WO2005013870A1 - 人工内耳の音声変換方法 - Google Patents

人工内耳の音声変換方法 Download PDF

Info

Publication number
WO2005013870A1
WO2005013870A1 PCT/JP2004/011077 JP2004011077W WO2005013870A1 WO 2005013870 A1 WO2005013870 A1 WO 2005013870A1 JP 2004011077 W JP2004011077 W JP 2004011077W WO 2005013870 A1 WO2005013870 A1 WO 2005013870A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
audio information
frequency
information
stimulation
Prior art date
Application number
PCT/JP2004/011077
Other languages
English (en)
French (fr)
Inventor
Shigeyoshi Kitazawa
Shinya Kiriyama
Erdenebat Dashtseren
Satoshi Iwasaki
Original Assignee
Hamamatsu Foundation For Science And Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation For Science And Technology Promotion filed Critical Hamamatsu Foundation For Science And Technology Promotion
Priority to JP2005512930A priority Critical patent/JP4295765B2/ja
Priority to AU2004263021A priority patent/AU2004263021B2/en
Priority to CN2004800225584A priority patent/CN1832713B/zh
Priority to BRPI0413308-0A priority patent/BRPI0413308A/pt
Priority to AT04748210T priority patent/ATE517655T1/de
Priority to CA002533935A priority patent/CA2533935A1/en
Priority to EP04748210A priority patent/EP1652498B1/en
Publication of WO2005013870A1 publication Critical patent/WO2005013870A1/ja
Priority to US11/349,423 priority patent/US7627379B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L2021/065Aids for the handicapped in understanding

Definitions

  • the present invention relates to a cochlear implant sound conversion method and a cochlear implant that enhance hearing by applying a stimulation pulse to a cochlea.
  • an electrode array including a plurality of electrodes is provided in a cochlea, and audio information sampled through a microphone is first converted into a channel for each frequency band using a plurality of bandpass filters. Is distinguished. Then, by sending audio information for each channel to an electrode corresponding to the channel, an electrical stimulation pulse is generated, and the audio information is given to the cochlea as a stimulation panel to enhance hearing.
  • a speech processor provided in the cochlear implant converts speech information into stimulus pulses. In such cochlear implants, simultaneous stimulation of the electrodes is said to be unable to cause a perception of sound that is faithful to the actual audio signal being processed.
  • CIS system continuous interleaved sampler system
  • all channels are sequentially stimulated at a predetermined cycle in order to avoid stimulating another channel at the same time and to output audio information as a stimulus without omission. That is, even if audio information is generated simultaneously, it is not output until the order of the channel comes.
  • the stimulus may be output at a timing that is later than the timing at which the sound actually occurred, resulting in unnatural sound reproduction.
  • the present invention has been made in view of such circumstances, and it is possible to provide a cochlear implant user with a sound close to a natural sound, and to set a probability with a value close to a peculiar periodicity for each channel. It is an object of the present invention to provide a cochlear implant sound conversion method and a cochlear implant capable of reproducing a natural variation in a natural manner.
  • the sound information is distinguished for each frequency band by using a plurality of band-pass filters in a signal frame that is a predetermined sampling period, and then the corresponding signal is processed.
  • the number of stimulation panels becomes the frequency allowed for one channel
  • the number of stimulation pulses is reduced to the frequency allowed for all channels.
  • the remaining audio information is sent to the electrode corresponding to the channel to generate a stimulation pulse.
  • speech is used for convenience, but is not limited to a voice uttered by a human, and refers to a sound audible to humans.
  • the channels are allowed to have a single stimulation pulse within a period allowed to exist.
  • the channels are allowed to have a single stimulation pulse within a period allowed to exist.
  • the cochlear implant according to claim 4 is characterized in that, within a signal frame that is a predetermined sampling period, a sound is generated.
  • voice information is distinguished for each frequency band using a plurality of band-pass filters, channel information adding means for adding the information of the channel of the corresponding frequency band to the voice information, and for each channel in the signal frame,
  • In-channel stimulus frequency adjustment means for adjusting the number of stimulus noises to the frequency allowed for one channel by leaving audio information with a high signal level in one channel, and Adjusting the number of stimulus pulses to an acceptable frequency for all channels by leaving audio information with a high signal level out of all audio information left for each channel
  • Inter-channel stimulation frequency adjusting means and stimulation pulse generating means for converting the remaining audio information into stimulation pulses and sending the stimulation pulses to the electrodes corresponding to the channels.
  • the in-channel stimulation frequency adjusting means includes a plurality of pieces of audio information in a period in which only one stimulation pulse is allowed in one channel, It is characterized in that only the audio information of the maximum signal level is left.
  • the inter-channel stimulation frequency adjustment means includes a plurality of audio information within a period in which only one stimulation pulse is allowed between channels, It is characterized in that only the audio information of the maximum signal level is left.
  • the level of the neutral signal level of the voice information and the voice information are left. Therefore, since the voice information is reproduced in the same order and relative time relationship as the voice information is generated, it is possible to provide the cochlear implant user with a voice close to a natural voice.
  • FIG. 1 is a configuration diagram showing an embodiment of a cochlear implant according to the present invention.
  • Fig. 2 is a flowchart showing the overall operation of the cochlear implant
  • Fig. 3 is a flowchart showing the operation of the cochlear implant channel selection process
  • Fig. 4 is a flowchart showing the operation of the intra-channel stimulation frequency adjusting means of the cochlear implant.
  • FIG. 5 is a flow chart showing the operation of the inter-channel stimulation frequency adjusting means of the cochlear implant.
  • Fig. 6 is an explanatory diagram showing the operation of the channel selection processing of the cochlear implant
  • Fig. 1 is a configuration diagram showing an embodiment of a cochlear implant according to the present invention.
  • Fig. 2 is a flowchart showing the overall operation of the cochlear implant
  • Fig. 3 is a flowchart showing the operation of the cochlear implant channel selection process
  • Fig. 4 is a flowchart showing the
  • FIG. 7 is an explanatory diagram showing the operation of the intra-channel stimulation frequency adjusting means of the cochlear implant
  • Fig. 8 is an inter-channel stimulation frequency adjusting means of the cochlear implant. It is an explanatory view showing the operation of.
  • FIG. 9 is an explanatory diagram showing the operation of the coterie inner ear.
  • the cochlear implant 1 shown in FIG. 1 reinforces hearing by applying an electrical stimulation pulse to the cochlea 9. More specifically, a microphone 3 for capturing external voice as an electric signal, a voice processor 4 for programmatically performing voice processing for converting voice information sampled via the microphone 3 into stimulation pulses, and a An external coil 5 forming an antenna, an internal coil 6 forming an antenna inside the body, and converting voice information sent from the voice processor 4 through the external coil 5 and the internal coil 6 into electrical stimulation pulses.
  • the stimulus unit 7 includes an electrode array 8 that is provided in the cochlea 9 and that includes a plurality of electrodes 8a to 8d that actually output stimulation pulses. The current generated by the electrodes 8a and 8d stimulates the terminals of the auditory nerve and is perceived as sound.
  • the electrodes 8a to 8d of the electrode array 8 are provided, and there is a possibility that the electrodes 8a to 8d can be properly used depending on the state of the user.
  • the electrodes 8a and 8d divide the entire audible sound range into M bands to form channels, and serve as electrodes corresponding to the channels.
  • the case where four electrodes 8a to 8d are used will be described, but the mode of use is not limited to this.
  • the electrode 8a is the 21st (channel 21 (ch. 21)) electrode with a center frequency of about 6262 Hz
  • the electrode 8b is the 20th (channel 20 (ch. 20)).
  • electrode 8c is the 19th (channel 19 (ch. 19)) electrode with a center frequency of about 907.1 Hz and electrode 8d is the third (channel 3 (ch. 3)) electrode The frequency is about 466.5Hz.
  • a signal S which is audio information captured by the microphone 3, is shaped by a high-frequency emphasizing filter (S101), and then passes through a group of band-pass filters (S102). .
  • S101 high-frequency emphasizing filter
  • S102 band-pass filters
  • the half-wave rectifier for each channel prepares the data into a desired data format (S103), generates audio information composed of channel information, time information, and signal level information, and converts it into an amplitude time matrix.
  • ATM amplitude time matrix
