WO2005010175A1 - Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity - Google Patents

Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity Download PDF

Info

Publication number
WO2005010175A1
WO2005010175A1 PCT/JP2004/011220 JP2004011220W WO2005010175A1 WO 2005010175 A1 WO2005010175 A1 WO 2005010175A1 JP 2004011220 W JP2004011220 W JP 2004011220W WO 2005010175 A1 WO2005010175 A1 WO 2005010175A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
malic enzyme
threonine
gene
seq
Prior art date
Application number
PCT/JP2004/011220
Other languages
French (fr)
Inventor
Dien Stephen Van
Shintaro Iwatani
Yoshihiro Usuda
Kazuhiko Matsui
Yuta Nakai
Tomoko Suzuki
Mika Moriya
Yuichiro Tsuji
Takuji Ueda
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34100609&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005010175(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to DK04771247T priority Critical patent/DK1651758T3/en
Priority to BRPI0413007A priority patent/BRPI0413007B1/en
Priority to DE602004014158T priority patent/DE602004014158D1/en
Priority to PL04771247T priority patent/PL1651758T3/en
Priority to EP04771247A priority patent/EP1651758B1/en
Publication of WO2005010175A1 publication Critical patent/WO2005010175A1/en
Priority to KR1020057024543A priority patent/KR101208480B1/en
Priority to US11/275,437 priority patent/US7306933B2/en
Priority to US11/877,726 priority patent/US8030036B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Abstract

A bacterium belonging to the genus Escherichia which has an ability to produce L-lysine or L-threonine and which is modified so that a malic enzyme does not normally function in a cell, and a method for producing L-lysine or L-threonine, comprising culturing the bacterium in a medium to produce and cause accumulation of L-lysine or L-threonine, and collecting the L-lysine or L-threonine from the medium.

Description

Description
METHOD FOR PRODUCING L-LYSINE OR L-THREONINE USING ESCHERICHIA BACTERIA HAVING A TTENUATED MALIC ENZYME ACTIVITY
Technical Field The present invention relates to a method for producing L-lysine or L-threonine using an Escherichia bacterium. L-Lysine and L-threonine are known as essential amino acids, and are useful as components in pharmaceutical compositions and diverse nutritive mixtures, such as additives to animal fodder."
Background Art L-Amino acids, such as L-threonine and L-lysine, are industrially produced by fermentation using L-amino acid- producing bacteria, such as coryneform or Escherichia bacteria which have an ability to produce L-amino acids. To improve productivity, a strain isolated from nature, an artificial mutant thereof, or a recombinant in which the L- amino acid biosynthetic enzyme activity is increased by gene recombination has been used as the L-amino acid- producing bacterium. The method for producing L-lysine has been exemplified in Patent documents 1 to 4. The method for producing L-threonine has been exemplified in Patent documents 5 to 8. Methods for increasing the ability to produce amino acids such as L-threonine and L-lysine include a method for increasing energy efficiency by modifying a respiratory chain pathway (Patent document 13) , and a method for increasing an ability to produce nicotinamide adenine dinucleotide phosphate by amplifying a nicotinamide nucleotide transdehydrogenase (Patent document 9), as well as a method of increasing an expression amount of an enzyme of the endogenous biosynthetic pathway. In addition, methods for modifying common pathways of amino acid biosynthetic systems are known and include modifying anaplerotic pathways of L-amino acid-producing bacteria, such as an L-lysine-producing coryneform bacterium in which a pyruvate carboxylase activity is increased (Patent document 10), an L-lysine-producing Escherichia bacterium which" is deficient in pyruvate kinase (Patent document 11) , and an L-lysine-producing coryneform bacterium which is deficient in malate quinine oxidoreductase (Patent document 12) . A malic enzyme is one of the anaplerotic pathway enzymes. In the Escherichia bacteria, it is known that each of the sfcA and b2463 genes encodes the malic enzyme (Non-patent document 9) . However, whether or not a decrease in the activity of the malic enzymes encoded by the sfcA and b2463 genes is effective for enhancing L- lysine or L-threonine production has not been reported. A metabolic flux analysis, which is also referred to as a flux balance analysis, is a technique for predicting intracellular metabolic flux distributions by construction of a stoichiometric model of intracellular biochemical reactions and linear optimization. This technique has been used in research into the abilities of biochemical reaction systems in microorganisms or for predicting intracellular metabolic flux distributions under different external conditions (Non-patent documents 1, 2 and 3) . It has also been reported that a stoichiometric model was constructed for Escherichia coli (Non-patent documents 4 and 5) . Also known is an example of using such a stoichiometric model in metabolic engineering for lysine production for Coryne.bacteriu.m glutamicum, which is used in amino acid production (Non-patent document 6) . In addition, a large number of theoretical or experimental methods for metabolic flux analyses and their applications have been reported (Non-patent documents 7, 8, Patent documents 14, 15 and 16). Patent document 14 discloses a method for predicting a gene required for growth based on a stoichiometric model. Patent document 15 discloses a technique for genetically and evolutionarily changing cells to impart optimal functions to the cells. Further, Patent document, 16 discloses a method for applying limitations of qualitative kinetic information, limitations of qualitative control information and limitations based on DNA microarray experimental data under different conditions to a stoichiometric model. Although all of these are methods for predicting more desirable intracellular metabolic flux distributions, no method has been disclosed for theoretically predicting a specific flux as a target for directly improving cellular substance production. <Patent document 1>
Japanese Patent Application Laid-Open No. 10-165180 <Patent document 2>
Japanese Patent Application Laid-Open No. 11-192088 <Patent document 3>
Japanese Patent Application Laid-Open No. 2000-253879 <Patent document 4> Japanese Patent Application Laid-Open No. 2001-57896 <Patent document 5>
Japanese Patent Application Laid-Open No. 5-304969
<Patent document 6>
International Publication No. O98/04715
<Patent document 7>
Japanese Patent Application Laid-Open No. 5-227977
<Patent document 8>
U.S. Patent Application Publication No. 2002/0110876
<Patent document 9>
Japanese Patent No. 2817400
<Patent document 10>
Japanese Patent Application Laid-Open No. 2002-508921
<Patent document 11>
International Publication No. O03/008600
<Patent document 12>
U.S. Patent Application Publication No. 2003/0044943
<Patent document 13>
Japanese Patent Application Laid-Open No. 2002-17363
<Patent document 14>
International Publication No. WO00/46405
<Patent document 15>
International Publication No. O02/061115
<Patent document 16>
International Publication No. O02/055995
<Non-patent document 1>
Varma, A. and Palsson, B.O. Appl. Environ. Microbiol.
60:3724-3731, 1994
<Non-patent document 2>
Schilling, CH. et al., Biotechnol. Prog., 15:288-295, 1999
<Non-patent document 3> Schilling, CH. et al., Biotechnol. Prog., 15:296-303, 1999
<Non-patent document 4>
Pramanik, J. and Keasling, J.D., Biotechnol. Bioeng.,
56:398-421, 1997
<Non-patent document 5>
Ibarra, R.U. et al., Nature, 420:186-189, 2002
<Non-patent document 6>
Vallino, J.J. and Stephanopoulos, G., Biotechnol. Bioeng.,
41:633-646, 1993
<Non-patent document 7>
Wiechert, ., Journal of Biotechnology, 94:37-63, 2002
<Non-patent document 8>
Wiechert, W., Metabolic Engineering, 3:195-205,, 2001
<Non-patent document 9> van der Rest, M.E., Frank C, Molenaar, D.J., J. Bacteriol.,
182(24) :6892-6899, 2000
Disclosure of the Invention The present invention provides an Escherichia bacterium which has an improved ability to produce L-lysine or L-threonine, and a method for producing L-lysine or L- thereonine using the bacterium. The inventors of the present invention assiduously studied to solve the problem and as a result, they found that production of a metabolic flux affecting substance production could be determined by (1) selecting the same number of free fluxes as the degree of freedom of a stoichiometric matrix calculated based on formulas of biochemical reactions from a substrate through a desired produced substance, (2) calculating metabolic flux distributions from random combinations of the free fluxes in a number sufficient for a statistical analysis based on the stoichiometric matrix, and (3) obtaining a regression equation which includes a minimum number of free fluxes which correlate to the substance production from the calculated metabolic flux distributions based on statistical analysis. Determination of the metabolic fluxes of an L-lysine or L-threonine-producing bacterium by this method has revealed that a modification so that a malic enzyme does not normally function is effective for increasing the productivity of the bacterium. The present invention was accomplished based on the aforementioned findings, and provides the following: (1) An Escherichia bacterium which has an ability to -produce L-lysine or L-threonine, and wherein said bacterium is modified so that a malic enzyme does not normally function in a cell. (2) The bacterium according to (1) , wherein a gene encoding said malic enzyme on the bacterial chromosome is mutated and/or an expression control sequence thereof is mutated so that the malic enzyme does not normally function in the cell. (3) The bacterium according to (1), wherein said malic enzyme does not normally function by disruption of a gene encoding said malic enzyme on the bacterial chromosome. (4) The bacterium according to (1), wherein the gene encoding said malic enzyme comprises sfcA. (5) The bacterium according to (1), wherein the gene encoding said malic enzyme comprises b2463. (6) The bacterium according to (1), wherein said malic enzyme is selected from the group consisting of: (A) a protein having an amino acid sequence shown in SEQ ID NO: 6, and (B) a protein which has an amino acid sequence comprising substitution, deletion, insertion or addition of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 6, and has a malic enzyme activity. (7) The bacterium according to (1), wherein said malic enzyme is selected from the group consisting of: (C) a protein having an amino acid sequence shown in SEQ ID NO: 8, and
(D) a protein which has an amino acid sequence cqmprising substitution, deletion, insertion or addition of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 8, and has a malic enzyme activity. (8) The bacterium according to (1), wherein a gene encoding said malic enzyme is a DNA selected from the group consisting of:
(a) a DNA having a nucleotide sequence shown in SEQ ID NO:
5,
(b) a DNA which hybridizes with the nucleotide sequence shown in SEQ ID NO: 5, or a probe which can be prepared from the nucleotide sequence, wherein said hybridization occurs under stringent conditions, and wherein said DNA encodes a protein having a malic enzyme activity. (9) The bacterium according to (1), wherein a gene encoding the malic enzyme is a DNA selected from the group consisting of:
(c) a DNA having a nucleotide sequence shown in SEQ ID NO: 7, and (d) a DNA which hybridizes with the nucleotide sequence shown in SEQ ID NO: 7, or a probe which can be prepared from the nucleotide sequence, wherein said hybridization occurs under stringent conditions, and wherein said DNA encodes a protein having a malic enzyme activity. (10) A method for producing L-lysine or L-threonine, comprising culturing the bacterium as defined in any one of (1) to (9) in a medium so to produce and secrete said L- lysine or L-threonine, and collecting the L-lysine or L- threonine from the medium.
Brief Description of the Drawings Fig. 1 is a plot showing lysine production as a function of different values of free fluxes by using a dataset of 5000 random flux distributions. The lysine yields are shown for (a) isocitrate lyase flux, (b) malic enzyme flux and (c) PEP carboxylase flux. Fig. 2 is a plot showing lysine production as a function of values in equation 2 for a dataset of 5000 random flux distributions. The input value is a flux in mmol/hr based on 10 mmol/hr glucose flux. Fig. 3 shows the structures of pMW118-attL-Tc-attR and pMWH8-attL-Cm-attR. Fig. 4 shows the structure of pMW-intxis-ts.
Best Mode for Carrying Out the Invention Hereinafter, the present invention will be explained in detail. <1> Escherichia bacterium of the present invention The Escherichia bacterium of the present invention is a bacterium belonging to the genus Escherichia which has an ability to produce L-lysine or L-threonine and which is modified so that a malic enzyme does not normally function. The Escherichia bacterium of the present invention may have an ability to produce either L-lysine or L-threonine, or may have an ability to produce both L-lysine and L- threonine. A parent strain belonging to the genus Escherichia which is used for obtaining the Escherichia bacterium of the present invention includes, but is not limited to those described in a book written by Neidhardt et al. (Neidhardt, F. C et al., Escherichia coli and Salmonella Typhimurium, American Society for Microbiology, Washington D. C, 1029, - table 1) . For example, the parent strain may be Escherichia coli . The Escherichia coli may be Escherichia coli W3110 (ATCC 27325) or Escherichia coli MG1655 (ATCC 47076) , which are both derived from the prototype wild strain K12. One may obtain these strains from the American Type Culture Collection (Address: 12301 Parklawn Drive, Rockville, Maryland 20852, United States of America) , for example. Registration numbers are assigned to strains, respectively. It is possible to request the desired strain by its registration number. The registration numbers which correspond to the strains are listed in the American Type Culture Collection catalog. <1>-1. Imparting the ability to produce L-lysine or L- threonine A method for imparting the ability to produce L- Lysine or L-threonine to the Escherichia bacterium is described below. The phrase "ability to produce L-lysine" as used herein means an ability to produce and cause accumulation of, or secrete, L-lysine into a medium, i.e. free extracellular L-lysine, when the bacterium is cultured in the medium. In particular, the phrase "ability to produce L-lysine" means an ability to cause accumulation of more L-lysine as compared with a wild-type, or parent strain. The phrase "ability to produce L-threonine", as used herein means an ability to produce and cause accumulation of, or secrete, L-threonine in a medium, i.e. free - extracellular L-threonine, when the bacterium is cultured in the medium. In particular, this phrase means an ability to cause accumulation of more L-threonine as compared with a wild-type, or parent strain. To impart L-lysine or L-threonine-producing ability, conventional methods for breeding Escherichia bacteria and coryneform bacteria can be used, such as methods for obtaining auxotrophic mutant strains, strains resistant to analogues, or metabolic control mutant strains which have an ability to produce L-lysine or L-threonine, and methods for producing recombinant strains wherein L-lysine or L- threonine biosynthetic enzyme activities are increased. In the breeding of L-lysine or L-threonine-producing bacteria, characteristics such as auxotrophy, analogue resistance and metabolic control mutations may be imparted alone or in combination. The increased L-lysine or L-threonine biosynthetic enzyme activity may be alone or in combination. Further, imparting characteristics such as auxotrophy', analogue resistance and metabolic control mutations may be combined with increasing the L-lysine and/or L-threonine biosynthesis enzyme activity. Examples of methods for imparting or increasing the ability to produce L-lysine or L-threonine by increasing the L-lysine or L-threonine biosynthetic enzyme activity are described below. Increasing the enzyme activity may be performed by, for example, introducing a mutation to a gene encoding the enzyme or amplifying the gene so that an intracellular activity of the enzyme is increased. These may be performed by gene recombination. Genes encoding the L-threonine biosynthetic enzymes include, but are not limited to, the aspartokinase III gene ( lysC) , the aspartate semialdehyde dehydrogenease gene ( asd) , the aspartokinase I encoded by the thr operon ( thrA) , the homoserine kinase gene ( thrB) , and the threonine synthase gene ( t-hrC) . The abbreviated symbol of the gene is shown in parenthesis. Two or more of these genes may be introduced. The L-threonine biosynthetic enzyme gene may be introduced into an Escherichia bacterium of which threonine degradation is suppressed. An Escherichia bacterium of which threonine degradation is suppressed is exemplified by the strain TDH6, which is deficient in a threonine dehydrogenase activity (Japanese Patent Application Laid-Open No. 2001-346578) . Genes encoding the L-lysine biosynthetic enzymes include, but are not limited to diaminopimelate pathway enzymes, such as the dihydrodipicolinate synthase gene ( dapA) , the aspartokinase gene ( lysC) , the dihydrodipicolinated reductase gene ( dapB) , the diaminopimelate decarboxylase gene ( lysA) , the diaminopimelate dehydrogenase gene ( ddh) (all of the foregoing; International Publication No. 96/40934), the phosphoenolpyrvate carboxylase gene (ppc) (Japanese Patent Application Laid-Open No. 60-87788), the aspartate aminotransferase gene ( aspC) (Japanese Patent Publication No. 6-102028), the diaminopimelate epimerase gene ( dapF) (Japanese Patent Application Laid-Open No. 2003-135066), and the aspartate semialdehyde dehydrogenease geae ( asd) (International Publication No. 00/61723), and the aminoadipate pathway enzymes, such as the homoaconitate - hydratase gene (Japanese Patent Application Laid-Open No. 2000-157276) . Furthermore, the bacterium of the present invention may have decreased activity of an enzyme that catalyzes a reaction for generating a compound other than L-lysine by branching off from the biosynthetic pathway of L-lysine, or may be deficient in such an enzyme. Enzymes that catalyze a reaction for generating a compound other than L-lysine by branching off from the biosynthetic pathway of L-lysine include homoserine dehydrogenase and lysine decarboxylase. Strains having decreased activities of the enzymes are described in W095/23864 and WO 96/178930. Increasing the activity of the enzyme encoded by the gene can be achieved by amplifying the L-lysine or L- threonine biosynthetic gene with a plasmid autonomously replicable in Escherichia bacteria, for example. The biosynthetic gene may be integrated into the bacterial chromosome. It can be also be achieved by introducing a gene which includes a mutation that causes the activity of the enzyme encoded by the gene to increase. Examples of such a mutation include mutation of a promoter sequence, so that the transcription amount of the gene increases, and mutation in the coding region of the gene, so that a specific activity of the enzyme protein increases. Other than gene amplification as described above, gene expression can be amplified by replacing an expression control sequence, such as a promoter of the gene on the chromosomal DNA or plasmid, with a stronger one ι , (Internation Publication No. WO 00/18935) . Strong promoters are known and include, for example, the lac -promoter, the trp promoter, the trc promoter, the tac promoter, and the PR promoter of lambda phage . Expression of the gene may be increased by replacing the endogenous promoter on either the chromosome or plasmid with a stronger one, or by modifying the endogenous promoter. Modifying the expression control sequence can be combined with increasing the copy number of the gene. Examples of Escherichia bacteria to which the ability to produce L-lysine or L-threonine is imparted, which can be used in the present invention, are shown below. However, the bacterium of the present invention is not limited to these examples, but encompasses any bacteria which has the ability to produce L-lysine or L-threonine. Specific examples of strains resistant to analogues or metabolic control mutant strains which have an ability to produce L-lysine include Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; Japanese Patent Application Laid- Open No. 56-18596 and U.S. Pat. No. 4,346,170) and Escherichia coli VL611. Strain WC196 may be used as an L- lysine-producing bacterium of Escherichia coli (International Publication No. WO96/17930) . The WC196 strain was bred by imparting AEC (S- (2-aminoethyl) cysteine) resistance to strain W3110, which was derived from Escherichia coli K-12. This strain was designated Escherichia coli AJ13069, and deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology (currently National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Tsukuba Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, - Japan) on Dec. 6, 1994 and received an accession number of FERM P-14690. It was converted to an international deposit under the provisions of the Budapest Treaty on Sep. 29, 1995, and received an accession number of FERM BP-5252. Examples of Escherichia bacteria having an ability to produce L-threonine include a L-threonine-producing mutant strain which is resistant to 6-dimethylaminopurine (Japanese Patent Application Laid-Open No. 5-304969), recombinant Escherichia coli strains such as a strain in which a threonine biosynthetic gene having an introduced mutation which causes excess production of L-threonine biosynthetic enzyme is amplified on a plasmid (Japanese Patent Publication No. 1-29559, and Japanese Patent Application Laid-Open No. 5-227977), a strain in which a threonine operon is amplified on a plasmid (Japanese Patent Application Laid-Open No. 2-109985), and a strain in which genes encoding pyruvate carboxylase and nicotinamide nucleotide transhydrogenase are amplified (Japanese Patent Application Laid-Open No. 2002-51787) . Escherichia coli VKPM B-3996 (U.S. Patent No. 5,175,107) is also encompassed by the present invention. The VKPM B-3996 strain was deposited at Russian National Collection of Industrial Microorganisms (VKPM) , GNU Genetika) on November 19, 1987 and received an accession number of VKPM B-3996. The VKPM B-3996 harbors plasmid pVIC40 (International Publication No. WO 90/04636), which is produced by inserting threonine biosynthetic genes (threonine operon: thrABC) into a broad-host range vector, for example, plasmid pAYC32 (Chistoserdov, A. Y., Tsygankov, Y. D., Plasmid, 1986, 16, 161-167). In the pVIC40, the feedback inhibition by L-threonine of aspartokinase I- homoserine dehydrogenase I encoded by thrA in the threonine operon is desensitized. Furthermore, Escherichia coli B-5318 (European Patent No. 0593792) is encompassed by the present invention. The B-5318 strain was deposited at Russian National Collection of Industrial Microorganisms (VKPM) , GNU Genetika) on November 19, 1987 and received an accession number of VKPM B-5318. The VKPM B-5318 is prototrophic with regard to isoleucine and harbors a recombinant plasmid DNA. This plasmid is constructed so that the threonine operon, including the threonine biosynthetic genes, is deficient in an attenuation region, for example, the endogenous transcription regulation region. The operon is positioned downstream from lambda-phage temperature-sensitive Cl repressor, the PR promoter, and the N-terminal of Cro protein, and is constructed so that the expression of the threonine biosynthetic genes is under the control of a lambda-phage repressor and promoter.
<2> Construction of Escherichia bacterium of the present invention The Escherichia bacterium of the present invention is a bacterium belonging to the genus Escherichia which has an ability to produce L-lysine or L-threonine, and which is modified so that a malic enzyme does not normally function. During the breeding of the Escherichia bacterium of the present invention, either imparting the ability to produce L-lysine or L-threonine, or mutation which the malic enzyme (EC 1.1.1.38, EC 1.1.1.40) does not normally " function may be initially performed. Also, an Escherichia bacterium having the ability to produce L-lysine or L- threonine may be modified so that the malic enzyme does not normally function, and the ability to produce L-lysine or L-threonine may be imparted to an Escherichia bacterium in which the malic enzyme has not normally function yet. The phrase "activity of a malic enzyme" means an activity to catalyze a reversible reaction to produce carbondioxide and pyruvate from malate. Malic enzymes which use NAD (EC 1.1.1.38) and NADP (EC 1.1.1.40) as coenzymes are known. (EC 1.1.1.38 (S) -malate + NAD+ = pyruvate + C02 + NADH + H+) (EC 1.1.1.40 (S) -malate + NADP+ = pyruvate + C02 + NADPH + H+) . The malic enzyme is also called "malate dehydrogenase", or "malate oxidoreductase". The phrase "modified so that a malic enzyme does not normally function in a cell" means that it is modified so that the function of the malic enzyme should be eliminated or the activity of the malic enzyme should be reduced or attenuated compared with an unmodified strain such as a wild-type (parent) strain. The state where the malic enzyme does not normally function may be, for example, a state where transcription or translation of the gene encoding the malic enzyme is inhibited, and hence the gene product thereof, the malic enzyme is not produced or the production reduced, or a state where the gene encoding said malic enzyme on the bacterial chromosome is mutated and/or an expression control sequence thereof is mutated, and thus the activity of the malic enzyme is reduced or eliminated. Example of the Escherichia bacterium in which the malic enzyme does not normally function include, typically, a - gene-disrupted strain in which the gene encoding the malic enzyme on the bacterial chromosome is disrupted by genetic recombination technique, and a mutant strain in which an expression regulatory sequence or a coding region of the malic enzyme gene is mutated, and therefore a functional malic enzyme is no longer produced. The phrase "modified so that an activity of a malic enzyme is attenuated" means that the activity of the malic enzyme is reduced compared with that of an unmodified strain, for example, a wild-type (parent) strain of Escherichia bacteria. The activity of the malic enzyme preferably is reduced to not more than 50%, more preferably not more than 30%, still more preferably not more than 10% per cell compared with the unmodified strain. Examples of the Escherichia bacterium which can act as a control include Escherichia coli W3110 (ATCC 27325) and Escherichia coli MG1655 (ATCC 47076) . These wild-type strains are derived from the prototype wild-type strain K12 Malic enzyme activity, using NAD as coenzyme, can be determined according to the method of Korkes, S., et al. (Korkes, S. et al., (1950) J. Biol. Chem. 187, 891-905). Malic enzyme activity using NADP as coenzyme can be determined according to the method of Ochoa, S. (Ochoa, S. et al (1947) J. Biol. Chem. 167, 871-872). The term "attenuation" includes, but is not limited to, the complete elimination of the activity. Malic enzyme activity using NAD or NADP as coenzymes may be attenuated each individually, or together. It is sufficient ,for the present invention that the Escherichia bacterium has the attenuated malic enzyme activity as compared with a wild- "type or unmodified strain. However, it is preferred that the Escherichia bacterium of the present invention also has an increased ability to cause accumulation, or secrete L- lysine or L-threonine as compared to the wild-type or unmodified strain, and/or improved L-lysine or L-threonine productivity because of good growth, namely improved cell- subtracted yield. The malic enzyme of the present includes the protein having the amino acid sequence shown in SEQ ID NO: 6 or 8. The malic enzyme may be a variant of the amino acid sequence shown in SEQ ID NO: 6 or 8, in that it may include substitution, deletion, insertion or addition of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 6 or 8, provided that it has a malic enzyme activity. "Several" as used herein, means, for example, 2 to 20, preferably 2 to 10, more preferably 2 to 5. The substitution, deletion, insertion or addition of one or several amino acid residues should be conservative mutation (s) so that the malic enzyme activity is maintained. The representative conservative mutation is a conservative substitution. Examples of conservative substitutions include substitution of Ser or Thr for Ala, substitution of Gin, His or Lys for Arg, substitution of Glu, Gin, Lys, His or Asp for Asn, substitution of Asn, Glu or Gin for Asp, substitution of Ser or Ala for Cys, substitution of Asn, Glu, Lys, His, Asp or Arg for Gin, substitution of Asn, Gin, Lys or Asp for Glu, substitution of Pro for Gly, , substitution of Asn, Lys, Gin, Arg or Tyr for His, substitution of Leu, Met, Val or Phe for lie, substitution - of lie, Met, Val or Phe for Leu, substitution of Asn, Glu, Gin, His or Arg for Lys, substitution of lie, Leu, Val or Phe for Met, substitution of Trp, Tyr, Met, lie or Leu for Phe, substitution of Thr or Ala for Ser, substitution of Ser or Ala for Thr, substitution of Phe or Tyr for Trp, substitution of His, Phe or Trp for Tyr, and substitution of Met, lie or Leu for Val. The phrase "modified so that a malic enzyme does not normally function" can mean to decrease the number of malic enzyme molecules per cell and to decrease the malic enzyme activity per molecule. Specifically, the modification may be performed by making a gene encoding the malic enzyme on the chromosome deficient, or modifying an expression control sequence such as a promoter or Shine-Dalgarno (SD) sequence. Also, the modification may be performed by introducing substitution of an amino acid (missense mutation) , or a stop codon (nonsense mutation) to a coding region, or introducing insertion or deletion of 1 to 2 bases to a coding region (frameshift mutation) or deleting part of the gene (Journal of Biological Chemistry 272:8611- 8617 (1997) ) . Examples of a malic enzyme gene (mez gene), on the chromosome include the sfcA gene, such as a DNA having the nucleotide sequence shown in SEQ ID NO: 5. This DNA encodes the enzyme which uses NAD as a coenzyme. Another example is the b2463 gene, such as a DNA having the nucleotide sequence shown in SEQ ID NO: 7. This DNA encodes the enzyme which uses NADP as a coenzyme. ( The mez gene may be a DNA which hybridizes with the nucleotide sequence shown in SEQ ID NO: 5 or 7, or a probe " which can be prepared from the nucleotide sequence under stringent conditions, provided that it encodes a protein which has malic enzyme activity. "Stringent conditions" include those under which a specific hybrid is formed and a non-specific hybrid is not formed. For example, stringent conditions are exemplified by washing one time, preferably two or three times at a salt concentration corresponding to lx SSC, 0.1% SDS, preferably 0. lx SSC, 0.1% SDS at 60°C. The length of the probe may be suitably selected depending on the hybridization conditions, and is usually 100 bp to 1 kbp. The gene encoding the malic enzyme ( sfcA, b2643) can be obtained by PCR using the chromosome of Escherichia coli as a template, and oligonucleotides synthesized based on the following sequences of Escherichia coli registered in GenBank as primers: sfcA: AAC74552. NAD-linked malate... [gi:1787754] , complement of AE000245.1 : 1208..2932, b2643: AAC75516. putative multimod... [gi : 1788806] , complement of AE000333.1 : 141..2420. Chromosomal DNA can be prepared from a bacterium for use as a DNA donor by, for example, the method of Saito and Miura (refer to H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619 (1963), Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, pp.97-98, Baifukan, 1992) or the like. The sfcA or b2643 gene prepared as described above, or a part thereof, can be used for gene disruption. The gene used for gene disruption is sufficient if it, has a degree of homology that allows for homologous recombination with the s-fc-A or b2463 gene on the Escherichia bacterium -chromosome. Therefore, such a homologous gene can be used. The degree of homology that should allow for homologous recombination is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more. Also, homologous recombination may occur if a DNA which is hybridizable with the gene under stringent conditions is used. The "stringent conditions" are conditions under which a specific hybrid is formed, and a non-specific hybrid is not formed. For example, stringent conditions are exemplified by washing one time, preferably two or three times at a salt concentration corresponding to lx SSC, 0.1% SDS, preferably 0. lx SSC, 0.1% SDS, at 60°C. The sfcA or b2463 gene can be disrupted by, for example, preparing, from the gene as described above, a deletion-type sfcA or b2463 gene in which a partial sequence is deleted so that a malic enzyme which normally functions is not produced. This deletion-type gene, or a DNA which includes the gene, can then be transformed into an Escherichia bacterium, and recombination caused between the deletion-type gene and the gene on the chromosome. The gene disruption by the gene substation using homologous recombination has already been established, and is exemplified by using a linear DNA represented by a method developed by Datsenko K. A., and Wanner B. L. (Proc. Natli Acad. Sci. USA, 2000, 97, 6640-6645) also called as a "Red- driven integration", and a method using a plasmid harboring a temperature-sensitive replication origin (U.S. Patent No. 6,303,383 and Japanese Patent Application Laid-Open No. 5- 7491) . The gene disruption by the gene substation using " homologous recombination can be also performed by using a plasmid which doesn't have replication ability in a host. In addition, a method based on a combination of the method called "red-driven integration" and an excision system derived from lambda phage (J. Bacteriol. 2002 Sep; 184(18): 5200-3) can be used as the method for disrupting a gene on a chromosome. Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. Cho EH, Gumport RI, Gardner JF. ) can be used. According to the red-driven integration method, a gene-disrupted strain can be constructed in one step by using a PCR product, which is obtained using synthetic oligonucleotides as primers which are designed to comprise part of a targeted gene at its 5' terminus, and part of an antibiotic resistance gene at its 3' terminus. Furthermore, the integrated antibiotic resistance gene can be removed by introducing a ttL and att- , which are attachment sites of lambda phage and the PCR product, and combining the excision system derived from lambda phage with the red- driven integration method. Specifically, a strain in which the targeted gene is disrupted and the antibiotic resistance gene is removed can be obtained by the following method. A linear DNA cassette comprising an antibiotic resistance gene, attachment sites of lambda phage and a target gene is initially prepared. This is usually prepared by PCR using a suitably-prepared template. A template in which a ttL and a ttR (SEQ ID N,0: 9 (GenBank accession No. M12458 and SEQ ID NO: 10 (GenBank accession No. M12459) ) which are attachment sites of lambda phage, are inserted at respective terminals of an antibiotic resistance gene is used as a template of the linear DNA cassette. The template may be plasmid, a gene inserted on a chromosome, or a synthetic oligonucleotide. While the antibiotic resistance gene is preferably a chloramphenicol resistance gene, a streptomycin resistance gene, or an ampicillin resistance gene, any antibiotic resistance gene can be used provided that the gene functions as an antibiotic resistance gene in Escherichia bacteria and is different from a marker gene which may be contained in two helper plasmids as described below. To easily confirm the acquisition of the antibiotic resistance, the antibiotic resistance gene which is employed can be one whereby the expression amount is increased by replacing a promoter sequence and the like, or one in which a mutation is introduced in its structural gene sequence so that an enzyme activity is increased. The linear DNA cassette is prepared in the following order from the 5' terminus: (targeted gene 5' sequence) - ( a ttL) - (antibiotic resistance gene) - (att-R) - (targeted gene 3' sequence). The linear DNA cassette is integrated into the chromosome. As a helper plasmid for integrating the linear DNA cassette into chromosome, pKD46 can be used (Proc. Natl. Acad. Sci. USA, 2000, 97, 6640-6645). pKD46 shows temperature-sensitive replication and ampicillin resistance, and includes a 2,154 nt DNA fragment of lambda phage (GenBank/EMBL accession No. J02459, 31088-33241), which contains the genes (γ, β, and exo genes) encoding, Red recombinase of the λ Red homologous recombination system and which is under the control of the arabinose-inducible " ParaB promoter. pKD46 can be introduced into a host by electroporation. The pKD46-amplified strain is cultured with arabinose. The linear DNA cassette is introduced at the logarithmic growth phase and incubated at a high temperature to obtain a gene-disrupted strain which is resistant to an antibiotic by the antibiotic resistance gene in the linear DNA cassette. The confirmation of the gene disruption can be made by PCR or measurement of the concentration of L-lysine or L-threonine produced by the strain. A helper plasmid for excising the antibiotic resistance gene is then introduced. The helper plasmid harbors a gene encoding integrase (Int) (SEQ ID NO: 13, GenBank accession No. J02459. B [gi:215104]) and a gene encoding excisionase (Xis) (SEQ ID NO: 15, GenBank accession No. J02459 [gi:215104]) of lambda phage and shows temperature-sensitive replication. By introduction of the helper plasmid, recombination occurs due to recognition of a ttL (SEQ ID NO: 11) and a ttR (SEQ ID NO: 12) on the chromosome. The antibiotic resistance gene between att- and att-R is excised and as a result, a structure that contains only the a ttL or att-R sequence remains on the chromosome. By incubating at a high temperature, the helper plasmid is lost. Thus a strain in which the targeted gene is disrupted and the antibiotic gene is eliminated can be obtained. Other than genetic engineering methods, the. method for modifying the bacterium so that a malic enzyme does not normally function may be exemplified by a method of " treating an Escherichia bacterium with UV irradiation or a mutagenic agent usually used for mutagenesis, such as N- methyl-N' -nitro-N-nitrosoguanidine and nitric acid, followed by selection of the bacterium with the attenuated activity of the malic enzyme. The present invention has been achieved based on the metabolic flux information. This information was calculated by the following method for determining the metabolic flux affecting substance production using cells. However, the present invention is not limited to the method for obtaining such information, that is, the determination method. The method for determining a metabolic flux affecting substance production using cells, includes the steps of: 1) creating a stoichiometric matrix based on the formulas of biochemical reactions of a substrate through a desired substance, 2) selecting the same number of independent metabolic fluxes from all metabolic fluxes as the degree of freedom of the stoichiometric matrix as free fluxes, 3) creating a sufficient number of random combinations of the free fluxes for a statistical analysis and calculating a metabolic flux distribution from each created combination based on the stoichiometric matrix, 4) obtaining a regression equation, including a minimum number of free fluxes that shows a correlation with substance production from the calculated metabolic flux distributions by a multivariate statistical analysis, and 5) determining at least one metabolic flux affecting substance production based on a coefficient in the obtained
" regression equation. The metabolic flux used in the present invention is expressed as a metabolic reaction rate (flux) derived from a stoichiometric model of intracellular biochemical reactions and the law of mass action between metabolites; meanwhile, the metabolic flux distribution used herein consists of all the metabolic fluxes wherein each metabolic flux is assigned to each biochemical reaction. In the first step of the determination method, a stoichiometric matrix is created based on the biochemical reaction formulas of a substrate through a desired substance product . The biochemical reactions refer to a process in which intracellular metabolites are converted by enzymatic reactions in the cell, and which have been compiled in various databases according to organism type. For example, Kyoto Encyclopedia of Genes and Genomes (KEGG, www.genome.ad.jp/kegg/) can be accessed for reference. The substrate is a substance usually used by the cell as a carbon source, and examples thereof include glucose, sucrose, fructose and so forth. The substance product includes not only a single kind of metabolite, but also an aggregate of metabolites, such as biomass (cell body) . Substance production is usually evaluated as a production rate of a substance. In particular, when the desired substance is a biomass, it is evaluated as biomass yield. The biomass yield represents efficiency of conversion from substrates such as glucose into cell components such as protein, carbohydrate, nucleic acid or lipid. The stoichiometric matrix is a matrix usually used in a metabolic flux analysis, and can be created by listing formulas of biochemical reactions of a substrate through a desired product substance by typical methods used in a metabolic flux analysis. Such methods, assuming a quasi- steady state of an intracellular metabolic intermediate, are generally known (Savinell, J.M. and Palsson, B.O.J., Theor. Biol., 154:421-454, 1992; Vallino, J.J. and Stephanopoulos, G., Biotechnol. Bioeng., 41:633-646, 1993). When reaction formulas are listed, reaction pathways may be simplified by assuming a series of reactions without branching as one reaction, or assuming metabolites converted by a reaction at a high metabolic rate before and after the reaction as one metabolite and so forth. When the substance product is biomass, a stoichiometric matrix can be described by listing biochemical reactions which lead to cell components. In the second step of the determination method, the same number of independent metabolic fluxes as the degree of freedom of the aforementioned stoichiometric matrix are selected as free fluxes, from all metabolic fluxes. Independent fluxes are a set of fluxes that should be specified to uniquely define flux in the metabolism network system as defined by a stoichiometric equation. The method for setting free fluxes is not particularly limited so long as the same number of independent metabolic fluxes as the degree of freedom of the system to be analyzed can be selected. Although the independence of arbitrarily selected fluxes may be confirmed, the SIMS matrix (steady-state internal metabolic -stoichiometric matrix) proposed by Reder can also be used (Reder, C.J., Theor. Biol., 135:175-201, 1988). In this method, a group of metabolic fluxes in the same number as the degree of freedom of the aforementioned stoichiometric matrix are selected from independent metabolic flux groups determined based on the aforementioned biochemical reaction formulas, and a metabolic flux is selected as a free flux from each selected metabolic flux group. Determining specific groups among the flux groups ensures that any flux in a group can be changed without affecting the flux in other groups. Therefore, it becomes possible to select one flux from each group as an independent free flux. When a free flux is selected from a flux group, a flux close to a branching point is preferably selected. In the third step of the determination method, random combinations of free fluxes in a number sufficient for a statistical analysis are created, and a metabolic flux distribution is calculated from each created combination based on the aforementioned stoichiometric matrix. Random combinations of free fluxes can be created by giving random values to the free fluxes selected in the previous step to create a dataset of combinations of different flux distributions. The method for giving random values to the free fluxes is not particularly limited so long as a method which generates combinations of free fluxes within a specific border is chosen. Said specific border is set to give biologically feasible values in later calculations. If the number of free fluxes is the same as the degree of freedom of the specified stoichiometric matrix, a unique metabolic flux distribution can be solved. - For the solution, a matrix operation using an inverse matrix is commonly performed, and all fluxes are preferably normalized into, for example, certain amounts of substrate. When the substrate is glucose, all flux values can be represented, for example, with values per 10 mmol of glucose uptake. The solutions of metabolic flux distributions obtained from random free flux values as described above must be biologically significant. That is, all fluxes of non-reversible reactions must be 0 or more, and biomass forming fluxes must be 0 or more. To obtain combinations of more desirable free fluxes, conditions based on theoretical and/or empirical knowledge in substance production using cells can also be added. The number of combinations to be created, that is, the number of biologically significant flux distributions to be calculated, is not particularly limited so long as it is sufficient for a statistical analysis. Three or five values are usually used for one free flux. Therefore, when there are n free fluxes, there are about to the n-th power of the number of the values for one free flux of combinations. For example, when three values are used for one free flux, there are 3 to the n-th power (3n) of combinations. That is, about 2,200 combinations can be used for seven free fluxes (n=7) . Alternatively, since the number of values for each free flux in the dataset of biologically significant flux distributions can change depending on selected free fluxes or additional conditions, the number of combinations that may be used is alqout 3 to about to the n-th power (3n) , or to about 5 to about the n- th power (5n) in total for n of free fluxes. To obtain - solutions of biologically significant flux distributions in such a number, it is typical to start from combinations of random free fluxes using 6 to 10 values for one free flux, that is, combinations of free fluxes of six to the n-th power (6n) or 10 to n-th power (10n) . In the fourth step of the determination method, a regression equation including a minimum number of free fluxes that show a correlation with substance production is obtained from the metabolic flux distributions (dataset of metabolic flux distributions) by a multivariate statistical analysis . By performing a multivariate statistical analysis for the dataset of flux distributions calculated from random combinations of the free fluxes obtained in the previous step, a regression equation including a minimum number of free fluxes that shows a correlation with substance production can be obtained. The multivariate statistical analysis (including multivariate non-linear regression analysis and multivariate linear regression analysis) can be performed by using any technique so long as a technique is chosen which can examine correlations of free flux combinations with substance production. However, a multivariate linear regression analysis is useful. This method is described in, for example, Kachigan, S.K., Chapter 4, Regression Analysis in Multivariate Statistical Analysis 2nd Ed., Radius Press, New York, pp.160-193. The expression "shows a correlation with substance production" means that the coefficient of determination is significantly large, and "being significantly large" usually means that the coefficient of determination R2 is -0.8 or higher, preferably 0.9 or higher. A regression equation, including a minimum number of free fluxes (terms) that shows a correlation with substance production, may be obtained by successively changing the number of terms to obtain a regression equation. Such an equation that shows the largest coefficient of determination, including each number of terms, and enables selecting a regression equation including a minimum number of terms that shows a significantly large coefficient of determination. Alternatively, a regression equation may be obtained with the total terms except for one term to examine the degree of decrease in the coefficient of determination due to the exclusion of the term; the same procedure may be repeated with terms except for the term showing decrease in a small degree of the coefficient of determination, as the total terms; and when a regression equation that shows a correlation with substance production can no longer be obtained, the regression equation obtained immediately therebefore may be selected. Although these mathematical procedures can be individually programmed, they can be readily performed by using commercially available mathematical computation programs such as MatLab® (trade name, MathWorks) and Mathematica® (trade name, Wolfram Research) . In the fifth step of the determination method, a metabolic flux affecting substance production is determined based on coefficients in the obtained regression equation. Contributions of free fluxes to substance production using cells such as microorganisms, in particular, biomass yield or product substance yield, which are important in substance production, can be determined by utilizing the regression equation obtained in the previous step. That is, free fluxes that appear in the regression equation can be determined as those affecting substance production. Furthermore, since coefficients in the regression equation represent the magnitude of contribution, free fluxes having a substantially large coefficient (when fluxes are normalized, free fluxes having a large absolute value of relative coefficient) can be determined as metabolic fluxes that greatly affect substance production. The determination method of the present invention can provide information which is important for improving bacterial strains, i.e., which free flux greatly influences the production of a target substance, and whether a free flux has a positive or negative effect on the production of a target substance. A flux that needs to be changed to favorably affect the yield and productivity of a target product can also be predicted. For example, as shown in the examples described herein, it can be expected that bacterial strains with an improved lysine-producing ability can be created by enhancing activity of phosphoenolpyruvate carboxylase in lysine production using Escherichia coli . International Publication No. WO01/53459 discloses an example of improvement of lysine production by enhancing phosphoenolpyruvate carboxylase activity. Therefore, it has been verified that a bacterial strain having a substance-producing ability can be created based on the determination method.
- <3> Production method for producing L-lysine or L-threonine The method of the present invention is a method for producing L-lysine or L-threonine, which method comprises the steps of cultivating the bacterium having an ability to produce L-lysine or L-threonine in a medium, to cause accumulation of L-lysine or L-threonine in the medium or cells of the bacterium, and to collect L-lysine or L- threonine from the medium or the cells. The culture medium used in the present invention may be a medium typically used for fermentation production of L-lysine or L-threonine using a microorganism. An ordinary medium including a carbon source, a nitrogen source, inorganic ions and the other organic components, if necessary, may be used. As the carbon source, various saccharides such as glucose, sucrose, lactose, galactose, fructose, and starch hydrolysate, various alcohols such as glycerol and sorbitol, and various organic acids such as fumaric acid, citric acid and succinic acid may be used. As the nitrogen source, various inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas and aqueous ammonia and the like may be used. As a trace organic nutrient, it is desirable to add required substances such as vitamin Bi, homoserine, or yeast extract and the like. In addition, a trace amount of potassium phosphate, magnesium sulfate, iron ion, manganese ion may be added. The medium used for culture may be either a synthetic medium or a natural medium, so long as the medium includes a carbon source and a nitrogen source and inorganic ions and, if necessary, trace organic - nutrients . The cultivation is preferably performed under aerobic conditions for one to seven days at a temperature of 24 to 37°C, and a pH of 5 to 9. The pH of the culture can be adjusted with an inorganic or organic acid or alkaline substance, for example, ammonia gas and the like. The collection L-lysine or L-threonine from the culture medium may be performed by usual methods, 'such as an ion-exchange resin method, precipitation, and the other known methods, and combinations thereof. When L-lysine or L-threonine accumulates in cells, L-lysine or L-threonine may be collected by an ion-exchange resin method or the like from a supernatant obtained by disrupting the cells by ultrasonic or the like, and removing cell debris by centrifugation. Examples The present invention is further described in detail by referent to examples.
Example 1
Determination of metabolic flux with respect to L-lysine (1) Creation of stoichiometric matrix A stoichiometric equation for calculating a metabolic flux was constructed by assuming a quasi-steady state of intracellular metabolic intermediates (Savinell, J.M. and Palsson, B.O.J., Theor. Biol., 154:421-454, 1992; Vallino, J.J. and Stephanopoulos, G., Biotechnol. Bioeng., 41:633- 646, 1993) . The reaction formulas included in this model are shown in Table 2. Descriptions of the abbreviations used in the present invention are listed in Table 1. Some reactions without branching were consolidated to simplify the formulas. Since the pentose phosphate pathway is complicated, it was represented by two formulas. Reported data was used for the component ratio of biomass (Neidhardt, F.C et al., Physiology of the Bacterial Cell., Sinauer Associates, Massachusetts, 1990) and the biomass was represented by using the reaction formula [68]. The degree of freedom of the stoichiometric matrix in this model was 7. Table 1 3PG 3-Phospho-D-glyceric acid
AcCoA Acetyl coenzyme A
AcOH Acetic acid alVA A-Keto-isovaleric acid aKG 2-Oxoglutaric acid
Ala Alanine
ALC Acetohydroxy acid
Arg Arginine
ASA Aspartic acid semialdehyde
Asn Asparagine
Asp Aspartic acid CHR Chorismic acid Cit Citric acid C02 Carbon dioxide CoA Coenzyme A Cys Cysteine DDP Dihydrodipicolinic acid E4P Erythrose-4-phosphate F6P Fructose-6-phosphate FBP Fructose bisphosphate Form Formic acid Fum Fumaric acid G6P Glucose-6-phosphate GAP Glyceraldehyde phosphate Glc Glucose Gin Glutamine Glu Glutamic acid
Gly Glycine
Glyox Glyoxylic acid
His Histidine
Hse Homoserine He Isoleucine Ind Indole glycerol phosphate Isocit Isocitric acid
Leu Leucine
Lys Lysine
Lysext Lysine product (extracellular)
Mai Malic acid
Met Methionine Table 1 (continued) mDAP meso-Diaminopimelic acid mTHF Methyl tetrahydrofolate NH3 Ammonia OAA Oxaloacetatic acid PEP Phosphoenolpyruvic acid Phe Phenylalanine PPA Prephenic acid Pro Proline PRPP Phophoribosyl pyrophosphate Pyr Pyruvic acid R5P Ribose-5-phosphate Ribu5P Ribulose-5-phosphate SDAP N-Succinyl-L-2, 6-diaminoheptanedioate SKA Shikimic acid Sed7P D-Sedoheptulose-7-phosphate Ser Serine Sue Succinic acid SucCoA Succinyl coenzyme A THDP Tetrahydrodipicolinic acid THF Tetrahydrofolic acid Thr Threonine Trp Tryptophan Tyr Tyrosine
Val Valine X5P Xylulose-5-phosphate
Table 2
List of used reaction formulas, Reversible reactions are marked with r.
[1 Glc + PEP — > G6P + Pyr
[2 G6P + 2NADP —> Ribu5P + 2NADPH + C02
[3 r Ribu5P —> R5P
[4 r Ribu5P -->X5P
[5 r X5P + R5P —> Sed7P + GAP
[6 r Sed7P + GAP —> E4P + F6P
[7 r X5P + E4P --> F6P + GAP
[8 r G6P --> F6P
[9 r F6P + ATP —> FBP +ADP
[10 r FBP --> 2GAP
[H r GAP + NAD +ADP —> 3.PG + NADH + ATP
[12 r 3PG —>PEP
[13 PEP + ADP —> Pyr + ATP
[14 Pyr + NAD + CoA —> AcCoA + NADH +C02
[15 PEP + C02 —> OAA
[16 AcCoA + ADP —> AcOH + ATP + CoA
[17 AcCoA + OAA —> Cit + CoA
[18 r Cit —> Isocit
[19 r Isocit + NADP —> aKG + NADPH + C02
[20 aKG + NADPH + NH3 --> Glu + NADP
[21 aKG + NAD + CoA —> SucCoA + NADH + C02
[22 r SucCoA + ADP —> Sue + ATP + CoA
[23 r Sue + FAD —> Fum +FADH
[24 r Fum —> Mai
[25 r Mai + NAD —> OAA +NADH
[26 OAA + Glu —> Asp + aKG
[27 Asp + ATP + NADPH —> ASA + ADP + NADP
[28 ASA + Pyr —> DDP
[29 DDP + NADPH —> THDP + NADP
[30 THDP + SucCoA + Glu —> SDAP + aKG + CoA
[31 SDAP —> mDAP + Sue
[32 mDAP —> Lys + C02
[33 Glu + ATP + NH3 —> Gin + ADP
[34 Glu + 2NADPH + ATP —> Pro + 2NADP + ADP
[35 Glu + 5ATP + NADPH + Gin + Asp + AcCoA + C02 —> Arg + 5ADP + NADP + aKG + Fum
[36] ASA + NADPH —> Hse + NADP Table 2 (continued)
[37] Hse + SucCoA + Cys + mTHF —> Met + Sue + CoA + THF + Pyr + NH3
[38 Hse + ATP —> Thr ADP [39 Thr + Glu + NADPH Pyr —> He + aKG + NADP + NH3 + C02
[ 40 r 3PG —> Ser [ 41 r Ser + THF —> Gly + mTHF [ 42 r PEP + E4P + NADPH —> SKA + NADP [ 43 CHR —> PPA [ 44 PPA + NAD + Glu —> Tyr + NADH C02 + Akg [ 45 PPA + Glu --> Phe + C02 + aKG [ 46 CHR + R5P + 2ATP + Gin —> Ind + Glu + Pyr + C02 + GAP +2ADP
[47; 2Pyr --> ALC
[48; alVA + Glu —> Val + aKG [49; Val + Pyr —> ALA + alVA [so; alVA + AcCoA + NAD + Glu —> Leu + NADH + C02 + aKG
+ CoA
[5i; PRPP + ATP + Gin + Glu + 2NAD —> His + AOP + Glu + aKG + 2NADH
[52 Ser + AcCoA + H2S —> Cys + AcOH [53 SKA + PEP + ATP —> CHR + ADP [54 Ind + Ser —> Trp [55 ALC + NADPH --> alVA + NADP + C02 [56 NADH —> NADPH [57 2NADH + 02 + 2ADP —> 2ATP + 2NAD [58 2FADH + 02 +ADP —> ATP + 2FAD [59 Asp + 2 ATP + NH3 —> Asn + 2 ADP [60 Isocit —> Glyox + Succ [61 AcCoA + Glyox —> Mai + CoA [62 Mai + NAD —> Pyr + C02 + NADH [63 R5P + 2 ATP --> PRPP + 2 ADP [64 mTHF + NADP —> NADPH + THF + Form [65 NAD + Gly + THF —> mTHF + NADH + C02 + NH3 [66 ATP —> ADP [67 Lys —> Lysext Table 2 (continued)
[68] Biomass synthesis (described below) RNA (21.33%) 3.47 PRPP + 5.02 Gin + -5.02 Glu + 3.08 Gly + 6.17 Asp + 32.41 ATP + -32.41 ADP + 6.17 mTHF + -6.17 THF + 3.09 NAD + -3.09 NADH + 6.17 NADP + -6.17 NADPH + 1.16 C02 + -3.47 Fum + -3.86 NH3
DNA (3.23%) 3.37 PRPP + 4.88 Gin + -4.88 Glu + 3 Gly + 6 Asp + 31.5 ATP + -31.5 ADP + 7.12 mTHF + -7.12 THF + 3 NAD + -3 NADH + 3.75 NADP + -3.75 NADPH + 1.12 C02 + -3.37 Fum + -3.75 NH3
Phospholipid (9.47%) 20.8 AcCoA + -20.8 CoA + 1.95 GAP + 0.65 Ser + 44.2 ATP + - 44.2 ADP + 38.35 NADH + -38.35 NAD + -0.65 C02
Peptidoglycan (2.60%) 1.94 F6P + 1.94 AcCoA + -1.94 CoA + 1.94 Gin + -1.94 Glu + 2.91 Ala + 0.97 PEP + 0.97 Lys + 6.97 ATP + -6.97 ADP + -0.97 NADPH + -0.97 NADP + -0.97 C02
Lipopolysaccharide (3.54%) 0.91 R5P + 0.91 F6P + 0.91 PEP + 15.47 AcCoA + -0.91 AcOH + -0.91 Glu + 0.91 Gin + 32.76 ATP + 12.74 NADH
Protein (57.23%) 0.77 Gly + 0.96 Ala + 0.67 Val + 0.85 Leu + 0.44 He + 0.44 Ser + 0.48 Thr + 0.30 Phe + 0.26 Tyr + 0.01 Trp + 0.15 Cys + 0.22 Met + 0.54 Lys + 0.46 Arg + 0.16 His + 0.46 Asp + 0.52 Glu + 0.46 Asn + 0.52 Gin + 0.34 Pro
Glycogen (2.60%) F6P + ATP
(2) Selection of free fluxes and creation of random combinations of them Specific flux groups were determined according to the method of Reder (Reder, C.J., Theor. Biol., 135:175-201, 1988) . A flux close to a branch point was selected from each group. Seven selected free fluxes are shown in Table 3. A unique solution for a flux balance can be obtained by specifying these 7 fluxes.
Table 3
List of free fluxes for obtaining random flux distribution
Figure imgf000042_0001
From the about 300,000 combinations of values for 7 random free fluxes, those infringing any limitation concerning reverse reactivity and those showing values for both of lysine and biomass not exceeding the threshold levels set at 20% of each maximum value were excluded. As a result, a dataset was created of 5000 metabolic flux distributions in a biologically significant specific region. The results were represented by values based on 10 mmol glucose uptake, and a matrix was created with 5000 rows corresponding to the random flux distributions and 68 columns each of which corresponds to a reaction flux. (3) Correlation analysis by multivariate analysis and determination of metabolic fluxes affecting substance production Multivariate linear regression of a condensed matrix including Z-scores of only columns corresponding to the 7 free fluxes was performed. The stepwise regression function of the MatLab statistical toolbox was used for multivariate linear regression. With this technique, biomass or lysine production can be derived with a linear function of 7 free fluxes. Identification of these 7 fluxes results in unique definition of the state of the system. Therefore, if all the 7 terms are used as parameters, the correlation coefficient becomes 1., indicating a complete fit. However, it is usually possible to obtain a relatively favorable fit with a fewer number of - terms than in the equation. To try various combinations of terms, an equation showing the best fit for each number of contained terms was selected by using the stepwise function of the MatLab program. As for the biomass yield, a fit of R2 = 0.980 was obtained with only 4 terms, isocitrate lyase (ICL), malic enzyme (MEZ), PEP carboxylase (PEPC) and ATPase. When the number of terms is further decreased, the R2 value is markedly decreased, and any reasonable fit could not be obtained. When reaction fluxes are normalized to a value per 10 mmol glucose and used as the input, an accurate equation was represented as follows: Equation 1) Biomass yield = 1.552 - 0.194 (ICL) + 0.184 (MEZ) - 0.194 (PEPC) - 0.011 (ATPase) The lysine yield could be fit with a model including the same 4 parameters, and the result of R2 = 0.997 was obtained. Further, even when the term for ATPase was excluded, R2 decreased only to 0.856, and the fit was still favorable. Therefore, the following 3 parameters were used for the model of lysine. Equation 2) Lysine yield = -1.694 + 1.176 (ICL) - 1.095 (MEZ) + 1.162 (PEPC) Finally, the total carbon yield (C atoms) defined with the total number of carbon atoms directing to biomass and lysine could be fit with R2 = 0.956 by using only the term for ATPase with the following equation. Equation 3) C atoms = 34.3 - 0.314 (ATPase) These results revealed that the biomass yield positively correlated with the flux of malic enzyme, and that lysine production positively correlated with the fluxes of PEP carboxylase and isocitrate lyase (glyoxylate - cycle) . Usefulness of this regression analysis can be shown in Figs. 1 and 2. When the fluxes of isocitrate lyase and malic enzyme are separately considered, no correlation with lysine production is observed as shown in Fig. 1, (a) and (b) . However, when these fluxes are considered as a part of the regression equation 2), a correlation as shown in Fig. 2 can be observed, and the effect becomes clear. Thus, an invisible relationship between metabolic fluxes can be revealed with this technique. Yield of a target product can be improved by enhancing an activity responsible for a flux showing a positive correlation, and attenuating an activity responsible for a flux showing a negative correlation. That is, from this result, a guideline for improving bacterial strains could be obtained, and enhancement of the PEP carboxylase or isocitrate lyase activity or attenuation of the activity of malic enzyme showing a negative correlation is effective for lysine production. In fact, an example of creation of a bacterial strain showing an improved lysine producing ability by enhancing activity of PEP carboxylase in lysine production using Escherichia coli was disclosed in International Publication No. WO01/53459, and thus usefulness of the present invention has been supported.
Example 2 Determination of metabolic flux with respect to L-threonine By the same method as in Example 1, an equation showing the best fit for each number of contained terms was selected with respect to L-threonine. As for the biomass - yield, a fit of R2 = 0.986 was obtained with only 4 terms, isocitrate lyase (ICL), malic enzyme (MEZ), PEP carboxylase (PEPC) and ATPase. Equation 4) Biomass yield = 1.260 - 0.101 (ICL) + 0.093 (MEZ) - 0.101 (PEPC) - 0.009 (ATPase) The threonine yield could be fit with a model including the same 3 parameters, and the result of R2 = 0.937 was obtained. Equation 5) Threonine yield = -1.432 + 1.090 (ICL) - 1.080 (MEZ) + 1.087 (PEPC) These results revealed that the biomass yield positively correlated with the flux of malic enzyme, and that threonine production positively correlated with the fluxes of PEP carboxylase and isocitrate lyase (glyoxylate cycle) . Therefore, with respect to threonine production, a guideline for improving bacterial strains could be also obtained, andenhancement of the PEP carboxylase or isocitrate lyase activity or attenuation of the activity of malic enzyme showing a negative correlation is effective for lysine production.
Example 3 Construction of malic enzyme-deficient L-lysine-producing bacterium Strain WC196 was used as the L-lysine-producing strain of Escherichia coli which is resistant to AEC (S-(2- aminoethyl) cysteine) (International Publication No. WO 96/17930). , , The malic enzyme from Escherichia coli includes one using NAD as coenzyme (EC 1.1.1.38) and one using NADP as -coenzyme (EC 1.1.1.40). These enzymes are encoded by the sfcA and b2463 genes, respectively. The sfcA and b2463 genes are deleted by a combination of the "red-driven integration" method, which was originally developed by Datsenko and Wanner (Proc. Natl. Acad. Sci. USA, 2000, 97, 6640-6645), and the excision system method, derived from lambda phage (J. Bacteriol. 2002 Sep; 184(18): 5200-3. Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. Cho EH, Gumport RI, Gardner JF. ) . According to the red-driven integration method, a gene-disrupted strain can be constructed in one step by using PCR product obtained by using synthetic oligonucleotide primers designed to comprise a part of a targeted gene at its 5' terminal and a part of an antibiotic resistance gene at its 3' terminal. Furthermore, the integrated antibiotic resistance gene can be removed by further combining the excision system derived from lambda phage with the red- driven integration method.
(1) Disruption of sfcA gene As a PCR template, plasmid pMW118-attL-Cm-attR (its preparation is described below) was used. pMW118- attL-Cm- attR is a plasmid obtained by inserting a ttL and att-R genes which are the attachment sites of lambda phage, and a cat gene which is the antibiotic resistance gene to pMW118 (TaKaRa Bio) . The genes are inserted in the order of a ttL- cat-attR. The attL sequence is shown in SEQ ID NQ: 11 and the att-R sequence is shown in SEQ ID NO: 12. PCR was performed by using primers shown in SEQ ID - NOS : 1 and 2, and having sequences corresponding to their 3' terminus ends of a ttL and att-R and sequences corresponding to parts of the sfcA gene at their 5' terminus, respectively. The amplified PCR product was purified on an agarose gel and introduced into Escherichia coli WC196 containing plasmid pKD46 showing temperature-sensitive replication, by eletroporation. pKD46 (Proc. Natl. Acad. Sci. USA, 2000, 97, 6640-6645) includes a 2,154 nt DNA fragment of lambda phage (GenBank/EMBL accession No. J02459, 31088-33241) containing genes (γ, β, and exo genes) encoding Red recombinase of the λ Red homologous recombination system under the control of the arabinose-inducible ParaB promoter. pKD46 is necessary for integrating the PCR product into the chromosome of the strain WC196. Competent cells for electroporation were prepared as follows. The Escherichia coli WC196 which was cultured overnight at 30°C in LB medium containing 100 mg/1 ampicillin, was diluted 100 times with 5 mL SOB medium (Sambrook, J. et al., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989)) containing amplicillin (50 mg/1) and L- arabinose (1 mM) . The diluted product was cultured at 30°C under aeration until the OD60o became about 0.6, and then concentrated 100 times. Cells were washed three times with 10% glycerol to prepare cells ready for electroporation. Electroporation was performed with 70 μl competent cells and about 100 ng of the PCR product. 1 ml SOC medium (Sambrook, J. et al . , "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory -Press (1989)) was added to the cells subjected to electroporation. The cells were cultured at 37°C for 2.5 hours, and then plate-cultured on L-agar medium containing 25 mg/1 Cm (chloramphenicol) at 37°C to select a Cm- resistant recombinant. Then, to lose the plasmid pKD46, cells were subcultured twice at 42°C on Cm-containing L- agar medium. The obtained colonies are tested for ampicillin resistance. An ampicillin-sensitive strain without pKD46 is obtained. The deletion of the sfcA gene of the mutant identified by the chloramphenicol resistance gene was confirmed by PCR. The resultant s-fc-A-deficient strain was designated as WC196ΔsfcA: :att-cat . To eliminate the att-cat gene which had been integrated into the sfcA gene, a helper plasmid pMW-intxis- ts (its preparation is described below) was used. pMW- intxis-ts harbors a gene encoding integrase (Int) (SEQ ID NO: 13) and a gene encoding excisionase (Xis) (SEQ ID NO: 15) of lambda phage and shows temperature-sensitive replication. By introduction of the pMW-intxis-ts, recombination occurs due to the recognition of a ttL (SEQ ID NO: 11) and a ttR (SEQ ID NO: 12) on the chromosome, and the antibiotic resistance gene between a ttL and att-R is excised, resulting in a structure whereby only a ttL or att-R sequence remains on chromosome. Competent cells of the strain WC196ΔsfcA: : att-cat were prepared according to an ordinary method, transformed with the' helper plasmid pMW-intxis-ts, and plate-cultured at 30°C on L-agar medium containing 50 mg/1 ampicillin to select an ampicillin-resistant strain. To lose the plasmid pMW-intxis-ts, cells were subcultured twice at 42°C on L-agar medium. The obtained colonies are tested for ampicillin resistance and chloramphenicol resistance. An ampicillin- and chloramphenicol-sensitive strain without att-cat and pMW- intxis-ts is obtained. This strain was designated as WC196ΔsfcA.
(2) Disruption of b2463 gene Deletion of the b2463 gene in strains WC196 and WC196ΔsfcA was performed according to the method of (1) except primers of SEQ ID NOS: 3 and 4 were used as primers for disrupting b2463. Thus, the strains WC196Δb2463 and WC196ΔsfcAΔb2463 were obtained. The obtained strain WC196ΔsfcAΔb2463 was designated as WC196Δmez. (3) Preparation of PCR template and helper plasmid The PCR template pMWH8-attL-Cm-attR and the helper plasmid pMW-intxis-ts were prepared as follows: (3-1) pMW118-attL-Cm-attR For construction of the plasmid pMW118-attL-Cm-attR, the pMW118-attL-Tc-attR was used to start. Four DNA fragments were ligated: 1) BglII-.Eco-RI - the DNA fragment (120 bp) (SEQ ID NO: 11) carrying attL which was obtained by PCR amplification of the corresponding sequence of E . coli W3350 (contained λ prophage) chromosome using the oligonucleotides PI and P2 (SEQ ID NOS : 17 a,nd 18) as primers (these primers contained the subsidiary recognition sites for -Bglll and -Eco-RI endonucleases) ; 2) Pstl-Hi-ndHI - the DNA fragment (182 bp) carrying a t tR (SEQ ID NO: 12) which was obtained by PCR amplification of the corresponding sequence of E . coli W3350 (contained λ prophage) chromosome using the oligonucleotides P3 and P4 (SEQ ID NOS: 19 and 20) as primers (these primers contained the subsidiary recognition sites for Pstl and Hindl l l endonucleases) ; 3) the large (3916 bp) Bgl11 -Hindi11 fragment of pMW118- ter_rr.n-B. pMWll8-ter_rr-n-B was obtained by ligation of three DNA fragments: • the large (2359 bp) fragment carrying the Aa tl l- Eco-RIpol fragment of the pMWllδ, pMW118 was digested with -Eco-RI restriction endonuclease, treated with Klenow fragment of DNA polymerase I and then was digested with Aatll restriction endonuclease; • the small fragment (1194 bp) Aatll-Bg-ZII of pUC19 carrying the bla gene for ampicillin resistance (ApR) was obtained by PCR amplification of the corresponding sequence of pUC19 plasmid using oligonucleotides P5 and P6 (SEQ ID NOS: 21 and 22) as primers (these primers contained the subsidiary recognition sites for Aatll and Bglll endonucleases) ; • the small fragment (363 bp) Bg-Z11 -Pstlpol of the transcription terminator ter_rrnB was obtained by PCR amplification of the corresponding region of E. coli MG1655 chromosome using the oligonucleotides P7 and P8 (SEQ ID NOS: 23 and 24) as primers (these primers contained the subsidiary recognition sites for Bglll and Pstl endonucleases) ;
4) the small fragment (1388 bp) EcoRI -Pstl (SEQ ID NO: 29) of pML-Tc-ter_t. rL including the gene for tetracycline resistance and the transcription terminator ter_t-hrL, the pML-Tc-ter_ -hri was obtained in the following way: • the pML-MSC (2001 #5) was digested with Xbal and BamHI restriction endonucleases and then the large (3342 bp) fragment was ligated with the fragment (68 bp) Xbal-BamHI carrying terminator ter_t rL which was obtained by PCR amplification of the corresponding region of E. coli MG1655 chromosome using the oligonucleotides P9 and P10 (SEQ ID NOS: 25 and 26) as primers (these primers contained the subsidiary recognition sites for Xbal and BamHI endonucleases) , the product of this reaction was the plasmid pML-ter_t-hri; • then the pML-ter_t-hri was digested with -K nl and Xbal restriction endonucleases then treated with Klenow fragment of DNA polymerase I and then was ligated with the small (1317 bp) EcoRl-Van91I fragment of pBR322 including the gene for tetracycline resistance (pBR322 was digested with Eco-RI and Vanθll restriction endonucleases then which have been treated with Klenow fragment of DNA polymerase I) , the product of this reaction was the plasmid pML-Tc-ter_t-hri; so pMW118-attL-Tc-attR was obtained. pMW118-attL-Cm-attR was constructed by ligation of large - (4413 bp) Bam-Ffl-Xbal fragment of pMW118-attL-Tc-attR and Bg-ZII-Xbal the artificial DNA fragment (1162 bp) including the promoter PA2 (the early promoter of the phage T7), the ca t gene for chloramphenicol resistance (CmR) , the transcription terminator ter_t.hri and attR. The artificial DNA fragment (SEQ ID NO: 30) was obtained in the following way: 1. the pML-MSC (2001 #5) was digested with Kpnl and Xbal restriction endonucleases and ligated with the small (120 bp) -fζpnl-Xbal fragment which includes the promoter PA2 (the early promoter of the phage T7) obtained by PCR amplification of the corresponding region of phage T7 DNA the oligonucleotides PH and P12 (SEQ ID NOS: 27 and 28) as primers (these primers contained the subsidiary recognition sites for Kpnl and Xbal endonucleases) , the product of this reaction was the plasmid pML-PA2-MCS; 2. then the Xbal site was deleted from the pML-PA2-MCS, the product of this reaction was the plasmid pML-PA2- MCS(XbaI~) ; 3. then the small fragment (928 bp) Bglll-HindiII of the pML-PA2-MCS (Xbal") including the promoter PA2 (the early promoter of the phage T7) and gene cat for chloramphenicol resistance (CmR) was ligated with the small (234 bp) fragment HindiII-HindiII of pMW118- attL-Tc-attR including the transcription terminator ter_ -hri and attR; 4. the required artificial DNA fragment (1156 bp) was obtained by PCR amplification with the ligation reaction mixture using the oligonucleotides P9 and P4 (SEQ ID NOS: 25 and 20) as primers (these primers contained the subsidiary recognition sites for Hindlll and Xbal endonucleases) .
(3-2) pMW-intxis-ts Initially, two DNA fragments were amplified using phage λ DNA ("Fermentas") as a template. The first one included the region from nt 37168 to 38046 (SEQ ID NO: 39) and also contained the gene encoding the cl repressor, promoters Prm and Pr, and leader sequence of the cro gene. This fragment was obtained using the PI' and P2' oligonucleotides (SEQ ID NOS: 31 and 32) as primers. The second fragment carried xis-int genes of phage λ and comprised the region from nt 27801 to 29100 (SEQ ID NO: 40) Oligonucleotides P3' and P4' (SEQ ID NOS: 33 and 34) were used as primers for its amplification. All primers contained appropriate endonuclease recognition sites. The obtained PCR-amplified fragment, earring the cl repressor, was digested with restriction endonuclease Clal, treated with Klenow fragment of DNA polymerase I, and then digested with EcoRI restriction endonuclease. The second PCR-amplified fragment was digested with EcoRI and Pstl restriction endonucleases. Then the pMWPlaclacI-ts plasmid was digested with Bglll endonuclease, treated with Klenow fragment of DNA polymerase I and then digested with Pstl restriction endonuclease. A vector fragment of pMWPlaclacI-ts was eluted from the agarose gel and ligated with the digested PCR-amplified fragments. Plasmid pMWPlaclacI-ts is a derivative of pMWPlaclacI which consist of the following parts: 1) Bglll-HindiII - - artificial DNA fragment including the lacl gene under control of the P_.acuv5 promoter and RBS of bacteriophage T7 gene 10; 2) AatH-Bglll - DNA fragment carrying the gene for ampicillin resistance (ApR) which was obtained by PCR amplification of the corresponding sequence of pUC19 plasmid using oligonucleotides P5' and P6' (SEQ ID NOS: 35 and 36) as primers (these primers contained the subsidiary recognition sites for Aatll and Bglll endonucleases) ; 3) Aa til -Hindi11 - fragment comprising -Aatll-Pvul fragment of the previously constructed recombinant plasmid - pMWH8- ter_rrnB. The later plasmid was constructed in the following fashion: the Pstl-Hindl l l DNA fragment carrying terminator ter_rrnB has been obtained by PCR amplification of the corresponding region of E. coli MG1655 chromosome using the oligonucleotides P7' and P8' (SEQ ID NOS: 37 and 38) containing appropriate endonuclease recognition sites as primers. Before ligation, pMW118 plasmid and ter_rrnB DNA fragment (complement, SEQ ID NO: 41) were restricted with Pvul or Pstl endonuclease respectively, treated with Klenow fragment of DNA polymerase I to obtain the blunt ends and then restricted with Aatll or Hindlll endonuclease, To construct the pMWPlaclacI-ts variant the AatH-EcoRV fragment of the pMWPlaclacI plasmid was substituted by AatH-EcoRV fragment of the plasmid pMAN997 including the loci par, ori and repAts gene of pSClOl replicon.
Example 4 Construction of malic enzyme-deficient L-threonine- producing bacterium sfcA- and b2463-deficient strains were constructed -from strain VKPM B-5318. The strain VKPM B-5318 strain was deposited at Russian National Collection of Industrial Microorganisms (VKPM) , GNII Genetika) on November 19, 1987 and received an accession number of VKPM B-5318. A strain which was deficient in one of the malic enzyme (mez) genes ( sfcA, b2463) was obtained in the same way as in Example 3 using the "red-driven integration" method. Namely, it was performed in the same way using the "red-driven integration" method in Example 3 except that the strain B-5318 was used instead of the strain WC196 to obtain the sfcA- or -b246"3-deficient strain as a mutant identified by the chroramphenicol resistance gene. The strain B-5318 in which sfcA was disrupted was designated as B-5318ΔsfcA. The strain B-5318 in which b2463 was disrupted was designated as B-5318Δb2463. A strain B-5318 with disrupted sfcA and b2463 genes, B-5318ΔsfcAΔb2463 was obtained in the same way using "red-driven integration" and the excision system method as in Example 3. The strain B- 5318ΔsfcAΔb2463 was designated as B-5318Δmez .
Example 5 Evaluation of malic enzyme-deficient strain <5-l> Evaluation of L-threonine-producing bacterium which is b2463-deficient strain The strains B-5318Δb2463 and B-5318 were each cultured on LB agar medium (10 g/L of trypton, 5 g/L of yeast extract, 5 g/L of NaCl and 15 g/L of agar) containing 20 mg/L of streptomycin sulfate and 25 mg/L of kanamycin sulfate at 37 °C for 24 hours, and bacterial cells were taked from one-fifth of the plate and inoculated into 50 mL - of LB liquid medium (10 g/L of trypton, 5 g/L of yeast extract, and 5 g/L of NaCl) containing 20 mg/L of streptomycin sulfate and 25 mg/L of kanamycin sulfate to perform preculture at 40°C and 144 rpm for 3.5 hours. After the completion of the preculture, the preculture broth was inoculated into 300 mL of a main culture medium contained in a 1 L-volume jar fermenter in an amount of 10% of the volume of the main culture medium to perform the main culture at 40 °C and pH 7.0. The composition of the main culture medium is shown below. Table 4 [Composition of main culture medium] Glucose 100 g/L Yeast extract 1.8 g/L FeS04-7H20 18 mg/L MnS04-4H2O 18 mg/L KH2P04 1.0 g/L MgS04-7H20 0.36 g/L (NH4)2S04 4.5 g/L NaCl 0.6 g/L Streptmycin sulfate 20 mg/L Kanamycin sulfate 25 mg/L pH during the culture was adjusted to 7.0 by adding ammonia gas. After the added sugar was consumed, the amount of L- threonine was measured by liquid chromatography. The " results are shown in Table 5. When the b2463-deficient strain B-5318Δb2463 was used, the threonine yield was increased compared with the control strain B-5318.
Table 5 Strain Fermentation yield of L-threonine (%) B-5318 31.4 B-5318Δb2463 32.1
<5-2> Evaluation of L-threonine-producing bacterium which is sfcA-deficient strain The strains B-5318ΔsfcA and B5318 were cultured in the same way as in <5-l>. After the added sugar was consumed, the amount of L- threonine was measured by liquid chromatography. The results are shown in Table 6. When the b2463-deficient strain B-5318ΔsfcA was used, the threonine yield was increased compared with the control strain B-5318.
Table 6
Figure imgf000058_0001
<5-3> Evaluation of L-lysine-producing bacterium 'which is sfcA- and b2463-deficient strain The strains WC196, WC196ΔsfcA and WC196Δb2463 were transformed according to an ordinary method using a plasmid for lysine production which harbored dapA, dapB and dapC genes, pCABD2 (International Publication No. WO 01/53459) to obtain strains WC196/pCABD2, WC196ΔsfcA/pCABD2 and WC196Δb2463/pCABD2. The strains WC196/pCABD2, WC196ΔsfcA/pCABD2 and WC196Δb2463/pCABD2 were cultured at 37°C with L medium (as described below) containing 20 mg/1 streptomycin until OD6oo on the medium became about 0.6. Then, an amount equivalent to the culture, of 40% glycerol solution was added to the culture. After stirring, the mixture is dispensed in appropriate aliquots and stored at -80°C The stored aliquots are called glycerol stocks. The glycerol stocks of the strains were thawed, and each 100 μl was uniformly spread on an L plate containing 20 mg/1 streptomycin and cultured at 37°C for 24 hours. The bacterial cells were taken from one-eighth of the obtained plate and inoculated into 20 mL of a fermentation medium (as described below) containing 20 mg/L of streptomycin to culture at 37 °C for about 16 hours by a reciprocating shaker. After the culture, amounts of lysine which had accumulated in the medium and the remaining glucose were measured by Biotech Analyzer AS210 (Sakura Seiki) . The results of L-lysine accumulation and cell- subtracted yield are shown in Table 7. The cell-subtracted yield which is a yield calculated by subtracting the amount of sugar used for bacterial cell formation, is calculated based on an assumption that 50% of consumed sugar is used for bacterial cell formation. As seen from the results, the cell-subtracted yields of the strains WC196ΔsfcA/pCABD2 and WC196Δb2463/pCABD2 increase compared that of the control strain WC196/pCABD2. Table 7
Figure imgf000059_0001
The mediums used for evaluation of the sfcA- or b2463-deficient L-lysine-producing strain are described below. The reagents used were obtained from Wako Pure Chemicals or Nakarai Tesque unless otherwise noted. The compositions of the media used are shown below. pH was adjusted with NaOH or HC1 for all media. Table 8 (L medium) Bacto trypton (DIFCO) 10 g/L Yeast extract (DIFCO) 5 g/L NaCl 5 g/L pH 7.0 [steam-sterilized at 120°C for 20 minutes]
(L agar medium) L medium Bacto agar (DIFCO) 15 g/L [steam-sterilized at 120°C for 20 minutes]
(L-Lysine production medium for Escherichia bacteria) Glucose 40 g/L Ammonium sulfate 24 g/L Potassium dihydrogen phosphate 1.0 g/L Magnesium sulfate heptahydrate 1.0 g/L _ Iron (II) sulfate heptahydrate 0.01 g/L Manganous sulfate tetrahydrate 0.01 g/L Yeast exatract 2.0 g/L Calcium carbonate (Pharmacopeia) 30 g/L [adjusted to pH 7.0 with potassium hydroxide and steam- sterilized at H5°C for 10 minutes provided that glucose and MgS04-7H20 were separately sterilized. ]
Example 6 Evaluation of malic enzyme-deficient strain (Δmez) <6-l> Evaluation of L-threonine-producing bacterium which is malic enzyme deficient strain The strains B-5318Δmez and B-5318 were each cultured on LB agar medium (10 g/L of trypton, 5 g/L of yeast extract, 5 g/L of NaCl and 15 g/L of agar) containing 20 mg/L of streptomycin sulfate and 25 mg/L of kanamycin sulfate at 37 °C for 24 hours, and bacterial cells were taken from one of the plates and suspended in 5 ml of LB liquid medium (10 g/L of trypton, 5 g/L of yeast extract, and 5 g/L of NaCl). 0.5 ml of the suspension was inoculated into 50 mL of LB liquid medium containing 20 mg/L of streptomycin sulfate and 25 mg/L of kanamycin sulfate to perform preculture at 39°C and 144 rpm for 4 hours. After the completion of the preculture, the preculture broth was inoculated into 300 mL of a main culture medium contained in a 1 L-volume jar fermenter in an amount of 10% of the volume of the main culture medium to perform the main culture at 39°C and pH 7.0. The composition of the main culture medium is shown below.
- Table 9 [Composition of main culture medium] Glucose 27 g/L Yeast extract 1.8 g/L FeS04-7H20 18 mg/L MnS04'4H20 18 mg/L KH2P04 1.5 g/L MgS04-7H20 0.36 g/L (NH4)2S04 4.5 g/L NaCl 0.6 g/L Streptmycin sulfate 20 mg/L Kanamycin sulfate 25 mg/L pH during the culture was adjusted to 7.0 by adding ammonia gas. After the added sugar was consumed and exhausted, 600 g/1 aqueous glucose solution was added. After 24-hour main culture, the amount of L-threonine was measured by liquid chromatography. The results are shown in Table 10. When the malic enzyme-deficient strain B-5318Δmez was used, the threonine yield was increased compared with the control strain B-5318.
Table 10
Figure imgf000062_0001
<6-2> Evaluation of L-lysine-producing bacterium which is malic enzyme-deficient strain The strains WC196 and WC196Δmez were transformed according to an ordinary method with plasmid for lysine production, pCABD2 (International Publication No. WO 01/53459) to obtain strains WC196/pCABD2 and WCl96Δmez/pCABD2. The strains WC196/pCABD2 and WC196Δmez/pCABD2 were cultured at 37 °C with L medium (the same as used in Example 5 <5-3>) containing 20 mg/1 streptomycin until OD6oo on the medium became about 0.6. Then, an amount equivalent to the culture, of 40% glycerol solution was added to the culture. After stirring, the mixture is dispensed in appropriate aliquots and stored at -80°C The stored aliquots are called glycerol stocks. The glycerol stocks of the strains were thawed, and each 100 μl was uniformly spread on an L plate containing 20 mg/1 streptomycin and cultured at 37 °C for 24 hours. The bacterial cells were taken from one-eighth of the obtained plate and inoculated into 20 mL of a fermentation medium (the same as used in Example 5 <5-3>) containing 20 mg/L of streptomycin to culture at 37 °C for about 48 hours by a reciprocating shaker. After the culture, amounts of lysine which had accumulated in the medium and the remaining glucose were measured by Biotech Analyzer AS210 (Sakura Seiki) . The results of L-lysine accumulation and cell- subtracted yield are shown in Table 11. The cell- subtracted yield is calculated based on an assumption that 50% of consumed sugar is used for bacterial cell formation. As seen from the results, the cell-subtracted yield of the strain WC196Δmez/pCABD2 increases compared that of the control strain WC196/pCABD2.
Table 11
Figure imgf000063_0001
Industrial Applicability According to the present invention, the fermentation yield of L-lysine and/or L-threonine is increased in a method for producing L-lysine or L-threonine by fermentation using an Escherichia bacterium. Furthermore, the present invention can be used for breeding L-lysine and/or L-threonine- producing bacteria belonging to the genus Escherichia .

Claims

Claims 1. An Escherichia bacterium which has an ability to produce L-lysine or L-threonine, and wherein said bacterium is modified so that a malic enzyme does not normally function in a cell. 2. The bacterium according to claim 1, wherein a gene encoding said malic enzyme on the bacterial chromosome is mutated and/or an expression control sequence thereof is mutated so that the malic enzyme does not normally function in the cell. 3. The bacterium according to claims 1, wherein said malic enzyme does not normally function by disruption of a gene encoding said malic enzyme on the bacterial chromosome. 4. The bacterium according to claim 1, wherein the gene encoding said malic enzyme comprises sfcA.
"5. The bacterium according to claim 1, wherein the gene encoding said malic enzyme comprises b2463. 6. The bacterium according to claim 1, wherein said malic enzyme is selected from the group consisting of: (A) a protein having an amino acid sequence shown in SEQ ID NO: 6, and (B) a protein which has an amino acid sequence comprising substitution, deletion, insertion or addition of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 6, and has a malic enzyme activity. 7. The bacterium according to claim 1, wherein said malic enzyme is selected from the group consisting of: (C) a protein having an amino acid sequence shown in SEQ ID NO: 8, and (D) a protein which has an amino acid sequence comprising substitution, deletion, insertion or addition of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 8, and has a malic enzyme activity. 8. The bacterium according to claim 1, wherein a gene encoding said malic enzyme is a DNA selected from the group consisting of: (a) a DNA having a nucleotide sequence shown in SEQ ID NO: 5, (b) a DNA which hybridizes with the nucleotide sequence shown in SEQ ID NO: 5, or a probe which can be prepared from the nucleotide sequence, wherein said hybridization occurs under stringent conditions, and wherein said DNA encodes a protein having a malic enzyme activity., 9. The bacterium according to claim 1, wherein a gene encoding the malic enzyme is a DNA selected from the group
- consisting of: (c) a DNA having a nucleotide sequence shown in SEQ ID NO: 7, and (d) a DNA which hybridizes with the nucleotide sequence shown in SEQ ID NO: 7, or a probe which can be prepared from the nucleotide sequence, wherein said hybridization occurs under stringent conditions, and wherein said DNA encodes a protein having a malic enzyme activity. 10. A method for producing L-lysine or L-threonine, comprising culturing the bacterium as defined in any one of claims 1 to 9 in a medium so to produce and secrete said L- lysine or L-threonine, and collecting the L-lysine or L- threonine from the medium.
PCT/JP2004/011220 2003-07-29 2004-07-29 Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity WO2005010175A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK04771247T DK1651758T3 (en) 2003-07-29 2004-07-29 Process for Preparation of L-Lysine or L-Threonine Using Escherichia Bacteria with Impaired Malic Enzyme Activity
BRPI0413007A BRPI0413007B1 (en) 2003-07-29 2004-07-29 method of producing l-lysine or l-threonine
DE602004014158T DE602004014158D1 (en) 2003-07-29 2004-07-29 PROCESS FOR THE PREPARATION OF L-LYSINE OR L-THREONINE USING ESCHERICHIA BACTERIA WITH ATTRACTIONED MALATENZYMAKTIVITY
PL04771247T PL1651758T3 (en) 2003-07-29 2004-07-29 Method for producing l-lysine or l-threonine using escherichia bacteria having attenuated malic enzyme activity
EP04771247A EP1651758B1 (en) 2003-07-29 2004-07-29 Method for producing l-lysine or l-threonine using escherichia bacteria having attenuated malic enzyme activity
KR1020057024543A KR101208480B1 (en) 2003-07-29 2005-12-21 - - Method for producing L-lysine or L-threonine using Escherichia bacteria having attenuated malic enzyme activity
US11/275,437 US7306933B2 (en) 2003-07-29 2006-01-03 Method for producing L-lysine or L-threonine
US11/877,726 US8030036B2 (en) 2003-07-29 2007-10-24 Method for producing L-lysine or L-threonine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-202842 2003-07-29
JP2003202842 2003-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/275,437 Continuation US7306933B2 (en) 2003-07-29 2006-01-03 Method for producing L-lysine or L-threonine

Publications (1)

Publication Number Publication Date
WO2005010175A1 true WO2005010175A1 (en) 2005-02-03

Family

ID=34100609

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/011220 WO2005010175A1 (en) 2003-07-29 2004-07-29 Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
PCT/JP2004/011212 WO2005010794A2 (en) 2003-07-29 2004-07-29 Method for determining metabolic flux affecting substance production

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011212 WO2005010794A2 (en) 2003-07-29 2004-07-29 Method for determining metabolic flux affecting substance production

Country Status (14)

Country Link
US (3) US7306933B2 (en)
EP (2) EP1651758B1 (en)
JP (2) JP4894134B2 (en)
KR (2) KR101073370B1 (en)
CN (2) CN100577799C (en)
AT (1) ATE397059T1 (en)
BR (2) BRPI0413030A (en)
DE (1) DE602004014158D1 (en)
DK (1) DK1651758T3 (en)
ES (1) ES2305849T3 (en)
PL (1) PL1651758T3 (en)
RU (1) RU2337140C2 (en)
WO (2) WO2005010175A1 (en)
ZA (1) ZA200510144B (en)

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562044A1 (en) * 2004-02-05 2005-08-10 Ajinomoto Co., Inc. Intracellular metabolic flux analysis method using substrate labeled with isotope
WO2007013639A1 (en) 2005-07-25 2007-02-01 Ajinomoto Co., Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY WITH ATTENUATED EXPRESSION OF THE cpxR GENE
WO2007017710A1 (en) * 2005-08-11 2007-02-15 Metabolic Explorer Process for the preparation of aspartate and derived amino acids like lysine, threonine, isoleucine, methionine, homoserine, or valine employing a microorganism with enhanced isocitrate lyase and/or malate synthase expression
WO2007086618A1 (en) 2006-01-30 2007-08-02 Ajinomoto Co., Inc. L-amino acid producing bacterium and method of producing l-amino acid
WO2007088977A1 (en) 2006-02-02 2007-08-09 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2007100009A1 (en) 2006-03-03 2007-09-07 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2007125954A1 (en) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and process for production of l-amino acid
WO2008044453A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008078448A1 (en) 2006-12-25 2008-07-03 Ajinomoto Co., Inc. Method of obtaining crystal of hydrochloride of basic amino acid
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008093829A1 (en) 2007-02-01 2008-08-07 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008102861A1 (en) 2007-02-22 2008-08-28 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2008114721A1 (en) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. Microorganism capable of producing l-glutamic acid-type amino acid, and method for production of amino acid
WO2008133131A1 (en) 2007-04-16 2008-11-06 Ajinomoto Co., Inc. Method for production of organic acid
WO2008133161A1 (en) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. Method for production of acidic substance having carboxyl group
WO2009031565A1 (en) 2007-09-04 2009-03-12 Ajinomoto Co., Inc. Amino acid-producing microorganism and method of producing amino acid
EP2055771A2 (en) 2006-03-23 2009-05-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
WO2009072562A1 (en) 2007-12-06 2009-06-11 Ajinomoto Co., Inc. Process for production of organic acid
DE102008049533A1 (en) 2007-09-27 2009-06-18 Ajinomoto Co., Inc. A method for producing amino acids using a bacterium of the family Enterobacteriaceae
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
EP2093291A1 (en) 2008-02-19 2009-08-26 Ajinomoto Co., Inc. A method for constructing an operon containing translationally coupled genes
WO2009104731A1 (en) 2008-02-21 2009-08-27 味の素株式会社 L-cysteine-producing bacterium, and method for production of l-cysteine
WO2009107631A1 (en) 2008-02-25 2009-09-03 味の素株式会社 Process for production of 5'-guanylic acid
EP2133429A1 (en) 2008-03-06 2009-12-16 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2010027022A1 (en) 2008-09-05 2010-03-11 味の素株式会社 Bacterium capable of producing l-amino acid, and method for producing l-amino acid
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010061890A1 (en) 2008-11-27 2010-06-03 味の素株式会社 Process for producing l-amino acid
EP2202299A1 (en) 2008-12-22 2010-06-30 Ajinomoto Co., Inc. A method for producing L-lysine
WO2010084995A2 (en) 2009-01-23 2010-07-29 Ajinomoto Co.,Inc. A method for producing an l-amino acid
EP2230302A1 (en) 2009-03-12 2010-09-22 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2011016301A1 (en) 2009-08-03 2011-02-10 味の素株式会社 Process for production of l-lysine using bacterium belonging to genus vibrio
WO2011021717A2 (en) 2009-08-21 2011-02-24 Ajinomoto Co.,Inc. Method for producing hydroxylated amino acids
WO2011024555A1 (en) 2009-08-28 2011-03-03 味の素株式会社 Process for production of l-amino acid
EP2295546A2 (en) 2009-08-10 2011-03-16 Ajinomoto Co., Inc. Method for producing 5'-guanylic acid
WO2011043485A1 (en) 2009-10-05 2011-04-14 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-CYSTEINE, L-CYSTINE, A DERIVATIVE OR PRECURSOR THEREOF OR A MIXTURE THEREOF USING A BACTERIUM OF Enterobacteriaceae FAMILY
WO2011055710A1 (en) 2009-11-06 2011-05-12 味の素株式会社 Method for producing l-amino acid
WO2011065469A1 (en) 2009-11-30 2011-06-03 味の素株式会社 L-cysteine-producing bacterium, and process for production of l-cysteine
EP2345667A2 (en) 2010-01-15 2011-07-20 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
WO2011087139A2 (en) 2010-01-15 2011-07-21 Ajinomoto Co.,Inc. A BACTERIUM OF Enterobacteriaceae FAMILY PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES AND A METHOD FOR PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES
WO2011096554A1 (en) 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2011100601A1 (en) 2010-02-11 2011-08-18 Metabolix, Inc. Process for gamma-butyrolactone production
WO2011102305A2 (en) 2010-02-18 2011-08-25 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE Enterobacteriaceae FAMILY HAVING A MUTANT ADENYLATE CYCLASE
WO2011152565A1 (en) 2010-06-03 2011-12-08 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family, having attenuated expression of gene(s) encoding peptidase
WO2011152568A1 (en) 2010-06-03 2011-12-08 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family, having attenuated expression of genes encoding a lysine/arginine/ornithine transporter
WO2012011595A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY HAVING ATTENUATED EXPRESSION OF THE astCADBE OPERON
WO2012011596A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A method for producing an l- amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the bssr gene
WO2012036151A1 (en) 2010-09-14 2012-03-22 味の素株式会社 Sulfur amino acid-producing bacteria and method for producing sulfur amino acids
EP2460873A1 (en) 2006-12-12 2012-06-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of any of the cynT, cynS, cynX or cynR genes or a combination thereof
WO2012077739A1 (en) 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
WO2012114802A1 (en) 2011-02-22 2012-08-30 味の素株式会社 L-cysteine-producing bacterium and method for producing l-cysteine
WO2012137689A1 (en) 2011-04-01 2012-10-11 味の素株式会社 Method for producing l-cysteine
WO2012144472A1 (en) 2011-04-18 2012-10-26 味の素株式会社 Process for producing l-cysteine
WO2012170793A1 (en) 2011-06-08 2012-12-13 Metabolix, Inc. Biorefinery process for thf production
WO2013023140A1 (en) 2011-08-10 2013-02-14 Metabolix, Inc. Post process purification for gamma-butyrolactone production
EP2559754A2 (en) 2011-08-18 2013-02-20 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
WO2013051685A1 (en) 2011-10-07 2013-04-11 味の素株式会社 Mutant γ-glutamyltransferase, and method for producing γ-glutamylvalylglycine or salt thereof
WO2013065772A1 (en) 2011-11-02 2013-05-10 味の素株式会社 Method for secreting and producing proteins
WO2013065439A1 (en) 2011-11-01 2013-05-10 味の素株式会社 Plant virus infection inhibitor and plant virus infection inhibition method using same
WO2013069634A1 (en) 2011-11-11 2013-05-16 味の素株式会社 Method for producing target substance by fermentation
WO2014025023A1 (en) 2012-08-10 2014-02-13 味の素株式会社 METHOD FOR PRODUCING γ-GLUTAMYL-VALYL-GLYCINE CRYSTAL
WO2014027702A1 (en) 2012-08-17 2014-02-20 Ajinomoto Co.,Inc. Method for producing l-arginine using bacterium of the family enterobacteriaceae having n-acetylornithine deacetylase with downregulated activity
EP2796560A1 (en) 2013-04-23 2014-10-29 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having attenuated expression of the yjjK gene
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
EP2818554A2 (en) 2004-10-07 2014-12-31 Ajinomoto Co., Inc. Method for producing a basic substance
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
WO2015030019A1 (en) 2013-08-30 2015-03-05 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING ATTENUATED EXPRESSION OF THE znuACB GENE CLUSTER
WO2015041265A1 (en) 2013-09-17 2015-03-26 味の素株式会社 Method for producing l-amino acid from seaweed-derived biomass
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
WO2015050276A1 (en) 2013-10-02 2015-04-09 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having attenuated expression of a phosphate transporter-encoding gene
WO2015050184A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Heparosan-producing bacterium and heparosan manufacturing method
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
WO2015115612A1 (en) 2014-01-31 2015-08-06 味の素株式会社 Mutant glutamate-cysteine ligase and method for manufacturing γ-glutamyl-valyl-glycine
WO2015122544A1 (en) 2014-02-14 2015-08-20 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING OVEREXPRESSED THE yajL GENE
WO2016104814A2 (en) 2014-12-26 2016-06-30 Ajinomoto Co., Inc. Method for producing dicarboxylic acid
US9458206B2 (en) 2009-02-16 2016-10-04 Ajinomoto Co., Inc. L-amino acid-producing bacterium and a method for producing an L-amino acid
EP3098319A1 (en) 2015-05-28 2016-11-30 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having an attenuated expression of a gsha gene
WO2017073701A2 (en) 2015-10-27 2017-05-04 Ajinomoto Co., Inc. Method for producing aldehyde
EP3165608A1 (en) 2015-10-30 2017-05-10 Ajinomoto Co., Inc. Method for producing l-amino acid of glutamate family
WO2017122747A1 (en) 2016-01-12 2017-07-20 Ajinomoto Co., Inc. Method for producing benzaldehyde
WO2017146195A1 (en) 2016-02-25 2017-08-31 Ajinomoto Co., Inc. A method for producing l-amino acids using a bacterium of the family enterobacteriaceae overexpressing a gene encoding an iron exporter
WO2018074578A1 (en) 2016-10-21 2018-04-26 味の素株式会社 Secretory production method for protein
WO2018074579A1 (en) 2016-10-21 2018-04-26 味の素株式会社 Protein secretory production method
WO2018079687A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079683A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079685A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079705A1 (en) 2016-10-27 2018-05-03 Ajinomoto Co., Inc. Method for producing aldehyde
WO2018079684A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079686A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing l-methionine or metabolites requiring s-adenosylmethionine for synthesis
WO2018179834A1 (en) 2017-03-28 2018-10-04 Ajinomoto Co., Inc. Method for producing rna
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
EP3406727A1 (en) 2017-05-22 2018-11-28 Ajinomoto Co., Inc. Method for producing objective substance
WO2019059404A1 (en) 2017-09-25 2019-03-28 味の素株式会社 Protein production method and disaccharide production method
EP3502263A2 (en) 2017-11-29 2019-06-26 Ajinomoto Co., Inc. Method for producing objective substance
EP3530749A1 (en) 2018-02-27 2019-08-28 Ajinomoto Co., Inc. Glutathione synthetase mutant and method for producing gamma-glu-val-gly
WO2019163827A1 (en) 2018-02-20 2019-08-29 味の素株式会社 Method for inducing rna silencing
WO2019203368A1 (en) 2018-04-20 2019-10-24 味の素株式会社 Method for secretory production of protein
WO2019225658A1 (en) 2018-05-23 2019-11-28 Ajinomoto Co., Inc. A method of producing the tripeptide gamma-glu-val-gly using enterobacteriaceae
WO2020027251A1 (en) 2018-08-03 2020-02-06 Ajinomoto Co., Inc. Method for producing objective substance
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2020085511A1 (en) 2018-10-25 2020-04-30 味の素株式会社 Method for secretory production of protein
WO2020138178A1 (en) 2018-12-27 2020-07-02 Ajinomoto Co., Inc. Method for producing basic l-amino acids or salts thereof by fermentation of an enterobacteriaceae bacterium
US10704063B2 (en) 2015-05-19 2020-07-07 Lucite International Uk Limited Process for the biological production of methacrylic acid and derivatives thereof
WO2020171227A1 (en) 2019-02-22 2020-08-27 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE
WO2020203885A1 (en) 2019-03-29 2020-10-08 味の素株式会社 Method for producing allolactose
WO2020204179A1 (en) 2019-04-05 2020-10-08 Ajinomoto Co., Inc. Method of producing l-amino acids
WO2020226087A1 (en) 2019-05-08 2020-11-12 味の素株式会社 Vanillin production method
WO2021060438A1 (en) 2019-09-25 2021-04-01 Ajinomoto Co., Inc. Method for producing l-amino acids by bacterial fermentation
WO2021085405A1 (en) 2019-10-28 2021-05-06 味の素株式会社 Benzaldehyde production method
WO2022092018A1 (en) 2020-10-28 2022-05-05 味の素株式会社 Method of producing l-amino acid
WO2023282315A1 (en) 2021-07-07 2023-01-12 味の素株式会社 Method for secretory production of unnatural-amino-acid-containing protein
WO2024033603A1 (en) 2022-08-08 2024-02-15 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof
EP4345166A2 (en) 2022-09-30 2024-04-03 Ajinomoto Co., Inc. Method for producing l-amino acid

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723081B1 (en) 2000-01-21 2010-05-25 Ajinomoto Co., Inc. Bacteria containing aspartate-semialdehyde dehydrogenase, phosphoenolpyruvate carboxylase, and transhydrogenase to produce L-lysine in escherichia, and methods of using same
BR0304860A (en) * 2002-11-11 2004-08-31 Ajinomoto Kk Method for producing a target substance by use of a bacterium belonging to the genus Escherichia
CN101243177B (en) * 2004-01-30 2012-12-05 味之素株式会社 L-amino acid-producing microorganism and method for producing L-amino acid
JP4802507B2 (en) * 2004-02-05 2011-10-26 味の素株式会社 Analysis method of intracellular metabolic flux using isotope-labeled substrate
JP4654592B2 (en) * 2004-04-02 2011-03-23 味の素株式会社 Determination of metabolic flux
US7915018B2 (en) 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family
EP1924703A1 (en) 2005-09-15 2008-05-28 Korea Advanced Institute of Science and Technology Method for improving organisms using flux scanning based on enforced objective flux
WO2007037460A1 (en) 2005-09-27 2007-04-05 Ajinomoto Co., Inc. An l-amino acid-producing bacterium and a method for producing l-amino acids
JP2007117082A (en) * 2005-09-27 2007-05-17 Ajinomoto Co Inc L-amino acid producing bacteria and preparation process of l-amino acid
EP1929028A1 (en) 2005-09-27 2008-06-11 Ajinomoto Co., Inc. An l-amino acid-producing bacterium and a method for producing l-amino acids
JP2007185184A (en) * 2005-12-16 2007-07-26 Ajinomoto Co Inc L-amino acid-productive microorganism and method for producing l-amino acid
RU2338784C2 (en) * 2006-03-24 2008-11-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) New aldolase, dna coding aldlase, cells transformed by dna, method of aldolase obtaining and method of obtaining of 4-hydroxy-l-isoleucine (versions)
JP2009060791A (en) * 2006-03-30 2009-03-26 Ajinomoto Co Inc L-amino acid-producing bacterium and method for producing l-amino acid
KR100727053B1 (en) * 2006-05-04 2007-06-12 한국과학기술원 Method of improvement of organisms using profiling the flux sum of metabolites
BRPI0715584B8 (en) * 2006-07-19 2017-02-21 Ajinomoto Kk method to produce an l-amino acid
JP2010017082A (en) * 2006-10-10 2010-01-28 Ajinomoto Co Inc Method for producing l-amino acid
WO2008072761A2 (en) * 2006-12-11 2008-06-19 Ajinomoto Co., Inc. Method for producing an l-amino acid
KR100818202B1 (en) * 2006-12-22 2008-03-31 한국과학기술원 Method for screening essential metabolites in growth of microorganisms
RU2006145712A (en) * 2006-12-22 2008-06-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) METHOD FOR PRODUCING L-AMINO ACIDS BY THE FERMENTATION METHOD USING BACTERIA HAVING AN INCREASED ABILITY FOR GYLICERINE DISPOSAL
JP2010110216A (en) * 2007-02-20 2010-05-20 Ajinomoto Co Inc Method for producing l-amino acid or nucleic acid
JP2010226956A (en) * 2007-07-23 2010-10-14 Ajinomoto Co Inc Method for producing l-lysine
JP2010263790A (en) * 2007-09-04 2010-11-25 Ajinomoto Co Inc Amino acid-producing microorganism and method for producing amino acid
RU2395579C2 (en) * 2007-12-21 2010-07-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) METHOD OF PRODUCING L-AMINO ACIDS USING Escherichia GENUS BACTERIA
JP2010226957A (en) * 2007-10-17 2010-10-14 Ajinomoto Co Inc Method for producing l-amino acid
RU2451748C1 (en) 2008-03-03 2012-05-27 Глобал Био-Чем Текнолоджи Груп Компани Лимитед Recombinant dna and method of obtaining l-lysine
JP2011167071A (en) * 2008-05-22 2011-09-01 Ajinomoto Co Inc Method for producing l-amino acid
WO2011034263A1 (en) * 2009-09-18 2011-03-24 한국과학기술원 Method for predicting a drug target in pathogenic microorganisms using an essential metabolite
CN104878034B (en) * 2015-04-17 2018-04-27 上海工业生物技术研发中心 L-lysine genetic engineering produces bacterium
KR101694811B1 (en) * 2015-07-15 2017-01-13 대상 주식회사 Mutant Strain with improved Amino acid production by inactivating malic enzyme or lactate dehydrogenase
CN105018413B (en) * 2015-08-28 2018-04-03 中国科学院重庆绿色智能技术研究院 A kind of Phytoplankton Cells model and its structure and application
KR101947945B1 (en) 2018-01-25 2019-02-13 씨제이제일제당 (주) A microorganism of the genus Corynebacterium producing L-amino acids and method for producing L-amino acids using the same
SG11202001730TA (en) 2018-03-27 2020-03-30 Cj Cheiljedang Corp A novel promoter and a method for producing l-amino acid using the same
EP3788161A1 (en) 2018-05-04 2021-03-10 Ajinomoto Co., Inc. Method for producing l-methionine using a bacterium of the genus pantoea
KR102276219B1 (en) 2019-02-15 2021-07-12 씨제이제일제당 (주) Apparatus and method for determining operating condition of bioreactor
KR102221040B1 (en) 2019-05-09 2021-03-03 씨제이제일제당 주식회사 Microorganism producing L-amino acid and method of producing Method of L-amino acid using thereof
KR102153534B1 (en) 2019-09-02 2020-09-09 씨제이제일제당 주식회사 A novel promoter and preparation method of amino acids using thereof
BR112023004335A2 (en) 2020-09-09 2023-04-04 Cj Cheiljedang Corp RECOMBINANT MICROORGANISM FOR PRODUCING L-GLUTAMIC ACID AND A METHOD FOR PRODUCING L-GLUTAMIC ACID USING THE SAME
KR102527096B1 (en) 2021-02-01 2023-04-28 씨제이제일제당 주식회사 Prephenate dehydratase variant and method for producing branched amino acid using the same
KR102649245B1 (en) 2021-03-08 2024-03-21 씨제이제일제당 주식회사 A microorganism of the genus Corynebacterium producing L-amino acids and method for producing L-amino acids using the same
KR102339264B1 (en) 2021-05-07 2021-12-14 씨제이제일제당 주식회사 Novel promoter and use thereof
KR102339271B1 (en) 2021-05-07 2021-12-14 씨제이제일제당 주식회사 Novel promoter and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297031B1 (en) * 1992-04-22 2001-10-02 Ajinomoto Co., Inc. Escherichia coli strain and method for producing L-threonine
EP1217076A1 (en) * 2000-12-22 2002-06-26 Ajinomoto Co., Inc. Method of producing a target substance by fermentation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004636A1 (en) * 1988-10-25 1990-05-03 Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) Strain of bacteria escherichia coli, producer of l-threonine
US6132999A (en) * 1992-09-21 2000-10-17 Ajinomoto Co., Inc. L-threonine-producing microbacteria and a method for the production of L-threonine
KR100230878B1 (en) * 1993-10-28 1999-11-15 이나모리 순스케 Process for producing substances using microorganism which has improved productivity of reduced nicotinamide adenine dinucleotide
EP1147229A2 (en) 1999-02-02 2001-10-24 Bernhard O. Palsson Methods for identifying drug targets based on genomic sequence data
FR2796080B1 (en) * 1999-06-18 2003-08-08 Orsan PROCESS FOR THE PRODUCTION OF L-LYSINE BY OVEREXPRESSION OF THE MALIC ENZYME
US6830903B1 (en) * 1999-07-23 2004-12-14 Archer-Daniels-Midland Company Methods for producing L-amino acids using a corynebacterium glutamicum with a disrupted pgi gene
ATE417094T1 (en) * 1999-12-24 2008-12-15 Ajinomoto Kk METHOD FOR PRODUCING L-AMINO ACID
JP4380029B2 (en) * 2000-07-05 2009-12-09 味の素株式会社 Manufacturing method of substances using microorganisms
EP1362319A2 (en) 2001-01-10 2003-11-19 The Penn State Research Foundation Method and system for modeling cellular metabolism
JP2002209596A (en) * 2001-01-19 2002-07-30 Ajinomoto Co Inc Method for producing l-amino acid
US7127379B2 (en) 2001-01-31 2006-10-24 The Regents Of The University Of California Method for the evolutionary design of biochemical reaction networks
CA2439260C (en) * 2001-03-01 2012-10-23 The Regents Of The University Of California Models and methods for determining systemic properties of regulated reaction networks
JP2002330763A (en) * 2001-05-02 2002-11-19 Ajinomoto Co Inc Method for producing objective substance by fermentation
IL160151A0 (en) * 2001-08-10 2004-07-25 Nat Public Health Inst Identification of a dna variant associated with adult type hypolactasia
WO2003029425A2 (en) * 2001-10-01 2003-04-10 Diversa Corporation Whole cell engineering using real-time metabolic flux analysis
JP2003250544A (en) * 2002-03-04 2003-09-09 National Institute Of Technology & Evaluation Method for modifying property of protein
DE10224088A1 (en) * 2002-05-31 2003-12-11 Degussa Process for the production of L-amino acids using coryneform bacteria which contain an attenuated mez gene
US6911332B2 (en) * 2002-06-12 2005-06-28 Ajinomoto Co., Inc. Isolated polynucleotides encoding d-arabino-3-hexulose-6-phosphate synthases from Methylophilus methylotrophus
AU2003205041A1 (en) * 2002-07-12 2004-01-29 Ajinomoto Co., Inc. Method for producing target substance by fermentation
BR0304860A (en) * 2002-11-11 2004-08-31 Ajinomoto Kk Method for producing a target substance by use of a bacterium belonging to the genus Escherichia
US7026149B2 (en) * 2003-02-28 2006-04-11 Ajinomoto Co., Inc. Polynucleotides encoding polypeptides involved in the stress response to environmental changes in Methylophilus methylotrophus
US7060475B2 (en) * 2003-02-28 2006-06-13 Ajinomoto Co., Inc. Polynucleotides encoding polypeptides involved in intermediates metabolism of central metabolic pathway in methylophilus methylotrophus
US7029893B2 (en) * 2003-02-28 2006-04-18 Ajinomoto Co., Inc. Polynucleotides encoding polypeptides involved in amino acid biosynthesis in methylophilus methylotrophus
US20060019356A1 (en) * 2003-02-28 2006-01-26 Yoshihiro Usuda Polynucleotides encoding polypeptides involved in intermediates metabolism of the central metabolic pathway in Methylophilus methylotrophus
US7468262B2 (en) * 2003-05-16 2008-12-23 Ajinomoto Co., Inc. Polynucleotides encoding useful polypeptides in corynebacterium glutamicum ssp. lactofermentum
JP4380305B2 (en) * 2003-11-21 2009-12-09 味の素株式会社 Method for producing L-amino acid by fermentation
CN101243177B (en) * 2004-01-30 2012-12-05 味之素株式会社 L-amino acid-producing microorganism and method for producing L-amino acid
US7915018B2 (en) * 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family
EP1838726A1 (en) * 2005-01-18 2007-10-03 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
US20070004014A1 (en) * 2005-06-29 2007-01-04 Yuichiro Tsuji Method for producing l-threonine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297031B1 (en) * 1992-04-22 2001-10-02 Ajinomoto Co., Inc. Escherichia coli strain and method for producing L-threonine
EP1217076A1 (en) * 2000-12-22 2002-06-26 Ajinomoto Co., Inc. Method of producing a target substance by fermentation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EMMERLING MARCEL ET AL: "Metabolic flux responses to pyruvate kinase knockout in Escherichia coli", JOURNAL OF BACTERIOLOGY, vol. 184, no. 1, January 2002 (2002-01-01), pages 152 - 164, XP002303470, ISSN: 0021-9193 *
OH MIN-KYU ET AL: "Global expression profiling of acetate-grown Escherichia coli", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 15, 12 April 2002 (2002-04-12), pages 13175 - 13183, XP002303469, ISSN: 0021-9258 *
REST VAN DER M E ET AL: "Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli", JOURNAL OF BACTERIOLOGY, WASHINGTON, DC, US, vol. 182, no. 24, December 2000 (2000-12-01), pages 6892 - 6899, XP002179953, ISSN: 0021-9193 *

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562044A1 (en) * 2004-02-05 2005-08-10 Ajinomoto Co., Inc. Intracellular metabolic flux analysis method using substrate labeled with isotope
US8510054B2 (en) 2004-02-05 2013-08-13 Ajinomoto Co., Inc. Intracellular metabolic flux analysis method using substrate labeled with isotope
EP2818554A2 (en) 2004-10-07 2014-12-31 Ajinomoto Co., Inc. Method for producing a basic substance
EP2818556A2 (en) 2004-10-07 2014-12-31 Ajinomoto Co., Inc. Method for producing a basic substance
EP2818555A2 (en) 2004-10-07 2014-12-31 Ajinomoto Co., Inc. Method for producing a basic substance
WO2007013639A1 (en) 2005-07-25 2007-02-01 Ajinomoto Co., Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY WITH ATTENUATED EXPRESSION OF THE cpxR GENE
US7919282B2 (en) 2005-07-25 2011-04-05 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of the cpxR gene
WO2007017710A1 (en) * 2005-08-11 2007-02-15 Metabolic Explorer Process for the preparation of aspartate and derived amino acids like lysine, threonine, isoleucine, methionine, homoserine, or valine employing a microorganism with enhanced isocitrate lyase and/or malate synthase expression
WO2007017526A1 (en) 2005-08-11 2007-02-15 Metabolic Explorer Process for the preparation of aspartate and derived amino acids like lysine, threonine, isoleucine, methionine, or homoserine employing a microorganism with enhanced isocitrate lyase and/or malate synthase expression
WO2007086618A1 (en) 2006-01-30 2007-08-02 Ajinomoto Co., Inc. L-amino acid producing bacterium and method of producing l-amino acid
WO2007088977A1 (en) 2006-02-02 2007-08-09 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2007100009A1 (en) 2006-03-03 2007-09-07 Ajinomoto Co., Inc. Method for production of l-amino acid
EP2351830A1 (en) 2006-03-23 2011-08-03 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
EP2184348A1 (en) 2006-03-23 2010-05-12 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
EP2055771A2 (en) 2006-03-23 2009-05-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
WO2007125954A1 (en) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and process for production of l-amino acid
WO2008044453A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
EP2460873A1 (en) 2006-12-12 2012-06-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of any of the cynT, cynS, cynX or cynR genes or a combination thereof
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
US8372606B2 (en) 2006-12-25 2013-02-12 Ajinomoto Co., Inc. Methods for obtaining crystals of a basic amino acid hydrochloride
WO2008078448A1 (en) 2006-12-25 2008-07-03 Ajinomoto Co., Inc. Method of obtaining crystal of hydrochloride of basic amino acid
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008093829A1 (en) 2007-02-01 2008-08-07 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008102861A1 (en) 2007-02-22 2008-08-28 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2008114721A1 (en) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. Microorganism capable of producing l-glutamic acid-type amino acid, and method for production of amino acid
EP2657332A1 (en) 2007-03-14 2013-10-30 Ajinomoto Co., Inc. Methods for producing an amino acid of the L-glutamic acid family
WO2008133131A1 (en) 2007-04-16 2008-11-06 Ajinomoto Co., Inc. Method for production of organic acid
WO2008133161A1 (en) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. Method for production of acidic substance having carboxyl group
WO2009031565A1 (en) 2007-09-04 2009-03-12 Ajinomoto Co., Inc. Amino acid-producing microorganism and method of producing amino acid
DE102008049533A1 (en) 2007-09-27 2009-06-18 Ajinomoto Co., Inc. A method for producing amino acids using a bacterium of the family Enterobacteriaceae
WO2009072562A1 (en) 2007-12-06 2009-06-11 Ajinomoto Co., Inc. Process for production of organic acid
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
EP2749652A2 (en) 2008-01-10 2014-07-02 Ajinomoto Co., Inc. A method for producing a target substance by fermentation
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
EP2093291A1 (en) 2008-02-19 2009-08-26 Ajinomoto Co., Inc. A method for constructing an operon containing translationally coupled genes
WO2009104731A1 (en) 2008-02-21 2009-08-27 味の素株式会社 L-cysteine-producing bacterium, and method for production of l-cysteine
WO2009107631A1 (en) 2008-02-25 2009-09-03 味の素株式会社 Process for production of 5'-guanylic acid
EP2133429A1 (en) 2008-03-06 2009-12-16 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2010027022A1 (en) 2008-09-05 2010-03-11 味の素株式会社 Bacterium capable of producing l-amino acid, and method for producing l-amino acid
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010061890A1 (en) 2008-11-27 2010-06-03 味の素株式会社 Process for producing l-amino acid
EP2202299A1 (en) 2008-12-22 2010-06-30 Ajinomoto Co., Inc. A method for producing L-lysine
WO2010084995A2 (en) 2009-01-23 2010-07-29 Ajinomoto Co.,Inc. A method for producing an l-amino acid
US9458206B2 (en) 2009-02-16 2016-10-04 Ajinomoto Co., Inc. L-amino acid-producing bacterium and a method for producing an L-amino acid
EP2230302A1 (en) 2009-03-12 2010-09-22 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2011016301A1 (en) 2009-08-03 2011-02-10 味の素株式会社 Process for production of l-lysine using bacterium belonging to genus vibrio
EP2295546A2 (en) 2009-08-10 2011-03-16 Ajinomoto Co., Inc. Method for producing 5'-guanylic acid
WO2011021717A2 (en) 2009-08-21 2011-02-24 Ajinomoto Co.,Inc. Method for producing hydroxylated amino acids
WO2011024555A1 (en) 2009-08-28 2011-03-03 味の素株式会社 Process for production of l-amino acid
WO2011043485A1 (en) 2009-10-05 2011-04-14 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-CYSTEINE, L-CYSTINE, A DERIVATIVE OR PRECURSOR THEREOF OR A MIXTURE THEREOF USING A BACTERIUM OF Enterobacteriaceae FAMILY
WO2011055710A1 (en) 2009-11-06 2011-05-12 味の素株式会社 Method for producing l-amino acid
WO2011065469A1 (en) 2009-11-30 2011-06-03 味の素株式会社 L-cysteine-producing bacterium, and process for production of l-cysteine
WO2011087139A2 (en) 2010-01-15 2011-07-21 Ajinomoto Co.,Inc. A BACTERIUM OF Enterobacteriaceae FAMILY PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES AND A METHOD FOR PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES
EP2345667A2 (en) 2010-01-15 2011-07-20 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
WO2011096554A1 (en) 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2011100601A1 (en) 2010-02-11 2011-08-18 Metabolix, Inc. Process for gamma-butyrolactone production
WO2011102305A2 (en) 2010-02-18 2011-08-25 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE Enterobacteriaceae FAMILY HAVING A MUTANT ADENYLATE CYCLASE
WO2011152565A1 (en) 2010-06-03 2011-12-08 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family, having attenuated expression of gene(s) encoding peptidase
WO2011152568A1 (en) 2010-06-03 2011-12-08 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family, having attenuated expression of genes encoding a lysine/arginine/ornithine transporter
WO2012011596A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A method for producing an l- amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the bssr gene
WO2012011595A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY HAVING ATTENUATED EXPRESSION OF THE astCADBE OPERON
WO2012036151A1 (en) 2010-09-14 2012-03-22 味の素株式会社 Sulfur amino acid-producing bacteria and method for producing sulfur amino acids
WO2012077739A1 (en) 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
WO2012114802A1 (en) 2011-02-22 2012-08-30 味の素株式会社 L-cysteine-producing bacterium and method for producing l-cysteine
WO2012137689A1 (en) 2011-04-01 2012-10-11 味の素株式会社 Method for producing l-cysteine
WO2012144472A1 (en) 2011-04-18 2012-10-26 味の素株式会社 Process for producing l-cysteine
WO2012170793A1 (en) 2011-06-08 2012-12-13 Metabolix, Inc. Biorefinery process for thf production
WO2013023140A1 (en) 2011-08-10 2013-02-14 Metabolix, Inc. Post process purification for gamma-butyrolactone production
WO2013024904A1 (en) 2011-08-18 2013-02-21 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
EP2559754A2 (en) 2011-08-18 2013-02-20 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
WO2013051685A1 (en) 2011-10-07 2013-04-11 味の素株式会社 Mutant γ-glutamyltransferase, and method for producing γ-glutamylvalylglycine or salt thereof
WO2013065439A1 (en) 2011-11-01 2013-05-10 味の素株式会社 Plant virus infection inhibitor and plant virus infection inhibition method using same
WO2013065772A1 (en) 2011-11-02 2013-05-10 味の素株式会社 Method for secreting and producing proteins
WO2013069634A1 (en) 2011-11-11 2013-05-16 味の素株式会社 Method for producing target substance by fermentation
WO2014025023A1 (en) 2012-08-10 2014-02-13 味の素株式会社 METHOD FOR PRODUCING γ-GLUTAMYL-VALYL-GLYCINE CRYSTAL
US9512177B2 (en) 2012-08-10 2016-12-06 Ajinomoto Co., Inc. Method for producing γ-glutamyl-valyl-glycine crystal
WO2014027702A1 (en) 2012-08-17 2014-02-20 Ajinomoto Co.,Inc. Method for producing l-arginine using bacterium of the family enterobacteriaceae having n-acetylornithine deacetylase with downregulated activity
EP2796560A1 (en) 2013-04-23 2014-10-29 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having attenuated expression of the yjjK gene
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
EP3521433A1 (en) 2013-07-09 2019-08-07 Ajinomoto Co., Inc. Process for producing l-glutamic acid
WO2015030019A1 (en) 2013-08-30 2015-03-05 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING ATTENUATED EXPRESSION OF THE znuACB GENE CLUSTER
WO2015041265A1 (en) 2013-09-17 2015-03-26 味の素株式会社 Method for producing l-amino acid from seaweed-derived biomass
WO2015050276A1 (en) 2013-10-02 2015-04-09 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having attenuated expression of a phosphate transporter-encoding gene
WO2015050184A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Heparosan-producing bacterium and heparosan manufacturing method
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
EP3620525A1 (en) 2013-10-02 2020-03-11 Ajinomoto Co., Inc. Heparosan-producing bacterium and heparosan manufacturing method
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
WO2015115612A1 (en) 2014-01-31 2015-08-06 味の素株式会社 Mutant glutamate-cysteine ligase and method for manufacturing γ-glutamyl-valyl-glycine
WO2015122544A1 (en) 2014-02-14 2015-08-20 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING OVEREXPRESSED THE yajL GENE
WO2016104814A2 (en) 2014-12-26 2016-06-30 Ajinomoto Co., Inc. Method for producing dicarboxylic acid
US10724058B2 (en) 2015-05-19 2020-07-28 Lucite International Uk Limited Process for the biological production of methacrylic acid and derivatives thereof
US11753660B2 (en) 2015-05-19 2023-09-12 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof
US11753661B2 (en) 2015-05-19 2023-09-12 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof
US11248243B2 (en) 2015-05-19 2022-02-15 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof
US10704063B2 (en) 2015-05-19 2020-07-07 Lucite International Uk Limited Process for the biological production of methacrylic acid and derivatives thereof
EP3098319A1 (en) 2015-05-28 2016-11-30 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having an attenuated expression of a gsha gene
WO2017073701A2 (en) 2015-10-27 2017-05-04 Ajinomoto Co., Inc. Method for producing aldehyde
EP3165608A1 (en) 2015-10-30 2017-05-10 Ajinomoto Co., Inc. Method for producing l-amino acid of glutamate family
WO2017122747A1 (en) 2016-01-12 2017-07-20 Ajinomoto Co., Inc. Method for producing benzaldehyde
WO2017146195A1 (en) 2016-02-25 2017-08-31 Ajinomoto Co., Inc. A method for producing l-amino acids using a bacterium of the family enterobacteriaceae overexpressing a gene encoding an iron exporter
WO2018074578A1 (en) 2016-10-21 2018-04-26 味の素株式会社 Secretory production method for protein
WO2018074579A1 (en) 2016-10-21 2018-04-26 味の素株式会社 Protein secretory production method
WO2018079687A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079686A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing l-methionine or metabolites requiring s-adenosylmethionine for synthesis
WO2018079684A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079685A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079683A1 (en) 2016-10-26 2018-05-03 Ajinomoto Co., Inc. Method for producing objective substance
WO2018079705A1 (en) 2016-10-27 2018-05-03 Ajinomoto Co., Inc. Method for producing aldehyde
WO2018179834A1 (en) 2017-03-28 2018-10-04 Ajinomoto Co., Inc. Method for producing rna
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
EP3406727A1 (en) 2017-05-22 2018-11-28 Ajinomoto Co., Inc. Method for producing objective substance
WO2019059404A1 (en) 2017-09-25 2019-03-28 味の素株式会社 Protein production method and disaccharide production method
EP3502263A2 (en) 2017-11-29 2019-06-26 Ajinomoto Co., Inc. Method for producing objective substance
WO2019163827A1 (en) 2018-02-20 2019-08-29 味の素株式会社 Method for inducing rna silencing
EP3530749A1 (en) 2018-02-27 2019-08-28 Ajinomoto Co., Inc. Glutathione synthetase mutant and method for producing gamma-glu-val-gly
WO2019203368A1 (en) 2018-04-20 2019-10-24 味の素株式会社 Method for secretory production of protein
WO2019225658A1 (en) 2018-05-23 2019-11-28 Ajinomoto Co., Inc. A method of producing the tripeptide gamma-glu-val-gly using enterobacteriaceae
WO2020027251A1 (en) 2018-08-03 2020-02-06 Ajinomoto Co., Inc. Method for producing objective substance
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2020085511A1 (en) 2018-10-25 2020-04-30 味の素株式会社 Method for secretory production of protein
WO2020138178A1 (en) 2018-12-27 2020-07-02 Ajinomoto Co., Inc. Method for producing basic l-amino acids or salts thereof by fermentation of an enterobacteriaceae bacterium
WO2020171227A1 (en) 2019-02-22 2020-08-27 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE
WO2020203885A1 (en) 2019-03-29 2020-10-08 味の素株式会社 Method for producing allolactose
WO2020204179A1 (en) 2019-04-05 2020-10-08 Ajinomoto Co., Inc. Method of producing l-amino acids
WO2020226087A1 (en) 2019-05-08 2020-11-12 味の素株式会社 Vanillin production method
WO2021060438A1 (en) 2019-09-25 2021-04-01 Ajinomoto Co., Inc. Method for producing l-amino acids by bacterial fermentation
WO2021085405A1 (en) 2019-10-28 2021-05-06 味の素株式会社 Benzaldehyde production method
WO2022092018A1 (en) 2020-10-28 2022-05-05 味の素株式会社 Method of producing l-amino acid
WO2023282315A1 (en) 2021-07-07 2023-01-12 味の素株式会社 Method for secretory production of unnatural-amino-acid-containing protein
WO2024033603A1 (en) 2022-08-08 2024-02-15 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof
EP4345166A2 (en) 2022-09-30 2024-04-03 Ajinomoto Co., Inc. Method for producing l-amino acid

Also Published As

Publication number Publication date
US20060154289A1 (en) 2006-07-13
ES2305849T3 (en) 2008-11-01
BRPI0413007A (en) 2006-10-17
ATE397059T1 (en) 2008-06-15
KR101208480B1 (en) 2012-12-05
DE602004014158D1 (en) 2008-07-10
JP4894134B2 (en) 2012-03-14
US8030036B2 (en) 2011-10-04
JP2005058226A (en) 2005-03-10
RU2337140C2 (en) 2008-10-27
US20090148915A1 (en) 2009-06-11
EP1649403A2 (en) 2006-04-26
CN1856792A (en) 2006-11-01
BRPI0413007B1 (en) 2019-09-03
WO2005010794A2 (en) 2005-02-03
KR101073370B1 (en) 2011-10-17
KR20060026436A (en) 2006-03-23
EP1651758B1 (en) 2008-05-28
CN100520793C (en) 2009-07-29
PL1651758T3 (en) 2009-04-30
RU2006101328A (en) 2006-06-27
CN100577799C (en) 2010-01-06
US7809511B2 (en) 2010-10-05
JP4665451B2 (en) 2011-04-06
US7306933B2 (en) 2007-12-11
JP2005058227A (en) 2005-03-10
KR20060056970A (en) 2006-05-25
EP1651758A1 (en) 2006-05-03
BRPI0413030A (en) 2006-10-03
WO2005010794A3 (en) 2005-12-01
DK1651758T3 (en) 2008-09-01
US20060154344A1 (en) 2006-07-13
ZA200510144B (en) 2007-03-28
CN1829792A (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US7306933B2 (en) Method for producing L-lysine or L-threonine
JP4207426B2 (en) Method for producing L-lysine
US9051591B2 (en) Bacterium of enterobacteriaceae family producing L-aspartic acid or L-aspartic acid-derived metabolites and a method for producing L-aspartic acid or L-aspartic acid-derived metabolites
EP2083083B1 (en) Method for production of l-amino acid
EP2180052B1 (en) Method for production of l-lysine
EP1963486B1 (en) L-amino acid producing bacterium and method of producing l-amino acid
EP1979486B1 (en) L-amino acid producing bacterium and method of producing l-amino acid
PL185681B1 (en) Substance obtaining method
EP1929029A1 (en) An l-amino acid-producing bacterium and a method for producing l-amino acids
US8017363B2 (en) Method for production of L-lysine using methanol-utilizing bacterium
WO2010038905A1 (en) A BACTERIUM BELONGING TO THE GENUS Pantoea PRODUCING AN L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES AND A METHOD FOR PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES
JP5504608B2 (en) Method for producing 1,5-pentanediamine
ZA200204973B (en) Process for producing L-Lysine.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021509.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004771247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005/10144

Country of ref document: ZA

Ref document number: 200510144

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 1020057024543

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11275437

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006101328

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 1200600107

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1020057024543

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004771247

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11275437

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0413007

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWG Wipo information: grant in national office

Ref document number: 2004771247

Country of ref document: EP