WO2005010357A1 - Windmill/waterwheel equipment and method for utilizing even flow of upper surface - Google Patents

Windmill/waterwheel equipment and method for utilizing even flow of upper surface Download PDF

Info

Publication number
WO2005010357A1
WO2005010357A1 PCT/JP2003/009354 JP0309354W WO2005010357A1 WO 2005010357 A1 WO2005010357 A1 WO 2005010357A1 JP 0309354 W JP0309354 W JP 0309354W WO 2005010357 A1 WO2005010357 A1 WO 2005010357A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
windmill
turbine
equipment
flow
Prior art date
Application number
PCT/JP2003/009354
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Iba
Original Assignee
Green Power Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Power Corporation filed Critical Green Power Corporation
Priority to PCT/JP2003/009354 priority Critical patent/WO2005010357A1/en
Priority to AU2003304371A priority patent/AU2003304371A1/en
Priority to JP2005511917A priority patent/JP4814635B2/en
Priority to PCT/JP2004/010511 priority patent/WO2005008063A1/en
Publication of WO2005010357A1 publication Critical patent/WO2005010357A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine / water turbine device that converts the energy of a fluid flow into mechanical rotational force that can be used for hydroelectric power generation, wind power generation, and the like.
  • it is a windmill / water turbine device that features high energy conversion efficiency and good operability over a wide range from low to high flow speeds.
  • FIG. 10 Diagram showing an example of implementation of a rotor structure that uses the wind from the top surface of a turbine wind turbine with a wind collection acceleration structure
  • FIG. 11 Diagram showing some examples of stator structure using top wind of turbine wind turbine with wind collection acceleration structure
  • FIG. 13 Diagram showing an example of implementation of the wind collection acceleration structure of a turbine wind turbine with a wind collection acceleration structure
  • Wind turbines and water turbines have been developed as an important technology to efficiently convert the energy of the fluid flow into mechanical rotational energy.
  • the propeller type is particularly used for efficiency in wind turbines. This is a type of wind turbine device that uses many exposed blades that rotate around a horizontal axis, and is used commercially in many places.
  • a windmill device also has some disadvantages
  • Non-propeller-type wind turbines that use a rotor that rotates about a vertical axis are less efficient but have a third drawback, "3. Wind noise makes noise.” I can overcome it. More advanced types can overcome disadvantages 1 and 2.
  • An exemplary representative wind turbine device in this regard is US Patent No. 6015258. This wind turbine device uses a rotor that rotates about a vertical axis, and the rotor has a number of blades around which a number of fixed wind vanes or blades direct the flow of air through the rotor. It is arranged with the idea of bending towards the blade.
  • the fluid flow used in these vertical and horizontal axis type wind turbine devices is either a flow parallel to the axis or a flow perpendicular to the plane containing the axis.
  • a technology that uses the flow along the upper end surface of the shaft of the device is necessary.
  • the present invention provides a wind turbine / water turbine device having features and advantages that have not been seen before.
  • the flow in all directions is used to allow more flow to pass through the turbine and the turbine to achieve more efficient rotation.
  • the challenge is a device and method for obtaining body shape. If this problem can be solved, the problem of how to actually manufacture wind turbines and turbines at a low cost must also be solved.
  • one is to use the flow on the top of the windmill and water turbine To do.
  • Second use the flow perpendicular to the axis of rotation of the windmill and water turbine. There was a preconception that the flow on the upper surface only passed through the upper surface of the device and could not be directly related to the rotating part.
  • the low-pressure part generated on the upper surface allows a part of the flow after pushing the rotor blade surface of the windmill and water turbine device to escape from the upper surface, and at the same time has a great effect of drawing the flow from the surroundings. Furthermore, in order to increase the mechanical rotational force through the blade, it is effective that the flow in the rotating surface rises while pushing the blade, and escapes to the upper surface while drawing a spiral. See Figure 2.
  • Embodiments of the present invention will be described, including a method of manufacturing a windmill / turbine device at low cost to realize one or both of these devices.
  • Devices that use the first device are limited to vertical axis windmills and turbines.
  • Devices that use only the second carrier can be vertical or horizontal.
  • the element that realizes the functional part by this second contrivance is called the wind collection acceleration structure.
  • the flow can be operated over a wide range is possible due to the structural problems of the wind turbine and water turbine equipment, and it is possible if some parts are not subjected to a high load such as a propeller type blade.
  • the present invention does not apply a high load to some members due to the configuration of the apparatus, and thus enables operation in a wide range of flow speeds.
  • a structure that can cover the rotating blade such as a protective net covering the fan of a fan, is required.
  • the present invention can realize a structure suitable for attaching a protective net. See Figure 4.
  • the noise generated by the blades of the windmill and turbine is generated by the blades traversing the flow at high speed.
  • the present invention produces no noise because the blades do not cross the flow at high speed.
  • the present invention having these features will be described in detail below based on examples. Although the description is for a wind turbine device, the same can be applied to a water turbine device.
  • the present invention is not limited to this embodiment, and there are various types of wind turbines and water turbines that can be realized in accordance with the gist of the present invention. A large number of wind turbines and water turbines are researched, designed, and manufactured.
  • Drum cans are manufactured as industrial products, and have a good marketability, regardless of whether they are unused Z or used.
  • a windmill using the present invention will be referred to as a drum can. See Figure 5.
  • Drums are standardized in size and are available worldwide.
  • the drum can is cut out from the top. Drill a rectangular hole to take in the wind into the torso, which is structurally strong. Attach the blade inside the drum.
  • This is a cantilevered wind turbine with a rotating shaft attached to the underside of the drum. It has features such as an extremely simple structure and easy acquisition of materials.
  • a wind collection acceleration structure in addition to the modification of the fuselage and the blade. The To prevent human killing, install protective nets.
  • Blowers are commonly used.
  • One type a centrifugal fan, attempts to blow air by pushing the gas sucked in from the center of the impeller to the outside of the impeller by centrifugal force generated by the rotation of the impeller. This gas flow is similar to that of the present invention with the flow direction reversed.
  • the shape of the impeller of the so-called turbo fan has a shape suitable for utilizing the present invention in the rotor portion of the wind turbine.
  • a windmill that uses a turbofan impeller to realize the present invention will be referred to as a turbofan windmill.
  • Turbofans are widely used fluid devices, and their design methods have been established based on experiments and theory. Although there is no experiment / theory as a rotor for a windmill, the theory of turbofan can be used for research and design concepts. Applying only the turbofan impeller directly to the windmill rotor is inefficient, but by arranging the blades radially in the center of the impeller, the vertical axis of conventional Savonius windmills, cross-flow windmills, etc. Efficiency exceeding that of a windmill can be obtained.
  • Turbofan wind turbines have the following features when using a turbofan impeller, such as an extremely simple structure and easy material acquisition. There is no problem in designing and manufacturing any size without diverting the turbofan impeller. To increase the output of the windmill shaft, besides the shape and arrangement of the blade placed in the center of the impeller, it is also possible to combine a wind collection acceleration structure It is possible. To prevent human killing, install protective nets.
  • a wind turbine that makes full use of the first device was derived from the concept of the Francis turbine.
  • the Francis turbine water guided by a water pipe from a reservoir at a high place passes through a spiral chamber and fixed vane stay vanes in the same plane, and then flows through a movable guide vane to the flow angle to the runner. After adjusting, enter the runner.
  • the flow entering the runner while turning decreases the relative velocity gradually within the runner and loses angular momentum during the application of pressure.
  • the flow at the runner outlet completely loses the turning component and moves in the axial direction. It is exhaled. That is, the decrease in the angular momentum is the torque given to the runner.
  • the flow leaving the runner enters the suction tube.
  • the suction pipe effectively uses the difference between the height of the runner outlet and the water discharge surface as a head, and also works to reduce the discharge loss by converting kinetic energy to pressure energy.
  • a vertical axis wind turbine that has a radial turbine structure instead of an axial flow turbine among the types of gas turbines
  • the wind flow in the horizontal plane passes between the turbine stationary vanes and the flow rate and inflow angle to the rotor blades. Is adjusted and enters the rotor while turning. Then, a mechanical rotational force is applied to the rotor while the relative speed gradually decreases and the pressure increases in the rotor. After that, it is sucked upward or discharged backward.
  • the feature is that a plurality of guide vanes are arranged spirally at equal intervals on the outer periphery of the wind turbine rotor.
  • the wind along the plane perpendicular to the rotor axis is reduced and accelerated by the guide vanes, aiming to improve the output and efficiency of the wind turbine.
  • the inference is centered on the ratio of the number of blades of the rotor to the number of guide blades, and is claimed.
  • the turbine turbine is a completely different invention between the Francis turbine and the wind turbine derived from the Radianore turbine.
  • Turbine wind turbines are designed and manufactured using an approach based on the theory of the cascade of stationary and moving blades.
  • the wind-acceleration structure based on the second contrivance consists of two or more axially extending guide vanes radially or spirally arranged at regular intervals along the outer circumference of the rotor or stator, and separated vortices at the leading edge.
  • the wind collecting acceleration structure of the present invention realizes the wind collecting acceleration from the front of the rotor or the stator by forming a low-pressure portion at the rear of the rotor or the stator due to the separation vortex.
  • This wind collection accelerating structure can be equipped with a protective net to prevent human and animal killing, which is also useful for safe operation.
  • This wind acceleration Since the structure can be made independent as well as integrated with the wind turbine, it can be used as it is with other vertical axis wind turbines. See Figure 8.
  • a detailed description will be given of a wind turbine device having a large use range of the present invention.
  • the drum wind turbine, the turbofan wind turbine, and the turbine wind turbine have been described above. Each of these is useful, but will also create new wind turbines that are equally useful and derived from this patent.
  • a turbine wind turbine having a wind collection acceleration structure is suitable for the detailed description of the present invention because of its high energy conversion efficiency and adaptability to a wide range of wind turbine sizes.
  • Turbine wind turbines with a wind-acceleration structure consist of the following components: a.
  • FIG. 9 shows an example of the implementation of a superstructure that utilizes the wind from the top of a turbine wind turbine with a wind collection acceleration structure.
  • FIG. 10 is an example of an embodiment of a rotor structure using the top wind of a turbine wind turbine with a wind collection acceleration structure.
  • FIG. 11 shows a top view of a turbine wind turbine with a wind collection acceleration structure.
  • 3 is some of the embodiments of the data structure.
  • the rotor and stator of a turbine with a wind collection accelerating structure have a close relationship in its configuration. In the present invention, the relationship is derived based on the theory of the Francis turbine and used for design and manufacture. It uses a pre-existing rotor that rotates about a vertical axis, which has a number of blades around which a number of fixed wind vanes or blades direct the air flow toward the rotor blades.
  • Wind turbines that are arranged with a bend concept use an experimental approach rather than a theoretical approach.
  • the rotor and stator of the turbine wind turbine are used as the basis for shape determination and performance evaluation based on the theory of turbomachinery shown in [Fig. 12].
  • FIG. 13 is an example of the implementation of the wind collection acceleration structure of a turbine wind turbine with a wind collection acceleration structure.
  • An example of a turbine wind turbine with a wind collection acceleration structure having the above configuration is shown in [Fig. 14].
  • Windmills and water turbines have a long history as a power source for centuries. Usage after the Industrial Revolution was less important than before. In view of renewable energy, which does not consume fossil fuels and emits no CO 2 at all, the importance of this technology to the global environment will increase in the future. In particular, the use of wind power has attracted attention, and there has been a demand for an excellent invention of a wind turbine device for wind power generation. Yes. Compared to the conventional propeller type, the operating conditions are wider and the noise-free property, which does not kill livestock, makes it very suitable for future use of wind power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)

Abstract

Equipment and a method for increasing the energy efficiency of windmill/waterwheel equipment which does not consume fossil fuel and accordingly never produce CO2 and has a priority over global environment since the equipment uses a renewable energy, wherein a flow on the upper surface of the equipment which has not been noted at all is also utilized. The embodiments for this idea are a drum container windmill shown in Fig. 5, a turbo fan windmill shown in Fig. 6, and a turbine windmill shown in Fig. 7. Equipment and a method for realizing a wind collecting and accelerating structure by generating separated swirl to increase an efficiency in windmill/water wheel equipment, the equipment wherein a turbine windmill with the wind collecting and accelerating structure shown by the embodiment in Fig. 14 is operated under operating conditions in a wide wind velocity range not found in a propeller windmill, develops no noise, and allows a protective net to be mounted for preventing men and domestic animals from being killed.

Description

明 細書 上面の流れまでも利用する風車 ·水車装置および方法  Description Windmill / Waterwheel device and method using even the flow on the upper surface
技術分野 Technical field
本発明は、 流体の流れの持つエネルギーを水力発電 ·風力発電等に 利用可能な機械的回転力に変換する風車 ·水車装置に関するものである。 特に、 流れの低い速度から高い速度の広い範囲にわたってエネルーギー 変換効率が高く、 運用性が良いことに特長を持つ風車 ·水車装置である。 図面の簡単な説明  The present invention relates to a wind turbine / water turbine device that converts the energy of a fluid flow into mechanical rotational force that can be used for hydroelectric power generation, wind power generation, and the like. In particular, it is a windmill / water turbine device that features high energy conversion efficiency and good operability over a wide range from low to high flow speeds. Brief Description of Drawings
【図 1】 揚水管上部での剥離渦による低圧部  [Fig. 1] Low pressure area due to separation vortex at the upper part of the pumping pipe
【図 2】 効果的な上面に向かう流れ  [Figure 2] Effective upward flow
【図 3】 集風加速構造の原理  [Figure 3] Principle of accelerating wind collection structure
【図 4】 防護網の取付けを示す図  [Figure 4] Diagram showing installation of protective net
【図 5】 ドラム缶風車の 1例を示す図  [Figure 5] Diagram showing an example of a drum can windmill
【図 6】 ターボファン風車の 1例を示す図  [Figure 6] Diagram showing an example of a turbofan wind turbine
【図 7】 タービ 風車の 1例を示す図  [Figure 7] Diagram showing an example of a Turbi windmill
【図 8】 集風加速構造の 1例を示す図  [Figure 8] Diagram showing an example of a wind collection acceleration structure
【図 9】 集風加速構造つきのタービン風車の上面風を利用する上部構構 造の実施の 1例を示す図  [Figure 9] Diagram showing an example of the implementation of the upper structure using the top wind of a turbine wind turbine with a wind collection acceleration structure
【図 1 0】 集風加速構造つきのタービン風車の上面風を利用するロータ構 造の実施の 1例を示す図 【図 1 1】 集風加速構造つきのタービン風車の上面風を利用するステータ 構造の実施例の幾つかを示す図 [Figure 10] Diagram showing an example of implementation of a rotor structure that uses the wind from the top surface of a turbine wind turbine with a wind collection acceleration structure [Fig. 11] Diagram showing some examples of stator structure using top wind of turbine wind turbine with wind collection acceleration structure
【図 1 2】 ターボ機械の理論に基づくロータとステータの翼の流れの関係 を示す図  [Figure 12] Diagram showing the relationship between rotor and stator blade flow based on turbomachinery theory
【図 1 3】 集風加速構造つきのタービン風車の集風加速構造の実施の 1例 を示す図  [Figure 13] Diagram showing an example of implementation of the wind collection acceleration structure of a turbine wind turbine with a wind collection acceleration structure
【図 1 4】 集風加速構造つきのタービン風車の実施の 1例の全体を示す図  [Figure 14] Diagram showing an example of the implementation of a turbine wind turbine with a wind collection acceleration structure
背景技術 Background art
風車 ·水車装置は、 流体の流れの持つエネルギーをいかに効率的に 機械的な回転エネルギーに変換するかが重要な技術として開発されてい る。 風車に限ればプロペラ式が効率の面で特に利用されている。 これは 水平軸周りに回転する露出したプレードを多数使うタイプの風車装置で、 多くのところで商業的に使われている。 しかしながら、 そのような風車 装置は幾つかの欠点も持っている  Wind turbines and water turbines have been developed as an important technology to efficiently convert the energy of the fluid flow into mechanical rotational energy. The propeller type is particularly used for efficiency in wind turbines. This is a type of wind turbine device that uses many exposed blades that rotate around a horizontal axis, and is used commercially in many places. However, such a windmill device also has some disadvantages
1. 高速な風の条件では、 安全に運用できない。 理由は、 それらの風車 装置には構造的に十分な強度と剛性がないからである。  1. It cannot be operated safely under high wind conditions. The reason is that these wind turbine devices do not have sufficient strength and rigidity structurally.
2. さらに、 それらの装置では、 回転するプレードの経路内を飛ぶ鳥類 を殺傷してしまう。 防護のための仕組みを構造的に取り込みにくレ、。 2. In addition, they kill birds flying in the path of a rotating blade. It is difficult to take in the protection mechanism structurally.
3. 風きり音が騒音となる。 3. Wind noise is noise.
垂直軸まわりに回転するロータを使っているプロペラ式でない風車装置 では、 効率は悪いもののィプによっては、 3つ目の欠点である 「3. 風き り音が騒音となる。 」 の欠点を克服できる。 さらに進んだタイプは、 欠点 1. 2. も克服できる。 この点での、 実 例の代表的な風車装置に、 米国特許 No. 6015258 がある。 この風車装置 は、 垂直軸まわりに回転するロータを使っているが、 そのロータには、 多 数のブレードかっき、 その回りを多数の固定された風向板あるいは風向ブ レードが空気の流れをロータのブレードに向かって曲がるようにという 考えで配置されていれる。 Non-propeller-type wind turbines that use a rotor that rotates about a vertical axis are less efficient but have a third drawback, "3. Wind noise makes noise." I can overcome it. More advanced types can overcome disadvantages 1 and 2. An exemplary representative wind turbine device in this regard is US Patent No. 6015258. This wind turbine device uses a rotor that rotates about a vertical axis, and the rotor has a number of blades around which a number of fixed wind vanes or blades direct the flow of air through the rotor. It is arranged with the idea of bending towards the blade.
これら垂直軸あるいは水平軸をもつタイプの風車装置において利用 される流体の流れは、 軸に平行な流れか軸を含む面に垂直な流れである。 さらに効率を上げるには装置の軸上端面に沿う流れを使う技術が必要で あ 。  The fluid flow used in these vertical and horizontal axis type wind turbine devices is either a flow parallel to the axis or a flow perpendicular to the plane containing the axis. In order to further improve efficiency, a technology that uses the flow along the upper end surface of the shaft of the device is necessary.
風車装置のみならず水車装置にもこの技術は未だ使われていない。 またこの上面の流れを使う技術は、 上面のみに限らず流れを集める効果 と組み合わせることでより効果的になる。  This technology has not yet been used for water turbines as well as wind turbines. In addition, the technology that uses the flow on the upper surface becomes more effective when combined with the effect of collecting the flow, not just the upper surface.
上記理由により、 この発明は今までになかった特徴および長所を持 つ風車 ·水車装置を提供する。  For the above reasons, the present invention provides a wind turbine / water turbine device having features and advantages that have not been seen before.
発明の開示 Disclosure of the invention
流れのエネルギーを風車 .水車装置の機械的回転エネルーギ一に効 率よく変換するためにはあらゆる方向の流れを利用して、 風車 ·水車装 置により多くの流量を通過させ、 より効率のよい回転体形状を得る装置 と方法が課題になる。 この課題を解決できる場合、 いかに安い費用で現 実に風車 ·水車装置を製造するかの課題もまた解決しなければならない。 課題を解決するために、 一つは風車 ·水車装置の上面の流れまでも利用 する。 二つ目に風車 ·水車装置の回転軸に直角な流れを利用する。 上面 の流れは装置の上面を通過するのみで、 直接回転部分に関係させること は出来ないものとの先入観念があった。 また、 回転軸に直角な流れはプ レードあるいはガイドベーンに直接衝突する流体部分にのみ注意が注が れていた。 流れ中に上下面が開放された円パイプゃ角パイプを設置すると管上 端部に剥離渦が発生し、 運動エネルギーの消散により圧力が低下し、 パ イブ端部で負圧を生じることはよく知られている。 【図 1】 参照。 In order to efficiently convert the energy of the flow to the mechanical rotation energy of the turbine, the flow in all directions is used to allow more flow to pass through the turbine and the turbine to achieve more efficient rotation. The challenge is a device and method for obtaining body shape. If this problem can be solved, the problem of how to actually manufacture wind turbines and turbines at a low cost must also be solved. In order to solve the problem, one is to use the flow on the top of the windmill and water turbine To do. Second, use the flow perpendicular to the axis of rotation of the windmill and water turbine. There was a preconception that the flow on the upper surface only passed through the upper surface of the device and could not be directly related to the rotating part. In addition, the flow perpendicular to the rotation axis paid attention only to the fluid part that directly collides with the blade or guide vane. When a circular pipe with a square pipe with open upper and lower surfaces is installed in the flow, a separation vortex is generated at the upper end of the pipe, the pressure drops due to the dissipation of kinetic energy, and negative pressure is often generated at the end of the pipe. Are known. 【refer graph1.
流れの中にこの効果を利用する風車 ·水車装置を置くことで、 流れ からの風車 ·水車装置によるエネルギー回収を改善できる。 揚水管では その上部の形状により剥離渦が作りだす低圧部の強さに違!/、があること が報告されている。  Placing a windmill / turbine device that uses this effect in the stream can improve the energy recovery by the windmill / turbine device from the stream. In the pumping pipe, the strength of the low-pressure part created by the separation vortex depends on the shape of the upper part! / Has been reported.
上面に生じる低圧部が、 風車 .水車装置のロータ ·プレード面を押 した後の流れの一部を上面から逃がすことができると同時に周囲から流 れを引き込む効果も大きい。 更に、 プレードを介して機械的回転力を高 めるには、 回転面内の流れがブレードを押しながら上昇し螺旋を描きな がら上面に逃げてゆくのが効果的である。 【図 2】 参照。  The low-pressure part generated on the upper surface allows a part of the flow after pushing the rotor blade surface of the windmill and water turbine device to escape from the upper surface, and at the same time has a great effect of drawing the flow from the surroundings. Furthermore, in order to increase the mechanical rotational force through the blade, it is effective that the flow in the rotating surface rises while pushing the blade, and escapes to the upper surface while drawing a spiral. See Figure 2.
以上が、 一つ目の工夫である。 一方、 回転面内の流れが、 ブレードを押しながら回転軸の後方に水 平に逃げて行く流れについては、 回転軸後方での圧力が低ければ、 流れ のとおりがよいだけでなく回りの流れを弓 Iき込む効果を増大させる。 ブレードに直接関与する流れの外側の流れを利用して、 回転軸後方での 低圧力部分を作るのが二つ目の工夫である。 回転軸後方に、 この低圧部 をつくるには、 この部分に流れの剥離渦を発生させればよい。 そのため には、 【図 3】 のような流れを起こす。 これらの工夫は単独でもまた両方でも風車 ·水車装置に適用できる が、 いずれの場合も利用しない場合より効果が大きい。 これらの工夫の単独または両方を実現するために安い費用で風車 · 水車装置を製造する方法を含めて本発明の実施例を示す。 一つ目の工夫 を利用する装置は、 垂直軸の風車 ·水車装置に限定される。 二つ目のェ 夫のみを利用する装置は、 垂直軸でも水平軸でも可能である。 この二つ 目の工夫による機能部分を実現する要素を集風加速構造と呼ぶことにす る。 These are the first ideas. On the other hand, if the flow in the rotating plane escapes horizontally behind the rotating shaft while pushing the blade, if the pressure behind the rotating shaft is low, not only the flow is good but also the surrounding flow Bow I Increases the effect of rubbing. Utilizing the flow outside of the flow directly involving the blade, The second idea is to create a low pressure part. To create this low-pressure section behind the rotating shaft, a flow separation vortex may be generated in this section. For this purpose, a flow like that shown in Fig. 3 occurs. These devices can be applied to wind turbines and water turbines either individually or in combination, but they are more effective than those not using them. Embodiments of the present invention will be described, including a method of manufacturing a windmill / turbine device at low cost to realize one or both of these devices. Devices that use the first device are limited to vertical axis windmills and turbines. Devices that use only the second carrier can be vertical or horizontal. The element that realizes the functional part by this second contrivance is called the wind collection acceleration structure.
流れの広範囲にわたる運用を可能に出来るか否かは、 風車 ·水車装 置の構造的な問題で、 プロペラ式のプレードのように一部の部材に高負 荷がかからなければ可能である。 本発明は装置の構成上から一部の部材 に高負荷がかかることがないため、 流れの速さの広範囲での運用を可能 にする。 人畜に対して、 プレードが危害を与えることを防ぐには、 扇風機の ファンを覆う防護網のように、 回転するプレードを覆うことができる構 造が必要である。 本発明は、 防護網の取付けに適した構造を実現できる。 【図 4】 参照。 風車 .水車装置のブレードが出す騒音は、 ブレードが高速で流れを 横切るために生ずる。 本発明は、 ブレードが高速で流れを横切ることが ないために、 騒音を発生しない。 これらの特長を持つ本発明を実施例をもとに以下に詳細に説明する。 なお、 記述は風車装置についてであるが、 水車装置についても同様の実 施が可能である。 また、 この実施例に限らず、 本発明の主旨に沿って実 現可能な風車 ·水車装置は多種多様であり、 数多くの風車 ·水車装置が 研究され、 設計され、 製造される。 Whether or not the flow can be operated over a wide range is possible due to the structural problems of the wind turbine and water turbine equipment, and it is possible if some parts are not subjected to a high load such as a propeller type blade. The present invention does not apply a high load to some members due to the configuration of the apparatus, and thus enables operation in a wide range of flow speeds. To prevent the blade from causing harm to livestock, a structure that can cover the rotating blade, such as a protective net covering the fan of a fan, is required. The present invention can realize a structure suitable for attaching a protective net. See Figure 4. The noise generated by the blades of the windmill and turbine is generated by the blades traversing the flow at high speed. The present invention produces no noise because the blades do not cross the flow at high speed. The present invention having these features will be described in detail below based on examples. Although the description is for a wind turbine device, the same can be applied to a water turbine device. The present invention is not limited to this embodiment, and there are various types of wind turbines and water turbines that can be realized in accordance with the gist of the present invention. A large number of wind turbines and water turbines are researched, designed, and manufactured.
1 . ドラム缶風車 1. Drum can windmill
ドラム缶は工業製品として製造され未使用 Z使用済みを問わず、 巿 場性も豊かである。 風車のロータ部分にドラム缶を利用する実例は過去 には、 サボ-ウス風車で数多くある。 またパドル風車にも利用されてい る。 こうしたドラム缶を利用した風車のうち本発明を利用した風車をド ラム缶風車と呼ぶことにする。 【図 5】 参照。  Drum cans are manufactured as industrial products, and have a good marketability, regardless of whether they are unused Z or used. In the past, there have been many examples of the use of drums for the rotor part of a windmill in the Sabous windmill. It is also used for paddle windmills. Among such windmills using drums, a windmill using the present invention will be referred to as a drum can. See Figure 5.
ドラム缶は、 そのサイズが標準化されており、 世界中どこででも入手 可能である。 一つ目の工夫を利用するために、 ドラム缶は、 上面部を切 り抜く。 構造強度面で強靭な胴体部分に風を取り込む短冊形状の穴を開 ける。 ドラム缶内部にブレードをとりつける。 ドラム缶の下面に回転軸 をとりつける片持ち構造の風車である。 構造が極めてシンプル、 材料の 入手が簡単などの特長をもつ。 風車軸出力を高めるには、 胴体部分の改 良、 ブレードの改造以外に集風加速構造を組み合わせることも可能であ る。 人畜に対する殺傷を防止するには、 防護網を取付ける。 Drums are standardized in size and are available worldwide. To take advantage of the first ingenuity, the drum can is cut out from the top. Drill a rectangular hole to take in the wind into the torso, which is structurally strong. Attach the blade inside the drum. This is a cantilevered wind turbine with a rotating shaft attached to the underside of the drum. It has features such as an extremely simple structure and easy acquisition of materials. In order to increase the output of the windmill shaft, it is possible to combine a wind collection acceleration structure in addition to the modification of the fuselage and the blade. The To prevent human killing, install protective nets.
2 . ターボファン風車 2. Turbo fan windmill
送風機はよく利用されている。 そのひとつの形式である遠心ファン は羽根車の中心部から吸込んだ気体を羽根車の回転による遠心力で羽根 車の外側に押し出すことで送風を行おうとするものである。 この気体の 流れは、 本発明の流れの方向を逆にした場合に類似する。 発電機と電動 機ほどには類似性はないものの似た考え方である。 遠心ファンの内でター ボファンと呼ばれるものの羽根車の形状は、 風車のロータ部分に本発明 を利用する上で適当な形状を有している。 ターボファンの羽根車を利用 し、 本発明を実現する風車をターボファン風車と呼ぶことにする。  Blowers are commonly used. One type, a centrifugal fan, attempts to blow air by pushing the gas sucked in from the center of the impeller to the outside of the impeller by centrifugal force generated by the rotation of the impeller. This gas flow is similar to that of the present invention with the flow direction reversed. Although not as similar as generators and motors, they have a similar concept. Among the centrifugal fans, the shape of the impeller of the so-called turbo fan has a shape suitable for utilizing the present invention in the rotor portion of the wind turbine. A windmill that uses a turbofan impeller to realize the present invention will be referred to as a turbofan windmill.
【図 6】 参照。  See Figure 6.
ターボファンは良く利用されている流体装置であり、 実験 ·理論を もとに設計方法も確立されている。 風車のロータとしての実験 ·理論は 未だないものの、 研究 ·設計の考え方にターボファンの理論は利用可能 である。 ターボファンの羽根車だけをそのまま風車のロータに適用する だけでは効率が低いが、 羽根車の中央部分に放射状にブレードを配する ことで、 従来のサボ二ウス風車、 クロスフロー風車などの垂直軸風車を 越える効率が得られる。 ターボファン風車は、 ターボファンの羽根車を 流用する場合、 構造が極めてシンプル、 材料の入手が簡単などの特長を ■もつ。 ターボファンの羽根車を流用せず任意のサイズを設計 ·製造する ことにいかなる問題もない。 風車軸出力を高めるには、 羽根車の中央に 配するプレードの形状や配置以外に集風加速構造を組み合わせることも 可能である。 人畜に対する殺傷を防止するには、 防護網を取付ける。 Turbofans are widely used fluid devices, and their design methods have been established based on experiments and theory. Although there is no experiment / theory as a rotor for a windmill, the theory of turbofan can be used for research and design concepts. Applying only the turbofan impeller directly to the windmill rotor is inefficient, but by arranging the blades radially in the center of the impeller, the vertical axis of conventional Savonius windmills, cross-flow windmills, etc. Efficiency exceeding that of a windmill can be obtained. Turbofan wind turbines have the following features when using a turbofan impeller, such as an extremely simple structure and easy material acquisition. There is no problem in designing and manufacturing any size without diverting the turbofan impeller. To increase the output of the windmill shaft, besides the shape and arrangement of the blade placed in the center of the impeller, it is also possible to combine a wind collection acceleration structure It is possible. To prevent human killing, install protective nets.
3 . タービン風車 3. Turbine wind turbine
一つ目の工夫を充分に利用する風車を、 フランシス水車の考えから 導出した。 フランシス水車では、 高所にある貯水池から導水管により導 かれた水は、 同一面内にある渦卷室、 固定翼のステーベーンを通り、 つ ぎに可動案内羽根によつて流量ゃランナヘの流入角を調整されたのちラ ンナヘ入る。 旋回しながらランナに入つた流れはランナ内でしだいに相 対速度を減少し圧力を增加する間に角運動量を失い、 設計状態ではラン ナ出口の流れは完全に旋回成分を失って軸方向に吐き出される。 すなわ ちこの角運動量の減少分がランナヘ与えられるトルクとなる。 ランナを 出た流れは吸出し管に入る。 吸出し管はランナ出口と放水面の高さの差 を落差として有効に利用し、 また運動エネルギーを圧力エネルギーに変 えて放流損失を少なくする働きをする。 ガスタービンの種類の中で軸流 タービンではなくラジアルタービンの構造を持つ垂直軸風車を想定する と、 水平面内の風の流れはタービン固定静翼の間を通って流量や動翼へ の流入角を調整されたのち旋回しながらロータに入る。 そしてロータ内 で次第に相対速度を減少し圧力を増大する間にロータに機械的回転力を 与える。 その後、 軸上方に吸い出されるか後方に吐き出される。 すなわち ラジアルタ一ビンに類似の風車形状で、 フランシス水車の流れの向きを 逆にした流れのモデレを持つ風車を考案できる。 一つ目の工夫を充分に 利用するために、 フランシス水車とラジアルタ一ビンから導出される風 車を、 本発明を実現する風車の一つとして、 タービン風車と呼ぶことに する。 【図 7】 参照。 A wind turbine that makes full use of the first device was derived from the concept of the Francis turbine. In the Francis turbine, water guided by a water pipe from a reservoir at a high place passes through a spiral chamber and fixed vane stay vanes in the same plane, and then flows through a movable guide vane to the flow angle to the runner. After adjusting, enter the runner. The flow entering the runner while turning decreases the relative velocity gradually within the runner and loses angular momentum during the application of pressure.In the design state, the flow at the runner outlet completely loses the turning component and moves in the axial direction. It is exhaled. That is, the decrease in the angular momentum is the torque given to the runner. The flow leaving the runner enters the suction tube. The suction pipe effectively uses the difference between the height of the runner outlet and the water discharge surface as a head, and also works to reduce the discharge loss by converting kinetic energy to pressure energy. Assuming a vertical axis wind turbine that has a radial turbine structure instead of an axial flow turbine among the types of gas turbines, the wind flow in the horizontal plane passes between the turbine stationary vanes and the flow rate and inflow angle to the rotor blades. Is adjusted and enters the rotor while turning. Then, a mechanical rotational force is applied to the rotor while the relative speed gradually decreases and the pressure increases in the rotor. After that, it is sucked upward or discharged backward. In other words, it is possible to devise a wind turbine that has a wind turbine shape similar to that of a radial turbine and a flow model that reverses the flow direction of the Francis turbine. In order to make full use of the first device, the wind turbine derived from the Francis turbine and the radial turbine is called a turbine wind turbine as one of the wind turbines that realize the present invention. To do. See Figure 7.
タービン風車の形状は、 米国特許 No. 6015258 の風車に似ているが、 その発明内容は全く異なる。 米国特許 No. 6015258 の風車は、 The shape of the turbine wind turbine is similar to that of US Patent No. 6015258, but the invention is completely different. The windmill of US Patent No. 6015258
1992年特願平 4-44560案内羽根付貫流風車  1992 Japanese patent application 4-44560 once-through wind turbine with guide vanes
And
1996年農業機械学会誌 58 (2) サボ二ウス風車の効率向上に関する研 究 (第 1報) -集風装置の特性について - で記述されている風車と同じ考え方である。  (2) Study on improvement of efficiency of Savonius wind turbine (1st report)-The same concept as the wind turbine described in-Characteristics of wind collector-.
その特長は、 風車ロータの外周に、 複数枚の案内羽根を等間隔で渦 卷状に配置している。 この構成により、 ロータ軸に直交する面に沿う風 は、 案内羽根により縮流增速され、 風車の出力、 効率が向上することを 目指したものである。 これらの風車は、 推論の中心がロータのブレード 枚数と案内羽根の枚数比にあり、 特許の請求項になっている。 これに対 し、 タービン風車は、 フランシス水車とラジアノレタービンから導出され る風車で全く異なる発明である。 タービン風車では、 静翼と動翼の翼列 の理論に基づいたアプローチで設計 ·製造されるものである。 二つ目の工夫による集風加速構造は、 ロータあるいはステータの外 周に沿って等間隔で放射状あるいは渦卷状に配置した軸方向に延びる 2 枚以上の案内翼とその前縁部に剥離渦の生成を容易にする形状を有する。 本発明の集風加速構造はロータあるいはステータ後部に、 剥離渦による 低圧部をつくることで —タあるいはステータの前面から集風加速を実 現するものである。 この集風加速構造には、 人畜の殺傷を防止する防護 網を取付けることが可能てあり、 安全な運用にも役立つ。 この集風加速 構造は、 風車と一体化する以外に独立な構造にもできるので、 他の垂直 軸風車においてもそのまま流用が可能である。 【図 8】 参照。 The feature is that a plurality of guide vanes are arranged spirally at equal intervals on the outer periphery of the wind turbine rotor. With this configuration, the wind along the plane perpendicular to the rotor axis is reduced and accelerated by the guide vanes, aiming to improve the output and efficiency of the wind turbine. In these wind turbines, the inference is centered on the ratio of the number of blades of the rotor to the number of guide blades, and is claimed. On the other hand, the turbine turbine is a completely different invention between the Francis turbine and the wind turbine derived from the Radianore turbine. Turbine wind turbines are designed and manufactured using an approach based on the theory of the cascade of stationary and moving blades. The wind-acceleration structure based on the second contrivance consists of two or more axially extending guide vanes radially or spirally arranged at regular intervals along the outer circumference of the rotor or stator, and separated vortices at the leading edge. Has a shape that facilitates the generation of The wind collecting acceleration structure of the present invention realizes the wind collecting acceleration from the front of the rotor or the stator by forming a low-pressure portion at the rear of the rotor or the stator due to the separation vortex. This wind collection accelerating structure can be equipped with a protective net to prevent human and animal killing, which is also useful for safe operation. This wind acceleration Since the structure can be made independent as well as integrated with the wind turbine, it can be used as it is with other vertical axis wind turbines. See Figure 8.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の利用範囲の大きい風車装置について詳細に説明する。 実施 例として、 ドラム缶風車、 ターボファン風車、 タービン風車について前 述した。 これらは、 それぞれに有用であるが、 本特許から導かれる同様 に有用な新たな風車も生まれるだろう。 集風加速構造つきのタービン風 車は、 そのエネルギー変換効率の高さ、 広範囲な風車サイズに適応でき るために、 本発明の詳細な説明に適している。  A detailed description will be given of a wind turbine device having a large use range of the present invention. As examples, the drum wind turbine, the turbofan wind turbine, and the turbine wind turbine have been described above. Each of these is useful, but will also create new wind turbines that are equally useful and derived from this patent. A turbine wind turbine having a wind collection acceleration structure is suitable for the detailed description of the present invention because of its high energy conversion efficiency and adaptability to a wide range of wind turbine sizes.
集風加速構造つきのタービン風車は、 次の構成からなる: a. 上面風を利用する上部構造  Turbine wind turbines with a wind-acceleration structure consist of the following components: a.
b. 上面風を利用するロータ構造 b. Rotor structure using top wind
c 上面風を利用するステータ構造 c Stator structure using top wind
d, 集風加速構造 d, wind collection acceleration structure
【図 9】 は、 集風加速構造つきのタービン風車の上面風を利用する上部 構造の実施の 1例である。 [Fig. 9] shows an example of the implementation of a superstructure that utilizes the wind from the top of a turbine wind turbine with a wind collection acceleration structure.
【図 1 0】 は、 集風加速構造つきのタービン風車の上面風を利用する ロータ構造の実施の 1例である。 [FIG. 10] is an example of an embodiment of a rotor structure using the top wind of a turbine wind turbine with a wind collection acceleration structure.
【図 1 1】 は、 集風加速構造つきのタービン風車の上面風を利用するス テータ構造の実施例の幾つかである。 集風加速構造つきのタービン風車のロータとステータはその構成上 で密接な関係がある。 本発明では、 フランシス水車の理論をもとにその 関係を誘導して設計、 製造に役立てる。 既に存在する、 垂直軸まわりに 回転するロータを使っていて、 そのロータには、 多数のプレードかっき、 その回りを多数の固定された風向板あるいは風向ブレードが空気の流れ をロータのブレードに向かって曲がるようにという考えで配置されてい れる風車は設計面では理論的なアプローチより実験的アプローチを使用 している。 タービン風車のロータとステータは、 【図 1 2】 に示すター ポ機械の理論で形状決定、 性能評価の基礎としている。 [Fig. 11] shows a top view of a turbine wind turbine with a wind collection acceleration structure. 3 is some of the embodiments of the data structure. The rotor and stator of a turbine with a wind collection accelerating structure have a close relationship in its configuration. In the present invention, the relationship is derived based on the theory of the Francis turbine and used for design and manufacture. It uses a pre-existing rotor that rotates about a vertical axis, which has a number of blades around which a number of fixed wind vanes or blades direct the air flow toward the rotor blades. Wind turbines that are arranged with a bend concept use an experimental approach rather than a theoretical approach. The rotor and stator of the turbine wind turbine are used as the basis for shape determination and performance evaluation based on the theory of turbomachinery shown in [Fig. 12].
【図 1 3】 は、 集風加速構造つきのタービン風車の集風加速構造の実施 の 1例である。 以上の構成からなる集風加速構造つきのタービン風車の 1例を 【図 1 4】 に示す。 産業上の利用可能性 [Fig. 13] is an example of the implementation of the wind collection acceleration structure of a turbine wind turbine with a wind collection acceleration structure. An example of a turbine wind turbine with a wind collection acceleration structure having the above configuration is shown in [Fig. 14]. Industrial applicability
風車 ·水車装置は、 人類の動力源として長い歴史を持つ。 産業革命 後の利用はそれ以前に比して重要度は落ちた。 し力 し、 化石燃料を消費 しないので C O 2 を全く発生しない、 リニューァブルなエネルギーの観 などから、 地球環境に対する優位性で今後は重要度が高まる。 特に、 風 点力の利用は注目され、 風力発電用風車装置の優れた発明が求められて いる。 これまでのプロペラ式に比べ、 稼動条件が広く、 無騒音 '人畜を 殺傷しない特性は、 今後の風力利用に大いに適している。 Windmills and water turbines have a long history as a power source for mankind. Usage after the Industrial Revolution was less important than before. In view of renewable energy, which does not consume fossil fuels and emits no CO 2 at all, the importance of this technology to the global environment will increase in the future. In particular, the use of wind power has attracted attention, and there has been a demand for an excellent invention of a wind turbine device for wind power generation. Yes. Compared to the conventional propeller type, the operating conditions are wider and the noise-free property, which does not kill livestock, makes it very suitable for future use of wind power.

Claims

請求 の 範囲 The scope of the claims
1. 流れの持つエネルギーを水力発電 ·風力発電等に利用可能な機械的 回転力に変換する風車 ·水車装置に関し、 上面の流れまでも利用す る装置および方法。  1. Wind turbines and water turbines that convert the energy of a stream into mechanical rotation that can be used for hydroelectric power generation and wind power generation.
2. 「請求の範囲の 1. 」 に関する装置の実施例であるドラム缶風車。 2. A drum windmill that is an embodiment of the device relating to “1.
3. 「請求の範囲の 1. 」 に関する装置の実施例であるターボファン風 車。 3. A turbofan wind turbine that is an embodiment of the device relating to “1.
4. 「請求の範囲の 1. 」 に関する装置の実施例であるタービン風車。 4. A turbine wind turbine which is an embodiment of the device relating to “1.
5. 流体の流れの持つエネルギーを水力発電■風力発電等に利用可能な 機械的回転力に変換する風車 ·水車装置に関し、 剥離渦を発生させ ることで実現する集風加速構造を実現する装置および方法。 5. Regarding wind turbines and water turbines that convert the energy of fluid flow into mechanical rotation that can be used for hydroelectric power generation and wind power generation, etc. And how.
6. 「請求の範囲の 1. 」 および 「請求の範囲の 5. 」 から作られる装 置あるいは構造に取付け可能な人畜殺傷防止のための防護網。  6. A protective net to prevent human injury that can be attached to equipment or structures made from claims 1. and 5.
PCT/JP2003/009354 2003-07-23 2003-07-23 Windmill/waterwheel equipment and method for utilizing even flow of upper surface WO2005010357A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2003/009354 WO2005010357A1 (en) 2003-07-23 2003-07-23 Windmill/waterwheel equipment and method for utilizing even flow of upper surface
AU2003304371A AU2003304371A1 (en) 2003-07-23 2003-07-23 Windmill/waterwheel equipment and method for utilizing even flow of upper surface
JP2005511917A JP4814635B2 (en) 2003-07-23 2004-07-23 Fluid power generator
PCT/JP2004/010511 WO2005008063A1 (en) 2003-07-23 2004-07-23 Hydrodynamic force power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009354 WO2005010357A1 (en) 2003-07-23 2003-07-23 Windmill/waterwheel equipment and method for utilizing even flow of upper surface

Publications (1)

Publication Number Publication Date
WO2005010357A1 true WO2005010357A1 (en) 2005-02-03

Family

ID=34074137

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/009354 WO2005010357A1 (en) 2003-07-23 2003-07-23 Windmill/waterwheel equipment and method for utilizing even flow of upper surface
PCT/JP2004/010511 WO2005008063A1 (en) 2003-07-23 2004-07-23 Hydrodynamic force power generating device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010511 WO2005008063A1 (en) 2003-07-23 2004-07-23 Hydrodynamic force power generating device

Country Status (2)

Country Link
AU (1) AU2003304371A1 (en)
WO (2) WO2005010357A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0710318D0 (en) * 2007-05-30 2007-07-11 Isis Innovation Water turbine
CN102094752A (en) * 2011-03-11 2011-06-15 上海大学 Energy-collecting speed-increasing reverse-rotating lift-drag composite type vertical shaft wind power machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946374A (en) * 1982-09-10 1984-03-15 Makoto Minamidate Wind power generator
JP3045840U (en) * 1997-07-31 1998-02-20 株式会社ワイアンドワイ Windmill with protective net
JP2000344200A (en) * 1999-06-07 2000-12-12 Mitsubishi Heavy Ind Ltd Auxiliary power unit for airframe and airframe with auxiliary power unit
JP2001193632A (en) * 2000-01-13 2001-07-17 Mitsubishi Heavy Ind Ltd Wind-force power generator
JP2002310057A (en) * 2000-09-22 2002-10-23 Omoto Masako Blade of wind mill for wind power generation and unit and apparatus using it
JP2002364518A (en) * 2001-06-08 2002-12-18 Makoto Yanagida Power generator utilizing combined air force
JP2002371948A (en) * 2001-06-18 2002-12-26 Shigenobu Saito Wind power generating equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108145A (en) * 1978-02-15 1979-08-24 Ohbayashigumi Ltd Tower wind power equipment
JPS61136182U (en) * 1985-02-14 1986-08-25
JPH0622573U (en) * 1992-04-13 1994-03-25 重人 峰松 Wind power generator for updraft application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946374A (en) * 1982-09-10 1984-03-15 Makoto Minamidate Wind power generator
JP3045840U (en) * 1997-07-31 1998-02-20 株式会社ワイアンドワイ Windmill with protective net
JP2000344200A (en) * 1999-06-07 2000-12-12 Mitsubishi Heavy Ind Ltd Auxiliary power unit for airframe and airframe with auxiliary power unit
JP2001193632A (en) * 2000-01-13 2001-07-17 Mitsubishi Heavy Ind Ltd Wind-force power generator
JP2002310057A (en) * 2000-09-22 2002-10-23 Omoto Masako Blade of wind mill for wind power generation and unit and apparatus using it
JP2002364518A (en) * 2001-06-08 2002-12-18 Makoto Yanagida Power generator utilizing combined air force
JP2002371948A (en) * 2001-06-18 2002-12-26 Shigenobu Saito Wind power generating equipment

Also Published As

Publication number Publication date
WO2005008063A1 (en) 2005-01-27
AU2003304371A1 (en) 2005-02-14

Similar Documents

Publication Publication Date Title
JP5328681B2 (en) Wind turbine with mixer and ejector
US7018166B2 (en) Ducted wind turbine
US4915580A (en) Wind turbine runner impulse type
US8128337B2 (en) Omnidirectional vertical-axis wind turbine
MX336005B (en) Low-profile power-generating wind turbine.
US20090015018A1 (en) Flow Stream Momentum Conversion Device Power Rotor
WO2011002979A2 (en) Shrouded wind turbine with rim generator and halbach array
US20100314885A1 (en) Shrouded wind turbine with rim generator and halbach array
AU2011216558A1 (en) Turbine with radial inlet and outlet rotor for use in bidirectional flows
WO2013043774A1 (en) High efficiency wind turbine having increased laminar airflow
RU2355910C2 (en) Fluid medium turbine
CA2738797C (en) High efficiency turbine
RU2276743C1 (en) Wind plant
WO2005010357A1 (en) Windmill/waterwheel equipment and method for utilizing even flow of upper surface
GB2494873A (en) Axial turbine with inlet and outlet volutes for bi-directional air flow
RU2310090C1 (en) Wind power-generating device
US8851836B2 (en) High efficiency wind turbine including photovoltaic cells
US20110164966A1 (en) Method and apparatus to improve wake flow and power production of wind and water turbines
KR20140123324A (en) Ventilation Duct Exhaust Energy Capturing Power Generation System
CN102116250A (en) Wind turbine
WO2008120026A4 (en) Innovative horizontal axis wind turbine of high efficiency
WO2016059439A1 (en) Vertical axis wind turbine
WO2024079432A1 (en) Wind turbine
BG113226A (en) Vertical axis wind turbine with diffused amplification
RU2204051C2 (en) Wind-power plant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AU BR CA CN ID IL IN JP KR LK MN MX NO NZ PH PT RU SG US VN ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP