WO2005008201A1 - Procede de mesure de la fonction de correlation de flux lumineux et dispositif associe - Google Patents

Procede de mesure de la fonction de correlation de flux lumineux et dispositif associe Download PDF

Info

Publication number
WO2005008201A1
WO2005008201A1 PCT/RU2003/000233 RU0300233W WO2005008201A1 WO 2005008201 A1 WO2005008201 A1 WO 2005008201A1 RU 0300233 W RU0300233 W RU 0300233W WO 2005008201 A1 WO2005008201 A1 WO 2005008201A1
Authority
WO
WIPO (PCT)
Prior art keywords
взаим
light
slοy
sveτοvyχ
ποτοκοv
Prior art date
Application number
PCT/RU2003/000233
Other languages
English (en)
Russian (ru)
Inventor
Alexsander Anatolievich Ivanenko
Nickolay Petrovich Shestakov
Anatoly Mihailovich Sysoev
Vasily Filippovich Shabanov
Original Assignee
Special Designing And Technological Bureau 'nauka' Krasnoyarsk Scientific Center Of Siberian Department Russian Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Special Designing And Technological Bureau 'nauka' Krasnoyarsk Scientific Center Of Siberian Department Russian Academy Of Sciences filed Critical Special Designing And Technological Bureau 'nauka' Krasnoyarsk Scientific Center Of Siberian Department Russian Academy Of Sciences
Priority to PCT/RU2003/000233 priority Critical patent/WO2005008201A1/fr
Publication of WO2005008201A1 publication Critical patent/WO2005008201A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/40Non-mechanical variable delay line

Definitions

  • the invention relates to a measuring and measuring technique used for the manufacture of equipment, medicine, and horticulture.
  • [ ⁇ . ⁇ . ⁇ agin, ⁇ . ⁇ . Gershun, G. ⁇ . Zhizhin, ⁇ .I. ⁇ rion motivate careful charger lively; Before ⁇ ed. ⁇ .I. Karasaeva, "Bright and spectacular appliances" - ⁇ .: Science. Ch. ⁇ ed physical-mat. lit., 1988 .-- 264 s, Ct. 78].
  • a well-known method is that it does not provide for the measurement of a relational function without mechanically scanning the media.
  • the method of measuring the relay function of the light is known to occur, which means that the variable light signal that has gone through the other way is observed. Then, they register a dependence on the average intensity of the mutual temporal shift, which is due to the change in the rate of change.
  • This method is the sole claimed invention. Unfamiliar means are excluded from the fact that they do not prevent the payment of data from being transferred to us without being disregarded.
  • ZYAYU IY LIS ⁇ P ⁇ IL ⁇ 26 measuring counts of a relational function.
  • a known method of scanning is through the passage of a mirror, which requires the use of special mechanical components.
  • a known electrical ⁇ -10 is known. [ ⁇ .G. Beirky, ⁇ . ⁇ . Havanin, I. ⁇ . Seidel. Smart photoelectric products. - ⁇ .: ⁇ adi ⁇ and communication, 1988. - 272 s, p. 31].
  • the element has a payable mark applied to a simple, non-reflective, low pressure cylinder.
  • the optical fiber has an optical thickness shorter than the minimum length of the minimum wavelength, which is sensitive to the environment. Sensitivity of the electrical feedback to the use of the optional electrical components and the convenience of intrinsic spark plugs.
  • the result of the invention is the simultaneous emission of signals from the non-interruptible operation of the ⁇ e ⁇ niches ⁇ y ⁇ ezul ⁇ a ⁇ d ⁇ s ⁇ igae ⁇ sya fact cht ⁇ a s ⁇ s ⁇ be izme ⁇ eniya ⁇ elyatsi ⁇ nn ⁇ y ⁇ un ⁇ tsii vs ⁇ echny ⁇ sve ⁇ vy ⁇ ⁇ v. Za ⁇ lyuchayuschemsya a ⁇ m.
  • Cht ⁇ sve ⁇ vye Cht ⁇ sve ⁇ vye
  • the intensity is measured on ⁇ > 1) by the sensitive, sensitive components, which is an absolute harm th ⁇ am, ⁇ i e ⁇ m, ⁇ azhdy ⁇ -th ⁇ ele ⁇ iches ⁇ y sl ⁇ y ⁇ meschayu ⁇ 2 Z ⁇ YAYUSCHY LIS ⁇ (P ⁇ IL ⁇ 26) ⁇ / ⁇ 2003 / 000233 on the optical source of the source of the source, as well as on the source of the source of the source of electricity
  • the electrical layers are located in one area, are separated in this plane, and the other (/ + 1) is irrelevant.
  • ⁇ - s. ⁇ • ⁇ , where ⁇ - ⁇ / is the integer ⁇ 1 to ⁇ -; ⁇ is a measure of the distribution of dielectric layers.
  • Optical layers are separated in direction, perpendicular to variable light flows, and from below each (/ + 1) -year-separated - integer ⁇ 1 to ⁇ - ⁇ ; ⁇ is a measure of the distribution of dielectric layers.
  • FIG. 1 device which implements the proposed method
  • FIG. 2-4 performance examples.
  • ⁇ iemni ⁇ 1 (. ⁇ ig 1) s ⁇ s ⁇ i ⁇ of -? ⁇ > 1 in ⁇ e ⁇ e ⁇ entsi ⁇ nn ⁇ - chuvs ⁇ vi ⁇ elny ⁇ ⁇ ele ⁇ iches ⁇ i ⁇ sl ⁇ ev 2.
  • Power Distribution This is a product of a household that has been found to be connected to a distribution system that is a mean of a ⁇ .e Optical Outsourcing, Parallel
  • ⁇ d is a measure of the distribution of the medium on the path of the distribution of the measured light 8 ⁇ 'in the source of the source of light for this.
  • the receiver works the following way.
  • the receiver is located in the integrated field, which is configured with irregular light signals 5 ⁇ and 8 ⁇ 'with simple waveforms,
  • ⁇ ( ⁇ ) is an auto-relational function, and in turn is a mutual relational-function.
  • the first embodiment of the invention is depicted in FIG. 2.
  • the following elements are applied for thermal spraying: photo-resisting areas 6, 7, 8, 9 of 6, 8, 11, 11, 11, 11, 11, 14, 11, 11
  • the phoelectric layer is the L ⁇ ⁇ layer, the resistance of which is dependent on the intensity of the optical radiation. Shown in ⁇ ig. 2
  • the configuration of the elements is ensured by spraying through the corresponding masks.
  • FIG. .3. A second embodiment of the invention is depicted in FIG. .3.
  • the following elements are applied to the thermal spraying: photoresistive coatings 6, 7, 8, 9 of 10, 11, 11, 11, 11, 11, 11
  • the following spraying test was carried out: photo-protective coating 2, electrolyte 6, layer 10 ⁇ Advisor, photo-protective coating 3, etc. Shown in ⁇ ig. 3
  • the configuration of the elements is ensured by spraying through the corresponding masks. ⁇ given date
  • FIG. 4 An exemplary embodiment of the invention is depicted in FIG. 4.
  • 1 method of thermal spraying is applied to the following elements: optical resistances 6, 7, 8, 9 of LI 9 100 ° thick, leading electrodes 10, 11, 12, 13, 14, 15, 16 ⁇ réelle thick 155 ° °.
  • the following spraying test was carried out: photo-protective coating 2, electrolyte 6, layer 10 ⁇ réelle, photo-protective coating 3, etc. Shown in ⁇ ig. 4 Configuration of sprayed elements, is ensured by spraying through appropriate masks.
  • the invention may be used in the Fourier process, measuring the duration of the pulses and the speed of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

L'invention concerne une technique de contrôle et de mesure mise en oeuvre dans l'interférométrie, la spectroscopie Fourier et l'holographie. Le procédé selon l'invention consiste : à diriger des flux lumineux mesurés de manière parallèle et de manière convergente ; à mélanger et enregistrer lesdits flux au moyen d'un photorécepteur constitué de N?1 couches photoélectriques sensibles aux interférences, ces couches étant disposées perpendiculaires auxdits flux lumineux. Des signaux provenant des N couches photoélectriques contiennent des relevés de la fonction de corrélation des flux lumineux mesurés, dont le décalage temporaire mutuel est déterminé en fonction des distances optiques entre chaque couche photoélectrique et les sources des premier et deuxième flux lumineux. L'intervalle de discrétisation des relevés de la fonction de corrélation sur les N sorties du photorécepteur est déterminé en fonction des distances optiques des couches photoélectriques, entre la première et la deuxième surface du photorécepteur, lesdites surfaces étant parallèles aux couches photoélectriques. La présente invention permet d'obtenir simultanément des signaux contenant des relevés de la fonction de corrélation de flux lumineux contraires, sans avoir recours au balayage mécanique de leur différence de propagation.
PCT/RU2003/000233 2003-07-21 2003-07-21 Procede de mesure de la fonction de correlation de flux lumineux et dispositif associe WO2005008201A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2003/000233 WO2005008201A1 (fr) 2003-07-21 2003-07-21 Procede de mesure de la fonction de correlation de flux lumineux et dispositif associe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2003/000233 WO2005008201A1 (fr) 2003-07-21 2003-07-21 Procede de mesure de la fonction de correlation de flux lumineux et dispositif associe

Publications (1)

Publication Number Publication Date
WO2005008201A1 true WO2005008201A1 (fr) 2005-01-27

Family

ID=34075211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2003/000233 WO2005008201A1 (fr) 2003-07-21 2003-07-21 Procede de mesure de la fonction de correlation de flux lumineux et dispositif associe

Country Status (1)

Country Link
WO (1) WO2005008201A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571083A (en) * 1982-04-05 1986-02-18 Buechner Hans Standing wave interferometer for measuring optical path differences
US5194918A (en) * 1991-05-14 1993-03-16 The Board Of Trustees Of The Leland Stanford Junior University Method of providing images of surfaces with a correlation microscope by transforming interference signals
US5276636A (en) * 1992-09-14 1994-01-04 Cohn Robert W Method and apparatus for adaptive real-time optical correlation using phase-only spatial light modulators and interferometric detection
RU2045004C1 (ru) * 1993-02-11 1995-09-27 Владимир Иванович Арзамасцев Способ измерения временных корреляционных функций флуктуаций отражательной и/или поглощательной способностей исследуемых объектов и устройство для его осуществления
RU2188402C1 (ru) * 2001-06-22 2002-08-27 Атнашев Виталий Борисович Интерферометр

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571083A (en) * 1982-04-05 1986-02-18 Buechner Hans Standing wave interferometer for measuring optical path differences
US5194918A (en) * 1991-05-14 1993-03-16 The Board Of Trustees Of The Leland Stanford Junior University Method of providing images of surfaces with a correlation microscope by transforming interference signals
US5276636A (en) * 1992-09-14 1994-01-04 Cohn Robert W Method and apparatus for adaptive real-time optical correlation using phase-only spatial light modulators and interferometric detection
RU2045004C1 (ru) * 1993-02-11 1995-09-27 Владимир Иванович Арзамасцев Способ измерения временных корреляционных функций флуктуаций отражательной и/или поглощательной способностей исследуемых объектов и устройство для его осуществления
RU2188402C1 (ru) * 2001-06-22 2002-08-27 Атнашев Виталий Борисович Интерферометр

Similar Documents

Publication Publication Date Title
AU2010252747B2 (en) Method and apparatus for optical sensing
EP0983486B1 (fr) Systeme de detection distribue
AU2021258052A1 (en) Method and apparatus for optical sensing
CN104155619B (zh) 基于磁致伸缩分布式光频域反射磁场传感装置和解调方法
WO2017203271A1 (fr) Procédé et appareil de détection optique
WO1987005692A2 (fr) Procede et dispositif de detection opto-electronique a distance de grandeurs physiques
US20170350735A1 (en) Detection of local property changes in an optical sensing fiber
Liu et al. Quantitative demodulation of distributed low-frequency vibration based on phase-shifted dual-pulse phase-sensitive OTDR with direct detection
AU2019202951B2 (en) Method and apparatus for optical sensing
KR101541602B1 (ko) 저간섭성 광원과 분산형 간섭계를 이용한 다축 측정 광학 갭 센서 장치 및 광학 갭 센서를 이용한 다축 측정 광학 갭 센싱 방법
Gang et al. Integrated differential area method for variable sensitivity interrogation of tilted fiber Bragg grating sensors
Martins et al. Communication models for distributed acoustic sensing for telemetry
WO2005008201A1 (fr) Procede de mesure de la fonction de correlation de flux lumineux et dispositif associe
Wu et al. High performance distributed acoustic sensor based on ultra-weak FBG array
Yaacob et al. In Situ Detection and Localization of Partial Discharge Using Acoustic Sensors
Alsaedi et al. Localization of Acoustic Wave Using Leakage Current and Fiber Optic Sensor Techniques
SU684367A1 (ru) Устройство дл измерени оптической передаточной функции
US20010021024A1 (en) Method and apparatus for fourier transform spectrometry
Gornall et al. Accurate wavelength interrogation of fiber Bragg grating sensors using Michelson interferometry
He et al. Application of synthesized coherence function to distributed optical sensing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GB US