WO2005010594A1 - Optical filter, imager, and method for manufacturing optical filter - Google Patents

Optical filter, imager, and method for manufacturing optical filter Download PDF

Info

Publication number
WO2005010594A1
WO2005010594A1 PCT/JP2003/009476 JP0309476W WO2005010594A1 WO 2005010594 A1 WO2005010594 A1 WO 2005010594A1 JP 0309476 W JP0309476 W JP 0309476W WO 2005010594 A1 WO2005010594 A1 WO 2005010594A1
Authority
WO
WIPO (PCT)
Prior art keywords
birefringent
region
birefringent region
optical filter
light
Prior art date
Application number
PCT/JP2003/009476
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Aritake
Original Assignee
Fujitsu Limited
Fujitsu Media Devices Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited, Fujitsu Media Devices Limited filed Critical Fujitsu Limited
Priority to AU2003248124A priority Critical patent/AU2003248124A1/en
Priority to PCT/JP2003/009476 priority patent/WO2005010594A1/en
Publication of WO2005010594A1 publication Critical patent/WO2005010594A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters

Definitions

  • optical filter imaging device, and method of manufacturing optical filter
  • the present invention is directed to a third birefringent region in which a traveling speed changes according to a vibration direction of a light wave incident between a first birefringent region and a second birefringent region, each of which separates an incident light wave into two light waves.
  • the present invention relates to an optical filter for filtering a predetermined spatial frequency component of the light wave, an imaging device including the optical filter, and a method for manufacturing the optical filter.
  • the present invention relates to a high-performance optical filter that can be easily manufactured at a low cost even if it is thin, an imaging device provided with the optical filter, and a method of manufacturing the optical filter. Background art
  • an imaging apparatus such as a digital still camera, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) power s for Rere et al .; Rereru Te t.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • CCDs and CMOSs are semiconductor light receiving elements that convert optical information into electrical signals.
  • an imaging device a plurality of CCDs or CMs that are two-dimensionally arranged vertically and horizontally in correspondence with pixels are used as an area sensor.
  • each CCD or CMOS signal is spatially arranged at a predetermined pixel pitch together with a desired color filter, when an image including a high frequency component equal to or higher than the pixel pitch is captured, the moiré pattern is reduced. ⁇ ⁇ ⁇ There was a problem that pseudo colors were generated.
  • FIG. 13 is a diagram showing a schematic configuration of the above-described conventional imaging apparatus.
  • the optical system of the imaging device for imaging the imaging object 10 includes a lens 2. 0, an optical low-pass filter 40, and an area sensor 50.
  • the lens 20 is a lens that collects incident light from the imaging target 10 and guides the light to the optical low-pass filter 40.
  • the optical low-pass filter 40 is an optical filter that transmits only a light component having a specific spatial frequency in incident light, and is made of laminated birefringent materials cut out in different directions with respect to the crystal axis.
  • FIG. 14 is a diagram for explaining the principle of light beam separation of the optical low-pass filter 40.
  • the birefringent plate 1 is a crystal plate of quartz or lithium niobate (L i N b 0 3) or Ranaru thickness d, are cut at an angle ⁇ with respect to the crystal axis 2 It has an optical property of birefringence.
  • Birefringence refers to a phenomenon in which the light refracted at the boundary surface of the birefringent plate 1 becomes two instead of one. That is, when the incident light P i is incident on one end surface of the birefringent plate 1, it is separated into two polarized lights with a separation angle ⁇ along the fast axis and the slow axis based on the refractive index ellipsoid 3, and the birefringence The ordinary light Pa and the extraordinary light Pb are emitted with a separation distance X by the other end surface of the plate 1.
  • FIG. 15 is a diagram showing a configuration of a conventional optical low-pass filter 40.
  • FIG. 6A shows a case where an optical low-pass filter 40 is formed by using two birefringent plates 47 and 48.
  • the two birefringent plates 47 and 48 form an angle of 45 degrees between the projected optical axes when their optical axes are projected on a plane perpendicular to the traveling direction of the light wave. It is joined so that it may become. Therefore, the incident light P i is divided into four, and is detected by the respective light receiving elements 50 i to 50 n of the area sensor 50 in a parallelogram type spatial separation pattern.
  • a one-pass filter 40 is constructed by placing a quarter-wave plate between the two birefringent plates 1 so that the spatial separation pattern of the incident light Pi is square. Has been done in the past.
  • FIG. 15 (b) shows a case where an optical low-pass filter 40 is configured by disposing a quarter-wave plate 41 between two birefringent plates 42 and 43.
  • the two birefringent plates 42 and 43 have an angle between the projected optical axes of 90 when the respective optical axes are projected on a plane perpendicular to the traveling direction of the light wave. Put the rooster in the right position.
  • each of the separated incident light P i passes through the birefringent plate 43 to be further separated into two, and is applied to each light receiving element 5 1 1 n of the area sensor 50 in a square-shaped spatial separation pattern. Each is detected.
  • FIG. 16 is a diagram showing the configuration of the optical low-pass filter 40 shown in FIG. 15 (b).
  • Fig. 16 (a) shows the case where a single-pass filter 40 is constructed using quartz as the material of the birefringent plates 42 and 43.
  • Fig. 16 (b) shows the birefringence. This is a case where an optical low-pass filter 40 is formed by using lithium niobate as the material of the plates 42 and 43.
  • the optical low-pass finoleta 40 using quartz for the birefringent plates 42 and 43 has an AR (Antireflection) coat 45.
  • wave plate 4 1, the birefringent plate 4 3 and AR coating 4 5 2 are stacked.
  • AR coating 4 5 ⁇ and 4 5 2 are coated membrane suppress reflection of incident light P i.
  • the birefringent plates 42 and 43 are quartz, which is one of the birefringent crystals, and are cut out at a predetermined angle with respect to the crystal axis.
  • the quarter-wave plate 41 converts linearly polarized light into circularly polarized light.
  • the birefringent plate 4 2 and the quarter-wave plate 4 1 are joined using an adhesive 4 4 Has been.
  • the birefringent plate 4 3 and the quarter-wave plate 4 1, are joined by an adhesive 4 4 2.
  • the optical low-pass filter 40 using lithium niobate for the birefringent plates 42 and 43 is composed of an AR coat 45 or a birefringent plate 42 Tsuchinguko one DOO 4 6 i and 4 6 2, quarter-wave plate 4 1, matching coat 4 6 3 and 4 6 4, the birefringent plate 4 3 and AR coating 4 5 2 are stacked.
  • Matching coat 4 6 I ⁇ 4 6 by matching the refractive index between the birefringent plate 4 2 and 4 3 and the adhesive 4 6 ⁇ Contact and 4 6 2, the reflection of incident light P i Suppress Coated film.
  • the birefringent plate 42 coated with the matching coat 46 and the quarter-wave plate 41 coated with the matching coat 46 2 are joined using an adhesive 44 i. I have.
  • the matching coat 4 6 3 1 wave plate 4 quarter coated is a birefringent plate 4 3 to the matching coat 4 6 4 is coated is joined by an adhesive 4 4 2 I have.
  • FIG. 17 is a diagram showing an example of the relationship between the incident light wavelength and the transmitted light intensity in the quarter-wave plate 41.
  • FIG. 17 (a) shows a case where the quarter-wave plate 41 is made of a crystal having a thickness of 0.5 mm.
  • FIG. 17 (b) shows a case where the quarter-wave plate 41 is formed. 1 This is the case where the thickness is made of lithium niobate having a thickness of 0.2 mm.
  • the intensity of the incident light P i with respect to the optical low-pass filter 40 is set to 1, and before the incident light P i is incident on the quarter-wave plate 41, the action of the birefringent plate 42 is performed. Therefore, the transmitted light intensity per transmitted light is 0.5 at the maximum.
  • the transmitted light intensity changes depending on the wavelength, and the color tone of the captured image is different from the actual color tone.
  • Patent Document 3 See, for example, Patent Document 3. In order to improve this, it is necessary to further increase the thickness of the quarter-wave plate 41.
  • the degree of birefringence is larger than that of quartz, so that the transmitted light intensity is small when the wavelength changes slightly. Change drastically. Therefore, the wavelength dependence of the transmitted light intensity can be apparently reduced.
  • Patent Document 3 Patent Document 3
  • Patent Document 4 Patent Document 4
  • Patent Documents 1 to 4 when manufacturing the optical low-pass filter 40, after forming a quarter-wave plate, it is bonded to a birefringent plate with an adhesive or the like. However, there is a problem that the number of manufacturing processes increases and the manufacturing cost increases.
  • Patent Document 3 discloses an optical low-pass filter using a very thin quarter-wave plate having a thickness of about 10 to 5 m and having a small wavelength dependence of transmitted light intensity. It was very difficult to manufacture an optical filter by manufacturing a thin quarter-wave plate and joining it to a birefringent plate, which led to an increase in manufacturing costs.
  • the present invention has been made to solve the above-described problems.
  • a high-performance optical filter that can be easily applied at the time of manufacturing and can be manufactured at a low cost even with a thin one, and an imaging device provided with the optical filter. It is an object to provide an apparatus and a method for manufacturing the optical filter. Disclosure of the invention
  • the present invention provides a first birefringent region for separating an incident light wave into two light waves, and a third birefringent region for converting the vibration direction of the incident light wave between the second birefringent region and the second birefringent region.
  • An optical filter for filtering a predetermined spatial frequency component of the light wave, wherein the third birefringent region has a birefringent structure including the first birefringent region and the second birefringent region. At least one surface of the region is formed directly on the surface.
  • the birefringent structure is directly formed as the third birefringent region on at least one of the surfaces of the first birefringent region and the second birefringent region, processing at the time of manufacturing is performed. It is possible to provide a high-performance optical filter that can be manufactured easily and inexpensively even if it is thin.
  • the birefringent structure may be formed in such a manner that at least one surface of the first birefringent region and the second birefringent region has a striped unevenness at an interval of a use wavelength or less. It is characterized by being realized.
  • the present invention is characterized in that the birefringent structure is realized by depositing an oblique deposition film on at least one surface of the first birefringent region and the second birefringent region.
  • the birefringent structure is formed directly on the surface of any one of the first birefringent region and the second birefringent region, and the birefringent structure is formed.
  • Table of the birefringent structure of the first birefringent region or the second birefringent region A surface and a surface of the first birefringent region or the second birefringent region where the birefringent structure is not formed are bonded by an adhesive.
  • the birefringent structure is formed on the surface of any of the birefringent regions, the surface of the birefringent structure and the surface of the first or second birefringent region should be bonded with an adhesive. Accordingly, it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin.
  • the birefringent structure is formed directly on both surfaces of the first birefringent region and the second birefringent region, and the birefringent structure is formed.
  • the surfaces of the birefringent structures of the first birefringent region and the second birefringent region are joined by an adhesive.
  • the birefringent structure when the birefringent structure is produced on the surface of both birefringent regions, the two birefringent structures are joined with an adhesive to facilitate processing at the time of production, and even a thin material. It is possible to provide a high-performance optical filter that can be manufactured at low cost.
  • the birefringent structure is formed directly on the surface of any one of the first birefringent region and the second birefringent region, and the birefringent structure is formed.
  • the surface of the hydrophilized birefringent structure and the surface of the hydrophilized first birefringent region or the surface of the second birefringent region are joined together. It is characterized by becoming.
  • the surface of the birefringent structure and the surface of the first birefringent region or the surface of the second birefringent region are subjected to a hydrophilic treatment.
  • bonding it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin.
  • the birefringent structure is formed directly on the surface of both the first birefringent region and the second birefringent region,
  • the surface of the created birefringent structure and the surface of the birefringent structure created in the second birefringent region are hydrophilized and joined by superposing the two hydrophilized birefringent structures. It is characterized by the following.
  • the surfaces of the two birefringent structures are subjected to a hydrophilic treatment and joined to facilitate processing during manufacturing, It is possible to provide a high-performance optical filter that can be manufactured inexpensively even if it is thin.
  • the birefringent structure is formed directly on the surface of the first birefringent region or the second birefringent region in a position shifted from the surface of the first birefringent region or the second birefringent region.
  • the first birefringent region or the second birefringent region formed and the first birefringent region or the second birefringent region where the birefringent structure has not been formed are activated. It is characterized by being joined by joining.
  • the birefringent structure is formed on the surface of the birefringent region, the surface activity of the birefringent structure and the surface of the first or second birefringent region are changed.
  • joining by dangling it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacture and can be manufactured at low cost even if it is thin.
  • the birefringent structure is formed directly on the surface of both the first birefringent region and the second birefringent region, and the birefringent structure is formed.
  • the first birefringent region and the second birefringent region are joined by a surface activation junction.
  • the birefringent structures are formed on the surfaces of both birefringent regions, the surfaces of the two birefringent structures are joined by surface activated bonding, so that the processing at the time of manufacturing is easy and even a thin one is used. It is possible to provide a high-performance optical filter that can be manufactured at low cost.
  • the first birefringent region and the second birefringent region are made of lithium niobate.
  • the first birefringent region and the second birefringent region are formed using quartz or the like.
  • the present invention is characterized in that an infrared power filter is joined to the first birefringent region or the second birefringent region.
  • the invention is characterized in that the third birefringent region separates the incident light wave by polarization.
  • the optical filter can exhibit a filtering function, and can be easily processed at the time of manufacture, and even if it is thin, it is a high-performance optical filter that can be manufactured at low cost. Can be provided.
  • a product of a difference between a refractive index of ordinary light and a refractive index of extraordinary light and an optical path length of the birefringent region is an odd number that is approximately one quarter of a wavelength used. It is formed so as to be twice as large and converts the polarization state of the incident light wave from linearly polarized light to substantially circularly polarized light.
  • the optical filter can exhibit a filtering function, and can be easily processed at the time of manufacture, and can be manufactured at a low cost even if it is thin. Providing high performance optical filters it can. '
  • the third birefringent region includes a first birefringent portion and a second birefringent portion, and the optical axis of the first birefringent portion is projected on the plane.
  • the direction and the direction of the axis obtained by projecting the optical axis of the second birefringent region portion onto the plane are substantially 180 degrees, and the second birefringent portion is formed of the first birefringent portion.
  • the traveling direction of the separated light wave is changed by transmitting through the birefringent portion, and the separation distance between the light waves separated by the first birefringent portion is reduced.
  • the present invention provides an imaging lens on which a light wave is incident, an imaging device for receiving the light wave incident on the imaging lens and generating an electric signal, and disposed between the imaging lens and the imaging device;
  • An image pickup apparatus comprising: an optical filter configured to filter a predetermined spatial frequency component of the light wave, wherein the optical filter includes a first birefringent region and a second birefringence, each of which separates an incident light wave into two light waves.
  • a third birefringent region for converting a vibration direction of a light wave incident from the first birefringent region between the regions, wherein the third birefringent region has a birefringent structure whose birefringent structure is the first birefringent region.
  • at least one surface of the second birefringent region is formed directly on the surface.
  • the birefringent structure is directly formed as a third birefringent region on at least one surface of the first birefringent region and the second birefringent region. It is possible to provide an imaging device having a high-performance optical filter that can be easily manufactured at a low cost even if it is thin.
  • the present invention provides a third birefringent region for converting a vibration direction of an incident light wave between a first birefringent region and a second birefringent region for separating an incident light wave into two light waves, respectively.
  • a birefringent structure is directly formed as a third birefringent region on the surface, which facilitates processing during manufacturing. It is possible to manufacture even a thin optical filter at low cost.
  • FIG. 1 is a diagram showing a configuration of an optical low-pass filter 70 according to the present invention
  • FIG. 2 is a diagram specifically explaining the function of the optical low-pass filter 70 described in FIG.
  • Figure 3 is a view showing a deposition method for depositing a birefringent plate 7 2 to the first birefringent film portion 71 and the second birefringent film portion 7 1 2, Fig. 4,
  • FIG. 1 FIG. 5 is a diagram showing an example of the relationship between the wavelength of a light wave and the intensity of transmitted light in the birefringent film 71 shown in FIG. 5, and
  • FIG. FIG. 6 is a diagram for explaining a method of integrating the plates 73, FIG.
  • FIG. 6 is a diagram showing a structure of a birefringent plate 75 according to the second embodiment
  • FIG. 7 is a diagram shown in FIG. and is a diagram showing an example of a relationship between the wavelength and the transmitted light intensity at the birefringent structure
  • FIG. 8 is one birefringent plate 7 5 i or birefringent plate 7 5 2 having birefringence structure on the surface
  • FIG. 9 is a diagram illustrating the function of an optical low-pass filter 70 according to the third embodiment.
  • FIG. 10 is a diagram illustrating a birefringent film on a birefringent plate 72.
  • FIG. 11 is a view for explaining a vapor deposition method for vapor-depositing 76.
  • FIG. 11 is a diagram showing an example of joining or bonding a birefringent film 76 processed on the surface of a birefringent plate 72 and a birefringent plate 73.
  • FIG. 12 is a diagram for explaining the Eich method
  • FIG. 12 is a diagram showing a configuration of an imaging device 200 having the optical low-pass filter described in Embodiment 1, 2, or 3
  • FIG. FIG. 14 is a diagram illustrating a schematic configuration of a conventional imaging device.
  • FIG. 14 is a diagram illustrating the principle of light beam separation of the optical low-pass filter 40.
  • FIG. 15 is a diagram illustrating the conventional optical low-pass filter 40.
  • FIG. 16 is a diagram showing a configuration of the optical low-pass filter 40 shown in FIG. 15 (b), and FIG. Is 4 minutes
  • FIG. 4 is a diagram showing an example of the relationship between the incident light wavelength and the transmitted light intensity in the one-wavelength plate 41 of FIG. BEST MODE FOR CARRYING OUT THE
  • FIG. 2 is a diagram showing a configuration of such an optical low-pass filter 70.
  • This optical low-pass filter 70 is used in place of the optical low-pass filter 40 shown in FIG.
  • this optical low-pass filter 70 has A R (a)
  • Coat 7 4 birefringent plate 7 2 (first birefringent region), birefringent film 7 1 (third birefringent region), birefringent plate 7 3 (second birefringent region) and AR coating G 7 4 2 are laminated.
  • AR coating 7 and 7 4 2 is a coated membrane suppress reflection of incident light P i.
  • the birefringent plates 72 and 73 are quartz, which is one of the birefringent crystals, and are cut out at a predetermined angle with respect to the crystal axis.
  • the birefringent plates 72 and 73 are formed from quartz, but the birefringent plates 72 and 73 may be formed using lithium niobate. By using lithium niobate, the optical low-pass filter 70 can be realized even thinner than in the case of quartz.
  • the birefringent plates 72 and 73 are designed such that when the respective optical axes are projected on a plane perpendicular to the traveling direction of the light wave, the angle between the projected optical axes is 90 degrees. Placed in
  • the separation distance X is determined so as to conform to the distance between the light receiving elements in the area sensor 50, and the thickness d and the cutout angle ⁇ satisfy the relational expressions of the expressions (1) and (2).
  • the optical low-pass filter 40 having a desired function can be manufactured.
  • a commercially available birefringent plate 1 having a cutout angle 0 of 38 degrees or 26 degrees may be used, but is not limited to this. Instead, the birefringent plate 1 satisfying the expressions (1) and (2) and having various cutting angles ⁇ can be used.
  • the birefringent film 71 is a thin layer having a function of converting linearly polarized light of a light wave transmitted through the birefringent plate 72 into circularly polarized light and transmitting the birefringent plate 73.
  • the birefringent film 71 is formed by depositing a metal oxide on at least one surface of the birefringent plate 72 or the birefringent plate 73 using an oblique evaporation method.
  • the oblique deposition method is a method of forming a birefringent deposited film by depositing a metal oxide on a substrate in an oblique direction.
  • the metal oxide depositing dioxide Kei element S i 0 2
  • This is achieved by using a metal oxide having a refractive index similar to that of the birefringent plates 72 and 73. This is for suppressing the reflection of the light wave at the interface.
  • birefringent plate 7 2 or 7 3 are formed by lithium niobate, for the same reason, - Gosani ⁇ tantalum having O Bed lithium and similar refractive index (T a 2 o 5) Is selected as the metal oxide to be deposited.
  • the optical axis of the birefringent plate 72 is projected in the direction of the axis projected onto a plane perpendicular to the traveling direction of the light wave. is an X-direction 6 i, the direction of the axis projected in the plane perpendicular to the traveling direction of the light wave to the optical axis of the birefringent plate 7 3 is the y direction 6 2.
  • the birefringent film 71 has a function of converting linearly polarized light of the light wave transmitted through the birefringent plate 72 into circularly polarized light.
  • Each of the incident light P i transmitted through the birefringent plate 72 and separated by the birefringent plate 73 is further separated by the birefringent plate 73, and each light receiving element 5 of the area sensor 50 has a square spatial separation pattern. Detected at 1 i to 5 l n respectively.
  • the birefringent film 71 is directly formed by depositing a metal oxide on at least one surface of the birefringent plate 72 or the birefringent plate 73, even an extremely thin birefringent film 71 can be easily formed.
  • the optical low-pass filter 70 can be manufactured at low cost.
  • FIG. 2 is a diagram specifically illustrating the function of the light port one-pass filter 70 described in FIG. As shown in FIG. 2 (a), this optical low-pass filter 70 has a birefringent plate 72 on which a birefringent film 71 is deposited and a birefringent plate 71 on which a birefringent film 71 is deposited. The birefringent plate 73 is joined.
  • Further birefringent film 71 is composed of a first birefringent film portion 71 i and the second birefringent film portion 7 1 2.
  • the first birefringent film portion 71 second birefringent film portion 7 1 2 is equal thickness d / 2, each having a function as a wave plate 8 minutes, two are combine In this way, it is configured to function as a quarter-wave plate.
  • the first birefringent film portion 7 1 i (' -n .)' m ⁇ (3)
  • a film is formed with a thickness that satisfies the relational expression, and a film that functions as an eighth wavelength plate is formed.
  • ne and n. Is the refractive index of the extraordinary light and ordinary light in the first birefringent film portion 7 1, m is an odd integer, and L is the wavelength used for the light wave (for example, 3 8 0 to 780 nm, etc.).
  • the thickness of the second birefringent film portion 7 1 2 satisfies the expression (3).
  • ne and n. Is the second birefringence J3, the refractive index of the extraordinary light and the ordinary light in the portion 71, m is an odd integer, and ⁇ is the wavelength used for the light wave, the thickness satisfying the formula (3) I do.
  • first birefringent film portion 71 of the second and birefringent film portion 7 1 2 birefringent plate 7 2 depositing a first birefringent film portion 71 of the second and birefringent film portion 7 1 2 birefringent plate 7 2, the first birefringent film portion 7 1 i
  • the second birefringent film portion 7 1 and 2 may be deposited on the birefringent plate 73.
  • first birefringent film portion 7 1 1 was deposited on the birefringent plate 7 2
  • second birefringent film portion 7 1 2 was deposited on the birefringent plate 7 3.
  • the birefringent plate 72 and the birefringent plate 73 may be joined.
  • Equation (4) if the value of the odd integer m is small, such as 1, the thickness is d is a very small value.
  • the thickness of the birefringent film 71 is extremely small as described above, it is extremely difficult to separately form the birefringent film 71 and bond it to the birefringent plate 72, etc.
  • a birefringent film 71 having such a thickness can be easily formed.
  • Figure 3 is a view showing a deposition method for depositing a birefringent plate 7 2 to the first birefringent film portion 71 i and the second birefringent film unit content of 7 1 2.
  • the Z direction coincides with the traveling direction of the light wave.
  • a first birefringent film portion 71 is vapor-deposited on the surface of the birefringent plate 72, and then a second birefringent film portion 71 is deposited on the surface of the deposited birefringent film portion 71.
  • the birefringent film portion 7 1 2 is deposited.
  • the irradiation direction of the metal oxide forms an angle of about 670 ° with the z-axis direction
  • the birefringent plate 7 Optical axis direction 2 and the direction in which the irradiation direction of the metal oxide is 45 degrees when projected on a plane perpendicular to the z-axis (irradiation source 1) Is irradiated.
  • the metal oxide is irradiated from the opposite direction (irradiation source 2) to the case where the first birefringent film portion 71 is deposited. That is, the irradiation direction of the metal oxide is opposite to the direction in which the first birefringent film portion 7 is deposited, and forms an angle of about 600 ° with the z-axis direction.
  • the optical axis direction 2 of 2 and the irradiation direction of the metal oxide are projected on a plane perpendicular to the z-axis, the metal oxide is irradiated from a direction having an angle of 45 degrees.
  • the light wave transmitted through the birefringent plate 72 and separated into two is transmitted by the birefringent film 71, Vibration direction condition
  • the light is converted from linearly polarized light to circularly polarized light, passes through the birefringent plate 73, and is separated into four light waves in a square shape.
  • FIG. 4 is a diagram showing an example of the relationship between the wavelength of a light wave and the intensity of transmitted light in the birefringent film 71 shown in FIG.
  • the intensity of the incident light P i is set to 1
  • the incident light P i is separated into two before entering the birefringent film 71, so that the transmitted light intensity is 0.5 at the maximum.
  • this example shows a case where the value of m is set to 1 in the equation (4), that is, a case where the birefringent film 71 is formed very thin.
  • FIG. 5 is a view for explaining a method of integrating the birefringent plate 72 or the birefringent plate 73 with the birefringent film 71 processed on the surface.
  • FIG. 5 (a) shows that the first birefringent portion 7 1 i and the second birefringent film portion 7 1 2 are continuously deposited on the birefringent plate 7 2, and then the adhesive 4 4
  • This is a method of bonding a birefringent plate 72 and a birefringent plate 73 on which a vapor deposition process has been performed by using the method.
  • adheresion means a state in which two surfaces are bonded by using an adhesive as a medium, and more specifically, by using an adhesive as a medium and by using chemical or physical force or both. This is the state where the surfaces are connected.
  • joining refers to a state in which two surfaces are joined without using an adhesive, and more specifically, a state in which two surfaces are joined by physical force without using an adhesive. That is.
  • each of the birefringent plates 72 or 73 or, if necessary, an infrared cut filter or the like is formed as one member by bonding or joining.
  • the infrared cut filter refers to a filter having a function of reflecting infrared light, a function of absorbing infrared light, or a function of both.
  • Fig. 5 (c) shows that the first birefringent film portion 71 and the second birefringent film portion 71 2 are successively deposited on the birefringent plate 72, and then directly bonded or room temperature bonded.
  • the birefringent plate 7 having been subjected to the vapor deposition process and the birefringent plate 73 are joined.
  • the direct bonding performs hydrophilic treatment of the second birefringent film portion 7 1 2 Oyopi birefringent plate 7 3 of the surface as a bonding surface, a second birefringent film portion 7 1 2 and the birefringent plate This is a method in which the two are joined by performing heat treatment after occupying 73 with the shellfish.
  • FIG. 5 (d) shows that the first birefringent film portion 71 S is vapor-deposited on the birefringent plate 72, and the second birefringent film portion 71 2 is vapor-deposited on the birefringent plate 73.
  • the first birefringent film part 7 1! This is a method in which the birefringent plate 72 on which the second birefringent film portion 71 is deposited and the birefringent plate 73 on which the second birefringent film portion 72 is deposited are joined.
  • An infrared cut filter for energizing infrared rays may be further joined or bonded to the optical low-pass filter 70 thus formed.
  • the infrared power filter is formed of a substrate such as an infrared absorbing glass or an infrared reflective coat of a multilayer film.
  • the birefringent plate 72 or the birefringent plate 73 is used. At least one surface was processed by oblique deposition to form a birefringent film 71 that converts the vibration state of the light wave transmitted through the birefringent plate 72 from linearly polarized light to circularly polarized light. It is possible to provide a high-performance optical low-pass filter 70 that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin. (Embodiment 2)
  • the birefringent film having the same function as the quarter-wave plate is formed by the oblique vapor deposition method.
  • the first birefringent plate is used.
  • irregularities may be formed on at least one surface of the second birefringent plate to provide a birefringent structure having a function equivalent to that of a quarter-wave plate. Therefore, in Embodiment 2, a case will be described in which a birefringent structure is provided by forming irregularities on at least one surface of the first birefringent plate and the second birefringent plate.
  • FIG. 6 is a diagram showing a structure of a birefringent plate 75 according to the second embodiment. As shown in the same figure (a), this birefringent plate 75 has its surface processed to form irregularities, and the concave and convex forms a birefringent structure having the same function as a quarter-wave plate. ing.
  • irregularities are formed on the surface of the birefringent plate 75 in the form of stripes at intervals smaller than the wavelength used.
  • the direction along the irregular stripes and the direction of the optical axis 2 of the birefringent plate 75 should be at an angle of 45 degrees when projected on a plane perpendicular to the traveling direction of the light wave. .
  • the direction of the optical axis of the birefringent structure formed on the surface of the birefringent plate 75 and the direction of the optical axis 2 of the birefringent plate 75 are determined when projected onto a plane perpendicular to the traveling direction of the light wave.
  • the angle is 45 degrees.
  • birefringent plate 75 By processing the surface of the birefringent plate 75 in this way, structural birefringence, which becomes the refractive index ellipsoid 3 as shown in FIG. 6 (b), is generated and formed on the surface of the birefringent plate 75.
  • the birefringent structure can exhibit the same function as a quarter-wave plate.
  • the birefringent plate 75 is made of lithium niobate, the thickness of the body of the birefringent plate 75 is 0.27 ⁇ m, and the width of the concave portion is ⁇ . ⁇ m.
  • the height of the convex portion formed on the surface of the birefringent plate 75 is d, and the total width of the concave portion and the convex portion is e.
  • the refractive index n e and extraordinary And the refractive index n of ordinary light are determined by the ratio of the width of the recess to e (in this case, 0.066 / e). And the refractive index difference n e — n. And the height d of the convex part is 4
  • is the use wavelength of the light wave
  • m is an odd integer.
  • Equation (5) when the value of the odd integer m is small, such as 1, the thickness d is a very small value.
  • the thickness of the birefringent structure is extremely small as described above, it is extremely difficult to separately form the birefringent structure and bond it to the birefringent plate as in the past. If used, a birefringent structure having such a thickness can be easily formed.
  • FIG. 7 is a diagram showing an example of the relationship between the wavelength of a light wave and the intensity of transmitted light in the birefringent structure shown in FIG.
  • the intensity of the incident light P i is set to 1, and the incident light P i is split into two before entering the birefringent structure, so that the transmitted light intensity becomes 0.5 at the maximum.
  • this example shows a case where the value of m in Equation (5) is 1, that is, a case where the birefringent structure is formed very thin.
  • the birefringent structure As shown in the figure, by forming the birefringent structure to be very thin while satisfying the expression (5), it is possible to reduce the fluctuation of the transmitted light intensity of the light wave transmitted through the birefringent structure. A low-cost, high-performance optical aperture one-pass filter can be realized.
  • FIG. 8 is a diagram illustrating an integrated method of the birefringent plate 7 5 i or birefringent plate 7 5 2 having birefringence structure on the surface.
  • FIG. 8 (a) shows a birefringent structure in which a birefringent structure having the function of a quarter-wave plate is formed on a birefringent plate 75, and then the birefringent structure is formed using an adhesive 44. This is a method of bonding the refraction plate 75 and the birefringence plate 73.
  • FIG. 8 (b) shows that the first birefringent structure is formed on the birefringent plate 75e.
  • This is a method of forming a birefringent structure having the function of a plate.
  • the irregularities are formed such that the directions of the stripes of the irregularities of the first birefringent structure and the second birefringent structure match.
  • the convex portion of the first birefringent structure and the convex portion of the second birefringent structure are formed so as to exhibit the function of a quarter-wave plate by joining them. Specifically, when the sum of the heights of the projections of both is d, the surface is processed so as to have a total height d that satisfies Equation (5). Thus, a birefringent structure having the following function can be formed.
  • FIG. 8 (b) shows a case where the height of the convex portion of the first birefringent structure is equal to the height of the convex portion of the second birefringent structure. Should be such that satisfies equation (5).
  • the case where the heights of the two birefringent structures are equal means that each birefringent structure has the function of a 1/8 wave plate.
  • Fig. 8 (c) shows that the birefringent plates 75 A birefringent structure having the function of a single-wavelength plate is formed, and then the birefringent plate 75 with the birefringent structure formed thereon and the birefringent plate 73 by direct bonding or room-temperature bonding. is there.
  • Figure 8 (d) is to form a first birefringent structure birefringent plate 7 5 E, also forming a second birefringent structure birefringent plate 7 5 2, then direct bonding or cold by joining, joining the birefringent plate 7 5 and the birefringent plate 7 5 2, it is a method of forming a birefringent structure having the function of a quarter wave plate.
  • the optical low-pass filter 70 thus formed may be further joined with an infrared cut filter for applying infrared light, and may be bonded to reduce noise due to infrared light. .
  • a low-pass filter 70 can be provided.
  • At least one surface of the first birefringent plate or the second birefringent bending plate is processed to have a function equivalent to that of a quarter-wave plate.
  • a region was formed, and the direction of vibration of the incident light wave was converted from linearly polarized light to circularly polarized light or elliptically polarized light.However, the birefringence region was configured so that the incident light wave was separated by polarized light. I'm sorry.
  • Embodiment 3 a case will be described in which a birefringent region between the first birefringent plate and the second birefringent plate is formed so as to convert the angle of linearly polarized light of an incident light wave.
  • FIG. 9 is a diagram for explaining the function of the optical low-pass filter 70 according to the third embodiment.
  • this optical low-pass filter 70 has a birefringent film 72 deposited on a birefringent plate 72, and a birefringent plate 72 on which a birefringent film 76 is deposited.
  • the bending plate 73 is joined.
  • the birefringent film 76 is deposited on the birefringent plate 72, but the birefringent film 76 may be deposited on the birefringent plate 73.
  • the birefringent film 76 By forming the birefringent film 76 as a thin film, the separation distance of the light waves in the birefringent film 76 can be reduced, and the square shown in FIG. A 4-point separation pattern of the mold can be obtained.
  • the thin birefringent film 76 can be easily realized by using an oblique evaporation method.
  • FIG. 10 is a view for explaining a vapor deposition method for vapor-depositing a birefringent film 76 on a birefringent plate 72.
  • the z direction coincides with the traveling direction of the light wave.
  • the irradiation direction of the metal oxide forms an angle of about 60 to 70 degrees with the Z- axis direction, and
  • the direction in which the optical axis direction 2 of the birefringent plate 72 and the irradiation direction of the metal oxide are projected at an angle of 45 degrees when projected on a plane perpendicular to the Z axis (irradiation source) Irradiate the dagger.
  • the birefringent film 76 can rotate the vibration direction of the light wave 72 incident on the birefringent plate 72 by 45 degrees, and the optical low-pass filter 70 described in FIG. Can be realized.
  • FIG. 11 shows a birefringent film 76 and a birefringent plate 73 formed on the surface of a birefringent plate 72.
  • FIG. 4 is a view for explaining a method of joining or adhering the two.
  • FIG. 11 (a) shows a birefringent film 72 deposited on a birefringent plate 72, and then a birefringent plate 72 with a birefringent film 76 deposited thereon using an adhesive 44. This is a method of bonding the refraction plate 73.
  • Fig. 11 (b) shows a birefringent film 72 deposited on a birefringent plate 72, and then birefringent with a birefringent plate 72 on which the birefringent film 76 is deposited by direct bonding or room temperature bonding. This is a method of joining the plate 73.
  • An infrared cut filter for cutting infrared rays may be further joined or adhered to the optical low-pass filter 70 formed in this way so as to reduce noise due to infrared rays.
  • the birefringent film 76 having a function of separating the light wave transmitted through the birefringent plate 72 in the direction of 45 degrees is formed by the birefringent plate 7 by an oblique evaporation method. Since it is formed directly on the birefringent plate 73 or the birefringent plate 73, it is possible to provide a high-performance optical low-pass filter 70 that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin.
  • the birefringent film 76 having a function of separating the light wave transmitted through the birefringent plate 72 in the direction of 45 degrees is formed by an oblique deposition method.
  • the optical low-pass filter for directly processing the surface of the birefringent plate to change the polarization state of the incident light wave has been described.
  • An imaging device can be configured using a CCD, a CMOS, or a CMOS area sensor.
  • an imaging device configured using the optical low-pass filter described in the first, second, or third embodiment, a lens, an area sensor, and the like is described. Will be explained.
  • FIG. 12 is a diagram illustrating a configuration of an imaging device 200 having the light-port one-pass filter described in Embodiment 1, 2, or 3. As shown in the figure, the image pickup apparatus 2 0 0 have area sensor 5 0, the optical low-pass filter 7 0, lens 8 0, an IR cut filter 9 0, the force per 1 0 0 i and 1 0 0 2 .
  • the area sensor 50 is a sensor in which a plurality of CCDs or CMOSs are two-dimensionally arranged vertically and horizontally in correspondence with the pixels, and the optical aperture one-pass filter 70 is provided by any one of the first to third embodiments. This is the optical low-pass filter described above.
  • the lens 80 is a lens that collects incident light from the imaging target and guides the light to the optical low-pass filter 70, and the infrared cut filter 90 is a filter for filtering infrared light.
  • the imaging device 200 having the lens 80 and the area sensor 50 is configured using the optical low-pass filter described in the first, second, or third embodiment. Therefore, by incorporating a high-performance optical low-pass filter 70 that is easy to process at the time of manufacturing and can be manufactured at low cost even if it is thin, an imaging device with low manufacturing cost can be provided.
  • quartz or lithium ebobate is used as the material of the birefringent plate.
  • the present invention is not limited to this, and various other birefringences may be used.
  • the materials shown can be used. In this case, the embodiment
  • the metal oxide deposited on the birefringent plate can be appropriately selected according to the material of the birefringent plate.
  • the optical axis direction of the birefringent region formed on the surface of the birefringent plate and the direction of the optical axis of the birefringent plate are projected on a plane perpendicular to the traveling direction of the light wave.
  • the birefringent region is formed so as to have an angle of 45 degrees.
  • the present invention is not limited to this, and the angle between the two optical axes is 45 degrees ⁇ 1. It may be within the range of 5 degrees. This is because within this range, the difference between the transmitted light intensities of the two light waves transmitted through the formed birefringent region is small, and does not pose a problem in practical use.
  • Embodiments 1 to 4 various values and shapes such as angles and dimensions are shown, but in practice the values and shapes are not strict, and each part of the optical filter is There is a possibility that an error may occur due to a problem of accuracy in manufacturing the device. (Effect of the present invention)
  • the first birefringent region which separates the incident light wave into two light waves
  • the third birefringent region which converts the vibration direction of the light wave incident between the second birefringent region and the second birefringent region.
  • An optical filter for filtering a predetermined spatial frequency component of a light wave wherein the third birefringent region has at least one of a first birefringent region and a second birefringent region. Since one surface is formed directly on the surface, there is an effect that it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacturing and that can be manufactured at a low cost even if it is thin.
  • an imaging lens into which a light wave is incident an imaging element that receives the light wave incident on the imaging lens to generate an electric signal, and is disposed between the imaging lens and the imaging element
  • An imaging device comprising an optical filter for filtering a predetermined spatial frequency component of a light wave, wherein the optical filter includes a first birefringent region and a second birefringent region for separating an incident light wave into two light waves, respectively.
  • a third birefringent region for converting a vibration direction of a light wave incident from the first birefringent region between the first birefringent region and the second birefringent region. Since at least one of the refraction areas is formed directly on the surface, the This makes it possible to provide an imaging device provided with a high-performance optical filter that can be easily manufactured and that can be manufactured at a low cost even if it is thin.
  • the third birefringent region for converting the vibration direction of the light wave incident between the first birefringent region and the second birefringent region for separating the incident light wave into two light waves, respectively.
  • a method of manufacturing an optical filter comprising: a first birefringent region; and a second birefringent region, wherein the third birefringent region is provided with a first birefringent region and a second birefringent region. Since the birefringent structure is formed directly on at least one of the surfaces, it is possible to easily perform processing at the time of manufacturing, and it is possible to manufacture even a thin optical filter at low cost. Play. Industrial applicability
  • the method of manufacturing an optical filter, an imaging device, and an optical filter according to the present invention is attached to a digital still camera, a camera for a mobile phone, or the like for the purpose of suppressing generation of false colors.
  • the present invention is suitable for an optical filter, an imaging device using the optical filter, and a method of manufacturing the optical filter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

An optical filter for filtering a predetermined spatial frequency component of a light wave, comprising a birefringent film (71) disposed between birefringent plates (72, 73) each for separating an incident light beam into two light beams and adapted to change the velocity of the incident light depending on the direction of the vibration of the light wave, wherein birefringent film portions (711, 712) constituting the birefringent film (71) are formed on at least one of the surfaces of the birefringent plates (72, 73), and the birefringent plates (72, 73) are so integrated into one piece that the birefringent film (71) formed on the surface and composed of the birefringent film portions (711, 712) is interposed therebetween.

