WO2005007944A2 - Yarns, particularly yarns incorporating recycled material, and methods of making them - Google Patents
Yarns, particularly yarns incorporating recycled material, and methods of making them Download PDFInfo
- Publication number
- WO2005007944A2 WO2005007944A2 PCT/US2004/022262 US2004022262W WO2005007944A2 WO 2005007944 A2 WO2005007944 A2 WO 2005007944A2 US 2004022262 W US2004022262 W US 2004022262W WO 2005007944 A2 WO2005007944 A2 WO 2005007944A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yarn
- fibers
- core
- sheath
- staple
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000000463 material Substances 0.000 title claims abstract description 22
- 239000000835 fiber Substances 0.000 claims abstract description 124
- 239000004033 plastic Substances 0.000 claims abstract description 19
- 229920003023 plastic Polymers 0.000 claims abstract description 19
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 16
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 16
- -1 polyethylene terephthalate Polymers 0.000 claims abstract description 12
- 239000011162 core material Substances 0.000 claims description 58
- 238000009987 spinning Methods 0.000 claims description 28
- 239000004744 fabric Substances 0.000 claims description 24
- 229920001778 nylon Polymers 0.000 claims description 17
- 239000004677 Nylon Substances 0.000 claims description 16
- 229920000742 Cotton Polymers 0.000 claims description 14
- 229920003235 aromatic polyamide Polymers 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000004760 aramid Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 229920000297 Rayon Polymers 0.000 claims description 3
- 239000002964 rayon Substances 0.000 claims description 3
- 210000002268 wool Anatomy 0.000 claims description 3
- 230000001580 bacterial effect Effects 0.000 claims 2
- 239000003063 flame retardant Substances 0.000 claims 2
- 230000002745 absorbent Effects 0.000 claims 1
- 239000002250 absorbent Substances 0.000 claims 1
- 238000011109 contamination Methods 0.000 abstract description 4
- 239000003208 petroleum Substances 0.000 abstract description 3
- 239000012815 thermoplastic material Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 12
- 229920000728 polyester Polymers 0.000 description 12
- 235000004879 dioscorea Nutrition 0.000 description 10
- 238000010042 air jet spinning Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000000975 dye Substances 0.000 description 5
- COHYTHOBJLSHDF-BUHFOSPRSA-N indigo dye Chemical compound N\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-BUHFOSPRSA-N 0.000 description 5
- 238000007382 vortex spinning Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229940097275 indigo Drugs 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 206010034133 Pathogen resistance Diseases 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920002334 Spandex Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004759 spandex Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007383 open-end spinning Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/36—Cored or coated yarns or threads
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/38—Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
Definitions
- the present invention relates to yarn filament configuration, yarn fiber combination, yarn spinning techniques, and ecologically friendly and functionally sustainable textile design solutions. Background of the Invention The present invention may be understood in light of the following state of the art. Ever since processes of converting crushed plastic bottles made of polyethylene terephthalate (PET) into fiber for textiles was proposed as a substitute for virgin polyester, attempts have been made to commercialize the processes.
- PET polyethylene terephthalate
- PCR-PET PCR-PET
- domestic-based end use product manufacturers brought products containing fabric made from recycled plastic bottles to market and charged a premium for a product that had inherent quality deficiencies, they were unable to sustain significant enough market demand for these products to merit the expansion of plastic bottle fiber production.
- the fiber mills which had originally predicted growth in market consumption of the fiber, were forced to close fiber plants that were originally supplying these domestic-based end use product manufacturers with their fiber. Therefore, a longstanding need has existed for an economical method of utilizing PCR-PET to manufacture useable yarn of high quality.
- Air jet spinning has always been considered to be cheap and fast. Air jet is now hailed by most industry experts to be the optimal type of spinning frame for almost any application. Air jet spinning produces a fasciated yarn including a sheath of generally axially aligned staples bound together with discontinuous generally helical bundles of staples. Air jet machines are expensive; however their output speeds even at fine counts make them the best solution from an economic standpoint. From the standpoint of performance, the air jet produces the lowest pill yarn ever spun. The only complaint thus far is that the strength of an air jet yarn is slightly less than the strength of a ringspun yarn; however, this issue is easily overcome by placing a filament core inside the air jet yarn.
