WO2005021359A1 - Controller for electric power steering device - Google Patents

Controller for electric power steering device Download PDF

Info

Publication number
WO2005021359A1
WO2005021359A1 PCT/JP2004/012695 JP2004012695W WO2005021359A1 WO 2005021359 A1 WO2005021359 A1 WO 2005021359A1 JP 2004012695 W JP2004012695 W JP 2004012695W WO 2005021359 A1 WO2005021359 A1 WO 2005021359A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
value
torque sensor
sensor
abnormality
Prior art date
Application number
PCT/JP2004/012695
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Kumaido
Yuusuke Itakura
Yuho Aoki
Nobuhiro Kubo
Original Assignee
Nsk Ltd.
Nsk Steering Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003304595A external-priority patent/JP4326883B2/en
Priority claimed from JP2004015816A external-priority patent/JP4449464B2/en
Priority claimed from JP2004042512A external-priority patent/JP4449488B2/en
Application filed by Nsk Ltd., Nsk Steering Systems Co., Ltd. filed Critical Nsk Ltd.
Priority to US10/569,625 priority Critical patent/US7559405B2/en
Priority to EP04772651.8A priority patent/EP1666339B1/en
Publication of WO2005021359A1 publication Critical patent/WO2005021359A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures

Definitions

  • the present invention relates to a control device for an electric power steering device, and particularly to an electric power steering device that can continue control using an alternative torque value when a torque sensor becomes abnormal, and that can reliably detect a failure of the torque sensor.
  • a control device for an electric power steering device, and particularly to an electric power steering device that can continue control using an alternative torque value when a torque sensor becomes abnormal, and that can reliably detect a failure of the torque sensor.
  • An electric power steering device that applies a steering assist force to a vehicle steering device by a motor rotating force is a device that transmits a driving force of a motor to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt through a speed reducer. It is designed to provide help.
  • FIG. 1 An example of the configuration of such an electric power steering device is shown in FIG. 1 and will be described.
  • the steering shaft 101 of the steering handle 101 is connected to the deceleration gear 103, the universal joint 104a and 104b, and the tie rod 106 of the steered wheels via the pinion rack mechanism 105.
  • the shaft 102 is provided with a torque sensor 107 for detecting the steering torque of the steering wheel 101, and the motor 108 for assisting the steering force of the steering wheel 101 is provided with a deceleration gear. It is connected to shaft 102 via 103.
  • the motor control of the electric power steering device is performed by inputting a torque value detected by the torque sensor 107, a vehicle speed detected by a vehicle speed sensor (not shown), or a rotation angle of the motor detected by the Hall sensor 110 or the like. Is controlled by the control unit 109.
  • Control Unit 109 mainly It is composed of a CPU, and motor control is executed by a program inside the CPu.
  • a current command value calculator 120 inputs the torque value detected by the torque sensor 107 to calculate a current command value I ref, and calculates a difference between the detected motor current value Im and the detected current value Im.
  • the subtraction unit 122 calculates the duty ratio, the current control unit 122 determines the duty ratio, and the motor drive unit 123 drives the motor 108 by executing the PWM control according to the duty ratio.
  • control of the electric power steering device is executed on the assumption that the torque value detected by the torque sensor 107 is correctly detected.
  • the torque sensor 107 also fails, and when an abnormal torque detection value is input, it may cause an abnormal operation to the steering wheel operation. Measures have been taken.
  • Japanese Patent Document 1 Japanese Unexamined Patent Application Publication No. 2000-3110 adopts a control method as shown in FIG. 3 and responds abnormally to the torque value output by the torque sensor. . That is, when the torque value output by the torque sensor becomes abnormal, if the abnormality continues for a predetermined time (tA), the steering assist force command value, which is the output value of the current control calculation based on the torque value, is cut off. I will. If the abnormality continues for a predetermined time (tB) for a longer time, the control system shuts off the motor drive power.
  • FIG. 4 shows the relationship between the torque value and the motor current when the torque sensor generates a ground fault and the torque value output from the torque sensor becomes zero in such a control method.
  • the steering assist force command value is determined based on the output value of the abnormal torque sensor for a predetermined time (tA). , The steering assist force becomes abnormal and the steering wheel moves unintentionally. Further, if the abnormality continues for a predetermined time (tB) or more, the motor power is shut off. If a large torque is applied to the steering wheel, the torque suddenly changes, which is not preferable.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-3292628.
  • Patent Document 2 discloses that when a serious abnormality such as a voltage drop or an instantaneous interruption occurs in the power supply of the torque sensor, the fail switch is opened, and the torque value before the fail switch is opened is held as the torque value output from the torque sensor. Then, the steering assist force command value is obtained by multiplying the held value by the output gain. In addition, since the subsequent steering assist force is controlled so as to gradually decrease, the steering assist force does not suddenly change.
  • the torque value causes chattering and a ground fault occurs as shown in Fig. 6, when the output value of the torque sensor is sampled by the AD converter, a value like a black circle may be sampled. .
  • the sampling value of the black circle does not fall below the threshold value for detecting a ground fault, the occurrence of a ground fault cannot be detected, and the control is continued as it is.
  • the motor current gradually decreases from the torque value immediately before the occurrence of the fault.However, the motor current gradually decreases from the unstable torque value due to chattering. The reduction starts from the torque opposite to the torque, which is not desirable.
  • the conventional control method causes the steering assist force to become abnormal because control is performed based on the abnormal torque value until the failure of the torque sensor is confirmed. was there.
  • the present invention has been made in view of the circumstances described above, and a first object of the present invention is to provide a torque sensor that is long enough to prevent erroneous detection of a torque sensor failure even when the output value of the torque sensor becomes abnormal.
  • An object of the present invention is to provide a control device for an electric power steering device that can ensure a safe steering operation while ensuring a failure determination confirmation period without giving a feeling of strangeness to the steering operation.
  • a second object of the present invention is to provide a control device for an electric power steering device which can safely switch between an output value of a torque sensor and an alternative torque value used in the event of an abnormality, even when a plurality of torque abnormality detecting means are present. To provide And there.
  • a third object of the present invention is to provide a control device for an electric power steering device capable of accurately estimating an alternative torque value used for control during an abnormal period of a torque sensor. Disclosure of the invention
  • the present invention provides an electric power steering that includes a motor that applies a steering assist force to a steering system of a vehicle, and a torque sensor that detects a steering force acting on a handle, and controls the motor based on an output value of the torque sensor.
  • the present invention relates to a control device for a switching device.
  • the object of the present invention is to provide a torque abnormality detecting means for detecting an abnormality of the torque sensor, and an alternative torque value calculating means for calculating an alternative torque value when the torque abnormality detecting means detects an abnormality. This is achieved by using a control device that controls the motor based on the alternative torque value when a torque sensor abnormality is detected.
  • the object of the present invention is to provide a torque abnormality detecting means for detecting an abnormality in the output value of the torque sensor, and a substitution based on a past normal output value of the torque sensor before the output value of the torque sensor becomes abnormal.
  • a torque input processing unit comprising a torque value calculating means for calculating a torque value, wherein when the output value of the torque sensor is abnormal, the torque input processing unit is used based on the alternative torque value instead of the output value of the torque sensor. This is achieved by using a control device that controls the motor.
  • the above object is to provide a torque failure determination means for determining that the torque sensor is faulty if the output value of the torque sensor continues to be abnormal for a certain period of time, wherein the output value of the torque sensor is abnormal. At this time, even before the determination that the torque sensor is faulty, the torque sensor This is achieved by using a controller that controls the motor based on the alternative torque value instead of the output value.
  • the object of the present invention is a plurality of torque abnormality detecting means for detecting an abnormality of the torque sensor based on a ttl force value of the torque sensor; and a normal torque in the past before the output value of the torque sensor becomes abnormal.
  • An alternative torque value calculating means for calculating an alternative torque value based on an output value of the sensor; and when the plurality of torque abnormality detecting means determine that the torque abnormality is abnormal, the alternative torque value is substituted for the output value of the torque sensor.
  • the object of the present invention is to provide a motor control system comprising: a plurality of torque abnormality detecting means for detecting abnormality of the torque sensor based on an output value of the torque sensor; This is achieved by establishing a determination that the torque sensor is faulty when the period for determining that exceeds the predetermined time T1.
  • the object of the present invention is to provide a plurality of torque abnormality detecting means for detecting abnormality of the torque sensor based on an output value of the torque sensor, wherein at least one of the plurality of torque abnormality detecting means is abnormal. This is achieved by determining that the torque sensor has failed when the determination period continues to exceed the predetermined time T3.
  • the object of the present invention is to provide a main torque detection value based on an output of the torque sensor.
  • Main torque detection means for detecting Tm; auxiliary torque detection means for detecting an auxiliary torque detection value Ts based on the output of the torque sensor;
  • Torque abnormality detecting means for detecting abnormality of Tm or the auxiliary torque detection value Ts And the previous normal main torque detection value Tm and the main torque detection value Tm or the auxiliary torque detection value Ts before the main torque detection value Tm or the sub torque detection value Ts becomes abnormal.
  • an alternative torque value calculating means for calculating an alternative torque value Ta based on a past normal auxiliary torque detection value Ts before the abnormality occurs, wherein the main torque detection value Tm or the auxiliary torque detection value is provided. This is achieved by using a control device that controls the motor based on the alternative torque value Ta instead of the main torque detection value Tm when Ts is detected to be abnormal.
  • FIG. 1 is a configuration diagram of a general electric power steering device.
  • FIG. 2 is a block diagram showing an example of a control system of a conventional electric power steering device.
  • FIG. 3 is a block diagram showing an example of a conventional electric power steering device that copes with a ground fault of a torque sensor.
  • FIG. 4 is a diagram illustrating an example of an output result of a motor current when a ground fault occurs in the torque sensor.
  • FIG. 5 is a diagram showing another example of the output result of the motor current when the ground fault of the torque sensor occurs.
  • FIG. 6 is a diagram showing an example of a motor current output result at the time of chattering failure of the torque sensor.
  • FIG. 7 is a control block diagram showing a first embodiment of the present invention.
  • FIG. 8 is a flowchart showing an operation example of the torque input processing unit of the first embodiment.
  • FIG. 9 is a flowchart showing an example of an operation for updating a past torque value.
  • Fig. 10 shows that the current value estimated from the past torque value is used as the substitute torque value.
  • 9 is a flowchart showing an operation example of substituting and substituting.
  • FIG. 11 is a diagram showing an example of an output result of a motor current when the torque sensor has a ground fault in the second embodiment of the present invention.
  • FIG. 12 is a view showing an example of a motor current output result at the time of failure in which a torque sensor has a chattering phenomenon in the second embodiment of the present invention.
  • FIG. 13 is a diagram showing the principle of current value estimation using the n-th order equation.
  • FIG. 14 is a diagram showing the principle of current value estimation using the least squares method.
  • FIG. 15 is a control block diagram showing a second embodiment of the present invention provided with a plurality of torque abnormality detecting means.
  • FIG. 16 is a time chart showing an example of an output signal of each torque abnormality detecting means when the torque sensor is abnormal.
  • FIG. 17 is a control block diagram showing an example of an apparatus provided with a torque sensor failure detecting means using the alternative torque value control according to the present invention.
  • FIG. 18 is a control block diagram showing an example of an apparatus provided with a torque sensor failure detecting means without using the alternative torque value control according to the present invention.
  • FIG. 19 is a control block diagram showing a third embodiment of the present invention.
  • FIG. 20 is a flowchart showing an operation example of the torque input processing unit.
  • FIG. 21 is a flowchart showing an example of an update operation of the past main torque detection value Tm and the past auxiliary torque detection value Ts.
  • FIG. 22 is a flowchart showing an operation example of calculating an alternative torque value from the past main detected torque value Tm and the past auxiliary torque detected value Ts.
  • FIG. 23 is a diagram showing an example of an output result of a motor current when the torque sensor has a ground fault in the third embodiment of the present invention.
  • FIG. 24 is a diagram showing an example of an output result of a motor current when a failure occurs in which a torque sensor has a chattering phenomenon in the third embodiment of the present invention.
  • FIG. 25 is a block diagram showing an embodiment of a torque input processing unit when a plurality of torque abnormality detecting means are provided.
  • FIG. 7 is a control block diagram showing a first embodiment of the present invention.
  • the torque value detected by the torque sensor 107 is not directly input to the current command value calculation unit 120, but is input to the torque input processing unit 10 and the output value is input to the current command value calculation unit 120. Is entered.
  • the current command value calculation unit 120 calculates the current command value I ref, calculates the difference from the motor current detection value Im by the subtraction unit 121, and determines the duty ratio by the current control unit 122.
  • the motor drive unit 123 drives the motor 108 by executing the PWM control according to the duty ratio.
  • the torque input processing unit 10 When the torque value output from the torque sensor 107 is normal, the torque input processing unit 10 operates so that the torque value is input to the current command value calculation unit 120. In this case, a substitute torque value is calculated, and the substitute torque value is input to the current command value calculation unit 120.
  • the torque input processing unit 10 is composed of torque abnormality detecting means 10-1; alternative torque value calculating means 10-2; torque failure determining means 10-3; and a selection switch 1 ⁇ -4. .
  • the torque failure determination means 10-3 determines that a failure occurs if the output value of the torque sensor 107 becomes abnormal and the abnormality continues for a certain period of time.
  • the limiter 11 provided at the subsequent stage of the current command value calculation unit 120 gradually reduces the motor current when the torque failure determination means 10-3 determines that a failure has occurred ( It has a function to narrow down the limiter value for the purpose of slash processing. Note that the torque failure determination means 10-3 need not necessarily be incorporated in the torque input processing unit 10.
  • the torque failure The determination means 10-3 is incorporated in the torque input processing unit 10.
  • the method of gradually reducing the motor current is not limited to the limiter 11. For example, by multiplying the current command value I ref, which is the output of the current command value calculation unit 120, by the gain G and reducing the gain G from 1 to 0, the value of G It gradually decreases from the value I ref toward zero.
  • the operation of the torque input processing unit 10 will be described with reference to the flowchart of FIG.
  • the torque value T which is the output value of the torque sensor 107, is read via an A / D converter (not shown) (step S1).
  • a / D converter not shown
  • the normal / abnormal judgment value Treff can be considered variously. For example, if a value equal to or greater than a threshold value or a threshold value that cannot be obtained with a normal torque value is determined to be abnormal. Or, if it suddenly changes discontinuously, it is considered abnormal.
  • Abnormal torque values include the output voltage being fixed to zero or the power supply voltage, offset abnormalities (abnormalities that are biased by (T +) and ⁇ ), and torque amplifier abnormalities (( ⁇ ⁇ ⁇ ), The operational amplifier may be defective). If the torque value ⁇ is not abnormal, the abnormality detection counter is cleared (step S3).
  • This abnormality detection counter counts when an abnormality of the torque value ⁇ ⁇ is detected, and does not immediately judge that a failure has occurred in the torque sensor just once a failure has been detected. As will be described later, it is determined that the torque sensor has failed only when the count number of the abnormality detection counter exceeds the set value.
  • the update routine of the past torque value is called, and as shown in FIG. 9, the values ⁇ ⁇ 1, ⁇ 2, ⁇ 3, ⁇ , ⁇ 5 of the immediately preceding ⁇ sample, for example, five samples are updated (step S4).
  • the torque value ⁇ is calculated using the torque value as the torque input processing unit 10 (step S5). Since the torque value T is not abnormal, the current command value calculation unit 120 Calculate the current command value I ref based on the torque value T instead of the substitute torque value.
  • step S2 if it is determined in step S2 that the torque value T is abnormal, the abnormality detection power counter is counted up once (step S6). Next, it is determined whether or not the count value N of the abnormality detection counter is larger than a set value (Step S7). If the count value N is larger than the set value, it is determined that the torque sensor 107 has failed. If the count value N is equal to or less than the set value, it is not determined that the torque sensor 107 has failed. However, since the torque value is abnormal, the torque value T cannot be used as an output value of the torque sensor 107 in the current command value calculation unit 120. Therefore, an alternative torque value is set instead of the torque value T (step S8).
  • the substitute torque value needs to be the current normal torque value predicted from the past torque value, and there are several methods for calculating the substitute torque value.
  • the method of calculating the alternative torque value will be described later in detail. Here, it has been described that the normal torque value in the past is used, but this is secured by the routine for updating the past torque value in step S4.
  • the substitute torque value obtained in this way is replaced as a substitute for the abnormal torque value (step S9). Then, instead of the output value of the torque sensor 107, this alternative torque value is input to the current command value calculation unit 120 (step S5). Motor 1 08 is controlled by alternative torque value As a result, it is possible to avoid an abnormality in the steering assist force that occurred when the control was performed with an abnormal torque value.
  • control is performed using an alternative torque value instead of using an abnormal torque value for control. It is.
  • the motor was controlled by substituting an alternative torque value after determining the failure of the torque sensor and then determining it.Before determining the failure, control was performed based on the abnormal torque value. An abnormal steering assist force was generated, giving an uncomfortable feeling to the steering wheel operation.
  • step S2 If the abnormality of the torque sensor 107 continues, the torque value is determined to be abnormal (step S2), the abnormality detection counter is counted, and the count value is increased (step S6). If the abnormality of the torque sensor continues further and the count value N of the abnormality detection force counter exceeds the set value, it is determined that the torque sensor 107 has failed (step S7).
  • control for gradually reducing the motor current is executed to prevent a sudden change in the steering assist force (step S10).
  • a limiter 11 is provided at the output of the current command value calculator 120 while the alternative torque value is kept constant, and the limiter value of the limiter 11 is set.
  • the motor current may be gradually attenuated by gradually reducing the motor current, or the motor current may be gradually attenuated by gradually reducing the torque value of the alternative torque value.
  • FIG. 11 shows the relationship between the torque value, which is the output of the torque sensor when the output value of the torque sensor 107 suddenly becomes zero, and the motor current using the torque input processing unit 10 of this embodiment. It is a figure showing the relationship. Even if the torque value suddenly becomes zero, the substitute torque value is immediately used instead of the abnormal torque value, so that the motor current maintains the value immediately before the torque value became abnormal. The motor current remains at the previous value until it is determined that the torque sensor has failed. After it is determined that the torque sensor has failed, the motor current is gradually attenuated. Compared to Fig. 4 and Fig. 5 showing the results of the conventional control method, the motor current does not reverse the polarity immediately before the torque value becomes abnormal, giving a sense of incompatibility to the handle operation None.
  • the output torque value of the torque sensor 107 causes chattering and fails
  • the output torque value of the torque sensor (worst case) and the motor current are used.
  • the relationship is shown in FIG.
  • a substitute torque value is calculated using the past normal torque value, and the motor current is controlled based on the substitute torque value. Therefore, the motor current outputs a current that does not greatly differ from the motor current immediately before chattering occurs. Furthermore, after the failure determination is confirmed, the motor current is gradually attenuated. This result is compared with Fig. 6 using the conventional control method.
  • the alternative torque value is obtained by using a simple average of the past five samples.
  • the alternative torque value may be calculated by other methods such as the least squares method. There are a method of calculating the current value by calculating an expression, a weighted averaging method, and the like. These will be described below.
  • the inverse matrix part can be calculated in advance.
  • the inverse matrix part for the past three samples is as shown in Equation 4 below.
  • Forecasting the current value means the past time t in Fig. 14.
  • the torque value T 0 at t had t 2, T 1; is T 2 that the torque value T 3 in force et present time t 3 Mel determined.
  • T aT1 + bT2 + cT3 + d
  • Equation 9 (a - T x + b - T 2 + c - T 3 + d - ⁇ , + e ⁇ T K) is a / (a + b + c + d + e).
  • the weights a, b, c, d, and e are, for example, 84, 21 and 1, respectively, Equation 9 becomes Equation 10 below.
  • the control is performed using an abnormal torque value until the output abnormality of the torque sensor is detected, so that the steering assist force becomes abnormal, or the setting of the substitute torque value is a value that correctly predicts the current value.
  • the steering assist force became abnormal.
  • the determination time until the torque sensor or the like is determined to be faulty cannot be extended, and there is a problem that the torque sensor fault is erroneously detected. According to the above, these conventional problems can be solved.
  • a description will be given of a second embodiment capable of safely switching between the output value of the torque sensor and the alternative torque value used in the event of an abnormality even when there are a plurality of torque abnormality detecting means.
  • the control of the alternative torque value when there are a plurality of torque abnormality detecting means will be described with reference to FIG.
  • the difference between the control block diagram in Fig. 7 and the control block diagram in Fig. 15 is that the configuration of the torque input processing unit 10 and the torque sensor are the same as the torque sensor 107, except that a torque sensor 107A is added. It is a point that has been. That is, in the present embodiment, the torque sensor is configured as a dual system of the main torque sensor 107 and the auxiliary torque sensor 107A.
  • the torque abnormality detecting means 10-1A detects whether the value of the main torque sensor 107 is normal or abnormal.
  • the principle of the detection is that if the main torque sensor 107 is normal, the output torque value Tm will be 0.5 to 4.5 V. Since a value between 0 and 0.5 V or 4.5 to 5 V is output, it is considered abnormal.
  • the voltage of the control power supply is 0 to 5 V, and the value of the torque value Tm is one setting example of the torque sensor (107, 107A).
  • the torque abnormality detection means 10-1B detects whether the torque value Ts output from the auxiliary torque sensor 107A is normal or abnormal.
  • the detection principle is that if the auxiliary torque sensor 107 A is normal, its output value will be a value between 0.5 and 4.5 V, so it will be between 0 and 0.5 V or 4.5 and 5 V output is abnormal.
  • the time for judging the abnormality is one cycle of the calculation by the CPU, and the judgment is made, for example, in about l ms.
  • the torque abnormality detection means 10-1A, 10-0-IB, and 10-1C output, for example, "1" when abnormal, and "0" when normal.
  • the selection switches 10-4 are controlled by the OR section 10-5 and the AND section 10-7, and when the OR section 10-5 outputs S "1". In other words, when at least one of the torque abnormality detecting means 10 0-1 A, 10-1 B, and 10-1 C determines an abnormality, the selection switch 10-4 selects an alternative torque value, The substitute torque value is sent to the current command value calculator 120. On the other hand, when the AND section 10-7 outputs "1", the selection switch 10-4 selects the torque value Tm, which is the detection value of the torque sensor 107.
  • Such a control method is adopted when the torque value, which is the output of the torque sensor, is determined to be abnormal by at least one torque abnormality detecting means, and the electric power steering device is controlled with the alternative torque value, If the condition for returning control from the alternative torque value to the torque value output from the torque sensor is determined to be normal for all torque abnormality detection means, the safety of control of the electric power steering device can be ensured. It is.
  • the failure of the torque sensors 107 and 107 A is realized by the torque failure determination means 10-3.
  • the torque failure determination means 10 0-3 outputs the outputs from the plurality of torque abnormality detection means 10 0-1 A, 10-1 B and 10-1 C to the delay sections (hereinafter referred to as TD) 1 0- Input to 3 A, 10-3 B, 10-3 C and OR the outputs from TD 10-3 A, TD 10-3 B, TD 10-3 C OR 10-3 D , And the output of the OR unit 10-3D is the failure determination result.
  • TD is realized by a power counter or the like when a CPU is used as a control device.
  • the torque failure determination means 10-3A continues for more than a predetermined time t4, for example, 30 ms, when the abnormality "1" output from the torque abnormality detection means 10-1A continues, the torque sensor Determine the failure.
  • the abnormality "1" which is the output of the torque abnormality detection means 10-1B, has continued for more than a predetermined time t5, for example, 3 Oms. In this case, it is determined that the torque sensor is out of order.
  • the torque failure determination means 10-3C outputs the torque when the abnormality "1" output from the torque abnormality detection means 10-1C continues for a predetermined time t6, for example, 40 ms. The determination that the sensor has failed is determined.
  • the OR section 10-3D outputs "1" if at least one of TD IO-3A, 10-3B, and 10-3C outputs "1", and the torque sensor outputs Determine the failure.
  • the torque sensor Determine the failure. Since the predetermined time of TD differs depending on the principle of detecting the abnormality of the torque sensor, the predetermined times t4, t5 and t6 of TD10-3A, 10-3B and 10-3C are different from each other. May be.
  • condition for determining that the torque sensor is faulty is a condition in which the time during which the torque abnormality detection means determines that the torque sensor is abnormal has continued for a certain period of time. There is a phenomenon that must be determined. This phenomenon will be described with reference to FIG.
  • Torque abnormality detecting means 1 0-1 A determines abnormality of the torque value Tm of the main torque sensor 107, and the principle of detection is that when the output is 0.5 to 4.5 V, it is normal. Up to 0.5 V or 4.5 to 5 V is judged as abnormal.
  • Torque abnormality detection means 1 0—1 A is abnormal at 0 to 0.5 V, normal at 0.5 to 4.5 V due to chattering where the torque value Tm fluctuates between 0 and 5 V, 4.
  • An output as shown in Fig. 16 (A) is taken at 5 to 5 V according to the abnormality criterion.
  • the torque abnormality detecting means 1 0-1 C is such that, for example, when the auxiliary torque sensor 107 A is at the neutral point as the torque value of 2.5 V, the torque value Tm of the main torque sensor 107 is 2. Normal when the voltage rises and falls near 5 V, and an error is output when the voltage approaches 0 V or 5 V. Therefore, the output of the torque abnormality detecting means 10-1C is as shown in Fig. 16 (B), and the "1" and "0" signals which are different from the "1" and "0” signals in Fig. 16 (A) are alternated. It becomes “0” signal. If the allowable value for the deviation ⁇ ⁇ ⁇ : is large, as shown in FIG.
  • the torque abnormality detecting means 10 0-1 may be used before the torque abnormality detecting means 10-1 A is switched from abnormal to normal. C changes from normal to abnormal, and all torque abnormality detecting means 10-1A, 10-1B, 10-1C will not be normal for a long time, for example, about 5 Oms. The alternative torque value control is continued for 50 ms for a long time.
  • the torque failure determining means for coping with such a phenomenon will be described with reference to FIG. 15, the torque input processing unit 10 is provided with torque failure determination means 10-3Y and torque failure determination means 10-3Z.
  • the torque failure determination means 10-3Y composed of the comparison section 103E and TD10-3F will be described.
  • the torque failure determination means 1 0 3 Y compares the input value to the current command value calculation section 1 20 with the alternative torque value output from the alternative torque value calculation means 1 0-2 by the comparison section 1 0-3 E. Compare and determine whether the substitute torque value has been updated. Then, the comparison result of the comparison unit 10-3E is input to TD10-3F, and the alternative torque value exceeds the predetermined time t7 set by TD10-3F, for example, 50 ms. If has not been updated, the determination that the torque sensor has failed is determined.
  • the output of the OR section 10-5 which is the command for selecting the alternative torque value, is input to TD10-3G, and the period during which the alternative torque value is continuously selected is the predetermined time set by TD10-3G. If it continues for more than t8, for example, 60 ms, it is determined that the torque sensor is faulty. That is, the torque failure determination means 10-3Z determines that the torque sensor has failed if the alternative torque value control has continued for a long time.
  • the difference between the torque failure determination means 1 0-3 G and the torque failure determination means 10 0-3 is as follows.
  • the torque failure determination means 10-3 is the one where any one of the torque abnormality detection means 10-1A, 10-1B and 10-1C is abnormal for more than a predetermined time. Then, it is determined that the torque sensor is out of order.
  • the torque fault determination means 10 0-3 Z has the torque abnormality detection means 10-1 A, 10 0-IB, 10 0-1 C like the chattering state abnormality.
  • the period during which the abnormality is abnormal by itself is short, but when combined, the abnormality can be detected for a long time, even if the torque sensor fails.
  • the OR section 10-3H is for collecting the failure detection results of all the torque sensors.
  • the torque failure determining means 10-3 and the torque failure determining means 10-3 are used.
  • the failure judgment result of F and 10-3Z is input.
  • the failure of the torque sensor occurs without executing the alternative torque value control. It is necessary to detect the failure of the torque sensor reliably.
  • the torque failure determination means using the torque failure determination means 10_3, fi TD TD 10-3A, 10-3B and 10-3C in Fig.
  • the abnormality has continued for a long time, for example, when the abnormality has continued for the time T1 or more, it has been determined that the torque sensor has failed.
  • a plurality of torque abnormality detecting means 10-1A, 10-1B, 10-1C as described with reference to FIG. 16 are used as independent torque abnormality detecting means such as chattering.
  • the abnormal period is short, but when the torque abnormality detecting means 10-1A, 10-1B and 10-1C are combined, the abnormal period continues for a long time. Conventionally, it could not be detected as a failure of the torque sensor.
  • the torque abnormality detection means 10-1A, 1 By combining 0—IB, 10—1C, OR section 10—5 and TD 10—3G, the period during which multiple torque abnormality detection means are abnormal by themselves, such as chattering, is short. It is time, but when the torque abnormality detection means 10-1 A, 10-1 B, and 10-1 C are combined, it is possible to ensure that the abnormal period continues for a long time, for example, the predetermined time t 8 or more. And the torque sensor can be determined to be defective.
  • the period during which a plurality of torque abnormality detection units are abnormal alone such as chattering is short, but the period during which a plurality of torque abnormality detection units are abnormal is long.
  • An abnormality that continues for a certain period of time in other words, an abnormality in which at least one of the plurality of torque abnormality detection means is determined to be abnormal for more than a predetermined time is reliably detected. Can be determined.
  • c may provide a control apparatus for a good feeling handle which can operate the electric power steering apparatus, in the abnormal term of the torque sensor is used to control
  • a third embodiment capable of accurately estimating the substitute torque value will be described.
  • FIG. 19 is a control block diagram showing a third embodiment of the present invention.
  • the sensor signal Tr detected by the torque sensor 107 is input to the main torque detecting unit 107B as the main torque detecting unit and to the auxiliary torque detecting unit 107C as the auxiliary torque detecting unit. .
  • the main torque detector 107B and the auxiliary torque detector 107C are for detecting the torque value of the steering wheel 101 from the sensor signal Tr output from the torque sensor 107, It is composed of an electronic circuit such as an arithmetic and logic unit and software processing.
  • the main torque detection unit 107B outputs a main torque detection value Tm
  • the sub torque detection unit 107 outputs a sub torque detection value Ts.
  • the torque detection unit 107 C constitutes a dual system for torque detection.
  • one torque sensor 107 is used in common.However, two torque sensors for the main torque detection value and the auxiliary torque detection are prepared, and the torque sensor stage is doubled.
  • the system may be configured.
  • the main torque detection value T m output from the main torque detection unit 107 B and the sub torque detection value T s output from the sub torque detection unit 10 C are input to the torque input processing unit 10 respectively. Is done. Since the details of the torque input processing unit 10 will be described later in detail, the part related to motor control at the subsequent stage of the torque input processing unit 10 will be described first.
  • the torque value T output from the torque input processor 10 is input to the current command value calculator 120, and the current command value calculator 120 calculates the current command value Iref.
  • the current command value Iref is input to the subtraction unit 121 via the limiter 11 controlled by the torque input processing unit 10. In the subtraction unit 121, a deviation between the current command value Iref and the detected value Im of the motor current is calculated.
  • the deviation is input to a current control unit 122 constituted by a proportional integral or the like, and the current control unit 122 sets a duty ratio of the inverter control PWM control which is an example of the motor drive unit 123.
  • the motor drive unit 123 supplies the motor current by the PWM control according to the duty ratio to the motor 108, and the motor 108 outputs a torque corresponding to the torque value specified by the steering handle. .
  • the torque input processing unit 10 includes a torque abnormality detection unit 10-1 that receives the main torque detection value Tm and the auxiliary torque detection value Ts as input, and an alternative torque value calculation unit 10-2.
  • Torque abnormality detection means 1 0-1 The sensor 107 has a function of detecting an abnormality of the main torque detector 107B or the ⁇ ij torque detector 107C.
  • the substitute torque value calculating means 10-2 uses the main torque detection value Tm and the auxiliary torque detection value Ts to generate the torque sensor 107, the main torque detection unit 107B or the auxiliary torque detection unit 107.
  • an alternative torque value Ta of the torque used in place of the main torque detection value Tm is calculated.
  • the torque input processing unit 10 further includes torque failure determination means 10-3 and a selection switch 10-4.
  • the selection switch 10-4 selects either the alternative torque value T a output from the alternative torque value calculation means 10-2 or the main torque detection value T m output from the main torque detector 107B. Is selected based on the output of the torque abnormality detection means 10-1.
  • the torque failure determination means 10-3 uses the abnormality detection signal from the torque abnormality detection means 10-1 to provide a torque sensor 107 and a main torque when the abnormal state continues for more than a predetermined time.
  • the detector 107B or the auxiliary torque detector 107C has a function to determine that it is faulty. If it is determined that it is faulty, the limiter 11 Control the trip value.
  • the flowchart of FIG. 20 is an example showing the alternative torque value control, torque abnormality detection, and torque failure determination operation in the case of the above-described torque abnormality or torque failure determination.
  • the main torque detection value Tm and the auxiliary torque detection value Ts are read from the main torque detection unit 107B and the auxiliary torque detection unit 107C, respectively (step S 1), judge whether the main torque detection value Tm is 0.5 V or less or 4.5 V or more. If the value is between 0.5 V and 4.5 V, it is normal (YE S) It is judged, and if it is 0.5 V or less or 4.5 V or more, it is judged as abnormal (NO) (step S2). If the main torque detection value Tm is normal, the detection counter is cleared (step S3). The detection counter measures the abnormality duration used to determine whether the torque sensor 107 or the main torque detector 107B that outputs the main torque detection value Tm is faulty. In this embodiment, if the abnormality of the main torque detection value Tm continues for more than 30 ms, the failure is determined.
  • step S4 the past main torque value Tm and the past auxiliary torque detection value Ts are updated and stored.
  • FIG. 21 shows a flowchart for updating the past torque values, which will be described later.
  • the main torque detection value Tm is used as the torque value T used for motor control (step S6).
  • the selection switches 10-4 select and output the main torque detection value Tm.
  • step S2 if it is determined in step S2 that the main torque detection value Tm is abnormal, the detection counter is counted up once (step S6), and the detection counter counts the torque sensor 107 and the main torque detection unit 1 It is determined whether or not 07 A has exceeded the set value of the power point, which is a predetermined value of the time for determining the failure is determined (step S7).
  • the alternative torque value control is executed without determining that the torque sensor or the like is faulty.
  • the control of the motor 108 is performed using the alternative torque value Ta instead of the abnormal main torque detection value Tm detected by the torque sensor 107, and the motor control is abnormal.
  • an alternative torque value Ta that does not result in a difference is calculated (step S8).
  • An example of a method for calculating the substitute torque value Ta Will be described later with reference to the flowchart of FIG.
  • step S10 if the abnormal time continues for a predetermined value or more in step S7 (YES), that is, if the count of the value detection counter exceeds the set value (YES), it is determined that a failure has occurred, and the limiter 1 1 A slashing process for narrowing down the torque value using is performed (step S10).
  • the example of FIG. 21 is an embodiment in which the substitute torque value Ta is calculated using five past torque values.
  • a one-step new past main torque value Tm 2 and sub torque detection value T s2 are substituted for the main torque detection value T ml and the sub torque detection value T s 1 (step S 14).
  • the main torque detection value Tm 2 and the auxiliary torque detection value T s 2 are substituted by the one-step new past main torque value Tm 3 and the auxiliary torque detection value T s 3, respectively (step S 15).
  • the previous main torque value Tm4 and the auxiliary torque detection value Ts4, which are new by one step, are substituted for the detection value Tm3 and the auxiliary torque detection value Ts3, respectively (step S16).
  • main torque detection value Tm 4 and the auxiliary torque detection value T s 4 are respectively substituted by the past main torque value Tm 5 and the auxiliary torque detection value T s 5 which are new by one step (step S 17), and the main torque detection value
  • the new main torque value Tm and auxiliary torque detection value Ts, which is one step new, are substituted for Tm5 and auxiliary torque detection value Ts5 (step S18).
  • the current main torque value Tm and auxiliary torque detection value Ts are also calculated in the following steps.
  • it is used to calculate the alternative torque value Ta when the torque detection value becomes abnormal in the step, it is the past torque detection value one step before.
  • the past torque value is calculated using the five or more past torque values to calculate the substitute torque value Ta. Is also good.
  • the alternative torque value Ta may be calculated using five or less past torque values. The number of past torque values for calculation may be determined based on the relationship between the accuracy of the substitute torque value Ta and the performance of the CPU and the capacity of the memory.
  • step S8 the contents of the alternative torque value setting step (step S8) for calculating the alternative torque value Ta will be described with reference to the flowchart of FIG.
  • the difference ⁇ T i I Tmi ⁇ T si
  • in the combination of the main torque detection value Tmi and the auxiliary torque detection value T si of the past torque is calculated.
  • ⁇ 1 IT ml-Ts1I
  • ⁇ T2
  • the combination (Tmk, Tsk) that minimizes the difference ⁇ T i is selected (step S22). If there are a plurality of combinations (Tmk, Tsk) with the smallest difference ⁇ T i, select the latest combination (step S23).
  • the main torque detection value T mk or the auxiliary torque detection value T sk is selected as the alternative torque value T a (step S24).
  • the main torque detection value Tmk or the auxiliary torque detection value Tsk of the combination (Tmk, Tsk) is selected as the alternative torque value Ta because the difference value Ti is a predetermined value ⁇ T1 that is sufficiently small. If imit or less, the primary torque detection value T mk and the secondary torque detection value T sk detected almost the same torque detection value This means that both torque detection values are correct, and there is no problem in using either torque detection value as the substitute torque value T a.
  • ⁇ ⁇ 1 I Tml — T s l
  • and ⁇ T 2
  • step S22 the combination (Tmk, Tsk) that minimizes the difference ⁇ Ti is selected (step S22).
  • step S 23 If there are a plurality of combinations (Tm k, T s k) with the smallest difference ⁇ T i, the latest one is selected (step S 23). Then, whether to select the primary torque detection value Tmk in the (Tmk, T sk) of the latest combination and the alternative torque value T a or the auxiliary torque detection value T sk in which the difference ⁇ T i is the smallest is determined. Then, a torque detection value closer to the torque value Tn indicating the intermediate value of the steering wheel is selected (step S25).
  • the predetermined value may not be as small as that of FIG. 22 (A), but it is better to add a condition that the difference ⁇ ⁇ i is equal to or smaller than the predetermined value. It is safe.
  • the reason for calculating such an alternative torque value Ta is that if the torque detection value is normal, the main torque detection value Tm and the auxiliary torque detection value Ts should be essentially the same, so the difference is small. It is preferred that the alternative torque value T a be the same. Also, if the difference is the same, it is clear that it is preferable to select the latest torque detection value closer to the present as the alternative torque value used for the current control. Whether the main torque detection value Tm or the sub torque detection value Ts is selected from among the selected torque detection values is determined by the case where an abnormal torque detection value is indicated by 0 V indicating a ground fault. And 5 V, which indicates a short-to-power fault, and hunting. The interval is alternately repeated at high speed.
  • the torque value Tn indicating the intermediate value of the steering wheel is closer to 2.5 V, which is the intermediate value between 0 V and 5 V, and the alternative torque value T a Is preferable.
  • the reason for selecting the value closer to the intermediate value is that the value closer to the intermediate value is often smaller and safer.
  • the method of calculating the alternative torque value Ta using both the detected torque values of the combination (T mk, T sk) is not limited to the method of FIG. 22 (A) or (B) described above. Absent.
  • FIG. 23 shows the relationship between the output (torque value) of the torque sensor and the motor current when the output value of the torque sensor suddenly becomes zero using the torque input processing unit 10 of this embodiment. I have. Even if the torque value suddenly becomes zero, the substitute torque value is immediately used instead of the abnormal torque value, so that the motor current maintains the value immediately before the torque value became abnormal. Then, the motor current maintains the previous value until the torque sensor is determined to be faulty, and the motor current gradually decreases after the torque sensor is determined to be faulty.
  • Figs. 4 and 5 which show the results of the conventional control method, the motor current does not reverse the polarity immediately before the torque value becomes abnormal, and does not give a sense of incompatibility to the steering operation.
  • FIG. 24 shows the relationship between the output of the torque sensor (worst case) and the motor current when the torque sensor output value causes chattering and breaks down, using the torque input processing unit 10 of this embodiment. Shows the relationship. If the torque value is determined to be abnormal due to chattering, a substitute torque value is calculated using the past normal torque value, and the motor current is controlled based on the substitute torque value. Therefore, the motor current outputs a current that does not greatly differ from the motor current immediately before chattering occurs. Furthermore, after the failure is detected, the motor current is gradually attenuated. This result is compared with Fig. 6 showing the result of the conventional control method.
  • the motor control is performed using the accurately calculated alternative torque value instead of the abnormal torque detection value. Therefore, even if the torque sensor or torque detector becomes abnormal, even if the predetermined time until the torque sensor or torque detector is determined to be faulty is long enough to prevent erroneous detection, operation of the steering wheel without any uncomfortable feeling Can be realized.
  • the main torque detection value Tm is in a normal range (0.5 V or more and 4.5 V or more). Although it is assumed that the torque sensor and the torque detector are abnormal or faulty, there are other methods for detecting abnormalities and determining failures. Such an embodiment is described with reference to FIG. Will be explained.
  • the torque abnormality detecting means 10-1 has a plurality of torque failure abnormality detecting means 10-1A, 10-IB, 10-1C having different principles. Therefore, the switching judgment of the selection switches 10-4 is as follows. Abnormality of any one of torque abnormality detection means 10-1A, 10-1B, 10-1C (If the abnormality is abnormal, set the output of each torque abnormality detection means to "1".) The output of the torque abnormality detection means 10-1A, 10-1B, 10-1C is input. Based on the output of the R section 10-5, the alternative torque value calculation means 10- Select the alternative torque value Ta that is the output of 2.
  • the torque abnormality detection means 10-1 A, 10-1 B, and 10-1 C are not abnormal, that is, they are all normal (the output of each torque abnormality detection means is "0" when normal)
  • the torque abnormality detection means 10-1 A, 10-1 B, and 10-1 C-NOT part which receives each output as input-10-6 A, 10-6 B, 1 ⁇ —
  • the selection switch 10 — 4 Based on the output of the ND section 10 — 7 that receives the output of 6 C, the selection switch 10 — 4 outputs the main torque detection value Tm that is the output of the main torque detection section 107 A.
  • the torque abnormality detection means 10-1A is the same as the torque abnormality detection means used in the embodiment of FIG. 19, and determines that the main torque detection value Tm is out of the normal range as abnormal. It is.
  • Torque abnormality detection means 10-1B is a torque abnormality detection means that determines that an abnormality occurs when the auxiliary torque detection value Ts is not in the normal range (0.5 V or more and 4.5 V or less).
  • the torque abnormality detecting means 10-1C is supposed to have the same primary torque detection value T s and secondary torque detection value T s, the primary torque detection value T s and the secondary torque detection value T s This is a torque abnormality detection means that determines that the difference is out of the normal range as abnormal. Also, the difference between the torque failure determination means 10_3 and the embodiment of FIG. 19 is that the torque abnormality detection means 10-1 has a plurality of torque abnormality detection means 10-1A, 10-1B, Along with having 10-1 C, multiple delay sections (hereinafter referred to as TD sections) 10-3 A, 10-3 B, 10-3 C It is.
  • TD sections multiple delay sections
  • the TD section 10-3A will output the torque sensor 107 It is determined that the torque detector 107A is faulty.
  • the TD section 10-3B outputs the torque sensor 107
  • the auxiliary torque detector 107B is determined to be faulty.
  • the TD section 10-3C outputs the torque sensor 107 and the main sensor when the output of the torque abnormality detecting means 10-1C is abnormal for more than a predetermined time t6, for example, 30 ms. It is determined that the torque detecting unit 107A or the auxiliary torque detecting unit 107B is faulty.
  • This embodiment has a plurality of torque abnormality detecting means 10 -1 A, 10 -1 B s 10 1: LC. Therefore, the switching reason of the selection switch 10-4 is as follows. Abnormality detecting means 10 0-1 A, 10-1 B, 10-1 C If any of the abnormalities is detected, the selected switch 10-4 replaces the main torque detection value Tm. To select an alternative torque value Ta. Conversely, if a plurality of torque abnormality detection means 10_1A, 10_1B, 10_1C are all normal, the selected switch 10-4 will determine the main torque detection value. Tm select.
  • the alternative torque value calculation means 10-2 of the present embodiment is calculated based on an alternative torque value calculation step shown in the flowchart of FIG.
  • the alternative torque value using the past main torque detection value Tm and the auxiliary torque detection value Ts is one of the alternative torque values even if an abnormality occurs in the torque detection. It is highly likely that correct torque detection is being performed, and the alternative torque value is calculated using the correct past torque detection value. As a result, compared to the alternative torque value that can only use the main torque detection value Tm, a comfortable steering operation is realized until the torque sensor and torque detection unit become abnormal and the failure is confirmed. it can. Especially in the case of a chattering error that occurs when the wiring for torque detection is broken. Both the main torque detection value Tm and the auxiliary torque detection value Ts are unlikely to generate chattering, so Valid. Industrial applicability
  • the electric power steering control device provides an electric power steering system capable of ensuring a safe steering operation without giving an uncomfortable feeling to the steering operation even when a torque sensor for detecting a steering torque of the steering wheel becomes abnormal. Suitable for use in equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A controller for an electric power steering device, capable of achieving safe steering operation even when an output value of a torque sensor that detects steering torque of a steering wheel is abnormal. The safe steering operation is achieved without giving clumsy feeling to steering operation with a failure determination fixing time period that is long enough to prevent miss-detection of a torque sensor failure secured.

Description

明 細 書 電動パワーステアリング装置の制御装置 技術分野  Description Control device for electric power steering system Technical field
本発明は電動パワーステアリング装置の制御装置に関し、 特にトルク センサが異常になった場合に代替トルク値を用いた制御を継続でき、 ま た、 トルクセンサの故障を確実に検出できる電動パワーステアリング装 置の制御装置に関する。 背景技術  The present invention relates to a control device for an electric power steering device, and particularly to an electric power steering device that can continue control using an alternative torque value when a torque sensor becomes abnormal, and that can reliably detect a failure of the torque sensor. Related to a control device. Background art
自動車のステアリング装置をモータの回転力で操舵補助力を付与する 電動パワーステアリング装置は、 モータの駆動力を減速機を介してギア 又はベルト等の伝達機構により、 ステアリングシャフ ト或いはラック軸 に操舵捕助力を付与するようになっている。  An electric power steering device that applies a steering assist force to a vehicle steering device by a motor rotating force is a device that transmits a driving force of a motor to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt through a speed reducer. It is designed to provide help.
このような電動パワーステアリング装置の構成の一例を第 1図に示し、 説明する。 操向ハン ドル 1 0 1の軸 1 0 2は減速ギァ 1 0 3、 ュニバー サルジョイント 1 04 a及ぴ 1 0 4 b、 ピユオンラック機構 1 0 5を経 て操向車輪のタイロッ ド 1 0 6に連結されている。 軸 1 0 2には、 操向 ハンドル 1 0 1の操舵トルクを検出する トルクセンサ 1 0 7が設けられ ており、 操向ハンドル 1 0 1の操舵力を補助するモータ 1 0 8が減速ギ ァ 1 0 3を介して軸 1 0 2に連結されている。 そして、 電動パワーステ アリング装置のモータ制御は、 トルクセンサ 1 0 7の検出したトルク値 や図示しない車速センサから検出された車速、 或いはホールセンサ 1 1 0などで検出したモータの回転角度などを入力値として、 コン ト ロール ュ-ッ ト 1 0 9で制御される。 コン トロールュニッ ト 1 0 9は主として C P Uで構成され、 C P u内部においてプログラムでモータ制御が実行 される。 An example of the configuration of such an electric power steering device is shown in FIG. 1 and will be described. The steering shaft 101 of the steering handle 101 is connected to the deceleration gear 103, the universal joint 104a and 104b, and the tie rod 106 of the steered wheels via the pinion rack mechanism 105. Are linked. The shaft 102 is provided with a torque sensor 107 for detecting the steering torque of the steering wheel 101, and the motor 108 for assisting the steering force of the steering wheel 101 is provided with a deceleration gear. It is connected to shaft 102 via 103. The motor control of the electric power steering device is performed by inputting a torque value detected by the torque sensor 107, a vehicle speed detected by a vehicle speed sensor (not shown), or a rotation angle of the motor detected by the Hall sensor 110 or the like. Is controlled by the control unit 109. Control Unit 109 mainly It is composed of a CPU, and motor control is executed by a program inside the CPu.
このような電動パワーステアリング装置のモータ 1 0 8を制御する制 御系の一例を、 第 2図に示して説明する。 第 2図において、 電流指令値 算出部 1 2 0はトルクセンサ 1 0 7で検出されたトルク値を入力して電 流指令値 I r e f を算出し、 モータ電流の検出値 I mとの差を減算部 1 2 1で算出し、 電流制御部 1 2 2でデユティー比を決定し、 モータ駆動 部 1 2 3はデュティ一比に従った PWM制御を実行してモータ 1 0 8を 駆動する。  An example of a control system for controlling the motor 108 of such an electric power steering device will be described with reference to FIG. In FIG. 2, a current command value calculator 120 inputs the torque value detected by the torque sensor 107 to calculate a current command value I ref, and calculates a difference between the detected motor current value Im and the detected current value Im. The subtraction unit 122 calculates the duty ratio, the current control unit 122 determines the duty ratio, and the motor drive unit 123 drives the motor 108 by executing the PWM control according to the duty ratio.
このような電動パワーステアリング装置では、 トルクセンサ 1 0 7が 検出したトルク値が正しく検出されたものであることを前提と して、 電 動パワーステアリング装置の制御が実行されている。 しかし、 実際には トルクセンサ 1 0 7にも故障が発生し、 異常なトルクの検出値が入力さ れたときに、 ハンドル操作に対して異常な動作を引起こす恐れがあるの で、 従来種々の対策が施されてきた。  In such an electric power steering device, control of the electric power steering device is executed on the assumption that the torque value detected by the torque sensor 107 is correctly detected. However, in practice, the torque sensor 107 also fails, and when an abnormal torque detection value is input, it may cause an abnormal operation to the steering wheel operation. Measures have been taken.
例えば日本国特許文献 1 (特開 2 0 0 0— 3 1 8 6 3 3号公報) は第 3図のような制御方式を採用し、 トルクセンサが出力したトルク値の異 常に対応している。 即ち、 トルクセンサの出力したトルク値が異常にな つたとき、 その異常が所定時間 ( t A) 継続すると、 トルク値に基く電 流制御演算の出力値である操舵補助力指令値を遮断してしまう。 異常が さらに長く所定時間 ( t B) 継続した場合には、 モータ駆動の電源を遮 断するという制御方式である。  For example, Japanese Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2000-3110) adopts a control method as shown in FIG. 3 and responds abnormally to the torque value output by the torque sensor. . That is, when the torque value output by the torque sensor becomes abnormal, if the abnormality continues for a predetermined time (tA), the steering assist force command value, which is the output value of the current control calculation based on the torque value, is cut off. I will. If the abnormality continues for a predetermined time (tB) for a longer time, the control system shuts off the motor drive power.
このような制御方式において、 トルクセンサが地絡故障を発生し、 ト ルクセンサの出力である トルク値が零になったような場合のトルク値と モータ電流の関係を第 4図に示す。 この制御方式の場合、 所定時間 ( t A) の間、 異常になったトルクセンサの出力値を基に操舵補助力指令値 を計算するので、 操舵補助力が異常となり、 ハンドルが運転手の意図し ない動きをしてしまう。 さらに、 異常が所定時間 ( t B ) 以上継続する とモータ電源を遮断するため、 ハンドルに大きなトルクを加えていた場 合、 トルクが急変して好ましくない。 FIG. 4 shows the relationship between the torque value and the motor current when the torque sensor generates a ground fault and the torque value output from the torque sensor becomes zero in such a control method. In the case of this control method, the steering assist force command value is determined based on the output value of the abnormal torque sensor for a predetermined time (tA). , The steering assist force becomes abnormal and the steering wheel moves unintentionally. Further, if the abnormality continues for a predetermined time (tB) or more, the motor power is shut off. If a large torque is applied to the steering wheel, the torque suddenly changes, which is not preferable.
別の対策として、 日本国特許文献 2 (特開 2 0 0 0— 3 2 9 6 2 8号 公報) に示されている制御方式がある。 特許文献 2は、 トルクセンサの 電源に電圧低下や瞬断などの重大な異常が発生すると、 フェールスィッ チが開放し、 トルクセンサの出力である トルク値としてフェールスィッ チが開放する前のトルク値を保持し、 その保持した値に出力ゲインを乗 じることによって操舵補助力指令値を求めている。 また、 その後の操舵 補助力を徐々に減衰するように制御するので、 操舵補助力が急変するこ とはない。 かかる制御方式を用いた場合のトルクセンサの故障、 例えば トルクセンサが地絡故障した場合のトルクセンサの出力 (トルク値) と モータ電流の関係を第 5図に示す。 故障発生から故障であると判定を確 定するまでの間、 モータに負の最大電流が流れるが、 故障確定後は故障 発生直前の トルクから徐々にモータ電流を減少させるので、 特許文献 1 のよ うな急激なトルクの変化は発生しない。  As another countermeasure, there is a control method disclosed in Japanese Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-3292628). Patent Document 2 discloses that when a serious abnormality such as a voltage drop or an instantaneous interruption occurs in the power supply of the torque sensor, the fail switch is opened, and the torque value before the fail switch is opened is held as the torque value output from the torque sensor. Then, the steering assist force command value is obtained by multiplying the held value by the output gain. In addition, since the subsequent steering assist force is controlled so as to gradually decrease, the steering assist force does not suddenly change. Fig. 5 shows the relationship between the output of the torque sensor (torque value) and the motor current when the torque sensor fails when such a control method is used, for example, when the ground fault occurs in the torque sensor. The maximum negative current flows through the motor from the occurrence of the failure until the failure is determined, but after the failure is confirmed, the motor current is gradually reduced from the torque immediately before the occurrence of the failure. Such a sudden change in torque does not occur.
しかし、 第 6図に示すようにトルク値がチヤタリングを起こしながら 地絡故障を発生した場合は、 トルクセンサの出力値を A D変換器でサン プリングすると黒丸のような値をサンプリングする可能性がある。 この ような場合、 黒丸のサンプリング値が地絡検出のための閾値以下になら なければ地絡発生を検出することができず、 そのまま制御を続行する。 そして、 地絡検出後、 故障発生直前のトルク値から徐々にモータ電流を 減少させるが、 チヤタリングを生じて不安定なトルク値から徐々にモー タ電流を減少させるため、 最悪の場合、 故障直前の トルクと逆向きのト ルクから減少が開始されて好ましくない。 また、 特許文献 2の方法では、 故障発生から故障であると判定を確定 するまでの判定期間中はモータに異常な電流が流れるため、 故障判定の 確定期間を余り長くすることはできない。 しかし、 故障検出の誤検出を 防ぎ故障検出を確実にするには、 故障判定確定時間をできるだけ長く し たいという矛盾があり、 問題となっていた。 However, if the torque value causes chattering and a ground fault occurs as shown in Fig. 6, when the output value of the torque sensor is sampled by the AD converter, a value like a black circle may be sampled. . In such a case, if the sampling value of the black circle does not fall below the threshold value for detecting a ground fault, the occurrence of a ground fault cannot be detected, and the control is continued as it is. After the ground fault is detected, the motor current gradually decreases from the torque value immediately before the occurrence of the fault.However, the motor current gradually decreases from the unstable torque value due to chattering. The reduction starts from the torque opposite to the torque, which is not desirable. Further, in the method of Patent Document 2, an abnormal current flows through the motor during the determination period from the occurrence of a failure to the determination of a failure, so that the determination period of the failure determination cannot be made too long. However, in order to prevent erroneous fault detection and ensure fault detection, there is a contradiction that the fault determination time should be as long as possible, which has been a problem.
トルクセンサの出力である トルク値が異常になったとき、 従来の制御 方式ではトルクセンサの故障が確定するまでの間、 異常なトルク値に基 いて制御するために操舵捕助力が異常になる問題があった。  When the torque value, which is the output of the torque sensor, becomes abnormal, the conventional control method causes the steering assist force to become abnormal because control is performed based on the abnormal torque value until the failure of the torque sensor is confirmed. was there.
また、 異常なトルク値の代わりに代替トルク値を使用する場合でも、 適切な代替トルク値が算出されていない問題があった。 その結果、 トル クセンサの出力が異常になると、 ハンドルが運転手の意図しない動きを してしまい、 運転手にハンドル操作の違和感を与える問題があった。 更に故障発生から故障であると判定を確定するまでの判定期間中、 モ ータに異常電流が流れるため、 故障判定の確定時間を長くすることがで きず、 その結果、 トルクセンサの故障検出に関して誤検出を生ずる問題 があった。 特にトルクセンサで検出されたトルク値を伝達する配線が断 線しそうな場合に発生するチヤタリング現象において、 電動パワーステ ァリング装置の正しいトルク制御が困難になる問題があった。  In addition, even when an alternative torque value was used instead of an abnormal torque value, there was a problem that an appropriate alternative torque value was not calculated. As a result, if the output of the torque sensor becomes abnormal, the steering wheel performs an unintended movement of the driver, giving a driver an uncomfortable feeling of operating the steering wheel. Further, during the determination period from the occurrence of a failure to the determination of a failure, an abnormal current flows through the motor, so that the determination time of the failure determination cannot be prolonged. There was a problem that caused false detection. In particular, in the chattering phenomenon that occurs when the wiring for transmitting the torque value detected by the torque sensor is likely to be broken, there has been a problem that it is difficult to correctly control the torque of the electric power steering device.
本発明は上述のような事情から成されたものであり、 本発明の第 1の 目的は、 トルクセンサの出力値が異常になった場合でも、 トルクセンサ 故障の誤検出を防止できる程度に長く故障判定確定期間を確保しながら ハンドル操作に違和感を与えず、 しかも安全なハンドル操作を確保でき る電動パワーステアリング装置の制御装置を提供することにある。  The present invention has been made in view of the circumstances described above, and a first object of the present invention is to provide a torque sensor that is long enough to prevent erroneous detection of a torque sensor failure even when the output value of the torque sensor becomes abnormal. An object of the present invention is to provide a control device for an electric power steering device that can ensure a safe steering operation while ensuring a failure determination confirmation period without giving a feeling of strangeness to the steering operation.
また、 本発明の第 2の目的は、 トルク異常検出手段が複数存在する場 合でも、 トルクセンサの出力値と異常時に用いる代替トルク値との切替 えを安全にできる電動パワーステアリング装置の制御装置を提供するこ とにある。 Further, a second object of the present invention is to provide a control device for an electric power steering device which can safely switch between an output value of a torque sensor and an alternative torque value used in the event of an abnormality, even when a plurality of torque abnormality detecting means are present. To provide And there.
また、 本発明の第 3の目的は、 トルクセンサの異常期間中、 制御に用 いる代替トルク値を精度良く推定できる電動パワーステアリング装置の 制御装置を提供することにある。 発明の開示  A third object of the present invention is to provide a control device for an electric power steering device capable of accurately estimating an alternative torque value used for control during an abnormal period of a torque sensor. Disclosure of the invention
本発明は、 車両の操舵系に操舵補助力を付与するモータと、 ハン ドル に作用する操舵力を検出する トルクセンサとを備え、 前記トルクセンサ の出力値に基いてモータを制御する電動パワーステアリ ング装置の制御 装置に関するものである。  The present invention provides an electric power steering that includes a motor that applies a steering assist force to a steering system of a vehicle, and a torque sensor that detects a steering force acting on a handle, and controls the motor based on an output value of the torque sensor. The present invention relates to a control device for a switching device.
本発明の上記目的は、 前記トルクセンサの異常を検出する トルク異常 検出手段と、 前記トルク異常検出手段が異常を検出したときに代替トル ク値を算出する代替トルク値算出手段とを設け、 前記トルクセンサの異 常が検出されたとき、 前記代替トルク値に基いて前記モータを制御する 制御装置を用いることによって達成される。  The object of the present invention is to provide a torque abnormality detecting means for detecting an abnormality of the torque sensor, and an alternative torque value calculating means for calculating an alternative torque value when the torque abnormality detecting means detects an abnormality. This is achieved by using a control device that controls the motor based on the alternative torque value when a torque sensor abnormality is detected.
本発明の上記目的は、 前記トルクセンサの出力値の異常を検出する ト ルク異常検出手段と、 前記トルクセンサの出力値が異常になる前の過去 の正常なトルクセンサの出力値に基いて代替トルク値を算出する代替ト ルク値算出手段とで成る トルク入力処理部を設け、 前記トルクセンサの 出力値が異常のとき、 前記トルクセンサの出力値の代わりに前記代替ト ルク値に基いて前記モータを制御する制御装置を用いることによって達 成される。  The object of the present invention is to provide a torque abnormality detecting means for detecting an abnormality in the output value of the torque sensor, and a substitution based on a past normal output value of the torque sensor before the output value of the torque sensor becomes abnormal. A torque input processing unit comprising a torque value calculating means for calculating a torque value, wherein when the output value of the torque sensor is abnormal, the torque input processing unit is used based on the alternative torque value instead of the output value of the torque sensor. This is achieved by using a control device that controls the motor.
また、 上記目的は、 前記トルクセンサの出力値の異常が一定時間継続 した場合に前記トルクセンサが故障であるとの判定を確定する トルク故 障確定手段を設け、 前記トルクセンサの出力値が異常のとき、 前記トル クセンサが故障であるとの判定を確定する前でも、 前記トルクセンサの 出力値の代わりに前記代替トルク値に基いて前記モータを制御する制御 装置を用いることによって達成される。 In addition, the above object is to provide a torque failure determination means for determining that the torque sensor is faulty if the output value of the torque sensor continues to be abnormal for a certain period of time, wherein the output value of the torque sensor is abnormal. At this time, even before the determination that the torque sensor is faulty, the torque sensor This is achieved by using a controller that controls the motor based on the alternative torque value instead of the output value.
本発明の上記目的は、 前記トルクセンサの ttl力値に基いて前記トルク センサの異常を検出する複数のトルク異常検出手段と、 前記トルクセン サの出力値が異常になる前の過去の正常なトルクセンサの出力値に基い て代替トルク値を算出する代替トルク値算出手段とを設け、 前記複数の トルク異常検出手段のつでも異常と判定したとき、 前記トルクセンサの 出力値の代わりに前記代替トルク値に基いて前記モータを制御し、 前記 代替トルク値に基き前記モータを制御しているときに、 前記複数のトル ク異常検出手段の全てが正常と判定したとき、 前記代替トルク値に代え て前記トルクセンサの出力値を用いて制御する制御装置を用いることに よつて達成される。  The object of the present invention is a plurality of torque abnormality detecting means for detecting an abnormality of the torque sensor based on a ttl force value of the torque sensor; and a normal torque in the past before the output value of the torque sensor becomes abnormal. An alternative torque value calculating means for calculating an alternative torque value based on an output value of the sensor; and when the plurality of torque abnormality detecting means determine that the torque abnormality is abnormal, the alternative torque value is substituted for the output value of the torque sensor. Controlling the motor based on the torque value; controlling the motor based on the alternative torque value; determining that all of the plurality of torque abnormality detection means are normal; replacing the alternative torque value with the alternative torque value; This is achieved by using a control device that performs control using the output value of the torque sensor.
本発明の上記目的は、 前記トルクセンサの出力値に基いて前記トルク センサの異常を検出する複数のトルク異常検出手段を備え、 前記複数の トルク異常検出手段が 1つでも単独で継続して異常と判定する期間が所 定時間 T 1を超えたとき、 前記トルクセンサが故障であるとの判定を確 定することによって達成される。  The object of the present invention is to provide a motor control system comprising: a plurality of torque abnormality detecting means for detecting abnormality of the torque sensor based on an output value of the torque sensor; This is achieved by establishing a determination that the torque sensor is faulty when the period for determining that exceeds the predetermined time T1.
本発明の上記目的は、 前記トルクセンサの出力値に基いて前記トルク センサの異常を検出する複数のトルク異常検出手段を設け、 前記複数の トルク異常検出手段の少なく とも 1つでも異常であると判定する期間が 継続して所定時間 T 3を超えたとき、 前記トルクセンサが故障であると の判定を確定することによって達成される。  The object of the present invention is to provide a plurality of torque abnormality detecting means for detecting abnormality of the torque sensor based on an output value of the torque sensor, wherein at least one of the plurality of torque abnormality detecting means is abnormal. This is achieved by determining that the torque sensor has failed when the determination period continues to exceed the predetermined time T3.
本発明の上記目的は、 前記トルクセンサの出力を基に主トルク検出値 The object of the present invention is to provide a main torque detection value based on an output of the torque sensor.
T mを検出する主トルク検出手段と、 前記トルクセンサの出力を基に副 トルク検出値 T sを検出する副トルク検出手段と、 前記主トルク検出値Main torque detection means for detecting Tm; auxiliary torque detection means for detecting an auxiliary torque detection value Ts based on the output of the torque sensor;
T m又は前記副トルク検出値 T s の異常を検出する トルク異常検出手段 と、 前記主トルク検出値 T m又は前記副トルク検出値 T sが異常になる 前の過去の正常な主トルク検出値 T m及ぴ前記主トルク検出値 T m又は 前記副トルク検出値 T sが異常になる前の過去の正常な副トルク検出値 T sに基いて代替トルク値 T aを算出する代替トルク値算出手段とを設 け、 前記主トルク検出値 T m又は前記副トルク検出値 T sが異常である と検出されたとき、 前記主トルク検出値 T mの代わりに前記代替トルク 値 T aに基いて前記モータを制御する制御装置を用いることによって達 成される。 図面の簡単な説明 Torque abnormality detecting means for detecting abnormality of Tm or the auxiliary torque detection value Ts And the previous normal main torque detection value Tm and the main torque detection value Tm or the auxiliary torque detection value Ts before the main torque detection value Tm or the sub torque detection value Ts becomes abnormal. And an alternative torque value calculating means for calculating an alternative torque value Ta based on a past normal auxiliary torque detection value Ts before the abnormality occurs, wherein the main torque detection value Tm or the auxiliary torque detection value is provided. This is achieved by using a control device that controls the motor based on the alternative torque value Ta instead of the main torque detection value Tm when Ts is detected to be abnormal. Brief Description of Drawings
第 1図は一般的な電動パワーステアリング装置の構成図である。  FIG. 1 is a configuration diagram of a general electric power steering device.
第 2図は、 従来の電動パワーステアリング装置の制御系の一例を示す プロック構成図である。  FIG. 2 is a block diagram showing an example of a control system of a conventional electric power steering device.
第 3図は、 トルクセンサの地絡故障に対応した従来の電動パワーステ ァリング装置の一例を示すプロック構成図である。  FIG. 3 is a block diagram showing an example of a conventional electric power steering device that copes with a ground fault of a torque sensor.
第 4図は、 トルクセンサの地絡故障時におけるモータ電流の出力結果 の例を示す図である。  FIG. 4 is a diagram illustrating an example of an output result of a motor current when a ground fault occurs in the torque sensor.
第 5図は、 トルクセンサの地絡故障時におけるモータ電流の出力結果 の他の例を示す図である。  FIG. 5 is a diagram showing another example of the output result of the motor current when the ground fault of the torque sensor occurs.
第 6図は、 トルクセンサのチャタリング故障時におけるモータ電流の 出力結果の例を示す図である。  FIG. 6 is a diagram showing an example of a motor current output result at the time of chattering failure of the torque sensor.
第 7図は本発明の第 1実施例を示す制御プロック図である。  FIG. 7 is a control block diagram showing a first embodiment of the present invention.
第 8図は第 1実施例のトルク入力処理部の動作例を示すフローチヤ一 トである。  FIG. 8 is a flowchart showing an operation example of the torque input processing unit of the first embodiment.
第 9図は過去トルク値の更新動作例を示すフローチヤ一トである。 第 1 0図は、 過去トルク値から予想される現在値を代替トルク値とし て代入する動作例を示すフローチヤ一トである。 FIG. 9 is a flowchart showing an example of an operation for updating a past torque value. Fig. 10 shows that the current value estimated from the past torque value is used as the substitute torque value. 9 is a flowchart showing an operation example of substituting and substituting.
第 1 1図は、 本発明の第 2実施例において、 トルクセンサが地絡故障 した時のモータ電流の出力結果の一例を示す図である。  FIG. 11 is a diagram showing an example of an output result of a motor current when the torque sensor has a ground fault in the second embodiment of the present invention.
第 1 2図は、 本発明の第 2実施例において、 トルクセンサがチヤタリ ング現象を起こした故障時のモータ電流の出力結果の一例を示す図であ る。  FIG. 12 is a view showing an example of a motor current output result at the time of failure in which a torque sensor has a chattering phenomenon in the second embodiment of the present invention.
第 1 3図は n次式を用いた現在値推定の原理を示す図である。  FIG. 13 is a diagram showing the principle of current value estimation using the n-th order equation.
第 1 4図は最小自乗法を用いた現在値推定の原理を示す図である。 第 1 5図は、 複数トルク異常検出手段を備えた本発明の第 2実施例を 示す制御ブロック図である。  FIG. 14 is a diagram showing the principle of current value estimation using the least squares method. FIG. 15 is a control block diagram showing a second embodiment of the present invention provided with a plurality of torque abnormality detecting means.
第 1 6図はトルクセンサ異常時の各トルク異常検出手段の出力信号例 を示すタイムチヤ一トである。  FIG. 16 is a time chart showing an example of an output signal of each torque abnormality detecting means when the torque sensor is abnormal.
第 1 7図は、 本発明に係る代替トルク値制御を用いたトルクセンサ故 障検出手段を備えた装置例を示す制御ブロ ック図である。  FIG. 17 is a control block diagram showing an example of an apparatus provided with a torque sensor failure detecting means using the alternative torque value control according to the present invention.
第 1 8図は、 本発明に係る代替トルク値制御を用いないトルクセンサ 故障検出手段を備えた装置例を示す制御プロック図である。  FIG. 18 is a control block diagram showing an example of an apparatus provided with a torque sensor failure detecting means without using the alternative torque value control according to the present invention.
第 1 9図は本発明の第 3実施例を示す制御ブロック図である。  FIG. 19 is a control block diagram showing a third embodiment of the present invention.
第 2 0図はトルク入力処理部の動作例を示すフローチヤ一トである。 第 2 1図は、 過去の主トルク検出値 T m及ぴ過去の副トルク検出値 T s の更新動作例を示すフローチャー トである。  FIG. 20 is a flowchart showing an operation example of the torque input processing unit. FIG. 21 is a flowchart showing an example of an update operation of the past main torque detection value Tm and the past auxiliary torque detection value Ts.
第 2 2図は、 過去の主トルク検出値 T m及び過去の副トルク検出値 T s とから代替トルク値を算出する動作例を示すフローチヤ一トである。 第 2 3図は、 本発明の第 3実施例において、 トルクセンサが地絡故障 した時のモータ電流の出力結果の例を示す図である。  FIG. 22 is a flowchart showing an operation example of calculating an alternative torque value from the past main detected torque value Tm and the past auxiliary torque detected value Ts. FIG. 23 is a diagram showing an example of an output result of a motor current when the torque sensor has a ground fault in the third embodiment of the present invention.
第 2 4図は、 本発明の第 3実施例において、 トルクセンサがチヤタリ ング現象を起こした故障時のモータ電流の出力結果の例を示す図である。 第 2 5図は、 複数の トルク異常検出手段を有する場合のトルク入力処 理部の実施例を示すプロック構成図である。 発明を実施するための最良の形態 FIG. 24 is a diagram showing an example of an output result of a motor current when a failure occurs in which a torque sensor has a chattering phenomenon in the third embodiment of the present invention. FIG. 25 is a block diagram showing an embodiment of a torque input processing unit when a plurality of torque abnormality detecting means are provided. BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面に基づいて本発明の好適な実施例について詳細に説明する。 第 7図は本発明の第 1実施例を示す制御ブロック図である。 トルクセ ンサ 1 0 7で検出されたトルク値は直接電流指令値算出部 1 2 0に入力 されずに、 トルク入力処理部 1 0に入力され、 その出力値が電流指令値 算出部 1 2 0に入力される。 電流指令値算出部 1 2 0は電流指令値 I r e f を算出し、モータ電流の検出値 I mとの差を減算部 1 2 1で算出し、 電流制御部 1 2 2でデユティー比を決定し、 モータ駆動部 1 2 3はデュ ティ一比に従った P WM制御を実行してモータ 1 0 8を駆動する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 7 is a control block diagram showing a first embodiment of the present invention. The torque value detected by the torque sensor 107 is not directly input to the current command value calculation unit 120, but is input to the torque input processing unit 10 and the output value is input to the current command value calculation unit 120. Is entered. The current command value calculation unit 120 calculates the current command value I ref, calculates the difference from the motor current detection value Im by the subtraction unit 121, and determines the duty ratio by the current control unit 122. The motor drive unit 123 drives the motor 108 by executing the PWM control according to the duty ratio.
トルク入力処理部 1 0は、 トルクセンサ 1 0 7が出力した トルク値が 正常の場合は、 その トルク値が電流指令値算出部 1 2 0に入力されるよ うに動作し、 トルク値が異常の場合は代替トルク値を算出して、 その代 替トルク値を電流指令値算出部 1 2 0に入力する。  When the torque value output from the torque sensor 107 is normal, the torque input processing unit 10 operates so that the torque value is input to the current command value calculation unit 120. In this case, a substitute torque value is calculated, and the substitute torque value is input to the current command value calculation unit 120.
トルク入力処理部 1 0はトルク異常検出手段 1 0 — 1 と、 代替トルク 値算出手段 1 0— 2と、 トルク故障確定手段 1 0— 3 と、 選択スィツチ 1 ◦— 4とで構成されている。 トルク故障確定手段 1 0— 3はトルクセ ンサ 1 0 7の出力値が異常になり、 異常が一定時間継続した場合に故障 と見なす。 電流指令値算出部 1 2 0の後段に設けられているリ ミ ッタ 1 1は、トルク故障確定手段 1 0 — 3が故障であると判断を確定した時に、 モータ電流を徐々に減少させる (斬減処理) ためにリ ミ ッタ値を絞り込 む機能を有している。 なお、 トルク故障確定手段 1 0— 3は必ずしも ト ルク入力処理部 1 0に組み込まれている必要はない。 本実施例では、 ト ルク異常検出手段 1 0— 1の出力結果を利用しているので、 トルク故障 確定手段 1 0— 3をトルク入力処理部 1 0に組み込んでいる。 また、 モ 一タ電流を徐々に減少させる方法はリ ミッタ 1 1に限定されるものでは ない。 例えば、 電流指令値算出部 1 2 0の出力である電流指令値 I r e f にゲイン Gを乗じて、 そのゲイン Gを 1から 0に減少するようにすれ ば、 G · I r e f の値は電流指令値 I r e f から徐々に 0に向かって減 少する。 The torque input processing unit 10 is composed of torque abnormality detecting means 10-1; alternative torque value calculating means 10-2; torque failure determining means 10-3; and a selection switch 1 ◦-4. . The torque failure determination means 10-3 determines that a failure occurs if the output value of the torque sensor 107 becomes abnormal and the abnormality continues for a certain period of time. The limiter 11 provided at the subsequent stage of the current command value calculation unit 120 gradually reduces the motor current when the torque failure determination means 10-3 determines that a failure has occurred ( It has a function to narrow down the limiter value for the purpose of slash processing. Note that the torque failure determination means 10-3 need not necessarily be incorporated in the torque input processing unit 10. In this embodiment, since the output result of the torque abnormality detecting means 10-1 is used, the torque failure The determination means 10-3 is incorporated in the torque input processing unit 10. Also, the method of gradually reducing the motor current is not limited to the limiter 11. For example, by multiplying the current command value I ref, which is the output of the current command value calculation unit 120, by the gain G and reducing the gain G from 1 to 0, the value of G It gradually decreases from the value I ref toward zero.
トルク入力処理部 1 0の動作を第 8図のフローチャートを参照して説 明する。 トルクセンサ 1 0 7の出力値である トルク値 Tを A D変換器(図 示せず) を介して読み込む (ステップ S l )。 次に、 トルク値 Tが正常 か異常かを判定する (ステップ S 2 )。正常異常の判定値 T r e f は種々 考えられるが、 例えば正常な トルク値では有り得ない閾値以上或いは闘 値以下の値を示したら異常とする。 或いは不連続に急変した場合は異常 とする。 トルク値の異常としては、 出力電圧が零或いは電源電圧に固定 してしまったり、 オフセッ ト異常 ((T + ひ) と αだけバイアスされた 形になる異常) やトルクアンプ異常 ((Κ · Τ ) となる異常で演算増幅 器の故障) が考えられる。 トルク値 Τが異常でなければ異常検出カウン タをク リアする (ステップ S 3 )。  The operation of the torque input processing unit 10 will be described with reference to the flowchart of FIG. The torque value T, which is the output value of the torque sensor 107, is read via an A / D converter (not shown) (step S1). Next, it is determined whether the torque value T is normal or abnormal (step S2). The normal / abnormal judgment value Treff can be considered variously. For example, if a value equal to or greater than a threshold value or a threshold value that cannot be obtained with a normal torque value is determined to be abnormal. Or, if it suddenly changes discontinuously, it is considered abnormal. Abnormal torque values include the output voltage being fixed to zero or the power supply voltage, offset abnormalities (abnormalities that are biased by (T +) and α), and torque amplifier abnormalities ((Κ · Τ ), The operational amplifier may be defective). If the torque value 異常 is not abnormal, the abnormality detection counter is cleared (step S3).
この異常検出カウンタはトルク値 Τの異常を検出した場合にカウント するもので、 一度故障を検出したからといって直ちにトルクセンサの故 障とは判定しない。 後述するように、 異常検出カウンタのカウント数が 設定値を超えた場合に初めて トルクセンサが故障である、 と判定を確定 する。 次に過去トルク値の更新ルーチンを呼び出し、 第 9図に示すよう に直前 ηサンプル、 例えば 5サンプルの値 Τ 1 , Τ 2 , Τ 3 , Τ , Τ 5を更新する (ステップ S 4 )。 そして、 トルク値は異常でないので、 トルク値をトルク入力処理部 1 0としてトルク値 Τを算出する (ステツ プ S 5 )。 トルク値 Tは異常ではないので、 電流指令値算出部 1 2 0は 代替トルク値ではなく トルク値 Tに基いて電流指令値 I r e f を算出す る。 This abnormality detection counter counts when an abnormality of the torque value 検 出 is detected, and does not immediately judge that a failure has occurred in the torque sensor just once a failure has been detected. As will be described later, it is determined that the torque sensor has failed only when the count number of the abnormality detection counter exceeds the set value. Next, the update routine of the past torque value is called, and as shown in FIG. 9, the values 直 前 1, η2, Τ3, Τ, Τ5 of the immediately preceding η sample, for example, five samples are updated (step S4). Then, since the torque value is not abnormal, the torque value 算出 is calculated using the torque value as the torque input processing unit 10 (step S5). Since the torque value T is not abnormal, the current command value calculation unit 120 Calculate the current command value I ref based on the torque value T instead of the substitute torque value.
一方、上記ステップ S 2において、 トルク値 Tが異常と判定されると、 異常検出力ゥンタが 1回カウントアップされる (ステップ S 6 )。 次に、 異常検出カウンタのカウント値 Nが設定値より大きいか否かを判定する (ステップ S 7)。 そして、 カウント値 Nが設定値より大きい場合、 ト ルクセンサ 1 0 7の故障と判定する。 カウント値 Nが設定値以下の場合 はトルクセンサ 1 0 7の故障とは判定しない。 ただし、 トルク値は異常 であるので、 その トルク値 Tを トルクセンサ 1 0 7の出力値として電流 指令値算出部 1 2 0には使用できない。 よって、 トルク値 Tの代わりに 代替トルク値を設定する (ステップ S 8 )。  On the other hand, if it is determined in step S2 that the torque value T is abnormal, the abnormality detection power counter is counted up once (step S6). Next, it is determined whether or not the count value N of the abnormality detection counter is larger than a set value (Step S7). If the count value N is larger than the set value, it is determined that the torque sensor 107 has failed. If the count value N is equal to or less than the set value, it is not determined that the torque sensor 107 has failed. However, since the torque value is abnormal, the torque value T cannot be used as an output value of the torque sensor 107 in the current command value calculation unit 120. Therefore, an alternative torque value is set instead of the torque value T (step S8).
ここで、 代替トルク値は、 過去のトルク値から予測される現在の正常 なトルク値である必要があり、 代替トルク値の算出方法はいくつか存在 する。 代替トルク値は過去の正常なトルク値の n (自然数) サンプルを 用いて算出される。 例えば第 1 0図に示すように、 過去の正常なトルク 値の 5サンプルの値を基に予想される現在値を求め、 それを代替トルク 値にする (ステップ S 1 1 )。 例えば、 過去の 5サンプルの トルク値 T 1、 T 2、 Τ 3、 Τ 4、 Τ 5を平均して、 平均値 Tm= (T 1 +T 2 + T 3 + T 4 + T 5 ) / 5を代替トルク値とする。 その他の代替トルク値 の算出方法については、 後で詳しく説明する。 ここで、 過去の正常なト ルク値を使用すると述べたが、 それは上記ステップ S 4における過去ト ルク値の更新ルーチンによって確保されている。  Here, the substitute torque value needs to be the current normal torque value predicted from the past torque value, and there are several methods for calculating the substitute torque value. The substitute torque value is calculated using n (natural number) samples of past normal torque values. For example, as shown in FIG. 10, an expected present value is obtained based on past five samples of normal torque values, and is used as an alternative torque value (step S11). For example, average the torque values T1, T2, Τ3, Τ4, Τ5 of the past five samples, and average value Tm = (T1 + T2 + T3 + T4 + T5) / 5 Is an alternative torque value. The method of calculating the alternative torque value will be described later in detail. Here, it has been described that the normal torque value in the past is used, but this is secured by the routine for updating the past torque value in step S4.
このようにして求められた代替トルク値を異常なトルク値の代わり と して入れ替える (ステップ S 9 )。 そして、 トルクセンサ 1 0 7の出力 値の代わりに、 この代替トルク値が電流指令値算出部 1 2 0に入力され る (ステップ S 5 )。 代替トルク値によってモータ 1 0 8が制御される ことにより、 異常なトルク値で制御された場合に発生していた操舵補助 力の異常を回避することができる。 The substitute torque value obtained in this way is replaced as a substitute for the abnormal torque value (step S9). Then, instead of the output value of the torque sensor 107, this alternative torque value is input to the current command value calculation unit 120 (step S5). Motor 1 08 is controlled by alternative torque value As a result, it is possible to avoid an abnormality in the steering assist force that occurred when the control was performed with an abnormal torque value.
そして、 もう 1つ重要なことは、 トルクセンサ 1 0 7が故障であると 判定を確定する前であっても、 異常なトルク値を制御に使用せず、 代替 トルク値を用いて制御することである。 従来はトルクセンサの故障と判 定を確定してから、 代替トルク値を代入してモータの制御を実行してい たために、故障と判定を確定する前は異常なトルク値に基いて制御され、 異常な操舵補助力が発生し、 ハンドル操作に違和感を与えていた。  Another important point is that even before the determination that the torque sensor 107 has failed is determined, control is performed using an alternative torque value instead of using an abnormal torque value for control. It is. In the past, the motor was controlled by substituting an alternative torque value after determining the failure of the torque sensor and then determining it.Before determining the failure, control was performed based on the abnormal torque value. An abnormal steering assist force was generated, giving an uncomfortable feeling to the steering wheel operation.
トルクセンサ 1 0 7の異常が継続すると トルク値は異常と判定され (ステップ S 2 )、 異常検出カウンタがカウントされ、 カウント値が増 加する (ステップ S 6 )。 この トルクセンサの異常がさらに継続して、 異常検出力ゥンタのカウント値 Nが設定値を越えると、 トルクセンサ 1 0 7が故障であるとの判定を確定する (ステップ S 7 )。 トルクセンサ 故障との判定が確定されると、 モータ電流を徐々に減少させる制御を実 行して操舵補助力の急激な変化を防止する (ステップ S 1 0 )。 モータ 電流を徐々に減衰させる方法としては、 代替トルク値は一定のままにし て電流指令値算出部 1 2 0の出力にリ ミッタ 1 1を設けて、 リ ミ ッタ 1 1のリ ミッタ値を徐々に絞るようにしてモータ電流を徐々に減衰させて も良いし、 或いは代替トルク値のトルク値を徐々に減少させてモータ電 流を徐々に減衰させても良い。  If the abnormality of the torque sensor 107 continues, the torque value is determined to be abnormal (step S2), the abnormality detection counter is counted, and the count value is increased (step S6). If the abnormality of the torque sensor continues further and the count value N of the abnormality detection force counter exceeds the set value, it is determined that the torque sensor 107 has failed (step S7). When it is determined that the torque sensor has failed, control for gradually reducing the motor current is executed to prevent a sudden change in the steering assist force (step S10). As a method of gradually attenuating the motor current, a limiter 11 is provided at the output of the current command value calculator 120 while the alternative torque value is kept constant, and the limiter value of the limiter 11 is set. The motor current may be gradually attenuated by gradually reducing the motor current, or the motor current may be gradually attenuated by gradually reducing the torque value of the alternative torque value.
第 1 1図は、 本実施例のトルク入力処理部 1 0を用いて、 トルクセン サ 1 0 7の出力値が突然零になった場合のトルクセンサの出力である ト ルク値とモータ電流との関係を表わした図である。 トルク値が突然零に なっても、 異常なトルク値の代わりに代替トルク値を直ちに使用するの で、 モータ電流はトルク値が異常になる直前の値を維持する。 そして、 トルクセンサ故障との判定を確定するまではモータ電流は直前の値を維 持し、 トルクセンサ故障との判定が確定された後はモータ電流を徐々に 減衰する。 従来の制御方法による結果を示す第 4図及び第 5図と比較す ると、 モータ電流はトルク値が異常になる直前の極性と逆になつたりす ることはなく、 ハンドル操作に違和感を与えることはない。 FIG. 11 shows the relationship between the torque value, which is the output of the torque sensor when the output value of the torque sensor 107 suddenly becomes zero, and the motor current using the torque input processing unit 10 of this embodiment. It is a figure showing the relationship. Even if the torque value suddenly becomes zero, the substitute torque value is immediately used instead of the abnormal torque value, so that the motor current maintains the value immediately before the torque value became abnormal. The motor current remains at the previous value until it is determined that the torque sensor has failed. After it is determined that the torque sensor has failed, the motor current is gradually attenuated. Compared to Fig. 4 and Fig. 5 showing the results of the conventional control method, the motor current does not reverse the polarity immediately before the torque value becomes abnormal, giving a sense of incompatibility to the handle operation Never.
本実施例の トルク入力処理部 1 0を用いて、 トルクセンサ 1 0 7の出 力値がチヤタリングを発生して故障した場合について、 トルクセンサの 出力 トルク値(最悪のケース) とモータ電流との関係を第 1 2図に示す。 トルク値がチャタリングを発生してトルク値が異常と判定されると、 過 去の正常なトルク値を用いて代替トルク値を算出し、 その代替トルク値 に基いてモータ電流は制御される。 よって、 モータ電流はチャタリング を発生させる直前のモータ電流と大きく異なることのない電流を出力す る。 さらに、 故障判定の確定後はモータ電流を徐々に減衰させている。 この結果と、 従来の制御方式による第 6図とを比較する。 従来の制御方 式の場合は、 トルクセンサ出力が異常になる前と逆極性のモータ電流を 発生して、 その後乱高下するなど運転手にとって好ましくない結果にな つてい 。 また、 故障の確定後にモータ電流を徐々に減衰させるのは良 いが、 その減衰直前のモータ電流がやはり逆極性の電流から減衰する結 果になっているので好ましくない。 しかしながら、 本発明では、 最悪の ケースであっても、 従来の制御方式に比べ明らかにハンドル操舵に好ま しい制御になっている。  Using the torque input processor 10 of the present embodiment, when the output value of the torque sensor 107 causes chattering and fails, the output torque value of the torque sensor (worst case) and the motor current are used. The relationship is shown in FIG. When it is determined that the torque value is abnormal due to chattering of the torque value, a substitute torque value is calculated using the past normal torque value, and the motor current is controlled based on the substitute torque value. Therefore, the motor current outputs a current that does not greatly differ from the motor current immediately before chattering occurs. Furthermore, after the failure determination is confirmed, the motor current is gradually attenuated. This result is compared with Fig. 6 using the conventional control method. In the case of the conventional control method, a motor current having a polarity opposite to that before the torque sensor output becomes abnormal is generated, and thereafter, the motor fluctuates, resulting in an undesirable result for the driver. It is good to gradually attenuate the motor current after the failure is confirmed, but it is not preferable because the motor current immediately before the attenuation attenuates from the current of the opposite polarity. However, in the present invention, even in the worst case, the control is clearly preferable to the steering of the steering wheel as compared with the conventional control method.
以上の実施例は、 代替トルク値が過去 5サンプルの単純平均を用いた 場合であるが、 代替トルク値の算出方法として他にも最小自乗法、 過去 の nサンプル値から (n— 1 ) 次式を算出して現在値を算出する方法、 重み付き平均法等があり、 以下それらについて説明する。  In the above embodiment, the alternative torque value is obtained by using a simple average of the past five samples. However, the alternative torque value may be calculated by other methods such as the least squares method. There are a method of calculating the current value by calculating an expression, a weighted averaging method, and the like. These will be described below.
先ず、 過去の nサンプルから (n _ l ) 次式を作成して代替トルク値 を算出する方法について説明する。 例えば第 1 3図に示すような過去 3 サンプル (T0, T1 ; T2) から 2次式を作成し、 現在値 Τ3を予測する には以下の計算を行う。 First, a method of calculating the alternative torque value by creating the following equation (n_l) from n past samples will be described. For example, the past 3 as shown in Fig. 13 Sample (T 0, T 1; T 2) from creating a quadratic, to predict the current value T 3 performs the following calculation.
[数 11  [Number 11
T d = a · t 2 + b · t + c 上記数 1 とした場合、 a , b, cを算出するには、 下記数 2の連立方程 式を求める必要がある。 T d = a · t 2 + b · t + c When the above equation 1 is used, it is necessary to obtain the following equation 2 to calculate a, b, and c.
[数 2] v、 。、 [Equation 2] v,. ,
t * 1ソ 1 "ノ 2ノ t * 1 source 1 "Bruno 2 Bruno
よって、 現在値 T3は下記数 3のように算出される Therefore, the current value T 3 is calculated as shown in Equation 3 below.
[数 3] [Number 3]
Ts= a + b t 3 + C T s = a + bt 3 + C
Figure imgf000016_0001
Figure imgf000016_0001
実際の計算では、 逆行列部分を予め計算することができる。 例えば過去 3サンプルの場合の逆行列部分は、 下記数 4のようになる。 In the actual calculation, the inverse matrix part can be calculated in advance. For example, the inverse matrix part for the past three samples is as shown in Equation 4 below.
[数 4] ' [Number4] '
T = (l 一 3 3»  T = (l 1 3 3 »
、 2ノ 次に、最小自乗法を用いた代替トルク値の算出方法について説明する。 過去のト ∑∑ルク値の直帰の nサンプルから 1次式を最小自乗法により作成 し、 現在値を予測して代替トルク値を設定する。 上述した代替トルク镡 を n次式で求める方法の場合、 過去のトルク値にはノイズが含まれてい るので、 厳密に n次式にフィッティングすると最適な現在値を得られな い場合がある。 そこで、 最小自乗法によって各係数を計算する。 例えば 過去 3サンプルから 1次式を作成して現在値を予測する場合は、 以下の 計算をすれば良い。 , 2 no Next, a method of calculating an alternative torque value using the least squares method will be described. A linear equation is created by the least squares method from the recursive n samples of the past torque value, and the current value is predicted to set an alternative torque value. In the case of the above-described method of calculating the alternative torque 镡 by the n-th order expression, since the past torque value includes noise, it may not be possible to obtain an optimum present value by strictly fitting to the n-th order expression. Therefore, each coefficient is calculated by the least square method. For example, to create a linear expression from the past three samples and predict the current value, the following calculation should be performed.
現在値を予測するとは、 第 1 4図において過去の時点 t。、 tい t 2 のときの トルク値 Τ 0, Τ 1 ; Τ 2力 ら現在時点 t 3での トルク値 Τ 3を求 めることである。 Forecasting the current value means the past time t in Fig. 14. , The torque value T 0 at t had t 2, T 1; is T 2 that the torque value T 3 in force et present time t 3 Mel determined.
[数 5 ] [Number 5]
Τ = a · t + b で、 係数 a, bを求めるには、 下記数 6の連立方程式を解けば良 レ、。  To find the coefficients a and b with Τ = a · t + b, solve the simultaneous equations of Equation 6 below.
[数 6 ]  [Number 6]
V、 '∑t;rヽ  V, '∑t; r ヽ
ノ、ろノ  No, Rono
そこで、 過去 3サンプルの場合は、 逆行例を利用して下記数 7のよう になる。 Therefore, in the case of the past three samples, the following equation 7 is obtained using the retrograde example.
[数 7 ]
Figure imgf000017_0001
実際の計算では逆行列は、 予め計算することができる。 その結果、 各 係数は下記数 8のようになる。
[Number 7]
Figure imgf000017_0001
In an actual calculation, the inverse matrix can be calculated in advance. As a result, each coefficient is as shown in Equation 8 below.
[数 8]
Figure imgf000018_0001
Τ2
[Equation 8]
Figure imgf000018_0001
Τ 2
最小自乗法でも、 η次式を用いる方法でも、 代替トルク値の最終的に 計算する形は、 T= a · T 1 + b · T 2 + c · T 3 + d · Τ 4などの係 数と過去のトルク値との積和なので、 C P Uにとつて計算の負担は多く ない。 Regardless of the method of least squares or the method using the following equation, the form of the final calculation of the alternative torque value is a coefficient such as T = aT1 + bT2 + cT3 + d And the torque value in the past, so there is not much computational burden on the CPU.
次に、 重み付き平均方法について説明する。 重み付き平均方法は、 第 1 3図に示すトルク値を過去のものから順に重み付けする。 例えば古い 順にトルク値 Τい Τ2, Τ3, Τ4, Τ 5であり、 重みを例えば a , b , c , d , e とすれば、 代替トルク値 Tは下記数 9のようになる。 Next, the weighted averaging method will be described. In the weighted averaging method, the torque values shown in FIG. 13 are weighted in order from the past. For example old order torque value T have Τ 2, Τ 3, Τ 4 , a T 5, if the weight for example a, b, c, d, and e, alternate torque value T is as the following equation 9.
[数 9] [Number 9]
T=(a - Tx + b - T2+c - T3+d - Τ, + e · T K)/(a + b + c+ d+ e) である。 ここで、 重み a , b , c , d , eをそれぞれ例えば 8 4, 2 1, 1 とすると、 数 9は下記数 1 0のようになる。 T = (a - T x + b - T 2 + c - T 3 + d - Τ, + e · T K) is a / (a + b + c + d + e). Here, assuming that the weights a, b, c, d, and e are, for example, 84, 21 and 1, respectively, Equation 9 becomes Equation 10 below.
[数 1 0] [Number 1 0]
T = ( 8 T,+ 4Τ2+ 2 T + T4+TR) / 1 6 以上説明した実施例によれば、 トルクセンサの出力である トルク値が 異常になった場合は、 直ちに異常なトルク値に代わって、 正しく予測さ れた代替トルク値を用いて電動パワーステアリング装置のモータを制御 するので、 操舵捕助力の異常が 1サイクルたり とも存在せずに電動パヮ 一ステアリ ング装置を正しく制御することができる。 さらに、 本実施例 によれば 1サイクルたり とも操舵補助力の異常がないので、 トルクセン サなどが故障であるとの判定を確定する時間を長く とっても、 問題なく 誤検出を防止することができる。 T = (8 T, + 4Τ 2 + 2 T + T 4 + T R) / 1 According to 6 described above embodiment, when the torque value is the output of the torque sensor becomes abnormal, a soon abnormal Since the motor of the electric power steering device is controlled using the correctly predicted alternative torque value instead of the torque value, the electric power steering device does not have any abnormality in the steering assist force even in one cycle. One steering device can be controlled correctly. Furthermore, according to the present embodiment, since there is no abnormality in the steering assist force even in one cycle, erroneous detection can be prevented without any problem even if the time for determining that the torque sensor or the like is faulty is long.
従来の制御方法では、 トルクセンサの出力異常を検知するまでは異常 なトルク値を用いて制御するため操舵補助力が異常になったり、 或いは 代替トルク値の設定も現在値を正しく予測した値ではないので、 操舵捕 助力が異常になったりする問題が存在した。 また、 操舵補助力が異常に なるため、 トルクセンサなどが故障であると確定するまでの判定時間を 長く とることができず、 トルクセンサ故障の誤検出を生ずる不具合も存 在したが、本発明によれば、 これら従来の問題を解決することができる。 次に、 トルク異常検出手段が複数存在する場合でも、 トルクセンサの 出力値と異常時に用いる代替トルク値との切替えを安全にできる第 2の 実施例について説明する。  In the conventional control method, the control is performed using an abnormal torque value until the output abnormality of the torque sensor is detected, so that the steering assist force becomes abnormal, or the setting of the substitute torque value is a value that correctly predicts the current value. However, there was a problem that the steering assist force became abnormal. In addition, since the steering assist force becomes abnormal, the determination time until the torque sensor or the like is determined to be faulty cannot be extended, and there is a problem that the torque sensor fault is erroneously detected. According to the above, these conventional problems can be solved. Next, a description will be given of a second embodiment capable of safely switching between the output value of the torque sensor and the alternative torque value used in the event of an abnormality even when there are a plurality of torque abnormality detecting means.
トルク異常検出手段が複数存在する場合の代替トルク値の制御につい て、 第 1 5図を参照して説明する。 第 7図の制御プロック図と第 1 5図 の制御プロック図で異なるところは、 トルク入力処理部 1 0の構成と ト ルクセンサが トルクセンサ 1 0 7の他に トルクセンサ 1 0 7 Aが追加さ れている点である。 つまり、 本実施例では、 トルクセンサが主トルクセ ンサ 1 0 7 と副トルクセンサ 1 0 7 Aの二重系で構成されている。  The control of the alternative torque value when there are a plurality of torque abnormality detecting means will be described with reference to FIG. The difference between the control block diagram in Fig. 7 and the control block diagram in Fig. 15 is that the configuration of the torque input processing unit 10 and the torque sensor are the same as the torque sensor 107, except that a torque sensor 107A is added. It is a point that has been. That is, in the present embodiment, the torque sensor is configured as a dual system of the main torque sensor 107 and the auxiliary torque sensor 107A.
先ずトルク異常検出手段が複数、 例えば 3種類の トルク異常検出手段 1 0— 1 A , 1 0— 1 B、 1 0— 1 Cで構成されている例について説明 する。 トルク異常検出手段 1 0— 1 Aは主トルクセンサ 1 0 7の値が正 常か異常かを検出するものである。 その検出原理は、 主トルクセンサ 1 0 7が正常ならば、 その出力である トルク値 T mは 0 . 5〜4 . 5 Vの 間の値を出力するので、 0〜 0 . 5 V或いは 4 . 5〜 5 Vの出力は異常 とする。 なお、 この場合の制御電源の電圧は 0〜 5 Vであり、 トルク値 T mの値はトルクセンサ ( 1 0 7, 1 0 7 A) の一設定例である。 同様 に、 トルク異常検出手段 1 0 — 1 Bは副トルクセンサ 1 0 7 Aの出力で ある トルク値 T sが正常か異常かを検出するものである。 その検出原理 は、 副トルクセンサ 1 0 7 Aが正常ならば、 その出力値は 0 . 5〜 4 . 5 Vの間の値を出力するので、 0〜 0 . 5 V或いは 4 . 5〜 5 Vの出力 は異常とする。 First, an example in which a plurality of, for example, three types of torque abnormality detection means 10-1A, 10-1B, and 10-1C are provided as torque abnormality detection means will be described. The torque abnormality detecting means 10-1A detects whether the value of the main torque sensor 107 is normal or abnormal. The principle of the detection is that if the main torque sensor 107 is normal, the output torque value Tm will be 0.5 to 4.5 V. Since a value between 0 and 0.5 V or 4.5 to 5 V is output, it is considered abnormal. In this case, the voltage of the control power supply is 0 to 5 V, and the value of the torque value Tm is one setting example of the torque sensor (107, 107A). Similarly, the torque abnormality detection means 10-1B detects whether the torque value Ts output from the auxiliary torque sensor 107A is normal or abnormal. The detection principle is that if the auxiliary torque sensor 107 A is normal, its output value will be a value between 0.5 and 4.5 V, so it will be between 0 and 0.5 V or 4.5 and 5 V output is abnormal.
また、 トルク異常検出手段 1 0 _ 1 Cは、 主トルクセンサ 1 0 7の出 力である トルク値 T mと畐 IJトルクセンサ 1 0 7 Aの出力値である トルク 値 T sは、 本来同じ値を示すはずであるので、 両トルク値の偏差 A T r = I T m- T s iが所定値以上であれば異常と判定するものである。 ト ルク値 T mと トルク値 T s とを用いて異常を検出する方法として、 その 他にトルク値 T mと トルク値 T sが正常であれば T m + T s =—定値、 或いは T m— T s =一定値などの特性を生かした異常検出方法などがあ り、 これらの方法を用いても良い。  In addition, the torque abnormality detecting means 100 _ 1 C is such that the torque value Tm, which is the output of the main torque sensor 107, and the torque value Ts, which is the output value of the 畐 IJ torque sensor 107 A, are originally the same. If the difference AT r = IT m−T si between the two torque values is equal to or greater than a predetermined value, it is determined that the torque is abnormal. Another method of detecting an abnormality using the torque value T m and the torque value T s is, if the torque value T m and the torque value T s are normal, T m + T s = —constant value, or T m — There are anomaly detection methods that make use of characteristics such as T s = constant value, and these methods may be used.
異常と判定する時間は C P Uによる演算の 1サイクルであり、 例えば l m s程度で判定する。 なお、 トルク異常検出手段 1 0 — 1 A, 1 0 — I B , 1 0 — 1 Cは、 例えば異常の場合に 「 1」 を出力し、 正常の場合 に 「 0」 を出力する。  The time for judging the abnormality is one cycle of the calculation by the CPU, and the judgment is made, for example, in about l ms. The torque abnormality detection means 10-1A, 10-0-IB, and 10-1C output, for example, "1" when abnormal, and "0" when normal.
そして、 選択スィ ッチ 1 0 — 4は O R部 1 0 — 5と AN D部 1 0 — 7 によって制御されるようになっており、 O R部 1 0 — 5力 S 「 1」 を出力 したとき、 即ち トルク異常検出手段 1 0 — 1 A, 1 0 — 1 B, 1 0 - 1 Cの少なく とも 1つが異常を判定したとき、 選択スィツチ 1 0 — 4は代 替トルク値を選択してその代替トルク値を電流指令値算出部 1 2 0へ送 る。 一方、 AND部 1 0— 7が 「 1」 を出力したとき、 選択スィツチ 1 0 — 4はトルクセンサ 1 0 7の検出値である トルク値 Tmを選択する。 即 ち、 トルク異常検出手段 1 0— 1 A, 1 0— 1 B, 1 0— 1 Cの全ての 出力が正常の 「 0」 を出力すると、 NO T部 1 0— 6 A, 1 0 - 6 B , 1 0 - 6 Cで反転されて、 AND部 1 0— 7の入力は全て 「 1」 となり、 AND部 1 0— 7の出力が 「 1」 となって、 選択スィッチ 1 0— 4はト ルク値 Tmを選択する。 従って、 トルク値 Tmが電流指令値算出部 1 2 0に入力される。 The selection switches 10-4 are controlled by the OR section 10-5 and the AND section 10-7, and when the OR section 10-5 outputs S "1". In other words, when at least one of the torque abnormality detecting means 10 0-1 A, 10-1 B, and 10-1 C determines an abnormality, the selection switch 10-4 selects an alternative torque value, The substitute torque value is sent to the current command value calculator 120. On the other hand, when the AND section 10-7 outputs "1", the selection switch 10-4 selects the torque value Tm, which is the detection value of the torque sensor 107. That is, when all the outputs of the torque abnormality detection means 10-1A, 10-1B, and 10-1C output normal "0", the NOT section 10-0-6A, 10- 6 B, 10-6 Inverted by 6 C, all inputs of AND section 10 — 7 become “1”, and outputs of AND section 10 — 7 become “1”, select switch 10 — 4 Selects the torque value Tm. Therefore, the torque value Tm is input to the current command value calculator 120.
このような制御方式を採用するのは、 トルクセンサの出力である トル ク値が少なく とも 1つの トルク異常検出手段で異常と判定された場合、 代替トルク値で電動パワーステアリング装置を制御し、 逆に代替トルク 値から トルクセンサの出力である トルク値へ制御を復帰する条件を、 全 てのトルク異常検出手段が正常と判定したことにすれば、 電動パワース テアリング装置の制御の安全を確保できるからである。  Such a control method is adopted when the torque value, which is the output of the torque sensor, is determined to be abnormal by at least one torque abnormality detecting means, and the electric power steering device is controlled with the alternative torque value, If the condition for returning control from the alternative torque value to the torque value output from the torque sensor is determined to be normal for all torque abnormality detection means, the safety of control of the electric power steering device can be ensured. It is.
ここで、 トルク値の異常が所定時間を超えて継続すれば、 それはトル クセンサなどの重大な故障が発生したと考えられる。  Here, if the abnormality of the torque value continues beyond the predetermined time, it is considered that a serious failure such as a torque sensor has occurred.
以下、 第 1 5図を参照して、 トルクセンサ 1 0 7, 1 0 7 Aが故障で あるとの判定を確定することについて説明する。  Hereinafter, the determination of the determination that the torque sensors 107 and 107A are at fault will be described with reference to FIG.
第 1 5図において、 トルクセンサ 1 0 7, 1 0 7 Aの故障はトルク故 障確定手段 1 0— 3によって実現されている。 トルク故障確定手段 1 0 — 3は、 複数のトルク異常検出手段 1 0— 1 A, 1 0— 1 B, 1 0 - 1 Cからの出力をそれぞれ遅れ部 (以下、 TDと記す) 1 0— 3 A, 1 0 - 3 B , 1 0— 3 Cに入力し、 TD 1 0— 3 A, TD 1 0— 3 B , TD 1 0— 3 Cからの各出力を OR部 1 0— 3 Dに入力し、 OR部 1 0— 3 Dの出力が故障確定の判定結果となる。 TDは、 制御装置として C P U を用いている場合は力ゥンタなどで実現される。 トルク故障確定手段 1 0— 3 Aは、 トルク異常検出手段 1 0— 1 Aの 出力である異常 「 1」 が所定時間 t 4、 例えば 3 0 m sを超えて継続し た場合、 当該トルクセンサが故障であるとの判定を確定する。 同様に、 トルク故障確定手段 1 0— 3 Bは、 トルク異常検出手段 1 0— 1 Bの出 力である異常 「 1」 が単独で所定時間 t 5、 例えば 3 O m sを超えて継 続した場合、 当該トルクセンサが故障であるとの判定を確定する。 また、 トルク故障確定手段 1 0— 3 Cは、 トルク異常検出手段 1 0— 1 Cの出 力である異常 「 1」 が所定時間 t 6、 例えば 4 0 m sを超えて継続した 場合、 当該トルクセンサが故障であるとの判定を確定する。 そして、 O R部 1 0— 3 Dは、 TD I O— 3 A, 1 0— 3 B, 1 0— 3 Cの 1つで も 「 1」 を出力すれば 「 1」 を出力し、 トルクセンサが故障であるとの 判定を確定する。 つまり、 トルク異常検出手段 1 0— 1 A、 1 0 - 1 B , 1 0— 1 Cの中の 1つでも単独で継続して異常であるとする期間が所定 時間を超える場合、 トルクセンサが故障であるとの判定を確定する。 な お、 TDの所定時間はトルクセンサの異常検出原理によって異なるので、 T D 1 0 - 3 A, 1 0 - 3 B , 1 0— 3 Cの所定時間 t 4、 t 5、 t 6 はそれぞれ異なっても良い。 In FIG. 15, the failure of the torque sensors 107 and 107 A is realized by the torque failure determination means 10-3. The torque failure determination means 10 0-3 outputs the outputs from the plurality of torque abnormality detection means 10 0-1 A, 10-1 B and 10-1 C to the delay sections (hereinafter referred to as TD) 1 0- Input to 3 A, 10-3 B, 10-3 C and OR the outputs from TD 10-3 A, TD 10-3 B, TD 10-3 C OR 10-3 D , And the output of the OR unit 10-3D is the failure determination result. TD is realized by a power counter or the like when a CPU is used as a control device. If the torque failure determination means 10-3A continues for more than a predetermined time t4, for example, 30 ms, when the abnormality "1" output from the torque abnormality detection means 10-1A continues, the torque sensor Determine the failure. Similarly, in the torque failure determination means 10-3B, the abnormality "1", which is the output of the torque abnormality detection means 10-1B, has continued for more than a predetermined time t5, for example, 3 Oms. In this case, it is determined that the torque sensor is out of order. Further, the torque failure determination means 10-3C outputs the torque when the abnormality "1" output from the torque abnormality detection means 10-1C continues for a predetermined time t6, for example, 40 ms. The determination that the sensor has failed is determined. The OR section 10-3D outputs "1" if at least one of TD IO-3A, 10-3B, and 10-3C outputs "1", and the torque sensor outputs Determine the failure. In other words, if the period during which even one of the torque abnormality detecting means 10-1A, 10-1B and 10-1C is considered to be abnormal independently exceeds a predetermined time, the torque sensor Determine the failure. Since the predetermined time of TD differs depending on the principle of detecting the abnormality of the torque sensor, the predetermined times t4, t5 and t6 of TD10-3A, 10-3B and 10-3C are different from each other. May be.
なお、 上述ではトルクセンサが故障であるとの判定を確定する条件と して、 トルク異常検出手段が異常と判定する時間が一定時間継続した場 合としているが、 それ以外にも トルクセンサの故障と判定しなければな らない現象が存在する。 この現象を、 第 1 6図を参照して説明する。  In the above description, the condition for determining that the torque sensor is faulty is a condition in which the time during which the torque abnormality detection means determines that the torque sensor is abnormal has continued for a certain period of time. There is a phenomenon that must be determined. This phenomenon will be described with reference to FIG.
トルク異常検出手段 1 0— 1 Aは主トルクセンサ 1 0 7の トルク値 T mの異常を判定しており、 その検出原理は、 出力が 0. 5〜4. 5 Vで は正常で、 0〜 0. 5 V或いは 4. 5〜 5 Vは異常と判定するものであ る。 また、 トルク異常検出手段 1 0— 1 Cは、 主トルクセンサ 1 0 7の 出力値 Tmと副トルクセンサ 1 0 7 Aの出力値 T s との偏差 Δ T r = | Tm-T s Iが所定値以上になると異常と判定する。 Torque abnormality detecting means 1 0-1 A determines abnormality of the torque value Tm of the main torque sensor 107, and the principle of detection is that when the output is 0.5 to 4.5 V, it is normal. Up to 0.5 V or 4.5 to 5 V is judged as abnormal. In addition, the torque abnormality detecting means 10-1C is configured to calculate the deviation ΔT r = | between the output value Tm of the main torque sensor 107 and the output value T s of the auxiliary torque sensor 107A If Tm−T s I is equal to or greater than a predetermined value, it is determined that an abnormality has occurred.
このような検出原理の基に、 主トルクセンサ 1 0 7の出力ケーブルが 断線故障或いはコネクタ故障を起こした場合を想定する。 出力ケーブル が断線する場合、 断線前後の 1 0 0 m s程度の短い時間を観察すると、 トルク入力処理部 1 0に入力される トルクセンサ 1 0 7の出力値 Tmは, 0 Vと 5 Vの間を非常に短時間で繰り返すハンチング現象を発生する。 その一例を第 1 6図に示す。 トルク異常検出手段 1 0— 1 Aは、 トルク 値 Tmが 0から 5 Vの間を上下するチャタ リ ングのため、 0〜0. 5 V で異常、 0. 5〜4. 5 Vで正常、 4. 5〜 5 Vで異常の判定基準に従 つて第 1 6図 (A) のよ うな出力とる。  It is assumed that the output cable of the main torque sensor 107 has a disconnection failure or a connector failure based on such a detection principle. When the output cable is disconnected, observe a short time of about 100 ms before and after the disconnection, and observe that the output value Tm of the torque sensor 107 input to the torque input processor 10 is between 0 V and 5 V. The hunting phenomenon occurs in a very short time. An example is shown in FIG. Torque abnormality detection means 1 0—1 A is abnormal at 0 to 0.5 V, normal at 0.5 to 4.5 V due to chattering where the torque value Tm fluctuates between 0 and 5 V, 4. An output as shown in Fig. 16 (A) is taken at 5 to 5 V according to the abnormality criterion.
—方、 トルク異常検出手段 1 0— 1 Cは、 例えば副トルクセンサ 1 0 7 Aがトルク値として中立点である 2. 5 Vの場合、 主トルクセンサ 1 0 7のトルク値 Tmが 2. 5 V付近を上下すると正常で、 0 V或いは 5 Vに近づく と異常を出力する。 従って、 トルク異常検出手段 1 0— 1 C の出力は第 1 6図 (B) のよ うになり、 第 1 6図 (A) の 「 1」、 「 0」 信号とは互い違いの 「 1」、 「 0」 信号となる。 そして、 偏差 Δ Τ ι:に対 する許容値が大きいと、 第 1 6図に示すように、 トルク異常検出手段 1 0— 1 Aが異常から正常に切り替わる前にトルク異常検出手段 1 0— 1 Cが正常から異常となり、 長時間、 例えば 5 O m s程度の間、 全てのト ルク異常検出手段 1 0— 1 A, 1 0— 1 B, 1 0— 1 Cが正常になるこ とはなく、 代替トルク値制御が長時間 5 0 m s継続される。  On the other hand, the torque abnormality detecting means 1 0-1 C is such that, for example, when the auxiliary torque sensor 107 A is at the neutral point as the torque value of 2.5 V, the torque value Tm of the main torque sensor 107 is 2. Normal when the voltage rises and falls near 5 V, and an error is output when the voltage approaches 0 V or 5 V. Therefore, the output of the torque abnormality detecting means 10-1C is as shown in Fig. 16 (B), and the "1" and "0" signals which are different from the "1" and "0" signals in Fig. 16 (A) are alternated. It becomes “0” signal. If the allowable value for the deviation Δ Τ ι: is large, as shown in FIG. 16, the torque abnormality detecting means 10 0-1 may be used before the torque abnormality detecting means 10-1 A is switched from abnormal to normal. C changes from normal to abnormal, and all torque abnormality detecting means 10-1A, 10-1B, 10-1C will not be normal for a long time, for example, about 5 Oms. The alternative torque value control is continued for 50 ms for a long time.
この現象をハンドル操作に置き換えると、 高速走行で左にハンドルを 切った時の代替トルク値に基いて制御されることが継続され、 右にハン ドルを切る必要がある時、 アシス トが左向きのまま継続されることを意 味する。 これは好ましくない現象である。 よって、 トルクセンサを故障 と判定して、 マニュアル操作などの次善の制御方式に切り替えるべきで ある。 Replacing this phenomenon with steering wheel operation, control is continued based on the alternative torque value when turning the steering wheel to the left at high speed driving, and when it is necessary to turn the handle to the right, the assist turns to the left It means that it will continue as it is. This is an undesirable phenomenon. Therefore, the torque sensor should be determined to be faulty and switched to the next best control method such as manual operation. is there.
このような現象に対応するための トルク故障確定手段について、 第 1 7図を参照して説明する。 第 1 5図に対して、 トルク入力処理部 1 0に は、 トルク故障確定手段 1 0— 3 Y及びトルク故障確定手段 1 0— 3 Z が追加されている。  The torque failure determining means for coping with such a phenomenon will be described with reference to FIG. 15, the torque input processing unit 10 is provided with torque failure determination means 10-3Y and torque failure determination means 10-3Z.
先ず、 比較部 1 0 3 Eと TD 1 0— 3 Fとで構成される トルク故障確 定手段 1 0— 3 Yについて説明する。 トルク故障確定手段 1 0 3 Yは、 電流指令値算出部 1 2 0への入力値と、 代替トルク値算出手段 1 0— 2 の出力である代替トルク値とを比較部 1 0— 3 Eで比較し、 代替トルク 値が更新されているか否かを判定する。 そして、 比較部 1 0— 3 Eの比 較結果が T D 1 0— 3 Fに入力され、 その代替トルク値が TD 1 0 - 3 Fが設定する所定時間 t 7、 例えば 5 0 m s を超えても更新されていな ければ、 トルクセンサが故障であるとの判定を確定する。  First, the torque failure determination means 10-3Y composed of the comparison section 103E and TD10-3F will be described. The torque failure determination means 1 0 3 Y compares the input value to the current command value calculation section 1 20 with the alternative torque value output from the alternative torque value calculation means 1 0-2 by the comparison section 1 0-3 E. Compare and determine whether the substitute torque value has been updated. Then, the comparison result of the comparison unit 10-3E is input to TD10-3F, and the alternative torque value exceeds the predetermined time t7 set by TD10-3F, for example, 50 ms. If has not been updated, the determination that the torque sensor has failed is determined.
次に、 TD 1 0— 3 Gで構成される トルク故障確定手段 1 0— 3 Zに ついて説明する。 代替トルク値選択の指令となる OR部 1 0 _ 5の出力 が TD 1 0 - 3 Gに入力され、代替トルク値を継続して選択する期間が、 TD 1 0 - 3 Gが設定する所定時間 t 8、 例えば 6 0 m s を超えて継続 した場合、 トルクセンサが故障であるとの判定を確定する。 つまり、 ト ルク故障確定手段 1 0— 3 Zは、 代替トルク値制御が長時間継続した場 合にトルクセンサが故障であると判定する。 トルク故障確定手段 1 0— 3 Gと トルク故障確定手段 1 0— 3 との違いは、 次の通りである。 トル ク故障確定手段 1 0— 3は、 トルク異常検出手段 1 0— 1 A, 1 0 - 1 B, 1 0— 1 Cのうち 1つでも単独で異常である期間が所定時間を超え て継続したとき、 トルクセンサが故障であるとの判定を確定する。 これ に対し、 トルク故障確定手段 1 0— 3 Zの方は、 トルク異常検出手段 1 0 - 1 A, 1 0— I B , 1 0— 1 Cは、 チャタ リ ング状態の異常のよ う に、 単独では異常である期間は短時間であるが、 組み合わせると異常が 長時間継続する トルクセンサの故障であっても検出できる。 Next, the torque failure determination means 10-3Z composed of TD10-3G will be described. The output of the OR section 10-5, which is the command for selecting the alternative torque value, is input to TD10-3G, and the period during which the alternative torque value is continuously selected is the predetermined time set by TD10-3G. If it continues for more than t8, for example, 60 ms, it is determined that the torque sensor is faulty. That is, the torque failure determination means 10-3Z determines that the torque sensor has failed if the alternative torque value control has continued for a long time. The difference between the torque failure determination means 1 0-3 G and the torque failure determination means 10 0-3 is as follows. The torque failure determination means 10-3 is the one where any one of the torque abnormality detection means 10-1A, 10-1B and 10-1C is abnormal for more than a predetermined time. Then, it is determined that the torque sensor is out of order. On the other hand, the torque fault determination means 10 0-3 Z has the torque abnormality detection means 10-1 A, 10 0-IB, 10 0-1 C like the chattering state abnormality. In addition, the period during which the abnormality is abnormal by itself is short, but when combined, the abnormality can be detected for a long time, even if the torque sensor fails.
なお、 OR部 1 0— 3 Hは、 全てのトルクセンサの故障検出結果を集 約するためのもので、 本実施例ではトルク故障確定手段 1 0— 3 と トル ク故障確定手段 1 0— 3 F及び 1 0— 3 Zの故障判定結果が入力される ( このようにして、 トルクセンサからの配線が断線する場合などに発生 する特殊な故障現象も確実に検出し、 トルクセンサからの トルク値に代 わる代替トルク値制御が長時間継続することなく、 トルクセンサが故障 の場合はマニュアル制御などへの安全な制御で電動パワーステアリング 装置を制御することが可能となる。 The OR section 10-3H is for collecting the failure detection results of all the torque sensors. In this embodiment, the torque failure determining means 10-3 and the torque failure determining means 10-3 are used. The failure judgment result of F and 10-3Z is input. ( Thus, the special failure phenomenon that occurs when the wiring from the torque sensor is broken, etc. is also detected reliably, and the torque value from the torque sensor is When the torque sensor fails, the electric power steering device can be controlled by safe control such as manual control without the alternative torque value control that takes place for a long time continuing.
上述では代替トルク値制御を実施した場合について説明したが、 代替 トルク値制御を実行しない場合についての実施例について、 第 1 8図を 参照して説明する。  Although the case where the alternative torque value control is performed has been described above, an example in which the alternative torque value control is not performed will be described with reference to FIG.
トルクセンサの故障は代替トルク値制御を実行しなくても発生するし. トルクセンサの故障を確実に検出する必要がある。 しかし、 従来は、 第 1 8図における トルク故障確定手段 1 0 _ 3、 fi口ち TD 1 0— 3 A, 1 0— 3 B, 1 0 - 3 Cを用いたトルク故障確定手段がそれぞれ単独で異 常であることが長時間継続した場合、 例えば時間 T 1以上継続した場合 は、 トルクセンサが故障であるとの判定を確定していた。 しかし、 第 1 6図を用いて説明したような複数のトルク異常検出手段 1 0 _ 1 A, 1 0 - 1 B , 1 0— 1 Cが、 チャタ リ ングのよ うに単独の トルク異常検出 手段では異常である期間は短時間であるが、 トルク異常検出手段 1 0— 1 A, 1 0 - 1 B , 1 0— 1 Cを組み合わせると異常である期間が長時 間継続してしまう異常を、 従来はトルクセンサの故障として検出できな かった。  The failure of the torque sensor occurs without executing the alternative torque value control. It is necessary to detect the failure of the torque sensor reliably. However, in the past, the torque failure determination means using the torque failure determination means 10_3, fi TD TD 10-3A, 10-3B and 10-3C in Fig. In the case where the abnormality has continued for a long time, for example, when the abnormality has continued for the time T1 or more, it has been determined that the torque sensor has failed. However, a plurality of torque abnormality detecting means 10-1A, 10-1B, 10-1C as described with reference to FIG. 16 are used as independent torque abnormality detecting means such as chattering. In this case, the abnormal period is short, but when the torque abnormality detecting means 10-1A, 10-1B and 10-1C are combined, the abnormal period continues for a long time. Conventionally, it could not be detected as a failure of the torque sensor.
しかし、 第 1 8図に示すように、 トルク異常検出手段 1 0— 1 A, 1 0— I B , 1 0— 1 C、 O R部 1 0— 5及ぴ T D 1 0— 3 Gを組み合わ せることによって、 複数のトルク異常検出手段が、 チャタリングのよう に単独では異常である期間は短時間であるが、 トルク異常検出手段 1 0 - 1 A , 1 0— 1 B, 1 0— 1 Cを組み合わせると異常である期間が長 時間、 例えば所定時間 t 8以上継続してしまう異常を確実に検出し、 ト ルクセンサの故障と確定できる効果を得ることができる。 However, as shown in Fig. 18, the torque abnormality detection means 10-1A, 1 By combining 0—IB, 10—1C, OR section 10—5 and TD 10—3G, the period during which multiple torque abnormality detection means are abnormal by themselves, such as chattering, is short. It is time, but when the torque abnormality detection means 10-1 A, 10-1 B, and 10-1 C are combined, it is possible to ensure that the abnormal period continues for a long time, for example, the predetermined time t 8 or more. And the torque sensor can be determined to be defective.
従って、代替トルク値制御に関係なく、複数のトルク異常検出手段が、 チャタリングのように単独では異常である期間は短時間であるが、 複数 の トルク異常検出手段を組み合わせると異常である期間が長時間継続し てしまう異常、 言い換えると複数のトルク異常検出手段の少なく とも 1 つでも異常であると判定する期間が所定時間以上継続してしまう異常を 確実に検出し、 これをトルクセンサの故障と確定できる。 さらには、 そ の故障に対応した制御を実行することにより、 フィーリングの良いハン ドル操作が可能な電動パワーステアリング装置の制御装置を提供できる c 次に、 トルクセンサの異常期間中、 制御に用いる代替トルク値を精度 良く推定できる第 3実施例について説明する。 Therefore, regardless of the alternative torque value control, the period during which a plurality of torque abnormality detection units are abnormal alone such as chattering is short, but the period during which a plurality of torque abnormality detection units are abnormal is long. An abnormality that continues for a certain period of time, in other words, an abnormality in which at least one of the plurality of torque abnormality detection means is determined to be abnormal for more than a predetermined time is reliably detected. Can be determined. Furthermore, by executing the control corresponding to the failure of that, then c may provide a control apparatus for a good feeling handle which can operate the electric power steering apparatus, in the abnormal term of the torque sensor is used to control A third embodiment capable of accurately estimating the substitute torque value will be described.
第 1 9図は本発明の第 3 実施例を示す制御プロック図である。 トル クセンサ 1 0 7で検出されたセンサ信号 T rは、 主トルク検出手段であ る主トルク検出部 1 0 7 B及ぴ副トルク検出手段である副トルク検出部 1 0 7 Cに入力される。 主トルク検出部 1 0 7 B及び副トルク検出部 1 0 7 Cは、 トルクセンサ 1 0 7から出力されるセンサ信号 T rから操向 ハンドル 1 0 1の トルク値を検出するためのもので、 演算增幅器などの 電子回路ゃソフ トウェア処理などで構成される。 主トルク検出部 1 0 7 Bからは主トルク検出値 T mが出力され、 副トルク検出部 1 0 7じから は副トルク検出値 T sが出力される。 主トルク検出部 1 0 7 Bと副トル ク検出部 1 0 7 Cとで、 トルク検出に関する二重系を構成している。 な お、本実施例ではトルクセンサ 1 0 7は 1つで共通使用になっているが、 主トルク検出値用と副トルク検出用のトルクセンサを 2つ用意して、 ト ルクセンサ段階から二重系の構成にしても良い。 FIG. 19 is a control block diagram showing a third embodiment of the present invention. The sensor signal Tr detected by the torque sensor 107 is input to the main torque detecting unit 107B as the main torque detecting unit and to the auxiliary torque detecting unit 107C as the auxiliary torque detecting unit. . The main torque detector 107B and the auxiliary torque detector 107C are for detecting the torque value of the steering wheel 101 from the sensor signal Tr output from the torque sensor 107, It is composed of an electronic circuit such as an arithmetic and logic unit and software processing. The main torque detection unit 107B outputs a main torque detection value Tm, and the sub torque detection unit 107 outputs a sub torque detection value Ts. Main torque detector 1 0 7 B and auxiliary torque The torque detection unit 107 C constitutes a dual system for torque detection. In this embodiment, one torque sensor 107 is used in common.However, two torque sensors for the main torque detection value and the auxiliary torque detection are prepared, and the torque sensor stage is doubled. The system may be configured.
主トルク検出部 1 0 7 Bから出力される主トルク検出値 T m及び副ト ルク検出部 1 0 Ί Cから出力される副トルク検出値 T sは、 それぞれト ルク入力処理部 1 0に入力される。 トルク入力処理部 1 0の詳細につい ては後で詳細に説明するので、 トルク入力処理部 1 0の後段のモータ制 御に関する部分を先に説明する。 トルク入力処理部 1 0の出力である ト ルク値 Tは電流指令値算出部 1 2 0に入力され、 電流指令値算出部 1 2 0で電流指令値 I r e f が算出される。 電流指令値 I r e f は、 トルク 入力処理部 1 0によって制御されるリ ミ ッタ 1 1を介して減算部 1 2 1 に入力される。 減算部 1 2 1において、 電流指令値 I r e f とモータ電 流の検出値 I mとの偏差が算出される。 その偏差は、 比例積分などで構 成される電流制御部 1 2 2に入力され、 電流制御部 1 2 2は、 モータ駆 動部 1 2 3の一例であるィンバータの P WM制御のデユティー比を出力 する。 モータ駆動部 1 2 3は、 そのデユティー比に従った P WM制御に よるモータ電流をモータ 1 0 8に供給し、 モータ 1 0 8は操向ハンドル が指示したトルク値に応じたトルクを出力する。  The main torque detection value T m output from the main torque detection unit 107 B and the sub torque detection value T s output from the sub torque detection unit 10 C are input to the torque input processing unit 10 respectively. Is done. Since the details of the torque input processing unit 10 will be described later in detail, the part related to motor control at the subsequent stage of the torque input processing unit 10 will be described first. The torque value T output from the torque input processor 10 is input to the current command value calculator 120, and the current command value calculator 120 calculates the current command value Iref. The current command value Iref is input to the subtraction unit 121 via the limiter 11 controlled by the torque input processing unit 10. In the subtraction unit 121, a deviation between the current command value Iref and the detected value Im of the motor current is calculated. The deviation is input to a current control unit 122 constituted by a proportional integral or the like, and the current control unit 122 sets a duty ratio of the inverter control PWM control which is an example of the motor drive unit 123. Output. The motor drive unit 123 supplies the motor current by the PWM control according to the duty ratio to the motor 108, and the motor 108 outputs a torque corresponding to the torque value specified by the steering handle. .
以上が本実施例のモータ制御の基本部分の説明であるが、 次に本実施 例の要部である トルク入力処理部 1 0について説明する。  The above is the description of the basic part of the motor control of the present embodiment. Next, the torque input processing unit 10 which is a main part of the present embodiment will be described.
主トルク検出部 1 0 7 Bからの主トルク検出値 T mと副トルク検出部 1 0 7 Cからの副トルク検出値 T s とがトルク入力処理部 1 0に入力さ れる。 トルク入力処理部 1 0は主トルク検出値 T m及ぴ副トルク検出値 T s を入力とする トルク異常検出手段 1 0— 1及び代替トルク値算出手 段 1 0 — 2を具備している。 トルク異常検出手段 1 0— 1は、 トルクセ ンサ 1 0 7、 主トルク検出部 1 0 7 B或いは畐 ij トルク検出部 1 0 7 Cの 異常を検出する機能を有している。 代替トルク値算出手段 1 0— 2は、 主トルク検出値 T m及び副トルク検出値 T sを用いて、 トルクセンサ 1 0 7、 主トルク検出部 1 0 7 B或いは副トルク検出部 1 0 7 Cが異常の 場合、 主トルク検出値 T mに代わって用いる トルクの代替トルク値 T a を算出する。 The main torque detection value Tm from the main torque detection unit 107B and the auxiliary torque detection value Ts from the auxiliary torque detection unit 107C are input to the torque input processing unit 10. The torque input processing unit 10 includes a torque abnormality detection unit 10-1 that receives the main torque detection value Tm and the auxiliary torque detection value Ts as input, and an alternative torque value calculation unit 10-2. Torque abnormality detection means 1 0-1 The sensor 107 has a function of detecting an abnormality of the main torque detector 107B or the 畐 ij torque detector 107C. The substitute torque value calculating means 10-2 uses the main torque detection value Tm and the auxiliary torque detection value Ts to generate the torque sensor 107, the main torque detection unit 107B or the auxiliary torque detection unit 107. When C is abnormal, an alternative torque value Ta of the torque used in place of the main torque detection value Tm is calculated.
トルク入力処理部 1 0は、 更にトルク故障確定手段 1 0— 3及び選択 スィ ッチ 1 0— 4を具備している。 選択スィ ッチ 1 0— 4は、 代替トル ク値算出手段 1 0— 2の出力である代替トルク値 T a と主トルク検出部 1 0 7 Bの出力である主トルク検出値 T mのいずれかを、 トルク異常検 出手段 1 0— 1 の出力に基いて選択する。 また、 トルク故障確定手段 1 0— 3は、 トルク異常検出手段 1 0 _ 1からの異常検出信号を用いて、 異常状態が所定時間を超えて継続する場合はトルクセンサ 1 0 7、 主ト ルク検出部 1 0 7 B或いは副トルク検出部 1 0 7 Cが故障であるとの判 定を確定する機能を有しており、 故障であると確定すると、 リ ミ ツ.タ 1 1 の リ ミ ツ ト値を制御する。  The torque input processing unit 10 further includes torque failure determination means 10-3 and a selection switch 10-4. The selection switch 10-4 selects either the alternative torque value T a output from the alternative torque value calculation means 10-2 or the main torque detection value T m output from the main torque detector 107B. Is selected based on the output of the torque abnormality detection means 10-1. In addition, the torque failure determination means 10-3 uses the abnormality detection signal from the torque abnormality detection means 10-1 to provide a torque sensor 107 and a main torque when the abnormal state continues for more than a predetermined time. The detector 107B or the auxiliary torque detector 107C has a function to determine that it is faulty. If it is determined that it is faulty, the limiter 11 Control the trip value.
次に、 トルク入力処理部 1 0の動作例を、 第 2 0図のフローチャート を参照して説明する。  Next, an operation example of the torque input processing unit 10 will be described with reference to the flowchart of FIG.
例えば主トルク検出値 T mの正常値は 0 . 5 V以上 4 . 5 V以下なの で、 0 Vとか 5 Vが出力されることは主トルク検出値 T mが異常という ことになる。 そして、 異常状態が所定時間、 例えば 3 O m sを超えて継 続した場合に、 主トルク検出値 T mの故障を確定する。 第 2 0図のフロ 一チャートは、 上述したトルク異常やトルク故障確定の場合の代替トル ク値制御、 トルク異常検出及ぴトルク故障確定動作を示す例である。 先ず主トルク検出部 1 0 7 B及ぴ副トルク検出部 1 0 7 Cからそれぞ れ主トルク検出値 T m及び副トルク検出値 T sを読み込み (ステップ S 1 )、 主トルク検出値 Tmが 0. 5 V以下或いは 4. 5 V以上であるか を判断し、 0. 5 Vと 4. 5 Vとの間の値であれば正常 (YE S) と判 定し、 0. 5 V以下或いは 4. 5 V以上であれば異常 (NO) と判定す る (ステップ S 2)。 主トルク検出値 Tmが正常であれば、 検出カウン タをク リアする (ステップ S 3 )。 検出カウンタは、 主トルク検出値 T mを出力する トルクセンサ 1 0 7や主トルク検出部 1 0 7 Bが故障であ るとの判定を確定するために使用する異常継続時間を測定するもので、 本実施例では、 主トルク検出値 Tmの異常が 3 0 m sを超えて継続した 場合に故障を確定する。 For example, since the normal value of the main torque detection value Tm is 0.5 V or more and 4.5 V or less, outputting 0 V or 5 V means that the main torque detection value Tm is abnormal. Then, when the abnormal state continues for a predetermined time, for example, more than 3 Oms, the failure of the main torque detection value Tm is determined. The flowchart of FIG. 20 is an example showing the alternative torque value control, torque abnormality detection, and torque failure determination operation in the case of the above-described torque abnormality or torque failure determination. First, the main torque detection value Tm and the auxiliary torque detection value Ts are read from the main torque detection unit 107B and the auxiliary torque detection unit 107C, respectively (step S 1), judge whether the main torque detection value Tm is 0.5 V or less or 4.5 V or more. If the value is between 0.5 V and 4.5 V, it is normal (YE S) It is judged, and if it is 0.5 V or less or 4.5 V or more, it is judged as abnormal (NO) (step S2). If the main torque detection value Tm is normal, the detection counter is cleared (step S3). The detection counter measures the abnormality duration used to determine whether the torque sensor 107 or the main torque detector 107B that outputs the main torque detection value Tm is faulty. In this embodiment, if the abnormality of the main torque detection value Tm continues for more than 30 ms, the failure is determined.
検出カウンタのクリア後、 過去の主トルク値 Tm及び過去の副トルク 検出値 T s を更新して記憶する (ステップ S 4 )。 この過去のトルク値 の更新のフローチヤ一トを第 2 1図に示すが、 説明は後述する。 過去ト ルク値更新の後、 モータ制御に用いる トルク値 Tとして主トルク検出値 Tmを使用する (ステップ S 6 )。 言い換えれば、 選択スィツチ 1 0— 4が主トルク検出値 Tmを選択して出力する。  After the detection counter is cleared, the past main torque value Tm and the past auxiliary torque detection value Ts are updated and stored (step S4). FIG. 21 shows a flowchart for updating the past torque values, which will be described later. After updating the past torque value, the main torque detection value Tm is used as the torque value T used for motor control (step S6). In other words, the selection switches 10-4 select and output the main torque detection value Tm.
一方、 上記ステップ S 2において主トルク検出値 Tmが異常と判定さ れると、 検出カウンタが 1回カウントアップされ (ステップ S 6 )、 検 出カウンタが、 トルクセンサ 1 0 7や主トルク検出部 1 0 7 Aが故障で あるとの判定を確定する時間の所定値である力ゥントの設定値を超えた か否かを判断する (ステップ S 7)。  On the other hand, if it is determined in step S2 that the main torque detection value Tm is abnormal, the detection counter is counted up once (step S6), and the detection counter counts the torque sensor 107 and the main torque detection unit 1 It is determined whether or not 07 A has exceeded the set value of the power point, which is a predetermined value of the time for determining the failure is determined (step S7).
そして、 異常の継続時間が所定値以下である間 (NO) はトルクセン サなどが故障であると確定しないで、 代替トルク値制御を実行する。 代 替トルク値制御はトルクセンサ 1 0 7で検出された異常な主トルク検出 値 T mではなく、 代替トルク値 T aを用いてモータ 1 0 8の制御を実行 するもので、 モータ制御が異常にならないような代替トルク値 T aを算 出する (ステップ S 8 )。 この代替トルク値 T aを算出する方法の一例 を第 2 2図のフローチャー トを参照して後述する。 代替トルク値 T aが 設定されると、 トルク入力処理部 1 0の出力としてトルク値 Tに代替ト ルク値 T aが入力され (ステップ S 9 )、 トルク値 Tとして代替トルク 値 T aを出力する (ステップ S 5 )。 Then, while the duration of the abnormality is equal to or less than the predetermined value (NO), the alternative torque value control is executed without determining that the torque sensor or the like is faulty. In the alternative torque value control, the control of the motor 108 is performed using the alternative torque value Ta instead of the abnormal main torque detection value Tm detected by the torque sensor 107, and the motor control is abnormal. Then, an alternative torque value Ta that does not result in a difference is calculated (step S8). An example of a method for calculating the substitute torque value Ta Will be described later with reference to the flowchart of FIG. When the alternative torque value Ta is set, the alternative torque value Ta is input to the torque value T as the output of the torque input processing unit 10 (step S9), and the alternative torque value Ta is output as the torque value T. Yes (step S5).
一方、 上記ステップ S 7において異常時間が所定値以上継続した場合 (Y E S ), 即ち値検出カウンタのカ ウン トが設定値を越えた場合 (Y E S ) は故障であると確定し、 リ ミッタ 1 1を用いたトルク値を絞り込 む斬減処理を実行する (ステップ S 1 0 )。  On the other hand, if the abnormal time continues for a predetermined value or more in step S7 (YES), that is, if the count of the value detection counter exceeds the set value (YES), it is determined that a failure has occurred, and the limiter 1 1 A slashing process for narrowing down the torque value using is performed (step S10).
次に、 上気ステップ S 4における過去の主トルク検出値 T mと副トル ク検出値 T s との更新について、 第 2 1図のフローチャートを参照して 説明する。  Next, the update of the past main torque detection value Tm and sub torque detection value Ts in the upper air step S4 will be described with reference to the flowchart of FIG.
第 2 1図の例は、 5個の過去トルク値を用いて代替トルク値 T aを算 出する場合の実施例である。 先ず主トルク検出値 T ml 及ぴ副トルク検 出値 T s 1 に、 1ステップ新しい過去の主トルク値 Tm 2及び副トルク 検出値 T s 2をそれぞれ代入する (ステップ S 1 4 )。 同様に主トルク 検出値 Tm 2及び副トルク検出値 T s 2に、 1ステップ新しい過去の主 トルク値 Tm 3及び副トルク検出値 T s 3をそれぞれ代入し (ステップ S 1 5 )、 更に主トルク検出値 Tm 3及ぴ副トルク検出値 T s 3に、 1 ステップ新しい過去の主トルク値 Tm 4及ぴ副トルク検出値 T s 4をそ れぞれ代入する (ステップ S 1 6 )。 更に主トルク検出値 Tm 4及び副 トルク検出値 T s 4に、 1ステップ新しい過去の主トルク値 Tm 5及び 副トルク検出値 T s 5をそれぞれ代入し (ステップ S 1 7 )、 主トルク 検出値 Tm 5及ぴ副トルク検出値 T s 5に、 1ステップ新しい現在の主 トルク値 Tm及ぴ副トルク検出値 T sをそれぞれ代入する (ステップ S 1 8 )。  The example of FIG. 21 is an embodiment in which the substitute torque value Ta is calculated using five past torque values. First, a one-step new past main torque value Tm 2 and sub torque detection value T s2 are substituted for the main torque detection value T ml and the sub torque detection value T s 1 (step S 14). Similarly, the main torque detection value Tm 2 and the auxiliary torque detection value T s 2 are substituted by the one-step new past main torque value Tm 3 and the auxiliary torque detection value T s 3, respectively (step S 15). The previous main torque value Tm4 and the auxiliary torque detection value Ts4, which are new by one step, are substituted for the detection value Tm3 and the auxiliary torque detection value Ts3, respectively (step S16). Further, the main torque detection value Tm 4 and the auxiliary torque detection value T s 4 are respectively substituted by the past main torque value Tm 5 and the auxiliary torque detection value T s 5 which are new by one step (step S 17), and the main torque detection value The new main torque value Tm and auxiliary torque detection value Ts, which is one step new, are substituted for Tm5 and auxiliary torque detection value Ts5 (step S18).
なお、 現在の主トルク値 Tm及び副トルク検出値 T s も、 次のステツ プでトルク検出値が異常になったときに代替トルク値 T aを算出するた めに利用される場合は、 1ステップ前の過去のトルク検出値となってい る。 また、 C P Uやメモリなどの性能が良く、 高速に処理が可能で、 メ モリ容量も充分にあれば、 過去トルク値を 5個以上の多数個を用いて代 替トルク値 T aを算出しても良い。 反対に、 5個以下の過去トルク値を 用いて代替トルク値 T aを算出しても良い。 代替トルク値 T aの精度と C P Uの性能やメモリの容量との関係で、 算出用の過去トルク値の数を 決定すれば良い。 The current main torque value Tm and auxiliary torque detection value Ts are also calculated in the following steps. When it is used to calculate the alternative torque value Ta when the torque detection value becomes abnormal in the step, it is the past torque detection value one step before. In addition, if the performance of the CPU and memory is good, high-speed processing is possible, and the memory capacity is sufficient, the past torque value is calculated using the five or more past torque values to calculate the substitute torque value Ta. Is also good. Conversely, the alternative torque value Ta may be calculated using five or less past torque values. The number of past torque values for calculation may be determined based on the relationship between the accuracy of the substitute torque value Ta and the performance of the CPU and the capacity of the memory.
次に、 代替トルク値 T aを算出する代替トルク値設定ステップ (ステ ップ S 8) の内容について、 第 2 2図のフローチャートを参照して説明 する。  Next, the contents of the alternative torque value setting step (step S8) for calculating the alternative torque value Ta will be described with reference to the flowchart of FIG.
先ず第 2 2図 (A) において、 過去トルクの主トルク検出値 Tmi と 副トルク検出値 T s i との組み合わせにおける差分量 Δ T i = I Tmi— T s i | を算出する。 例えば Δ Τ 1 = I T ml- T s 1 I、 Δ T 2 = | Τ m2- T s 2 | である。 (ステップ S 2 1 )。 次に、 差分量 Δ T i が最小 となる組み合わせ (Tmk, T s k) を選択する (ステップ S 2 2 )。 差 分量 Δ T i が最小となる組み合わせ (Tmk, T s k) が複数ある場合 は、 最新の方の組み合わせを選択する (ステップ S 2 3 )。 その後、 差 分量 Δ T i が最小となる組み合わせ (Tmk, T s k) で、 かつ最新の 方の組み合わせ (Tmk, T s k) を用いて、 差分量 A T i が所定値 Δ Τ 1 i m i t以下であれば、 代替トルク値 T a として主トルク検出値 T mk 或いは副トルク検出値 T s k を選択する (ステップ S 24 )。 代替 トルク値 T a と して、 前記組み合わせ (Tmk, T s k) の主トルク検 出値 Tmk 或いは副トルク検出値 T s k を選択する理由は、 差分量厶 T iが充分小さい所定値 Δ T 1 i m i t以下であれば、 主トルク検出値 T mk と副トルク検出値 T s k とがほぼ同じトルク検出値を検出していた ことを意味し、 両トルク検出値とも正しく、 どちらのトルク検出値を代 替トルク値 T a として用いても問題ないからである。 First, in FIG. 22 (A), the difference ΔT i = I Tmi−T si | in the combination of the main torque detection value Tmi and the auxiliary torque detection value T si of the past torque is calculated. For example, ΔΤ1 = IT ml-Ts1I, ΔT2 = | Τm2-Ts2 |. (Step S21). Next, the combination (Tmk, Tsk) that minimizes the difference ΔT i is selected (step S22). If there are a plurality of combinations (Tmk, Tsk) with the smallest difference ΔT i, select the latest combination (step S23). Then, using the combination (Tmk, T sk) that minimizes the difference ΔT i and the latest combination (Tmk, T sk), if the difference AT i is less than or equal to the predetermined value Δ Τ 1 imit For example, the main torque detection value T mk or the auxiliary torque detection value T sk is selected as the alternative torque value T a (step S24). The main torque detection value Tmk or the auxiliary torque detection value Tsk of the combination (Tmk, Tsk) is selected as the alternative torque value Ta because the difference value Ti is a predetermined value ΔT1 that is sufficiently small. If imit or less, the primary torque detection value T mk and the secondary torque detection value T sk detected almost the same torque detection value This means that both torque detection values are correct, and there is no problem in using either torque detection value as the substitute torque value T a.
代替トルク値 T aの別の選択方法の例を、 第 2 2図 (B) のフローチ ヤートを参照して説明する。 第 2 2図 (B) において、 先ず過去トルク の主トルク検出値 Tmi と副トルク検出値 T s i との組み合わせにおけ る差分量 Δ T i = | Tmi_T s i | を算出する (ステップ S 2 1 )。 例 えば Δ Τ 1 = I Tml— T s l | 、 Δ T 2 = | Tm2— T s 2 | である。 次に、 差分量 Δ T i が最小となる組み合わせ (Tmk, T s k) を選択 する (ステップ S 2 2 )。 差分量 Δ T i が最小となる組み合わせ (Tm k, T s k) が複数ある場合は、 最新の方の組み合わせを選択する (ス テツプ S 2 3 )。 その後、 差分量 Δ T i が最小で且つ最新の組み合わせ の (Tmk, T s k) の中の主トルク検出値 Tmkを代替トルク値 T a と するカ 或いは副トルク検出値 T s k を選択するかは、 操向ハンドルの 中間値を示すトルク値 T nに近い方のトルク検出値を選択する (ステツ プ S 2 5 )。 なお、 第 2 2図 (B) の場合も、 第 2 2図 (A) の場合ほど 小さい所定値でなくても良いが、 差分量 Δ Τ i が所定値以下である条件 を付加した方が安全である。  An example of another method of selecting the alternative torque value Ta will be described with reference to the flowchart of FIG. 22 (B). In FIG. 22 (B), first, the difference ΔT i = | Tmi_T si | in the combination of the main torque detection value Tmi and the auxiliary torque detection value T si of the past torque is calculated (step S 21). . For example, Δ Τ 1 = I Tml — T s l | and Δ T 2 = | Tm2 — T s 2 |. Next, the combination (Tmk, Tsk) that minimizes the difference ΔTi is selected (step S22). If there are a plurality of combinations (Tm k, T s k) with the smallest difference ΔT i, the latest one is selected (step S 23). Then, whether to select the primary torque detection value Tmk in the (Tmk, T sk) of the latest combination and the alternative torque value T a or the auxiliary torque detection value T sk in which the difference ΔT i is the smallest is determined. Then, a torque detection value closer to the torque value Tn indicating the intermediate value of the steering wheel is selected (step S25). In the case of FIG. 22 (B), the predetermined value may not be as small as that of FIG. 22 (A), but it is better to add a condition that the difference Δ 量 i is equal to or smaller than the predetermined value. It is safe.
このような代替トルク値 T aの算出を行う理由は、 トルク検出値が正 常であれば主トルク検出値 Tmと副トルク検出値 T s とは本来同じ値と なるはずなので、 差分量が小さいことが代替トルク値 T a として好まし レ、。 また、 差分量が同じであれば、 現在の制御に使用する代替トルク値 として、 現在に近い方の最新のトルク検出値を選択することが好ましい ことは明らかである。 また、 選択されたトルク検出値の内、 主トルク検 出値 Tmを選択するか又は副トルク検出値 T s を選択するかは、 異常な トルク検出値を示す場合として、 地絡を示す 0 Vや天絡を示す 5 Vとな る異常の場合が多く、 また、 ハンチングのような場合も 0 Vと 5 Vとの 間を高速に交互に繰り返す。 このような故障現象の事実を考慮すれば、 操向ハンドルの中間値を示すトルク値 T nが 0 Vと 5 Vの中間値である 2 . 5 Vに近い方の値が代替トルク値 T a としては好ましい。 中間値に 近い方を選択するのは、 中間値に近い値の方がモータ電流値が小さく、 安全である場合が多いからである。 The reason for calculating such an alternative torque value Ta is that if the torque detection value is normal, the main torque detection value Tm and the auxiliary torque detection value Ts should be essentially the same, so the difference is small. It is preferred that the alternative torque value T a be the same. Also, if the difference is the same, it is clear that it is preferable to select the latest torque detection value closer to the present as the alternative torque value used for the current control. Whether the main torque detection value Tm or the sub torque detection value Ts is selected from among the selected torque detection values is determined by the case where an abnormal torque detection value is indicated by 0 V indicating a ground fault. And 5 V, which indicates a short-to-power fault, and hunting. The interval is alternately repeated at high speed. Considering the fact of such a failure phenomenon, the torque value Tn indicating the intermediate value of the steering wheel is closer to 2.5 V, which is the intermediate value between 0 V and 5 V, and the alternative torque value T a Is preferable. The reason for selecting the value closer to the intermediate value is that the value closer to the intermediate value is often smaller and safer.
なお、 組み合わせ (T m k, T s k) の両トルク検出値を用いて代替 トルク値 T aを算出する方法は、 上述した第 2 2図 (A) 又は (B) の 方法に限定されるものではない。  The method of calculating the alternative torque value Ta using both the detected torque values of the combination (T mk, T sk) is not limited to the method of FIG. 22 (A) or (B) described above. Absent.
上述のように過去の主トルク検出値と過去の副トルク検出値とを用い た代替トルク値制御を実行することにより、 トルク検出値が 1つの場合 と比較して、 過去のトルク検出値から算出される代替トルク値の精度が 一段と向上する。 また、 チャタリングを発生するような異常の場合は、 主トルク検出値 T mと副トルク検出値 T sの両方がチヤタリ ングを起こ すことはまれであり、 どちらかは正しいトルク検出値である場合が多い ので、 主トルク検出値 T mと副トルク検出値 T s の 2つの トルク検出値 を用いることは、 正しい代替トルク値を算出することに有効である。 第 2 3図は、 本実施例のトルク入力処理部 1 0を用いて、 トルクセン サの出力値が突然零になった場合のトルクセンサの出力 (トルク値) と モータ電流との関係を示している。 トルク値が突然零になっても、 異常 なトルク値の代わりに代替トルク値を直ちに使用するので、 モータ電流 はトルク値が異常になる直前の値を維持する。 そして、 トルクセンサが 故障であると確定されるまでモータ電流は直前の値を維持し、 トルクセ ンサが故障と確定された後はモータ電流が徐々に減衰する。 従来の制御 方法の結果を示す第 4図や第 5図と比較すると、 モータ電流はトルク値 が異常になる直前の極性と逆になつたりせず、 ハンドル操作に違和感を 与えることはない。 また、 第 2 4図は、 本実施例のトルク入力処理部 10 を用いて、 トル クセンサの出力値がチヤタリングを発生して故障した場合のトルクセン サの出力 (最悪のケース) とモータ電流との関係を示している。 トルク 値がチャタリングを発生して異常と判定されると、 過去の正常なトルク 値を用いて代替トルク値を算出し、 その代替トルク値に基いてモータ電 流は制御される。 よって、 モータ電流はチャタ リ ングを発生させる直前 のモータ電流と大きく異なることのない電流を出力する。 さらに、 故障 検出後はモータ電流を徐々に減衰させている。 この結果と、 従来の制御 方式の結果を示す第 6図とを比較する。 従来の制御方式の場合は、 トル クセンサが異常となる前と逆極性のモータ電流を発生し、 その後に乱高 下するなど運転手にとって好ましくない結果になっている。 また、 故障 検出後、 モータ電流を徐々に減衰させるのは良いが、 その減衰直前のモ ータ電流がやはり逆極性の電流から減衰する結果になっているので好ま しくない。 本実施例の制御方式は、 最悪のケースであっても、 従来の制 御方式に比べ明らかにハンドル操舵に好ましい制御になっている。 As described above, by executing the alternative torque value control using the past main torque detection value and the past auxiliary torque detection value, it is calculated from the past torque detection value as compared with the case where there is one torque detection value. The accuracy of the alternative torque value is further improved. In the case of an abnormality that causes chattering, it is rare that both the main torque detection value Tm and the auxiliary torque detection value Ts cause chattering, and if either is the correct torque detection value Therefore, using two torque detection values, the main torque detection value Tm and the auxiliary torque detection value Ts, is effective in calculating a correct alternative torque value. FIG. 23 shows the relationship between the output (torque value) of the torque sensor and the motor current when the output value of the torque sensor suddenly becomes zero using the torque input processing unit 10 of this embodiment. I have. Even if the torque value suddenly becomes zero, the substitute torque value is immediately used instead of the abnormal torque value, so that the motor current maintains the value immediately before the torque value became abnormal. Then, the motor current maintains the previous value until the torque sensor is determined to be faulty, and the motor current gradually decreases after the torque sensor is determined to be faulty. Compared with Figs. 4 and 5, which show the results of the conventional control method, the motor current does not reverse the polarity immediately before the torque value becomes abnormal, and does not give a sense of incompatibility to the steering operation. FIG. 24 shows the relationship between the output of the torque sensor (worst case) and the motor current when the torque sensor output value causes chattering and breaks down, using the torque input processing unit 10 of this embodiment. Shows the relationship. If the torque value is determined to be abnormal due to chattering, a substitute torque value is calculated using the past normal torque value, and the motor current is controlled based on the substitute torque value. Therefore, the motor current outputs a current that does not greatly differ from the motor current immediately before chattering occurs. Furthermore, after the failure is detected, the motor current is gradually attenuated. This result is compared with Fig. 6 showing the result of the conventional control method. In the case of the conventional control method, a motor current of the opposite polarity to that before the torque sensor becomes abnormal is generated, and the motor fluctuates thereafter, which is undesirable for the driver. It is good to gradually attenuate the motor current after detecting a failure, but it is not preferable because the motor current immediately before the attenuation also attenuates from the current of the opposite polarity. Even in the worst case, the control method according to the present embodiment is clearly preferable to steering control compared to the conventional control method.
上述のように本発明によれば、 トルクセンサやトルク検出部が故障で あると確定するまでの間は、 異常なトルク検出値に代わって精度良く算 出された代替トルク値を用いてモータ制御を行うので、 トルクセンサや トルク検出部が異常になっても、 トルクセンサやトルク検出部が故障で あると確定するまでの所定時間を誤検出しない程度に長く とっても、 違 和感のないハンドル操作を実現できる。  As described above, according to the present invention, until the torque sensor or the torque detection unit is determined to be faulty, the motor control is performed using the accurately calculated alternative torque value instead of the abnormal torque detection value. Therefore, even if the torque sensor or torque detector becomes abnormal, even if the predetermined time until the torque sensor or torque detector is determined to be faulty is long enough to prevent erroneous detection, operation of the steering wheel without any uncomfortable feeling Can be realized.
上述した実施例では、 トルクセンサやトルク検出部が異常であるか或 いは故障であることを確定する例として、 主トルク検出値 T mが正常範 囲 (0 . 5 V以上 4 . 5 V以下) の外にある場合を想定したが、 トルク センサやトルク検出部が異常或いは故障であるとする異常検出や故障確 定の方法は他にもある。 このような実施例について、 第 2 5図を参照し て説明する。 In the above-described embodiment, as an example of determining that the torque sensor or the torque detector is abnormal or faulty, the main torque detection value Tm is in a normal range (0.5 V or more and 4.5 V or more). Although it is assumed that the torque sensor and the torque detector are abnormal or faulty, there are other methods for detecting abnormalities and determining failures. Such an embodiment is described with reference to FIG. Will be explained.
上述した実施例と異なる部分は、 トルク異常検出手段 1 0— 1が検出 原理の異なる複数のトルク故障異常検出手段 1 0 _ 1 A、 1 0— I B, 1 0— 1 Cを有していることであり、 そのため選択スィッチ 1 0— 4の 切替え判断は以下のようになる。 トルク異常検出手段 1 0— 1 A, 1 0 — 1 B、 1 0— 1 Cのどれか 1つでも異常 (異常の場合の各トルク異常 検出手段の出力を 「 1」 とする。) の場合は、 トルク異常検出手段 1 0 - 1 A, 1 0— 1 B、 1 0— 1 Cの出力を入力とする〇 R部 1 0 _ 5の 出力に基いて、 代替トルク値算出手段 1 0— 2の出力である代替トルク 値 T aを選択する。 逆にトルク異常検出手段 1 0— 1 A, 1 0— 1 B、 1 0— 1 Cの全てが異常でない場合、 即ち全てが正常 (正常の場合の各 トルク異常検出手段の出力を 「 0」 とする。) の場合、 トルク異常検出 手段 1 0— 1 A, 1 0 _ 1 B、 1 0 _ 1 Cの出力をそれぞれを入力とす る NO T部 1 0 _ 6 A、 1 0— 6 B, 1 ◦— 6 Cの出力を入力とする A ND部 1 0— 7の出力に基いて、 選択スィツチ 1 0— 4は主トルク検出 部 1 0 7 Aの出力である主トルク検出値 Tmを選択する。  The difference from the above-described embodiment is that the torque abnormality detecting means 10-1 has a plurality of torque failure abnormality detecting means 10-1A, 10-IB, 10-1C having different principles. Therefore, the switching judgment of the selection switches 10-4 is as follows. Abnormality of any one of torque abnormality detection means 10-1A, 10-1B, 10-1C (If the abnormality is abnormal, set the output of each torque abnormality detection means to "1".) The output of the torque abnormality detection means 10-1A, 10-1B, 10-1C is input. Based on the output of the R section 10-5, the alternative torque value calculation means 10- Select the alternative torque value Ta that is the output of 2. Conversely, if all of the torque abnormality detection means 1 0-1 A, 10-1 B, and 10-1 C are not abnormal, that is, they are all normal (the output of each torque abnormality detection means is "0" when normal) In the case of, the torque abnormality detection means 10-1 A, 10-1 B, and 10-1 C-NOT part which receives each output as input-10-6 A, 10-6 B, 1 ◦ — Based on the output of the ND section 10 — 7 that receives the output of 6 C, the selection switch 10 — 4 outputs the main torque detection value Tm that is the output of the main torque detection section 107 A. Select
ここで、 トルク異常検出手段 1 0— 1 A, 1 0 - 1 B , 1 0— 1 Cの 検出原理の一例を説明する。 トルク異常検出手段 1 0— 1 Aは第 1 9図 の実施例で用いたトルク異常検出手段と同じであり、 主トルク検出値 T mが正常範囲にない場合を異常と判定する トルク異常検出手段である。 トルク異常検出手段 1 0— 1 Bは、副トルク検出値 T sが正常範囲 ( 0. 5 V以上 4. 5 V以下) にない場合を異常と判定する トルク異常検出手 段である。 また、 トルク異常検出手段 1 0— 1 Cは、 主トルク検出値 T s と副トルク検出値 T sは本来同じ値を取るはずなので、 主トルク検出 値 T s と副トルク検出値 T s との差が正常範囲にない場合を異常と判定 する トルク異常検出手段である。 また、 トルク故障確定手段 1 0 _ 3が第 1 9図の実施例と異なる部分 は、 トルク異常検出手段 1 0— 1が複数のトルク異常検出手段 1 0— 1 A、 1 0— 1 B、 1 0— 1 Cを有していることに伴って、 複数の遅延部 (以下、 TD部と記す) 1 0— 3 A、 1 0— 3 B、 1 0— 3 Cを具備し ていることである。 つまり、 T D部 1 0— 3 Aはトルク異常検出手段 1 0— 1 Aの出力が異常である状態が所定時間 t 4、 例えば 3 0 m sを超 えて継続した場合、 トルクセンサ 1 0 7や主トルク検出部 1 0 7 Aが故 障であると確定する。 同様に、 T D部 1 0— 3 Bはトルク異常検出手段 1 0 - 1 Bの出力が異常である状態が所定時間 t 5、 例えば 3 0 m sを 超えて継続した場合、 トルクセンサ 1 0 7や副トルク検出部 1 0 7 Bが 故障であると確定する。 また、 TD部 1 0— 3 Cはトルク異常検出手段 1 0 - 1 Cの出力が異常である状態が所定時間 t 6、 例えば 3 0 m sを 超えて継続した場合、 トルクセンサ 1 0 7や主トルク検出部 1 0 7 A又 は副トルク検出部 1 0 7 Bが故障であると確定する。 Here, an example of the detection principle of the torque abnormality detecting means 10-1A, 10-1B, 10-1C will be described. The torque abnormality detection means 10-1A is the same as the torque abnormality detection means used in the embodiment of FIG. 19, and determines that the main torque detection value Tm is out of the normal range as abnormal. It is. Torque abnormality detection means 10-1B is a torque abnormality detection means that determines that an abnormality occurs when the auxiliary torque detection value Ts is not in the normal range (0.5 V or more and 4.5 V or less). In addition, since the torque abnormality detecting means 10-1C is supposed to have the same primary torque detection value T s and secondary torque detection value T s, the primary torque detection value T s and the secondary torque detection value T s This is a torque abnormality detection means that determines that the difference is out of the normal range as abnormal. Also, the difference between the torque failure determination means 10_3 and the embodiment of FIG. 19 is that the torque abnormality detection means 10-1 has a plurality of torque abnormality detection means 10-1A, 10-1B, Along with having 10-1 C, multiple delay sections (hereinafter referred to as TD sections) 10-3 A, 10-3 B, 10-3 C It is. That is, if the output of the torque abnormality detecting means 10-1A continues to be abnormal for more than the predetermined time t4, for example, 30 ms, the TD section 10-3A will output the torque sensor 107 It is determined that the torque detector 107A is faulty. Similarly, when the output of the torque abnormality detecting means 10-1B is abnormal for more than a predetermined time t5, for example, 30 ms, the TD section 10-3B outputs the torque sensor 107 The auxiliary torque detector 107B is determined to be faulty. Further, the TD section 10-3C outputs the torque sensor 107 and the main sensor when the output of the torque abnormality detecting means 10-1C is abnormal for more than a predetermined time t6, for example, 30 ms. It is determined that the torque detecting unit 107A or the auxiliary torque detecting unit 107B is faulty.
そして、 トルク故障確定手段 1 0 _ 3 A, 1 0— 3 B, 1 0— 3 Cの 出力 (故障で 「 1」 とする) を入力とする OR部 1 0— 3 Dの出力に基 いて、 トルクセンサやトルク検出部が故障であると確定するとリ ミッタ 1 1が制御され、 電流指令値 I r e f が絞り込まれる暫減処理が実行さ れる。  Then, based on the output of the OR unit 10-3D, which receives the output of the torque failure determination means 10_3A, 10-3B, and 10-3C (referred to as "1" due to failure) as input. However, when it is determined that the torque sensor or the torque detecting unit is faulty, the limiter 11 is controlled, and a temporary reduction process for narrowing down the current command value I ref is executed.
本実施例は複数のトルク異常検出手段 1 0 _ 1 A、 1 0 - 1 B s 1 0 一: L Cを有しており、 従って、 選択スィツチ 1 0— 4の切替え理由が、 ■ 複数の トルク異常検出手段 1 0— 1 A、 1 0— 1 B、 1 0— 1 Cの 1つ でも異常であるとの検出がなされると、 選択スィツチ 1 0— 4は主トル ク検出値 Tmに代わって代替トルク値 T aを選択する。 逆に、 複数のト ルク異常検出手段 1 0 _ 1 A, 1 0 1 B , 1 0 _ 1 Cが全て正常である との検出結果がでると、 選択スィツチ 1 0— 4は主トルク検出値 Tmを 選択する。 This embodiment has a plurality of torque abnormality detecting means 10 -1 A, 10 -1 B s 10 1: LC. Therefore, the switching reason of the selection switch 10-4 is as follows. Abnormality detecting means 10 0-1 A, 10-1 B, 10-1 C If any of the abnormalities is detected, the selected switch 10-4 replaces the main torque detection value Tm. To select an alternative torque value Ta. Conversely, if a plurality of torque abnormality detection means 10_1A, 10_1B, 10_1C are all normal, the selected switch 10-4 will determine the main torque detection value. Tm select.
一方、 本実施例の代替トルク値算出手段 1 0— 2は第 2 2図のフロー チャートに示す代替トルク値算出ステップに基いて算出される。  On the other hand, the alternative torque value calculation means 10-2 of the present embodiment is calculated based on an alternative torque value calculation step shown in the flowchart of FIG.
主トルク検出値 T mと副トルク検出値 T sが検出する二重系の場合は. 第 2 実施例のように異常検出手段や故障確定手段が二重系に対応して 複数存在することは当然である。 このように異常検出手段や故障確定手 段が複数存在しても、 トルクセンサやトルク検出部が異常の場合は、 過 去の主トルク検出値 T mと副トルク検出値 T s とを用いた代替トルク値 によって、 トルクセンサやトルク検出部が異常になって故障と確定する までの間、 ハンドル操作に違和感を与えることはない。  In the case of a dual system in which the main torque detection value Tm and the auxiliary torque detection value Ts are detected. It is unlikely that there are multiple abnormality detection means and failure determination means corresponding to the dual system as in the second embodiment. Of course. As described above, even if there are a plurality of abnormality detection means and failure determination means, if the torque sensor or the torque detection unit is abnormal, the previous main torque detection value Tm and the auxiliary torque detection value Ts are used. The substitute torque value does not give a sense of incongruity to the handle operation until the torque sensor and the torque detection unit become abnormal and are determined to be faulty.
以上説明したように、 本発明によれば、 過去の主トルク検出値 T mと 副トルク検出値 T s とを用いた代替トルク値は、 トルク検出に異常が発 生しても、 どちらかが正しいトルク検出を実行している可能性が高く、 その正しい方の過去のトルク検出値を用いて代替トルク値を算出する。 このため、 '主トルク検出値 T mしか用いることができない代替トルク値 と比較して、 トルクセンサやトルク検出部が異常になって故障と確定す るまでの間、 違和感のないハンドル操作を実現できる。 特に、 トルク検 出に関する配線が断線するようなときに起こるチヤタリング異常の場合. 主トルク検出値 T mと副トルク検出値 T s の両方ともチャタ リ ングを発 生する可能性は少ないので、 特に有効ある。 産業上の利用可能性  As described above, according to the present invention, the alternative torque value using the past main torque detection value Tm and the auxiliary torque detection value Ts is one of the alternative torque values even if an abnormality occurs in the torque detection. It is highly likely that correct torque detection is being performed, and the alternative torque value is calculated using the correct past torque detection value. As a result, compared to the alternative torque value that can only use the main torque detection value Tm, a comfortable steering operation is realized until the torque sensor and torque detection unit become abnormal and the failure is confirmed. it can. Especially in the case of a chattering error that occurs when the wiring for torque detection is broken. Both the main torque detection value Tm and the auxiliary torque detection value Ts are unlikely to generate chattering, so Valid. Industrial applicability
本発明にかかる電動パワーステアリング装置の制御装置は、 ハンドル の操舵トルクを検出する トルクセンサが異常になった場合でも、 ハンド ル操作に違和感を与えず、 安全なハンドル操作を確保できる電動パワー ステアリ ング装置に用いるのに適している。  The electric power steering control device according to the present invention provides an electric power steering system capable of ensuring a safe steering operation without giving an uncomfortable feeling to the steering operation even when a torque sensor for detecting a steering torque of the steering wheel becomes abnormal. Suitable for use in equipment.

Claims

請 求 の 範 囲 The scope of the claims
1 . 車両の操舵系に操舵補助力を付与するモータと、 ハンドルに作用す る操舵力を検出する少なく とも 1以上のトルクセンサとを備え、 前記ト ルクセンサの出力値に基いて前記モータを制御する電動パワーステアリ ング装置の制御装置において、 前記トルクセンサの出力値の異常を検出 する少なく とも 1以上のトルク異常検出手段と、 前記トルクセンサの出 力値が異常になる前の過去の正常なトルクセンサの出力値に基いて代替 トルク値を算出する代替トルク値算出手段とで成る トルク入力処理部を 備え、 前記トルクセンサの出力値が異常のとき、 前記トルクセンサの出 力値の代わりに前記代替トルク値に基いて前記モータを制御することを 特徴とする電動パワーステアリング装置の制御装置。 1. A motor that applies a steering assist force to the steering system of the vehicle and at least one or more torque sensors that detect the steering force acting on the steering wheel, and controls the motor based on the output value of the torque sensor At least one or more torque abnormality detecting means for detecting an abnormality in the output value of the torque sensor, and a past normal value before the output value of the torque sensor becomes abnormal. A torque input processor configured to calculate an alternative torque value based on an output value of the torque sensor, wherein when the output value of the torque sensor is abnormal, instead of the output value of the torque sensor, A control device for an electric power steering device, wherein the motor is controlled based on the substitute torque value.
2 . 前記トルクセンサの出力値の異常が一定時間継続した場合に前記ト ルクセンサが故障であるとの判定を確定する トルク故障確定手段を備え. 前記トルクセンサの出力値が異常のとき、 前記トルクセンサが故障であ るとの判定を確定する前でも、 前記トルクセンサの出力値の代わりに前 記代替トルク値に基いて前記モータを制御する請求の範囲第 1項に記載 の電動パワーステアリング装置の制御装置。 2. A torque failure determination means is provided for determining that the torque sensor is faulty when the output value of the torque sensor continues for a certain period of time. If the output value of the torque sensor is abnormal, the torque is determined. The electric power steering device according to claim 1, wherein the motor is controlled based on the alternative torque value instead of the output value of the torque sensor even before the determination that the sensor is faulty is finalized. Control device.
3 . 前記代替トルク値が、 前記トルクセンサの出力値が異常となる直前 の前記トルクセンサの出力値の n (自然数) サンプルの平均値である請 求の範囲第 1項又は第 2項に記載の電動パワーステァリング装置の制御 3. The claim according to claim 1 or 2, wherein the alternative torque value is an average value of n (natural number) samples of the output value of the torque sensor immediately before the output value of the torque sensor becomes abnormal. Control of electric power steering device
4 . 前記代替トルク値が、 前記トルクセンサの出力値が異常となる直前 の前記トルクセンサの出力値の n (自然数) サンプルの重み付き平均値 である請求の範囲第 1項又は第 2項に記載の電動パワーステアリング装 置の制御装置。 4. The substitute torque value is immediately before the output value of the torque sensor becomes abnormal. 3. The control device for an electric power steering apparatus according to claim 1, wherein the control value is a weighted average value of n (natural number) samples of the output value of the torque sensor.
5 . 前記代替トルク値が、 前記トルクセンサの出力値が異常となる直前 の前記トルクセンサの出力値の n (自然数) サンプルから最小自乗法で 算出した値である請求の範囲第 1項又は第 2項に記載の電動パワーステ ァリング装置の制御装置。 5. The method according to claim 1, wherein the alternative torque value is a value calculated by the least square method from n (natural number) samples of the output value of the torque sensor immediately before the output value of the torque sensor becomes abnormal. 3. The control device for the electric power steering device according to item 2.
6 . 前記代替トルク値が、 前記トルクセンサの出力値が異常となる直前 の前記トルクセンサの出力値の n (自然数) サンプルから ( n _ l ) 次 式を作成して現在値を予測した値である請求の範囲第 1項又は第 2項に 記載の電動パワーステアリング装置の制御装置。 6. The substitute torque value is a value obtained by creating the following equation (n_l) from an n (natural number) sample of the output value of the torque sensor immediately before the output value of the torque sensor becomes abnormal, and predicting the current value. 3. The control device for an electric power steering device according to claim 1, wherein the control device is:
7 . 前記トルクセンサの出力値に基いて前記トルクセンサの異常を検出 する複数のトルク異常検出手段と、 前記トルクセンサの出力値が異常に なる前の過去の正常なトルクセンサの出力値に基いて代替トルク値を算 出する代替トルク値算出手段とを備え、 前記複数のトルク異常検出手段 の 1つでも異常と判定したとき、 前記トルクセンサの出力値の代わりに 前記代替トルク値に基いて前記モータを制御し、 前記代替トルク値に基 いて前記モータを制御しているときに、 前記複数のトルク異常検出手段 の全てが正常と判定したとき、 前記代替トルク値に代えて前記トルクセ ンサの出力値を用いて制御する請求の範囲第 1項に記載の電動パワース テアリング装置の制御装置。 7. A plurality of torque abnormality detection means for detecting abnormality of the torque sensor based on the output value of the torque sensor, and based on past normal output values of the torque sensor before the output value of the torque sensor becomes abnormal. And a substitute torque value calculating means for calculating a substitute torque value.When it is determined that at least one of the plurality of torque abnormality detection means is abnormal, based on the substitute torque value instead of the output value of the torque sensor. Controlling the motor and controlling the motor based on the alternative torque value; determining that all of the plurality of torque abnormality detection means are normal; replacing the alternative torque value with the torque sensor; The control device for an electric power steering device according to claim 1, wherein the control is performed using an output value.
8 . 前記複数のトルク異常検出手段が 1つでも単独で継続して異常と判 定する期間が所定時間を超えるとき、 前記トルクセンサが故障であると の判定を確定する トルク故障確定手段を備えた請求の範囲第 7項に記載 の電動パワーステアリング装置の制御装置。 8. It is determined that one of the plurality of torque abnormality detection means continues to be abnormal. The control device for an electric power steering device according to claim 7, further comprising: a torque failure determination unit that determines a determination that the torque sensor is faulty when the time period to be determined exceeds a predetermined time.
9 . 前記代替トルク値が所定時間を超えても更新されないとき、 前記ト ルクセンサが故障であるとの判定を確定する トルク故障確定手段を備え た請求の範囲第 7項又は第 8項に記載の電動パワーステアリング装置の 制御装置。 9. The torque failure determination device according to claim 7, further comprising: a torque failure determination unit that determines that the torque sensor is faulty when the alternative torque value is not updated even after a predetermined time. Control unit for electric power steering system.
1 0 . 車両の操舵系に操舵補助力を付与するモータと、 ハンドルに作用 する操舵力を検出する トルクセンサとを備え、 前記トルクセンサの出力 値に基いて前記モータを制御する電動パワーステアリング装置の制御装 置において、 前記トルクセンサの出力値に基いて前記トルクセンサの異 常を検出する複数のトルク異常検出手段を備え、 前記複数のトルク異常 検出手段が 1つでも単独で継続して異常と判定する期間が所定時間を超 えるとき、 前記トルクセンサが故障であるとの判定を確定すること'を特 徴とする電動パワーステアリング装置の制御装置。 10. An electric power steering device comprising: a motor for applying a steering assist force to a steering system of a vehicle; and a torque sensor for detecting a steering force acting on a steering wheel, and controlling the motor based on an output value of the torque sensor. The control device according to claim 1, further comprising: a plurality of torque abnormality detecting means for detecting an abnormality of the torque sensor based on an output value of the torque sensor; The control device for an electric power steering device is characterized in that, when the time period for determining that the torque sensor exceeds a predetermined time period, the determination that the torque sensor is out of order is determined.
1 1 . 車両の操舵系に操舵補助力を付与するモータと、 ハンドルに作用 する操舵力を検出する トルクセンサとを備え、 前記トルクセンサの出力 値に基いて前記モータを制御する電動パワーステアリング装置の制御装 置において、 前記トルクセンサの出力値に基いて前記トルクセンサの異 常を検出する複数のトルク異常検出手段を備え、 前記複数のトルク異常 検出手段の少なく とも 1つでも異常であると判定する期間が継続して所 定時間を超えるとき、 前記トルクセンサが故障であるとの判定を確定す ることを特徴とする電動パワーステアリング装置の制御装置。 1 1. An electric power steering device that includes a motor that applies a steering assist force to a steering system of a vehicle, and a torque sensor that detects a steering force acting on a steering wheel, and controls the motor based on an output value of the torque sensor. The control device according to claim 1, further comprising a plurality of torque abnormality detecting means for detecting an abnormality of the torque sensor based on an output value of the torque sensor, wherein at least one of the plurality of torque abnormality detecting means is abnormal. A control device for an electric power steering device, characterized in that when the determination period continues and exceeds a predetermined time, it is determined that the torque sensor is out of order.
1 2 . 前記トルクセンサの出力を基に主トルク検出値 T mを検出する主 トルク検出手段と、 前記トルクセンサの出力を基に副トルク検出値 T s を検出する副トルク検出手段と、 前記主トルク検出値 T m又は前記副ト ルク検出値 T s の異常を検出する トルク異常検出手段と、 前記主トルク 検出値 T m又は前記副トルク検出値 T sが異常になる前の過去の正常な 主トルク検出値 T m及ぴ前記主トルク検出値 T m又は前記副トルク検出 値 T sが異常になる前の過去の正常な副トルク検出値 T sに基いて代替 トルク値 T aを算出する代替トルク値算出手段とを備え、 前記主トルク 検出値 T m又は前記副トルク検出値 T sが異常であると検出されたとき, 前記主トルク検出値 T mの代わりに前記代替トルク値 T aに基いて前記 モータを制御する請求の範囲第 1項に記載の電動パワーステアリング装 置の制御装置。 12. A main torque detecting means for detecting a main torque detection value Tm based on an output of the torque sensor, a sub-torque detecting means for detecting a sub-torque detection value Ts based on an output of the torque sensor, A torque abnormality detecting means for detecting abnormality of the main torque detection value Tm or the auxiliary torque detection value Ts, and a past normal before the main torque detection value Tm or the auxiliary torque detection value Ts becomes abnormal The alternative torque value Ta is calculated based on the past normal auxiliary torque detection value Ts before the main torque detection value Tm and the main torque detection value Tm or the auxiliary torque detection value Ts become abnormal. When the main torque detection value Tm or the auxiliary torque detection value Ts is detected to be abnormal, the alternative torque value T is used instead of the main torque detection value Tm. The motor according to claim 1, wherein the motor is controlled based on a. Control device for electric power steering equipment.
1 3 . 前記主トルク検出値 T m又は前記副トルク検出値 T sが異常であ る状態が所定時間継続した場合に故障であるとの判定を確定する トルク 故障確定手段を備え、 前記トルク異常検出手段が前記主トルク検出値 T m又は前記副トルク検出値 T sが異常であることを検出すれば、 前記ト ルク故障確定手段が故障であるとの判定を確定する前でも、 前記主トル ク検出値 T mの代わりに前記代替トルク値 T aに基いて前記モータを制 御する請求の範囲第 1 2項に記載の電動パワーステアリング装置の制御 13. A torque failure determination means for determining that a failure has occurred when the main torque detection value Tm or the auxiliary torque detection value Ts is abnormal for a predetermined period of time; If the detection means detects that the main torque detection value Tm or the auxiliary torque detection value Ts is abnormal, the main torque can be maintained even before the torque failure determination means determines that a failure has occurred. 13. The control of the electric power steering apparatus according to claim 12, wherein the motor is controlled based on the alternative torque value Ta instead of the torque detection value Tm.
1 4 . 前記代替トルク値 T aは、 前記主トルク検出値 T m又は前記副ト ルク検出値 T sが異常になる前の過去の同時点の主トルク検出値 T mと 副トルク検出値 T s との差を求め、 その差分量が最小となる過去の同時 点の主トルク検出値 Tm及び副トルク検出値 T s を用いて算出される請 求の範囲第 1 2項又は第 1 3項に記載の電動パワーステアリング装置の 制御装置。 14. The alternative torque value T a is the main torque detection value T m and the auxiliary torque detection value T at the same time in the past before the main torque detection value T m or the sub torque detection value T s becomes abnormal. s and the past simultaneous The control device for an electric power steering device according to claim 12 or 13, wherein the request is calculated using the main torque detection value Tm and the auxiliary torque detection value Ts of the point.
1 5. 前記差分量が最小となる過去の同時点の主トルク検出値 Tm及び 副トルク検出値 T sの組み合わせ (Tm、 T s ) が複数存在する場合は、 最新の組み合わせ (Tm, T s ) である請求の範囲第 1 4項に記載の電 動パワーステアリング装置の制御装置。 1 5. If there are a plurality of combinations (Tm, Ts) of the main torque detection value Tm and the auxiliary torque detection value Ts at the same time in the past where the difference amount is minimum, the latest combination (Tm, Ts) 15. The control device for an electric power steering device according to claim 14, wherein:
1 6. 前記代替トルク値 T aは、 前記差分量が最小となる過去の同時点 の主トルク検出値 Tm及び副トルク検出値 T s のうちで、 前記ハンドル が中立地点を示すトルク中立値に近い方のトルク検出値である トルク検 出値である請求の範囲第 1 4項又は第 1 5項に記載の電動パワーステア リング装置の制御装置。 1 6. The alternative torque value T a is a torque neutral value indicating that the steering wheel indicates a neutral point, out of the main torque detection value Tm and the auxiliary torque detection value T s at the same time in the past at which the difference amount is minimum. 16. The control device for an electric power steering device according to claim 14, wherein the detected torque value is a torque detected value that is a closer torque value.
1 7. 前記トルク異常検出手段は、 前記主トルク検出値 Tm、 又は前記 副トルク検出値 T s、 又は前記主トルク検出 Tm及び副トルク検出値 T sに基いて前記トルクセンサの異常を検出する請求の範囲第 1 4項乃至 第 1 6項のいずれかに記載に電動パワーステアリング装置の制御装置。 1 7. The torque abnormality detecting means detects abnormality of the torque sensor based on the main torque detection value Tm, the auxiliary torque detection value Ts, or the main torque detection Tm and the auxiliary torque detection value Ts. A control device for an electric power steering device according to any one of claims 14 to 16.
PCT/JP2004/012695 2003-08-28 2004-08-26 Controller for electric power steering device WO2005021359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/569,625 US7559405B2 (en) 2003-08-28 2004-08-26 Controller for electric power steering device
EP04772651.8A EP1666339B1 (en) 2003-08-28 2004-08-26 Controller for electric power steering device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003304595A JP4326883B2 (en) 2003-08-28 2003-08-28 Control device for electric power steering device
JP2003-304595 2003-08-28
JP2004015816A JP4449464B2 (en) 2004-01-23 2004-01-23 Control device for electric power steering device
JP2004-015816 2004-01-23
JP2004042512A JP4449488B2 (en) 2004-02-19 2004-02-19 Control device for electric power steering device
JP2004-042512 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005021359A1 true WO2005021359A1 (en) 2005-03-10

Family

ID=34279541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012695 WO2005021359A1 (en) 2003-08-28 2004-08-26 Controller for electric power steering device

Country Status (3)

Country Link
US (1) US7559405B2 (en)
EP (1) EP1666339B1 (en)
WO (1) WO2005021359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416293A (en) * 2016-07-05 2019-03-01 日本精工株式会社 Detection device and electric power steering apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884056B2 (en) * 2005-06-09 2012-02-22 三菱電機株式会社 Vehicle steering control device
DE602006007061D1 (en) * 2005-06-10 2009-07-16 Nsk Ltd Control system for an electric power steering
US20060284583A1 (en) * 2005-06-16 2006-12-21 Honeywell International Inc. Error compensation for a wireless sensor using a rotating microstrip coupler to stimulate and interrogate a saw device
JP4294039B2 (en) * 2006-06-23 2009-07-08 三菱電機株式会社 Power steering device
EP1995150A3 (en) * 2007-05-25 2009-05-06 NSK Ltd. Electric power steering apparatus
US8417411B2 (en) * 2009-04-22 2013-04-09 GM Global Technology Operations LLC Torque sensor performance diagnostic systems and methods
JP2011031713A (en) * 2009-07-31 2011-02-17 Jtekt Corp Electric power steering system
JP5635071B2 (en) * 2010-02-25 2014-12-03 本田技研工業株式会社 Electric power steering device
JP5365595B2 (en) * 2010-09-15 2013-12-11 株式会社安川電機 Speed reducer abnormality determination method, abnormality determination apparatus, robot, and robot system
KR101332022B1 (en) * 2011-12-29 2013-11-25 전자부품연구원 ECU monitoring system and monitoring method
JP5817938B2 (en) 2013-03-27 2015-11-18 日本精工株式会社 Electric power steering device
EP2990303B1 (en) 2013-10-10 2018-04-11 NSK Ltd. Electric power steering device
CN104590363B (en) * 2013-10-21 2017-11-21 操纵技术Ip控股公司 The system anomaly detection in control instruction for controlling power steering system
US9598102B2 (en) * 2013-10-21 2017-03-21 Steering Solutions Ip Holding Corporation Systematic abnormality detection in control commands for controlling power steering system
US10214235B2 (en) * 2014-03-19 2019-02-26 Hitachi Automotive Systems, Ltd. Power steering device and power steering device control unit
US20190041240A1 (en) * 2016-07-20 2019-02-07 Nsk Ltd. Rotation Angle Detector and Torque Sensor
US10071764B2 (en) * 2016-11-11 2018-09-11 Steering Solutions Ip Holding Corporation Methods to control a steering system
JP2021147008A (en) * 2020-03-23 2021-09-27 本田技研工業株式会社 Vehicle control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318633A (en) * 1999-05-07 2000-11-21 Hitachi Ltd Electric power steering control device
JP2000329628A (en) * 1999-05-18 2000-11-30 Suzuki Motor Corp Electric power steering for automobile
EP1095841A2 (en) 1999-10-29 2001-05-02 Toyota Jidosha Kabushiki Kaisha Vehicular electric power steering device
JP2003011832A (en) * 2001-06-28 2003-01-15 Koyo Seiko Co Ltd Electric power steering device
JP2003063433A (en) * 2001-08-29 2003-03-05 Koyo Seiko Co Ltd Electric power steering gear
JP2003170857A (en) * 2001-12-07 2003-06-17 Nsk Ltd Electric power steering device
JP2003226250A (en) * 2002-02-06 2003-08-12 Daihatsu Motor Co Ltd Electric power steering control device
JP2004196128A (en) * 2002-12-18 2004-07-15 Koyo Seiko Co Ltd Electric power steering device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133281A (en) * 1988-11-14 1990-05-22 Matsushita Electric Ind Co Ltd Electrically driven power steering control device
JP2884315B2 (en) * 1993-11-19 1999-04-19 光洋精工株式会社 Electric power steering device
US5720361A (en) * 1994-10-12 1998-02-24 Koyo Seiko Co., Ltd. Torque sensing power steering device with abnormality detection, dead zone detection and power assist motor inhibition
JP3390333B2 (en) * 1997-08-27 2003-03-24 本田技研工業株式会社 Electric power steering device
US6389338B1 (en) * 2000-08-08 2002-05-14 Delphi Technologies, Inc. Robust fault detection method
JP2002127927A (en) 2000-10-20 2002-05-09 Nsk Ltd Electric power steering device
JP4564159B2 (en) 2000-10-20 2010-10-20 日本精工株式会社 Electric power steering device
JP4639483B2 (en) * 2001-02-02 2011-02-23 日本精工株式会社 Control device for electric power steering device
JP2003065876A (en) * 2001-08-21 2003-03-05 Showa Corp Abnormality detection device of torque sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318633A (en) * 1999-05-07 2000-11-21 Hitachi Ltd Electric power steering control device
JP2000329628A (en) * 1999-05-18 2000-11-30 Suzuki Motor Corp Electric power steering for automobile
EP1095841A2 (en) 1999-10-29 2001-05-02 Toyota Jidosha Kabushiki Kaisha Vehicular electric power steering device
JP2003011832A (en) * 2001-06-28 2003-01-15 Koyo Seiko Co Ltd Electric power steering device
JP2003063433A (en) * 2001-08-29 2003-03-05 Koyo Seiko Co Ltd Electric power steering gear
JP2003170857A (en) * 2001-12-07 2003-06-17 Nsk Ltd Electric power steering device
JP2003226250A (en) * 2002-02-06 2003-08-12 Daihatsu Motor Co Ltd Electric power steering control device
JP2004196128A (en) * 2002-12-18 2004-07-15 Koyo Seiko Co Ltd Electric power steering device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1666339A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416293A (en) * 2016-07-05 2019-03-01 日本精工株式会社 Detection device and electric power steering apparatus
CN109416293B (en) * 2016-07-05 2021-08-03 日本精工株式会社 Detection device and electric power steering device

Also Published As

Publication number Publication date
US20070000717A1 (en) 2007-01-04
EP1666339B1 (en) 2018-12-05
EP1666339A1 (en) 2006-06-07
US7559405B2 (en) 2009-07-14
EP1666339A4 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2005021359A1 (en) Controller for electric power steering device
US8825299B2 (en) Control system and electric power steering control device
KR20160093665A (en) In-vehicle device controller and power steering device
EP2835624B1 (en) Sensor device, motor control device, and electric power steering apparatus
WO2005105548A1 (en) Electric power steering apparatus
JP5298478B2 (en) Electric power steering device
US20060022627A1 (en) Electric power steering apparatus
JP2006143151A (en) Electric power steering device
JP5017883B2 (en) Electric power steering device
JP5023500B2 (en) Electric power steering device
JP4449488B2 (en) Control device for electric power steering device
JP4326883B2 (en) Control device for electric power steering device
JP5119930B2 (en) Electric power steering device
EP1518776A1 (en) Control apparatus for an electrically driven power steering
US6992449B2 (en) Electric power steering apparatus and control method of the same
JP2006282172A (en) Electric power steering device
JP4449464B2 (en) Control device for electric power steering device
JP5130685B2 (en) Electric power steering device
JP5402068B2 (en) Motor control device
JP4876716B2 (en) Electric power steering control device
JP4821272B2 (en) Electric power steering device
JP3685649B2 (en) Electric power steering control device
JP5256780B2 (en) Electric power steering device
JP2009067222A (en) Electric power steering device
JP3742355B2 (en) Control device for electric power steering device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007000717

Country of ref document: US

Ref document number: 10569625

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004772651

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004772651

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569625

Country of ref document: US