Description

明 細 書 光フィルタ、 撮像装置および光フィルタの製造方法 技術分野  Description Optical filter, imaging device, and method of manufacturing optical filter
この発明は、 入射した光波をそれぞれ 2つの光波に分離する第 1の複屈折領域 および第 2の複屈折領域の間に入射した光波の振動方向により進行速度が変化す る第 3の複屈折領域を設けてなり、 該光波の所定の空間周波数成分をフィルタリ ングする光フィルタ、 その光フィルタを備えた撮像装置、 および、 その光フィル タの製造方法に関するものであり、 特に、 製造時における加工が容易で、 薄いも のでも安価に製造することのできる高性能な光フィルタ、 その光フィルタを備え た撮像装置、 および、 その光フィルタの製造方法に関するものである。 背景技術  The present invention is directed to a third birefringent region in which a traveling speed changes according to a vibration direction of a light wave incident between a first birefringent region and a second birefringent region, each of which separates an incident light wave into two light waves. The present invention relates to an optical filter for filtering a predetermined spatial frequency component of the light wave, an imaging device including the optical filter, and a method for manufacturing the optical filter. The present invention relates to a high-performance optical filter that can be easily manufactured at a low cost even if it is thin, an imaging device provided with the optical filter, and a method of manufacturing the optical filter. Background art
従来より、 デジタルスチルカメラ等の撮像装置においては、 撮像素子として C C D ( Charge Coupled Device ) や C M O S ( Complementary Metal Oxide Semiconductor) 力 s用レヽら; tてレヽる。 Conventionally, in an imaging apparatus such as a digital still camera, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) power s for Rere et al .; Rereru Te t.
この C C Dや CMO Sは、 光情報を電気信号に変換する半導体受光素子である 。 撮像装置では、 画素に対応させて縦横に二次元配列された複数の C C Dまたは CM〇 Sが、 エリアセンサとして用いられている。  These CCDs and CMOSs are semiconductor light receiving elements that convert optical information into electrical signals. In an imaging device, a plurality of CCDs or CMs that are two-dimensionally arranged vertically and horizontally in correspondence with pixels are used as an area sensor.
このエリアセンサにおいては、 各 C C Dまたは CMO S力 所望の色フィルタ とともに、 空間的に所定の画素ピッチをもって配置されているため、 該画素ピッ チ以上の高周波数成分を含む画像を撮像した場合、 モアレゃ擬似的な色が生じる という問題があった。  In this area sensor, since each CCD or CMOS signal is spatially arranged at a predetermined pixel pitch together with a desired color filter, when an image including a high frequency component equal to or higher than the pixel pitch is captured, the moiré pattern is reduced.あ っ た There was a problem that pseudo colors were generated.
そこで、 従来の撮像装置では、 上記問題を回避するために、 光ローパスフィル タが光学系に配置され、 所定の空間周波数の光成分のみを透過させるよう構成さ れている (たとえば、 特許文献 1、 2参照。 ) 。 第 1 3図は、 上述した従来の撮像装置の概略構成を示す図である。 第 1 3図 ( a ) の撮像装置の斜視図、 および、 第 1 3図 (b ) の平面図に示されるように、 撮像対象 1 0を撮像するための撮像装置の光学系は、 レンズ 2 0、 光ローパスフ イノレタ 4 0、 および、 エリアセンサ 5 0を有する。 Therefore, in order to avoid the above-mentioned problem, the conventional imaging apparatus is configured such that an optical low-pass filter is disposed in an optical system and transmits only a light component having a predetermined spatial frequency (for example, see Patent Document 1). See, 2.). FIG. 13 is a diagram showing a schematic configuration of the above-described conventional imaging apparatus. As shown in the perspective view of the imaging device in FIG. 13 (a) and the plan view in FIG. 13 (b), the optical system of the imaging device for imaging the imaging object 10 includes a lens 2. 0, an optical low-pass filter 40, and an area sensor 50.
レンズ 2 0は、 撮像対象 1 0からの入射光を集光し、 光ローパスフィルタ 4 0 へ導くレンズである。 光ローパスフィルタ 4 0は、 入射光における特定の空間周 波数の光成分のみを透過させる光フィルタであり、 結晶軸に対して異なる方向で 切り出された複屈折性の材料が張り合わされてなる。  The lens 20 is a lens that collects incident light from the imaging target 10 and guides the light to the optical low-pass filter 40. The optical low-pass filter 40 is an optical filter that transmits only a light component having a specific spatial frequency in incident light, and is made of laminated birefringent materials cut out in different directions with respect to the crystal axis.
第 1 4図は、 光ローパスフィルタ 4 0の光線分離の原理を説明する図である。 同図に示すように、 複屈折板 1は、 水晶やニオブ酸リチウム (L i N b 03 ) か らなる厚みが dの結晶板で、 結晶軸 2に対して角度 Θをもって切り出されており 、 複屈折性という光学的性質を有している。 FIG. 14 is a diagram for explaining the principle of light beam separation of the optical low-pass filter 40. As shown in the figure, the birefringent plate 1 is a crystal plate of quartz or lithium niobate (L i N b 0 3) or Ranaru thickness d, are cut at an angle Θ with respect to the crystal axis 2 It has an optical property of birefringence.
複屈折性は、 複屈折板 1の境界面で屈折する光が 1つではなく、 2つになる現 象をいう。 すなわち、 複屈折板 1の一端面に入射光 P iを入射させると、 屈折率 楕円体 3に基づく進相軸と遅相軸に沿って、 分離角 φをもって 2つの偏光に分解 され、 複屈折板 1の他端面により常光 P aおよび異常光 P bが、 分離距離 Xをも つて射出される。  Birefringence refers to a phenomenon in which the light refracted at the boundary surface of the birefringent plate 1 becomes two instead of one. That is, when the incident light P i is incident on one end surface of the birefringent plate 1, it is separated into two polarized lights with a separation angle φ along the fast axis and the slow axis based on the refractive index ellipsoid 3, and the birefringence The ordinary light Pa and the extraordinary light Pb are emitted with a separation distance X by the other end surface of the plate 1.
第 1 5図は、 従来の光ローパスフィルタ 4 0の構成を示す図である。 同図 (a ) は、 2枚の複屈折板 4 7および 4 8を用いて光ローパスフィルタ 4 0を構成し た場合を示している。  FIG. 15 is a diagram showing a configuration of a conventional optical low-pass filter 40. FIG. 6A shows a case where an optical low-pass filter 40 is formed by using two birefringent plates 47 and 48.
この場合、 2枚の複屈折板 4 7および 4 8は、 それぞれの光学軸が光波の進行 方向に垂直な平面に投影された場合に、 投影された光学軸間のなす角度が、 4 5 度となるように接合されている。 そのため、 入射光 P iは 4つに分離され、 平行 四辺形型の空間分離パターンで、 エリアセンサ 5 0の各受光素子 5 0 i〜 5 0 n にそれぞれ検知される。 In this case, the two birefringent plates 47 and 48 form an angle of 45 degrees between the projected optical axes when their optical axes are projected on a plane perpendicular to the traveling direction of the light wave. It is joined so that it may become. Therefore, the incident light P i is divided into four, and is detected by the respective light receiving elements 50 i to 50 n of the area sensor 50 in a parallelogram type spatial separation pattern.
ただし、 この構成では、 空間分離パターンが平行四辺形型と非対称であるので 、 方向によって空間周波数のフィルタリングの効果が異なり、 擬似的な色が生じ たり生じなかったりするという問題があつた。 However, in this configuration, since the spatial separation pattern is asymmetric with a parallelogram type, the effect of spatial frequency filtering differs depending on the direction, and a pseudo color occurs. There was a problem that it did or did not occur.
そこで、 入射光 P iの空間分離パターンが正方形型になるように、 2枚の複屈 折板 1の間に 4分の 1波長板を配置することにより、 光口一パスフィルタ 4 0を 構成することが従来おこなわれている。  Thus, a one-pass filter 40 is constructed by placing a quarter-wave plate between the two birefringent plates 1 so that the spatial separation pattern of the incident light Pi is square. Has been done in the past.
第 1 5図 (b ) は、 2枚の複屈折板 4 2および 4 3の間に 4分の 1波長板 4 1 を配置することにより光ローパスフィルタ 4 0を構成した場合を示している。 こ の場合、 2枚の複屈折板 4 2および 4 3は、 それぞれの光学軸が光波の進行方向 に垂直な平面に投影された場合に、 投影された光学軸間のなす角度が、 9 0度と なるように酉己置さ る。  FIG. 15 (b) shows a case where an optical low-pass filter 40 is configured by disposing a quarter-wave plate 41 between two birefringent plates 42 and 43. In this case, the two birefringent plates 42 and 43 have an angle between the projected optical axes of 90 when the respective optical axes are projected on a plane perpendicular to the traveling direction of the light wave. Put the rooster in the right position.
そして、 2枚の複屈折板 4 2および 4 3の間に直線偏光を円偏光に変換する 4 分の 1波長板 4 1を配置することにより、 複屈折板 4 2を透過して 2つに分離さ れた入射光 P iのそれぞれが、 複屈折板 4 3を透過することにより、 さらに 2つ ずつに分離され、 正方形型の空間分離パターンでェリアセンサ 5 0の各受光素子 5 1 1 nにそれぞれ検知される。 Then, by disposing a quarter-wave plate 41 for converting linearly polarized light into circularly polarized light between the two birefringent plates 42 and 43, the light passes through the birefringent plate 42 and becomes two. Each of the separated incident light P i passes through the birefringent plate 43 to be further separated into two, and is applied to each light receiving element 5 1 1 n of the area sensor 50 in a square-shaped spatial separation pattern. Each is detected.
第 1 6図は、 第 1 5図 (b ) に示した光ローパスフィルタ 4 0の構成を示す図 である。 第 1 6図 (a ) は、 複屈折板 4 2および 4 3の材料に水晶を用いて光口. 一パスフィルタ 4 0を構成した場合であり、 第 1 6図 (b ) は、 複屈折板 4 2お よび 4 3の材料にニオブ酸リチウムを用いて光ローパスフィルタ 4 0を構成した 場合である。  FIG. 16 is a diagram showing the configuration of the optical low-pass filter 40 shown in FIG. 15 (b). Fig. 16 (a) shows the case where a single-pass filter 40 is constructed using quartz as the material of the birefringent plates 42 and 43. Fig. 16 (b) shows the birefringence. This is a case where an optical low-pass filter 40 is formed by using lithium niobate as the material of the plates 42 and 43.
第 1 6図 (a ) に示すように、 複屈折板 4 2および 4 3に水晶を用いた光ロー パスフィノレタ 4 0は、 A R (Antireflection) コート 4 5い 複屈折板 4 2、 4 分の 1波長板 4 1、 複屈折板 4 3および ARコート 4 5 2が積層されてなる。 As shown in Fig. 16 (a), the optical low-pass finoleta 40 using quartz for the birefringent plates 42 and 43 has an AR (Antireflection) coat 45. wave plate 4 1, the birefringent plate 4 3 and AR coating 4 5 2 are stacked.
A Rコート 4 5丄および 4 5 2は、 入射光 P iの反射を抑えるコーティングさ れた膜である。 複屈折板 4 2および 4 3は、 複屈折結晶の一つである水晶であり 、 結晶軸に対して所定角度をもって切り出されている。 4分の 1波長板 4 1は、 直線偏光を円偏光に変換するものである。 AR coating 4 5丄and 4 5 2 are coated membrane suppress reflection of incident light P i. The birefringent plates 42 and 43 are quartz, which is one of the birefringent crystals, and are cut out at a predetermined angle with respect to the crystal axis. The quarter-wave plate 41 converts linearly polarized light into circularly polarized light.
ここで、 複屈折板 4 2と 4分の 1波長板 4 1とは、 接着剤 4 4 を用いて接合 されている。 同様に、 複屈折板 4 3と 4分の 1波長板 4 1とは、 接着剤 4 4 2を 用いて接合されている。 Here, the birefringent plate 4 2 and the quarter-wave plate 4 1 are joined using an adhesive 4 4 Has been. Similarly, the birefringent plate 4 3 and the quarter-wave plate 4 1, are joined by an adhesive 4 4 2.
また、 第 1 6図 (b ) に示すように、 複屈折板 4 2および 4 3にニオブ酸リチ ゥムを用いた光ローパスフィルタ 4 0は、 A Rコート 4 5い 複屈折板 4 2、 マ ツチングコ一ト 4 6 iおよび 4 6 2、 4分の 1波長板 4 1、 マッチングコート 4 6 3および 4 6 4、 複屈折板 4 3および ARコート 4 5 2が積層されてなる。 As shown in FIG. 16 (b), the optical low-pass filter 40 using lithium niobate for the birefringent plates 42 and 43 is composed of an AR coat 45 or a birefringent plate 42 Tsuchinguko one DOO 4 6 i and 4 6 2, quarter-wave plate 4 1, matching coat 4 6 3 and 4 6 4, the birefringent plate 4 3 and AR coating 4 5 2 are stacked.
マッチングコート 4 6 i〜4 6 4は、 複屈折板 4 2および 4 3と接着剤 4 6丄お よび 4 6 2との間で屈折率の整合をとることにより、 入射光 P iの反射を抑える コーティングされた膜である。 Matching coat 4 6 I~4 6 4, by matching the refractive index between the birefringent plate 4 2 and 4 3 and the adhesive 4 6丄Contact and 4 6 2, the reflection of incident light P i Suppress Coated film.
マッチングコ一ト 4 6 がコーティングされた複屈折板 4 2と、 マッチングコ ート 4 6 2がコーティングされた 4分の 1波長板 4 1とは、 接着剤 4 4 iを用い て接合されている。 同様に、 マッチングコート 4 6 3がコーティングされた 4分 の 1波長板 4 1と、 マッチングコート 4 6 4がコーティングされた複屈折板 4 3 とは、 接着剤 4 4 2を用いて接合されている。 The birefringent plate 42 coated with the matching coat 46 and the quarter-wave plate 41 coated with the matching coat 46 2 are joined using an adhesive 44 i. I have. Similarly, the matching coat 4 6 3 1 wave plate 4 quarter coated is a birefringent plate 4 3 to the matching coat 4 6 4 is coated is joined by an adhesive 4 4 2 I have.
分離用複屈折板としてニオブ酸リチウムを用いると、 水晶で構成した場合の約 1 / 6の厚さで、 同等の入射光 P iの分離性能を得ることができる (たとえば、 特許文献 4参照。 ) 。  When lithium niobate is used as the birefringent plate for separation, equivalent separation performance of incident light Pi can be obtained with a thickness of about 1/6 that of a quartz crystal (for example, see Patent Document 4). ).
第 1 7図は、 4分の 1波長板 4 1における入射光波長と透過光強度の関係の一 例を示す図である。 第 1 7図 (a ) は、 4分の 1波長板 4 1が、 厚さが 0 . 5 m mの水晶からなる場合であり、 第 1 7図 (b ) は、 4分の 1波長板 4 1力 厚さ が 0 . 2 mmのニオブ酸リチウムからなる場合である。  FIG. 17 is a diagram showing an example of the relationship between the incident light wavelength and the transmitted light intensity in the quarter-wave plate 41. FIG. 17 (a) shows a case where the quarter-wave plate 41 is made of a crystal having a thickness of 0.5 mm. FIG. 17 (b) shows a case where the quarter-wave plate 41 is formed. 1 This is the case where the thickness is made of lithium niobate having a thickness of 0.2 mm.
なお、 ここでは、 光ローパスフィルタ 4 0に対する入射光 P iの強度を 1とし ており、 入射光 P iが 4分の 1波長板 4 1に入射する以前に、 複屈折板 4 2の働 きにより 2つに分離するため、 1つの透過光当たりの透過光強度は最大で 0 . 5 となっている。  Here, the intensity of the incident light P i with respect to the optical low-pass filter 40 is set to 1, and before the incident light P i is incident on the quarter-wave plate 41, the action of the birefringent plate 42 is performed. Therefore, the transmitted light intensity per transmitted light is 0.5 at the maximum.
第 1 7図 (a ) に示すように、 4分の 1波長板 4 1においては、 透過光強度が 波長により変化して、 撮像画像の色合いが実際のものとは異なるものとなってし まうという問題がある (たとえば、 特許文献 3参照。 ) 。 それを改善するために は、 4分の 1波長板 41の厚みをさらに増カ卩させる必要がある。 As shown in Fig. 17 (a), in the quarter-wave plate 41, the transmitted light intensity changes depending on the wavelength, and the color tone of the captured image is different from the actual color tone. (See, for example, Patent Document 3). In order to improve this, it is necessary to further increase the thickness of the quarter-wave plate 41.
第 17図 (b) に示すように、 ニオブ酸リチウムからなる 4分の 1波長板 41 においては、 複屈折の度合いが水晶と比較して大きいため、 透過光強度はわずか な波長の変化に対して激しく変化する。 そのため、 透過光強度の波長依存性を見 かけ上弱めることができる。  As shown in Fig. 17 (b), in the quarter-wave plate 41 made of lithium niobate, the degree of birefringence is larger than that of quartz, so that the transmitted light intensity is small when the wavelength changes slightly. Change drastically. Therefore, the wavelength dependence of the transmitted light intensity can be apparently reduced.
(特許文献 1)  (Patent Document 1)
特開平 10—54960  JP 10-54960
(特許文献 2)  (Patent Document 2)
特開 2001— 324698  JP 2001-324698
(特許文献 3 )  (Patent Document 3)
特開 2002— 303824  JP 2002-303824
(特許文献 4)  (Patent Document 4)
特開平 11一 218612  JP 11-218612
しかしながら、 上記特許文献 1から 4に代表される従来技術では、 光ローパス フィルタ 40を製造する場合に、 4分の 1波長板を形成した後、 それを接着剤等 で複屈折板に接合するため、 製造工程が多くなり、 製造コストが増加するという 問題があった。  However, according to the conventional techniques represented by Patent Documents 1 to 4, when manufacturing the optical low-pass filter 40, after forming a quarter-wave plate, it is bonded to a birefringent plate with an adhesive or the like. However, there is a problem that the number of manufacturing processes increases and the manufacturing cost increases.
特に、 特許文献 3には、 厚みが 10— 5 m程度の非常に薄い 4分の 1波長板を 用いて、 透過光強度の波長依存性が少ない光ローパスフィルタが開示されている 力 そのような薄い 4分の 1波長板を製造し、 それを複屈折板に接合して光フィ ルタを製造するのは非常に難しく、 製造コストの増加に繋がるという問題があつ た。 In particular, Patent Document 3 discloses an optical low-pass filter using a very thin quarter-wave plate having a thickness of about 10 to 5 m and having a small wavelength dependence of transmitted light intensity. It was very difficult to manufacture an optical filter by manufacturing a thin quarter-wave plate and joining it to a birefringent plate, which led to an increase in manufacturing costs.
本発明は、 上記問題を解決するためになされたものであり、 製造時における加 ェが容易で、 薄いものでも安価に製造することのできる高性能な光フィルタ、 そ の光フィルタを備えた撮像装置、 および、 その光学フィルタの製造方法を提供す ることを目的とする。 発明の開示 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A high-performance optical filter that can be easily applied at the time of manufacturing and can be manufactured at a low cost even with a thin one, and an imaging device provided with the optical filter. It is an object to provide an apparatus and a method for manufacturing the optical filter. Disclosure of the invention
本発明は、 入射した光波をそれぞれ 2つの光波に分離する第 1の複屈折領域お よび第 2の複屈折領域の間に入射した光波の振動方向を変換する第 3の複屈折領 域を設けてなり、 該光波の所定の空間周波数成分をフィルタリングする光フィル タであって、 前記第 3の複屈折領域は、 複屈折構造が前記第 1の複屈折領域およ ぴ前記第 2の複屈折領域のうち少なくとも一つの表面において該表面に直接形成 されてなること、 を特徴とする。  The present invention provides a first birefringent region for separating an incident light wave into two light waves, and a third birefringent region for converting the vibration direction of the incident light wave between the second birefringent region and the second birefringent region. An optical filter for filtering a predetermined spatial frequency component of the light wave, wherein the third birefringent region has a birefringent structure including the first birefringent region and the second birefringent region. At least one surface of the region is formed directly on the surface.
したがって、 第 1の複屈折領域および第 2の複屈折領域のうち少なくとも一つ の表面において、 その表面に第 3の複屈折領域として複屈折構造を直接形成して いるので、 製造時における加工が容易で、 薄いものでも安価に製造することので きる高性能な光フィルタを提供することができる。  Therefore, since the birefringent structure is directly formed as the third birefringent region on at least one of the surfaces of the first birefringent region and the second birefringent region, processing at the time of manufacturing is performed. It is possible to provide a high-performance optical filter that can be manufactured easily and inexpensively even if it is thin.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域および前記第 2の 複屈折領域のうち少なくとも一つの表面に、 利用波長以下の間隔で縞状に凸凹を 形成することで実現されることを特徴とする。  Further, in the present invention, the birefringent structure may be formed in such a manner that at least one surface of the first birefringent region and the second birefringent region has a striped unevenness at an interval of a use wavelength or less. It is characterized by being realized.
したがって、 凹凸により発生する複屈折性を利用することにより、 製造時にお ける加工が容易で、 薄いものでも安価に製造することのできる高性能な光フィル タを提供することができる。  Therefore, by utilizing the birefringence generated by the unevenness, it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域および前記第 2の 複屈折領域のうち少なくとも一つの表面に、 斜め蒸着膜を蒸着させることにより 実現されていることを特徴とする。  Further, the present invention is characterized in that the birefringent structure is realized by depositing an oblique deposition film on at least one surface of the first birefringent region and the second birefringent region. And
