WO2005015547A1 - Procede et systeme d'analyse de signaux vocaux pour la representation compacte de locuteurs - Google Patents
Procede et systeme d'analyse de signaux vocaux pour la representation compacte de locuteurs Download PDFInfo
- Publication number
- WO2005015547A1 WO2005015547A1 PCT/FR2003/002037 FR0302037W WO2005015547A1 WO 2005015547 A1 WO2005015547 A1 WO 2005015547A1 FR 0302037 W FR0302037 W FR 0302037W WO 2005015547 A1 WO2005015547 A1 WO 2005015547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speaker
- speakers
- vocal
- dimension
- representation
- Prior art date
Links
- 230000001755 vocal effect Effects 0.000 title claims abstract description 36
- 238000004458 analytical method Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000013598 vector Substances 0.000 claims description 34
- 239000011159 matrix material Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 8
- 238000012795 verification Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 238000013095 identification testing Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/02—Preprocessing operations, e.g. segment selection; Pattern representation or modelling, e.g. based on linear discriminant analysis [LDA] or principal components; Feature selection or extraction
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/06—Decision making techniques; Pattern matching strategies
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/10—Speech classification or search using distance or distortion measures between unknown speech and reference templates
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
Definitions
- the present invention relates to a method and a device for analyzing voice signals.
- the analysis of voice signals notably requires being able to represent a speaker.
- the representation of a speaker by a mixture of Gaussian (“Gaussian Mixture Model” or GMM) is an effective representation of the acoustic or vocal identity of a speaker.
- GMM Gaussian Mixture Model
- this technique it is a question of representing the speaker, in a reference acoustic space of a predetermined dimension, by a weighted sum of a predetermined number of Gaussians.
- This type of representation is precise when we have a large number of data, and there are no physical constraints to store the parameters of the model, nor to execute calculations on these numerous parameters.
- the authors propose to represent a speaker, no longer absolutely in a reference acoustic space, but relatively with respect to a predetermined set of representations of reference speakers also called anchor models, for which there are GMM-UBM models (UBM for "Universal Background Model”).
- GMM-UBM models UBM for "Universal Background Model”
- the proximity between a speaker and the reference speakers is evaluated by means of a Euclidean distance. This greatly reduces the computational loads, but the performances are still limited and insufficient.
- the invention aims to analyze voice signals by representing the speakers with respect to a predetermined set of reference speakers, with a reduced number of parameters reducing the computational loads for time applications real, with acceptable performances, in comparison with an analysis using a representation by the GMM-UBM model.
- the probability density of the similarities between the representation of said speech signals of the speaker ( ⁇ ) and the predetermined set of vocal representations of the reference speakers is represented by a Gaussian distribution ( ⁇ ( ⁇ ⁇ , ⁇ ⁇ )) of vector of mean ( ⁇ ⁇ ) of dimension E and of covariance matrix ( ⁇ ⁇ ) of dimension ExE estimated in the space of resemblances to the predetermined set of E reference speakers.
- information a priori is also introduced into the probability densities of the resemblances ( ⁇ ( ⁇ ⁇ , ⁇ ⁇ j) with respect to the E reference speakers.
- a system for analyzing a speaker's voice signals Comprising databases in which are stored voice of a predetermined set of E reference speakers and their vocal representations associated signals in a predetermined model, as well as audio archive databases, characterized in that it comprises means for analyzing voice signals using a vectorial representation of the similarities between the vocal representation of the speaker and the predetermined set of vocal representations of E reference speakers.
- the databases also store the analysis of the voice signals carried out by said analysis means.
- the invention can be applied to the indexing of audio documents, however other applications can also be envisaged, such as the acoustic identification of a speaker or the verification of the identity of a speaker.
- Other objects, characteristics and advantages of the invention will appear on reading the following description, given by way of nonlimiting example, and made with reference to the single appended drawing illustrating an implementation of a use of the process for indexing audio documents.
- the figure shows an application of the system according to one aspect of the invention for the indexing of audio databases.
- the system comprises means for receiving voice data from a speaker, for example a microphone 1, connected by a connection 2 with or without wire to means 3 for recording a request made by a speaker ⁇ and comprising a set voice signals.
- the recording means 3 are connected by a connection 4 to storage means 5 and, by a connection 6, to acoustic processing means 7 of the request.
- These acoustic processing means transform the voice signals of the speaker ⁇ into a representation in an acoustic space of dimension D by a GMM model of representation of the speaker ⁇ . This representation is defined by a weighted sum of M
- D is the dimension of the acoustic space of the absolute GMM model
- x is an acoustic vector of dimension D, ie vector of cepstral coefficients of a speech signal sequence of the speaker ⁇ in the absolute GMM model
- M denotes the number of Gaussians of the absolute GMM model, generally a power of 2 between 16 and 1024
- the acoustic processing means 7 of the request are connected by a connection 8 to analysis means 9.
- These analysis means 9 are able to represent a speaker by a probability density vector representing the similarities between the vocal representation of said speaker in the chosen GMM model and vocal representations of E reference speakers in the chosen GMM model.
- the analysis means 9 are also able to carry out verification and / or identification tests for a speaker. To carry out these tests, the means of analysis proceed to the elaboration of the vector of probability densities, that is to say similarities between the speaker and the reference speakers. It is a question of describing a relevant representation of a single segment x of the signal of the speaker ⁇ by means of the following equations:
- w ⁇ is a vector of the space of resemblances to the predetermined set of E reference speakers representing the segment x in this representation space
- plx ⁇ ⁇ j is a probability density or probability normalized by a universal model, representing the resemblance of the acoustic representation x ⁇ of a segment of the vocal signal of a speaker ⁇ , knowing a reference speaker ⁇ j ;
- T x is the number of frames or acoustic vectors of the speech segment x;
- ⁇ j j is a probability representing the resemblance of the acoustic representation x ⁇ of a voice signal segment of a speaker ⁇ , knowing a reference speaker ⁇ j ;
- p ( ⁇ ⁇ u BM ) is a probability representing the resemblance of the acoustic representation x ⁇ of a voice signal segment of a speaker ⁇ in the UBM world model;
- M is the number of Gaussians of the relative GMM model, generally power of 2 between 16 and 1024;
- D is the dimension of the acoustic space of the absolute GMM model;
- x ⁇ is an acoustic vector of dimension D, ie vector of cepstral coefficients of a speech signal sequence of the speaker ⁇ in the absolute GMM model;
- b k (x) represents, for k ⁇ l to D, Gaussian dens
- ⁇ ⁇ represents components of the vector of average ⁇ ⁇ of dimension E of the resemblances ⁇ ( ⁇ ⁇ , ⁇ ⁇ J of the speaker ⁇ with respect to E reference speakers
- ⁇ ". represents components of the covariance matrix ⁇ ⁇ of dimension ExE of the sets ⁇ ( ⁇ ⁇ , ⁇ ⁇ j of the speaker ⁇ with respect to the E reference speakers.
- the analysis means 9 are connected by a connection 10 to learning means 11 making it possible to calculate the vocal representations , in the form of vectors of dimension D, E reference speakers in the GMM model chosen.
- the learning means 11 are connected by a connection 12 to a database 13 comprising voice signals from a predetermined set of speakers and their associated voice representations in the GMM reference model.
- the database 13 is connected by the connection 14 to the analysis means 9 and by a connection 15 to the acoustic treatment means 7.
- the system further comprises a database 16 connected by a connection 17 to the acoustic treatment means 7 , and by a connection 18 to the analysis means 9.
- the database 16 includes audio archives in the form of vocal articles, as well as the associated vocal representations in the GMM model chosen.
- the database 16 is also able to store the associated representations of the audio articles calculated by the analysis means 9.
- the learning means 11 are further connected by a connection 19 to the acoustic processing means 7.
- the learning module 11 will determine the representations in the GMM reference model of the E reference speakers by means of the voice signals of these E reference speakers stored in the database 13, and of the acoustic processing means 7. This determination takes place according to relations (1) to (3) mentioned above.
- This set of E reference speakers will represent the new acoustic representation space.
- These representations of the E reference speakers in the GMM model are stored in memory, by example in database 13. All of this can be done offline.
- the acoustic processing means 7 calculate a vocal representation of the speaker in the predetermined GMM model as explained previously in reference to relations (1) to (3) above.
- the acoustic processing means 7 have calculated, for example offline, the vocal representations of a set of S test speakers and a set of T speakers in the predetermined GMM model. These sets are separate. These representations are stored in the database. 13.
- the analysis means 9 calculate, for example offline, a vocal representation of the S speakers and T speakers compared to the E reference speakers.
- This representation is a vector representation with respect to these E reference speakers, as described above.
- the analysis means 9 also perform, for example offline, a vocal representation of the S speakers and T speakers compared to the E reference speakers, and a vocal representation of the articles of the speakers from the audio database.
- This representation is a vector representation with respect to these E reference speakers.
- the processing means 7 transmit the voice representation of the speaker ⁇ in the predetermined GMM model to the analysis means 9, which calculate a voice representation of the speaker ⁇ .
- This representation is a probability density representation of the resemblances to the E reference speakers. It is calculated by introducing information a priori to the voice representations of T speakers. Indeed, the use of this a priori information makes it possible to keep a reliable estimate, even when the number of available speech segments of the speaker ⁇ is small.
- We introduce information a priori by means of the following equations:
- ⁇ ⁇ vector of mean of dimension E of resemblances ⁇ ( ⁇ ⁇ , ⁇ ⁇ J of speaker ⁇ with respect to E reference speakers;
- N ⁇ number of segments of voice signals from speaker ⁇ represented by N ⁇ vectors of the space of resemblances to the predetermined set of E reference speakers;
- ⁇ ⁇ vector of mean of dimension E of the resemblances ⁇ ( ⁇ ⁇ , ⁇ ⁇ ) of the speaker ⁇ with respect to the E reference speakers, with introduction of information a priori;
- ⁇ ⁇ covariance matrix of dimension ExE of the resemblances ⁇ ( ⁇ ⁇ , ⁇ ⁇ ) of the speaker ⁇ with respect to
- the analysis means 9 will compare the vocal representations of the request and of the articles of the base articles of the base by tests in identification and / or verification of the speakers.
- the speaker identification test consists in evaluating a likelihood measure between the vector of the test segment w x and the set of representations of the articles in the audio base.
- the speaker verification test consists in calculating a likelihood score between the vector of the test segment w x and the set of representations of the articles of the audio base normalized by its likelihood score with the representation of the information a priori.
- the segment is authenticated if the score exceeds a given predetermined threshold, said score being given by the following relation:
- This invention can also be applied to other uses, such as recognition or identification of a speaker.
- This compact representation of a speaker makes it possible to drastically reduce the cost of computation, because there are much less elementary operations in view of the drastic reduction in the number of parameters necessary for the representation of a speaker. For example, for a request for 4 seconds of words from a speaker, that is to say 250 frames, for a GMM model of dimension 27, to 16 Gaussian the number of elementary operations is reduced by a factor of 540 , which greatly reduces the computation time.
- the memory size used to store the representations of the speakers is significantly reduced. The invention therefore makes it possible to analyze the vocal signals of a speaker by drastically reducing the computation time and the storage memory size of the vocal representations of the speakers.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Acoustics & Sound (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Game Theory and Decision Science (AREA)
- Business, Economics & Management (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Circuit For Audible Band Transducer (AREA)
- Stereophonic System (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020067000063A KR101011713B1 (ko) | 2003-07-01 | 2003-07-01 | 화자의 압축된 표시를 위한 음성 신호 분석 방법 및 시스템 |
EP03748194A EP1639579A1 (fr) | 2003-07-01 | 2003-07-01 | Procede et systeme d'analyse de signaux vocaux pour la representation compacte de locuteurs |
US10/563,065 US7539617B2 (en) | 2003-07-01 | 2003-07-01 | Method and system for analysis of vocal signals for a compressed representation of speakers using a probability density representing resemblances between a vocal representation of the speaker in a predetermined model and a predetermined set of vocal representations reference speakers |
JP2005507539A JP4652232B2 (ja) | 2003-07-01 | 2003-07-01 | 話者の圧縮表現用の音声信号の分析のための方法およびシステム |
PCT/FR2003/002037 WO2005015547A1 (fr) | 2003-07-01 | 2003-07-01 | Procede et systeme d'analyse de signaux vocaux pour la representation compacte de locuteurs |
AU2003267504A AU2003267504A1 (en) | 2003-07-01 | 2003-07-01 | Method and system for analysis of vocal signals for a compressed representation of speakers |
CNA038267411A CN1802695A (zh) | 2003-07-01 | 2003-07-01 | 用于分析音源压缩表示的声音信号的方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2003/002037 WO2005015547A1 (fr) | 2003-07-01 | 2003-07-01 | Procede et systeme d'analyse de signaux vocaux pour la representation compacte de locuteurs |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005015547A1 true WO2005015547A1 (fr) | 2005-02-17 |
Family
ID=34130575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2003/002037 WO2005015547A1 (fr) | 2003-07-01 | 2003-07-01 | Procede et systeme d'analyse de signaux vocaux pour la representation compacte de locuteurs |
Country Status (7)
Country | Link |
---|---|
US (1) | US7539617B2 (fr) |
EP (1) | EP1639579A1 (fr) |
JP (1) | JP4652232B2 (fr) |
KR (1) | KR101011713B1 (fr) |
CN (1) | CN1802695A (fr) |
AU (1) | AU2003267504A1 (fr) |
WO (1) | WO2005015547A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100814143B1 (ko) * | 2003-10-03 | 2008-03-14 | 아사히 가세이 가부시키가이샤 | 데이터 처리 장치 및 데이터 처리 장치 제어 프로그램 |
JP2008146054A (ja) * | 2006-12-06 | 2008-06-26 | Korea Electronics Telecommun | 話者の音声特徴情報を利用した話者情報獲得システム及びその方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE491202T1 (de) * | 2006-05-16 | 2010-12-15 | Loquendo Spa | Kompensation der variabilität zwischen sitzungen zur automatischen extraktion von informationen aus sprache |
AU2007335251B2 (en) | 2006-12-19 | 2014-05-15 | Validvoice, Llc | Confidence levels for speaker recognition |
CN102237084A (zh) * | 2010-04-22 | 2011-11-09 | 松下电器产业株式会社 | 声音空间基准模型的在线自适应调节方法及装置和设备 |
US8635067B2 (en) * | 2010-12-09 | 2014-01-21 | International Business Machines Corporation | Model restructuring for client and server based automatic speech recognition |
US9595260B2 (en) * | 2010-12-10 | 2017-03-14 | Panasonic Intellectual Property Corporation Of America | Modeling device and method for speaker recognition, and speaker recognition system |
JP6556575B2 (ja) | 2015-09-15 | 2019-08-07 | 株式会社東芝 | 音声処理装置、音声処理方法及び音声処理プログラム |
CA3172758A1 (fr) * | 2016-07-11 | 2018-01-18 | FTR Labs Pty Ltd | Procede et systeme de consignation automatique d'enregistrement sonore |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6411930B1 (en) * | 1998-11-18 | 2002-06-25 | Lucent Technologies Inc. | Discriminative gaussian mixture models for speaker verification |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2105034C (fr) * | 1992-10-09 | 1997-12-30 | Biing-Hwang Juang | Systeme de verification de haut-parleurs utilisant l'evaluation normalisee de cohortes |
US5664059A (en) * | 1993-04-29 | 1997-09-02 | Panasonic Technologies, Inc. | Self-learning speaker adaptation based on spectral variation source decomposition |
US5793891A (en) * | 1994-07-07 | 1998-08-11 | Nippon Telegraph And Telephone Corporation | Adaptive training method for pattern recognition |
JPH08110792A (ja) * | 1994-10-12 | 1996-04-30 | Atr Onsei Honyaku Tsushin Kenkyusho:Kk | 話者適応化装置及び音声認識装置 |
US5864810A (en) * | 1995-01-20 | 1999-01-26 | Sri International | Method and apparatus for speech recognition adapted to an individual speaker |
US5790758A (en) * | 1995-07-07 | 1998-08-04 | The United States Of America As Represented By The Secretary Of The Navy | Neural network architecture for gaussian components of a mixture density function |
US5835890A (en) * | 1996-08-02 | 1998-11-10 | Nippon Telegraph And Telephone Corporation | Method for speaker adaptation of speech models recognition scheme using the method and recording medium having the speech recognition method recorded thereon |
US6029124A (en) * | 1997-02-21 | 2000-02-22 | Dragon Systems, Inc. | Sequential, nonparametric speech recognition and speaker identification |
US6212498B1 (en) * | 1997-03-28 | 2001-04-03 | Dragon Systems, Inc. | Enrollment in speech recognition |
US6009390A (en) * | 1997-09-11 | 1999-12-28 | Lucent Technologies Inc. | Technique for selective use of Gaussian kernels and mixture component weights of tied-mixture hidden Markov models for speech recognition |
US5946656A (en) * | 1997-11-17 | 1999-08-31 | At & T Corp. | Speech and speaker recognition using factor analysis to model covariance structure of mixture components |
US6141644A (en) * | 1998-09-04 | 2000-10-31 | Matsushita Electric Industrial Co., Ltd. | Speaker verification and speaker identification based on eigenvoices |
US20010044719A1 (en) * | 1999-07-02 | 2001-11-22 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for recognizing, indexing, and searching acoustic signals |
US6954745B2 (en) * | 2000-06-02 | 2005-10-11 | Canon Kabushiki Kaisha | Signal processing system |
US7035790B2 (en) * | 2000-06-02 | 2006-04-25 | Canon Kabushiki Kaisha | Speech processing system |
US6754628B1 (en) * | 2000-06-13 | 2004-06-22 | International Business Machines Corporation | Speaker recognition using cohort-specific feature transforms |
-
2003
- 2003-07-01 EP EP03748194A patent/EP1639579A1/fr not_active Withdrawn
- 2003-07-01 JP JP2005507539A patent/JP4652232B2/ja not_active Expired - Fee Related
- 2003-07-01 CN CNA038267411A patent/CN1802695A/zh active Pending
- 2003-07-01 AU AU2003267504A patent/AU2003267504A1/en not_active Abandoned
- 2003-07-01 WO PCT/FR2003/002037 patent/WO2005015547A1/fr active Application Filing
- 2003-07-01 US US10/563,065 patent/US7539617B2/en not_active Expired - Fee Related
- 2003-07-01 KR KR1020067000063A patent/KR101011713B1/ko not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6411930B1 (en) * | 1998-11-18 | 2002-06-25 | Lucent Technologies Inc. | Discriminative gaussian mixture models for speaker verification |
Non-Patent Citations (2)
Title |
---|
REYNOLDS D A: "Speaker identification and verification using Gaussian mixture speaker models", SPEECH COMMUNICATION, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 17, no. 1, 1 August 1995 (1995-08-01), pages 91 - 108, XP004062392, ISSN: 0167-6393 * |
STURIM D E ET AL: "Speaker indexing in large audio databases using anchor models", 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. PROCEEDINGS (CAT. NO.01CH37221), 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. PROCEEDINGS, SALT LAKE CITY, UT, USA, 7-11 MAY 2001, 2001, Piscataway, NJ, USA, IEEE, USA, pages 429 - 432 vol.1, XP002272038, ISBN: 0-7803-7041-4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100814143B1 (ko) * | 2003-10-03 | 2008-03-14 | 아사히 가세이 가부시키가이샤 | 데이터 처리 장치 및 데이터 처리 장치 제어 프로그램 |
JP2008146054A (ja) * | 2006-12-06 | 2008-06-26 | Korea Electronics Telecommun | 話者の音声特徴情報を利用した話者情報獲得システム及びその方法 |
JP4717872B2 (ja) * | 2006-12-06 | 2011-07-06 | 韓國電子通信研究院 | 話者の音声特徴情報を利用した話者情報獲得システム及びその方法 |
Also Published As
Publication number | Publication date |
---|---|
US20060253284A1 (en) | 2006-11-09 |
CN1802695A (zh) | 2006-07-12 |
EP1639579A1 (fr) | 2006-03-29 |
AU2003267504A1 (en) | 2005-02-25 |
KR101011713B1 (ko) | 2011-01-28 |
JP2007514959A (ja) | 2007-06-07 |
US7539617B2 (en) | 2009-05-26 |
KR20060041208A (ko) | 2006-05-11 |
JP4652232B2 (ja) | 2011-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Cn-celeb: multi-genre speaker recognition | |
Kabir et al. | A survey of speaker recognition: Fundamental theories, recognition methods and opportunities | |
US7245767B2 (en) | Method and apparatus for object identification, classification or verification | |
US10706857B1 (en) | Raw speech speaker-recognition | |
US6253179B1 (en) | Method and apparatus for multi-environment speaker verification | |
EP2351023B1 (fr) | Vérification du locuteur | |
Deshpande et al. | Classification of music signals in the visual domain | |
US20140195237A1 (en) | Fast, language-independent method for user authentication by voice | |
CN109243487B (zh) | 一种归一化常q倒谱特征的回放语音检测方法 | |
EP2202723B1 (fr) | Procédé et système pour authentifier un locuteur | |
CN110534101B (zh) | 一种基于多模融合深度特征的移动设备源识别方法及系统 | |
JPH11507443A (ja) | 話者確認システム | |
Peri et al. | Robust speaker recognition using unsupervised adversarial invariance | |
Liu et al. | A Spearman correlation coefficient ranking for matching-score fusion on speaker recognition | |
US20160019897A1 (en) | Speaker recognition from telephone calls | |
Shim et al. | Replay spoofing detection system for automatic speaker verification using multi-task learning of noise classes | |
WO2005015547A1 (fr) | Procede et systeme d'analyse de signaux vocaux pour la representation compacte de locuteurs | |
Fathan et al. | Mel-spectrogram image-based end-to-end audio deepfake detection under channel-mismatched conditions | |
Pandey et al. | Cell-phone identification from audio recordings using PSD of speech-free regions | |
Abualadas et al. | Speaker identification based on hybrid feature extraction techniques | |
US7516071B2 (en) | Method of modeling single-enrollment classes in verification and identification tasks | |
CN113284508B (zh) | 基于层级区分的生成音频检测系统 | |
Thebaud et al. | Spoofing speaker verification with voice style transfer and reconstruction loss | |
Büker et al. | Deep convolutional neural networks for double compressed AMR audio detection | |
Zi et al. | BSML: Bidirectional Sampling Aggregation-based Metric Learning for Low-resource Uyghur Few-shot Speaker Verification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 03826741.1 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003748194 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005507539 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067000063 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003748194 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006253284 Country of ref document: US Ref document number: 10563065 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10563065 Country of ref document: US |