WO2005009891A1 - Structure and method for producing structure - Google Patents

Structure and method for producing structure Download PDF

Info

Publication number
WO2005009891A1
WO2005009891A1 PCT/JP2004/010037 JP2004010037W WO2005009891A1 WO 2005009891 A1 WO2005009891 A1 WO 2005009891A1 JP 2004010037 W JP2004010037 W JP 2004010037W WO 2005009891 A1 WO2005009891 A1 WO 2005009891A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
nanoparticles
substance
reaction
monomer
Prior art date
Application number
PCT/JP2004/010037
Other languages
French (fr)
Japanese (ja)
Inventor
Xuan-Ming Duan
Hong-Bo Sun
Satoshi Kawata
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2005512001A priority Critical patent/JPWO2005009891A1/en
Publication of WO2005009891A1 publication Critical patent/WO2005009891A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers

Definitions

  • the present invention relates to a structure and a method for manufacturing the structure, and more particularly, to a structure including a resin and nanoparticles dispersed in the resin, and a method for manufacturing the same.
  • Non-Patent Document 1 discloses, as a prior art, a method of manufacturing a structure containing titanium dioxide in a photocurable resin. This method uses a solution containing titanium (IV) ethoxide, methacrylic acid as a photocurable resin, ethylene glycol dimethacrylate, and 2,2-dimethoxy-12-phenylacetophenone as a polymerization initiator. Is cured by ultraviolet light (wavelength: 355 nm).
  • Patent Document 1 discloses a method for producing a structure containing a fluorescent dye in a photocurable resin.
  • a fluorescent dye is mixed with a photocurable resin, and the photocurable resin is photopolymerized and cured by two-photon absorption.
  • a method for manufacturing a micro'nano device using two-photon absorption is disclosed in Non-Patent Document 23, for example.
  • Non-Patent Document 1 Atsushi Shishido, Ivan B. Diviliansky, I. C. Khoo, Theresa S.
  • Non-patent literature 2 Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka, Kenji Takada, Nature, Vol. 412, No. 6848, pp. 697-698 (Published August 16, 2001)
  • Non-Patent Document 3 EUROPEAN MATERIALS RESEARCH SOCIETY 2003 SPRING MEETING (June 10-13, 2003 Proceedings)
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-1599 (Publication date: January 8, 2003) [Problems to be solved by the invention]
  • Non-Patent Document 1 it is difficult to mix titanium (IV) ethoxide with a photocurable resin, and furthermore, the titanium dioxide contained in the photocurable resin aggregates. Problem. Further, according to this method, the particle diameter of titanium dioxide contained in the photocurable resin can be reduced to only about 1 zm. In addition, the titanium (IV) ethoxide used in this method readily reacts with water vapor in the air. For this reason, the method disclosed in Non-Patent Document 1 has a problem that it must be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • Patent Document 1 is a method in which a fluorescent dye itself is mixed with a photocurable resin, so that the function of the fluorescent dye is affected by the relationship with the ultraviolet light that polymerizes the photocurable resin. There is a problem that S is restricted.
  • Non-Patent Document 2 discloses a method of including particles in a photocurable resin, and discloses any method.
  • the present invention has been made in view of the above-described conventional problems, and has as its object to disperse fine particles in a resin without restricting the function of the fine particles, and to manufacture the resin by this method.
  • Another object of the present invention is to provide a structure made of a resin containing nanoparticles, and a micro / nano device using the structure. Disclosure of the invention
  • a method for producing a structure of the present invention is a method for producing a structure comprising a resin and nanoparticles dispersed in the resin, comprising: The precursors of the nanoparticles are mixed with the monomer and Z or oligomer, and the monomers and / or oligomers are cured by a two-photon photopolymerization method. It is characterized by producing nanoparticles.
  • the substance may include an ion or the ion. It is characterized by using a compound.
  • nanoparticles are fine particles produced by the method of the present invention. According to the method of the present invention, nanoparticles having an average particle diameter of less than 1 zm are easily produced. For example, those having an average particle diameter of 500 nm or less, 300 nm or less, and 100 nm or less can be easily produced. Further, the term “substance that is a precursor of nanoparticles” refers to a substance capable of producing nanoparticles, such as an ion and a compound containing the ion.
  • the “two-photon photopolymerization method” means photopolymerization in which polymerization is initiated by two-photon absorption.
  • two-photon absorption is a kind of third-order nonlinear optical effect, and is a process in which molecules that simultaneously absorb two photons are excited. In two-photon absorption, two photons are excited, so the energy per photon is half that of normal one-photon absorption.
  • the frequency is half of one-photon absorption
  • the wavelength is twice that of one-photon absorption.
  • the probability of one-photon absorption is usually proportional to the intensity of incident light, while that of two-photon absorption is proportional to the square of the intensity of incident light. Therefore, according to two-photon absorption, molecules in a spatially minute region can be excited.
  • the wavelength used is twice that of the one-photon absorption, and the molecules are excited at a long wavelength. Therefore, (1) the light transmittance to the substance is improved, and It has the advantage that molecules at deep positions can be excited. (2) The molecules excited and polymerized by photons are less susceptible to light scattering and refraction in the sample.
  • a fine structure made of a resin can be obtained by curing a monomer and / or an oligomer as a raw material of the resin by a two-photon photopolymerization method. Further, according to this, the substance serving as the precursor of the nanoparticle can be held in the fine structure made of the resin. By using the substance held in the fine structure of the resin as a reactant and performing a chemical reaction to generate nanoparticles, a nanoparticle with an extremely small particle size is generated in the fine structure of the resin. Can be done.
  • the substance to be a precursor of the nanoparticle which is held by the resin, is controlled.
  • the distribution can be manipulated freely in two and / or three dimensions. That is, before Since the precursor can be arranged at a desired position in the resin, the precursor material of the nanoparticle has a structure in which the substance is regularly arranged in a plane and a structure in which the substance is regularly arranged in a three-dimensional manner. Alternatively, a structure in which a two-dimensional arrangement and a three-dimensional arrangement are combined can be easily manufactured.
  • the monomer and Z or the oligomer as the raw material of the resin are mixed with the substance as the precursor of the nanoparticle rather than mixing the nanoparticle itself, and the two-photon light is obtained.
  • Nanoparticles are generated after the resin is formed by polymerizing the raw materials by the polymerization method.
  • the function of the nanoparticles is not limited by the condition that they are mixed with the monomer and / or the oligomer.
  • nanoparticles can be dispersed in the fine structure of the resin. Therefore, it is possible to manufacture a resin structure in which nanoparticles having a very small particle diameter are dispersed. In addition, in such a structure, the function provided by the nanoparticles is sufficiently exhibited. The ability to efficiently disperse nanoparticles in a resin with high viscosity can be achieved.
  • the chemical reaction includes an oxidation reaction, a reduction reaction, a hydroxylation reaction, a dehydration reaction, a sulfidation reaction, and a redox reaction. It is characterized by being at least one kind of chemical reaction selected from:
  • nanoparticles can be generated by a simple operation.
  • the structure of the present invention is characterized by comprising a resin and nanoparticles dispersed in the resin and having an average particle diameter of 300 nm or less.
  • the optical properties of the resin in which the nanoparticles are dispersed can be arbitrarily adjusted by controlling the distribution of the nanoparticles having an average particle diameter of 300 nm or less dispersed in the resin. Therefore, it is possible to provide a structure having suitable optical properties according to the purpose and application. [0021]
  • the resin is a photocurable resin.
  • the mechanical properties of the structure can be improved. That is, according to the photocurable resin, a high-strength structure can be formed by curing the resin by irradiating light. Therefore, the mechanical properties of the structure can be improved by using the photocurable resin. Can be.
  • the nanoparticles are made of at least one selected from metals, semiconductors, and oxides.
  • nanoparticles of metals, semiconductors, and oxides have various functions, such as conductivity and luminescent properties, and have various functions by dispersing them in resin. It can be a structure.
  • the structure of the present invention has a distance force of 10 / m or less between two furthest points on the outer shape of a cross section cut in a direction perpendicular to the direction of extension of the fine particle-containing portion including the nanoparticle. Configuration.
  • a photonic crystal can be formed from the structure according to the present invention.
  • the photonic crystal of the present invention comprises the above-described structure, and is characterized in that the lattice constant is 20 ⁇ m or less.
  • a micro'nano device includes an optical waveguide, an optical switch, or an optical integrated circuit constituted by the above structure.
  • the structure and the photonic crystal manufactured by the manufacturing method of the present invention can be used as a micro'nano device having a new function.
  • Micro-nano devices are manufactured by “nano processing” that combines “micro-machining”, a micro-processing technology, and “nano-machining”, which forms an ultra-fine structure at the atomic and molecular level. Can the manufacturing method produce new structures and photonic crystals? By using these, micro-nano devices with new functions can be realized.
  • FIG. 1 (a) is a view schematically showing a structure that is effective in the present embodiment, and a hatched portion is a fine particle containing portion containing nanoparticles.
  • FIG. 1 (b) is a view schematically showing a structure acting on the present embodiment, which is a cross-sectional view taken along an arrow when cut in a direction perpendicular to a direction in which a resin portion containing fine particles extends. Is shown.
  • FIG. 2 is an absorbance curve showing the absorbance of titanium (IV) atalylate when the mixing ratio of titanium (IV) ethoxide and acrylic acid is changed.
  • FIG. 3 is an absorbance curve showing the absorbance of a titanium (IV) -containing resin when the ratio of titanium (IV) atalylate in the titanium (IV) -containing resin is changed.
  • FIG. 4 is a view showing a relationship between laser irradiation time and resin size by two-photon photopolymerization in Examples.
  • FIG. 5 is a view showing a relationship between laser irradiation time and resin size in Examples.
  • FIG. 6 is a view showing the state of a hydrated titanium (IV) -containing resin before and after heat treatment, observed with an electron microscope in Examples.
  • FIG. 7 (a) is a view showing the structure of the resin of FIG. 6 observed with an electron microscope.
  • FIG. 7 (b) is a view showing a state of a hydrated titanium (IV) -containing resin before heat treatment observed by the electron microscope of FIG.
  • FIG. 7 (c) is a view showing a state of the hydrated titanium (IV) -containing resin (structure of the example) after the heat treatment, observed with the electron microscope of FIG.
  • FIG. 8 is a graph showing the light transmittance of the monomer of the urethane acrylate-based photocurable resin SCR500, the resin containing titanium (IV) hydrate, and the structure of this example in the example of the present invention. is there.
  • the structure according to the present embodiment has a configuration including a resin and nanoparticles dispersed in the resin.
  • a method for manufacturing a structure according to the present invention will be described below.
  • a substance serving as a precursor of nanoparticle is mixed with a monomer and / or oligomer (hereinafter, appropriately referred to as "monomer”) serving as a raw material of a resin.
  • the substance that is a precursor of the nanoparticle is, as described above, a substance that can generate a nanoparticle such as an ion or a compound containing the ion. If the nanoparticle to be used is titanium oxide (Ti ⁇ ), the precursor substance should be titanium
  • the type of the ions is not particularly limited, and depends on the type of the nanoparticles dispersed in the resin. May be set appropriately. Further, one kind of the above-mentioned ions may be used, or two or more kinds may be used as needed.
  • ions themselves or compounds containing the ions can be used as the precursor of the nanoparticle, but these can be mixed with monomers and the like. is there.
  • the compound include a metal complex such as titanium ethoxide (Ti (OCHCH)); a metal salt such as chloroauric acid; or cadmium oxide (CdO).
  • the above-mentioned monomer and the like are not particularly limited as long as they are a raw material of a resin and start photopolymerization by two-photon absorption.
  • the degree of polymerization of the above oligomer is not particularly limited as long as it is about 2-20.
  • the monomer or the like it is preferable to use, as the monomer or the like, one that becomes a photocurable resin by being cured by irradiation with ultraviolet light.
  • Thermosetting resin cures monomer etc. Since the volumetric shrinkage and the mechanical strength at the time of the formation are small, the mechanical properties of the structure can be improved.
  • methacrylic acid C
  • monomers such as phthalate, styrene and epoxy monomers and z or their oligomers.
  • monomers such as phthalate, styrene and epoxy monomers and z or their oligomers.
  • one type of these monomers and the like may be used, or two or more types may be used as necessary.
  • the mixing ratio of the substance serving as the precursor of the nanoparticle to the monomer is preferably in the range of 0.1% by weight to 60% by weight. More preferably, it is in the range of 1% by weight to 20% by weight.
  • the mixing ratio between the precursor substance and the monomer or the like is equal to or more than the lower limit of the preferable range, the amount of the nanoparticles dispersed in the resin becomes too small, and the properties of the nanoparticles are utilized. It can be prevented from becoming a structure.
  • the mixing ratio of the precursor substance and the monomer or the like is set to the upper limit of the above-mentioned preferable range or less, the amount of the nano-particles contained in the resin is too large, and thus the nano-particles are used. It is possible to control that the optical properties of the structure cannot be controlled.
  • titanium ion (Ti 3+ (IV)) When titanium ion (Ti 3+ (IV)) is used as the precursor substance, the ratio of titanium ion to monomer (titanium ion / monomer, etc.) is 1% by weight or more and 15% by weight or less. It is more preferable to be within the range of 2% by weight or more and 10% by weight or less.
  • the mixing ratio (gold ion / monomer, etc.) of the gold ion and the above-mentioned monomer or the like is 1% by weight or more. It is more preferable to be within the range of 5% by weight or less, more preferably within the range of 5% by weight or more and 20% by weight or less.
  • the force Domiu Ion and mixing ratio of the monomers are 1 weight 0/0 or more It is more preferable that the content be in the range of 10% by weight or less, and it is further preferable that the content be 0.5% by weight or more and 5% by weight or less.
  • the monomer and the like are cured by a two-photon photopolymerization method. In this embodiment mode, the monomer or the like is irradiated with laser light to cause the monomer or the like to perform two-photon absorption. Then, two-photon photopolymerization is initiated using a polymerization initiator.
  • the type of the polymerization initiator is not particularly limited, and may be appropriately set as needed.
  • the output of the laser beam (energy of the laser beam) may be in the range of 0.1 lmW or more and 10 OmW or less.
  • the output is preferably in the range of lmW to 200 mW, more preferably in the range of 3 mW to 50 mW.
  • the output of the laser beam is equal to or more than the lower limit of the above preferable range, photopolymerization can be suitably performed.
  • the output of the laser beam is set to be equal to or less than the upper limit of the preferable range, the monomer and the like can be prevented from being denatured by the heat of the laser beam. Upon irradiation with the laser light, the monomer or the like that has absorbed two photons undergoes photopolymerization to become a resin.
  • the production method of the present embodiment since a monomer or the like is cured by a two-photon photopolymerization method, a fine structural resin can be obtained. As a result, the precursor of the nanoparticle is held in the fine resin.
  • the distribution of the precursor substance held in the resin can be two-dimensionally and / or three-dimensionally. It can be operated freely.
  • an arbitrary structure made of a resin can be produced in two-dimensional and / or three-dimensional directions, so that the distribution of the precursor substance contained in the resin can be freely determined. Can be operated.
  • a chemical reaction using the substance as a reactant is performed to generate the nanoparticle in the resin.
  • the above-mentioned chemical reaction is not particularly limited as long as it is a reaction for generating nanoparticles from a substance that is a precursor of the nanoparticles, and examples thereof include an oxidation reaction; a photoreduction reaction, a chemical reduction reaction, and the like. Reduction reaction; hydroxylation reaction; dehydration reaction by heating or the like; sulfidation reaction, and oxidation-reduction reaction.
  • nanoparticles can be generated by, for example, a sulfidation reaction.
  • the sulfurization reaction when the precursor material is Cd 2+ is shown by the following formula (1).
  • nanoparticles may be generated from cadmium ions by an oxidation-reduction reaction represented by the following formula (2).
  • different types of nanoparticles can be generated from a substance that is a precursor of the same type of nanoparticles by performing different chemical reactions.
  • the precursor substance is a titanium ion (Ti 3+ (IV))
  • the precursor substance that is, the resin holding the titanium ion
  • the precursor substance is subjected to the two-photon photopolymerization method. Simply by leaving it in the air, the titanium ions react with the water vapor (H ⁇ ) in the air,
  • Nanoparticles composed of titanium dioxide (TiO 2) are produced.
  • a substance that is a precursor of the nanoparticle is not mixed with a monomer or the like that is a material of the resin, but is mixed with a monomer or the like that is a material of the resin. Since the nanoparticles are formed after the resin is formed by the two-photon photopolymerization method, the function of the nanoparticles is not limited. Therefore, it is possible to manufacture a structure in which the function of the nanoparticles is sufficiently exhibited.
  • the substance serving as the precursor of the nanoparticle can be uniformly mixed in the monomer or the like, the precursor that is related to the viscosity of the resin produced by polymerization of the monomer or the like can be used.
  • the body can be evenly dispersed. Therefore, it is possible to efficiently disperse the nanoparticles in a resin with high viscosity.
  • the structure obtained by the method according to the present embodiment is a structure in which nanoparticles are dispersed in a fine resin.
  • the average particle diameter of the nanoparticles can be reduced to 300 nm or less.
  • the average particle diameter of the nanoparticles is set to 100 nm or less. It is more preferable that the thickness be 50 nm or less. As the average particle diameter of the nanoparticles becomes smaller, the optical properties of the structure can be more suitably controlled using the nanoparticles.
  • a precursor of the nanoparticle is formed by the above-described chemical reaction such that the resin contains a substance such as a metal, a semiconductor, an oxide, or a pigment. It is preferred to select the type of substance. If the structure contains one or more types of substances composed of metals, semiconductors, oxides, and pigments as nanoparticles, the structure having various functions can be created by utilizing the properties of the nanoparticles. Can be provided. For example, a nanoparticle made of cadmium sulfide (CdS) can provide a structure having light emission characteristics.
  • CdS cadmium sulfide
  • the space region including the nanoparticles is referred to as a “particle-containing portion”.
  • 1 (a) and 1 (b) schematically show a structure according to the present invention.
  • a hatched portion is a fine particle-containing portion.
  • Fig. 1 (b) is a cross-sectional view taken along the arrow (A-A 'direction) perpendicular to the direction of elongation of the fine particle-containing portion (the direction indicated by arrow D in Fig. 1 (a)).
  • the structure according to the present embodiment has a distance between the two furthest points on the outer shape of the cross section cut in a direction perpendicular to the direction of extension of the fine particle-containing portion, that is, the point shown in FIG.
  • the distance between B and B 'can be less than 500nm.
  • the distance between B and B 'can be set to 200 nm or less, or 10 ⁇ or less.
  • the “distance between the two furthest points on the outer shape” is, for example, the diameter of a circle if the cross section is circular, or the major axis of an ellipse if the cross section is elliptical.
  • the period of the nanoparticles contained in the particle-containing portion can be set to about the wavelength of light.
  • Photonic crystals with a lattice constant of 20 xm or less and 750 nm or less can be constructed.
  • the structure according to the present invention can be obtained.
  • Acrylic acid represented by and titanium (IV) ethoxide hereinafter referred to as “TE”
  • TE titanium ethoxide
  • Fig. 2 shows the absorbance of titanium (IV) atalylate when the mixing ratio of TE and acrylic acid was changed. Note that the horizontal axis in FIG. 2; I indicates the wavelength of light incident on the titanium (IV) acrylate.
  • R represents a hydrocarbon group
  • the polymer After mixing the monomer of the urethane acrylate-based photocurable resin SCR500 (Nippon Synthetic Rubber Co., Ltd.) and the polymerization initiator represented by the formula, the polymer is irradiated with laser light and subjected to two-photon photopolymerization.
  • SCR500 Natural Rubber Co., Ltd.
  • FIG. 3 shows an absorbance curve showing the absorbance of the titanium (IV) -containing resin when the ratio of the titanium (IV) atalylate in the titanium (IV) -containing resin was changed.
  • FIG. 4 shows the result of examining the relationship between the time (1 / second (s)) and the size of the resin obtained by the laser irradiation time. From the figure, it can be seen that the longer the laser irradiation time, the larger the size of the obtained resin.
  • Fig. 5 shows the laser irradiation time (1 / sec (s)) and the size of the resin cured by the irradiation when the laser light output was set to 300mW, 400mW, and 500mW (this is referred to as " Point size ”). The figure shows that the longer the laser irradiation time, the larger the size of the resin obtained by the irradiation.
  • a hydrated titanium (IV) -containing resin represented by the following formula was obtained.
  • FIG. 6 shows the state of the hydrated titanium (IV) -containing resin before the heat treatment (left side in the figure) and after the heat treatment (right side in the figure) observed by an electron microscope.
  • FIG. 7 (a) shows the resin of FIG. 6 observed with an electron microscope. As shown in the figure, the ⁇ 100> plane of the structure had an 8 ⁇ 8 ⁇ 2 structure, and the lattice constant at that time was 2.5 ⁇ ⁇ .
  • Fig. 7 (b) shows the state of the hydrated titanium (IV) -containing resin before the above-mentioned heat treatment observed by an electron microscope
  • Fig. 7 (c) shows the hydrated titanium hydrate after the above heat treatment.
  • (IV) Containing resin that is, one example of the structure of the present invention
  • the hydrated titanium (IV) -containing resin before the heat treatment has a sphere structure with a diameter of 580 nm as shown by the circle in Fig. 7 (b) and a length between the spheres in the stretching direction. Is a 500nm rod (indicated by a square in the figure) Two three-dimensional structures were formed.
  • FIG. 8 shows the results of examining the light transmittance of the urethane acrylate-based photocurable resin SCR500 monomer, the hydrated titanium (IV) -containing resin, and the structure of this example.
  • the ⁇ base line '' is the background
  • the ⁇ resin '' is the transmittance of the urethane acrylate-based photocurable resin SCR500 monomer
  • the ⁇ resin + Ti 4+ + before heat treatment '' is titanium (IV) hydrate.
  • the transmittance of the contained resin, “resin + Ti 4 ++ after heat treatment” indicates the transmittance of the structure. From the results shown in FIG. 8, it was found that the band gap of the structure obtained in this example transits to a higher wavenumber region as compared with the hydrated titanium (IV) -containing resin before the heat treatment.
  • the structure and the method of manufacturing the same according to the present invention control the dispersion of the nanoparticle in the resin and the resin.

Abstract

Disclosed are a structure composed of a resin and nanoparticles dispersed in the resin and a method for producing such a structure. A substance as the precursor of the nanoparticles is mixed into a monomer and/or oligomer as the raw material of the resin, and the monomer and/or oligomer is polymerized into the resin by two-photon photopolymerization. Then nanoparticles are formed by a chemical reaction such as oxidation, reduction, hydroxylation, dehydration, sulfuration, or oxidation-reduction, using the above-mentioned substance as a reactant.

Description

明 細 書  Specification
構造体および構造体の製造方法  Structure and method of manufacturing structure
技術分野  Technical field
[0001] 本発明は、構造体および構造体の製造方法に関し、特に、樹脂および該樹脂の中 に分散したナノ微粒子からなる構造体、およびその製造方法に関するものである。 背景技術  The present invention relates to a structure and a method for manufacturing the structure, and more particularly, to a structure including a resin and nanoparticles dispersed in the resin, and a method for manufacturing the same. Background art
[0002] 金属ナノ微粒子などのナノ機能性材料を含む高分子マイクロ 'ナノ三次元構造は、 MENS (Micro Electro Mechanical Systems:微小電気機械システム)及び NEMS ( Nano Electro Mechanical Systems:ナノ電気機械システム)をはじめとする各種マイク 口 ·ナノデバイスに新たな特性を与えるものである。このため、上記の高分子マイクロ' ナノ三次元構造は、様々な用途への応用が期待されている。  [0002] Polymer micro 'nano three-dimensional structures including nano-functional materials such as metal nanoparticles are available in MENS (Micro Electro Mechanical Systems) and NEMS (Nano Electro Mechanical Systems). Various types of microphones · New characteristics are given to nanodevices. For this reason, the above-mentioned three-dimensional structure of polymer micro'nano is expected to be applied to various uses.
[0003] 高分子の中に粒子を含んでなる構造体を製造する方法は、例えば非特許文献 1や 特許文献 1などに記載されている。非特許文献 1には先行技術として、光硬化性樹脂 の中に二酸化チタンを含む構造体を製造する方法が開示されてレ、る。この方法は、 チタン (IV)エトキシド、光硬化性樹脂としてのメタクリル酸、エチレングリコールジメタ タリレート、および重合開始剤としての 2, 2—ジメトキシ一 2—フエ二ルァセトフエノンを 含む溶液を、フォトリソグラフィー技術を用いて紫外光(波長 355nm)により硬化させ るものである。  [0003] A method for producing a structure including particles in a polymer is described in, for example, Non-Patent Document 1 and Patent Document 1. Non-Patent Document 1 discloses, as a prior art, a method of manufacturing a structure containing titanium dioxide in a photocurable resin. This method uses a solution containing titanium (IV) ethoxide, methacrylic acid as a photocurable resin, ethylene glycol dimethacrylate, and 2,2-dimethoxy-12-phenylacetophenone as a polymerization initiator. Is cured by ultraviolet light (wavelength: 355 nm).
[0004] また、特許文献 1には、光硬化性樹脂の中に蛍光色素を含む構造体を製造する方 法が開示されている。この方法は、蛍光色素を光硬化性樹脂に混合し、二光子吸収 により光硬化性樹脂を光重合させて硬化させるものである。また、二光子吸収を用い たマイクロ 'ナノデバイスの製造方法については、例えば非特許文献 2 3に開示さ れている。  [0004] Patent Document 1 discloses a method for producing a structure containing a fluorescent dye in a photocurable resin. In this method, a fluorescent dye is mixed with a photocurable resin, and the photocurable resin is photopolymerized and cured by two-photon absorption. Further, a method for manufacturing a micro'nano device using two-photon absorption is disclosed in Non-Patent Document 23, for example.
[0005] 〔非特許文献 1〕 Atsushi Shishido, Ivan B. Diviliansky, I. C. Khoo, Theresa S.  [Non-Patent Document 1] Atsushi Shishido, Ivan B. Diviliansky, I. C. Khoo, Theresa S.
Mayer, Suzushi Nishimura, Gina L. Egan, and Thomas E. Mallouk, APPLIED  Mayer, Suzushi Nishimura, Gina L. Egan, and Thomas E. Mallouk, APPLIED
PHYSICS LETTERS 79卷、 20号(2001年 11月 12日発行)  PHYSICS LETTERS Vol. 79, No. 20, issued on November 12, 2001
〔非特 3午文献 2〕 Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka, Kenji Takada, Nature, Vol. 412, No. 6848, pp. 697-698 (2001年 8月 16日発行)(Non-patent literature 2) Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka, Kenji Takada, Nature, Vol. 412, No. 6848, pp. 697-698 (Published August 16, 2001)
〔非特許文献 3〕 EUROPEAN MATERIALS RESEARCH SOCIETY 2003 SPRING MEETING (6月 10日— 13日, 2003予稿集) [Non-Patent Document 3] EUROPEAN MATERIALS RESEARCH SOCIETY 2003 SPRING MEETING (June 10-13, 2003 Proceedings)
〔特許文献 1〕 特開 2003—1599号公報 (公開日:平成 15年 1月 8日) 〔発明が解決しょうとする課題〕  [Patent Document 1] Japanese Patent Application Laid-Open No. 2003-1599 (Publication date: January 8, 2003) [Problems to be solved by the invention]
し力 ながら、上記非特許文献 1の方法では、チタン (IV)エトキシドと光硬化性樹 脂とを混合することが困難であり、そのうえに、光硬化性樹脂の中に含まれる二酸化 チタンが凝集してしまうという問題がある。また、この方法によれば、光硬化性樹脂の 中に含まれる二酸化チタンの粒子径を 1 z m程度にしかすることができない。さらに、 この方法において使用されるチタン (IV)エトキシドは、空気中の水蒸気と容易に反 応してしまう。このために、非特許文献 1に開示されている方法は、窒素やアルゴンな どの不活性ガス雰囲気下で行わなければならないという問題もある。  However, in the method of Non-Patent Document 1, it is difficult to mix titanium (IV) ethoxide with a photocurable resin, and furthermore, the titanium dioxide contained in the photocurable resin aggregates. Problem. Further, according to this method, the particle diameter of titanium dioxide contained in the photocurable resin can be reduced to only about 1 zm. In addition, the titanium (IV) ethoxide used in this method readily reacts with water vapor in the air. For this reason, the method disclosed in Non-Patent Document 1 has a problem that it must be performed in an atmosphere of an inert gas such as nitrogen or argon.
[0006] また、上記特許文献 1に記載の方法は、蛍光色素そのものを光硬化性樹脂に混合 する方法であるため、光硬化性樹脂を重合する紫外光との関係で、蛍光色素の機能 力 S制限されてしまうという問題点がある。また、上記非特許文献 2には、光硬化性榭 脂の中に粒子を含ませる方法にっレ、ては、何ら開示されてレ、なレ、。  [0006] Further, the method described in Patent Document 1 is a method in which a fluorescent dye itself is mixed with a photocurable resin, so that the function of the fluorescent dye is affected by the relationship with the ultraviolet light that polymerizes the photocurable resin. There is a problem that S is restricted. In addition, Non-Patent Document 2 discloses a method of including particles in a photocurable resin, and discloses any method.
[0007] 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、微粒子の 機能を制限することなぐ樹脂の中に微粒子を分散させる方法、およびこの方法によ り製造される、ナノ微粒子を含む樹脂からなる構造体、並びにこの構造体を利用した マイクロ ·ナノデバイスを提供することにある。 発明の開示  [0007] The present invention has been made in view of the above-described conventional problems, and has as its object to disperse fine particles in a resin without restricting the function of the fine particles, and to manufacture the resin by this method. Another object of the present invention is to provide a structure made of a resin containing nanoparticles, and a micro / nano device using the structure. Disclosure of the invention
[0008] 本発明の構造体の製造方法は、上記の課題を解決するために、樹脂および該樹 脂の中に分散したナノ微粒子からなる構造体の製造方法であって、上記樹脂の原料 となるモノマーおよび Zまたはオリゴマーに、上記ナノ微粒子の前駆体となる物質を 混合し、二光子光重合法により上記モノマーおよび/またはオリゴマーを硬化させた 後、上記物質を反応物として用いる化学反応により上記ナノ微粒子を生成させること を特徴としている。  [0008] In order to solve the above-mentioned problems, a method for producing a structure of the present invention is a method for producing a structure comprising a resin and nanoparticles dispersed in the resin, comprising: The precursors of the nanoparticles are mixed with the monomer and Z or oligomer, and the monomers and / or oligomers are cured by a two-photon photopolymerization method. It is characterized by producing nanoparticles.
[0009] また本発明の構造体の製造方法は、上記物質として、イオンまたは該イオンを含む 化合物を用いることを特徴としてレ、る。 [0009] Further, in the method for producing a structure of the present invention, the substance may include an ion or the ion. It is characterized by using a compound.
[0010] 本発明において、「ナノ微粒子」とは、本発明の方法によって生成される微粒子であ り、本発明の方法によれば、平均粒子径が 1 z m未満のナノ微粒子を容易に生成す ること力 Sでき、例えば、その平均粒子径が、 500nm以下、 300nm以下、 lOOnm以 下のものを容易に生成することができる。また、「ナノ微粒子の前駆体となる物質」とは 、イオンゃ該イオンを含む化合物などのナノ微粒子を生成できる物質を意味してレ、る 。また、「二光子光重合法」とは、二光子吸収によって重合を開始する光重合を意味 している。なお、二光子吸収とは、三次の非線形光学効果の一種であり、 2個の光子 を同時に吸収した分子が励起する過程である。二光子吸収においては、光子 2個で 励起を行うため、光子 1個あたりのエネルギーが通常の一光子吸収の場合と比べて 半分となる。  [0010] In the present invention, "nanoparticles" are fine particles produced by the method of the present invention. According to the method of the present invention, nanoparticles having an average particle diameter of less than 1 zm are easily produced. For example, those having an average particle diameter of 500 nm or less, 300 nm or less, and 100 nm or less can be easily produced. Further, the term “substance that is a precursor of nanoparticles” refers to a substance capable of producing nanoparticles, such as an ion and a compound containing the ion. The “two-photon photopolymerization method” means photopolymerization in which polymerization is initiated by two-photon absorption. Note that two-photon absorption is a kind of third-order nonlinear optical effect, and is a process in which molecules that simultaneously absorb two photons are excited. In two-photon absorption, two photons are excited, so the energy per photon is half that of normal one-photon absorption.
[0011] すなわち、二光子吸収では、その振動数が一光子吸収の半分となり、その波長は 一光子吸収の倍になる。また、通常の一光子吸収の発生確率は入射光強度に比例 するが、二光子吸収においては入射光強度の 2乗に比例する。このため、二光子吸 収によれば、空間的に微小な領域の分子を励起することができる。  That is, in two-photon absorption, the frequency is half of one-photon absorption, and the wavelength is twice that of one-photon absorption. The probability of one-photon absorption is usually proportional to the intensity of incident light, while that of two-photon absorption is proportional to the square of the intensity of incident light. Therefore, according to two-photon absorption, molecules in a spatially minute region can be excited.
[0012] さらに、二光子吸収においては、用いられる波長が一光子吸収の場合の倍であり、 長い波長で分子の励起を行うから、(1)物質に対する光の透過率が良くなつて、より 深い位置の分子を励起することができる、(2)光子により励起、重合される分子が、試 料中における光の散乱、屈折の影響を受け難くなる、という利点がある。  [0012] Further, in the two-photon absorption, the wavelength used is twice that of the one-photon absorption, and the molecules are excited at a long wavelength. Therefore, (1) the light transmittance to the substance is improved, and It has the advantage that molecules at deep positions can be excited. (2) The molecules excited and polymerized by photons are less susceptible to light scattering and refraction in the sample.
[0013] したがって上記の構成によれば、樹脂の原料となるモノマーおよび/またはオリゴ マーを二光子光重合法により硬化させることで、樹脂よりなる微細構造を得ることがで きる。また、これによれば、ナノ微粒子の前駆体となる物質を、上記樹脂よりなる微細 構造中に保持させることができる。このように樹脂の微細構造中に保持された物質を 反応物として用いて、化学反応を行うことでナノ微粒子を生成させれば、樹脂の微細 な構造中に粒子径の極めて小さいナノ微粒子を生成させることができる。  [0013] Accordingly, according to the configuration described above, a fine structure made of a resin can be obtained by curing a monomer and / or an oligomer as a raw material of the resin by a two-photon photopolymerization method. Further, according to this, the substance serving as the precursor of the nanoparticle can be held in the fine structure made of the resin. By using the substance held in the fine structure of the resin as a reactant and performing a chemical reaction to generate nanoparticles, a nanoparticle with an extremely small particle size is generated in the fine structure of the resin. Can be done.
[0014] さらに、これによれば、二光子光重合法を行うときの光の照射時間やエネルギー、 照射方向等を調節することで、樹脂に保持される、ナノ微粒子の前駆体となる物質の 分布を 2次元および/または 3次元的に自由に操作することができる。すなわち、前 駆体を上記樹脂中の所望の位置に配置することができるから、ナノ微粒子の前駆体 となる物質が、平面的に規則的に配置された構造、立体的に規則的に配置された構 造、または、平面的配置と立体的配置とが組み合わさった構造を容易に作製すること ができる。 [0014] Further, according to this, by adjusting the irradiation time, energy, irradiation direction, and the like of light when performing the two-photon photopolymerization method, the substance to be a precursor of the nanoparticle, which is held by the resin, is controlled. The distribution can be manipulated freely in two and / or three dimensions. That is, before Since the precursor can be arranged at a desired position in the resin, the precursor material of the nanoparticle has a structure in which the substance is regularly arranged in a plane and a structure in which the substance is regularly arranged in a three-dimensional manner. Alternatively, a structure in which a two-dimensional arrangement and a three-dimensional arrangement are combined can be easily manufactured.
[0015] また、上記の構成によれば、樹脂の原料となるモノマーおよび Zまたはオリゴマー に、ナノ微粒子そのものを混合するのではなぐナノ微粒子の前駆体となる物質を混 合して、二光子光重合法により原料を重合して樹脂を形成した後にナノ微粒子を生 成する。このため、本発明の製造方法によれば、モノマーおよび/またはオリゴマー に混合するという条件によって、ナノ微粒子の機能が制限されることはない。また、樹 脂の原料となるモノマーおよび/またはオリゴマー中に混合されるのは、ナノ微粒子 そのものではなくナノ微粒子の前駆体となる物質であるから、製造される樹脂の粘度 に関係なぐ原料中に満遍なく混合することができる。  [0015] Further, according to the above configuration, the monomer and Z or the oligomer as the raw material of the resin are mixed with the substance as the precursor of the nanoparticle rather than mixing the nanoparticle itself, and the two-photon light is obtained. Nanoparticles are generated after the resin is formed by polymerizing the raw materials by the polymerization method. For this reason, according to the production method of the present invention, the function of the nanoparticles is not limited by the condition that they are mixed with the monomer and / or the oligomer. In addition, since what is mixed into the monomer and / or oligomer used as the resin raw material is not the nanoparticle itself but the substance that serves as the precursor of the nanoparticle, it is included in the raw material that is related to the viscosity of the resin to be manufactured. Can be mixed evenly.
[0016] それゆえ、本発明の製造方法によれば、樹脂の微細な構造の中にナノ微粒子を分 散させることができる。よって、粒子径の極めて小さいナノ微粒子が分散した樹脂の 構造体を製造することができる。また、このような構造体においては、ナノ微粒子が備 える機能が十分に発揮される。そして、粘度の高い樹脂の中にもナノ微粒子を効率よ く分散させること力 Sできる。  Therefore, according to the production method of the present invention, nanoparticles can be dispersed in the fine structure of the resin. Therefore, it is possible to manufacture a resin structure in which nanoparticles having a very small particle diameter are dispersed. In addition, in such a structure, the function provided by the nanoparticles is sufficiently exhibited. The ability to efficiently disperse nanoparticles in a resin with high viscosity can be achieved.
[0017] 本発明の構造体の製造方法は、上記の課題を解決するために、上記化学反応が、 酸化反応、還元反応、水酸化反応、脱水反応、硫化反応、および酸化還元反応から なる群から選ばれる少なくとも 1種類の化学反応であることを特徴としている。  [0017] In order to solve the above problems, in the method for manufacturing a structure of the present invention, the chemical reaction includes an oxidation reaction, a reduction reaction, a hydroxylation reaction, a dehydration reaction, a sulfidation reaction, and a redox reaction. It is characterized by being at least one kind of chemical reaction selected from:
[0018] 上記の構成によれば、簡単な操作によりナノ微粒子を生成することができる。  According to the above configuration, nanoparticles can be generated by a simple operation.
[0019] また本発明の構造体は、上記の課題を解決するために、樹脂および該樹脂の中に 分散した平均粒子径が 300nm以下のナノ微粒子からなることを特徴としている。  [0019] Further, in order to solve the above problems, the structure of the present invention is characterized by comprising a resin and nanoparticles dispersed in the resin and having an average particle diameter of 300 nm or less.
[0020] 上記の構成によれば、光学的性質が制御された構造体を提供することができる。  According to the above configuration, it is possible to provide a structure whose optical properties are controlled.
すなわち、樹脂中に分散されている平均粒子径 300nm以下のナノ微粒子の分布を 制御することによって、ナノ微粒子が分散されている樹脂の光学的な性質を任意に 調整できる。したがって、 目的、用途に応じて、好適な光学的性質を備えた構造体を 提供すること力 Sできる。 [0021] 本発明の構造体は、上記の課題を解決するために、上記樹脂が光硬化性樹脂で あることが好ましい。 That is, the optical properties of the resin in which the nanoparticles are dispersed can be arbitrarily adjusted by controlling the distribution of the nanoparticles having an average particle diameter of 300 nm or less dispersed in the resin. Therefore, it is possible to provide a structure having suitable optical properties according to the purpose and application. [0021] In the structure of the present invention, in order to solve the above problems, it is preferable that the resin is a photocurable resin.
[0022] 上記の構成によれば、構造体の機械特性を向上させることができる。すなわち、光 硬化性樹脂によれば、光の照射により樹脂を硬化させて高強度の構造体を形成する ことができるから、光硬化性樹脂を用いることにより構造体の機械特性を向上させるこ とができる。  According to the above configuration, the mechanical properties of the structure can be improved. That is, according to the photocurable resin, a high-strength structure can be formed by curing the resin by irradiating light. Therefore, the mechanical properties of the structure can be improved by using the photocurable resin. Can be.
[0023] 本発明の構造体は、上記の課題を解決するために、上記ナノ微粒子が、金属、半 導体、および酸化物から選ばれる少なくとも 1種類からなるものであることが好ましい。  [0023] In the structure of the present invention, in order to solve the above-mentioned problems, it is preferable that the nanoparticles are made of at least one selected from metals, semiconductors, and oxides.
[0024] 上記の構成によれば、本発明の構造体に様々な機能を付与することができる。すな わち、金属、半導体、および酸化物のナノ微粒子は、導電性や発光特性等、様々な 機能を有しているから、これらを樹脂中に分散させることによって、様々な機能を備え た構造体とすることができる。  [0024] According to the above configuration, various functions can be imparted to the structure of the present invention. In other words, nanoparticles of metals, semiconductors, and oxides have various functions, such as conductivity and luminescent properties, and have various functions by dispersing them in resin. It can be a structure.
[0025] また本発明の構造体は、上記ナノ微粒子を含む微粒子含有部の伸長方向に対し て垂直方向に切断した断面の外形上の最も遠い 2点間の距離力 10 / m以下であ る構成である。  [0025] The structure of the present invention has a distance force of 10 / m or less between two furthest points on the outer shape of a cross section cut in a direction perpendicular to the direction of extension of the fine particle-containing portion including the nanoparticle. Configuration.
[0026] 上記の構成によれば、本発明にかかる構造体からフォトニック結晶を構成すること ができる。  According to the above configuration, a photonic crystal can be formed from the structure according to the present invention.
[0027] 本発明のフォトニック結晶は、上述した構造体から構成されており、格子定数が 20 μ m以下であることを特徴としている。  [0027] The photonic crystal of the present invention comprises the above-described structure, and is characterized in that the lattice constant is 20 µm or less.
[0028] 本発明のマイクロ 'ナノデバイスは、上記構造体から構成されている、光導波路、光 スィッチ、または光集積回路を備えている。  [0028] A micro'nano device according to the present invention includes an optical waveguide, an optical switch, or an optical integrated circuit constituted by the above structure.
[0029] 上記の構成によれば、本発明の構造体の光学的性質を利用することで、従来には なレ、、新しレ、機能を備えたマイクロ ·ナノデバイスを提供することができる。  According to the above configuration, by utilizing the optical properties of the structure of the present invention, it is possible to provide a micro / nano device having a conventional structure, a new structure, and a function. .
[0030] 本発明の製造方法により製造される構造体及びフォトニック結晶は、新しい機能を 備えたマイクロ 'ナノデバイスとして利用することができる。マイクロ 'ナノデバイスは、 微細加工技術である「マイクロマシニング」と、原子分子レベルの極微細構造を形成 する「ナノマシユング」とを組み合わせた「ナノ加工」により製造されるものであるが、本 発明の製造方法により、新たな構造体及びフォトニック結晶を製造することができるか ら、これらを利用することにより新しい機能を備えたマイクロ 'ナノデバイスが実現でき る。 [0030] The structure and the photonic crystal manufactured by the manufacturing method of the present invention can be used as a micro'nano device having a new function. Micro-nano devices are manufactured by “nano processing” that combines “micro-machining”, a micro-processing technology, and “nano-machining”, which forms an ultra-fine structure at the atomic and molecular level. Can the manufacturing method produce new structures and photonic crystals? By using these, micro-nano devices with new functions can be realized.
[0031] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって充 分判るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白になる であろう。  [0031] Still other objects, features, and advantages of the present invention will be more fully understood from the following description. Also, the advantages of the present invention will become apparent in the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1(a)]本実施の形態に力かる構造体を概略的に示す図であり、斜線で示す部分が 、ナノ微粒子を含んでいる微粒子含有部ある。  [FIG. 1 (a)] FIG. 1 (a) is a view schematically showing a structure that is effective in the present embodiment, and a hatched portion is a fine particle containing portion containing nanoparticles.
[図 1(b)]本実施の形態に力かる構造体を概略的に示す図であり、微粒子を含有する 樹脂部の伸長方向に対して垂直方向に切断したときの、矢視断面図を示している。  FIG. 1 (b) is a view schematically showing a structure acting on the present embodiment, which is a cross-sectional view taken along an arrow when cut in a direction perpendicular to a direction in which a resin portion containing fine particles extends. Is shown.
[図 2]チタン (IV)エトキシドとアクリル酸との混合比を変化させた場合における、チタン (IV)アタリレートの吸光度を示す吸光度曲線である。  FIG. 2 is an absorbance curve showing the absorbance of titanium (IV) atalylate when the mixing ratio of titanium (IV) ethoxide and acrylic acid is changed.
[図 3]チタン (IV)含有樹脂中のチタン (IV)アタリレートの割合を変化させた場合にお ける、チタン (IV)含有樹脂の吸光度を示す吸光度曲線である。  FIG. 3 is an absorbance curve showing the absorbance of a titanium (IV) -containing resin when the ratio of titanium (IV) atalylate in the titanium (IV) -containing resin is changed.
[図 4]実施例において、二光子光重合法による、レーザー照射時間と樹脂の大きさと の関係を示す図である。  FIG. 4 is a view showing a relationship between laser irradiation time and resin size by two-photon photopolymerization in Examples.
[図 5]実施例において、レーザーの照射時間と、樹脂の大きさとの関係を示す図であ る。  FIG. 5 is a view showing a relationship between laser irradiation time and resin size in Examples.
[図 6]実施例において、電子顕微鏡で観察した、加熱処理前および加熱処理後それ ぞれの水和チタン (IV)含有樹脂の様子を示す図である。  FIG. 6 is a view showing the state of a hydrated titanium (IV) -containing resin before and after heat treatment, observed with an electron microscope in Examples.
[図 7(a)]電子顕微鏡で観察した図 6の樹脂の構造を示す図である。  FIG. 7 (a) is a view showing the structure of the resin of FIG. 6 observed with an electron microscope.
[図 7(b)]図 6の電子顕微鏡で観察した加熱処理前の水和チタン (IV)含有樹脂の様 子を示す図である。  FIG. 7 (b) is a view showing a state of a hydrated titanium (IV) -containing resin before heat treatment observed by the electron microscope of FIG.
[図 7(c)]図 6の電子顕微鏡で観察した加熱処理後の水和チタン (IV)含有樹脂(実施 例の構造体)の様子を示す図である。  FIG. 7 (c) is a view showing a state of the hydrated titanium (IV) -containing resin (structure of the example) after the heat treatment, observed with the electron microscope of FIG.
[図 8]本発明の実施例において、ウレタンアタリレート系の光硬化性樹脂 SCR500の モノマー、水和チタン (IV)含有樹脂、および本実施例の構造体の光の透過率を示 す図である。 発明を実施するための最良の形態 FIG. 8 is a graph showing the light transmittance of the monomer of the urethane acrylate-based photocurable resin SCR500, the resin containing titanium (IV) hydrate, and the structure of this example in the example of the present invention. is there. BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 〔実施の形態〕  [Embodiment]
本発明の実施の一形態について説明すれば、以下の通りである。  The following will describe one embodiment of the present invention.
[0034] 本実施の形態にかかる構造体は、樹脂および該樹脂の中に分散したナノ微粒子か らなる構成である。まず、本発明にかかる構造体の製造方法について、以下に説明 する。 The structure according to the present embodiment has a configuration including a resin and nanoparticles dispersed in the resin. First, a method for manufacturing a structure according to the present invention will be described below.
[0035] 本実施の形態にかかる製造方法では、はじめに、樹脂の原料となるモノマーおよび /またはオリゴマー(以下、適宜「モノマー等」という)に、ナノ微粒子の前駆体となる 物質を混合する。  [0035] In the manufacturing method according to the present embodiment, first, a substance serving as a precursor of nanoparticle is mixed with a monomer and / or oligomer (hereinafter, appropriately referred to as "monomer") serving as a raw material of a resin.
[0036] ここで、ナノ微粒子の前駆体となる物質とは、上述したように、イオンゃ該イオンを含 む化合物などのナノ微粒子を生成できる物質であり、具体的には、例えば、生成す べきナノ微粒子が酸化チタン (Ti〇)であれば、上記前駆体となる物質としては、チタ  [0036] Here, the substance that is a precursor of the nanoparticle is, as described above, a substance that can generate a nanoparticle such as an ion or a compound containing the ion. If the nanoparticle to be used is titanium oxide (Ti〇), the precursor substance should be titanium
2  2
ンイオン (Ti3+ (IV) )が挙げられる。 Ion (Ti 3+ (IV)).
[0037] 本実施の形態において、ナノ微粒子の前駆体となる物質としてイオンを用いる場合 には、該イオンの種類は特に限定されるものではなぐ樹脂の中に分散させるナノ微 粒子の種類に応じて適宜設定すればよい。また、上記イオンは、 1種類を用いてもよ ぐ必要に応じて 2種類以上用いてもよい。  [0037] In the present embodiment, when ions are used as a substance that is a precursor of the nanoparticles, the type of the ions is not particularly limited, and depends on the type of the nanoparticles dispersed in the resin. May be set appropriately. Further, one kind of the above-mentioned ions may be used, or two or more kinds may be used as needed.
[0038] 本実施の形態では、ナノ微粒子の前駆体となる物質として、イオンそのものや、該ィ オンを含む化合物を用いることができるが、これらは、モノマー等に混合することがで きるものである。上記化合物としては、具体的には、例えば、チタニウムエトキシド (Ti (OCH CH ) )等の金属錯体;塩化金酸等の金属塩;あるいは酸化カドミウム(CdO  [0038] In the present embodiment, ions themselves or compounds containing the ions can be used as the precursor of the nanoparticle, but these can be mixed with monomers and the like. is there. Specific examples of the compound include a metal complex such as titanium ethoxide (Ti (OCHCH)); a metal salt such as chloroauric acid; or cadmium oxide (CdO
2 3 4  2 3 4
)等の金属酸化物等が挙げられ、これらは、上記モノマー等に溶解する化合物である  ) And the like, and these are compounds that are soluble in the above monomers and the like.
[0039] また、上記モノマー等としては、具体的には、樹脂の原料となり、二光子吸収により 光重合を開始するモノマー等であればよぐ特に限定されるものではない。なお、上 記オリゴマーの重合度は 2— 20程度であればよぐ特に限定されるものではない。 [0039] In addition, the above-mentioned monomer and the like are not particularly limited as long as they are a raw material of a resin and start photopolymerization by two-photon absorption. The degree of polymerization of the above oligomer is not particularly limited as long as it is about 2-20.
[0040] 本実施の形態では、上記モノマー等としては、紫外光を照射することで硬化して光 硬化性樹脂となるものを用いることが好ましい。熱硬化性樹脂は、モノマー等を硬化 させるときの体積収縮を小さくまた機械的強度も大きいから、構造体の機械特性を向 上させることができる。 [0040] In the present embodiment, it is preferable to use, as the monomer or the like, one that becomes a photocurable resin by being cured by irradiation with ultraviolet light. Thermosetting resin cures monomer etc. Since the volumetric shrinkage and the mechanical strength at the time of the formation are small, the mechanical properties of the structure can be improved.
[0041] したがって、本実施の形態では、アクリル酸(CH =CHCOOH)、メタアクリル酸(C  Therefore, in the present embodiment, acrylic acid (CH 2 = CHCOOH), methacrylic acid (C
2  2
H C (CH ) COOH)、アクリル酸エステル(MMAなど)、アクリル類モノマー、ウレタ H C (CH) COOH), acrylate (MMA, etc.), acrylic monomers, urethane
2 3 twenty three
ンアタリレート、スチレン、エポキシモノマー等のモノマーおよび zまたはそれらのオリ ゴマーを用いることが好ましい。本実施の形態では、これらモノマー等を、 1種類用い てもよく、必要に応じて 2種類以上用いてもよい。  It is preferable to use monomers such as phthalate, styrene and epoxy monomers and z or their oligomers. In the present embodiment, one type of these monomers and the like may be used, or two or more types may be used as necessary.
[0042] ナノ微粒子の前駆体となる物質と、モノマー等との混合比率(前駆体となる物質/ モノマー等)は、 0. 1重量%以上 60重量%以下の範囲内であることが好ましぐ 1重 量%以上 20重量%以下の範囲内であることがより好ましい。前駆体となる物質とモノ マー等との混合比率を上記好ましい範囲の下限値以上とすることにより、樹脂の中に 分散されるナノ微粒子の量が少なくなりすぎて、ナノ微粒子の特性を利用した構造体 ではなくなることを防ぐことができる。また、前駆体となる物質とモノマー等との混合比 率を上記好ましい範囲の上限値以下とすることにより、樹脂の中に含まれるナノ微粒 子の量が多すぎることにより、ナノ微粒子を用いて構造体の光学的性質を制御できな くなることを卬制できる。 [0042] The mixing ratio of the substance serving as the precursor of the nanoparticle to the monomer (the substance serving as the precursor / monomer) is preferably in the range of 0.1% by weight to 60% by weight. More preferably, it is in the range of 1% by weight to 20% by weight. By setting the mixing ratio between the precursor substance and the monomer or the like to be equal to or more than the lower limit of the preferable range, the amount of the nanoparticles dispersed in the resin becomes too small, and the properties of the nanoparticles are utilized. It can be prevented from becoming a structure. Further, by setting the mixing ratio of the precursor substance and the monomer or the like to the upper limit of the above-mentioned preferable range or less, the amount of the nano-particles contained in the resin is too large, and thus the nano-particles are used. It is possible to control that the optical properties of the structure cannot be controlled.
[0043] 上記前駆体となる物質として、チタンイオン (Ti3+ (IV) )を用いる場合、チタンイオン とモノマー等との比率(チタンイオン/モノマー等)を、 1重量%以上 15重量%以下 の範囲内とすることがより好ましぐ 2重量%以上 10重量%以下の範囲内とすることが さらに好ましレ、。 When titanium ion (Ti 3+ (IV)) is used as the precursor substance, the ratio of titanium ion to monomer (titanium ion / monomer, etc.) is 1% by weight or more and 15% by weight or less. It is more preferable to be within the range of 2% by weight or more and 10% by weight or less.
[0044] また、上記前駆体となる物質として、金イオン (Au3+)を用いる場合、金イオンと、上 記モノマー等との混合比率 (金イオン/モノマー等)を、 1重量%以上 30重量%以下 の範囲内とすることがより好ましぐ 5重量%以上 20重量%以下の範囲内とすることが さらに好ましレ、。 When gold ion (Au 3+ ) is used as the precursor material, the mixing ratio (gold ion / monomer, etc.) of the gold ion and the above-mentioned monomer or the like is 1% by weight or more. It is more preferable to be within the range of 5% by weight or less, more preferably within the range of 5% by weight or more and 20% by weight or less.
[0045] また、上記前駆体となる物質として、カドミウムイオン (Cd2+)を用いる場合、力ドミゥ ムイオンと上記モノマー等との混合比率 (カドミウムイオン/モノマー等)は、 1重量0 /0 以上 10重量%以下の範囲内とすることがより好ましぐ 0. 5重量%以上 5重量%以下 とすることがさらに好ましい。 [0046] 次に、二光子光重合法により、上記モノマー等を硬化させる。本実施の形態では、 モノマー等にレーザー光を照射することで、モノマー等に二光子吸収を行わせる。そ して重合開始剤を用いて二光子光重合を開始させる。なお、上記重合開始剤の種 類は特に限定されるものでははぐ必要に応じて適宜設定すればよい。 [0045] Further, as a substance of the precursor, the case of using cadmium ion (Cd 2+), the force Domiu Ion and mixing ratio of the monomers (cadmium ions / monomers) are 1 weight 0/0 or more It is more preferable that the content be in the range of 10% by weight or less, and it is further preferable that the content be 0.5% by weight or more and 5% by weight or less. Next, the monomer and the like are cured by a two-photon photopolymerization method. In this embodiment mode, the monomer or the like is irradiated with laser light to cause the monomer or the like to perform two-photon absorption. Then, two-photon photopolymerization is initiated using a polymerization initiator. The type of the polymerization initiator is not particularly limited, and may be appropriately set as needed.
[0047] このときの上記レーザー光の出力(レーザー光のエネルギー)は、 0. lmW以上 10 OmW以下の範囲内程度とすればよい。本実施の形態では、上記出力を lmW以上 200mW以下の範囲内とすることが好ましぐ 3mW以上 50mW以下の範囲内とする ことがより好ましい。レーザー光の出力を、上記好ましい範囲の下限値以上とすること により、光重合を好適に行うことができ。また、レーザー光の出力を、上記好ましい範 囲の上限値以下とすることにより、レーザー光の熱によって、モノマー等が変性してし まうことを防止できる。レーザー光が照射されることによって、二光子吸収をしたモノマ 一等が光重合をして樹脂になる。  [0047] At this time, the output of the laser beam (energy of the laser beam) may be in the range of 0.1 lmW or more and 10 OmW or less. In the present embodiment, the output is preferably in the range of lmW to 200 mW, more preferably in the range of 3 mW to 50 mW. When the output of the laser beam is equal to or more than the lower limit of the above preferable range, photopolymerization can be suitably performed. In addition, when the output of the laser beam is set to be equal to or less than the upper limit of the preferable range, the monomer and the like can be prevented from being denatured by the heat of the laser beam. Upon irradiation with the laser light, the monomer or the like that has absorbed two photons undergoes photopolymerization to become a resin.
[0048] 本実施の形態の製造方法は、モノマー等を二光子光重合法により硬化させるもの であるため、微細な構造樹脂を得ることができる。そしてこれにより、ナノ微粒子の前 駆体となる物質は、微細な樹脂の中に保持される。また、二光子光重合法を行うとき のレーザー光の照射時間やエネルギー、照射方向等を調節することで、樹脂に保持 される前駆体となる物質の分布を 2次元および/または 3次元的に自由に操作するこ とができる。すなわち、二光子重合の条件を調整することにより、 2次元および/また は 3次元方向に、樹脂による任意構造を作製できるから、当該樹脂に含まれている前 駆体となる物質の分布を自由に操作することが可能になる。  [0048] In the production method of the present embodiment, since a monomer or the like is cured by a two-photon photopolymerization method, a fine structural resin can be obtained. As a result, the precursor of the nanoparticle is held in the fine resin. In addition, by adjusting the irradiation time, energy, irradiation direction, etc. of the laser beam when performing the two-photon photopolymerization method, the distribution of the precursor substance held in the resin can be two-dimensionally and / or three-dimensionally. It can be operated freely. In other words, by adjusting the conditions of two-photon polymerization, an arbitrary structure made of a resin can be produced in two-dimensional and / or three-dimensional directions, so that the distribution of the precursor substance contained in the resin can be freely determined. Can be operated.
[0049] そして、ナノ微粒子の前駆体となる物質を保持した微細な構造の樹脂を作製した後 に、該物質を反応物とした化学反応を行い、樹脂中でナノ微粒子を生成させる。上 記化学反応は、ナノ微粒子の前駆体となる物質からナノ微粒子を生成する反応であ ればよぐ特に限定されるものではないが、例えば、酸化反応;光還元反応、化学還 元反応等の還元反応;水酸化反応;加熱等による脱水反応;硫化反応、および酸化 還元反応を挙げることができる。これらの反応から選ばれる少なくとも 1種類の化学反 応によってナノ微粒子を生成することにより、簡単な操作でナノ微粒子を生成させる こと力 Sできる。なお、上記した反応を複数組み合わせてナノ微粒子を生成することとし てもよい。 [0049] Then, after preparing a resin having a fine structure holding a substance serving as a precursor of the nanoparticle, a chemical reaction using the substance as a reactant is performed to generate the nanoparticle in the resin. The above-mentioned chemical reaction is not particularly limited as long as it is a reaction for generating nanoparticles from a substance that is a precursor of the nanoparticles, and examples thereof include an oxidation reaction; a photoreduction reaction, a chemical reduction reaction, and the like. Reduction reaction; hydroxylation reaction; dehydration reaction by heating or the like; sulfidation reaction, and oxidation-reduction reaction. By generating nanoparticles by at least one kind of chemical reaction selected from these reactions, it is possible to generate nanoparticles by a simple operation. It should be noted that a plurality of the above reactions are combined to produce nanoparticles. May be.
[0050] 上記前駆体となる物質が、カドミウムイオン (Cd2+)であれば、例えば硫化反応によ り、ナノ微粒子を生成させることができる。ここで、前駆体となる物質が、 Cd2+であると きの硫化反応を示せば、下記の式(1)の通りである。 If the substance serving as the precursor is cadmium ion (Cd 2+ ), nanoparticles can be generated by, for example, a sulfidation reaction. Here, the sulfurization reaction when the precursor material is Cd 2+ is shown by the following formula (1).
Cd2+ + S2—→CdS (1) Cd 2+ + S 2 — → CdS (1)
あるいはまた、下記の式(2)に示す酸化還元反応により、カドミウムイオンからナノ 微粒子を生成させてもよい。  Alternatively, nanoparticles may be generated from cadmium ions by an oxidation-reduction reaction represented by the following formula (2).
Cd2+ + Se2—→CdSe (2) Cd 2+ + Se 2 — → CdSe (2)
このように、本実施の形態によれば、異なる化学反応を行うことにより、同じ種類の ナノ微粒子の前駆体となる物質から、異なる種類のナノ微粒子を生成することができ る。  As described above, according to the present embodiment, different types of nanoparticles can be generated from a substance that is a precursor of the same type of nanoparticles by performing different chemical reactions.
[0051] なお、上記前駆体となる物質がチタンイオン (Ti3+ (IV) )であれば、二光子光重合 法を行った後に、前駆体となる物質、すなわちチタンイオンを保持した樹脂を空気中 に放置しておくだけで、チタンイオンが空気中の水蒸気(H〇)と反応し、これにより If the precursor substance is a titanium ion (Ti 3+ (IV)), the precursor substance, that is, the resin holding the titanium ion, is subjected to the two-photon photopolymerization method. Simply by leaving it in the air, the titanium ions react with the water vapor (H の) in the air,
2  2
二酸化チタン (TiO )からなるナノ微粒子が生成される。  Nanoparticles composed of titanium dioxide (TiO 2) are produced.
2  2
[0052] 本実施の形態によれば、ナノ微粒子そのものを樹脂の原料となるモノマー等に混 合させるのではなぐナノ微粒子の前駆体となる物質を樹脂の原料となるモノマー等 に混合させて、二光子光重合法により樹脂を形成してからナノ微粒子を生成するの で、ナノ微粒子の機能が制限されることはない。それゆえ、ナノ微粒子が備える機能 が十分に発揮される構造体を製造することができる。また、本実施の形態の製造方法 によれば、モノマー等の中にナノ微粒子の前駆体となる物質を満遍なく混合すること 力できるから、モノマー等の重合によって作製する樹脂の粘度に関係なぐ当該前駆 体を均一に分散させることができる。それゆえ、粘度の高い樹脂の中にもナノ微粒子 を効率よく分散させること力 Sできる。  [0052] According to the present embodiment, a substance that is a precursor of the nanoparticle is not mixed with a monomer or the like that is a material of the resin, but is mixed with a monomer or the like that is a material of the resin. Since the nanoparticles are formed after the resin is formed by the two-photon photopolymerization method, the function of the nanoparticles is not limited. Therefore, it is possible to manufacture a structure in which the function of the nanoparticles is sufficiently exhibited. In addition, according to the manufacturing method of the present embodiment, since the substance serving as the precursor of the nanoparticle can be uniformly mixed in the monomer or the like, the precursor that is related to the viscosity of the resin produced by polymerization of the monomer or the like can be used. The body can be evenly dispersed. Therefore, it is possible to efficiently disperse the nanoparticles in a resin with high viscosity.
[0053] 本実施の形態に力、かる方法によって得られる構造体は、微細な樹脂の中に、ナノ 微粒子が分散してなるものである。上述した方法によれば、ナノ微粒子を生成するた めの化学反応を適宜調節することで、ナノ微粒子の平均粒子径を 300nm以下にす ること力 Sできる。本実施の形態では、ナノ微粒子の平均粒子径を lOOnm以下にする ことが好ましぐ 50nm以下にすることがより好ましい。ナノ微粒子の平均粒子径が小 さくなるほど、ナノ微粒子を用いて構造体の光学的性質を好適に制御することができ る。 The structure obtained by the method according to the present embodiment is a structure in which nanoparticles are dispersed in a fine resin. According to the above-described method, by appropriately adjusting the chemical reaction for producing the nanoparticles, the average particle diameter of the nanoparticles can be reduced to 300 nm or less. In the present embodiment, the average particle diameter of the nanoparticles is set to 100 nm or less. It is more preferable that the thickness be 50 nm or less. As the average particle diameter of the nanoparticles becomes smaller, the optical properties of the structure can be more suitably controlled using the nanoparticles.
[0054] また、特に限定されるものではないが、上述した化学反応により、樹脂の中に金属、 半導体、酸化物、または顔料等からなる物質が含まれるように、ナノ微粒子の前駆体 となる物質の種類を選択することが好ましい。構造体が、金属、半導体、酸化物、お よび顔料からなる 1種類または 2種類以上の物質をナノ微粒子として含んでいれば、 ナノ微粒子の特性を利用して、様々な機能を有する構造体を提供することができる。 例えば、硫化カドミウム(CdS)からなるナノ微粒子とすれば、発光特性を備える構造 体を提供することができる。  [0054] Although not particularly limited, a precursor of the nanoparticle is formed by the above-described chemical reaction such that the resin contains a substance such as a metal, a semiconductor, an oxide, or a pigment. It is preferred to select the type of substance. If the structure contains one or more types of substances composed of metals, semiconductors, oxides, and pigments as nanoparticles, the structure having various functions can be created by utilizing the properties of the nanoparticles. Can be provided. For example, a nanoparticle made of cadmium sulfide (CdS) can provide a structure having light emission characteristics.
[0055] ここで、本実施の形態にかかる構造体において、ナノ微粒子を含む空間領域を微 粒子含有部と称する。図 1 (a) (b)は、本発明にかかる構造体を概略的に示すもの である。図 1 (a)において、斜線で示す部分が、微粒子含有部である。また、図 1 (b) は、微粒子含有部の伸長方向(図 1 (a)中、矢印 Dで示す方向)に対して垂直方向( A— A'方向)に切断したときの、矢視断面図を示している。  Here, in the structure according to the present embodiment, the space region including the nanoparticles is referred to as a “particle-containing portion”. 1 (a) and 1 (b) schematically show a structure according to the present invention. In FIG. 1A, a hatched portion is a fine particle-containing portion. Fig. 1 (b) is a cross-sectional view taken along the arrow (A-A 'direction) perpendicular to the direction of elongation of the fine particle-containing portion (the direction indicated by arrow D in Fig. 1 (a)). FIG.
[0056] 本実施の形態にかかる構造体は、微粒子含有部の伸長方向に対して垂直方向に 切断した断面の外形上の最も遠い 2点間の距離、すなわち、図 1 (b)に示す点 B— B' 間の距離を 500nm以下にすることができる。また、 B—B'間の距離を、 200nm以下 としたり、 10 μ ΐη以下としたりすることも可能である。  The structure according to the present embodiment has a distance between the two furthest points on the outer shape of the cross section cut in a direction perpendicular to the direction of extension of the fine particle-containing portion, that is, the point shown in FIG. The distance between B and B 'can be less than 500nm. In addition, the distance between B and B 'can be set to 200 nm or less, or 10 μΐη or less.
なお、上記「外形上の最も遠い 2点間の距離」とは、例えば、断面が円形であれば円 の直径である、断面が楕円形であれば楕円形の長軸である。  The “distance between the two furthest points on the outer shape” is, for example, the diameter of a circle if the cross section is circular, or the major axis of an ellipse if the cross section is elliptical.
[0057] また、本実施の形態によれば、微粒子含有部に含まれるナノ微粒子の周期を、光 の波長程度とすることができることから、本実施の形態に力、かる構造体を用いて、格 子定数が 20 x m以下、 750nm以下のフォトニック結晶を構成することができる。また 、例えば、樹脂の中に分散するナノ微粒子の分布を 2次元および Zまたは 3次元的 に制御することで点欠陥や線欠陥を有する構造体を形成すれば、本発明にかかる構 造体を、光導波路、光スィッチ、光集積回路、発光素子、マイクロレーザー、マイクロ レーザーアレー、面発光レーザー等に利用することができる。すなわち、本発明にか 力る構造体の光学的性質を利用することにより、従来にはない、新しい機能を備えた マイクロ ·ナノデバイスを構成することができる。 Further, according to the present embodiment, the period of the nanoparticles contained in the particle-containing portion can be set to about the wavelength of light. Photonic crystals with a lattice constant of 20 xm or less and 750 nm or less can be constructed. Further, for example, if the structure having point defects or line defects is formed by controlling the distribution of the nanoparticles dispersed in the resin two-dimensionally or Z- or three-dimensionally, the structure according to the present invention can be obtained. , An optical waveguide, an optical switch, an optical integrated circuit, a light emitting element, a microlaser, a microlaser array, a surface emitting laser, and the like. That is, the present invention Utilizing the optical properties of the powerful structure, it is possible to construct micro / nano devices with new functions that have never existed before.
[0058] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能であり、実施形態中に開示された技術的手段を適宜組み合わせて 得られるものも本発明の技術的範囲に含まれる。  [0058] The present invention is not limited to the above-described embodiments, and various changes can be made within the scope of the claims, and are obtained by appropriately combining the technical means disclosed in the embodiments. Are also included in the technical scope of the present invention.
[0059] 〔実施例〕  [Example]
以下、本発明にかかる構造体の製造方法の実施例を、図 2 図 8に基づいて説明 するが、本発明はこれに限定されるものではない。  Hereinafter, an embodiment of a method of manufacturing a structure according to the present invention will be described with reference to FIGS. 2 and 8, but the present invention is not limited thereto.
[0060] 〔(A)チタン(IV)アタリレートの合成〕 [(A) Synthesis of Titanium (IV) Atarilate]
樹脂の原料としての、構造式(1)  Structural formula (1) as a raw material for resin
[化 1]  [Chemical 1]
、ノへ
Figure imgf000014_0001
To no
Figure imgf000014_0001
で表されるアクリル酸、および、チタン (IV)エトキシド(以下、「TE」という)および、ナ ノ微粒子の前駆体としての、 Acrylic acid represented by and titanium (IV) ethoxide (hereinafter referred to as “TE”) and a precursor of nanoparticle
構造式 (2)  Structural formula (2)
[化 2]  [Formula 2]
… )…)
Figure imgf000014_0002
で表される、チタン (IV)エトキシド(以下、「TE」という)を混合して、
Figure imgf000014_0002
, Mixed with titanium (IV) ethoxide (hereinafter referred to as "TE")
構造式 (3)  Structural formula (3)
Ti (OCH CH ) m (OOCCH-CH ) n · · · (3) (式中、 m,nはそれぞれ整数を示し、 m + n=4である) Ti (OCH CH) m (OOCCH-CH) n (Where m and n each represent an integer, and m + n = 4)
で表されるチタン (IV)アタリレートを得た。  Thus, titanium (IV) acrylate was obtained.
[0061] 図 2に、 TEとアクリル酸との混合比を変化させた場合における、チタン (IV)アタリレ 一トの吸光度を示す。なお、図 2の横軸; Iは、チタン (IV)アタリレートに入射する光の 波長を示している。 [0061] Fig. 2 shows the absorbance of titanium (IV) atalylate when the mixing ratio of TE and acrylic acid was changed. Note that the horizontal axis in FIG. 2; I indicates the wavelength of light incident on the titanium (IV) acrylate.
図 2中では、 TEとアクリル酸との混合比として、 TE :アクリル酸 = 1 : 1とした場合の吸 光度を実線で、 TE :アクリル酸 = 1 : 2の場合の球高度を破線で、 TE :アクリル酸 = 1 In FIG. 2, as a mixing ratio of TE and acrylic acid, the absorbance when TE: acrylic acid = 1: 1 is shown by a solid line, and the sphere height when TE: acrylic acid = 1: 2 is shown by a broken line. TE: Acrylic acid = 1
: 4とした場合の吸光度を一点破線で、それぞれ示している。 : The absorbance in the case of 4 is indicated by a dashed line.
[0062] 図 2の吸光度曲線から、アクリル酸の割合を大きくすることに伴って、換言すれば T[0062] From the absorbance curve of Fig. 2, as the ratio of acrylic acid is increased, in other words, T
Eの割合を小さくすることに伴って、吸光度が小さくなることが示されている。 It is shown that the absorbance decreases as the proportion of E decreases.
[0063] 〔 (B)二光子光重合法によるチタン (IV)含有樹脂の合成〕 [(B) Synthesis of Titanium (IV) -Containing Resin by Two-Photon Photopolymerization Method]
上記チタン (IV)アタリレートに、構造式 (4)  The structural formula (4)
[化 3]  [Formula 3]
0 0
H2C 、 ヽ (4) H 2 C, ヽ (4)
 Sun
H  H
(式中、 Rは炭化水素基を示す) (Wherein, R represents a hydrocarbon group)
で表されるウレタンアタリレート系の光硬化性樹脂 SCR500 (日本合成ゴム株式会社 )のモノマー、および重合開始剤を混合した後、レーザー光を照射して二光子光重 合法により、  After mixing the monomer of the urethane acrylate-based photocurable resin SCR500 (Nippon Synthetic Rubber Co., Ltd.) and the polymerization initiator represented by the formula, the polymer is irradiated with laser light and subjected to two-photon photopolymerization.
構造式 (5)  Structural formula (5)
[化 4] [Formula 4]
Figure imgf000016_0001
で表されるチタン (IV)含有樹脂を得た。
Figure imgf000016_0001
And a titanium (IV) -containing resin represented by the following formula:
[0064] 図 3に、チタン (IV)含有樹脂中のチタン (IV)アタリレートの割合を変化させた場合 における、チタン (IV)含有樹脂の吸光度を示す吸光度曲線を示す。図 3では、チタ ン (IV)含有樹脂に含まれるチタン (IV)アタリレートの割合が、 32. 86重量% (チタン (IV)アタリレート:光硬化性樹脂 SCR500モノマー = 1: 2)のものの結果を実線で、 3 0. 79重量0 /0 (チタン (IV)アタリレート:光硬化性樹脂 SCR500 = 1: 3)のものの結果 を破線で、 28. 65重量% (チタン (IV)アタリレート:光硬化性樹脂 SCR500 = 1 : 4) のものの結果を一点鎖線で、それぞれ示してレ、る。 FIG. 3 shows an absorbance curve showing the absorbance of the titanium (IV) -containing resin when the ratio of the titanium (IV) atalylate in the titanium (IV) -containing resin was changed. In Figure 3, the proportion of titanium (IV) acrylate in the titanium (IV) -containing resin is 32.86% by weight (titanium (IV) acrylate: photocurable resin SCR500 monomer = 1: 2). the results in solid lines, 3 0.79 wt 0/0 (titanium (IV) Atari rate: photocurable resin SCR500 = 1: 3) by a dashed line the results of those, 28.65 wt% (titanium (IV) Atari rate : The result of the photocurable resin SCR500 = 1: 4) is shown by the dashed line.
[0065] 〔(C)二光子光重合法により合成したチタン (IV)含有樹脂の解像度〕  [(C) Resolution of titanium (IV) -containing resin synthesized by two-photon photopolymerization method]
上記チタン (IV)アタリレート、上記ウレタンアタリレート系の光硬化性樹脂 SCR500 ノモノマー、および重合開始剤を混合させた後、レーザー光を照射して二光子光重 合法を行った場合における、レーザー照射時間(1/秒 (s) )と、当該レーザー照射 時間によって得られる樹脂の大きさとの関係を調べた結果を図 4に示す。同図から、 レーザー照射時間が長くなるほど、得られる樹脂のサイズが大きくなることがわかる。  After mixing the above-mentioned titanium (IV) acrylate and the urethane acrylate-based photocurable resin SCR500 monomer and polymerization initiator, laser irradiation is performed when the two-photon photopolymerization method is performed by irradiating laser light. FIG. 4 shows the result of examining the relationship between the time (1 / second (s)) and the size of the resin obtained by the laser irradiation time. From the figure, it can be seen that the longer the laser irradiation time, the larger the size of the obtained resin.
[0066] 図 5に、レーザー光の出力を、 300mW、 400mW、 500mWとしたときの、レーザー 照射時間(1/秒 (s) )と、当該照射によって硬化した樹脂の大きさ(これを、「ポイント サイズ」という)との関係を調べた結果を示す。同図より、レーザー照射時間を長くす るほど、当該照射により得られる樹脂のサイズが大きくなることがわかる。  [0066] Fig. 5 shows the laser irradiation time (1 / sec (s)) and the size of the resin cured by the irradiation when the laser light output was set to 300mW, 400mW, and 500mW (this is referred to as " Point size ”). The figure shows that the longer the laser irradiation time, the larger the size of the resin obtained by the irradiation.
[0067] 〔(D)構造体の製造〕  [Manufacture of (D) Structure]
上記チタン (IV)含有樹脂を大気中に放置し、チタン (IV)含有樹脂に含まれるチタ ン (IV)イオンと大気中の水蒸気 (H O)とを反応させることで、一般式 (6)  By leaving the titanium (IV) -containing resin in the air and reacting titanium (IV) ions contained in the titanium (IV) -containing resin with water vapor (HO) in the air, the general formula (6)
2  2
[化 5] [Formula 5]
Figure imgf000017_0001
Figure imgf000017_0001
(式中、 nは整数を示す) (Where n represents an integer)
で表される水和チタン (IV)含有樹脂を得た。  A hydrated titanium (IV) -containing resin represented by the following formula was obtained.
さらに、水和チタン (IV)含有樹脂を、大気中、 250°Cで 2時間加熱処理することで 、構造式 (7)  Further, by heating the hydrated titanium (IV) -containing resin at 250 ° C. for 2 hours in the air, the structural formula (7)
[化 6]  [Formula 6]
Figure imgf000017_0002
で表される構造体を得た。図 6は、電子顕微鏡で観察した、加熱処理前(図左側)お よび加熱処理後(図右側)それぞれの水和チタン (IV)含有樹脂の様子を示す。
Figure imgf000017_0002
Was obtained. FIG. 6 shows the state of the hydrated titanium (IV) -containing resin before the heat treatment (left side in the figure) and after the heat treatment (right side in the figure) observed by an electron microscope.
[0069] 図 7 (a)に、図 6の樹脂を電子顕微鏡で観察した様子を示す。同図に示すように、 上記構造体の < 100 >面は、 8 X 8 X 2構造を有し、そのときの格子定数は 2. 5 μ ΐη であった。 FIG. 7 (a) shows the resin of FIG. 6 observed with an electron microscope. As shown in the figure, the <100> plane of the structure had an 8 × 8 × 2 structure, and the lattice constant at that time was 2.5 μ μη.
[0070] 図 7 (b)は、電子顕微鏡で観察した上述した加熱処理前の水和チタン (IV)含有樹 脂の様子を示し、図 7 (c)は、上記加熱処理後の水和チタン (IV)含有樹脂 (すなわ ち本発明の構造体の一実施例)の様子を示している。加熱処理前の水和チタン (IV) 含有樹脂には、図 7 (b)中、丸印で示すように直径が 580nmの球構造、およびこの 球と球との間にあり延伸方向の長さが 500nmのロッド(図中、四角印で示す)構造の 2つの 3次元構造が形成されていた。 [0070] Fig. 7 (b) shows the state of the hydrated titanium (IV) -containing resin before the above-mentioned heat treatment observed by an electron microscope, and Fig. 7 (c) shows the hydrated titanium hydrate after the above heat treatment. (IV) Containing resin (that is, one example of the structure of the present invention) is shown. The hydrated titanium (IV) -containing resin before the heat treatment has a sphere structure with a diameter of 580 nm as shown by the circle in Fig. 7 (b) and a length between the spheres in the stretching direction. Is a 500nm rod (indicated by a square in the figure) Two three-dimensional structures were formed.
[0071] 〔 (E)フォトニックバンドギャップ測定〕 [(E) Photonic band gap measurement]
上記ウレタンアタリレート系の光硬化性樹脂 SCR500のモノマー、水和チタン(IV) 含有樹脂、および本実施例の構造体について、光の透過率を調べた結果を図 8に 示す。同図中、「基準線」はバックグラウンド、「樹脂」はウレタンアタリレート系の光硬 化性樹脂 SCR500のモノマーの透過率、「樹脂 +Ti4+ +熱処理前」は水和チタン (I V)含有樹脂の透過率、「樹脂 +Ti4+ +熱処理後」は構造体の透過率を示している。 図 8に示す結果より、本実施例により得られる構造体では、熱処理前の水和チタン (I V)含有樹脂に比べて、バンドギャップが高波数領域に遷移することがわかった。 産業上の利用の可能性 FIG. 8 shows the results of examining the light transmittance of the urethane acrylate-based photocurable resin SCR500 monomer, the hydrated titanium (IV) -containing resin, and the structure of this example. In the figure, the `` base line '' is the background, the `` resin '' is the transmittance of the urethane acrylate-based photocurable resin SCR500 monomer, and the `` resin + Ti 4+ + before heat treatment '' is titanium (IV) hydrate. The transmittance of the contained resin, “resin + Ti 4 ++ after heat treatment” indicates the transmittance of the structure. From the results shown in FIG. 8, it was found that the band gap of the structure obtained in this example transits to a higher wavenumber region as compared with the hydrated titanium (IV) -containing resin before the heat treatment. Industrial potential
[0072] 以上のように、本発明の構造体およびその製造方法は、樹脂および樹脂の中にナ ノ微粒子の分散を制御したものであるから、各種マイクロ 'ナノデバイスに新たな特性 を与えるためのものとして有用である。 As described above, the structure and the method of manufacturing the same according to the present invention control the dispersion of the nanoparticle in the resin and the resin. Useful as

Claims

請求の範囲 The scope of the claims
[1] 樹脂および該樹脂の中に分散したナノ微粒子からなる構造体の製造方法であって [1] A method for producing a structure comprising a resin and nanoparticles dispersed in the resin,
、上記樹脂の原料となるモノマー等に、上記ナノ微粒子の前駆体となる物質を混合し 、二光子光重合法により上記モノマー等を硬化させた後、上記物質を反応物として 用いる化学反応により上記ナノ微粒子を生成させることを特徴とする構造体の製造方 法。 After mixing a substance that is a precursor of the nanoparticle with a monomer or the like that is a raw material of the resin and curing the monomer or the like by a two-photon photopolymerization method, the above-mentioned substance is reacted by a chemical reaction using the substance as a reactant. A method for producing a structure characterized by producing nanoparticles.
[2] 上記物質として、イオンまたは該イオンを含む化合物を用いることを特徴とする請求 項 1に記載の構造体の製造方法。  [2] The method for producing a structure according to claim 1, wherein an ion or a compound containing the ion is used as the substance.
[3] 上記化学反応が、酸化反応、還元反応、水酸化反応、脱水反応、硫化反応、およ び酸化還元反応からなる群から選ばれる少なくとも 1種類の化学反応であることを特 徴とする請求項 1に記載の構造体の製造方法。 [3] The chemical reaction is characterized by being at least one kind of chemical reaction selected from the group consisting of an oxidation reaction, a reduction reaction, a hydroxylation reaction, a dehydration reaction, a sulfidation reaction, and a redox reaction. A method for manufacturing the structure according to claim 1.
[4] 樹脂および該樹脂の中に分散した平均粒子径が 300nm以下のナノ微粒子からな ることを特徴とする構造体。 [4] A structure comprising a resin and nanoparticles dispersed in the resin and having an average particle diameter of 300 nm or less.
[5] 上記樹脂が、光硬化性樹脂であることを特徴とする請求項 4に記載の構造体。 [5] The structure according to claim 4, wherein the resin is a photocurable resin.
[6] 上記ナノ微粒子が、金属、半導体、および酸化物から選ばれる少なくとも 1種類から なることを特徴とする請求項 4に記載の構造体。 6. The structure according to claim 4, wherein the nanoparticles are at least one selected from a metal, a semiconductor, and an oxide.
[7] 上記ナノ微粒子を含む微粒子含有部の伸長方向に対して垂直方向に切断した断 面の外形上の最も遠い 2点間の距離が、 10 μ m以下であることを特徴とする請求項 4 に記載の構造体。 [7] The distance between the two furthest points on the outer shape of the cross section cut in a direction perpendicular to the elongation direction of the fine particle-containing portion containing the nanoparticle is 10 μm or less. The structure according to 4.
[8] 請求項 7に記載の構造体から構成されており、格子定数が 20 μ m以下であることを 特徴とするフォトニック結晶。  [8] A photonic crystal comprising the structure according to claim 7, having a lattice constant of 20 µm or less.
[9] 請求項 3に記載の構造体から構成されている、光導波路、光スィッチ、または光集 積回路を備えてレ、ることを特徴とするマイクロ ·ナノデバイス。 [9] A micro / nano device comprising an optical waveguide, an optical switch, or an optical integrated circuit, comprising the structure according to claim 3.
PCT/JP2004/010037 2003-07-15 2004-07-14 Structure and method for producing structure WO2005009891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005512001A JPWO2005009891A1 (en) 2003-07-15 2004-07-14 Structure and method for manufacturing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003197197 2003-07-15
JP2003-197197 2003-07-15

Publications (1)

Publication Number Publication Date
WO2005009891A1 true WO2005009891A1 (en) 2005-02-03

Family

ID=34100258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010037 WO2005009891A1 (en) 2003-07-15 2004-07-14 Structure and method for producing structure

Country Status (2)

Country Link
JP (1) JPWO2005009891A1 (en)
WO (1) WO2005009891A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035248A1 (en) * 1997-02-11 1998-08-13 Massachusetts Institute Of Technology Polymeric photonic band gap materials
JP2002241509A (en) * 2001-02-22 2002-08-28 Mitsubishi Chemicals Corp Planar resin molded body containing ultramicroparticle domain
JP2003001599A (en) * 2001-06-25 2003-01-08 Japan Science & Technology Corp Manufacture method of three-dimensional minute structure and apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035248A1 (en) * 1997-02-11 1998-08-13 Massachusetts Institute Of Technology Polymeric photonic band gap materials
JP2002241509A (en) * 2001-02-22 2002-08-28 Mitsubishi Chemicals Corp Planar resin molded body containing ultramicroparticle domain
JP2003001599A (en) * 2001-06-25 2003-01-08 Japan Science & Technology Corp Manufacture method of three-dimensional minute structure and apparatus thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAN, N. ET AL.: "Nikoshi Chogo ni yoru Kinzoku Sankabutsu Nano Biryushi o Fukkumu Polymer 3D Kozo no Sakusen", NANO GAKKAI SORITSU TAIKAI KOEN YOKOSHU, 29 May 2003 (2003-05-29), pages 130, XP002985641 *

Also Published As

Publication number Publication date
JPWO2005009891A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
Duan et al. Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication
Xu et al. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol
Zielinski et al. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation
Li et al. Laser nano-manufacturing–state of the art and challenges
Zhang et al. Designable 3D nanofabrication by femtosecond laser direct writing
Li et al. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices
Kane et al. Synthesis of PbS nanoclusters within block copolymer nanoreactors
Zhu et al. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process
Perro et al. Design and synthesis of Janus micro-and nanoparticles
KR101305052B1 (en) PREPRERATION METHOD OF ZnO NANORING USING SELF-ASSEMBLY OF DIBLOCK COPOLYMER AND SOL-GEL PROCESS
Ishikawa et al. Nano-and submicrometer-sized spherical particle fabrication using a submicroscopic droplet formed using selective laser heating
KR101199783B1 (en) 3D multilayer structures and method for preparing thereof
KR101012123B1 (en) Preparation method of metal/zinc oxide hetero nanostructures with enhanced photocatalytic efficiency and metal/zinc oxide hetero nanostructures
Zhou et al. Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property
Sun et al. Two-and three-dimensional micro/nanostructure patterning of CdS–polymer nanocomposites with a laser interference technique and in situ synthesis
KR20090033947A (en) Fabrication method of quantum dot nanoparticle/polymer core/shell nanoparticles by interfacial polymerization
Jaiswal et al. Additive manufacturing of highly fluorescent organic 3D-metastructures at sub-wavelength resolution
KR20110051092A (en) Method for fabrication of microparticles with colloidal particle-anchored surface structures
JPH0950057A (en) Semiconductor superfine particle-containing polymer particle
KR20100065597A (en) Pigment for a paint composition consisted of spherical photonic crystals and method for preparing therof
Elbert et al. Evaporation-Driven Coassembly of Hierarchical, Multicomponent Networks
Dong et al. Occlusion of Diblock Copolymer-Modified Gold Nanoparticles Generates Diabolo-Shaped Au@ ZnO Nanocomposite Crystals with Enhanced Photocatalytic Properties
WO2005009891A1 (en) Structure and method for producing structure
Burunkova et al. Self-organization of ZnO nanoparticles on UV-curable acrylate nanocomposites
KR101524016B1 (en) Carbon-doped metal oxide-containing porous structure, preparing method of the same, and photocatalyst including the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512001

Country of ref document: JP

122 Ep: pct application non-entry in european phase