  • the voice information acquired by the ATM is within a signal frame which is a predetermined and fixed sampling period, and the following processing is sequentially repeated for each signal frame.
  • the length of the signal frame of the present embodiment is about 10 ms.
  • the length of this signal frame is not limited to 10 mS, but if it is too long, there will be a delay in the reproduction of voice information, and if it is shorter than the basic period of voice (the period of vocal cord vibration), voice information cannot be detected. It is of a nature determined appropriately in consideration of these.
  • voice information necessary for the stimulus pulse actually output is extracted from voice information of the ATM.
  • a channel selection process is performed for an output voice process (S104). The details of this channel selection processing will be described later.
  • the signal level (including the current level) of the audio information obtained by the channel selection processing is adjusted so that the stimulus noise that can obtain the optimal sound sensation (loudness) according to the dynamic range of the stimulus pulse is obtained. Is performed (S105). Then, the obtained voice information is sent to the stimulation unit 7, and the stimulation pulse is output from each electrode 8a 8d of the electrode array 8 (S106).
  • the signal level of the largest audio information is stored in the variable p
  • the channel information is stored in the variable c
  • the time information is stored in t (S204, S205). Detect this maximum value and change
  • the number of stimulation noises is reduced to the frequency allowed for one channel (stimulation rate).
  • the in-channel stimulation frequency is adjusted to be adjusted to (g) (S206).
  • FIG. Figure 7 (a) shows the speech information k before processing of channel k (c).
  • the horizontal axis represents time t, and the vertical axis represents signal level p.
  • the scale on the horizontal axis represents the sampling rate. In other words, it means that there is audio information before processing in units of graduations on the horizontal axis.
  • the sampling rate is, for example, 20 kHz.
  • r is the reciprocal of the channel stimulation rate Rc (eg, 1800 pps), and is the period during which only one stimulation pulse is allowed to exist.
  • the channel stimulation rate Rc is the stimulation rate per channel.
  • B is set to 0 as the head of the signal frame (S303).
  • E a method of determining E, if the value obtained by adding t and r is smaller than the last time (wn) of the signal frame, (S3 k c
  • B is the time obtained by adding t to t (S305), and the value obtained by adding t and r is the maximum of the signal frame.
  • E is set to wn as the rear end of the signal frame (S306).
  • Equation 4 represents the in-channel stimulation frequency adjustment expressed by a mathematical formula.
  • the audio information having a large signal level is left in the signal frame, so that the number of stimulus pulses is allowed in all of the channels.
  • the inter-channel stimulus frequency adjustment (S207) is performed to adjust the frequency (impulse stimulus rate).
  • FIG. Figure 8 (a) shows the in-channel stimulation of channel k (c).
  • This is audio information after frequency adjustment.
  • the horizontal axis represents time t, and the vertical axis represents signal level p.
  • the scale on the horizontal axis indicates the sampling rate. In other words, it means that there is audio information before processing in units of graduations on the horizontal axis.
  • the sampling rate is, for example, 20 kHz.
  • r is the reciprocal of the impulse stimulation rate Ri (for example, 14400 pps), and is the period during which only one stimulation pulse is allowed to exist.
  • Impulse stimulus rate Ri is the stimulus rate per signal frame taking into account all channels.
  • the processing is performed in a period from B) to a point in time (E) that is later than t by r.
  • B ikiii if the value obtained by subtracting r from t is greater than 0 (S401—no), B kii is set to the time obtained by subtracting r from t (S402), and r is subtracted from t. If the value is less than 0 (S kiki
  • B is set to 0 as the head of the signal frame (S403).
  • I) B is the time obtained by adding t to r (S405), and the value obtained by adding t and r is the end of the signal frame.
  • E is set to wn as the rear end of the signal frame (S406).
  • the voice information of the signal c is discarded while leaving only the signal a having a large signal level. That is, as shown in Fig. 8 (c), only the signal a remains in the period up to the B force.
  • the following equation (5) is used (S407). Note that R ⁇ R.
  • Equation 6 expresses the inter-channel stimulation frequency adjustment by a mathematical formula. [0040] [number 6]
  • the information t is stored and output from the channel selection processing (S104).
  • FIG. 6 is a diagram showing the overall processing of the above-described channel selection processing (S104).
  • FIG. 6A shows audio information of four channels before processing. This figure shows only one signal frame. Then, as shown in FIG. 6B, the periphery of the signal p having the highest signal level in this signal frame is removed, and then,
  • Signal P is processed sequentially in the same channel, and so on for the other channels.
  • FIG. 9 shows actual experimental results.
  • FIG. 9A shows a spectrogram before processing, in which B1—B3 are the voice processing results of voice processing performed by the method described in the present embodiment.
  • C1-C3 corresponding to B1-B3 show the result of speech processing by the conventional method for comparison.
  • B1 (C1) indicates the output of this entire signal frame
  • B2 (C2) indicates the output of B
  • B3 (C3) is an enlargement of a vertically long elliptical portion in the middle of B1 (C1), and indicates the "ts" portion of "utsu”.
  • the inventor of the present application does not output the sampled audio information as a stimulus without omission, but can reproduce a sound that can be sufficiently understood only by selecting and outputting audio information having a large signal level. Found that it is possible. Furthermore, in the voice processing method described in the present embodiment, since the relative time relationship of the voice information to be reproduced is maintained, it is possible to obtain an effect that a natural voice can be provided to the cochlear implant user. Can be done.
  • cochlear implant 1 of the present embodiment in the period in which only one stimulus pulse is allowed in the intra-channel stimulation frequency adjustment and the inter-channel stimulation frequency adjustment, the sound of the maximum signal level is obtained. Since only information is left, natural fluctuation can be reproduced stochastically with a value close to the periodicity unique to each channel.
  • the present invention is useful for realizing a cochlear implant capable of providing a sound close to natural sound to a cochlear implant user.
  • FIG. 1 is a configuration diagram showing an embodiment of a cochlear implant according to the present invention.
  • FIG. 2 is a flowchart showing the entire operation of the cochlear implant.
  • FIG. 3 is a flowchart showing an operation of a channel selection process of the cochlear implant.
  • FIG. 4 is a flowchart showing the operation of the intra-channel stimulation frequency adjusting means of the cochlear implant.
  • FIG. 5 is a flowchart showing an operation of an inter-channel stimulation frequency adjusting means of the cochlear implant.
  • FIG. 6 is an explanatory diagram showing an operation of a channel selection process of the cochlear implant.
  • FIG. 7 is an explanatory view showing the operation of the intra-channel stimulation frequency adjusting means of the cochlear implant.
  • FIG. 8 is an explanatory view showing an operation of an inter-channel stimulation frequency adjusting means of the cochlear implant.
  • FIG. 9 is an explanatory view showing the operation of the cochlear implant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computational Linguistics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Prostheses (AREA)
  • Electrotherapy Devices (AREA)
  • Telephone Function (AREA)

Abstract

 自然な音声に近い音声を人工内耳装用者に提供することができると共に、チャネル毎の固有の周期性に近い値で確率的に自然な変動を再現することができる人工内耳の音声変換方法及び人工内耳を提供することにある。  信号フレーム内で、音声情報を、複数の帯域通過フィルターを用いて周波数帯域毎に峻別した後、対応する周波数帯域のチャネルの情報を音声情報に付加した後、チャネル毎に、1つのチャネル内で信号レベルの大きい音声情報を残すことにより、刺激パルスの数を1チャネルに許容された頻度となるように調整し、チャネル毎に残されたすべての音声情報の中から、信号レベルの大きい音声情報を残すことにより、刺激パルスの数をすべてのチャネルの全体で許容された頻度となるように調整した後、残された音声情報を、チャネルに対応する電極に送ることにより、刺激パルスを発生させることを特徴とする。

Description

明 細 書
人工内耳の音声変換方法
技術分野
[0001] 本発明は、刺激パルスを蝸牛に与えることにより聴覚の補強を行う人工内耳の音声 変換方法及び人工内耳に関する。
背景技術
[0002] 従来から人工内耳は、蝸牛内に複数の電極からなる電極アレイを設け、まず、マイ クを介してサンプリングされた音声情報を、複数の帯域通過フィルターを用いて周波 数帯域毎のチャネルに峻別している。そして、チャネル毎の音声情報を、チャネルに 対応する電極に送ることによって電気的な刺激パルスを生成し、音声情報を刺激パ ノレスとして蝸牛に与えることにより聴覚の補強を行うものである。具体的には、人工内 耳に設けられた音声プロセッサで、音声情報を刺激パルスに変換するという音声変 換が行われる。尚、このような人工内耳において、電極の同時刺激は、処理されてい る実際の音声信号に対して忠実な音の知覚を引き起こすことができないとされている
。これは、電極が同時に刺激されると、電極間の回路が相互作用して不適切な刺激 を生じさせる可能性があるからである。
[0003] このような問題を解決するために、従来の人工内耳の音声変換方法としては、連続 インターリーブドサンプラー方式 (CIS方式)が採用されてきた。この方式では、同時 に別のチャネルを刺激することを回避し、且つ音声情報を漏れなく刺激として出力す るために、所定の周期ですベてのチャネルを順次刺激するようにしている。すなわち 、音声情報としては同時に発生したものであっても、そのチャネルの順番が来るまで 出力されない。
しかし、かかる先行発明は、文献公知発明に係るものでないため、記載すべき先行 技術文献情報はない。
発明の開示
発明が解決しょうとする課題
[0004] し力、しながら、従来の人工内耳の音声変換方法である CIS方式では、所定の周期 ですベてのチャネルを順次刺激していることから、音声が実際に生じたタイミングより 遅れたタイミングで刺激が出力される場合があり、不自然な音声の再現になってしま
5。
[0005] 本発明は、このような事情に鑑みてなされたもので、 自然な音声に近い音声を人工 内耳装用者に提供することができると共に、チャネル毎の固有の周期性に近い値で 確率的に自然な変動を再現することができる人工内耳の音声変換方法及び人工内 耳を提供することにある。
課題を解決するための手段
[0006] 請求項 1記載の人工内耳の音声変換方法は、所定のサンプリング期間である信号 フレーム内で、音声情報を、複数の帯域通過フィルターを用いて周波数帯域毎に峻 別した後、対応する周波数帯域のチャネルの情報を音声情報に付加した後、チヤネ ル毎に、 1つのチャネル内で信号レベルの大きい音声情報を残すことにより、刺激パ ノレスの数を 1チャネルに許容された頻度となるように調整し、さらに、チャネル毎に残 されたすべての音声情報の中から、信号レベルの大きい音声情報を残すことにより、 刺激パルスの数をすベてのチャネルの全体で許容された頻度となるように調整した 後、残された音声情報を、チャネルに対応する電極に送ることにより、刺激パルスを 発生させることを特徴とする。
尚、本明細書中、便宜上「音声」と表現しているが、人間が発する声に限られず、人 間が可聴な音響を指すものとする。
[0007] 請求項 2記載の人工内耳の音声変換方法は、チャネル毎に刺激パルスの頻度を 調整するとき、 1つのチャネル内で、 1つの刺激ノ^レスだけの存在が許された期間内 に、複数の音声情報が存在する場合、最大の信号レベルの音声情報のみを残すこと を特徴とする。
[0008] 請求項 3記載の人工内耳の音声変換方法は、すべてのチャネルの刺激パルスの 頻度を調整するとき、チャネル相互間で、 1つの刺激パルスだけの存在が許された期 間内に、複数の音声情報が存在する場合、最大の信号レベルの音声情報のみを残 すことを特徴とする。
[0009] 請求項 4記載の人工内耳は、所定のサンプリング期間である信号フレーム内で、音 声情報を、複数の帯域通過フィルターを用いて周波数帯域毎に峻別した後、対応す る周波数帯域のチャネルの情報を音声情報に付加するチャネル情報付加手段と、 信号フレーム内で、チャネル毎に、 1つのチャネル内で信号レベルの大きい音声情 報を残すことにより、刺激ノ^レスの数を 1チャネルに許容された頻度となるように調整 するチャネル内刺激頻度調整手段と、信号フレーム内で、チャネル毎に残されたす ベての音声情報の中から、信号レベルの大きい音声情報を残すことにより、刺激パ ルスの数をすベてのチャネルの全体で許容された頻度となるように調整するチャネル 間刺激頻度調整手段と、残された音声情報を、刺激パルスに変換してチャネルに対 応する電極に送る刺激パルス発生手段とを備えることを特徴とする。
[0010] 請求項 5記載の人工内耳は、チャネル内刺激頻度調整手段が、 1つのチャネル内 で、 1つの刺激パルスだけの存在が許された期間内に、複数の音声情報が存在する 場合、最大の信号レベルの音声情報のみを残すことを特徴とする。
[0011] 請求項 6記載の人工内耳は、チャネル間刺激頻度調整手段が、チャネル相互間で 、 1つの刺激パルスだけの存在が許された期間内に、複数の音声情報が存在する場 合、最大の信号レベルの音声情報のみを残すことを特徴とする。
発明の効果
[0012] 請求項 1の発明によれば、刺激パルスの数を許容された頻度となるように調整する ために、音声情報の中力 信号レベルの大きレ、音声情報を残すようにしてレ、ることか ら、音声情報が生じたのと同じ順序と相対的時間関係とを保って再現されることから、 自然な音声に近い音声を人工内耳装用者に提供することができる。
[0013] 請求項 2及び請求項 3の発明によれば、 1つの刺激パルスだけの存在が許された 期間内で、最大の信号レベルの音声情報のみを残すようにしていることから、チヤネ ル毎の固有の周期性に近い値で確率的に自然な変動を再現することができる。
[0014] 請求項 4の発明によれば、刺激パルスの数を許容された頻度となるように調整する ために、音声情報の中力 信号レベルの大きレ、音声情報を残すようにしてレ、ることか ら、音声情報が生じたのと同じ順序と相対的時間関係とを保って再現されることから、 自然な音声に近い音声を人工内耳装用者に提供することができる。
[0015] 請求項 5及び請求項 6の発明によれば、 1つの刺激パルスだけの存在が許された 期間内で、最大の信号レベルの音声情報のみを残すようにしていることから、チヤネ ル毎の固有の周期性に近い値で確率的に自然な変動を再現することができる。 発明を実施するための最良の形態
[0016] 以下、本発明の実施の形態について図面を参照しながら具体的に説明する。図 1 は、本発明に係る人工内耳の実施例を示す構成図である。図 2は同人工内耳の動 作の全体を示すフローチャート、図 3は同人工内耳のチャネル選択処理の動作を示 すフローチャート、図 4は同人工内耳のチャネル内刺激頻度調整手段の動作を示す フローチャート、図 5は同人工内耳のチャネル間刺激頻度調整手段の動作を示すフ ローチャートである。図 6は同人工内耳のチャネル選択処理の動作を示す説明図、 図 7は同人工内耳のチャネル内刺激頻度調整手段の動作を示す説明図、図 8は同 人工内耳のチャネル間刺激頻度調整手段の動作を示す説明図である。図 9は、同人 ェ内耳の動作を示す説明図である。
[0017] 図 1に示す人工内耳 1は、蝸牛 9内に電気的な刺激パルスを与えることにより、聴覚 の補強を行うものである。具体的には、外部の音声を電気信号として取り込むマイク 3 と、マイク 3を介してサンプリングされた音声情報を、刺激パルスに変換する音声処理 をプログラム的に行う音声プロセッサ 4と、身体の外部のアンテナを成す外部コイル 5 と、身体の内部のアンテナを成す内部コイル 6と、外部コイル 5及び内部コイル 6を介 して音声プロセッサ 4から送られてくる音声情報を電気的な刺激パルスに変換する刺 激ユニット 7と、蝸牛 9内に設けられ実際に刺激パルスを出力する複数の電極 8a— 8 dからなる電極アレイ 8とを備えている。電極 8a 8dが発する電流によって、聴神経 の末端が刺激され、音として知覚されることになる。
[0018] 電極アレイ 8の電極 8a— 8dは、実際には 22個程度設けられており、使用者の状態 に応じて使い分けられる可能性のあるものである。電極 8a 8dは、全可聴音声域を M個の帯域に分割してチャネルとし、そのチャネルにそれぞれ対応した電極となって レ、る。尚、本実施の形態の説明においては、電極 8a— 8dの 4つを用いた場合で説 明を行うが、使用態様はこれに限られたものではない。この電極 8a— 8dの具体例を 示すと、電極 8aは 21番目(チヤネノレ 21 (ch. 21) )の電極であり中心周波数が約 622 6Hzで、電極 8bは 20番目(チヤネノレ 20 (ch. 20) )の電極であり中心周波数が約 53 14Hzで、電極 8cは 19番目(チヤネノレ 19 (ch. 19) )の電極であり中心周波数が約 9 07. 1Hzで、電極 8dは 3番目(チャネル 3 (ch. 3) )の電極であり中心周波数が約 46 6. 5Hzである。
[0019] 次に、本実施の形態における人工内耳 1の動作を説明する。尚、以下の説明で括 弧内の符号は、図 2—図 5に示すフローチャートの符号に対応している。
[0020] まず、動作の全体を説明すると、マイク 3で取り込まれた音声情報である信号 Sは、 高域強調フィルターで整形され (S101)、次に帯域通過フィルタ一群を通過する(S1 02)。この帯域通過フィルタ一群では、所定の周波数帯域毎に峻別し、対応する周 波数帯域のチャネルの情報を音声情報に付加することになる。すなわち、帯域通過 フィルタ一群によりチャネル情報付加手段が構成されている。そして、各チャネル毎 の半波整流器で所望でデータ形式に整え(S103)、チャネルの情報、時間の情報、 信号レベルの情報とがー体となった音声情報を生成し、それを振幅時間マトリックス ( ATM)として取得する。下記の数 1は、 ATMを表した数式である。この数 1中の I及 び Mはチャネルの番号であり、 T及び Nは、その音声情報が出現する時間情報を示 している。
[0021] [数 1]
/ = {1,2,3,..., } Τ = {ΐ,2,3;
Figure imgf000007_0001
[0022] 尚、 ATMに取得される音声情報は、所定で固定のサンプリング期間である信号フ レーム内のものであり、信号フレーム毎に順次以下の処理が繰り返されていくことに なる。参考までに、本実施の形態の信号フレームの長さは、約 10mSである。この信 号フレームの長さは、 10mSに限られるものではなぐあまり長いと音声情報の再生に 遅れを生じ、音声の基本周期(声帯振動の周期)よりも短いと音声情報を検出できな いので、これらを考慮し適宜定められる性格のものである。
[0023] 次に、 ATMの音声情報から、実際に出力する刺激パルスに必要な音声情報を抽 出する音声処理のためのチャネル選択処理を行う(S104)。このチャネル選択処理 の詳細は、後述する。次に、チャネル選択処理で得られた音声情報を、刺激パルス のダイナミックレンジに応じて最適な音感覚(ラウドネス)を得られる刺激ノ^レスとなる ように信号レベル (電流レベルを含む)の調整を行う(S105)。そして、得られた音声 情報を刺激ユニット 7に送り、刺激パルスを電極アレイ 8の各電極 8a 8dから出力さ せる(S106)。
[0024] 次に、チャネル選択処理(S 104)の詳細な処理を説明する。まず、チャネル選択処 理内のカウンタ kをリセットする(S201)。そして、 ATM内の音声情報を信号レベルの 大きい順に並び替える(S202)。この時点で、もっとも大きな値が 0であった場合には 、これ以上の処理が不要のため、処理を終える(S203— yes)。
[0025] そして、もっとも大きい音声情報の信号レベルを変数 pに、チャネルの情報を変数 c に、時間の情報を tにそれぞれ格納する(S204、 S205)。この最大値を検出し、変 k k
数 Pに格納するための数式が下記の数 2である。
k
[0026] [数 2]
Figure imgf000008_0001
[0027] 次に、信号フレーム内で、チャネル毎に、 1つのチャネル内で信号レベルの大きレヽ 音声情報を残すことにより、刺激ノ^レスの数を 1チャネルに許容された頻度(刺激レ ート)となるように調整するチャネル内刺激頻度調整を行う(S206)。
[0028] 具体的には、図 7を用いて説明する。図 7 (a)は、チャネル k (c )の処理前の音声情 k
報であり、横軸が時間 tを表し、縦軸が信号レベル pを表している。そして、横軸の目 盛りは、サンプリングレートを表している。すなわち、横軸の目盛り単位で処理前の音 声情報が存在することを意味する。サンプリングレートとして、例えば、 20kHzである 。また、 rはチャネル刺激レート Rc (例えば、 1800pps)の逆数であり、 1つの刺激パ ルスだけの存在が許された期間である。チャネル刺激レート Rcは、チャネルあたりの 刺激レートである。
[0029] そして、 1回のチャネル内刺激頻度調整においては、 tから rの時間だけ前の時点 k c (Bc)から、 力 の時間だけ後ろの時点(Ε^)までの期間で処理を行うようにする。 B を定める方法としては、 tからでを引いた値が 0よりも大きい場合には(S301— no)、 c k c
Bを tから rを引いた時間とし(S302)、 tから rを引いた値が 0よりも小さい場合には c k c k c
(S301— yes)、 Bを信号フレームの先頭として 0とする(S303)。 Eを定める方法とし ては、 tと rを足した値が信号フレームの最後の時間(wn)よりも小さい場合には(S3 k c
04— no)、 Bを tにでを足した時間とし(S305)、 tと rを足した値が信号フレームの最
c k c k c
後の時間(wn)よりも大きい場合には(S304— yes)、 Eを信号フレームの後端として wnとする(S306)。
[0030] そして、 B力 Eまでの期間で、最大の信号レベルの音声情報だけを残す処理を 行う。具体的に図 7で説明すると、図 7 (a)に示すように、 B力 Eの期間の中に、信 号レベルの大きな音声情報 p、 p力 ¾つ以上存在した場合であっても、最大の値を
a b
有する pのみを残して、他の音声情報は破棄するようにする。すなわち、図 7 (b)に示 すように、 B力 Eまでの期間で残るのは、信号 aのみである。この最大の値のみを 残すために、具体的には下記の数式である数 3を用いる(S307)。
[0031] [数 3] ,, = 0, for t e [Bc , tk [[j]tk , Ec ]
[0032] 尚、チャネル内刺激頻度調整を数式で表したのが数 4である。
[0033] [数 4]
a = 0 , where n - n < n T
m, n c R
[0034] 次に、チャネル内刺激頻度調整を施した音声情報に対し、信号フレーム内で、信 号レベルの大きい音声情報を残すことにより、刺激パルスの数をすベてのチャネルの 全体で許容された頻度 (インパルス刺激レート)となるように調整するチャネル間刺激 頻度調整(S207)を行う。
[0035] 具体的には、図 8を用いて説明する。図 8 (a)は、チャネル k (c )のチャネル内刺激 頻度調整を施した後の音声情報であり、横軸が時間 tを表し、縦軸が信号レベル pを 表している。そして、横軸の目盛りは、サンプリングレートを表している。すなわち、横 軸の目盛り単位で処理前の音声情報が存在することを意味する。サンプリングレート として、例えば、 20kHzである。また、 rはインパルス刺激レート Ri (例えば、 14400p ps)の逆数であり、 1つの刺激パルスだけの存在が許された期間である。インパルス 刺激レート Riは、すべてのチャネルを考慮した信号フレームあたりの刺激レートであ る。
[0036] そして、 1回のチャネル間刺激頻度調整においては、 tから rの時間だけ前の時点(
k i
B )から、 tから rの時間だけ後ろの時点(E )までの期間で処理を行うようにする。 B i k i i i を定める方法としては、 tから rを引いた値が 0よりも大きい場合には(S401— no)、 B k i i を tから rを引いた時間とし (S402)、tから rを引いた値が 0よりも小さい場合には(S k i k i
401— yes)、 Bを信号フレームの先頭として 0とする(S403)。 Eを定める方法として
i i
は、 tと rを足した値が信号フレームの最後の時間(wn)よりも小さい場合には(S404 k i
一 no)、 Bを tに rを足した時間とし(S405)、 tと rを足した値が信号フレームの最後
i k i k i
の時間(wn)よりも大きレ、場合には(S404— yes)、 Eを信号フレームの後端として wn とする(S406)。
[0037] そして、 B力 Eまでの期間で、最大の信号レベルの音声情報だけを残す処理を 行う。具体的に図 8で説明すると、図 8 (a)及び (b)に示すように、 B力 Eの期間の 中に、チャネル cでは信号 aがあり、チャネル c では信号 cの 2つが存在した場合、
k k+ 1
信号レベルの大きい信号 aのみを残して、信号 cの音声情報は破棄するようにする。 すなわち、図 8 (c)に示すように、 B力 までの期間で残るのは、信号 aにみである。 この最大の値のみを残すために、具体的には下記の数式である数 5を用いる(S407 )。尚、 R < Rである。
[0038] [数 5]
Figure imgf000010_0001
[0039] 尚、チャネル間刺激頻度調整を数式で表したのが数 6である。 [0040] [数 6]
a I e I , n T
Figure imgf000011_0001
[0041] この後、カウンタ kを加算しつつ、 1つの信号フレーム内で、上記の処理(S202 S 207)を繰り返すことになる(S208)。そして、次の tの期間のもっとも大きな値が 0で k
あった場合には、これ以上の処理が不要のため、処理を終える(S203— yes)。このこ とにより、カウンタ k毎に、音声情報の信号レベル p、チャネルの情報 cに、時間の情 k k
報 tが格納され、チャネル選択処理(S 104)から出力される。
k
[0042] 以上のようなチャネル選択処理(S104)の全体の処理の様子を示す図面が図 6で ある。図 6Aは、 4つのチャネルの処理前の音声情報をそれぞれ表している。尚、この 図は、 1つの信号フレームのみを表したものである。そして、図 6Bに示すように、この 信号フレーム内でもっとも大きい信号レベルを有する信号 pの周辺が除去され、次に
1
信号 Pがというように同一チャネル内で順次処理がされ、他のチャネルについても同
2
様に処理が行われる。そして、最終的に図 6Cに示すように、刺激ノ^レスとして必要な 音声情報のみが残ることとなる。
[0043] また、実際の実験結果を示したものが図 9である。 "utsu (「うつ」)"という音声を実際 に音声処理したもので、図 9Aに示すのが、処理前のスペクトログラムで、 B1— B3が 本実施の形態で示す方法で音声処理した結果の出力である。また、 B1— B3に対応 する C1一 C3は、従来の方法で音声処理した結果を比較のため記載している。 B1—
B3 (C1 C3)で、 B1 (C1)は、この信号フレーム全体の出力を示し、 B2 (C2)は、 B
1 (C1)の前方の縦長楕円部分を拡大したもので、 "utsu"の" u"の部分を示している
。また、 B3 (C3)は、 B1 (C1)の中程の縦長楕円部分を拡大したもので、 "utsu"の" t s"の部分を示している。
[0044] 従来は、サンプリングされた音声情報を漏れなく刺激として出力する方が、現実に 近い音声の再生が可能だと考えられてきたため、同時に発生した音声情報を遅らせ てでも出力していた。し力、しながら、この遅れが原因で不自然な音声の再現になって いた。この不自然な様子は、図 9C2や C3で示す出力が、規則的な出力になってしま つていること力らも明らかである。尚、本発明では、各チャネルにおける刺激パルスの 出力の周期性を、確率的に得ており、当該チャネルの中心周波数の逆数に相当する
[0045] これに対し、本願発明者は、サンプリングされた音声情報を漏れなく刺激として出力 しなくとも、信号レベルの大きい音声情報を選択して出力するだけでも、十分に理解 可能な音声の再現が可能なことを見いだした。さらに、本実施の形態で示す音声処 理方法では、再現する音声情報の相対的時間関係を保っているため、 自然な音声 に近レ、ものを人工内耳装用者に提供できるという効果を得ることができることとなる。
[0046] また、本実施の形態の人工内耳 1では、チャネル内刺激頻度調整及びチャネル間 刺激頻度調整で、 1つの刺激パルスだけの存在が許された期間内で、最大の信号レ ベルの音声情報のみを残すようにしていることから、チャネル毎の固有の周期性に近 い値で確率的に自然な変動を再現することができる。
[0047] 尚、本実施の形態の説明では、 1つの信号フレーム単位で頻度調整を行っている 力、他の信号フレームを考慮して頻度調整を行うことも可能である。
産業上の利用可能性
[0048] 本発明は、 自然な音声に近い音声を人工内耳装用者に提供することができる人工 内耳を実現するのに有用である。
図面の簡単な説明
[0049] [図 1]本発明に係る人工内耳の実施例を示す構成図である。
[図 2]同人工内耳の動作の全体を示すフローチャートである。
[図 3]同人工内耳のチャネル選択処理の動作を示すフローチャートである。
[図 4]同人工内耳のチャネル内刺激頻度調整手段の動作を示すフローチャートであ る。
[図 5]同人工内耳のチャネル間刺激頻度調整手段の動作を示すフローチャートであ る。
[図 6]同人工内耳のチャネル選択処理の動作を示す説明図である。
[図 7]同人工内耳のチャネル内刺激頻度調整手段の動作を示す説明図である。
[図 8]同人工内耳のチャネル間刺激頻度調整手段の動作を示す説明図である。 [図 9]同人工内耳の動作を示す説明図である。 符号の説明
1 人工内耳
3 マイク
4 音声プロセッサ
5 外部コイル
6 内部コイル
7 刺激ユニット
8 電極アレイ
8a— 8d—電極
9 蝸牛

Claims

請求の範囲
[1] 蝸牛内に複数の電極からなる電極アレイを設け、マイクを介してサンプリングされた 音声情報を該電極に送ることによって電気的な刺激パルスを生成し、該音声情報を 該刺激パルスとして該蝸牛に与えることにより聴覚の補強を行う人工内耳の音声変 換方法において、
所定のサンプリング期間である信号フレーム内で、
該音声情報を、複数の帯域通過フィルターを用いて周波数帯域毎に峻別した後、対 応する該周波数帯域のチャネルの情報を該音声情報に付加した後、
該チャネル毎に、 1つのチャネル内で信号レベルの大きい該音声情報を残すことに より、該刺激ノ^レスの数を 1チャネルに許容された頻度となるように調整し、 さらに、該チャネル毎に残されたすべての音声情報の中から、信号レベルの大きい 該音声情報を残すことにより、該刺激ノ^レスの数をすベてのチャネルの全体で許容 された頻度となるように調整した後、
該残された音声情報を、該チャネルに対応する該電極に送ることにより、該刺激パル スを発生させることを特徴とする人工内耳の音声変換方法。
[2] 前記チャネル毎に前記刺激パルスの頻度を調整するとき、
1つの該チャネル内で、 1つの該刺激パルスだけの存在が許された期間内に、複数 の前記音声情報が存在する場合、最大の信号レベルの該音声情報のみを残すこと を特徴とする請求項 1記載の人工内耳の音声変換方法。
[3] 前記すベてのチャネルの前記刺激パルスの頻度を調整するとき、
該チャネル相互間で、 1つの該刺激ノ^レスだけの存在が許された期間内に、複数の 前記音声情報が存在する場合、最大の信号レベルの該音声情報のみを残すことを 特徴とする請求項 1記載の人工内耳の音声変換方法。
[4] 蝸牛内に複数の電極からなる電極アレイを設け、マイクを介してサンプリングされた 音声情報を該電極に送ることによって電気的な刺激パルスを生成し、該音声情報を 該刺激パルスとして該蝸牛に与えることにより聴覚の補強を行う人工内耳において、 所定のサンプリング期間である信号フレーム内で、該音声情報を、複数の帯域通過 フィルターを用いて周波数帯域毎に峻別した後、対応する該周波数帯域のチャネル の情報を該音声情報に付加するチャネル情報付加手段と、
前記信号フレーム内で、該チャネル毎に、 1つのチャネル内で信号レベルの大きい 該音声情報を残すことにより、該刺激ノ^レスの数を 1チャネルに許容された頻度とな るように調整するチャネル内刺激頻度調整手段と、
前記信号フレーム内で、該チャネル毎に残されたすべての音声情報の中から、信号 レベルの大きい該音声情報を残すことにより、該刺激パルスの数をすベてのチャネル の全体で許容された頻度となるように調整するチャネル間刺激頻度調整手段と、 該残された音声情報を、該刺激パルスに変換して該チャネルに対応する該電極に送 る刺激パルス発生手段とを備えることを特徴とする人工内耳。
[5] 前記チャネル内刺激頻度調整手段は、 1つの前記チャネル内で、 1つの前記刺激 パルスだけの存在が許された期間内に、複数の前記音声情報が存在する場合、最 大の信号レベルの該音声情報のみを残すことを特徴とする請求項 4記載の人工内耳
[6] 前記チャネル間刺激頻度調整手段は、前記チャネル相互間で、 1つの前記刺激パ ノレスだけの存在が許された期間内に、複数の前記音声情報が存在する場合、最大 の信号レベルの該音声情報のみを残すことを特徴とする請求項 4記載の人工内耳。
PCT/JP2004/011077 2003-08-07 2004-08-03 人工内耳の音声変換方法 WO2005013870A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005512930A JP4295765B2 (ja) 2003-08-07 2004-08-03 人工内耳の音声変換方法
AU2004263021A AU2004263021B2 (en) 2003-08-07 2004-08-03 A cochlear implant and a method of speech conversion in a cochlear implant
CN2004800225584A CN1832713B (zh) 2003-08-07 2004-08-03 人工内耳的语音转换方法
BRPI0413308-0A BRPI0413308A (pt) 2003-08-07 2004-08-03 método de conversão de fala em um implante de cóclea
AT04748210T ATE517655T1 (de) 2003-08-07 2004-08-03 Verfahren zur sprachumwandlung für ein cochlea- implantat und cochlea-implantat
CA002533935A CA2533935A1 (en) 2003-08-07 2004-08-03 A method of speech conversion in a cochlear implant
EP04748210A EP1652498B1 (en) 2003-08-07 2004-08-03 Method of speech conversion for a cochlear implant and cochlear implant
US11/349,423 US7627379B2 (en) 2003-08-07 2006-02-07 Method of speech conversion in a cochlear implant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-206405 2003-08-07
JP2003206405 2003-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/349,423 Continuation US7627379B2 (en) 2003-08-07 2006-02-07 Method of speech conversion in a cochlear implant

Publications (1)

Publication Number Publication Date
WO2005013870A1 true WO2005013870A1 (ja) 2005-02-17

Family

ID=34131383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011077 WO2005013870A1 (ja) 2003-08-07 2004-08-03 人工内耳の音声変換方法

Country Status (9)

Country Link
US (1) US7627379B2 (ja)
EP (1) EP1652498B1 (ja)
JP (1) JP4295765B2 (ja)
CN (1) CN1832713B (ja)
AT (1) ATE517655T1 (ja)
AU (1) AU2004263021B2 (ja)
BR (1) BRPI0413308A (ja)
CA (1) CA2533935A1 (ja)
WO (1) WO2005013870A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545170A (ja) * 2005-06-29 2008-12-11 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 音声信号を分析する装置、方法、およびコンピュータ・プログラム
JP2011502653A (ja) * 2007-11-09 2011-01-27 メド−エル エレクトロメディジニシェ ゲラテ ゲーエムベーハー 拍動性移植蝸牛刺激装置の刺激ストラテジ
US8761893B2 (en) 2005-06-29 2014-06-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device, method and computer program for analyzing an audio signal

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358393B1 (en) * 2004-11-09 2016-06-07 Andres M. Lozano Stimulation methods and systems for treating an auditory dysfunction
US20110040350A1 (en) * 2005-05-05 2011-02-17 Griffith Glen A FSK telemetry for cochlear implant
US8285383B2 (en) * 2005-07-08 2012-10-09 Cochlear Limited Directional sound processing in a cochlear implant
US8027733B1 (en) * 2005-10-28 2011-09-27 Advanced Bionics, Llc Optimizing pitch allocation in a cochlear stimulation system
US20100331913A1 (en) * 2005-10-28 2010-12-30 Mann Alfred E Hybrid multi-function electrode array
JP2012503212A (ja) * 2008-09-19 2012-02-02 ニューサウス イノベーションズ ピーティーワイ リミテッド オーディオ信号分析方法
CN102342132B (zh) * 2009-01-20 2015-04-01 Med-El电气医疗器械有限公司 生成植入电极阵列的电极刺激信号的方法及耳蜗植入系统
AU2010210544B2 (en) * 2009-02-06 2012-12-13 Med-El Elektromedizinische Geraete Gmbh Phase triggered envelope sampler
CN101773429B (zh) * 2010-01-11 2013-01-16 杭州诺尔康神经电子科技有限公司 人工电子耳蜗以及一种双刺激速率言语处理方法
WO2011107175A1 (en) * 2010-03-04 2011-09-09 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for generating an electrode stimulation signal in a neural auditory prosthesis
JPWO2012002467A1 (ja) * 2010-06-29 2013-08-29 茂良 北澤 音楽情報処理装置、方法、プログラム、人工内耳用音楽情報処理システム、人工内耳用音楽情報製造方法及び媒体
KR101655152B1 (ko) * 2014-10-17 2016-09-07 서울대학교산학협력단 펄스 개수 변조를 이용한 전기 자극 방법 및 장치
EP3470112B1 (en) * 2015-01-13 2020-04-29 Oticon Medical A/S A cochlear implant
EP3326685B1 (en) * 2016-11-11 2019-08-14 Oticon Medical A/S Cochlear implant system for processing multiple sound source information
CN110992969B (zh) * 2019-11-06 2022-02-15 深圳信息职业技术学院 一种电子耳蜗的滤波器组配置方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001099470A1 (en) * 2000-06-19 2001-12-27 Cochlear Limited Sound processor for a cochlear implant
JP2003507143A (ja) * 1999-08-26 2003-02-25 メド−エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー チャネル特定サンプリングシーケンスに基づく電気的神経刺激
JP2003521337A (ja) * 2000-01-31 2003-07-15 メド−エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー 外耳に部分的に挿入可能な移植蝸牛システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3003315C2 (de) * 1980-01-30 1982-09-16 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Erzeugung von elektrokutanen Reizmustern als Träger akustischer Information und Gerät zur Durchführung dieses Verfahren
US4593696A (en) * 1985-01-17 1986-06-10 Hochmair Ingeborg Auditory stimulation using CW and pulsed signals
CN2103328U (zh) * 1991-06-25 1992-05-06 陕西省人民医院 一种植入式助听器
US5870436A (en) * 1997-01-02 1999-02-09 Raytheon Company Uniform discrete fourier transform filter parameter encoder
US6845271B2 (en) * 1998-06-03 2005-01-18 Neurocontrol Corporation Treatment of shoulder dysfunction using a percutaneous intramuscular stimulation system
CN1257696A (zh) * 1998-12-18 2000-06-28 李建文 接触式电子听觉器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507143A (ja) * 1999-08-26 2003-02-25 メド−エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー チャネル特定サンプリングシーケンスに基づく電気的神経刺激
JP2003521337A (ja) * 2000-01-31 2003-07-15 メド−エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー 外耳に部分的に挿入可能な移植蝸牛システム
WO2001099470A1 (en) * 2000-06-19 2001-12-27 Cochlear Limited Sound processor for a cochlear implant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545170A (ja) * 2005-06-29 2008-12-11 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 音声信号を分析する装置、方法、およびコンピュータ・プログラム
US7996212B2 (en) 2005-06-29 2011-08-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device, method and computer program for analyzing an audio signal
JP4767316B2 (ja) * 2005-06-29 2011-09-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 音声信号を分析する装置、方法、およびコンピュータ・プログラム
US8761893B2 (en) 2005-06-29 2014-06-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device, method and computer program for analyzing an audio signal
JP2011502653A (ja) * 2007-11-09 2011-01-27 メド−エル エレクトロメディジニシェ ゲラテ ゲーエムベーハー 拍動性移植蝸牛刺激装置の刺激ストラテジ
KR101542271B1 (ko) 2007-11-09 2015-08-06 메드-엘 엘렉트로메디지니쉐 게라에테 게엠베하 이식용 기기

Also Published As

Publication number Publication date
BRPI0413308A (pt) 2006-10-10
CN1832713B (zh) 2010-05-12
JP4295765B2 (ja) 2009-07-15
US7627379B2 (en) 2009-12-01
CA2533935A1 (en) 2005-02-17
AU2004263021B2 (en) 2011-03-31
EP1652498A1 (en) 2006-05-03
ATE517655T1 (de) 2011-08-15
EP1652498A4 (en) 2007-07-25
US20060217784A1 (en) 2006-09-28
EP1652498B1 (en) 2011-07-27
AU2004263021A1 (en) 2005-02-17
JPWO2005013870A1 (ja) 2007-09-27
CN1832713A (zh) 2006-09-13

Similar Documents

Publication Publication Date Title
Loizou et al. The effect of parametric variations of cochlear implant processors on speech understanding
JP4295765B2 (ja) 人工内耳の音声変換方法
McDermott et al. A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant
US9511225B2 (en) Hearing system comprising an auditory prosthesis device and a hearing aid
EP1784047A2 (en) Sound-processing strategy for cochlear implants
US8260430B2 (en) Stimulation channel selection for a stimulating medical device
ES2831407T3 (es) Selección automática de reducción o realzado de sonidos transitorios
KR20120002524A (ko) 자극형 의료 장치의 자극 타이밍
Fu et al. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users
Başkent et al. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech
Hazrati et al. Reverberation suppression in cochlear implants using a blind channel-selection strategy
AU2014321433B2 (en) Dynamic stimulation channel selection
AU2016201242B2 (en) Stimulation strategy for an auditory device comprising an electrode array
AU2016285966A1 (en) Selective stimulation with cochlear implants
US8694114B2 (en) System and method for fine-structure processing for hearing assistance devices
CN107614058B (zh) 患者特定的频率调制适应
WO2009110243A2 (ja) 音声変換プロセッサの調整方法
Huang et al. Combination and comparison of sound coding strategies using cochlear implant simulation with mandarin speech
CN108141201B (zh) 使用活动轮廓模型用于听力植入物声音编码的谐波频率估计
CN110772713B (zh) 具有改进的用于确定时间精细结构参数的方法的耳蜗刺激系统
CN114073818A (zh) 具有优化的帧编码的耳蜗植入系统
RU2657941C1 (ru) Способ кодирования стимулирующего сигнала в кохлеарном импланте
CN113230534B (zh) 一种应用双耳分频的虚拟电极技术的人工耳蜗
Srinivas et al. Continuous Interleaved Sampled (CIS) Signal Processing Strategy for Cochlear Implants MATLAB Simulation Program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022558.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004748210

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2533935

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004263021

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11349423

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004263021

Country of ref document: AU

Date of ref document: 20040803

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2005512930

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004748210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11349423

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0413308

Country of ref document: BR