したがって、 斜め蒸着膜の複屈折性を利用することにより、 製造時の加工が容 易で、 薄いものでも安価に製造することのできる高性能な光フィルタを提供する ことができる。  Therefore, by utilizing the birefringence of the obliquely deposited film, it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacture and can be manufactured at low cost even if it is thin.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域または前記第 2の 複屈折領域のいずれかの表面において該表面に直接作成され、 該複屈折構造が作 成された前記第 1の複屈折領域または前記第 2の複屈折領域の該複屈折構造の表 面と、 該複屈折構造が作成されなかった前記第 1の複屈折領域または前記第 2の 複屈折領域の表面とが、 接着剤により接合されてなることを特徴とする。 Also, in the present invention, the birefringent structure is formed directly on the surface of any one of the first birefringent region and the second birefringent region, and the birefringent structure is formed. Table of the birefringent structure of the first birefringent region or the second birefringent region A surface and a surface of the first birefringent region or the second birefringent region where the birefringent structure is not formed are bonded by an adhesive.
したがって、 複屈折構造がいずれかの複屈折領域の表面に作成された場合に、 複屈折構造の表面と第 1の複屈折領域または第 2の複屈折領域の表面とを接着剤 で接合することにより、 製造時の加工が容易で、 薄いものでも安価に製造するこ とのできる高性能な光フィルタを提供することができる。  Therefore, if the birefringent structure is formed on the surface of any of the birefringent regions, the surface of the birefringent structure and the surface of the first or second birefringent region should be bonded with an adhesive. Accordingly, it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域および前記第 2の 複屈折領域の双方の表面において該表面に直接作成され、 該複屈折構造が作成さ れた前記第 1の複屈折領域および前記第 2の複屈折領域の該複屈折構造の表面が 、 接着剤により接合されてなることを特徴とする。  Further, in the present invention, the birefringent structure is formed directly on both surfaces of the first birefringent region and the second birefringent region, and the birefringent structure is formed. The surfaces of the birefringent structures of the first birefringent region and the second birefringent region are joined by an adhesive.
したがって、 複屈折構造が双方の複屈折領域の表面に製出された場合に、 2つ の複屈折構造の表面を接着剤で接合することにより、 製造時の加工が容易で、 薄 レヽものでも安価に製造することのできる高性能な光フィルタを提供することがで さる。  Therefore, when the birefringent structure is produced on the surface of both birefringent regions, the two birefringent structures are joined with an adhesive to facilitate processing at the time of production, and even a thin material. It is possible to provide a high-performance optical filter that can be manufactured at low cost.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域または前記第 2の 複屈折領域のいずれかの表面において該表面に直接作成され、 該複屈折構造が作 成された前記第 1の複屈折領域または前記第 2の複屈折領域の該複屈折構造の表 面と、 該複屈折構造が作成されなかつた前記第 1の複屈折領域または前記第 2の 複屈折領域の表面とを親水ィ匕し、 親水化された該複屈折構造の表面と、 親水化さ れた該第 1の複屈折領域または該第 2の複屈折領域の表面とを重ね合わせること により接合されてなることを特徴とする。  Also, in the present invention, the birefringent structure is formed directly on the surface of any one of the first birefringent region and the second birefringent region, and the birefringent structure is formed. A surface of the birefringent structure of the first birefringent region or the second birefringent region, and a surface of the first birefringent region or the second birefringent region where the birefringent structure has not been formed. And the surface of the hydrophilized birefringent structure and the surface of the hydrophilized first birefringent region or the surface of the second birefringent region are joined together. It is characterized by becoming.
したがって、 複屈折構造がいずれかの複屈折領域の表面に作成された場合に、 複屈折構造の表面と第 1の複屈折領域または第 2の複屈折領域の表面とを親水化 処理をおこなって接合することにより、 製造時の加工が容易で、 薄いものでも安 価に製造することのできる高性能な光フィルタを提供することができる。  Therefore, when the birefringent structure is formed on the surface of any of the birefringent regions, the surface of the birefringent structure and the surface of the first birefringent region or the surface of the second birefringent region are subjected to a hydrophilic treatment. By bonding, it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域および前記第 2の 複屈折領域の双方の表面において該表面に直接作成され、 該第 1の複屈折領域に 作成された複屈折構造の表面と、 該第 2の複屈折領域に作成された複屈折構造の 表面とを親水化し、 親水化された 2つの複屈折構造を重ね合わせることにより接 合されてなることを特徴とする。 Also, in the present invention, the birefringent structure is formed directly on the surface of both the first birefringent region and the second birefringent region, The surface of the created birefringent structure and the surface of the birefringent structure created in the second birefringent region are hydrophilized and joined by superposing the two hydrophilized birefringent structures. It is characterized by the following.
したがって、 複屈折構造が双方の複屈折領域の表面に作成された場合に、 2つ の複屈折構造の表面に親水ィ匕処理をおこなって接合することにより、 製造時の加 ェが容易で、 薄いものでも安価に製造することのできる高性能な光フィルタを提 供することができる。  Therefore, when the birefringent structures are formed on the surfaces of both birefringent regions, the surfaces of the two birefringent structures are subjected to a hydrophilic treatment and joined to facilitate processing during manufacturing, It is possible to provide a high-performance optical filter that can be manufactured inexpensively even if it is thin.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域または前記第 2の 複屈折領域のレヽずれかの表面にぉレヽて該表面に直接作成され、 該複屈折構造が作 成された前記第 1の複屈折領域または前記第 2の複屈折領域と、 該複屈折構造が 作成されなかつた前記第 1の複屈折領域または前記第 2の複屈折領域とが表面活 性化接合により接合されてなることを特徴とする。  Further, in the invention, it is preferable that the birefringent structure is formed directly on the surface of the first birefringent region or the second birefringent region in a position shifted from the surface of the first birefringent region or the second birefringent region. The first birefringent region or the second birefringent region formed and the first birefringent region or the second birefringent region where the birefringent structure has not been formed are activated. It is characterized by being joined by joining.
したがって、 複屈折構造がレ、ずれかの複屈折領域の表面に作成された場合に、 複屈折構造の表面と第 1の複屈折領域または第 2の複屈折領域の表面とを表面活 性ィ匕接合により接合することにより、 製造時の加工が容易で、 薄いものでも安価 に製造することのできる高性能な光フィルタを提供することができる。  Therefore, when the birefringent structure is formed on the surface of the birefringent region, the surface activity of the birefringent structure and the surface of the first or second birefringent region are changed. By joining by dangling, it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacture and can be manufactured at low cost even if it is thin.
また、 本発明は、 前記複屈折構造は、 前記第 1の複屈折領域および前記第 2の 複屈折領域の双方の表面にぉレヽて該表面に直接作成され、 該複屈折構造が作成さ れた前記第 1の複屈折領域およぴ前記第 2の複屈折領域が表面活性化接合により 接合されてなることを特徴とする。  Also, in the present invention, the birefringent structure is formed directly on the surface of both the first birefringent region and the second birefringent region, and the birefringent structure is formed. The first birefringent region and the second birefringent region are joined by a surface activation junction.
したがって、 複屈折構造が双方の複屈折領域の表面に作成された場合に、 2つ の複屈折構造の表面を表面活性化接合により接合することにより、 製造時の加工 が容易で、 薄いものでも安価に製造することのできる高性能な光フィルタを提供 することができる。  Therefore, when the birefringent structures are formed on the surfaces of both birefringent regions, the surfaces of the two birefringent structures are joined by surface activated bonding, so that the processing at the time of manufacturing is easy and even a thin one is used. It is possible to provide a high-performance optical filter that can be manufactured at low cost.
また、 本発明は、 前記第 1の複屈折領域および前記第 2の複屈折領域は、 ニォ ブ酸リチウムからなることを特徴とする。  Further, in the present invention, the first birefringent region and the second birefringent region are made of lithium niobate.
したがって、 第 1の複屈折領域と第 2の複屈折領域とを、 水晶等を用いて形成 した場合と比較してより薄く形成することができ、 製造時の加工が容易で、 薄い ものでも安価に製造することのできる高性能な光フィルタを提供することができ る。 Therefore, the first birefringent region and the second birefringent region are formed using quartz or the like. Thus, it is possible to provide a high-performance optical filter that can be formed thinner than in the case where it is manufactured, is easy to process at the time of manufacture, and can be manufactured at low cost even if it is thin.
また、 本発明は、 前記第 1の複屈折領域または前記第 2の複屈折領域に赤外力 ットフィルタが接合されてなることを特徴とする。  Further, the present invention is characterized in that an infrared power filter is joined to the first birefringent region or the second birefringent region.
したがって、 赤外線をカットすることができ、 製造時の加工が容易で、 薄いも のでも安価に製造することのできる高性能な光フィルタを提供することができる また、 本発明は、 前記第 1の複屈折領域の光学軸を光波の進行方向と垂直な平 面に投影した第 1の軸、 および、 前記第 2の複屈折領域の光学軸を前記平面に投 影した第 2の軸のなす角度は略直角であり、 前記第 3の複屈折領域の光学軸を前 記平面に投影した軸は、 前記第 1の軸おょぴ前記第 2の軸に対して (4 5度+ 111 X 9 0度) ± 1 5度の範囲内の角度をなすことを特徴とする (mは整数) 。  Therefore, it is possible to provide a high-performance optical filter that can cut infrared rays, can be easily processed at the time of manufacturing, and can be manufactured at a low cost even if it is thin. Angle formed by a first axis that projects the optical axis of the birefringent region onto a plane perpendicular to the direction of travel of the light wave, and a second axis that projects the optical axis of the second birefringent region onto the plane. Is approximately a right angle, and the axis that projects the optical axis of the third birefringent region onto the plane is (45 degrees + 111 X 9) with respect to the first axis and the second axis. (0 degree) ± 15 degrees in the angle range (m is an integer).
したがって、 製造時の加工が容易で、 薄いものでも安価に製造することのでき 、 実用上問題のない高い性能を有する光フィルタを提供することができる。  Therefore, it is easy to process at the time of manufacture, and even if it is thin, it can be manufactured at low cost, and it is possible to provide an optical filter having high performance without practical problems.
また、 本発明は、 前記第 3の複屈折領域は、 入射した光波を偏光により分離す ることを特徴とする。  Further, the invention is characterized in that the third birefringent region separates the incident light wave by polarization.
したがって、 入射した光波を偏光により分離することにより、 光フィルタにフ ィルタリング機能を発揮させることができ、 製造時の加工が容易で、 薄いもので も安価に製造することのできる高性能な光フィルタを提供することができる。 また、 本発明は、 前記第 3の複屈折領域は、 常光の屈折率および異常光の屈折 率の差と、 複屈折領域の光路長との積が、 利用波長の略 4分の 1の奇数倍となる ように形成され、 入射した光波の偏光状態を直線偏光から略円偏光に変換するこ とを特徴とする。  Therefore, by separating the incident light wave by polarization, the optical filter can exhibit a filtering function, and can be easily processed at the time of manufacture, and even if it is thin, it is a high-performance optical filter that can be manufactured at low cost. Can be provided. Further, in the present invention, in the third birefringent region, a product of a difference between a refractive index of ordinary light and a refractive index of extraordinary light and an optical path length of the birefringent region is an odd number that is approximately one quarter of a wavelength used. It is formed so as to be twice as large and converts the polarization state of the incident light wave from linearly polarized light to substantially circularly polarized light.
したがって、 入射した光波の直線偏光を略円偏光に変換することにより、 光フ ィルタにフィルタリング機能を発揮させることができ、 製造時の加工が容易で、 薄いものでも安価に製造することのできる高性能な光フィルタを提供することが できる。 ' Therefore, by converting the linearly polarized light of the incident light wave into a substantially circularly polarized light, the optical filter can exhibit a filtering function, and can be easily processed at the time of manufacture, and can be manufactured at a low cost even if it is thin. Providing high performance optical filters it can. '
また、 本発明は、 前記第 3の複屈折領域は、 第 1の複屈折部分と第 2の複屈折 部分とからなり、 該第 1の複屈折部分の光学軸を前記平面に投影した軸の方向と 、 該第 2の複屈折領域部分の光学軸を前記平面に投影した軸の方向とが略 1 8 0 度となるように積層され、 該第 2の複屈折部分は、 前記第 1の複屈折部分を透過 することにより分離された光波の進行方向を変化させ、 該第 1の複屈折部分によ り分離された該光波間の分離距離を小さくすることを特徴とする。  Also, in the present invention, the third birefringent region includes a first birefringent portion and a second birefringent portion, and the optical axis of the first birefringent portion is projected on the plane. The direction and the direction of the axis obtained by projecting the optical axis of the second birefringent region portion onto the plane are substantially 180 degrees, and the second birefringent portion is formed of the first birefringent portion. The traveling direction of the separated light wave is changed by transmitting through the birefringent portion, and the separation distance between the light waves separated by the first birefringent portion is reduced.
したがって、 第 3の複屈折領域における光波の分離を抑制することができ、 製 造時の加工が容易で、 薄いものでも安価に製造することのできる高性能な光フィ ルタを提供することができる。  Therefore, it is possible to suppress the separation of the light wave in the third birefringent region, and to provide a high-performance optical filter that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin. .
また、 本発明は、 光波が入射される撮像レンズと、 該撮像レンズに入射された 光波を受光して電気信号を生成する撮像素子と、 該撮像レンズと該撮像素子との 間に配置され、 該光波の所定の空間周波数成分をフィルタリングする光フィルタ を備えた撮像装置であって、 前記光フィルタは、 入射した光波をそれぞれ 2つの 光波に分離する第 1の複屈折領域および第 2の複屈折領域の間に該第 1の複屈折 領域から入射した光波の振動方向を変換する第 3の複屈折領域を備え、 該第 3の 複屈折領域は、 複屈折構造が前記第 1の複屈折領域および前記第 2の複屈折領域 のうち少なくとも一つの表面において該表面に直接形成されてなること、 を特徴 とする。  Further, the present invention provides an imaging lens on which a light wave is incident, an imaging device for receiving the light wave incident on the imaging lens and generating an electric signal, and disposed between the imaging lens and the imaging device; An image pickup apparatus comprising: an optical filter configured to filter a predetermined spatial frequency component of the light wave, wherein the optical filter includes a first birefringent region and a second birefringence, each of which separates an incident light wave into two light waves. A third birefringent region for converting a vibration direction of a light wave incident from the first birefringent region between the regions, wherein the third birefringent region has a birefringent structure whose birefringent structure is the first birefringent region. And at least one surface of the second birefringent region is formed directly on the surface.
したがって、 第 1の複屈折領域および第 2の複屈折領域のうち少なくとも一つ の表面において、 その表面に第 3の複屈折領域として複屈折構造を直接形成して いるので、 製造時の加工が容易で、 薄いものでも安価に製造することのできる高 性能な光フィルタを備えた撮像装置を提供することができる。  Therefore, the birefringent structure is directly formed as a third birefringent region on at least one surface of the first birefringent region and the second birefringent region. It is possible to provide an imaging device having a high-performance optical filter that can be easily manufactured at a low cost even if it is thin.
また、 本発明は、 入射した光波をそれぞれ 2つの光波に分離する第 1の複屈折 領域および第 2の複屈折領域の間に入射した光波の振動方向を変換する第 3の複 屈折領域を設けてなり、 該光波の所定の空間周波数成分をフィルタリングする光  Further, the present invention provides a third birefringent region for converting a vibration direction of an incident light wave between a first birefringent region and a second birefringent region for separating an incident light wave into two light waves, respectively. A light for filtering a predetermined spatial frequency component of the light wave
)製造方法であって、 前記第 3の複屈折領域を、 前記第 1の複屈折領域 および前記第 2の複屈折領域のうち少なくとも一つの表面において複屈折構造を 該表面に直接形成すること、 を特徴とする。 ) Manufacturing method, wherein the third birefringent region is replaced with the first birefringent region And forming a birefringent structure directly on at least one surface of the second birefringent region.
したがって、 第 1の複屈折領域および第 2の複屈折領域のうち少なくとも一つ の表面において、 その表面に第 3の複屈折領域として複屈折構造を直接形成する ので、 製造時の加工を容易におこなうことができ、 薄い光フィルタでも安価に製 造することができる。 図面の簡単な説明  Therefore, on at least one of the first birefringent region and the second birefringent region, a birefringent structure is directly formed as a third birefringent region on the surface, which facilitates processing during manufacturing. It is possible to manufacture even a thin optical filter at low cost. Brief Description of Drawings
第 1図は、 本発明に係る光ローパスフィルタ 7 0の構成を示す図であり、 第 2 図は、 第 1図で説明した光ローパスフィルタ 7 0の機能を具体的に説明する図で あり、 第 3図は、 複屈折板 7 2に第 1の複屈折膜部分 7 1 および第 2の複屈折 膜部分 7 1 2を蒸着する蒸着方法を示す図であり、 第 4図は、 第 1図に示した複 屈折膜 7 1における光波の波長と透過光強度の関係の一例を示す図であり、 第 5 図は、 複屈折膜 7 1が表面に加工された複屈折板 7 2または複屈折板 7 3の一体 化方法を説明する図であり、 第 6図は、 本実施の形態 2に係る複屈折板 7 5の構 造を示す図であり、 第 7図は、 第 6図に示した複屈折構造における波長と透過光 強度の関係の一例を示す図であり、 第 8図は、 複屈折構造を表面に有する複屈折 板 7 5 iまたは複屈折板 7 5 2の一体化方法を説明する図であり、 第 9図は、 本 実施の形態 3に係る光ローパスフィルタ 7 0の機能を説明する図であり、 第 1 0 図は、 複屈折板 7 2に複屈折膜 7 6を蒸着する蒸着方法を説明する図であり、 第 1 1図は、 複屈折板 7 2の表面に加工された複屈折膜 7 6と複屈折板 7 3とを接 合あるいは接着する一体ィヒ方法を説明する図であり、 第 1 2図は、 実施の形態 1 、 2または 3で示した光ローパスフィルタを有する撮像装置 2 0 0の構成を示す 図であり、 第 1 3図は、 従来の撮像装置の概略構成を示す図であり、 第 1 4図は 、 光ローパスフィルタ 4 0の光線分離の原理を説明する図であり、 第 1 5図は、 従来の光ローパスフィルタ 4 0の構成を示す図であり、 第 1 6図は、 第 1 5図 ( b ) に示した光ローパスフィルタ 4 0の構成を示す図であり、 第 1 7図は、 4分 の 1波長板 4 1における入射光波長と透過光強度の関係の一例を示す図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a configuration of an optical low-pass filter 70 according to the present invention, and FIG. 2 is a diagram specifically explaining the function of the optical low-pass filter 70 described in FIG. Figure 3 is a view showing a deposition method for depositing a birefringent plate 7 2 to the first birefringent film portion 71 and the second birefringent film portion 7 1 2, Fig. 4, FIG. 1 FIG. 5 is a diagram showing an example of the relationship between the wavelength of a light wave and the intensity of transmitted light in the birefringent film 71 shown in FIG. 5, and FIG. FIG. 6 is a diagram for explaining a method of integrating the plates 73, FIG. 6 is a diagram showing a structure of a birefringent plate 75 according to the second embodiment, and FIG. 7 is a diagram shown in FIG. and is a diagram showing an example of a relationship between the wavelength and the transmitted light intensity at the birefringent structure, FIG. 8 is one birefringent plate 7 5 i or birefringent plate 7 5 2 having birefringence structure on the surface FIG. 9 is a diagram illustrating the function of an optical low-pass filter 70 according to the third embodiment. FIG. 10 is a diagram illustrating a birefringent film on a birefringent plate 72. FIG. 11 is a view for explaining a vapor deposition method for vapor-depositing 76. FIG. 11 is a diagram showing an example of joining or bonding a birefringent film 76 processed on the surface of a birefringent plate 72 and a birefringent plate 73. FIG. 12 is a diagram for explaining the Eich method, FIG. 12 is a diagram showing a configuration of an imaging device 200 having the optical low-pass filter described in Embodiment 1, 2, or 3, and FIG. FIG. 14 is a diagram illustrating a schematic configuration of a conventional imaging device. FIG. 14 is a diagram illustrating the principle of light beam separation of the optical low-pass filter 40. FIG. 15 is a diagram illustrating the conventional optical low-pass filter 40. FIG. 16 is a diagram showing a configuration of the optical low-pass filter 40 shown in FIG. 15 (b), and FIG. Is 4 minutes FIG. 4 is a diagram showing an example of the relationship between the incident light wavelength and the transmitted light intensity in the one-wavelength plate 41 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照し、 本発明に係る光フィルタ、 その光フィルタを備えた 撮像装置、 および、 光フィルタの製造方法の好適な実施の形態を詳細に説明する 第 1図は、 本発明に係る光ローパスフィルタ 7 0の構成を示す図である。 この 光ローパスフィルタ 7 0は、 第 1 2図に示した光ローパスフィルタ 4 0の代わり に用いられるものである。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS With reference to the accompanying drawings, preferred embodiments of an optical filter according to the present invention, an imaging device provided with the optical filter, and a method of manufacturing the optical filter will be described in detail below. FIG. 2 is a diagram showing a configuration of such an optical low-pass filter 70. This optical low-pass filter 70 is used in place of the optical low-pass filter 40 shown in FIG.
第 1図 (a ) に示すように、 この光ローパスフィルタ 7 0は、 A R ( As shown in FIG. 1 (a), this optical low-pass filter 70 has A R (
Antireflection) コート 7 4い 複屈折板 7 2 (第 1の複屈折領域) 、 複屈折膜 7 1 (第 3の複屈折領域) 、 複屈折板 7 3 (第 2の複屈折領域) および ARコー ト 7 4 2が積層されてなる。 Antireflection) Coat 7 4 birefringent plate 7 2 (first birefringent region), birefringent film 7 1 (third birefringent region), birefringent plate 7 3 (second birefringent region) and AR coating G 7 4 2 are laminated.
A Rコート 7 および 7 4 2は、 入射光 P iの反射を抑えるコーティングさ れた膜である。 複屈折板 7 2および 7 3は、 複屈折結晶の一つである水晶であり 、 結晶軸に対して所定角度をもって切り出されている。 AR coating 7 and 7 4 2 is a coated membrane suppress reflection of incident light P i. The birefringent plates 72 and 73 are quartz, which is one of the birefringent crystals, and are cut out at a predetermined angle with respect to the crystal axis.
なお、 ここでは、 複屈折板 7 2および 7 3が水晶から形成されることとしたが 、 複屈折板 7 2および 7 3をニオブ酸リチウムを用いて形成することとしてもよ い。 ニオブ酸リチウムを用いることにより、 水晶の場合と比較して、 光ローパス フィルタ 7 0をさらに薄く実現することができる  Here, the birefringent plates 72 and 73 are formed from quartz, but the birefringent plates 72 and 73 may be formed using lithium niobate. By using lithium niobate, the optical low-pass filter 70 can be realized even thinner than in the case of quartz.
そして、 複屈折板 7 2および 7 3は、 それぞれの光学軸が光波の進行方向に垂 直な平面に投影された場合に、 投影された光学軸間のなす角度が、 9 0度となる ように配置される。  The birefringent plates 72 and 73 are designed such that when the respective optical axes are projected on a plane perpendicular to the traveling direction of the light wave, the angle between the projected optical axes is 90 degrees. Placed in
複屈折板 7 2および 7 3の光線分離の原理は、 第 1 3図で説明したものと同様 である。 第 1 3図において、 結晶軸 2に対する複屈折板 1の切出し角度 0と、 常 光 P aおよび異常光 P との間の分離角 φとの間には、
Figure imgf000015_0001
の関係式が成り立つ。 ここで、 n。は、 常光 P aに対する屈折率、 n eは、 異常 光 P bに対する屈折率である。
The principle of light separation of the birefringent plates 72 and 73 is the same as that described with reference to FIG. In FIG. 13, between the cutout angle 0 of the birefringent plate 1 with respect to the crystal axis 2 and the separation angle φ between the ordinary light Pa and the extraordinary light P,
Figure imgf000015_0001
Holds. Where n. Is the refractive index for the ordinary light P a, n e is the refractive index for the extraordinary light P b.
さらに、 この分離角 φと、 複屈折板 1の厚さ (光路長) d、 常光 P aおよぴ異 常光 P bの分離距離 Xとの間には、 tan^ =— (2)  Furthermore, between the separation angle φ and the thickness (optical path length) d of the birefringent plate 1 and the separation distance X between the ordinary light Pa and the extraordinary light Pb, tan ^ = — (2)
d  d
の関係式が成り立つ。 Holds.
したがって、 エリアセンサ 5 0における受光素子の間隔に適合するよう分離距 離 Xを決定し、 厚さ dおよび切出し角度 Θを式 (1 ) および (2 ) の関係式を満 たすものとすることで、 所望の機能を有する光ローパスフィルタ 4 0を製造する ことができる。 ,  Therefore, the separation distance X is determined so as to conform to the distance between the light receiving elements in the area sensor 50, and the thickness d and the cutout angle Θ satisfy the relational expressions of the expressions (1) and (2). Thus, the optical low-pass filter 40 having a desired function can be manufactured. ,
光ローパスフィルタ 7 0を低コストで製造したい場合には、 切出し角度 0が 3 8度または 2 6度などの市販されている複屈折板 1を用いればよいが、 これに限 定されるものではなく、 式 (1 ) および (2 ) を満足する、 さまざまな切出し角 度 Θの複屈折板 1を用いることができる。  When it is desired to manufacture the optical low-pass filter 70 at low cost, a commercially available birefringent plate 1 having a cutout angle 0 of 38 degrees or 26 degrees may be used, but is not limited to this. Instead, the birefringent plate 1 satisfying the expressions (1) and (2) and having various cutting angles Θ can be used.
複屈折膜 7 1は、 複屈折板 7 2を透過してきた光波の直線偏光を円偏光に変換 し、 複屈折板 7 3を透過させる機能を有する薄層である。 この複屈折膜 7 1は、 斜め蒸着法を用いて、 複屈折板 7 2または複屈折板 7 3の少なくとも一つの表面 に金属酸化物を蒸着することにより形成される。  The birefringent film 71 is a thin layer having a function of converting linearly polarized light of a light wave transmitted through the birefringent plate 72 into circularly polarized light and transmitting the birefringent plate 73. The birefringent film 71 is formed by depositing a metal oxide on at least one surface of the birefringent plate 72 or the birefringent plate 73 using an oblique evaporation method.
斜め蒸着法とは、 金属酸化物を基板上に斜め方向から蒸着させることにより、 複屈折性を有する蒸着膜を形成する方法である (参考文献: Motohiro, T. and Taga, Y.: APPLIED OPTICS, Vol. 28, No. 13, 1 July 1989, pp2466) 。  The oblique deposition method is a method of forming a birefringent deposited film by depositing a metal oxide on a substrate in an oblique direction. (Reference: Motohiro, T. and Taga, Y .: APPLIED OPTICS , Vol. 28, No. 13, 1 July 1989, pp2466).
複屈折板 7 2または 7 3が水晶で形成されている場合には、 二酸化ケィ素 ( S i 0 2) を蒸着する金属酸化物として選択する。 これは、 複屈折板 7 2および 7 3の屈折率と類似した屈折率を有する金属酸ィ匕物を用いることにより、 それらの 界面における光波の反射を抑制するためである。 When the birefringent plate 7 2 or 7 3 are formed in the crystal is chosen as the metal oxide depositing dioxide Kei element (S i 0 2). This is achieved by using a metal oxide having a refractive index similar to that of the birefringent plates 72 and 73. This is for suppressing the reflection of the light wave at the interface.
複屈折板 7 2または 7 3がニオブ酸リチウムで形成されている場合には、 同様 の理由で、 -ォブ酸リチウムと類似した屈折率を有する五酸ィ匕タンタル (T a 2 o 5) を、 蒸着する金属酸化物として選択する。 When the birefringent plate 7 2 or 7 3 are formed by lithium niobate, for the same reason, - Gosani匕tantalum having O Bed lithium and similar refractive index (T a 2 o 5) Is selected as the metal oxide to be deposited.
第 1図 (b ) に示すように、 この複屈折膜 7 1を有する光ローパスフィルタ 7 0では、 複屈折板 7 2の光学軸を光波の進行方向に垂直な平面に投影した軸の方 向は X方向 6 iであり、 複屈折板 7 3の光学軸を光波の進行方向に垂直な平面に 投影した軸の方向は y方向 6 2である。 複屈折膜 7 1は、 複屈折板 7 2を透過し てきた光波の直線偏光を円偏光に変換する機能を果たす。 As shown in FIG. 1 (b), in the optical low-pass filter 70 having the birefringent film 71, the optical axis of the birefringent plate 72 is projected in the direction of the axis projected onto a plane perpendicular to the traveling direction of the light wave. is an X-direction 6 i, the direction of the axis projected in the plane perpendicular to the traveling direction of the light wave to the optical axis of the birefringent plate 7 3 is the y direction 6 2. The birefringent film 71 has a function of converting linearly polarized light of the light wave transmitted through the birefringent plate 72 into circularly polarized light.
そして、 複屈折板 7 2を透過して分離された入射光 P iのそれぞれが、 複屈折 板 7 3を透過してさらに分離され、 正方形型の空間分離パターンでェリァセンサ 5 0の各受光素子 5 1 i〜5 l nにそれぞれ検知される。 Each of the incident light P i transmitted through the birefringent plate 72 and separated by the birefringent plate 73 is further separated by the birefringent plate 73, and each light receiving element 5 of the area sensor 50 has a square spatial separation pattern. Detected at 1 i to 5 l n respectively.
このように、 複屈折板 7 2または複屈折板 7 3の少なくとも一つの表面に金属 酸化物を蒸着させることにより複屈折膜 7 1を直接形成するため、 非常に薄い複 屈折膜 7 1でも容易に形成することができ、 光ローバスフィルタ 7 0を低いコス トで製造することができる。  As described above, since the birefringent film 71 is directly formed by depositing a metal oxide on at least one surface of the birefringent plate 72 or the birefringent plate 73, even an extremely thin birefringent film 71 can be easily formed. The optical low-pass filter 70 can be manufactured at low cost.
第 2図は、 第 1図で説明した光口一パスフィルタ 7 0の機能を具体的に説明す る図である。 第 2図 (a ) に示すように、 この光ローパスフィルタ 7 0は、 複屈 折板 7 2に複屈折膜 7 1が蒸着され、 複屈折膜 7 1が蒸着された複屈折板 7 2に 複屈折板 7 3が接合されている。  FIG. 2 is a diagram specifically illustrating the function of the light port one-pass filter 70 described in FIG. As shown in FIG. 2 (a), this optical low-pass filter 70 has a birefringent plate 72 on which a birefringent film 71 is deposited and a birefringent plate 71 on which a birefringent film 71 is deposited. The birefringent plate 73 is joined.
さらに複屈折膜 7 1は、 第 1の複屈折膜部分 7 1 iと第 2の複屈折膜部分 7 1 2とから構成される。 第 1の複屈折膜部分 7 1 と第 2の複屈折膜部分 7 1 2とは 、 厚さ d / 2が等しく、 それぞれが 8分の 1波長板としての機能を有し、 2つが 組み合わさることにより 4分の 1波長板としての機能を発揮するよう構成されて いる。 Further birefringent film 71 is composed of a first birefringent film portion 71 i and the second birefringent film portion 7 1 2. The first birefringent film portion 71 second birefringent film portion 7 1 2 is equal thickness d / 2, each having a function as a wave plate 8 minutes, two are combine In this way, it is configured to function as a quarter-wave plate.
すなわち、 第 1の複屈折膜部分 7 1 iは、 (' - n。) ' =m^ (3) の関係式を満足するような厚さとし、 8分の 1波長板としての機能を有する膜を 形成する。 ここで、 n eおよび n。は、 第 1の複屈折膜部分 7 1 こおける異常光 および常光の屈折率であり、 mは、 奇数の整数であり、 Lは、 光波の利用波長 ( たとえば、 可視光線の場合は、 3 8 0〜7 8 0 n mなど。 ) である。 That is, the first birefringent film portion 7 1 i (' -n .)' = m ^ (3) A film is formed with a thickness that satisfies the relational expression, and a film that functions as an eighth wavelength plate is formed. Where ne and n. Is the refractive index of the extraordinary light and ordinary light in the first birefringent film portion 7 1, m is an odd integer, and L is the wavelength used for the light wave (for example, 3 8 0 to 780 nm, etc.).
また、 第 2の複屈折膜部分 7 1 2に関しても、 式 (3 ) を満足する厚さとするAlso, the thickness of the second birefringent film portion 7 1 2 satisfies the expression (3).
。 すなわち、 n eおよび n。を、 第 2の複屈折 J3莫部分 7 1ェにおける異常光および 常光の屈折率、 mを、 奇数の整数、 λを、 光波の利用波長とした場合に、 式 (3 ) を満足する厚さとする。 . That is, ne and n. Is the second birefringence J3, the refractive index of the extraordinary light and the ordinary light in the portion 71, m is an odd integer, and λ is the wavelength used for the light wave, the thickness satisfying the formula (3) I do.
そして、 第 1の複屈折膜部分 7 1 iおよび第 2の複屈折膜部分 7 1 2を積層す ることにより、 λ By Rukoto to laminate the first birefringent film portion 7 1 i and the second birefringent film portion 7 1 2, lambda
(ne - n0 ) - d = m- (4) を満足し、 4分の 1波長板として機能する複屈折膜 7 1を形成することができる 。 ( ne −n 0 ) −d = m− (4) is satisfied, and the birefringent film 71 functioning as a quarter-wave plate can be formed.
第 1の複屈折膜部分 7 1 iと第 2の複屈折膜部分 7 1 2とを積層する際には、 それぞれの光学軸を Z軸に垂直な平面上に投影した場合に、 その方向間のなす角 度が 1 8 0度となるように蒸着される。 これは、 複屈折膜 7 1自体が光波を 2つ に分離してしまうのを抑制し、 直線偏光を円偏光に変換する機能のみを持たせる ようにするためである。 When laminating the first birefringent film portion 7 1 i and the second birefringent film portion 7 1 2 , when the respective optical axes are projected on a plane perpendicular to the Z axis, Are deposited so that the angle between them becomes 180 degrees. This is to prevent the birefringent film 71 itself from separating a light wave into two, and to have only a function of converting linearly polarized light into circularly polarized light.
なお、 ここでは、 第 1の複屈折膜部分 7 1 と第 2の複屈折膜部分 7 1 2とを 複屈折板 7 2に蒸着することとしたが、 第 1の複屈折膜部分 7 1 iと第 2の複屈 折膜部分 7 1 2とを複屈折板 7 3に蒸着することとしてもよレ、。 Here, it is assumed that depositing a first birefringent film portion 71 of the second and birefringent film portion 7 1 2 birefringent plate 7 2, the first birefringent film portion 7 1 i Alternatively, the second birefringent film portion 7 1 and 2 may be deposited on the birefringent plate 73.
また、 第 1の複屈折膜部分 7 1 1を複屈折板 7 2に蒸着し、 第 2の複屈折膜部 分 7 1 2を複屈折板 7 3に蒸着し、 その後、 蒸着処理がなされた複屈折板 7 2と 複屈折板 7 3とを接合することとしてもよい。 Further, the first birefringent film portion 7 1 1 was deposited on the birefringent plate 7 2, and the second birefringent film portion 7 1 2 was deposited on the birefringent plate 7 3. The birefringent plate 72 and the birefringent plate 73 may be joined.
式 (4 ) において、 奇数の整数 mの値が 1などのように小さな場合には、 厚さ dは非常に小さな値となる。 このように複屈折膜 7 1の厚みが非常に薄い場合、 従来のように、 複屈折膜 7 1を別途形成し、 それを複屈折板 7 2などに接合する ことは極めて困難であるが、 斜め蒸着法を用いれば、 そのような厚みの複屈折膜 7 1でも容易に形成することができる。 In Equation (4), if the value of the odd integer m is small, such as 1, the thickness is d is a very small value. When the thickness of the birefringent film 71 is extremely small as described above, it is extremely difficult to separately form the birefringent film 71 and bond it to the birefringent plate 72, etc. By using the oblique deposition method, a birefringent film 71 having such a thickness can be easily formed.
第 3図は、 複屈折板 7 2に第 1の複屈折膜部分 7 1 iおよび第 2の複屈折膜部 分 7 1 2を蒸着する蒸着方法を示す図である。 ここで、 Z方向は、 光波の進行方 向と一致しているものとする。 Figure 3 is a view showing a deposition method for depositing a birefringent plate 7 2 to the first birefringent film portion 71 i and the second birefringent film unit content of 7 1 2. Here, it is assumed that the Z direction coincides with the traveling direction of the light wave.
同図に示すように、 まず、 複屈折板 7 2の表面に第 1の複屈折膜部分 7 1 を 蒸着し、 その後、 蒸着された第 1の複屈折膜部分 7 1 の表面に、 第 2の複屈折 膜部分 7 1 2の蒸着をおこなう。 As shown in the figure, first, a first birefringent film portion 71 is vapor-deposited on the surface of the birefringent plate 72, and then a second birefringent film portion 71 is deposited on the surface of the deposited birefringent film portion 71. The birefringent film portion 7 1 2 is deposited.
具体的には、 第 1の複屈折膜部分 7 1ェを蒸着する場合には、 金属酸化物の照 射方向が z軸方向と 6 0 7 0度程度の角度をなし、 かつ、 複屈折板 7 2の光学 軸方向 2および金属酸ィヒ物の照射方向が z軸に垂直な平面上に投影された場合に 4 5度の角度となる方向 (照射源 1 ) 力 ら金属酸ィ匕物を照射する。  Specifically, when the first birefringent film portion 71 is deposited, the irradiation direction of the metal oxide forms an angle of about 670 ° with the z-axis direction, and the birefringent plate 7 Optical axis direction 2 and the direction in which the irradiation direction of the metal oxide is 45 degrees when projected on a plane perpendicular to the z-axis (irradiation source 1) Is irradiated.
そして、 第 2の複屈折膜部分 7 1 2を蒸着する場合には、 第 1の複屈折膜部分 7 1ェを蒸着する場合とは反対方向 (照射源 2 ) から金属酸化物を照射する。 す なわち、 金属酸化物の照射方向が第 1の複屈折膜部分 7 を蒸着する場合とは 反対方向であって、 z軸方向と 6 0 7 0度程度の角度をなし、 力 複屈折板 7 2の光学軸方向 2および金属酸化物の照射方向が z軸に垂直な平面上に投影さ れた場合に、 4 5度の角度となる方向から金属酸化物を照射する。 Then, when depositing the second birefringent film portion 71, the metal oxide is irradiated from the opposite direction (irradiation source 2) to the case where the first birefringent film portion 71 is deposited. That is, the irradiation direction of the metal oxide is opposite to the direction in which the first birefringent film portion 7 is deposited, and forms an angle of about 600 ° with the z-axis direction. When the optical axis direction 2 of 2 and the irradiation direction of the metal oxide are projected on a plane perpendicular to the z-axis, the metal oxide is irradiated from a direction having an angle of 45 degrees.
これにより、 第 1の複屈折膜部分 7 1 iおよび第 2の複屈折膜部分 7 1 2のそ れぞれの光学軸を z軸に垂直な平面上に投影した場合に、 その方向間のなす角度 が 1 8 0度となるので、 第 1の複屈折膜部分 7 1 を透過することにより分離さ れた光波の進行方向が第 2の複屈折膜部分 7 1 2を透過することにより変ィ匕して 、 分離された光波が再度一つに統合される。 Accordingly, when the respective optical axes of the first birefringent film portion 7 1 i and the second birefringent film portion 7 1 2 are projected on a plane perpendicular to the z axis, since the angle a 1 8 0 degrees, varying by the traveling direction of the light wave separated by passing through the first birefringent film portion 71 is transmitted through the second birefringent film portion 7 1 2 Then, the separated light waves are integrated again.
第 2図の説明に戻ると、 同図 (b ) に示すように、 複屈折板 7 2を透過して 2 つに分離された光波は、 複屈折膜 7 1を透過した際に、 光波の振動方向の状態が 直線偏光から円偏光に変換され、 さらに複屈折板 7 3を透過して 4つの光波に正 方形型に分離される。 Returning to the explanation of FIG. 2, as shown in FIG. 2 (b), the light wave transmitted through the birefringent plate 72 and separated into two is transmitted by the birefringent film 71, Vibration direction condition The light is converted from linearly polarized light to circularly polarized light, passes through the birefringent plate 73, and is separated into four light waves in a square shape.
第 4図は、 第 1図に示した複屈折膜 7 1における光波の波長と透過光強度の関 係の一例を示す図である。 なお、 ここでは、 入射光 P iの強度を 1としており、 複屈折膜 7 1に入射する前に入射光 P iが 2つに分離するため、 透過光強度は最 大で 0 . 5となる。 また、 この例は、 式 (4 ) において、 mの値を 1とした場合 、 すなわち、 複屈折膜 7 1を非常に薄く形成した場合を示している。  FIG. 4 is a diagram showing an example of the relationship between the wavelength of a light wave and the intensity of transmitted light in the birefringent film 71 shown in FIG. Here, the intensity of the incident light P i is set to 1, and the incident light P i is separated into two before entering the birefringent film 71, so that the transmitted light intensity is 0.5 at the maximum. . Further, this example shows a case where the value of m is set to 1 in the equation (4), that is, a case where the birefringent film 71 is formed very thin.
同図に示すように、 複屈折膜 7 1を式 (4 ) を満足しながら、 非常に薄く形成 することにより、 複屈折膜 7 1を透過した光波の透過光強度の変動を小さくする ことができ、 製造コストが低く、 高性能な光ローパスフィルタを実現することが できる。  As shown in the figure, by forming the birefringent film 71 very thin while satisfying the expression (4), it is possible to reduce the fluctuation of the transmitted light intensity of the light wave transmitted through the birefringent film 71. Therefore, a high-performance optical low-pass filter with low manufacturing cost can be realized.
第 5図は、 複屈折膜 7 1が表面に加工された複屈折板 7 2または複屈折板 7 3 の一体化方法を説明する図である。 第 5図 (a ) は、 複屈折板 7 2に第 1の複屈 折月莫部分 7 1 iおよび第 2の複屈折膜部分 7 1 2が連続して蒸着され、 その後、 接着剤 4 4を用いて、 蒸着処理がなされた複屈折板 7 2と、 複屈折板 7 3とを接 着する方法である。 FIG. 5 is a view for explaining a method of integrating the birefringent plate 72 or the birefringent plate 73 with the birefringent film 71 processed on the surface. FIG. 5 (a) shows that the first birefringent portion 7 1 i and the second birefringent film portion 7 1 2 are continuously deposited on the birefringent plate 7 2, and then the adhesive 4 4 This is a method of bonding a birefringent plate 72 and a birefringent plate 73 on which a vapor deposition process has been performed by using the method.
ここで、 「接着」 とは、 接着剤を媒介とし、 2つの面が結合した状態を意味し 、 詳しくは、 接着剤を媒介とし、 化学的もしくは物理的な力またはその両者によ つて 2つの面が結合した状態のことである。 また、 「接合」 とは、 接着剤を媒介 としないで、 2つの面が結合した状態を意味し、 詳しくは、 接着剤を媒介としな いで、 物理的な力で 2つの面が結合した状態のことである。  Here, “adhesion” means a state in which two surfaces are bonded by using an adhesive as a medium, and more specifically, by using an adhesive as a medium and by using chemical or physical force or both. This is the state where the surfaces are connected. The term “joining” refers to a state in which two surfaces are joined without using an adhesive, and more specifically, a state in which two surfaces are joined by physical force without using an adhesive. That is.
また、 「一体化」 とは、 それぞれの複屈折板 7 2または 7 3あるいは必要によ り赤外カツトフィルタ等を接着あるいは接合により一つの部材として構成するこ とを意味する。 この赤外カットフィルタとは、 赤外光を反射する機能、 吸収する '機能あるいはそれら両者の機能を有するものを指す。  The term “integrated” means that each of the birefringent plates 72 or 73 or, if necessary, an infrared cut filter or the like is formed as one member by bonding or joining. The infrared cut filter refers to a filter having a function of reflecting infrared light, a function of absorbing infrared light, or a function of both.
第 5図 (b ) は、 複屈折板 7 2に第 1の複屈折膜部分 7 1 S蒸着され、 また 、 複屈折板 7 3に第 2の複屈折膜部分 7 1 2が蒸着され、 その後、 接着剤 4 4を 用いて、 第 1の複屈折膜部分 7 1ェが蒸着された複屈折板 7 2と、 第 2の複屈折 膜部分 7 1 2が蒸着された複屈折板 7 3とを接着する方法である。 Figure 5 (b), the first being birefringent film portion 7 1 S deposited on the birefringent plate 7 2, also, the second birefringent film portion 7 1 2 is deposited on the birefringent plate 7 3, then The glue 4 4 Used, the birefringent plate 7 2 first birefringent film portion 71 E is deposited is a method in which the second birefringent film portion 7 1 2 to bond the birefringent plate 7 3 deposited .
第 5図 ( c ) は、 複屈折板 7 2に第 1の複屈折膜部分 7 1ェおよび第 2の複屈 折膜部分 7 1 2が連続して蒸着され、 その後、 直接接合または常温接合により、 蒸着処理がなされた複屈折板 7 と、 複屈折板 7 3とを接合する方法である。 直接接合とは、 接合面となる第 2の複屈折膜部分 7 1 2およぴ複屈折板 7 3の 表面の親水化処理をおこない、 第 2の複屈折膜部分 7 1 2と複屈折板 7 3とを貝占 り合わせた後、 熱処理をおこなうことにより両者を接合する方法である。 Fig. 5 (c) shows that the first birefringent film portion 71 and the second birefringent film portion 71 2 are successively deposited on the birefringent plate 72, and then directly bonded or room temperature bonded. Thus, the birefringent plate 7 having been subjected to the vapor deposition process and the birefringent plate 73 are joined. The direct bonding performs hydrophilic treatment of the second birefringent film portion 7 1 2 Oyopi birefringent plate 7 3 of the surface as a bonding surface, a second birefringent film portion 7 1 2 and the birefringent plate This is a method in which the two are joined by performing heat treatment after occupying 73 with the shellfish.
常温接合とは、 接合面となる第 2の複屈折膜部分 7 1 2および複屈折板 7 3の 表面に、 アルゴンなどの不活性ガスのビームを常温において照射して表面をクリ 一ユングし、 真空中で重ね合わせることにより両者を接合する方法である。 この 方法は、 表面活性ィヒ接合とも呼ばれる。 The room-temperature bonding, a second birefringent film portion 7 1 2 and the surface of the birefringent plate 7 3 serving as a bonding surface, the surface chestnut and one Jung a beam of inert gas such as argon and irradiated at room temperature, This is a method of joining both by overlapping in a vacuum. This method is also called surface active junction.
第 5図 (d ) は、 複屈折板 7 2に第 1の複屈折膜部分 7 1 S蒸着され、 また 、 複屈折板 7 3に第 2の複屈折膜部分 7 1 2が蒸着され、 その後、 直接接合また は常温接合により、 第 1の複屈折膜部分 7 1!が蒸着された複屈折板 7 2と、 第 2の複屈折膜部分 7 1 2が蒸着された複屈折板 7 3とを接合する方法である。 このようにして形成された光ローパスフィルタ 7 0に、 赤外線を力ットする赤 外カツトフィルタをさらに接合あるいは接着することとしてもよい。 C C Dや C M〇Sは、 赤外線を感知してしまうので、 赤外カットフィルタを接合することに より、 赤外線によるノィズの発生を抑制することができる。 赤外力ットフィルタ は、 赤外吸収ガラスなどの基板や多層膜の赤外反射コートなどにより形成される 上述してきたように、 本実施の形態 1では、 複屈折板 7 2または複屈折板 7 3 の少なくとも一つの表面を斜め蒸着法により加工して、 複屈折板 7 2を透過して きた光波の振動状態を直線偏光から円偏光に変換する複屈折膜 7 1を形成するこ ととしたので、 製造時の加工が容易で、 薄いものでも安価に製造することのでき る高性能な光ローパスフィルタ 7 0を提供することができる。 (実施の形態 2 ) FIG. 5 (d) shows that the first birefringent film portion 71 S is vapor-deposited on the birefringent plate 72, and the second birefringent film portion 71 2 is vapor-deposited on the birefringent plate 73. The first birefringent film part 7 1! This is a method in which the birefringent plate 72 on which the second birefringent film portion 71 is deposited and the birefringent plate 73 on which the second birefringent film portion 72 is deposited are joined. An infrared cut filter for energizing infrared rays may be further joined or bonded to the optical low-pass filter 70 thus formed. Since CCDs and CM〇Ss sense infrared light, the generation of noise due to infrared light can be suppressed by joining an infrared cut filter. The infrared power filter is formed of a substrate such as an infrared absorbing glass or an infrared reflective coat of a multilayer film. As described above, in the first embodiment, the birefringent plate 72 or the birefringent plate 73 is used. At least one surface was processed by oblique deposition to form a birefringent film 71 that converts the vibration state of the light wave transmitted through the birefringent plate 72 from linearly polarized light to circularly polarized light. It is possible to provide a high-performance optical low-pass filter 70 that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin. (Embodiment 2)
ところで、 上記実施の形態 1では、 斜め蒸着法により 4分の 1波長板と同等の 機能を有する複屈折膜を形成することとしたが、 斜め蒸着法を用いる代わりに、 第 1の複屈折板および第 2の複屈折板の少なくとも一つの表面に凹凸を形成し、 4分の 1波長板と同等の機能を有する複屈折構造を設けることとしてもよい。 そこで、 本実施の形態 2では、 第 1の複屈折板および第 2の複屈折板の少なく とも一つの表面に凹凸を形成することにより、 複屈折構造を設ける場合について 説明する。  By the way, in the first embodiment, the birefringent film having the same function as the quarter-wave plate is formed by the oblique vapor deposition method. Instead of using the oblique vapor deposition method, the first birefringent plate is used. In addition, irregularities may be formed on at least one surface of the second birefringent plate to provide a birefringent structure having a function equivalent to that of a quarter-wave plate. Therefore, in Embodiment 2, a case will be described in which a birefringent structure is provided by forming irregularities on at least one surface of the first birefringent plate and the second birefringent plate.
第 6図は、 本実施の形態 2に係る複屈折板 7 5の構造を示す図である。 同図 ( a ) に示すように、 この複屈折板 7 5は、 表面を加工して凹凸を形成し、 その凹 凸により 4分の 1波長板と同等の機能を有する複屈折構造を実現している。  FIG. 6 is a diagram showing a structure of a birefringent plate 75 according to the second embodiment. As shown in the same figure (a), this birefringent plate 75 has its surface processed to form irregularities, and the concave and convex forms a birefringent structure having the same function as a quarter-wave plate. ing.
具体的には、 フォトリソグラフィ一により、 複屈折板 7 5の表面に利用波長以 下の間隔で縞状に凹凸を形成する。 その際、 凹凸の縞に沿った方向と複屈折板 7 5の光学軸 2の方向とが、 光波の進行方向に垂直な平面上に投影した場合に、 4 5度の角度となるようにする。  Specifically, by photolithography, irregularities are formed on the surface of the birefringent plate 75 in the form of stripes at intervals smaller than the wavelength used. At this time, the direction along the irregular stripes and the direction of the optical axis 2 of the birefringent plate 75 should be at an angle of 45 degrees when projected on a plane perpendicular to the traveling direction of the light wave. .
これにより、 複屈折板 7 5の表面に形成された複屈折構造の光学軸方向と複屈 折板 7 5の光学軸 2の方向とは、 光波の進行方向に垂直な平面上に投影した場合 に、 4 5度の角度となる。  As a result, the direction of the optical axis of the birefringent structure formed on the surface of the birefringent plate 75 and the direction of the optical axis 2 of the birefringent plate 75 are determined when projected onto a plane perpendicular to the traveling direction of the light wave. The angle is 45 degrees.
このように複屈折板 7 5の表面を加工することにより、 第 6図 (b ) に示すよ うな屈折率楕円体 3となる構造複屈折性が生じ、 複屈折板 7 5の表面に形成され た複屈折構造が、 4分の 1波長板と同等の機能を発揮することができるようにな る。  By processing the surface of the birefringent plate 75 in this way, structural birefringence, which becomes the refractive index ellipsoid 3 as shown in FIG. 6 (b), is generated and formed on the surface of the birefringent plate 75. The birefringent structure can exhibit the same function as a quarter-wave plate.
たとえば、 第 6図 ( c ) の例では、 複屈折板 7 5はニオブ酸リチウムからなり 、 複屈折板 7 5の本体の厚みは 0 . 2 7 μ m、 凹部の幅は◦ . 0 6 6 μ mである 。 また、 複屈折板 7 5の表面に形成された凸部の高さは dであり、 凹部と凸部と の幅の合計は eである。  For example, in the example of FIG. 6 (c), the birefringent plate 75 is made of lithium niobate, the thickness of the body of the birefringent plate 75 is 0.27 μm, and the width of the concave portion is ◦. μm. The height of the convex portion formed on the surface of the birefringent plate 75 is d, and the total width of the concave portion and the convex portion is e.
原理的に、 凹凸により構成される複屈折構造における異常光の屈折率 n eおよ び常光の屈折率 n。の差 11 e— n。は、 eに対する凹部の幅の比 (この場合は、 0 . 0 6 6 / e ) により決定される。 そして、 その屈折率の差 n e— n。に対して 、 凸部の高さ dを、 4 In principle, the refractive index n e and extraordinary And the refractive index n of ordinary light. The difference 11 e — n. Is determined by the ratio of the width of the recess to e (in this case, 0.066 / e). And the refractive index difference n e — n. And the height d of the convex part is 4
を満足するような高さとすることで、 4分の 1波長板と同等の機能を有する複屈 折構造を形成することができる。 ここで、 λは、 光波の利用波長であり、 mは、 奇数の整数である。 By setting the height to satisfy the above, a birefringent structure having a function equivalent to that of a quarter-wave plate can be formed. Here, λ is the use wavelength of the light wave, and m is an odd integer.
式 (5 ) において、 奇数の整数 mの値が 1などのように小さな場合には、 厚さ dは非常に小さな値となる。 このように複屈折構造の厚みが非常に薄い場合、 従 来のように、 複屈折構造を別途形成し、 それを複屈折板に接合することは極めて 困難であるが、 フォトリソグラフィ一の技術を用いれば、 そのような厚みの複屈 折構造でも容易に形成することができる。  In Equation (5), when the value of the odd integer m is small, such as 1, the thickness d is a very small value. When the thickness of the birefringent structure is extremely small as described above, it is extremely difficult to separately form the birefringent structure and bond it to the birefringent plate as in the past. If used, a birefringent structure having such a thickness can be easily formed.
第 7図は、 第 6図に示した複屈折構造における光波の波長と透過光強度の関係 の一例を示す図である。 なお、 ここでは、 入射光 P iの強度を 1としており、 複 屈折構造に入射する前に入射光 P iが 2つに分離するため、 透過光強度は最大で 0 . 5となる。 また、 この例は、 式 (5 ) において、 mの値を 1とした場合、 す なわち、 複屈折構造を非常に薄く形成した場合を示している。  FIG. 7 is a diagram showing an example of the relationship between the wavelength of a light wave and the intensity of transmitted light in the birefringent structure shown in FIG. Here, the intensity of the incident light P i is set to 1, and the incident light P i is split into two before entering the birefringent structure, so that the transmitted light intensity becomes 0.5 at the maximum. Also, this example shows a case where the value of m in Equation (5) is 1, that is, a case where the birefringent structure is formed very thin.
同図に示すように、 複屈折構造を式 (5 ) を満足しながら、 非常に薄く形成す ることにより、 複屈折構造を透過した光波の透過光強度の変動を小さくすること ができ、 製造コストが低く、 高性能な光口一パスフィルタを実現することができ る。  As shown in the figure, by forming the birefringent structure to be very thin while satisfying the expression (5), it is possible to reduce the fluctuation of the transmitted light intensity of the light wave transmitted through the birefringent structure. A low-cost, high-performance optical aperture one-pass filter can be realized.
第 8図は、 複屈折構造を表面に有する複屈折板 7 5 iまたは複屈折板 7 5 2の 一体化方法を説明する図である。 第 8図 (a ) は、 複屈折板 7 5に 4分の 1波長 板の機能を有する複屈折構造を形成し、 その後、 接着剤 4 4を用いて、 複屈折構 造が形成された複屈折板 7 5と、 複屈折板 7 3とを接着する方法である。 8 is a diagram illustrating an integrated method of the birefringent plate 7 5 i or birefringent plate 7 5 2 having birefringence structure on the surface. FIG. 8 (a) shows a birefringent structure in which a birefringent structure having the function of a quarter-wave plate is formed on a birefringent plate 75, and then the birefringent structure is formed using an adhesive 44. This is a method of bonding the refraction plate 75 and the birefringence plate 73.
第 8図 (b ) は、 複屈折板 7 5ェに第 1の複屈折構造を形成し、 また、 複屈折 板 7 5 2に第 2の複屈折構造を形成し、 その後、 接着剤 4 4を用いて、 複屈折板 7 5 iと複屈折板 7 5 2とを接着することにより、 4分の 1波長板の機能を有す る複屈折構造を形成する方法である。 ただし、 第 1の複屈折構造および第 2の複 屈折構造の凹凸の縞の方向が一致するように凹凸を形成する。 FIG. 8 (b) shows that the first birefringent structure is formed on the birefringent plate 75e. The second form birefringence structure to the plate 7 5 2, then, by using an adhesive agent 4 4 by bonding a birefringent plate 7 5 i and the birefringent plate 7 5 2, quarter wavelength This is a method of forming a birefringent structure having the function of a plate. However, the irregularities are formed such that the directions of the stripes of the irregularities of the first birefringent structure and the second birefringent structure match.
第 1の複屈折構造の凸部と第 2の複屈折構造の凸部とは、 両者が接合されるこ とにより、 4分の 1波長板の機能を発揮するように形成される。 具体的には、 両 者の凸部の高さの合計を dとした場合に、 式 (5 ) を満足する合計高さ dとなる ように表面を加工することにより、 4分の 1波長板の機能を有する複屈折構造を 形成することができる。  The convex portion of the first birefringent structure and the convex portion of the second birefringent structure are formed so as to exhibit the function of a quarter-wave plate by joining them. Specifically, when the sum of the heights of the projections of both is d, the surface is processed so as to have a total height d that satisfies Equation (5). Thus, a birefringent structure having the following function can be formed.
第 8図 (b ) では、 第 1の複屈折構造の凸部高さと第 2の複屈折構造の凸部高 さとが等しい場合が示されているが、 必ずしも等しい必要はなく、 合計高さ dが 式 (5 ) を満足するようなものであればよい。 2つの複屈折構造の高さが等しい 場合というのは、 各複屈折構造が 8分の 1波長板の機能を有することを意味する 第 8図 (c ) は、 複屈折板 7 5に 4分の 1波長板の機能を有する複屈折構造を 形成し、 その後、 直接接合または常温接合により、 複屈折構造が形成された複屈 折板 7 5と、 複屈折板 7 3とを接合する方法である。  FIG. 8 (b) shows a case where the height of the convex portion of the first birefringent structure is equal to the height of the convex portion of the second birefringent structure. Should be such that satisfies equation (5). The case where the heights of the two birefringent structures are equal means that each birefringent structure has the function of a 1/8 wave plate. Fig. 8 (c) shows that the birefringent plates 75 A birefringent structure having the function of a single-wavelength plate is formed, and then the birefringent plate 75 with the birefringent structure formed thereon and the birefringent plate 73 by direct bonding or room-temperature bonding. is there.
第 8図 (d ) は、 複屈折板 7 5ェに第 1の複屈折構造を形成し、 また、 複屈折 板 7 5 2に第 2の複屈折構造を形成し、 その後、 直接接合または常温接合により 、 複屈折板 7 5 と複屈折板 7 5 2とを接合し、 4分の 1波長板の機能を有する 複屈折構造を形成する方法である。 Figure 8 (d) is to form a first birefringent structure birefringent plate 7 5 E, also forming a second birefringent structure birefringent plate 7 5 2, then direct bonding or cold by joining, joining the birefringent plate 7 5 and the birefringent plate 7 5 2, it is a method of forming a birefringent structure having the function of a quarter wave plate.
このようにして形成された光ローパスフィルタ 7 0に、 赤外線を力ットする赤 外カツトフィルタをさらに接合あるレ、は接着し、 赤外線によるノィズを低減させ るよう構成することとしてもよレ、。  The optical low-pass filter 70 thus formed may be further joined with an infrared cut filter for applying infrared light, and may be bonded to reduce noise due to infrared light. .
なお、 第 1の複屈折板 7 5 または第 2の複屈折板 7 5 2の表面に形成された 複屈折構造の光学軸が、 光波の進行方向に平行とならなレ、場合には、 実施の形態 1で述べたのと同様に、 複屈折構造において光波が 2つに分離されてしまう。 それを抑制するために、 第 1の複屈折板 7 5 および第 2の複屈折板 7 5 2の 光学軸の方向を光波の進行方向に垂直な平面に投影した場合に、 2つの光学軸の 方向のなす角度が 1 8 0度となるような第 1の複屈折板 7 5 iおよび第 2の複屈 折板 7 5 2を組み合わせ、 光ローパスフィルタ 7 0を形成することとしてもょレ、 0 The optical axis of the birefringent structure formed on the first birefringent plate 7 5 and the second surface of the birefringent plate 7 5 2, Les such become parallel to the traveling direction of the light wave, the case, carried As described in Embodiment 1, the light wave is split into two in the birefringent structure. To suppress them, when the direction of the first birefringent plate 7 5 and the second birefringent plate 7 5 2 optical axis is projected on a plane perpendicular to the traveling direction of the light wave, the two optical axes combining the first birefringent plate 7 5 i and the second Fuku屈folded plate 7 5 2 such as the angle of the direction is 1 8 0 degrees, Yo Le is also possible to form an optical low-pass filter 7 0, 0
上述してきたように、 本実施の形態 2では、 第 1の複屈折板 7 5 iまたは第 2 の複屈折板 7 5 2の少なくとも一つの表面を加工して凹凸を形成し、 4分の 1波 長板と同等の機能を有する複屈折構造を形成することとしたので、 実施の形態 1 と同様に、 製造時の加工が容易で、 薄いものでも安価に製造することのできる高 性能な光ローパスフィルタ 7 0を提供することができる。 As described above, in the second embodiment, the irregularities formed by processing the first birefringent plate 7 5 i or second at least one surface of the birefringent plate 7 5 2, a quarter Since a birefringent structure having the same function as that of the wavelength plate is formed, high-performance light that can be easily processed at the time of manufacture and can be manufactured at low cost even in the case of the thin film as in the first embodiment. A low-pass filter 70 can be provided.
(実施の形態 3 )  (Embodiment 3)
ところで、 上記実施の形態 1または 2では、 第 1の複屈折板または第 2の複屈' 折板の少なくとも一つの表面を加工して、 4分の 1波長板と同等の機能を有する 複屈折領域を形成し、 入射した光波の振動方向を直線偏光から円偏光または楕円 偏光に変換することとしたが、 その複屈折領域が、 入射した光波が偏光による光 線分離をするよう構成することとしてもよレ、。  By the way, in the first or second embodiment, at least one surface of the first birefringent plate or the second birefringent bending plate is processed to have a function equivalent to that of a quarter-wave plate. A region was formed, and the direction of vibration of the incident light wave was converted from linearly polarized light to circularly polarized light or elliptically polarized light.However, the birefringence region was configured so that the incident light wave was separated by polarized light. I'm sorry.
そこで、 本実施の形態 3では、 第 1の複屈折板または第 2の複屈折板の間にあ る複屈折領域が、 入射した光波の直線偏光の角度を変換するよう形成された場合 について説明する。  Therefore, in Embodiment 3, a case will be described in which a birefringent region between the first birefringent plate and the second birefringent plate is formed so as to convert the angle of linearly polarized light of an incident light wave.
第 9図は、 本実施の形態 3に係る光ローパスフィルタ 7 0の機能を説明する図 である。 第 9図 (a ) に示すように、 この光ローパスフィルタ 7 0は、 複屈折板 7 2に複屈折膜 7 6が蒸着され、 複屈折膜 7 6が蒸着された複屈折板 7 2に複屈 折板 7 3が接合されている。 ここでは、 複屈折板 7 2に複屈折膜 7 6を蒸着する こととしたが、 複屈折板 7 3に複屈折膜 7 6を蒸着することとしてもよい。  FIG. 9 is a diagram for explaining the function of the optical low-pass filter 70 according to the third embodiment. As shown in FIG. 9 (a), this optical low-pass filter 70 has a birefringent film 72 deposited on a birefringent plate 72, and a birefringent plate 72 on which a birefringent film 76 is deposited. The bending plate 73 is joined. Here, the birefringent film 76 is deposited on the birefringent plate 72, but the birefringent film 76 may be deposited on the birefringent plate 73.
複屈折膜 7 6を蒸着する際には、 複屈折膜 7 6の光学軸および複屈折板 7 2の 光学軸が、 光波の進行方向に垂直な平面内へ投影された場合に 4 5度の角度をな すようにする。 そのように複屈折膜 7 6を蒸着することにより、 第 9図 (b ) に示すように、 複屈折板 7 2を透過して 2つに分離された光波は、 複屈折膜 7 6を透過した際に 振動方向が 4 5度回転して、 光学軸方向が複屈折板 7 2とは 9 0度異なる複屈折 板 7 3に入射する。 When depositing the birefringent film 76, when the optical axis of the birefringent film 76 and the optical axis of the birefringent plate 72 are projected into a plane perpendicular to the traveling direction of the light wave, 45 ° Make an angle. By depositing the birefringent film 76 in this way, as shown in FIG. 9 (b), the light wave transmitted through the birefringent plate 72 and separated into two is transmitted through the birefringent film 76. Then, the vibration direction is rotated by 45 degrees, and the light is incident on the birefringent plate 73 whose optical axis direction differs from the birefringent plate 72 by 90 degrees.
蒸着する金属酸ィ匕物は、 複屈折板 7 2または 7 3が水晶で形成されている場合 には、 二酸化ケイ素 (S i 0 2) ίΚ 複屈折板 7 2または 7 3がニオブ酸リチウ ムで形成されている場合には、 五酸化タンタル (T a 2 0 5) が選択される。 こ れは、 複屈折板 7 2および 7 3の屈折率と類似した屈折率を有する金属酸化物を 用いることにより、 それらの界面における光波の反射を抑制するためである。 ただし、 光波が複屈折膜 7 6を透過した際には、 複屈折板 7 2により 2つに分 離された各光波が、 さらに 2つに分離される。 そして、 複屈折板 7 3により各光 波がさらに 2つずつに分離され、 1つの入射光 P iが合計 8つの光波に分離され る。 Metal Sani匕物to be deposited, when the birefringent plate 7 2 or 7 3 are formed in the crystal, the silicon (S i 0 2) dioxide ίΚ birefringent plate 7 2 or 7 3 niobate lithium in the case of being formed, tantalum pentoxide (T a 2 0 5) is selected. This is because the use of metal oxides having a refractive index similar to that of the birefringent plates 72 and 73 suppresses the reflection of light waves at the interface between them. However, when the light wave passes through the birefringent film 76, each light wave separated into two by the birefringent plate 72 is further separated into two. Then, each light wave is further separated into two by the birefringent plate 73, and one incident light Pi is separated into a total of eight light waves.
し力 しながら、 この複屈折膜 7 6を薄膜として形成することにより、 複屈折膜 7 6における光波の分離距離を微小にすることができ、 実質的に第 9図 (a ) に 示した正方形型の 4点分離パターンを得ることができる。 複屈折膜 7 6の薄膜ィ匕 は、 斜め蒸着法を用いることにより容易に実現できる。  By forming the birefringent film 76 as a thin film, the separation distance of the light waves in the birefringent film 76 can be reduced, and the square shown in FIG. A 4-point separation pattern of the mold can be obtained. The thin birefringent film 76 can be easily realized by using an oblique evaporation method.
第 1 0図は、 複屈折板 7 2に複屈折膜 7 6を蒸着する蒸着方法を説明する図で ある。 ここで、 z方向は、 光波の進行方向と一致しているものとする。 同図に示 すように、 複屈折板 7 2に複屈折膜 7 6を蒸着する場合には、 金属酸化物の照射 方向が Z軸方向と 6 0〜 7 0度程度の角度をなし、 かつ、 複屈折板 7 2の光学軸 方向 2および金属酸化物の照射方向が Z軸に垂直な平面上に投影された場合に、 4 5度の角度となる方向 (照射源) カ ら金属酸ィ匕物を照射する。 FIG. 10 is a view for explaining a vapor deposition method for vapor-depositing a birefringent film 76 on a birefringent plate 72. Here, it is assumed that the z direction coincides with the traveling direction of the light wave. As shown in the figure, when depositing the birefringent film 76 on the birefringent plate 72, the irradiation direction of the metal oxide forms an angle of about 60 to 70 degrees with the Z- axis direction, and The direction in which the optical axis direction 2 of the birefringent plate 72 and the irradiation direction of the metal oxide are projected at an angle of 45 degrees when projected on a plane perpendicular to the Z axis (irradiation source) Irradiate the dagger.
これにより、 複屈折板 7 2に入射した光波 7 2の振動方向を、 複屈折膜 7 6が 4 5度回転させることができるようになり、 第 9図で説明した光ローパスフィル タ 7 0を実現することができる。  Thereby, the birefringent film 76 can rotate the vibration direction of the light wave 72 incident on the birefringent plate 72 by 45 degrees, and the optical low-pass filter 70 described in FIG. Can be realized.
第 1 1図は、 複屈折板 7 2の表面に加工された複屈折膜 7 6と複屈折板 7 3と を接合あるいは接着する一体ィ匕方法を説明する図である。 第 1 1図 (a ) は、 複 屈折板 7 2に複屈折膜 7 6を蒸着し、 その後、 接着剤 4 4を用いて、 複屈折膜 7 6が蒸着された複屈折板 7 2と複屈折板 7 3とを接着する方法である。 FIG. 11 shows a birefringent film 76 and a birefringent plate 73 formed on the surface of a birefringent plate 72. FIG. 4 is a view for explaining a method of joining or adhering the two. FIG. 11 (a) shows a birefringent film 72 deposited on a birefringent plate 72, and then a birefringent plate 72 with a birefringent film 76 deposited thereon using an adhesive 44. This is a method of bonding the refraction plate 73.
第 1 1図 (b ) は、 複屈折板 7 2に複屈折膜 7 6を蒸着し、 その後、 直接接合 または常温接合により、 複屈折膜 7 6が蒸着された複屈折板 7 2と複屈折板 7 3 とを接合する方法である。  Fig. 11 (b) shows a birefringent film 72 deposited on a birefringent plate 72, and then birefringent with a birefringent plate 72 on which the birefringent film 76 is deposited by direct bonding or room temperature bonding. This is a method of joining the plate 73.
このようにして形成された光ローパスフィルタ 7 0に、 赤外線をカツトする赤 外カツトフィルタをさらに接合あるいは接着し、 赤外線によるノイズを低減させ るよう構成することとしてもよい。  An infrared cut filter for cutting infrared rays may be further joined or adhered to the optical low-pass filter 70 formed in this way so as to reduce noise due to infrared rays.
上述してきたように、 本実施の形態 3では、 複屈折板 7 2を透過してきた光波 を 4 5度方向に分離させる機能を有する複屈折膜 7 6を、 斜め蒸着法により複屈 折板 7 2または複屈折板 7 3に直接形成することとしたので、 製造時の加工が容 易で、 薄いものでも安価に製造することのできる高性能な光ローパスフィルタ 7 0を提供することができる。  As described above, in the third embodiment, the birefringent film 76 having a function of separating the light wave transmitted through the birefringent plate 72 in the direction of 45 degrees is formed by the birefringent plate 7 by an oblique evaporation method. Since it is formed directly on the birefringent plate 73 or the birefringent plate 73, it is possible to provide a high-performance optical low-pass filter 70 that can be easily processed at the time of manufacturing and can be manufactured at low cost even if it is thin.
なお、 本実施の形態 3では、 複屈折板 7 2を透過してきた光波を 4 5度方向に 分離させる機能を有する複屈折膜 7 6を、 斜め蒸着法により形成することとした 、 これに限定されず、 実施の形態 2で示したような凹凸を有する複屈折性構造 を、 フォトリソグラフィ一の技術を用いて複屈折板に形成し、 同等の機能を実現 することとしてもよレ、。 この場合においても、 複屈折膜 7 6の薄膜化を容易に実 現することができる。  In the third embodiment, the birefringent film 76 having a function of separating the light wave transmitted through the birefringent plate 72 in the direction of 45 degrees is formed by an oblique deposition method. However, it is also possible to form the birefringent structure having irregularities as shown in the second embodiment on a birefringent plate using one photolithography technique to realize the same function. Also in this case, the thickness of the birefringent film 76 can be easily reduced.
(実施の形態 4 )  (Embodiment 4)
ところで、 上記実施の形態 1、 2または 3では、 複屈折板の表面に直接加工を 施して、 入射した光波の偏光の状態を変換する光ローパスフィルタについて説明 したが、 その光ローパスフィルタと、 レンズ、 C C Dあるいは CMO Sエリアセ ンサなどとを用いて撮像装置を構成することができる。  By the way, in the first, second or third embodiment, the optical low-pass filter for directly processing the surface of the birefringent plate to change the polarization state of the incident light wave has been described. An imaging device can be configured using a CCD, a CMOS, or a CMOS area sensor.
そこで、 本実施の形態 4では、 実施の形態 1、 2または 3で説明した光ローパ スフィルタと、 レンズ、 エリアセンサなどとを用いて構成された撮像装置につい て説明する。 Therefore, in the fourth embodiment, an imaging device configured using the optical low-pass filter described in the first, second, or third embodiment, a lens, an area sensor, and the like is described. Will be explained.
第 1 2図は、 実施の形態 1、 2または 3で示した光口一パスフィルタを有する 撮像装置 2 0 0の構成を示す図である。 同図に示すように、 この撮像装置 2 0 0 は、 エリアセンサ 5 0、 光ローパスフィルタ 7 0、 レンズ 8 0、 赤外カットフィ ルタ 9 0、 力パー 1 0 0 iおよび 1 0 0 2を有する。 FIG. 12 is a diagram illustrating a configuration of an imaging device 200 having the light-port one-pass filter described in Embodiment 1, 2, or 3. As shown in the figure, the image pickup apparatus 2 0 0 have area sensor 5 0, the optical low-pass filter 7 0, lens 8 0, an IR cut filter 9 0, the force per 1 0 0 i and 1 0 0 2 .
エリアセンサ 5 0は、 複数の C C Dまたは CMO Sが画素に対応させて縦横に 二次元配列されたセンサであり、 光口一パスフィルタは 7 0は、 実施の形態 1か ら 3のいずれかで述べた光ローパスフィルタである。  The area sensor 50 is a sensor in which a plurality of CCDs or CMOSs are two-dimensionally arranged vertically and horizontally in correspondence with the pixels, and the optical aperture one-pass filter 70 is provided by any one of the first to third embodiments. This is the optical low-pass filter described above.
レンズ 8 0は、 撮像対象からの入射光を集光し、 光ローパスフィルタ 7 0へと 導くレンズであり、 赤外カツトフィルタ 9 0は、 赤外線を力ットするためのフィ ルタである。  The lens 80 is a lens that collects incident light from the imaging target and guides the light to the optical low-pass filter 70, and the infrared cut filter 90 is a filter for filtering infrared light.
カバー 1 0 0 および 1 0 0 2は、 レンズ 8 0、 光ローパスフィルタ 7 0、 赤 外カツトフィルタ 9 0およびエリアセンサ 5 0を支持するカバーであり、 カバー l O O iと 1 0 0 2とは、 接着剤 1 1 0により接着され、 固定されている。 Cover 1 0 0 and 1 0 0 2 lens 8 0, the optical low-pass filter 7 0, a cover for supporting the infrared Katsuhito filter 9 0 and the area sensor 5 0, cover l OO i and 1 0 0 2 A It is adhered and fixed by the adhesive 110.
ここでは、 カバー 1 0 0 と 1 0 0 2とを、 接着剤 1 1 0により接着すること としたが、 接着剤 1 1 0を用いることなく、 つめで固定するなど他の方法を用い ることとしてもよレ、。 Here, Rukoto using other methods such as the cover 1 0 0 and the 1 0 0 2, it is assumed that bonding by the adhesive 1 1 0, without the use of adhesives 1 1 0, fixed with nails You can do it.
上述したように、 本実施の形態 4では、 実施の形態 1、 2または 3で説明した 光ローパスフィルタを用いて、 レンズ 8 0とエリアセンサ 5 0を有する撮像装置 2 0 0を構成することとしたので、 製造時の加工が容易で、 薄いものでも安価に 製造することのできる高性能な光ローパスフィルタ 7 0を組み込むことにより、 製造コストの低い撮像装置を提供することができる。  As described above, in the fourth embodiment, the imaging device 200 having the lens 80 and the area sensor 50 is configured using the optical low-pass filter described in the first, second, or third embodiment. Therefore, by incorporating a high-performance optical low-pass filter 70 that is easy to process at the time of manufacturing and can be manufactured at low cost even if it is thin, an imaging device with low manufacturing cost can be provided.
なお、 実施の形態 1〜4では、 複屈折板の材料として、 水晶またはェォブ酸リ チウムを用いることとしたが、 本発明はこれに限定されるものではなく、 その他 のさまざまな複屈折性を示す材料を用いることができる。 この場合、 実施の形態 In the first to fourth embodiments, quartz or lithium ebobate is used as the material of the birefringent plate. However, the present invention is not limited to this, and various other birefringences may be used. The materials shown can be used. In this case, the embodiment
1または 3における、 複屈折板に蒸着する金属酸化物は、 複屈折板の材料に応じ て適宜選択することができる。 また、 実施の形態 1〜4では、 複屈折板の表面に形成された複屈折領域の光学 軸方向と複屈折板の光学軸の方向とが、 光波の進行方向に垂直な平面上に投影し た場合に、 4 5度の角度となるように複屈折領域を形成することとしたが、 本努 明はこれに限定されるものではなく、 2つの光学軸間の角度が 4 5度 ± 1 5度 の範囲内であればよい。 これは、 この範囲内であれば、 形成された複屈折領域を 透過する 2つの光波の透過光強度の差が小さく、 実用上は問題とはならないため である。 In 1 or 3, the metal oxide deposited on the birefringent plate can be appropriately selected according to the material of the birefringent plate. In the first to fourth embodiments, the optical axis direction of the birefringent region formed on the surface of the birefringent plate and the direction of the optical axis of the birefringent plate are projected on a plane perpendicular to the traveling direction of the light wave. In this case, the birefringent region is formed so as to have an angle of 45 degrees. However, the present invention is not limited to this, and the angle between the two optical axes is 45 degrees ± 1. It may be within the range of 5 degrees. This is because within this range, the difference between the transmitted light intensities of the two light waves transmitted through the formed birefringent region is small, and does not pose a problem in practical use.
さらに、 実施の形態 1〜 4では、 さまざまな角度や寸法などの値や形状などが 示されているが、 実際にはそれらの値や形状は厳密なものとは限らず、 光フィル タの各部を製造する際の精度の問題などにより誤差が生じることがありうる。 (本発明の効果)  Further, in Embodiments 1 to 4, various values and shapes such as angles and dimensions are shown, but in practice the values and shapes are not strict, and each part of the optical filter is There is a possibility that an error may occur due to a problem of accuracy in manufacturing the device. (Effect of the present invention)
以上説明してきたように、 入射した光波をそれぞれ 2つの光波に分離する第 1 の複屈折領域および第 2の複屈折領域の間に入射した光波の振動方向を変換する 第 3の複屈折領域を設けてなり、 光波の所定の空間周波数成分をフィルタリング する光フィルタであって、 第 3の複屈折領域は、.複屈折構造が第 1の複屈折領域 および第 2の複屈折領域のうち少なくとも一つの表面において、 その表面に直接 形成されることとしたので、 製造時の加工が容易で、 薄いものでも安価に製造す ることのできる高性能な光フィルタを提供することができるという効果を奏する また、 本発明によれば、 光波が入射される撮像レンズと、 撮像レンズに入射さ れた光波を受光して電気信号を生成する撮像素子と、 撮像レンズと撮像素子との 間に配置され、 光波の所定の空間周波数成分をフィルタリングする光フィルタを 備えた撮像装置であって、 光フィルタは、 入射した光波をそれぞれ 2つの光波に 分離する第 1の複屈折領域および第 2の複屈折領域の間に第 1の複屈折領域から 入射した光波の振動方向を変換する第 3の複屈折領域を備え、 第 3の複屈折領域 は、 複屈折構造が第 1の複屈折領域および第 2の複屈折領域のうち少なくとも一 つの表面において、 その表面に直接形成されてなることとしたので、 製造時の加 ェが容易で、 薄いものでも安価に製造することのできる高性能な光フィルタを備 えた撮像装置を提供することができるという効果を奏する。 As described above, the first birefringent region, which separates the incident light wave into two light waves, and the third birefringent region, which converts the vibration direction of the light wave incident between the second birefringent region and the second birefringent region. An optical filter for filtering a predetermined spatial frequency component of a light wave, wherein the third birefringent region has at least one of a first birefringent region and a second birefringent region. Since one surface is formed directly on the surface, there is an effect that it is possible to provide a high-performance optical filter that can be easily processed at the time of manufacturing and that can be manufactured at a low cost even if it is thin. Further, according to the present invention, an imaging lens into which a light wave is incident, an imaging element that receives the light wave incident on the imaging lens to generate an electric signal, and is disposed between the imaging lens and the imaging element, An imaging device comprising an optical filter for filtering a predetermined spatial frequency component of a light wave, wherein the optical filter includes a first birefringent region and a second birefringent region for separating an incident light wave into two light waves, respectively. A third birefringent region for converting a vibration direction of a light wave incident from the first birefringent region between the first birefringent region and the second birefringent region. Since at least one of the refraction areas is formed directly on the surface, the This makes it possible to provide an imaging device provided with a high-performance optical filter that can be easily manufactured and that can be manufactured at a low cost even if it is thin.
また、 本発明によれば、 入射した光波をそれぞれ 2つの光波に分離する第 1の 複屈折領域およぴ第 2の複屈折領域の間に入射した光波の振動方向を変換する第 3の複屈折領域を設けてなり、 光波の所定の空間周波数成分をフィルタリングす る光フィルタの製造方法であって、 第 3の複屈折領域を、 第 1の複屈折領域およ ぴ第 2の複屈折領域のうち少なくとも一つの表面において、 複屈折構造をその表 面に直接形成することとしたので、 製造時の加工を容易におこなうことができ、 薄い光フィルタでも安価に製造することができるという効果を奏する。 産業上の利用可能性  Further, according to the present invention, the third birefringent region for converting the vibration direction of the light wave incident between the first birefringent region and the second birefringent region for separating the incident light wave into two light waves, respectively. A method of manufacturing an optical filter, comprising: a first birefringent region; and a second birefringent region, wherein the third birefringent region is provided with a first birefringent region and a second birefringent region. Since the birefringent structure is formed directly on at least one of the surfaces, it is possible to easily perform processing at the time of manufacturing, and it is possible to manufacture even a thin optical filter at low cost. Play. Industrial applicability
以上のように、 本発明に係る光フィルタ、 撮像装置おょぴ光フィルタの製造方 法は、 デジタルスチルカメラや携帯電話用カメラなどに、 偽色が発生するのを抑 制する目的で取り付けられる光フイノレタ、 その光フィルタを利用する撮像装置、 および、 その光フィルタの製造方法に適している。  As described above, the method of manufacturing an optical filter, an imaging device, and an optical filter according to the present invention is attached to a digital still camera, a camera for a mobile phone, or the like for the purpose of suppressing generation of false colors. The present invention is suitable for an optical filter, an imaging device using the optical filter, and a method of manufacturing the optical filter.

Claims

請 求 の 範 囲 The scope of the claims
1 . 入射した光波をそれぞれ 2つの光波に分離する第 1の複屈折領域および第 2の複屈折領域の間に、 入射した光波の振動方向により進行速度が異なる第 3の 複屈折領域を設けてなり、 該光波の所定の空間周波数成分をフィルタリングする 光フィ/レタであって、 1. Between the first birefringent region and the second birefringent region that separate the incident light wave into two light waves, a third birefringent region having a different traveling speed depending on the vibration direction of the incident light wave is provided. An optical filter / filter that filters a predetermined spatial frequency component of the light wave,
前記第 3の複屈折領域は、 複屈折構造が前記第 1の複屈折領域および前記第 2 の複屈折領域のうち少なくとも一つの表面において該表面に形成されてなること を特徴とする光  The third birefringent region, wherein a birefringent structure is formed on at least one surface of the first birefringent region and the second birefringent region on the surface.
2. 前記複屈折構造は、 前記第 1の複屈折領域およぴ前記第 2の複屈折領域の うち少なくとも一つの表面に、 利用波長以下の間隔で縞状に凸凹を形成したこと を特徴とする請求の範囲第 1項に記載の光フィルタ。 2. The birefringent structure is characterized in that at least one surface of the first birefringent region and the second birefringent region has irregularities formed in stripes at intervals equal to or less than the wavelength used. The optical filter according to claim 1, wherein
3 . 前記複屈折構造は、 前記第 1の複屈折領域およぴ前記第 2の複屈折領域の うち少なくとも一つの表面に、 斜め蒸着膜を蒸着したことを特徴とする請求の範 囲第 1項に記載の光フィルタ。 3. The birefringent structure, wherein an obliquely deposited film is deposited on at least one surface of the first birefringent region and the second birefringent region. An optical filter according to the item.
4 . 前記複屈折構造が、 前記第 1の複屈折領域または前記第 2の複屈折領域の いずれかの表面において該表面に形成され、 該複屈折構造が形成された前記第 1 の複屈折領域または前記第 2の複屈折領域の該複屈折構造の表面と、 該複屈折構 造が形成されなかつた前記第 1の複屈折領域または前記第 2の複屈折領域の表面 とが、 接着剤により一体ィヒしたことを特徴とする請求の範囲第 1項に記載の光フ ィルタ。 4. The birefringent structure is formed on the surface of either the first birefringent region or the second birefringent region, and the first birefringent region where the birefringent structure is formed Alternatively, the surface of the birefringent structure of the second birefringent region and the surface of the first birefringent region or the surface of the second birefringent region where the birefringent structure is not formed are bonded with an adhesive. 2. The optical filter according to claim 1, wherein the optical filter is integrated.
5 . 前記複屈折構造は、 前記第 1の複屈折領域およぴ前記第 2の複屈折領域の 双方の表面において該表面に形成され、 該複屈折構造が形成された前記第 1の複 屈折領域および前記第 2の複屈折領域の該複屈折構造の表面が、 接着剤により一 体ィ匕したことを特徴とする請求の範囲第 1項に記載の光: 5. The birefringent structure includes a first birefringent region and a second birefringent region. The surfaces of the birefringent structures of the first birefringent region and the second birefringent region formed on the surfaces on both surfaces and having the birefringent structure formed thereon are integrated by an adhesive. The light according to claim 1, characterized in that:
6 . 前記複屈折構造は、 前記第 1の複屈折領域または前記第 2の複屈折領域の レ、ずれかの表面にぉレヽて該表面に形成され、 該複屈折構造が形成された前記第 1 の複屈折領域または前記第 2の複屈折領域の該複屈折構造の表面と、 該複屈折構 造が形成されなかった前記第 1の複屈折領域または前記第 2の複屈折領域の表面 とを親水化し、 親水化された該複屈折構造の表面と、 親水化された該第 1の複屈 折領域または該第 2の複屈折領域の表面とを重ね合わせることにより接合されて なることを特徴とする請求の範囲第 1項に記載の光: 6. The birefringent structure is formed on the surface of the first birefringent region or the second birefringent region, which is different from the surface of the second birefringent region. A surface of the birefringent structure of the first birefringent region or the second birefringent region; and a surface of the first birefringent region or the second birefringent region where the birefringent structure is not formed. Are bonded by superposing the surface of the birefringent structure that has been hydrophilized and the surface of the first birefringent region or the second birefringent region that has been hydrophilized. Light according to claim 1, characterized by:
7. 前記複屈折構造は、 前記第 1の複屈折領域およぴ前記第 2の複屈折領域の 双方の表面において該表面に形成され、 該第 1の複屈折領域に形成された複屈折 構造の表面と、 該第 2の複屈折領域に形成された複屈折構造の表面とを親水化し 、 親水化された 2つの複屈折構造を重ね合わせることにより接合されてなること を特徴とする請求の範囲第 1項に記載の光: 7. The birefringent structure is formed on both surfaces of the first birefringent region and the second birefringent region, and the birefringent structure formed in the first birefringent region. And the surface of the birefringent structure formed in the second birefringent region is hydrophilized, and the two birefringent structures that have been hydrophilized are joined by overlapping. Light as described in range 1:
8 . 前記複屈折構造は、 前記第 1の複屈折領域または前記第 2の複屈折領域の いずれかの表面において該表面に形成され、 該複屈折構造が形成された前記第 1 の複屈折領域または前記第 2の複屈折領域と、 該複屈折構造が形成されなかつた 前記第 1の複屈折領域または前記第 2の複屈折領域とが表面活性化接合により接 合されてなることを特徴とする請求の範囲第 1項に記載の光フィルタ。 8. The birefringent structure is formed on the surface of either the first birefringent region or the second birefringent region, and the first birefringent region on which the birefringent structure is formed. Alternatively, the second birefringent region and the first birefringent region or the second birefringent region where the birefringent structure is not formed are joined by a surface activation junction. The optical filter according to claim 1, wherein
9 . 前記複屈折構造は、 前記第 1の複屈折領域およぴ前記第 2の複屈折領域の 双方の表面において該表面に形成され、 該複屈折構造が形成された前記第 1の複 屈折領域および前記第 2の複屈折領域が表面活性化接合により接合されてなるこ とを特徴とする請求の範囲第 1項に記載の光フィルタ。 9. The birefringent structure is formed on both surfaces of the first birefringent region and the second birefringent region, and the first birefringent on which the birefringent structure is formed. The region and the second birefringent region are joined by a surface activated junction. 2. The optical filter according to claim 1, wherein:
1 0 . 前記第 1の複屈折領域および前記第 2の複屈折領域は、 ニオブ酸リチウ ムからなることを特徴とする請求の範囲第 1項に記載の光フィルタ。 10. The optical filter according to claim 1, wherein the first birefringent region and the second birefringent region are made of lithium niobate.
1 1 . 前記第 1の複屈折領域または前記第 2の複屈折領域に赤外力ットフィル タを形成あるいは一体ィヒしたことを特徴とする請求の範囲第 1項に記載の光フィ ルタ。 11. The optical filter according to claim 1, wherein an infrared power filter is formed or integrated in the first birefringent region or the second birefringent region.
1 2. 前記第 1の複屈折領域の光学軸を光波の進行方向と垂直な平面に投影し た第 1の軸、 および、 前記第 2の複屈折領域の光学軸を前記平面に投影した第 2 の軸のなす角度は略直角であり、 前記第 3の複屈折領域の光学軸を前記平面に投 影した軸は、 前記第 1の軸および前記第 2の軸に対して (4 5度+ 111 9 0度 ) ± 1 5度 (mは整数) の範囲内の角度をなすことを特徴とする請求の範囲第 1項から第 1 1項のいずれか一つに記載の光フィルタ。 1 2. A first axis that projects the optical axis of the first birefringent region onto a plane perpendicular to the traveling direction of the light wave, and a second axis that projects the optical axis of the second birefringent region onto the plane. The angle formed by the second axis is substantially a right angle, and the axis obtained by projecting the optical axis of the third birefringent region onto the plane is (45 degrees) with respect to the first axis and the second axis. The optical filter according to any one of claims 1 to 11, wherein the optical filter forms an angle within a range of (+11190 degrees) ± 15 degrees (m is an integer).
1 3 . 前記第 3の複屈折領域は、 入射した光波を偏光により空間分離すること を特徴とする請求の範囲第 1 2項に記載の光: 13. The light according to claim 12, wherein the third birefringent region spatially separates an incident light wave by polarization.
1 4. 前記第 3の複屈折領域は、 常光の屈折率および異常光の屈折率の差と、 複屈折領域の光路長との積が、 利用波長の略 4分の 1の奇数倍となるように形成 され、 入射した光波の偏光状態を直線偏光から略円偏光に変換することを特徴と する請求の範囲第 1 2項に記載の光フィルタ。 1 4. In the third birefringent region, the product of the difference between the refractive index of ordinary light and the refractive index of extraordinary light and the optical path length of the birefringent region is an odd multiple of approximately one quarter of the wavelength used. 13. The optical filter according to claim 12, wherein the optical filter is formed as described above, and converts a polarization state of the incident light wave from linearly polarized light to substantially circularly polarized light.
1 5 . 前記第 3の複屈折領域は、 第 1の複屈折部分と第 2の複屈折部分とから なり、 該第 1の複屈折部分の光学軸を前記平面に投影した軸の方向と、 該第 2の 複屈折領域部分の光学軸を前記平面に投影した軸の方向とが略 1 8 0度となるよ うに積層され、 該第 2の複屈折部分は、 前記第 1の複屈折部分を透過することに より分離された光波の進行方向を変化させ、 該第 1の複屈折部分により分離され た該光波間の分離距離を小さくすることを特徴とする請求の範囲第 1 4項に記載 の光フイノレタ。 15. The third birefringent region includes a first birefringent portion and a second birefringent portion, and a direction of an axis that projects an optical axis of the first birefringent portion onto the plane, The direction of the axis obtained by projecting the optical axis of the second birefringent region onto the plane is approximately 180 degrees. The second birefringent portion changes the traveling direction of the light wave separated by transmitting through the first birefringent portion, and the light wave separated by the first birefringent portion. 15. The optical finoleter according to claim 14, wherein a separation distance between the optical fins is reduced.
1 6 . 光波が入射される撮像レンズと、 該撮像レンズに入射された光波を受光 して電気信号を生成する撮像素子と、 該撮像レンズと該撮像素子との間に配置さ れ、 該光波の所定の空間周波数成分をフィルタリングする光フィルタを備えた撮 像装置であって、 16. An imaging lens into which a light wave is incident, an imaging device that receives the light wave incident on the imaging lens and generates an electric signal, and is disposed between the imaging lens and the imaging device. An imaging apparatus comprising an optical filter for filtering predetermined predetermined spatial frequency components,
前記光フィルタは、 入射した光波をそれぞれ 2つの光波に分離する第 1の複屈 折領域および第 2の複屈折領域の間に該第 1の複屈折領域から入射した光波の振 動方向により進行速度が異なる第 3の複屈折領域を備え、 該第 3の複屈折領域は 、 複屈折構造が前記第 1の複屈折領域および前記第 2の複屈折領域のうち少なく とも一つの表面において該表面に形成されてなること、  The optical filter travels between a first birefringent region and a second birefringent region, each of which separates an incident light wave into two light waves, according to a vibration direction of the light wave incident from the first birefringent region. A third birefringent region having a different speed, wherein the third birefringent region has a birefringent structure on at least one of the first birefringent region and the second birefringent region. Being formed in,
を特徴とする撮像装置。  An imaging device characterized by the above-mentioned.
1 7. 前記複屈折構造は、 前記第 1の複屈折領域およぴ前記第 2の複屈折領域 のうち少なくとも一つの表面に、 斜め蒸着膜を蒸着させて形成したことを特徴と する請求の範囲第 1 6項に記載の撮像装置。 1 7. The birefringent structure, wherein at least one of the first birefringent region and the second birefringent region has a surface formed by depositing an obliquely deposited film. Item 17. The imaging device according to Item 16.
1 8 . 入射した光波をそれぞれ 2つの光波に分離する第 1の複屈折領域および 第 2の複屈折領域の間に入射した光波の振動方向により進行速度が異なる第 3の 複屈折領域を設けてなり、 該光波の所定の空間周波数成分をフィルタリングする 光フィルタの製造方法であって、 18. Between the first birefringent region and the second birefringent region that separates each of the incident light waves into two light waves, a third birefringent region with a different traveling speed depending on the vibration direction of the incident light wave is provided. A method for manufacturing an optical filter for filtering a predetermined spatial frequency component of the light wave,
前記第 3の複屈折領域を、 前記第 1の複屈折領域およぴ前記第 2の複屈折領域 のうち少なくとも一つの表面において複屈折構造を該表面に形成すること、 を特徴とする光フィルタの製造方法。 An optical filter, wherein a birefringent structure is formed on the surface of at least one of the first birefringent region and the second birefringent region. Manufacturing method.
1 9 . 前記複屈折構造は、 斜め蒸着膜を蒸着させて形成することを特徴とする 請求の範囲第 1 8項に記載の光フィルタの製造方法。 19. The method for manufacturing an optical filter according to claim 18, wherein the birefringent structure is formed by depositing an obliquely deposited film.
PCT/JP2003/009476 2003-07-25 2003-07-25 Optical filter, imager, and method for manufacturing optical filter WO2005010594A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003248124A AU2003248124A1 (en) 2003-07-25 2003-07-25 Optical filter, imager, and method for manufacturing optical filter
PCT/JP2003/009476 WO2005010594A1 (en) 2003-07-25 2003-07-25 Optical filter, imager, and method for manufacturing optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009476 WO2005010594A1 (en) 2003-07-25 2003-07-25 Optical filter, imager, and method for manufacturing optical filter

Publications (1)

Publication Number Publication Date
WO2005010594A1 true WO2005010594A1 (en) 2005-02-03

Family

ID=34090551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009476 WO2005010594A1 (en) 2003-07-25 2003-07-25 Optical filter, imager, and method for manufacturing optical filter

Country Status (2)

Country Link
AU (1) AU2003248124A1 (en)
WO (1) WO2005010594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021165781A (en) * 2020-04-06 2021-10-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd Optical low-pass filter, photographing device, photographing system, and moving body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108832A (en) * 1999-10-08 2001-04-20 Ricoh Opt Ind Co Ltd Thin film birefringence element, method and device for manufacturing it
JP2002267836A (en) * 2001-03-09 2002-09-18 Ricoh Co Ltd Polarized light separating element
US20030107829A1 (en) * 1999-02-25 2003-06-12 Yousuke Kouno Optical filter and optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030107829A1 (en) * 1999-02-25 2003-06-12 Yousuke Kouno Optical filter and optical device
JP2001108832A (en) * 1999-10-08 2001-04-20 Ricoh Opt Ind Co Ltd Thin film birefringence element, method and device for manufacturing it
JP2002267836A (en) * 2001-03-09 2002-09-18 Ricoh Co Ltd Polarized light separating element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021165781A (en) * 2020-04-06 2021-10-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd Optical low-pass filter, photographing device, photographing system, and moving body

Also Published As

Publication number Publication date
AU2003248124A1 (en) 2005-02-14

Similar Documents

Publication Publication Date Title
TWI236547B (en) Optical multilayer-film filter, method for fabricating optical multilayer-film filter, optical low-pass filter, and electronic apparatus
US20050180010A1 (en) Dielectric multilayer filter and its manufacturing method, and solid-state imaging device
TWI472023B (en) Imaging device and imaging apparatus
JPH01315704A (en) Dielectric laminate analyzer
JP4506678B2 (en) Prism optical system and imaging device
JP2008139693A (en) Infrared cut filter
TWI352825B (en)
WO2005010594A1 (en) Optical filter, imager, and method for manufacturing optical filter
JP2002286934A (en) Optical filter, imaging unit using the same and imaging appliance using the same
JP2007304573A (en) Near ultraviolet ray and infrared ray blocking filter, birefringent plate with near ultraviolet ray and infrared ray blocking filter, optical low pass filter and imaging apparatus
JPH11211916A (en) Polarized beam splitter
JP2009192708A (en) Beam splitter, single-lens reflex digital camera using the same, and autofocus video camera
JP2004012720A (en) Optical filter
JP2006064871A (en) Polarized light converting element and manufacturing method thereof
JPH06260625A (en) Image sensor device and its manufacture
JPH0516003B2 (en)
JP2005044937A (en) Solid-state imaging device
JP2003014932A (en) Polarized beam splitter and method for fabricating polarized beam splitter
JP2004177832A (en) Optical filter
JPS59107304A (en) Semi-transmitting mirror
JPS59182561A (en) Semiconductor image sensor
JPH0619482B2 (en) Prism beam splitter
JP2001083326A (en) Composite phase-contrast plate
JPH11218612A (en) Optical low-pass filter
JP2518137Y2 (en) Polarizing beam splitter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP