WO2005010332A1 - Method for ventilating the tank for a direct injection combustion engine - Google Patents

Method for ventilating the tank for a direct injection combustion engine Download PDF

Info

Publication number
WO2005010332A1
WO2005010332A1 PCT/DE2004/001505 DE2004001505W WO2005010332A1 WO 2005010332 A1 WO2005010332 A1 WO 2005010332A1 DE 2004001505 W DE2004001505 W DE 2004001505W WO 2005010332 A1 WO2005010332 A1 WO 2005010332A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
tank
operating mode
combustion chamber
combustion engine
Prior art date
Application number
PCT/DE2004/001505
Other languages
German (de)
French (fr)
Inventor
Dieter Volz
Eberhard Klein
Stefan Schneider
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2005010332A1 publication Critical patent/WO2005010332A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration

Definitions

  • the invention relates to a method for tank ventilation for a direct-injection internal combustion engine and an internal combustion engine, in particular for a motor vehicle, according to the preamble of claim 1.
  • Stratified operation is used in particular for smaller loads, while homogeneous operation is used for larger loads applied to the internal combustion engine.
  • the fuel is injected into the combustion chamber during the compression phase of the internal combustion engine.
  • the advantage of shift operation is that the applied smaller loads can be carried out by the internal combustion engine with improved efficiency. Larger loads are usually not met by shift operation.
  • homogeneous operation intended for such larger loads the fuel is injected during the intake phase of the internal combustion engine, so that swirling and thus a uniform distribution of the Fuel can take place in the combustion chamber.
  • fuel evaporated from the tank is supplied to the combustion chamber.
  • a corresponding line is provided in an internal combustion engine of the type mentioned.
  • the fuel evaporated from the tank is collected and fed to the combustion chamber and thus to the combustion via the line leading into the intake manifold. In this way it is achieved that the evaporated fuel does not escape into the atmosphere and thus remains unused, but that this evaporated fuel is also used to drive the internal combustion engine. This results not only in the advantage of saving fuel, but also in a lower environmental impact due to the operation of the internal combustion engine.
  • the evaporated fuel is not permanently fed into the combustion chamber, but only under certain conditions.
  • the evaporated fuel is supplied to the combustion chamber in particular only in the second operating mode, that is to say during homogeneous operation of the internal combustion engine, which can lead to unnecessarily high fuel consumption.
  • tank ventilation i.e. the supply of evaporated fuel in the first operating state
  • the activated carbon filter is only slightly loaded, since the hydrocarbon emission increases with increasing load and thus the fuel consumption is also deteriorated.
  • the object of the invention is now to develop a method for operating an internal combustion engine, in particular a motor vehicle, in such a way that tank ventilation is possible in shift operation even when the activated carbon filter is under high load, without negative effects on the fuel consumption and the exhaust gas behavior of the internal combustion engine ,
  • the basic idea of the invention is to supply the fuel evaporated from the tank to the combustion chamber in the first operating mode of the internal combustion engine, in shift operation, in the period in which fresh air is drawn in.
  • the fuel evaporated from the tank is preferably supplied to the combustion chamber only when the fuel component in the flushing stream has a minimum proportion of hydrocarbons, so that the complete combustion of this homogeneous basic mixture is ensured together with a stratified injection.
  • the minimum proportion of hydrocarbons correlates with an upper limit of the air ratio, which is selected so that the combustion of the evaporated fuel supplied contributes to the torque.
  • a major advantage of the method according to the invention is an expansion of the operating mode which is more economical due to an improved efficiency and in which fuel is injected during a compression phase. As a result, knock protection by adjusting the ignition too late can also be omitted.
  • the time portion of the tank ventilation can be reduced when idling by the inventive method. This leads to a reduction in fuel consumption and a reduction in hydrocarbon emissions.
  • Fig. 1 schematically shows a block diagram of a system for operating an internal combustion engine of a motor vehicle and known from the prior art
  • the internal combustion engine has four cylinders and thus four combustion chambers.
  • the fuel preferably gasoline, is injected directly into the combustion chambers.
  • the fuel is transported by a pump 2 from a tank 3 via a filter 4 to a further pump 5, by which the fuel is pumped into a pressure chamber 6.
  • a relatively high fuel pressure is present in the pressure chamber 6.
  • a pressure control valve 7 and a pressure sensor 8 are connected to the pressure chamber 6, the fuel pressure in the pressure chamber 6 being able to be measured with the latter.
  • the pressure sensor 8 generates an electrical signal which corresponds to the measured pressure and which is supplied to an electrical control unit 10 via a line 9.
  • injection valves 11 are connected to the pressure chamber 6. Each of the injection valves 11 is directly assigned to a combustion chamber of the internal combustion engine. Due to the closed injection valves 11, the pressure chamber 6 is separated from the respective combustion chamber.
  • the injection valves 11 are connected to the control unit 10 via electrical lines 12. To control one of the injection valves 11, the control unit 10 generates an electrical signal with which the corresponding injection valve 11 is controlled in its open state. The length of the signal corresponds to the injection duration, while the fuel is injected from the pressure chamber 6 via the corresponding injection valve 11 into the associated combustion chamber of the internal combustion engine.
  • the tank 3 is connected to an activated carbon filter 14 via a hydraulic line 13.
  • the line 13 is connected to the tank 3 in such a way that gaseous or vaporous fuel which evaporates in the tank 3 can flow through the line 13 to the activated carbon filter 14.
  • the evaporated fuel is collected there, so that the activated carbon filter 14 fills. So that the activated carbon filter 14 does not overflow, it must be regenerated.
  • the line 13 leads from the activated carbon filter 14 via a solenoid valve 15 to an intake pipe 16, through which air is drawn in and supplied to the combustion chambers of the internal combustion engine.
  • the evaporated fuel, which is sucked into the intake pipe 16, is then fed to the combustion chambers of the internal combustion engine by means of the intake air.
  • a solenoid valve 15 is connected to the control device 10 via an electrical line 17 and can be controlled by the latter.
  • the fuel is injected from the injection valve 11 into the combustion chamber during a compression phase caused by a piston, namely before the top dead center of the piston. Then the fuel is ignited with the aid of the spark plug, so that the piston is driven in the now following working phase by the expansion of the ignited fuel.
  • the fuel is injected from the injection valve 11 into the combustion chamber during an induction phase caused by the piston.
  • the injected fuel is swirled by the air sucked in simultaneously via the intake pipe 16 and is thus distributed substantially uniformly in the combustion chamber.
  • the fuel-air mixture is then compressed during the compression phase in order to then be ignited by the spark plug.
  • the piston is in turn driven by the expansion of the ignited fuel-air mixture.
  • the fuel quantity or mass injected into the combustion chambers by the injection valves 11 in the stratified operation S and in the homogeneous operation H is controlled and / or regulated by the control unit 10, in particular with regard to low fuel consumption and / or low exhaust gas development.
  • the control unit 10 is provided with a microprocessor which has stored a program in a storage medium, in particular in a read-only memory, which is suitable for carrying out the control and / or regulation mentioned.
  • the control unit 10 is from Input signals are applied, which represent operating states of the internal combustion engine measured by sensors, and it generates output signals with which the behavior of the internal combustion engine can be influenced via actuators in accordance with the desired control and / or regulation.
  • the activated carbon filter 14 can be regenerated in homogeneous mode H on the one hand.
  • the regeneration according to the invention can also take place in shift operation (S).
  • the fuel is drawn in from the activated carbon filter with the fresh air.
  • the solenoid valve 15 is controlled by the control device 10 in such a way that it is open, so that fuel evaporated in the tank 3 passes through the opened solenoid valve 15 to the intake pipe 16 and thus into the combustion chamber or combustion chambers of the internal combustion engine.
  • the regeneration of the activated carbon filter 14 is now carried out as a function of its loading.
  • the control unit 10 can determine the loading of the activated carbon filter 14. This determination can be carried out with the aid of a lambda control that is present in the control unit 10.
  • the lambda control When the solenoid valve 15 is open, the lambda control must reduce the fuel mass injected by the injection valves 11 in order to compensate for the evaporated fuel that is added via the activated carbon filter 14. From the reduction, the control device 10 can focus on the concentration and thus on the degree of filling or the loading B of the activated carbon filter 14 on EP 0 923 669 B1, column 7, lines 10 ff will close.
  • the tank ventilation is now carried out only from a minimum loading of the activated carbon filter 14.
  • the minimum loading is chosen so that the fuel portion in the purge stream has a minimum portion of hydrocarbons, so that the complete combustion of this homogeneous basic mixture in the combustion chamber is ensured together with the stratified injection.
  • the minimum proportion of hydrocarbons correlates with an upper lambda limit, which can correspond, for example, to the lambda value which results from the first injection of an HSP (homogeneous split) or HSK (homogeneous knock protection) operating mode known per se.
  • a minimum load is a prerequisite.
  • the minimum load correlates with the smallest measurable fuel mass. This results from the sum of the minimum fuel injection mass in shift operation, resulting from the smallest permissible injection time, and the fuel mass in the homogeneous basic mixture from the tank ventilation.
  • the advantage over methods of tank ventilation with only a low loading of the activated carbon filter 14 is that the new operating range used for the present method can lie outside the known operating range for the shift operation, as can be seen from FIG. 2. In particular, the new area can also be at higher loads, in the limit case even at full load. In Fig. 2 the area in which a tank ventilation takes place is shown by hatching. In addition to the conventional homogeneous area HOM, designated III in FIG. 2, which ends at the full-load characteristic, regeneration of the activated carbon filter 14 is also homogeneously lean in the transition area (HHM), designated II in FIG. 2, and in part of the stratified charging area (SCH), labeled I in Fig. 2, possible.
  • HOM transition area
  • SCH stratified charging area
  • An advantage of the expansion of the stratified operating range which is more economical due to improved efficiency, that is to say the injection in the compression stroke towards a higher load, also lies in the proposed method in that, compared to homogeneous operation HOM, a higher engine torque is achieved with constant use of fuel. In addition, fuel savings are achieved by eliminating the ignition retard required for knock protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The invention relates to a method for operating a combustion engine, particularly of a motor vehicle, whereby fuel, in a first operating mode during a compression phase and in a second operating mode during an induction phase, is directly injected into a combustion chamber, whereby fuel evaporating from a tank (3) is guided through an activated charcoal filter and metered to the combustion chamber, and the content of fuel contained in the activated charcoal filter (14) is determined, during which the fuel evaporating from the tank (3) is supplied to the combustion chamber in the first operating mode over a period of time during which fresh air is drawn in. The range of the operating mode is extended by supplying the evaporated fuel and, as a result, the combustion engine is operated with an efficiency that is improved in comparison to that of the second operating mode.

Description

Verfahren zur Tankentlüftung für eine direkteinspritzende BrennkraftmaschineTank venting method for a direct injection internal combustion engine
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren zur Tankentlüftung für eine direkteinspritzende Brennkraftmaschine sowie eine Brennkraftmaschine insbesondere für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1.The invention relates to a method for tank ventilation for a direct-injection internal combustion engine and an internal combustion engine, in particular for a motor vehicle, according to the preamble of claim 1.
Ein solches Verfahren geht beispielsweise aus der EP 0 923 669 Bl hervor. Bei diesem Verfahren wird eine zweite Betriebsart, der sogenannte Homogenbetrieb der Brennkraft- maschine, solange beibehalten, bis die Beladung des Aktivkohlefilters kleiner wird als ein vorgegebener Wert. Auf diese Weise wird erreicht, daß bei einer zu hohen Beladung des Aktivkohlefilters die Brennkraftmaschine noch solange im Homogenbetrieb betrieben wird, bis die Beladung wieder unter den vorgegebenen Wert abgesunken ist.Such a method is evident, for example, from EP 0 923 669 B1. In this method, a second operating mode, the so-called homogeneous operation of the internal combustion engine, is maintained until the loading of the activated carbon filter becomes smaller than a predetermined value. In this way it is achieved that if the activated carbon filter is loaded too much, the internal combustion engine will continue to be operated in homogeneous operation until the load has dropped below the predetermined value again.
Der Schichtbetrieb wird insbesondere bei kleineren Lasten verwendet, während der Homogenbetrieb bei größeren, an der Brennkraftmaschine anliegenden Lasten zur Anwendung kommt. Im Schichtbetrieb wird der Kraftstoff während der Verdichtungsphase der Brennkraftmaschine in den Brennraum eingespritzt. Der Vorteil des Schichtbetriebs liegt darin, daß die anliegenden kleineren Lasten mit verbessertem Wirkungsgrad von der Brennkraftmaschine ausgeführt werden können. Größere Lasten werden üblicherweise nicht durch den Schichtbetrieb erfüllt. Im für derartige größere Lasten vorgesehenen Homogenbetrieb wird der Kraftstoff während der Ansaugphase der Brennkraftmaschine eingespritzt, so daß eine Verwirbelung und damit eine gleichmäßige Verteilung des Kraftstoffs in dem Brennraum erfolgen kann. In dieser zweiten Betriebsart wird dem Brennraum aus dem Tank verdunsteter Kraftstoff zugeführt. Zu diesem Zweck ist bei einer Brennkraftmaschine der eingangs genannten Art eine entsprechende Leitung vorgesehen. Der aus dem Tank verdunstete Kraftstoff wird aufgefangen und über die Leitung, die ins Saugrohr führt, dem Brennraum und damit der Verbrennung zugeführt. Auf diese Weise wird erreicht, daß der verdunstete Kraftstoff nicht in die Atmosphäre entweicht und damit ungenutzt bleibt, sondern daß dieser verdunstete Kraftstoff zum Antrieb der Brennkraftmaschine mitverwendet wird. Hierdurch ergibt sich nicht nur der Vorteil einer Kraftstoffeinsparung, sondern auch eine geringere Umweltbelastung durch den Betrieb der Brennkraftmaschine. Der verdunstete Kraftstoff wird dabei nicht permanent dem Brennraum zugeführt, sondern nur unter bestimmten Bedingungen.Stratified operation is used in particular for smaller loads, while homogeneous operation is used for larger loads applied to the internal combustion engine. In stratified operation, the fuel is injected into the combustion chamber during the compression phase of the internal combustion engine. The advantage of shift operation is that the applied smaller loads can be carried out by the internal combustion engine with improved efficiency. Larger loads are usually not met by shift operation. In homogeneous operation intended for such larger loads, the fuel is injected during the intake phase of the internal combustion engine, so that swirling and thus a uniform distribution of the Fuel can take place in the combustion chamber. In this second operating mode, fuel evaporated from the tank is supplied to the combustion chamber. For this purpose, a corresponding line is provided in an internal combustion engine of the type mentioned. The fuel evaporated from the tank is collected and fed to the combustion chamber and thus to the combustion via the line leading into the intake manifold. In this way it is achieved that the evaporated fuel does not escape into the atmosphere and thus remains unused, but that this evaporated fuel is also used to drive the internal combustion engine. This results not only in the advantage of saving fuel, but also in a lower environmental impact due to the operation of the internal combustion engine. The evaporated fuel is not permanently fed into the combustion chamber, but only under certain conditions.
Bei dem aus der EP 0 923 669 Bl hervorgehenden Verfahren wird der verdunstete Kraftstoff insbesondere nur in der zweiten Betriebsart, also während des Homogenbetriebs der Brennkraftmaschine, dem Brennraum zugeführt, was zu einem unnötig hohen Kraftstoffverbrauch führen kann.In the method resulting from EP 0 923 669 B1, the evaporated fuel is supplied to the combustion chamber in particular only in the second operating mode, that is to say during homogeneous operation of the internal combustion engine, which can lead to unnecessarily high fuel consumption.
Allgemein ist die Tankentlüftung, das heißt die Zuführung von verdunstetem Kraftstoff im ersten Betriebszustand, nur bei geringer Beladung des -Aktivkohlefilters möglich, da mit zunehmender Beladung die Kohlenwasserstoffemission ansteigt und somit auch der Kraftstoffverbrauch verschlechtert wird.In general, tank ventilation, i.e. the supply of evaporated fuel in the first operating state, is only possible when the activated carbon filter is only slightly loaded, since the hydrocarbon emission increases with increasing load and thus the fuel consumption is also deteriorated.
Aufgabe der Erfindung ist es nun, ein Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, dahingehend weiterzubilden, daß eine Tankentlüftung auch bei hoher Belastung des Aktivkohlefilters im Schichtbetrieb möglich ist, ohne daß es zu negativen Auswirkungen auf den Kraftstoffverbrauch und das Abgasverhalten der Brennkraftmaschine kommt.The object of the invention is now to develop a method for operating an internal combustion engine, in particular a motor vehicle, in such a way that tank ventilation is possible in shift operation even when the activated carbon filter is under high load, without negative effects on the fuel consumption and the exhaust gas behavior of the internal combustion engine ,
Vorteile der ErfindungAdvantages of the invention
Erfindungsgemäß wird diese Aufgabe mit den Merkmalen des Anspruchs 1 gelöst. Grundgedanke der Erfindung ist es, in der ersten Betriebsart der Brennkraftmaschine, im Schichtbetrieb, in der Zeitspanne, in der Frischluft angesaugt wird, dem Brennraum den aus dem Tank verdunsteten Kraftstoff zuzuführen.According to the invention, this object is achieved with the features of claim 1. The basic idea of the invention is to supply the fuel evaporated from the tank to the combustion chamber in the first operating mode of the internal combustion engine, in shift operation, in the period in which fresh air is drawn in.
Vorzugsweise wird der aus dem Tank verdunstete Kraftstoff dem Brennraum nur dann zugeführt, wenn der Kraftstoffanteil im Spülstrom einen Mindestanteil an Kohlenwasserstoffen aufweist, so daß die vollständige Verbrennung dieses homogenen Grundgemisches zusammen mit einer Schichteinspritzung sichergestellt ist. Der Mindestanteil an Kohlenwasserstoffen korreliert mit einer oberen Grenze der Luftzahl, die so gewählt wird, daß durch die Verbrennung des zugeführten verdunsteten Kraftstoffs ein Beitrag zum Drehmoment erzielt wird.The fuel evaporated from the tank is preferably supplied to the combustion chamber only when the fuel component in the flushing stream has a minimum proportion of hydrocarbons, so that the complete combustion of this homogeneous basic mixture is ensured together with a stratified injection. The minimum proportion of hydrocarbons correlates with an upper limit of the air ratio, which is selected so that the combustion of the evaporated fuel supplied contributes to the torque.
Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens liegt in einer Ausweitung der durch einen verbesserten Wirkungsgrad verbrauchsgünstigen Betriebsart, bei der während einer Verdichtungsphase Kraftstoff eingespritzt wird. Hierdurch kann auch der Klopfschutz durch Verstellung der Zündung hin zu spät entfallen.A major advantage of the method according to the invention is an expansion of the operating mode which is more economical due to an improved efficiency and in which fuel is injected during a compression phase. As a result, knock protection by adjusting the ignition too late can also be omitted.
Vorteilhaft ist auch, daß durch das erfindungsgemäße Verfahren der zeitliche Anteil der Tankentlüftung im Leerlauf reduziert werden kann. Dies führt zu einer Kraftstoffverbrauchsreduzierung und zu einer Verminderung von Kohlenwasserstoffemissionen.It is also advantageous that the time portion of the tank ventilation can be reduced when idling by the inventive method. This leads to a reduction in fuel consumption and a reduction in hydrocarbon emissions.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind.Further features, possible applications and advantages of the invention result from the following description of exemplary embodiments of the invention, which are shown in the figures of the drawing.
Zeichnungdrawing
In der Zeichnung zeigen:The drawing shows:
Fig. 1 schematisch ein aus dem Stand der Technik bekanntes Blockschaltbild eines Systems zum Betreiben einer Brennkraftmaschine eines Kraftfahrzeugs undFig. 1 schematically shows a block diagram of a system for operating an internal combustion engine of a motor vehicle and known from the prior art
Fig. 2 schematisch den Betriebsbereich der Brennkraftmaschine für die Tankentlüftung gemäß einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Beschreibung von Ausfuhrungsbeispielen2 schematically shows the operating range of the internal combustion engine for tank ventilation according to an embodiment of the method according to the invention. Description of exemplary embodiments
In der Fig. 1 ist ein Kraftstoffversorgungssystem 1 einer Brennkraftmaschine dargestellt, das für den Einsatz in einem Kraftfahrzeug vorgesehen ist. Die Brennkraftmaschine weist beispielsweise wie dargestellt vier Zylinder und damit vier Brennräume auf. Bei dieser Brennkraftmaschine wird der Kraftstoff, vorzugsweise Benzin, direkt in die Brennräume eingespritzt.1 shows a fuel supply system 1 of an internal combustion engine which is intended for use in a motor vehicle. As shown, the internal combustion engine has four cylinders and thus four combustion chambers. In this internal combustion engine, the fuel, preferably gasoline, is injected directly into the combustion chambers.
Der Kraftstoff wird von einer Pumpe 2 aus einem Tank 3 über einen Filter 4 zu einer weiteren Pumpe 5 transportiert, von welcher der Kraftstoff in eine Druckkammer 6 gepumpt wird. Mit Hilfe der Pumpen 2, 5 ist in der Druckkammer 6 ein relativ hoher Kraftstoffdruck vorhanden. An die Druckkammer 6 sind ein Drucksteuerventil 7 und ein Drucksensor 8 angeschlossen, wobei mit letzterem der in der Druckkammer 6 vorhandene Kraftstoffdruck gemessen werden kann. Der Drucksensor 8 erzeugt ein elektrisches Signal, das dem gemessenen Druck entspricht und das über eine Leitung 9 einem elektrischen Steuergerät 10 zugeführt wird.The fuel is transported by a pump 2 from a tank 3 via a filter 4 to a further pump 5, by which the fuel is pumped into a pressure chamber 6. With the help of the pumps 2, 5, a relatively high fuel pressure is present in the pressure chamber 6. A pressure control valve 7 and a pressure sensor 8 are connected to the pressure chamber 6, the fuel pressure in the pressure chamber 6 being able to be measured with the latter. The pressure sensor 8 generates an electrical signal which corresponds to the measured pressure and which is supplied to an electrical control unit 10 via a line 9.
Vier Einspritzventile 11 sind an die Druckkammer 6 angeschlossen. Jedes der Einspritzventile 11 ist direkt einem Brennraum der Brennkraftmaschine zugeordnet. Durch die geschlossenen Einspritzventile 11 wird die Druckkammer 6 von dem jeweiligen Brennraum getrennt. Über elektrische Leitungen 12 sind die Einspritzventile 11 mit dem Steuergerät 10 verbunden. Zur Ansteuerung eines der Einspritzventile 11 erzeugt das Steuergerät 10 ein elektrisches Signal, mit dem das entsprechende Einspritzventil 11 in seinem geöffneten Zustand gesteuert wird. Die Länge des Signals entspricht der Einspritzdauer, während der Kraftstoff aus der Druckkammer 6 über das entsprechende Einspritzventil 11 in den zugehörigen Brennraum der Brennkraftmaschine eingespritzt wird. Darüber hinaus ist der Tank 3 über eine hydraulische Leitung 13 mit einem Aktivkohlefilter 14 verbunden. Die Leitung 13 ist dabei derart an den Tank 3 angeschlossen, daß gas- oder dampfförmiger Kraftstoff, der in dem Tank 3 verdunstet, durch die Leitung 13 zu dem Aktivkohlefilter 14 strömen kann. Dort wird der verdunstete Kraftstoff aufgefangen, so daß sich das Aktivkohlefilter 14 füllt. Damit das Aktivkohlefilter 14 nicht überläuft, muß es regeneriert werden. Zu diesem Zweck führt die Leitung 13 von dem Aktivkohlefilter 14 über ein Magnetventil 15 zu einem Ansaugrohr 16, durch das Luft angesaugt und den Brennräumen der Brennkraftmaschine zugeführt wird. Mittels der angesaugten Luft wird dann der verdunstete und in das Ansaugrohr 16 gesaugte Kraftstoff den Brennräumen der Brennkraftmaschine zugeführt.Four injection valves 11 are connected to the pressure chamber 6. Each of the injection valves 11 is directly assigned to a combustion chamber of the internal combustion engine. Due to the closed injection valves 11, the pressure chamber 6 is separated from the respective combustion chamber. The injection valves 11 are connected to the control unit 10 via electrical lines 12. To control one of the injection valves 11, the control unit 10 generates an electrical signal with which the corresponding injection valve 11 is controlled in its open state. The length of the signal corresponds to the injection duration, while the fuel is injected from the pressure chamber 6 via the corresponding injection valve 11 into the associated combustion chamber of the internal combustion engine. In addition, the tank 3 is connected to an activated carbon filter 14 via a hydraulic line 13. The line 13 is connected to the tank 3 in such a way that gaseous or vaporous fuel which evaporates in the tank 3 can flow through the line 13 to the activated carbon filter 14. The evaporated fuel is collected there, so that the activated carbon filter 14 fills. So that the activated carbon filter 14 does not overflow, it must be regenerated. For this purpose, the line 13 leads from the activated carbon filter 14 via a solenoid valve 15 to an intake pipe 16, through which air is drawn in and supplied to the combustion chambers of the internal combustion engine. The evaporated fuel, which is sucked into the intake pipe 16, is then fed to the combustion chambers of the internal combustion engine by means of the intake air.
Ein Magnetventil 15 ist über eine elektrische Leitung 17 mit dem Steuergerät 10 verbunden und von diesem ansteuerbar.A solenoid valve 15 is connected to the control device 10 via an electrical line 17 and can be controlled by the latter.
In einer ersten Betriebsart, dem Schichtbetrieb S der Brennkraftmaschine, wird der Kraftstoff von dem Einspritzventil 11 während einer durch einen Kolben hervorgerufenen Verdichtungsphase in den Brennraum eingespritzt, und zwar zeitlich vor dem oberen Totpunkt des Kolbens. Dann wird mit Hilfe der Zündkerze der Kraftstoff entzündet, so daß der Kolben in der nunmehr folgenden Arbeitsphase durch die Ausdehnung des entzündeten Kraftstoffs angetrieben wird.In a first operating mode, the stratified operation S of the internal combustion engine, the fuel is injected from the injection valve 11 into the combustion chamber during a compression phase caused by a piston, namely before the top dead center of the piston. Then the fuel is ignited with the aid of the spark plug, so that the piston is driven in the now following working phase by the expansion of the ignited fuel.
In einer zweiten Betriebsart, dem sogenannten Homogenbetrieb H der Brennkraftmaschine, wird der Kraftstoff von dem Einspritzventil 11 während einer durch den Kolben hervorgerufenen Ansaugphase in den Brennraum eingespritzt. Durch die gleichzeitig über das Ansaugrohr 16 angesaugte Luft wird der eingespritzte Kraftstoff verwirbelt und damit in dem Brennraum im wesentlichen gleichmäßig verteilt. Danach wird das Kraftstoff- Luft-Gemisch während der Verdichtungsphase verdichtet, um dann von der Zündkerze entzündet zu werden. Durch die Ausdehnung des entzündeten Kraftstoff-Luftgemischs wird wiederum der Kolben angetrieben.In a second operating mode, the so-called homogeneous operation H of the internal combustion engine, the fuel is injected from the injection valve 11 into the combustion chamber during an induction phase caused by the piston. The injected fuel is swirled by the air sucked in simultaneously via the intake pipe 16 and is thus distributed substantially uniformly in the combustion chamber. The fuel-air mixture is then compressed during the compression phase in order to then be ignited by the spark plug. The piston is in turn driven by the expansion of the ignited fuel-air mixture.
Die im Schichtbetrieb S und im Homogenbetrieb H von den Einspritzventilen 11 in die Brennräume jeweils eingespritzte Kraftstoffmenge bzw. -masse wird von dem Steuergerät 10 insbesondere im Hinblick auf einen geringen Kraftstoffverbrauch und/oder eine geringe Abgasentwicklung gesteuert und/oder geregelt. Zu diesem Zweck ist das Steuergerät 10 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Read-Only-Memory ein Programm abgespeichert hat, das dazu geeignet ist, die genannte Steuerung und/oder Regelung durchzuführen. Das Steuergerät 10 wird von Eingangssignalen beaufschlagt, die mittels Sensoren gemessene Betriebszustände der Brennkraftmaschine darstellen, und es erzeugt Ausgangssignale, mit denen über Aktoren das Verhalten der Brennkraftmaschine entsprechend der erwünschten Steuerung und/oder Regelung beeinflußt werden kann.The fuel quantity or mass injected into the combustion chambers by the injection valves 11 in the stratified operation S and in the homogeneous operation H is controlled and / or regulated by the control unit 10, in particular with regard to low fuel consumption and / or low exhaust gas development. For this purpose, the control unit 10 is provided with a microprocessor which has stored a program in a storage medium, in particular in a read-only memory, which is suitable for carrying out the control and / or regulation mentioned. The control unit 10 is from Input signals are applied, which represent operating states of the internal combustion engine measured by sensors, and it generates output signals with which the behavior of the internal combustion engine can be influenced via actuators in accordance with the desired control and / or regulation.
Eine Regenerierung des Aktivkohlefilters 14 kann zum einen im Homogenbetrieb H erfolgen. Zum anderen kann die Regenerierung gemäß der Erfindung aber auch im Schichtbetrieb (S) erfolgen. In diesem Fall wird der Kraftstoff aus dem Aktivkohlefilter mit der Frischluft angesaugt. Hierzu wird das Magnetventil 15 von dem Steuergerät 10 derart angesteuert, daß es geöffnet ist, so daß in dem Tank 3 verdunsteter Kraftstoff über das geöffnete Magnetventil 15 zu dem Ansaugrohr 16 und damit in den oder die Brennräume der Brennkraftmaschine gelangt.The activated carbon filter 14 can be regenerated in homogeneous mode H on the one hand. On the other hand, the regeneration according to the invention can also take place in shift operation (S). In this case, the fuel is drawn in from the activated carbon filter with the fresh air. For this purpose, the solenoid valve 15 is controlled by the control device 10 in such a way that it is open, so that fuel evaporated in the tank 3 passes through the opened solenoid valve 15 to the intake pipe 16 and thus into the combustion chamber or combustion chambers of the internal combustion engine.
Die Regenerierung des Aktivkohlefilters 14 wird nun in Abhängigkeit von dessen Beladung vorgenommen. Eine Ermittlung der Beladung des Aktivkohlefilters 14 ist durch das Steuergerät 10 möglich. Diese Ermittlung kann mit Hilfe einer Lambda-Regelung durchgeführt werden, die in dem Steuergerät 10 vorhanden ist. Bei geöffnetem Magnetventil 15 muß die Lambda-Regelung die von den Einspritzventilen 11 eingespritzte Kraftstoffmasse verringern, um dadurch den über das Aktivkohlefilter 14 hinzukommenden verdunsteten Kraftstoff auszugleichen. Aus der Verringerung kann das Steuergerät 10 auf die Konzentration und damit auf den Füllgrad bzw. die Beladung B des Aktivkohlefilters 14 auf an sich bekannte und in der EP 0 923 669 Bl, Spalte 7, Zeilen 10 ff., auf die vorliegend vollinhaltlich Bezug genommen wird, schließen.The regeneration of the activated carbon filter 14 is now carried out as a function of its loading. The control unit 10 can determine the loading of the activated carbon filter 14. This determination can be carried out with the aid of a lambda control that is present in the control unit 10. When the solenoid valve 15 is open, the lambda control must reduce the fuel mass injected by the injection valves 11 in order to compensate for the evaporated fuel that is added via the activated carbon filter 14. From the reduction, the control device 10 can focus on the concentration and thus on the degree of filling or the loading B of the activated carbon filter 14 on EP 0 923 669 B1, column 7, lines 10 ff will close.
Im Schichtbetrieb S wird nun die Tankentlüftung erst ab einer Mindestbeladung des Aktivkohlefilters 14 durchgeführt. Die Mindestbeladung wird dabei so gewählt, daß der Kraftstoffanteil im Spülstrom einen Mindestanteil an Kohlenwasserstoffen besitzt, so daß die vollständige Verbrennung dieses homogenen Grundgemisches im Brennraum zusammen mit der Schichteinspritzung sichergestellt ist. Der Mindestanteil an Kohlenwasserstoffen korreliert mit einer oberen Lambda-Grenze, die beispielsweise dem Lambda- Wert entsprechen kann, der aus der ersten Einspritzung einer an sich bekannten Betriebsart HSP (Homogen Split) oder HSK (Homogen Klopfschutz) resultiert. Neben der Mindestbeladung im Aktivkohlefilter 14 ist eine Mindestlast Voraussetzung. Die Mindestlast korreliert mit der kleinsten zumeßbaren Kraftstoffmasse. Diese ergibt sich aus der Summe aus Mindestkraftstoffeinspritzmasse im Schichtbetrieb, resultierend aus der kleinsten zulässigen Einspritzzeit, und der Kraftstoffmasse im homogenen Grundgemisch aus der Tankentlüftung.In stratified operation S, the tank ventilation is now carried out only from a minimum loading of the activated carbon filter 14. The minimum loading is chosen so that the fuel portion in the purge stream has a minimum portion of hydrocarbons, so that the complete combustion of this homogeneous basic mixture in the combustion chamber is ensured together with the stratified injection. The minimum proportion of hydrocarbons correlates with an upper lambda limit, which can correspond, for example, to the lambda value which results from the first injection of an HSP (homogeneous split) or HSK (homogeneous knock protection) operating mode known per se. In addition to the minimum load in the activated carbon filter 14, a minimum load is a prerequisite. The minimum load correlates with the smallest measurable fuel mass. This results from the sum of the minimum fuel injection mass in shift operation, resulting from the smallest permissible injection time, and the fuel mass in the homogeneous basic mixture from the tank ventilation.
Der Vorteil gegenüber Verfahren der Tankentlüftung mit nur geringer Beladung des Aktivkohlefilters 14 besteht darin, daß der für das vorliegende Verfahren verwendete neue Betriebsbereich außerhalb des bekannten Betriebsbereichs für den Schichtbetrieb liegen kann, wie aus Fig. 2 hervorgeht. Insbesondere kann der neue Bereich auch bei höheren Lasten liegen, im Grenzfall sogar bei Vollast. In Fig. 2 ist der Bereich, in dem eine Tankentlüftung stattfindet, durch eine Schraffur dargestellt. Neben dem konventionellen Homogenbereich HOM, in Fig. 2 mit III bezeichnet, der an der Vollast-Kennlinie endet, ist eine Regenerierung des Aktivkohlefilters 14 auch im Übergangsbereich homogen mager (HHM), in Fig. 2 mit II bezeichnet und in einem Teil des Schichtladebereichs (SCH), in Fig. 2 mit I bezeichnet, möglich. Ein Vorteil der Ausweitung des durch verbesserten Wirkungsgrad verbrauchsgünstigen Betriebsbereichs Schicht, also der Einspritzung im Verdichtungshub hin zu höherer Last, liegt bei dem vorgeschlagenen Verfahren auch darin, daß im Vergleich zum Homogenbetrieb HOM bei konstantem Kraftstoffeinsatz ein höheres Motormoment erzielt wird. Darüber hinaus wird eine Kraftstoffeinsparung durch den Wegfall der für den Klopfschutz erforderlichen Zündungsspätverstellung erzielt. The advantage over methods of tank ventilation with only a low loading of the activated carbon filter 14 is that the new operating range used for the present method can lie outside the known operating range for the shift operation, as can be seen from FIG. 2. In particular, the new area can also be at higher loads, in the limit case even at full load. In Fig. 2 the area in which a tank ventilation takes place is shown by hatching. In addition to the conventional homogeneous area HOM, designated III in FIG. 2, which ends at the full-load characteristic, regeneration of the activated carbon filter 14 is also homogeneously lean in the transition area (HHM), designated II in FIG. 2, and in part of the stratified charging area (SCH), labeled I in Fig. 2, possible. An advantage of the expansion of the stratified operating range which is more economical due to improved efficiency, that is to say the injection in the compression stroke towards a higher load, also lies in the proposed method in that, compared to homogeneous operation HOM, a higher engine torque is achieved with constant use of fuel. In addition, fuel savings are achieved by eliminating the ignition retard required for knock protection.

Claims

Patentansprüche claims
1. Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, wobei Kraftstoff entweder in einer ersten Betriebsart (S) während einer Verdichtungsphase oder in einer zweiten Betriebsart (H) während einer Ansaugphase direkt in einen Brennraum eingespritzt wird, wobei aus einem Tank (3) verdunsteter Kraftstoff, welcher über ein Aktivkohlefilter (14) geführt wird, dem Brennraum zugemessen wird und wobei die Beladung (B) des Aktivkohlefilters (14) ermittelt wird, dadurch gekennzeichnet, daß der aus dem Tank (3) verdunstete Kraftstoff dem Brennraum in der ersten Betriebsart (S) in einer Zeitspanne, in der Frischluft angesaugt wird, zugeführt wird, wobei durch die Zuführung des verdunsteten Kraftstoffs der Bereich der ersten Betriebsart (S) erweitert wird und dadurch die Brennkraftmaschine mit einem gegenüber der zweiten Betriebsart (H) verbesserten Wirkungsgrad betrieben wird.1. Method for operating an internal combustion engine, in particular a motor vehicle, wherein fuel is injected directly into a combustion chamber either in a first operating mode (S) during a compression phase or in a second operating mode (H) during an intake phase, evaporating from a tank (3) Fuel which is passed over an activated carbon filter (14) is metered into the combustion chamber and the load (B) of the activated carbon filter (14) is determined, characterized in that the fuel evaporated from the tank (3) passes the combustion chamber in the first operating mode (S) is supplied in a period in which fresh air is sucked in, the range of the first operating mode (S) being expanded by the supply of the evaporated fuel and thereby the internal combustion engine being operated with an improved efficiency compared to the second operating mode (H) ,
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der aus dem Tank (3) verdunstete Kraftstoff dem Brennraum nur dann zugeführt wird, wenn die Luftzahl des zugeführten Kraftstoff-Luft-Gemisches in einem vorgegebenen Intervall liegt.2. The method according to claim 1, characterized in that the evaporated fuel from the tank (3) is supplied to the combustion chamber only when the air ratio of the supplied fuel-air mixture is in a predetermined interval.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der aus dem Tank (3) verdunstete Kraftstoff nur dann dem Brennraum zugeführt wird, wenn eine Mindestbeladung (Bmj„) des Aktivkohlefilters (14) erreicht oder überschritten wird.3. The method according to claim 1 or 2, characterized in that the evaporated fuel from the tank (3) is supplied to the combustion chamber only when a minimum load (B m j ") of the activated carbon filter (14) is reached or exceeded.
4. Verfahren nach einem der -Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der aus dem Tank (3) verdunstete Kraftstoff nur dann dem Brennraum zugeführt wird, wenn die Summe aus einer Mindestkraftstoffeinspritzmasse in der ersten Betriebsart (S) und die Kraftstoffmasse des zugeführten, aus dem Tank (3) verdunsteten Kraftstoffs einen vorgebbaren Mindestwert übersteigen. 4. The method according to any one of claims 1 to 3, characterized in that the fuel evaporated from the tank (3) is supplied to the combustion chamber only when the sum of a minimum fuel injection mass in the first operating mode (S) and the fuel mass of the supplied , evaporated fuel from the tank (3) exceed a predetermined minimum value.
PCT/DE2004/001505 2003-07-18 2004-07-10 Method for ventilating the tank for a direct injection combustion engine WO2005010332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332701.0 2003-07-18
DE2003132701 DE10332701A1 (en) 2003-07-18 2003-07-18 Method for tank ventilation for a direct-injection internal combustion engine

Publications (1)

Publication Number Publication Date
WO2005010332A1 true WO2005010332A1 (en) 2005-02-03

Family

ID=34041937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001505 WO2005010332A1 (en) 2003-07-18 2004-07-10 Method for ventilating the tank for a direct injection combustion engine

Country Status (2)

Country Link
DE (1) DE10332701A1 (en)
WO (1) WO2005010332A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150039205A1 (en) * 2013-07-31 2015-02-05 Robert Bosch Gmbh Method for operating a forced-induction internal combustion engine with variable compression

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016339B4 (en) 2006-04-05 2017-02-23 Robert Bosch Gmbh Method for diagnosing a tank ventilation system and device for carrying out the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089210A (en) * 1996-08-27 2000-07-18 Denso Corporation Apparatus for controlling air-fuel ratio of internal combustion engine
DE19926310A1 (en) * 1999-06-09 2000-12-14 Bosch Gmbh Robert Method for operating an internal combustion engine
DE19936202A1 (en) * 1999-07-31 2001-02-08 Bosch Gmbh Robert Method for operating an internal combustion engine
DE10135758A1 (en) * 2000-08-02 2002-02-21 Ford Global Tech Inc Method for ensuring the combustion of evaporating fuel in a stratified-charge engine using multiple fuel injection pulses
DE10128008A1 (en) * 2000-06-13 2002-03-21 Visteon Global Tech Inc Purge Fuel Canister Measurement Method and System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089210A (en) * 1996-08-27 2000-07-18 Denso Corporation Apparatus for controlling air-fuel ratio of internal combustion engine
DE19926310A1 (en) * 1999-06-09 2000-12-14 Bosch Gmbh Robert Method for operating an internal combustion engine
DE19936202A1 (en) * 1999-07-31 2001-02-08 Bosch Gmbh Robert Method for operating an internal combustion engine
DE10128008A1 (en) * 2000-06-13 2002-03-21 Visteon Global Tech Inc Purge Fuel Canister Measurement Method and System
DE10135758A1 (en) * 2000-08-02 2002-02-21 Ford Global Tech Inc Method for ensuring the combustion of evaporating fuel in a stratified-charge engine using multiple fuel injection pulses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150039205A1 (en) * 2013-07-31 2015-02-05 Robert Bosch Gmbh Method for operating a forced-induction internal combustion engine with variable compression
CN104343549A (en) * 2013-07-31 2015-02-11 罗伯特·博世有限公司 Method for operating a forced-induction internal combustion engine with variable compression
US9404401B2 (en) * 2013-07-31 2016-08-02 Robert Bosch Gmbh Method for operating a forced-induction internal combustion engine with variable compression

Also Published As

Publication number Publication date
DE10332701A1 (en) 2005-02-10

Similar Documents

Publication Publication Date Title
DE19743492B4 (en) Method for starting an internal combustion engine, in particular of a motor vehicle
DE10028539A1 (en) Internal combustion engine operating process involves running at specific intended fuel rate of fuel air mixture via tank venting valve, determined by control device
DE102017129769A1 (en) Method for operating an internal combustion engine, internal combustion engine and motor vehicle
WO1999020882A1 (en) Method for starting an internal combustion engine
DE19758725B4 (en) Method for operating an internal combustion engine, in particular of a motor vehicle
EP1179130A1 (en) Method for operating a multi-cylinder internal combustion engine
WO1999067526A1 (en) Method for operating an internal combustion engine, especially of an automobile
DE19928825C2 (en) Method for operating an internal combustion engine, control device for an internal combustion engine and internal combustion engine, in particular for a motor vehicle
EP1206635B1 (en) Method for operating an internal combustion engine
EP1230471A1 (en) Method for operating an accumulator-type catalytic converter of an internal combustion engine
EP0923669B1 (en) Method for operating an internal combustion engine, especially of an automobile
WO2005010332A1 (en) Method for ventilating the tank for a direct injection combustion engine
WO1999067523A1 (en) Method for operating an internal combustion engine
EP1081363B1 (en) Method to control an internal combustion engine
EP1436496B1 (en) Method for operating an internal combustion engine in particular of a motor vehicle
DE102017213868A1 (en) Method for operating an internal combustion engine and internal combustion engine
DE19908726A1 (en) Internal combustion engine operating method involves injecting fuel into combustion chamber during compression phase with injection start angle varied depending on quiet running
DE19925788A1 (en) Method for operating an internal combustion engine
DE19813379A1 (en) Method for operating an internal combustion engine, in particular a motor vehicle
EP1192347A1 (en) Method for operating an internal combustion engine
DE102010037528A1 (en) Method for operation of two-stroke combustion engine, involves performing large cylinder charging operation in which remaining proportion of exhaust gases is of preset value and air-fuel ratio is greater than two
EP1999355A1 (en) Method and device for operating an internal combustion engine
DE19828774A1 (en) Procedure for operating IC engine using direct injection and a regenerating gas
DE102015224145A1 (en) Direct start of an internal combustion engine
DE10302615A1 (en) Motor vehicle combustion engine operating method in which uneven operation of the engine is monitored for and if an engine operating limit is exceeded, counter measures are instigated

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase