjecting the raw material composition according to any of (2) to (6) to a hydrogen fluoride treatment.
(10)多孔性金属フッ化物力 フッ化クロム、フッ化コバルト、フッ化アルミニウム、フッ 化カルシウム、フッ化マグネシウム、フッ化ニッケル、フッ化チタン、フッ化亜鉛、フッ 化インジウム及びフッ化鉄から選ばれた少なくとも一種であることを特徴とする上記(9 )に記載の多孔性金属フッ化物。 (11)多孔性金属フッ化物力 90m2/g— 500m2/gの表面積を有するフッ化クロム 、 110m2/g— 300m2/gの表面積を有するフッ化コバルト、 80m2/g— 300m2/g の表面積を有するフッ化アルミニウム、 100m2/g— 300m2/gの表面積を有するフ ッ化カルシウム、 70m2/g— 300m2/gの表面積を有するフッ化マグネシウム、 5m2 /g— 300m2/gの表面積を有するフッ化ニッケル、 5m2Zg 300m2Zgの表面積 を有するフッ化チタン、 5m2/g 300m2Zgの表面積を有するフッ化亜鉛、 5m2Zg 一 300m2/gの表面積を有するフッ化インジウム及び 5m2Zg 300m2Zgの表面 積を有するフッ化鉄であることを特徴とする上記(10)に記載の多孔性金属フッ化物 (10) Porous metal fluoride power Selected from chromium fluoride, cobalt fluoride, aluminum fluoride, calcium fluoride, magnesium fluoride, nickel fluoride, titanium fluoride, zinc fluoride, indium fluoride and iron fluoride The porous metal fluoride according to the above (9), which is at least one kind selected from the group consisting of: (11) chromium fluoride having a surface area of porous metal fluoride force 90m 2 / g- 500m 2 / g , cobalt fluoride having a surface area of 110m 2 / g- 300m 2 / g , 80m 2 / g- 300m 2 magnesium fluoride having a surface area of aluminum fluoride, full Tsu of calcium having a surface area of 100m 2 / g- 300m 2 / g , 70m 2 / g- 300m 2 / g with a surface area of / g, 5m 2 / g- nickel fluoride having a surface area of 300m 2 / g, titanium fluoride having a surface area of 5m 2 Zg 300m 2 Zg, zinc fluoride having a surface area of 5m 2 / g 300m 2 Zg, of 5 m 2 Zg one 300 meters 2 / g The porous metal fluoride according to the above (10), which is indium fluoride having a surface area and iron fluoride having a surface area of 5 m 2 Zg and 300 m 2 Zg.
(12)多孔性金属フッ化物が 90m2/g— 200m2/gの表面積を有する多孔性フツイ匕 クロムであることを特徴とする上記(11)に記載の多孔性金属フッ化物。 (12) The porous metal fluoride according to the above (11), wherein the porous metal fluoride is a porous metal chromium having a surface area of 90 m 2 / g to 200 m 2 / g.
(13)上記(7)乃至(12)何れかに記載の多孔性金属フッ化物を含むフッ素化触媒。 (13) A fluorination catalyst comprising the porous metal fluoride according to any one of (7) to (12).
(14)上記(7)乃至(12)何れかに記載の多孔性金属フッ化物にクロム塩、コバルト塩 、鉄塩、亜鉛塩、マグネシウム塩、銀塩、ニッケル塩、インジウム塩、アンチモン塩、パ ラジウム塩、白金塩から選ばれた少なくとも一種の金属塩を添加して得られるフッ素 化触媒 (14) A chromium salt, a cobalt salt, an iron salt, a zinc salt, a magnesium salt, a silver salt, a nickel salt, an indium salt, an antimony salt, Fluorination catalyst obtained by adding at least one metal salt selected from radium salts and platinum salts
(15)上記(13)または(14)に記載のフッ素化触媒の存在下、ノ、ロゲン化合物とフッ 化水素を反応させることを特徴とするフルォロ化合物の製造方法。  (15) A process for producing a fluoro compound, which comprises reacting a hydrogen or fluorine compound with hydrogen fluoride in the presence of the fluorination catalyst according to (13) or (14).
(16)ハロゲン化合物がハロゲン化炭化水素であることを特徴とする上記(15)に記載 のフルォロ化合物の製造方法。  (16) The method for producing a fluoro compound according to the above (15), wherein the halogen compound is a halogenated hydrocarbon.
(17)ハロゲン炭化水素がジクロロメタンである上記(16)に記載のフルォロ化合物の 製造方法。  (17) The method for producing a fluoro compound according to the above (16), wherein the halogen hydrocarbon is dichloromethane.
発明の効果 The invention's effect
本発明に係る、金属化合物にケィ素化合物を含有させてなる原料組成物は、多く の場合多孔性の非晶質であり、その表面積は場合により 400 m2/g以上になる場合が ある。また、化学的組成としては、フッ化水素との反応によって当該金属のフッ化物と なる。このような特性を呈することから、フッ素化処理することにより、従来品よりも極め て大きな表面積を持ち腐食性雰囲気下などでも安定な多孔性金属フッ化物を与える 。また、得られる多孔性金属フッ化物は、優れたフッ素化触媒能を有し、ハロゲン化 合物とフッ化水素を反応させてフルォロ化合物を製造する際の触媒として利用すると 、高収率で目的とするフルォロ化合物を得ることができる。 The raw material composition according to the present invention comprising a metal compound and a silicon compound is often porous and amorphous, and its surface area may be 400 m 2 / g or more depending on the case. In addition, the chemical composition turns into a fluoride of the metal by a reaction with hydrogen fluoride. Because of these characteristics, fluorination treatment gives a porous metal fluoride with a much larger surface area than conventional products and is stable even in corrosive atmospheres. . Further, the obtained porous metal fluoride has excellent fluorination catalytic activity, and when used as a catalyst for producing a fluoro compound by reacting a halide with hydrogen fluoride, it can be used in a high yield. Can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明の多孔性金属フッ化物合成用原料組成物は、金属化合物にケィ素化合物 を含有させたものである。  [0008] The raw material composition for synthesizing a porous metal fluoride of the present invention comprises a metal compound containing a silicon compound.
ケィ素化合物が含有される金属化合物としては、フッ化水素処理により多孔性金属 フッ化物を与えるものなら特に制限はないが、クロム、コバルト、アルミニウム、カルシ ゥム、マグネシウム、ニッケル、チタン、亜鉛、インジウム、鉄の塩、あるいはこれらの混 合物が好ましい。より好ましくは、これらの酸化物、水酸化物、あるいはこれらの混合 物が好ましい。さらに好ましくはクロムの酸化物、水酸化物、あるいはこれらを含有す る塩が好ましい。  The metal compound containing a silicon compound is not particularly limited as long as it gives a porous metal fluoride by hydrogen fluoride treatment, but chromium, cobalt, aluminum, calcium, magnesium, nickel, titanium, zinc, Indium, iron salts, or mixtures thereof are preferred. More preferably, these oxides, hydroxides, or mixtures thereof are preferred. More preferred are chromium oxides and hydroxides and salts containing these.
[0009] ケィ素化合物としては、本製造方法が適用できるものであれば特に制限はないが、 好ましくは、二酸化ケイ素(SiO )、ケィフッ化水素酸(H SiF )、正ケィ酸 (H SiO )、メ タケイ酸(H SiO )、正二ケィ酸(H Si 0 )、メタ二ケィ酸(H Si 0 )、メタ三ケィ酸(H Si [0009] The silicon compound is not particularly limited as long as it can be applied to the present production method, but is preferably silicon dioxide (SiO 2), caustic hydrofluoric acid (H SiF), and orthocaic acid (H SiO 2). , Metasilicic acid (H SiO), ortho-dicarboxylic acid (H Si 0), meta-di-acid (H Si 0), meta-tri-carboxylic acid (H Si 0)
〇)、これら各種ケィ酸の金属塩、または、これらの混合物が好ましい。 Ii), metal salts of these various keic acids, or mixtures thereof.
[0010] 金属化合物にケィ素化合物を含有させる際のケィ素の含有量は、 0.1—20重量%、 好ましくは 1一 5重量%がよい。ケィ素の含有量が多すぎると、フッ化水素処理の際に 構造の崩壊などが起こり、好ましくない。  [0010] The content of silicon when the silicon compound is added to the metal compound is 0.1 to 20% by weight, preferably 115 to 5% by weight. If the content of silicon is too large, the structure may be destroyed during the treatment with hydrogen fluoride, which is not preferable.
ケィ素化合物を前駆体に含有させる方法に特に制限はないが、共沈法、含浸法、 または前駆体とケィ素化合物を直接混合する方法などが例示される。  The method for incorporating the silicon compound into the precursor is not particularly limited, and examples thereof include a coprecipitation method, an impregnation method, and a method of directly mixing the precursor and the silicon compound.
[0011] 共沈法による場合、金属塩と含ケィ素化合物の水溶液と塩基とを混合して含ケィ素 化合物を含む金属水酸化物を沈殿させる。このとき用いる塩基は、この方法で水酸 化物の沈殿が得られれば特に制限はなレ、が、例えばアンモニア、水酸化ナトリウム、 水酸化カリウム、炭酸ナトリウム、または炭酸カリウムが例示される。また、沈殿生成時 の pHは 6— 9、好ましくは 7— 8である。得られた沈殿はろ過した後、水、好ましくは脱ィ オン水で洗浄する。  In the case of the coprecipitation method, an aqueous solution of a metal salt, a silicon-containing compound and a base are mixed to precipitate a metal hydroxide containing the silicon-containing compound. The base used at this time is not particularly limited as long as a hydroxide precipitate can be obtained by this method, but examples thereof include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate. The pH at the time of precipitation is 6-9, preferably 7-8. The precipitate obtained is filtered and washed with water, preferably with deionized water.
含ケィ素化合物を導入した前駆体は必要に応じて焼成する。その温度は 300— 600 °C、好ましくは 400— 500°Cであり、空気中の焼成でもよいが、好ましくは窒素雰囲気 下で焼成するのが好ましレ、。 The precursor into which the silicon-containing compound has been introduced is fired if necessary. The temperature is 300-600 ° C, preferably 400-500 ° C, and firing in air may be used, but firing in a nitrogen atmosphere is preferable.
[0012] 上記にようにして得られる原料組成物(以下、前駆体ともいう)は、多くの場合多孔 性の非晶質であり、その表面積は場合により 400 m2/g以上になる場合がある。また、 化学的組成としては、フッ化水素との反応によって当該金属のフッ化物となる。このよ うな特性を呈することから、フッ素化処理することにより BET法により測定される表面 積が例えば 90m2/g— 200m2/gと従来より大きな表面積を持ち、腐食性雰囲気下 などでも安定な多孔性金属フッ化物を与える。このようにして好適に得られる多孔性 の金属フッ化物としては 90m2Zg 500m2Zgの表面積を有するフッ化クロム、 110 m2/g 300m2Zgの表面積を有するフッ化コバルト、 80m2/g— 300m2/gの表 面積を有するフッ化アルミニウム、 100m2/g— 300m2/gの表面積を有するフツイ匕 カルシウム、 70m2/g— 300m2/gの表面積を有するフッ化マグネシウム、 5m2Zg 一 300m2/gの表面積を有するフッ化ニッケル、 5m2/g— 300m2/gの表面積を有 するフッ化チタン、 5m2/g— 300m2/gの表面積を有するフッ化亜鉛、 5m2/g— 3 00m2/gの表面積を有するフッ化インジウム及び 5m2/g— 300m2/gの表面積を 有するフッ化鉄などを挙げることができる。この中でも、 90m2/g— 500m2/gの表 面積を有するフッ化クロム、特に、 90m2/g— 200m2/gの表面積を有する多孔性 フッ化クロムが好ましい。 [0012] The raw material composition (hereinafter also referred to as a precursor) obtained as described above is often porous and amorphous, and its surface area may be 400 m 2 / g or more in some cases. is there. In addition, as for the chemical composition, the metal becomes a fluoride of the metal by the reaction with hydrogen fluoride. Due to these characteristics, the surface area measured by the BET method by fluorination treatment has a larger surface area, for example, 90 m 2 / g—200 m 2 / g, and is stable even in a corrosive atmosphere. Provides a porous metal fluoride. In this way, the fluorinated chromium having a surface area of 90m 2 Zg 500m 2 Zg as suitably obtained porous metal fluoride, cobalt fluoride having a surface area of 110 m 2 / g 300m 2 Zg , 80m 2 / g — Aluminum fluoride with a surface area of 300 m 2 / g, 100 m 2 / g— Futani calcium with a surface area of 300 m 2 / g, 70 m 2 / g— Magnesium fluoride with a surface area of 300 m 2 / g, 5 m 2 nickel fluoride having a surface area of Zg one 300m 2 / g, titanium fluoride to have a surface area of 5m 2 / g- 300m 2 / g , zinc fluoride having a surface area of 5m 2 / g- 300m 2 / g , 5m such as iron fluoride having a surface area of indium fluoride and 5m 2 / g- 300m 2 / g with a surface area of 2 / g- 3 00m 2 / g can be mentioned. Among them, chromium fluoride having a surface area of 90 m 2 / g to 500 m 2 / g, particularly porous chromium fluoride having a surface area of 90 m 2 / g to 200 m 2 / g is preferable.
[0013] フッ化水素処理は、前駆体にフッ化水素、または窒素ガスやアルゴンガスなどの希 釈ガスで希釈したフッ化水素を接触させればよい。フッ化水素処理の温度は、室温 から 500°C、好ましくは 50°Cから 350°Cで行われる。フッ化水素の量に特に制限はな レ、。残存したフッ化水素は窒素気流を流して除去できる。  [0013] The hydrogen fluoride treatment may be performed by bringing the precursor into contact with hydrogen fluoride or hydrogen fluoride diluted with a diluent gas such as nitrogen gas or argon gas. The temperature of the hydrogen fluoride treatment is from room temperature to 500 ° C, preferably from 50 ° C to 350 ° C. There is no particular limitation on the amount of hydrogen fluoride. The remaining hydrogen fluoride can be removed by flowing a nitrogen stream.
このフッ化水素処理によって大きな表面積を持ち腐食性雰囲気下などでも安定な多 孔性金属フッ化物が得られる理由は定かではないが、前駆体がフッ素化される際、 前駆体に含まれるケィ素はフッ化水素と反応してガス状の四フッ化ケィ素となって除 去されるため、そこに細孔が生じ、大きな表面積が得られることが一因となっているも のと推定される。  The reason why the hydrogen fluoride treatment can provide a stable porous metal fluoride even in a corrosive atmosphere with a large surface area is not clear, but when the precursor is fluorinated, the silicon contained in the precursor is not included. Is reacted with hydrogen fluoride to form gaseous silicon tetrafluoride and is removed.Therefore, it is presumed that this is partly because pores are formed there and a large surface area is obtained. You.
[0014] 本発明に係る多孔性金属フッ化物は、クロ口カーボンなどのハロゲン化合物をフッ 化水素によりフッ素化してフルォロ化合物を製造する際の触媒として好適に使用でき る。また、この多孔性金属フッ化物に、クロム塩、コバルト塩、鉄塩、亜鉛塩、マグネシ ゥム塩、銀塩、ニッケル塩、インジウム塩、またはこれらの混合物を添加してもよい。添 加の方法としては、多孔性フッ素化物に添加してもよいが、前駆体に含浸法や共沈 法で添加し、その後フッ化水素処理を行ってもよい。添加量は、多孔性フッ化物の金 属と添加物の金属のモル比で 1:1一 100:1、好ましくは 3:1 10:1である。 [0014] The porous metal fluoride according to the present invention is obtained by fluorinating a halogen compound such as carbon black. It can be suitably used as a catalyst for producing a fluoro compound by fluorination with hydrogen fluoride. Further, a chromium salt, a cobalt salt, an iron salt, a zinc salt, a magnesium salt, a silver salt, a nickel salt, an indium salt, or a mixture thereof may be added to the porous metal fluoride. As for the method of addition, it may be added to the porous fluorinated product, or may be added to the precursor by an impregnation method or a coprecipitation method, and then subjected to a hydrogen fluoride treatment. The amount of addition is 1: 1 to 100: 1, preferably 3: 1 10: 1, in a molar ratio of the metal of the porous fluoride to the metal of the additive.
[0015] フルォロ化合物を製造する際の出発原料であるハロゲン化合物としては、クロロカ 一ボン類、クロ口フルォロカーボン類、ヒドロクロ口フルォロカーボン類、クロロォレフィ ン類などのハロゲンィ匕炭化水素などが挙げられる。  [0015] Examples of the halogen compound which is a starting material for producing a fluoro compound include halogenated hydrocarbons such as chlorocarbons, fluorofluorocarbons, hydrochlorofluorocarbons, and chloroolefins.
具体 ί列としては、クロロメタン、ジクロロメタン、トリクロロメタン、テトラクロロメタン、クロ 口フルォロメタン、ジクロロフルォロメタン、クロロジフルォロメタン、クロ口ェタン、 1, 1 —ジクロ口ェタン、 1, 2—ジクロロェタン、 1, 1, 1_トリクロロェタン、 1, 1, 2_トリクロ口 ェタン、 1, 1, 1, 2—テトラクロロェタン、 1, 1, 2, 2—テトラクロロェタン、 1_クロ口一1, 1—ジフルォロェタン、 1_クロ口—1, 2—ジフルォロェタン、 1_クロ口—2, 2—ジフルォロ ェタン、 1, 1ージクロロー 1ーフノレォロェタン、 1, 1ージクロロー 2—フノレォロェタン、 1ーク ロロ一 2, 2, 2—トリフノレオロェタン、クロ口エチレン、 1, 1—ジクロロエチレン、 1, 2—ジク ロロエチレン、トリクロロエチレン、テトラクロロエチレン、 1, 1ージクロロー 2, 2—ジフノレ ォロエチレン、トリフルォロクロ口エチレンなどが挙げられる。  Specific columns include chloromethane, dichloromethane, trichloromethane, tetrachloromethane, chlorofluoromethane, dichlorofluoromethane, chlorodifluoromethane, chloromethane, 1,1-dichloromethane, 1,2-dichloroethane, 1,1,1_trichloroethane, 1,1,2_trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, 1_black mouth 1, 1, 1-difluoro- 1, 2-difluoro-, 1_ 2, 2, 2-difluoro-, 1, 1-dichloro- 1-fluoro-, 1, 1-dichloro-2- 2-fluoro-, 1 1,2-dichloroethylene, 1,2-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 1,1-dichloro-2,2-dichloro-1,2-dichloroethylene Norre Oroechiren, like Torifuruorokuro port ethylene.
[0016] これらの触媒フッ素化反応に使用されるフッ化水素は出発物質であるハロゲン化合 物に対して過剰量で使用するのが有利であり、通常 1一 30当量、好ましくは 3— 10 当量用いるのが好ましい。また、この場合において、窒素ガスやアルゴンガスなどの 希釈ガスで希釈したフッ化水素を用いることもできる。  [0016] The hydrogen fluoride used in these catalytic fluorination reactions is advantageously used in an excess amount with respect to the starting halogen compound, usually in an amount of 1 to 30 equivalents, preferably 3 to 10 equivalents. Preferably, it is used. In this case, hydrogen fluoride diluted with a diluent gas such as nitrogen gas or argon gas can also be used.
[0017] フッ素化の反応温度は通常 200°C力、ら 450°C、好ましくは 230°C力ら 400°Cである 。反応の形式としては、バッチ式、フロー式のどちらでも行うことができる。  [0017] The reaction temperature of the fluorination is usually 200 ° C, 450 ° C, preferably 230 ° C, 400 ° C. The reaction can be carried out in either a batch system or a flow system.
[0018] 本発明のフッ素化反応により得られるフルォロ化合物としては、たとえばフルォロメ タン、ジフルォロメタン、トリフルォロメタン、テトラフルォロメタン、フルォロェタン、 1, 1—ジフルォロェタン、 1, 2—ジフルォロェタン、 1, 1, 1_トリフルォロェタン、 1, 1, 2 —トリフルォロェタン、 1, 1, 1, 2—テトラフルォロェタン、 1, 1, 2, 2—テトラフルォロェ ロェタン、ペンタフノレォロェタンを挙げることができる。 [0018] Examples of the fluoro compound obtained by the fluorination reaction of the present invention include fluoromethane, difluoromethane, trifluoromethane, tetrafluoromethane, fluoroethane, 1,1-difluoroethane, 1,2-difluoroethane, 1,1,1, and 1_Trifluoroetan, 1,1,2—Trifluoroethan, 1,1,1,2—Tetrafluoroeethane, 1,1,2,2-Tetrafluore Lohetan and pentafunolelohetan can be mentioned.
実施例  Example
[0019] 次に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明は以下 の例によって限定されるものではない。  Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
実施例 1  Example 1
[0020] ケィ酸ナトリウム (Na SiO、 3g)を 28%アンモニア水(114ml)に溶解し、これを三塩 化クロム水溶液 (クロム含量約 10%、 240g)に激しく撹拌しつつ加えた。混合後の pH は約 7であった。沈殿をろ過して取り、脱イオン水で洗浄、乾燥した後、窒素気流下 4 50°Cで焼成し、ケィ素を含む前駆体のクロム塩を得た。 BET法による比表面積は 36 6m /gでめつ 7こ。  [0020] Sodium silicate (NaSiO, 3g) was dissolved in 28% aqueous ammonia (114ml), and added to an aqueous solution of chromium trichloride (chromium content: about 10%, 240g) with vigorous stirring. The pH after mixing was about 7. The precipitate was collected by filtration, washed with deionized water, dried, and calcined at 450 ° C. under a nitrogen stream to obtain a chromium salt of a precursor containing silicon. The specific surface area by BET method is 36 6m / g.
実施例 2  Example 2
[0021] 実施例 1で調製した前駆体に、窒素で希釈したフッ化水素 (フッ化水素 Z窒素 = 1/ 3)を室温で 4時間処理、さらに温度を上昇し、最後には 350°Cでフッ化水素のみで 処理し、多孔性フッ化クロムを得た。 BET法による比表面積は 176m2/gであった。 実施例 3 [0021] The precursor prepared in Example 1 was treated with hydrogen fluoride diluted with nitrogen (hydrogen fluoride Z nitrogen = 1/3) for 4 hours at room temperature, and the temperature was further increased. , And treated only with hydrogen fluoride to obtain porous chromium fluoride. The specific surface area by the BET method was 176 m 2 / g. Example 3
[0022] 実施例 2で調製した多孔性フッ化クロムを触媒に用いてジクロロメタンの気相フッ素 化を行った。ジクロロメタン(0. Sg/min)と無水フッ酸(300mlZmin)を気化して触 媒上に流して反応させ、生成物を水洗、ソーダライムで乾燥した後、ガスクロマトグラ ブイ一で分析した。反応温度ごとのジフルォロメタン(CH F )及びクロ口フルォロメタン [0022] Gas phase fluorination of dichloromethane was carried out using the porous chromium fluoride prepared in Example 2 as a catalyst. Dichloromethane (0.1 Sg / min) and hydrofluoric anhydride (300 ml Zmin) were vaporized and allowed to react by flowing over a catalyst. The product was washed with water, dried over soda lime, and analyzed by gas chromatography. Difluoromethane (CH F) and chlorofluoromethane at each reaction temperature
(CH C1F)の収率を表 1に示す。 Table 1 shows the yield of (CH C1F).
[0023] [表 1]  [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
差替え用紙 (規則 26) 実施例 4 Replacement form (Rule 26) Example 4
[0024] ケィ酸ナトリウムを 9g用いる以外は実施例 1、 2と同様にして前駆体、及び多孔性フ ッ化クロムを調製した。 BET法による比表面積は前駆体、多孔性フッ化クロムそれぞ れ、 470、 169m2/gであった。次にここで得られた多孔性フッ化クロムを用レ、、実施例 3と同様にしてジクロロメタンの気相フッ素化を行った。結果を表 2に示す。 [0024] A precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 9 g of sodium silicate was used. The specific surface areas determined by the BET method were 470 and 169 m 2 / g, respectively, for the precursor and the porous chromium fluoride. Next, the porous chromium fluoride obtained here was used, and the gas phase fluorination of dichloromethane was carried out in the same manner as in Example 3. Table 2 shows the results.
[0025] [表 2]  [Table 2]
Figure imgf000010_0001
Figure imgf000010_0001
実施例 5  Example 5
[0026] ケィ酸ナトリウムを 9g用い、焼成温度を 400°Cとする以外は実施例 1、 2と同様にし て前駆体、及び多孔性フッ化クロムを調製した。 BET法による比表面積は前駆体、 多孔性フッ化クロムそれぞれ、 407、 187m2/gであった。次にここで得られた多孔性 フッ化クロムを用い、実施例 3と同様にしてジクロロメタンの気相フッ素化を行った。結 果を表 3に示す。 [0026] A precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 9 g of sodium silicate was used and the firing temperature was 400 ° C. The specific surface areas by the BET method were 407 and 187 m 2 / g for the precursor and the porous chromium fluoride, respectively. Next, using the porous chromium fluoride obtained here, gas phase fluorination of dichloromethane was carried out in the same manner as in Example 3. Table 3 shows the results.
[0027] [表 3]  [Table 3]
Figure imgf000010_0002
Figure imgf000010_0002
実施例 6  Example 6
差替え用紙 (規則 26) [0028] ケィ酸ナトリウムを 15g用い、焼成温度を 400°Cとする以外は実施例 1、 2と同様にし て前駆体、及び多孔性フッ化クロムを調製した。 BET法による比表面積は前駆体、 多孔性フッ化クロムそれぞれ、 355、 152m2/gであった。次にここで得られた多孔性 フッ化クロムを用レ、、実施例 3と同様にしてジクロロメタンの気相フッ素化を行った。結 果を表 4に示す。 Replacement form (Rule 26) [0028] A precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 15 g of sodium silicate was used and the sintering temperature was 400 ° C. The specific surface areas by the BET method were 355 and 152 m 2 / g for the precursor and the porous chromium fluoride, respectively. Next, the porous chromium fluoride obtained here was used, and the gas phase fluorination of dichloromethane was carried out in the same manner as in Example 3. Table 4 shows the results.
[0029] 4]  [0029] 4]
Figure imgf000011_0001
Figure imgf000011_0001
実施例 7  Example 7
[0030] ケィ酸ナトリウムを 0. 9g用いる以外は実施例 1、 2と同様にして前駆体、及び多孔 性フッ化クロムを調製した。 BET法による比表面積は前駆体、多孔性フッ化クロムそ れぞれ、 395、 110m2/gであった。 [0030] A precursor and porous chromium fluoride were prepared in the same manner as in Examples 1 and 2, except that 0.9 g of sodium silicate was used. The specific surface areas determined by the BET method were 395 and 110 m 2 / g, respectively, for the precursor and the porous chromium fluoride.
実施例 8  Example 8
[0031] ケィ酸ナトリウム(9g)を 28%アンモニア水 (114ml)に溶解し、これを三塩化クロム 水溶液 (クロム含量約 10%、 240g)と二塩化コバルト水溶液 (コバルト含量約 15%、 32g)の混合溶液に激しく撹拌しつつ加えた。その後の操作は実施例 1、 2と同様に 行い、前駆体、及びコバルトを含む多孔性フッ化クロムを得た。 BET法による比表面 積は前駆体、コバルトを含む多孔性フッ化クロムそれぞれ、 356、 134m2/gであった。 次にここで得られたコバルトを含む多孔性フッ化クロムを用レ、、実施例 3と同様にして ジクロロメタンの気相フッ素化を行った。結果を表 5に示す。 [0031] Sodium silicate (9g) was dissolved in 28% aqueous ammonia (114ml), and this was dissolved in an aqueous solution of chromium trichloride (chromium content about 10%, 240g) and an aqueous solution of cobalt dichloride (cobalt content about 15%, 32g) Was added with vigorous stirring. Subsequent operations were performed in the same manner as in Examples 1 and 2, to obtain a precursor and porous chromium fluoride containing cobalt. The specific surface areas by the BET method were 356 and 134 m 2 / g, respectively, for the precursor and the porous chromium fluoride containing cobalt. Next, the porous chromium fluoride containing cobalt obtained here was used, and the gas phase fluorination of dichloromethane was carried out in the same manner as in Example 3. Table 5 shows the results.
[0032] [表 5]  [Table 5]
差替え用紙 (規則 26) 反応温度:( o . 輕 (%) : . Replacement form (Rule 26) Reaction temperature: (o. Light (%):.
CH2C CH 2 C
242 71 11  242 71 11
273 71 12  273 71 12
300 74 12  300 74 12
329 74 13  329 74 13
355 74. 13 比較例 1  355 74.13 Comparative Example 1
[0033] ケィ酸ナトリウムを用いないこと以外は実施例 1、 2と同様にして多孔性フッ化クロム を調製した。 BET法による比表面積は前駆体、多孔性フッ化クロムそれぞれ、 253、 90m2/gであった。次にここで得られた多孔性フッ化クロムを用い、実施例 2と同様に してジクロロメタンの気相フッ素化を行った。結果を表 6に示す。 A porous chromium fluoride was prepared in the same manner as in Examples 1 and 2, except that sodium silicate was not used. The specific surface area by the BET method was 253 and 90 m 2 / g for the precursor and the porous chromium fluoride, respectively. Next, using the porous chromium fluoride obtained here, gas phase fluorination of dichloromethane was carried out in the same manner as in Example 2. Table 6 shows the results.
[0034] [表 6]  [0034] [Table 6]
Figure imgf000012_0001
Figure imgf000012_0001
同じ反応温度領域で比較すると、ケィ酸ナトリウムを用いた場合 (実施例 3〜6)よりジ フルォロェタンの収率は低かった。  When compared in the same reaction temperature range, the yield of difluoroethane was lower than when sodium silicate was used (Examples 3 to 6).
差替え用紙 (規則 26) Replacement form (Rule 26)

Claims

請求の範囲 The scope of the claims
[1] 含ケィ素化合物を金属塩に導入した後フッ化水素処理をすることを特徴とする多孔 性金属フッ化物の製造方法。  [1] A method for producing a porous metal fluoride, which comprises introducing a silicon-containing compound into a metal salt and then subjecting the metal salt to hydrogen fluoride treatment.
[2] 金属塩にケィ素化合物を含有させてなる多孔性金属フッ化物合成用原料組成物。  [2] A raw material composition for synthesizing a porous metal fluoride, comprising a metal salt containing a silicon compound.
[3] 含ケィ素化合物が、二酸化ケイ素(SiO )、ケィフッ化水素酸 (H SiF )、正ケィ酸 (H[3] Silicon-containing compounds include silicon dioxide (SiO 2), hydrofluoric acid (H SiF), and caustic acid (H
SiO )、メタケイ酸 (H SiO )、正二ケィ酸(H Si 0 )、メタ二ケィ酸(H Si 0 )、メタ三ケ ィ酸 (H Si 0 )及びこれらの各種ケィ酸の金属塩から選ばれた少なくとも一種であるこ とを特徴とする請求項 2に記載の原料組成物。 Selected from SiO 2), metasilicic acid (H SiO), orthodicarboxylic acid (H Si 0), metadicarboxylic acid (H Si 0), metatrisilic acid (H Si 0) and metal salts of these various silicic acids 3. The raw material composition according to claim 2, wherein the raw material composition is at least one selected from the group consisting of:
[4] 含ケィ素化合物が、共沈法、含浸法または直接混合により金属化合物に含有される ことを特徴とする請求項 2または 3に記載の原料組成物。 4. The raw material composition according to claim 2, wherein the silicon-containing compound is contained in the metal compound by a coprecipitation method, an impregnation method, or direct mixing.
[5] 共沈法が、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、または炭 酸カリウムを用いる方法であることを特徴とする請求項 2乃至 4何れかに記載の原料 組成物。 [5] The raw material composition according to any one of claims 2 to 4, wherein the coprecipitation method is a method using ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate.
[6] 金属塩が、クロム、コバルト、ァノレミニゥム、カルシウム、マグネシウム、ニッケル、チタ ン、亜鉛、インジウム及び鉄から選ばれた少なくとも一種の金属塩であることを特徴と する請求項 2乃至 5何れかに記載の原料組成物。  [6] The metal salt according to any one of claims 2 to 5, wherein the metal salt is at least one metal salt selected from chromium, cobalt, anorenium, calcium, magnesium, nickel, titanium, zinc, indium and iron. A raw material composition according to item 1.
[7] 90m2/g— 500m2/gの表面積を有するフッ化クロム、 110m2/g— 300m2/gの 表面積を有するフッ化コバルト、 80m2/g— 300m2/gの表面積を有するフッ化ァ ノレミニゥム、 100m2/g— 300m2/gの表面積を有するフッ化カルシウム、 70m2/g 一 300m2/gの表面積を有するフッ化マグネシウム、 5m2Zg 300m2/gの表面積 を有するフッ化ニッケル、 5m2Zg 300m2Zgの表面積を有するフッ化チタン、 5m2 /g— 300m2/gの表面積を有するフッ化亜鉛、 5m2Zg 300m2Zgの表面積を有 するフッ化インジウム及び 5m2Zg 300m2Zgの表面積を有するフッ化鉄から選ば れた少なくとも一種の多孔性金属フッ化物。 [7] 90m 2 / g- 500m has a surface area of cobalt fluoride, 80m 2 / g- 300m 2 / g with a surface area of chromium fluoride, 110m 2 / g- 300m 2 / g with a surface area of 2 / g having a surface area of hydrofluoric Kaa Noreminiumu, calcium fluoride having a surface area of 100m 2 / g- 300m 2 / g , magnesium fluoride having a surface area of 70m 2 / g one 300m 2 / g, 5m 2 Zg 300m 2 / g Nickel fluoride, 5 m 2 Zg Titanium fluoride with a surface area of 300 m 2 Zg, 5 m 2 / g—Zinc fluoride with a surface area of 300 m 2 / g, 5 m 2 Zg Indium fluoride with a surface area of 300 m 2 Zg and 5 m 2 Zg At least one kind of porous metal fluoride selected from iron fluoride having a surface area of 300 m 2 Zg.
[8] 表面積が 90m2/g— 200m2/gであることを特徴とする多孔性フッ化クロム [8] Porous chromium fluoride characterized by a surface area of 90m 2 / g—200m 2 / g
[9] 請求項 2乃至 6何れかに記載の原料組成物をフッ化水素処理することにより得られる 多孔性金属フッ化物。  [9] A porous metal fluoride obtained by subjecting the raw material composition according to any one of claims 2 to 6 to hydrogen fluoride treatment.
[10] 多孔性金属フッ化物力 フッ化クロム、フッ化コバルト、フッ化アルミニウム、フッ化力 ノレシゥム、フッ化マグネシウム、フッ化ニッケル、フッ化チタン、フッ化亜鉛、フッ化イン ジゥム及びフッ化鉄から選ばれた少なくとも一種であることを特徴とする請求項 9に記 載の多孔性金属フッ化物。 [10] Porous metal fluoride power Chromium fluoride, cobalt fluoride, aluminum fluoride, fluorinated power 10. The porous metal foil according to claim 9, wherein the porous metal foil is at least one selected from the group consisting of norem, magnesium fluoride, nickel fluoride, titanium fluoride, zinc fluoride, indium fluoride, and iron fluoride. monster.
[11] 多孔性金属フッ化物力 90m2Zg— 500m2/gの表面積を有するフッ化クロム、 11 0m2/g 300m2Zgの表面積を有するフッ化コバルト、 80m2/g— 300m2/gの表 面積を有するフッ化アルミニウム、 100m2/g— 300m2/gの表面積を有するフツイ匕 カルシウム、 70m2/g— 300m2/gの表面積を有するフッ化マグネシウム、 5m2Zg 一 300m2/gの表面積を有するフッ化ニッケル、 5m2/g 300m2Zgの表面積を有 するフッ化チタン、 5m2/g— 300m2/gの表面積を有するフッ化亜鉛、 5m2Zg 3 00m2/gの表面積を有するフッ化インジウム及び 5m2Zg 300m2Zgの表面積を 有するフッ化鉄であることを特徴とする請求項 10に記載の多孔性金属フッ化物。 [11] chromium fluoride having a surface area of porous metal fluoride force 90m 2 Zg- 500m 2 / g, cobalt fluoride having a surface area of 11 0m 2 / g 300m 2 Zg , 80m 2 / g- 300m 2 / g magnesium fluoride having a surface area of aluminum fluoride, Futsui spoon calcium having a surface area of 100m 2 / g- 300m 2 / g , 70m 2 / g- 300m 2 / g with a table area, 5 m 2 Zg one 300 meters 2 / Nickel fluoride with a surface area of 5 g 2 , 5 m 2 / g Titanium fluoride with a surface area of 300 m 2 Zg, 5 m 2 / g—zinc fluoride with a surface area of 300 m 2 / g, 5 m 2 Zg 300 m 2 / g 11. The porous metal fluoride according to claim 10, wherein the porous metal fluoride is indium fluoride having a surface area of 5 m 2 Zg and iron fluoride having a surface area of 300 m 2 Zg.
[12] 多孔性金属フッ化物が 90m2/g— 200m2/gの表面積を有する多孔性フッ化クロム であることを特徴とする請求項 11に記載の多孔性金属フッ化物。 12. The porous metal fluoride according to claim 11, wherein the porous metal fluoride is a porous chromium fluoride having a surface area of 90 m 2 / g to 200 m 2 / g.
[13] 請求項 7乃至 12何れかに記載の多孔性金属フッ化物を含むフッ素化触媒。  [13] A fluorination catalyst comprising the porous metal fluoride according to any one of claims 7 to 12.
[14] 請求項 7乃至 12何れかに記載の多孔性金属フッ化物にクロム塩、コバルト塩、鉄塩、 亜鉛塩、マグネシウム塩、銀塩、ニッケル塩、インジウム塩、アンチモン塩、パラジウム 塩、白金塩から選ばれた少なくとも一種の金属塩を添加して得られるフッ素化触媒 [14] The porous metal fluoride according to any one of claims 7 to 12, wherein chromium salt, cobalt salt, iron salt, zinc salt, magnesium salt, silver salt, nickel salt, indium salt, antimony salt, palladium salt, platinum are used. Fluorination catalyst obtained by adding at least one metal salt selected from salts
[15] 請求項 13または 14に記載のフッ素化触媒の存在下、ハロゲン化合物とフッ化水素 を反応させることを特徴とするフルォロ化合物の製造方法。 [15] A method for producing a fluoro compound, comprising reacting a halogen compound with hydrogen fluoride in the presence of the fluorination catalyst according to claim 13 or 14.
[16] ハロゲンィ匕合物がハロゲン化炭化水素であることを特徴とする請求項 15に記載のフ ルォロ化合物の製造方法。  [16] The method for producing a fluoro compound according to claim 15, wherein the halogenated compound is a halogenated hydrocarbon.
[17] ハロゲン炭化水素がジクロロメタンである請求項 16に記載のフルォロ化合物の製造 方法。  [17] The method for producing a fluoro compound according to claim 16, wherein the halogen hydrocarbon is dichloromethane.
PCT/JP2004/010455 2003-08-27 2004-07-23 Porous material and method for producing same WO2005021437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200480014832.3A CN1798703B (en) 2003-08-27 2004-07-23 Porous material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003303078A JP4231921B2 (en) 2003-08-27 2003-08-27 Porous material and method for producing the same
JP2003-303078 2003-08-27

Publications (1)

Publication Number Publication Date
WO2005021437A1 true WO2005021437A1 (en) 2005-03-10

Family

ID=34269191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010455 WO2005021437A1 (en) 2003-08-27 2004-07-23 Porous material and method for producing same

Country Status (3)

Country Link
JP (1) JP4231921B2 (en)
CN (1) CN1798703B (en)
WO (1) WO2005021437A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867997A (en) * 2016-09-28 2018-04-03 中化近代环保化工(西安)有限公司 A kind of method for preparing two fluoracyl fluorides

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595113B2 (en) * 2005-02-15 2010-12-08 独立行政法人産業技術総合研究所 Microporous metal fluoride
US20060216570A1 (en) * 2005-03-24 2006-09-28 Gayatri Vyas Durable hydrophilic coatings for fuel cell bipolar plates
CN101863502B (en) * 2010-06-24 2012-11-14 浙江师范大学 Preparation method of beta-aluminum fluoride with high specific surface area
JP5878429B2 (en) * 2012-05-29 2016-03-08 ステラケミファ株式会社 Magnesium fluoride particles, method for producing magnesium fluoride particles, magnesium fluoride particle dispersion, method for producing magnesium fluoride particle dispersion, composition for forming low refractive index layer, method for producing composition for forming low refractive index layer , Substrate with low refractive index layer and method for producing substrate with low refractive index layer
CN104907065B (en) * 2014-03-12 2019-08-02 北京宇极科技发展有限公司 Fluorination catalyst, Preparation method and use
CN104907063A (en) * 2014-03-12 2015-09-16 北京宇极科技发展有限公司 Chromium base catalyst, and preparation method and use thereof
CN106890662B (en) * 2017-02-24 2019-09-10 北京宇极科技发展有限公司 A kind of catalyst, preparation method and its application
CN112588307A (en) * 2020-12-30 2021-04-02 山东华安新材料有限公司 Method for preparing 1,1,2, 2-tetrafluoroethane by gas phase fluorination
CN113480402B (en) * 2021-07-14 2023-04-28 山东华安新材料有限公司 Method for preparing tetrafluoroethane by recycling byproducts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119792A (en) * 1974-03-06 1975-09-19
JPS58156534A (en) * 1982-02-24 1983-09-17 コミツサリア・タ・レナジ−・アトミツク Manufacture of porous product based on cobalt fluoride or lead fluoride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119792A (en) * 1974-03-06 1975-09-19
JPS58156534A (en) * 1982-02-24 1983-09-17 コミツサリア・タ・レナジ−・アトミツク Manufacture of porous product based on cobalt fluoride or lead fluoride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867997A (en) * 2016-09-28 2018-04-03 中化近代环保化工(西安)有限公司 A kind of method for preparing two fluoracyl fluorides
CN107867997B (en) * 2016-09-28 2023-07-04 中化近代环保化工(西安)有限公司 Method for preparing difluoro acetyl fluoride

Also Published As

Publication number Publication date
CN1798703B (en) 2011-01-12
JP2005067983A (en) 2005-03-17
JP4231921B2 (en) 2009-03-04
CN1798703A (en) 2006-07-05

Similar Documents

Publication Publication Date Title
RU1836312C (en) Method of decreasing content of unsaturated impurities in saturated fluoro-halogen-carbons
JP2557936B2 (en) Process for producing 1,1,1-trifluoro-2,2-dichloroethane by hydrofluorination in the presence of a catalyst
KR100351211B1 (en) Chromium-based fluorinated catalyst, preparation method of the catalyst and fluorination method using the catalyst
KR100336337B1 (en) Fluorination catalyst and fluorination process
US5523500A (en) Mass catalysts based on chromium and nickel oxides and their application to the fluorination of halogenated hydrocarbons
WO2006106353A1 (en) Chromia based fluorination catalyst
JPH09220469A (en) Catalyst using chromium oxide as base, its production and application for fluorination of halogenated hydrocarbon
JP6827246B2 (en) Method for producing halogenated butene compound
WO2005021437A1 (en) Porous material and method for producing same
KR101254417B1 (en) Process for producing carbonyl difluoride
EP1687084B1 (en) Catalyst and gas phase method using such a catalyst
JP2012501827A (en) Catalyst and method of using the catalyst
JP2010047571A (en) Method for producing 2,3,3,3-tetrafluoropropene
JP2996598B2 (en) Chromium-based fluorination catalyst, its production method and fluorination method
JP3558385B2 (en) Chromium-based fluorination catalyst and fluorination method
JP2009248044A (en) Catalyst for synthesizing chlorine, method for manufacturing the same and method for synthesizing chlorine by using the same
JP4257424B2 (en) Catalyst for fluorination reaction
CA2069126C (en) Process for fluorinating halogenated hydrocarbon
RU2431524C1 (en) Catalyst, method of its preparation and method of fluorinating halogenated hydrocarbons
JP2000070713A (en) Catalyst for fluorination of halogenated organic compound
JP3158720B2 (en) Method for purifying 1,1,1,2-tetrafluoroethane
JP4590130B2 (en) Catalyst for producing 1,1,1-trifluoro-2-chloroethane, method for producing the same, and method for producing 1,1,1-trifluoro-2-chloroethane using the same
JPH06340560A (en) Production of chlorinated hydrocarbon
JPH06211707A (en) Production of dilfuoromethane
JPH0761944A (en) Fluorination catalyst and fluorinating method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048148323

Country of ref document: CN

122 Ep: pct application non-entry in european phase