- the general rule for staple fiber going into air jet spinning frames is that it should be between about 1.2 and 2.0 inches (3 to 5 cm) in length, preferably between about 1.2 and 1.7 inches (3 to 4.3 cm) in length, and most preferably about 1.5 inches (3.8 cm) in length. Diameter of the staples can range from about 0.5 to about 2.0 denier per filament (dpf).
- a variant of an air jet spinning frame is known as a vortex spinning frame.
- a vortex spinning frame is capable of spinning a wider range of natural staple fibers, including cotton fibers, than is easily obtained with the earlier forms of air jet spinning frames.
- the vortex spinning frame produces a three-dimensional cotton sheath having better hand than does the basic air jet frame. It is also faster.
- Air jet spinning frames are well known in the art.
- Air jet spinning is presently dominated by Murata Kikai KK of Kyoto, Japan. Its MJS air jet spinning machine, MTS twin spinning machine, and MVS vortex spinning machines are widely used and their details are known to those skilled in the art. Such machines are described for example in Oxenham, "Fasciated Yarns - A Revolutionary Development?" Journal of Textile and Apparel, Technology and Management, Vol. 1 , Issue 2, Winter 2001 , pp. 1-7; Oxenham, "Developments In Spinning," TextileWorld.com, May 2003; and in numerous patents, such as Shaikh et al., United States Patent No. 6,405,519; Scheerer et al, United States Patent No.
- yarns include those in which a core is covered with a continuous filament helix using a covering machine (sometimes called coverwrapping machine or wrapping machine). These machines are traditionally used to cover spandex or other continuous filament stretch yams. A single or double helix is applied by a standard covering machine.
- a covering machine sometimes called coverwrapping machine or wrapping machine.
- Covering machines are occasionally used to cover non-stretch continuous filament cores to produce "fancy" yarns for small niche markets or industrial yarns.
- Such machines are sold by a number of manufacturers, for example by Rieter/ICBT, now known as the Filament Yarn Technologies Group, of Rieter Machine Works, Ltd., Winterthur, Switzerland. They are also widely described in the patent literature, for example in Siracusano, United States Patent No. 4,350,731 ; Tillman, United States Patent No. 4,137,698; and Payen, United States Patent No. 4,525,992.
- Continuous filament yarns are sometimes texturized (also called textured) by a texturizing machine to give them particular surface or geometrical properties.
- a filament may be given a "false twist” by twisting it, heating it, cooling it, and then untwisting it, or it may be given a more random shape by the several high-speed air methods described in Bertsch et al., United States Patent No. 6,088,892. Surface features are given by other methods, known to those skilled in the art.
- texturizing yarn filaments is done for the purpose of giving a synthetic (plastic) yarn some of the characteristics of a natural fiber. Synthetic yarns are generally superior to yarns made of natural fibers in tenacity (tensile strength), abrasion resistance, quick-drying properties, and dimensional stability, but they generally lack the hand, drape, and moisture absorbance of their natural fiber counterparts.
- yarns having special characteristics such as fire retardancy, high moisture permeability, bacterial resistance, ultraviolet ray resistance, low surface friction, or special aesthetic texturing.
- high tenacity synthetics such as polyamides including aromatic polyamides (aramids) and high-tenacity aliphatic polyamides (nylon), carbon, or glass provide much higher tenacities than many other synthetics or most natural fibers, but they lack many desirable characteristics as a yarn for numerous fabrics.
- Aramids provide greater tenacity than high-tenacity nylons, but they are susceptible to ultraviolet radiation.
- the present invention produces enhanced performance yarns which comprise, and are functional and economic alternatives to, 100% petroleum oil based virgin continuous filament yarns, such as polyesters (like virgin polyethylene terephthalate), polyamides (like nylon and aramids), polyolefins (like polypropylene and polyisobutylene), fluorocarbons (like polytetrafluoroethylene), high tenacity nylon, high tenacity polyester, and yarns formed of regenerated natural materials (like rayon and acetate).
- 100% petroleum oil based virgin continuous filament yarns such as polyesters (like virgin polyethylene terephthalate), polyamides (like nylon and aramids), polyolefins (like polypropylene and polyisobutylene), fluorocarbons (like polytetrafluoroethylene), high tenacity nylon, high tenacity polyester, and yarns formed of regenerated natural materials (like rayon and acetate).
- a list of man-made fibers, all of which are to some extent useable with embodiments of the present invention is contained in ISO Standard 2076: 1999(E) and in United States 16 Code of Federal Regulations part 303, particulariy ⁇ 303.7 (Dec. 1 , 2000), both incorporated by reference.
- the invention also produces enhanced performance yarns which comprise, and are functional and economic alternatives to, natural spun vegetable yarns (like cotton, linen, hemp, jute, and bamboo), silk yarns, and wool and other animal fiber yarns.
- yam filament configurations and yarn manufacturing methods which, among other things, provide a sustainable avenue to incorporate highly significant amounts of recycled plastics, particularly post consumer recycled (PCR) thermoplastic material such as polyethylene terephthalate (PET), which contains medium to high levels of contamination, into a yam without sacrificing many if any of the performance characteristics or properties that are inherent to the related competing alternate yarn type.
- the alternate yarn type may be, for example, 100% petroleum oil based virgin continuous filament yarn or may be natural or synthetic staple spun yarn. Corespun yarns with a continuous filament core, a spun sheath of recycled thermoplastic such as PCR-PET, and a spun cover formed either with an air jet (including vortex jet) machine or a cover wrapping machine are particularly advantageous.
- a suitable pre-extruded liquid PCR-PET in a standard pressure drop test, requires a pressure of greater than about 100 pounds per square inch (psi) for a twenty micron opening in order to be economically viable.
- the pressure drop of suitable pre-extruded PCR-PET will be about 500 psi or less for use in an extruder having a 20 micron opening and producing a 1.2 dpf staple. If the liquid polymer is pure enough to economically run through an extrusion hole smaller than seventeen microns in a manufacturing operation, then it is likely to have a more appropriate use elsewhere than in producing staple fiber, even staple fiber for use in the present invention.
- Figure 1 is a schematic view of a standard commercially available air jet spinning machine for use in performing steps of preferred embodiments of the present method.
- Figure 2 is a view in side elevation, partially cut away, of the yarn produced by the machine of Figure 1.
- Figure 3 is a schematic view of standard commercially available machine for winding a covering thread around a core.
- Figure 4 is a view in side elevation, partially cut away, of a yarn of this invention produced from the yarn of Figure 2 by the machine of Figure 3.
- Figure 5 is a schematic view of a standard commercially available air jet spinning machine modified for use in performing steps of preferred embodiments of the present method.
- Figure 6 is a somewhat schematic detailed view of part of the machine of Figure 5, showing two types of sliver emerging from an outlet of a T-trumpet portion of the machine and being formed into a yarn of this invention.
- Figure 7 is a view in side elevation, partially cut away, of a yarn of this invention produced by the machine of Figures 5 and 6. Description of the Preferred Embodiments The embodiments of the present invention described below are not meant to be limiting of the invention but to illustrate presently preferred embodiments.
- EXAMPLE 1 Preparation of an Intermediate Yam
- a preferred form of an intermediate yarn 1 for use in some illustrative preferred embodiments of the present invention is produced on a standard Murata MJS or MVS spinning frame 3.
- the spinning frame 3 includes a sliver supply 5 which feeds sliver through a trumpet 7, into a drafting zone.
- Sliver is staple which is processed by a carding machine into a solid controllable and soft form.
- the drafting zone comprises a pair of back rolls 9, a pair of middle rolls 11 , a pair of apron rolls 13, and a pair of front rolls 15. If desired, a guide or condenser may be included between the back rolls 9 and middle rolls 11.
- the spinning frame 3 is set up with a standard core attachment for inclusion of a core.
- a continuous filament core yarn 17 is fed through a pigtail guide 19 into the spinning frame at the forward end of the drafting zone, at front rolls 15.
- the front rolls 15 feed the core yarn 17 and drafted sliver into a spinning zone comprising spinning nozzles 21 and delivery rolls 23 which form the sliver into a spun sheath surrounding and hiding the core yarn 17 in accordance with well-known principles.
- the completed corespun yarn 1 is passed through a yarn clearer
- the corespun yarn 1 which forms an intermediate yarn for use in the present invention is shown in Figure 2.
- the sliver 5, hence the spun sheath 5 of the yarn 1 is formed of PCR-PET having a staple length of about 1.5 inches (3.8 cm) and a diameter of about 0.7 to 2 denier.
- the PCR-PET is cleaned sufficiently to be suitable for the formation of staple fibers but not continuous filament.
- the continuous filament core is illustratively formed of a high tenacity multifilament bundle, illustratively high tenacity nylon having a tenacity rating of about fifteen.
- EXAMPLE 2 Production of a Wrapped PCR-PET Yarn As shown in Figure 3, a standard coverwrapping machine 31 , modified for use with the intermediate corespun yarn 1 , is used for this step.
- the coverwrapping machine is illustratively a Model G-307-UE covering machine sold by Rieter/ICBT (Filament Yam Technologies
- the machine is adjusted to accept the intermediate corespun yarn 1 , which differs in construction and physical properties from the usual elastomer (spandex) core fed into the machine.
- the intermediate yarn 1 is placed on the supply rolls 33 of the covering machine 31 , from which it is fed to a first covering station 35 which applies an inner helix of an inner cover yarn, then to a second covering station 37 which applies an outer helix of an outer cover yarn, wrapped in a direction opposite the first helix.
- the completed yarn of this embodiment is then rolled on takeup rolls 39.
- the outer helix forms the outer cover, which is the surface of the completed yarn.
- the completed yarn 41 includes a double helix composed of two continuous filament yarns, an inner helix yarn 43 and an outer helix yarn 45, which together form a cover that wraps around the outside of the sheath of the corespun yarn 1.
- the continuous filament core 17 acts as a central load bearing point for the entire yarn.
- the filament type of the core 17 can be stretch, high tenacity or standard polymer.
- the presently preferred core material is high tenacity nylon or polyester, a combination of the two, or a combination of one of the two fiber types with another high tenacity or standard continuous filament yarn possessing a grams per denier tenacity rating between 8 and 35.
- the optimal core judged from the standpoint of achieving a high strength without generating a high cost is a high tenacity polyester or high tenacity nylon continuous filament.
- the core can compose anywhere from 10% to 50% of the total weight of the finished yarn.
- the optimal percentage of the core when using high tenacity nylon or high tenacity polyester is presently believed to be between 10% and 20%.
- the sheath 5 has two main functions, the first being its inherent ability to be a highly compressible component in the yarn, and the second being a sustainable avenue for incorporating a recycled material component in the yarn without affecting the yarn's performance properties.
- the sheath is illustratively composed of post consumer recycled polyethylene terephthalate (PCR-PET) staple length fiber.
- PCR-PET post consumer recycled polyethylene terephthalate
- the optimal cut staple length is 1.5-3.0 inches, and the optimal staple dpf (denier per filament) ranges between 0.8 and 3.0 depending on the amount of fibers per cross-section required by the yarn's thickness.
- the double helix has two main functions. The first is to provide a surface layer for the yarn having desired aesthetic characteristics and functional characteristics. The second is to interact mechanically with the core and sheath to provide surprising physical characteristics to the completed composite yarn.
- the main functions of the double helix is to give the yam extremely high resistance to abrasion, protecting the inherently less abrasion resistant sheath 5. Either high tenacity or standard tenacity nylon is recommended because of its traditionally high abrasion resistance properties.
- the yarn type of the wrap yarns 43 and 45 can be customized to accommodate the special needs of a particular end use application.
- a continuous filament yarn containing any of these mentioned special properties can be selected as the "wrap yarn" to best suit the needs of the yarn end use application.
- different or the same type of continuous filament or spun yarn can be used as the inner and or outer layer helix.
- the amount of individual filaments of which the wrap yarn is composed can play a large role in the cover's aesthetic, handling, and physical characteristics.
- the standard logic in yarn manufacturing suggests that a high tenacity continuous filament yarn equaling the same diameter as the yarn of this example would be stronger because the yarn of this example is illustratively composed of 17% high tenacity continuous filament core, 43% inherently weaker standard-tenacity polyester staple sheath (PCR-PET), and 40% standard or high tenacity continuous filament yarn which forms the double helix.
- PCR-PET standard-tenacity polyester staple sheath
- testing of a fabric of this example compared to a 100% high tenacity nylon continuous filament fabric of the equivalent denier proved the new yarn to have higher tenacity than the control fabric.
- the sheath made from staple length fibers is inherently lofty because the structure of a sheath consists of many small fibers spun together which creates tiny air pockets in-between the staples.
- One way to potentially increase the amount of sheath loft is to use a hollow staple fiber in the sheath; however this could potentially add cost and depending on the degree in which the hollow staple increases the overall strength of the yarn, it may or may not be of great value. Nevertheless, the use of a hollow staple fiber may achieve an even higher tenacity strength rated yarn.
- B) The double helix is applied through a mechanical wrapping machine which wraps the two continuous filament wrap yarns tightly around the sheath simultaneously in opposite directions.
- the turns per inch is a measure of the density of the cover or double helix within one inch of the yarn.
- the TPI can greatly affect the degree of abrasion resistance generated by the double helix, and can also greatly affect the degree of grams per denier tenacity rating of the yarn.
- TPI can be converted into what is known as coverage percentage, meaning the percentage of the surface being wrapped that is covered by the wrap yarns. Higher wrap coverage percentages equal higher yarn abrasion resistance and higher yarn tenacity ratings. They also equal longer processing time and higher cost. Optimal double helix wrap coverage is between 70% and 100%.
- EXAMPLE 3 First Alternative Yarn Construction
- This construction and the construction of the following Example comprise a high tenacity, standard tenacity, or stretch continuous filament yarn core and a uniquely formed sheath.
- the sheath comprises two layers of distinctly different staple fiber types. The layers are constructed such that there is an inner layer which touches the core, and an outer layer which is essentially the yarn's exterior surface area.
- the inner sheath comprises PCR-PET staple length fiber.
- the outer sheath layer comprises an interchangeable and customizable staple fiber which has specific performance or aesthetic properties or attributes required by the end use application of the yarn. The choice between the method of this Example and that of the following Example depends on what the needs of the end use application are, as discussed below.
- the manufacturing method of this Example utilizes a Murata MJS or MVS spinning machine similar to that utilized in Example 1. Like the method of Example 1 , it inserts a standard or high tenacity continuous filament "core" by the use of a core attachment. It differs in that it produces a two-layer sheath which is created by the use of a T-trumpet 71.
- the functional distinguishing feature of this method is its ability to control the placement of sliver.
- the T-trumpet 71 unlike the standard trumpet 7 normally used to feed carded staple into the spinning frame, allows the feeding of two different types of carded sliver 51 and 53 into the spinning frame in such a way that one fiber type is placed on the inside of the yarn's sheath and another fiber type on the outside of the yarn's sheath.
- the T-trumpet 71 is shown in more detail in Figure 6, where the inner sheath sliver 51 , illustratively PCR-PET, is emerging from the vertical arm 73 of the T-trumpet, and the outer sheath sliver 53, illustratively standard or high tenacity nylon, is emerging from the horizontal arm 75 of the T-trumpet.
- a condenser 10 is included between the back rolls 9 and middle rolls 11.
- the outer edges of the sliver 53 become the outer portion of the outer sheath of the finished yarn 81
- the sliver 51 becomes the inner sheath surrounding the core 17, as shown in Figure 7.
- This method will not produce a 100% differentiation of inner and outer sheath fiber types; however, it will be very close.
- a small amount of the sliver 51 will migrate into the outer sheath, and a small amount of the sliver 53 will migrate into the outer sheath.
- Any yarn chosen to be manufactured with this method will have the ability to tolerate a less than perfect fiber differentiation.
- Exterior sheath staple fibers which are compatible with this spinning technique include, for example, high tenacity fibers (such as high-tenacity nylon, glass, carbon, and aramid), low friction fibers, antimicrobial fibers, moisture management fibers (such high moisture permeability fibers and moisture repelling fibers), and natural fibers (such as cotton, wool, silk, rayon, and linen), or any blend of these fibers.
- high tenacity fibers such as high-tenacity nylon, glass, carbon, and aramid
- low friction fibers such as high-tenacity nylon, glass, carbon, and aramid
- antimicrobial fibers such as high-tenacity nylon, glass, carbon, and aramid
- moisture management fibers such high moisture permeability fibers and moisture repelling fibers
- natural fibers such as cotton, wool, silk, rayon, and linen
- Murata's air jet technology is preferred over ringspun technology, is that the Murata air jet yarn manufacturing process involves among other elements, a portion of the fiber which is channeled to the side; while the remainder of the fibers are twisted together in one direction; the channeled fiber acts independently by rapidly wrapping itself around the fiber in twist formation.
- the manufacturing method of this Example comprises using the intermediate corespun yarn 1 of Example 1 , containing a high tenacity, standard tenacity, or stretch continuous filament yarn core and a PCR-PET staple fiber sheath, as the core of a second corespun yarn.
- the intermediate yarn 1 is fed into the machine of Figure 1 , and the sliver is whatever staple fiber is desired as the pure 100% surface of the yarn 81 and of a fabric woven or knit from it.
- EXAMPLE 5 High Strength Multifilament Yarn Construction
- a continuous and multi-filament yarn having a total denier of 12 to 800 and consisting of 10 to 90% by weight of continuous high tenacity and high modulus monofilaments such as aramid, glass, carbon, or any other fiber filament which has a tenacity higher than 15 and a modulus higher than 500 is provided for use as a core in the foregoing Examples, as a ripstop grid, and for other purposes.
- the high tenacity, high modulus fiber will be intermingled with monofilaments having a lower tenacity, lower modulus, such as high tenacity nylon, regular nylon, high tenacity polyester, regular polyester, or any other continuous filament fiber having a tenacity rating between 5 and 15.
- the ratio of the higher than 15 tenacity fiber to the lower than 15 high tenacity fiber is determined by the strength requirements of its end use application and the actual tenacity ratings of the fibers which are being intermingled.
- the yarn forms a particularly good core for the PCR-PET sheath yarns of other embodiments of the invention, as well as being an outstanding ripstop yarn used in forming a ripstop grid in a high-strength fabric.
- Example 2 cover materials may all be varied to meet particular requirements.
- the core of the yarn of Example 2 may be omitted, although it is believed that its omission will weaken the yarn.
- the intermediate yarn 1 may be formed by other spinning methods, as may the sheaths of Examples 3 and 4, although the methods disclosed are believed to provide superior yarns. Staple fibers having a larger range of lengths and diameters may be utilized if other spinning frames are used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04778011.9A EP1651804B8 (en) | 2003-07-10 | 2004-07-12 | Yarn incorporating recycled plastic material and method of making |
US10/564,223 US7841162B2 (en) | 2003-07-10 | 2004-07-12 | Yarns, particularly yarns incorporating recycled material, and methods of making them |
CA2576139A CA2576139C (en) | 2003-07-10 | 2004-07-12 | Yarns, particularly yarns incorporating recycled material, and methods of making them |
AU2004258170A AU2004258170B2 (en) | 2003-07-10 | 2004-07-12 | Yarns, particularly yarns incorporating recycled material, and methods of making them |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48603703P | 2003-07-10 | 2003-07-10 | |
US60/486,037 | 2003-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005007944A2 true WO2005007944A2 (en) | 2005-01-27 |
WO2005007944A3 WO2005007944A3 (en) | 2005-12-08 |
Family
ID=34079181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/022262 WO2005007944A2 (en) | 2003-07-10 | 2004-07-12 | Yarns, particularly yarns incorporating recycled material, and methods of making them |
Country Status (5)
Country | Link |
---|---|
US (1) | US7841162B2 (en) |
EP (1) | EP1651804B8 (en) |
AU (1) | AU2004258170B2 (en) |
CA (1) | CA2576139C (en) |
WO (1) | WO2005007944A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2025971A1 (en) * | 2006-06-02 | 2009-02-18 | Teijin Fibers Limited | Canvas for synchronous belt and synchronous belt with the same |
CN103290576A (en) * | 2013-05-13 | 2013-09-11 | 张家港攒鑫特种纤维有限公司 | Antibacterial high-strength coated silk |
EP2388360B1 (en) * | 2010-05-17 | 2014-03-26 | Amann & Söhne GmbH & Co. KG | Yarn for sewing or embroiding |
EP3725923A1 (en) * | 2019-04-16 | 2020-10-21 | Calik Denim Tekstil San. Ve Tic. A.S. | Composite yarn, fabric comprising the composite yarn, method for producing a composite yarn and arrangement for producing a composite yarn |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060166578A1 (en) * | 2005-01-21 | 2006-07-27 | Myers Kasey R | Process for creating fabrics with branched fibrils and such fibrillated fabrics |
WO2009080037A1 (en) * | 2007-12-20 | 2009-07-02 | Vestas Wind Systems A/S | A method of manufacturing a composite part from resin-preimpregnated fibres |
IL195283A (en) * | 2008-11-13 | 2013-01-31 | Nilit Ltd | Process for manufacturing polyamide yarns utilizing polyamide waste |
US9706804B1 (en) | 2011-07-26 | 2017-07-18 | Milliken & Company | Flame resistant fabric having intermingled flame resistant yarns |
ITRM20110520A1 (en) * | 2011-10-04 | 2013-04-05 | Agenzia Naz Per Le Nuove Tecn Ologie L Ener | METHOD FOR THE REALIZATION OF RECYCLING CARBON FIBER YARNS. |
US20130287990A1 (en) * | 2012-04-25 | 2013-10-31 | Marusho Shoten Co., Ltd. | Elastic composite twisted yarn, method for preparing elastic composite twisted yarn, and pile fiber product using the same |
CN102733025A (en) * | 2012-07-17 | 2012-10-17 | 太仓市其盛化纤厂 | Real silk shell fabric and dyeing process thereof |
US20140090349A1 (en) * | 2012-09-10 | 2014-04-03 | Angela Fisher | Composite yarn for cut resistant fabrics |
CN103014967A (en) * | 2012-11-30 | 2013-04-03 | 吴江市超维纺织有限公司 | Method for manufacturing bamboo-charcoal fiber wool blended fabric |
DK178295B1 (en) | 2013-12-30 | 2015-11-09 | Nova Stella Aps | Modifiable band jewelry |
EP3102723B1 (en) | 2014-01-28 | 2022-05-18 | Inman Mills | Sheath and core yarn for thermoplastic composite |
EP3053484B1 (en) * | 2015-02-09 | 2017-11-15 | Trafalgar Associates, LLC | Fire resistant mattresses, fire resistant mattress cover materials |
CN106609407A (en) * | 2015-10-23 | 2017-05-03 | 南通金康弘纺织品有限公司 | A polyester fiber production method |
US20180057972A1 (en) * | 2016-09-01 | 2018-03-01 | Olah Inc. | Yarn and Method of Manufacturing Thereof |
WO2018085331A1 (en) * | 2016-11-01 | 2018-05-11 | Avery Dennison Retail Information Services, Llc | Composite yarn |
US10344406B2 (en) * | 2017-01-12 | 2019-07-09 | Springs Creative Products Group, Llc | Core-spun yarn featuring a blended core for use in the construction of flame barrier fabrics and finished articles made therefrom |
CN106835414A (en) * | 2017-04-13 | 2017-06-13 | 淄博海天纺织有限公司 | Hollow stretch yarn |
CN107043969B (en) * | 2017-05-11 | 2019-05-10 | 武汉纺织大学 | A kind of ring ingot compound spinning method of type film wire |
EP3850132A1 (en) * | 2018-09-12 | 2021-07-21 | Inman Mills | Woven fabric with hollow channel for prevention of structural damage to functional yarn, monofilament yarn, or wire contained therein |
WO2020072012A1 (en) * | 2018-10-05 | 2020-04-09 | Yunsa Yunlu Sanayi Ve Ticaret Anonim Sirketi | A flame retarding yarn with cutting resistance and a fabric comprising thereof |
US10835708B2 (en) | 2018-11-16 | 2020-11-17 | Bearaby Inc. | Layered yarn and weighted blanket for deep pressure therapy |
US11359309B2 (en) * | 2018-12-21 | 2022-06-14 | Target Brands, Inc. | Ring spun yarn and method |
CN110453321A (en) * | 2019-08-15 | 2019-11-15 | 浙江华孚色纺有限公司 | A kind of elasticity vortex spun core-spun yarn and its production method |
US20210071322A1 (en) * | 2019-09-06 | 2021-03-11 | Bearaby Inc. | Device and Process for Manufacturing a Layered Weighted Yarn |
US11293118B2 (en) * | 2019-12-11 | 2022-04-05 | Dane Robert Ellenbogen | Fabric that has utility to expand its' surface area |
US11598027B2 (en) * | 2019-12-18 | 2023-03-07 | Patrick Yarn Mills, Inc. | Methods and systems for forming a composite yarn |
CN112442776A (en) * | 2020-11-20 | 2021-03-05 | 白会林 | Multi-strand yarn textile forming machine |
US20230118716A1 (en) * | 2021-10-20 | 2023-04-20 | Flavorseal Llc | Knitted net carrier |
CN115948825A (en) * | 2022-12-27 | 2023-04-11 | 安徽翰联色纺股份有限公司 | Air jet spinning machine |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137698A (en) | 1978-05-01 | 1979-02-06 | Southern Elastic Corporation | Method and apparatus for winding covered yarn |
US4290260A (en) * | 1979-12-26 | 1981-09-22 | Felice Lowenstein | High denier non-plied frieze yarn and method of making the same |
US4350731A (en) | 1981-06-08 | 1982-09-21 | Albany International Corp. | Novel yarn and fabric formed therefrom |
FR2515701B1 (en) | 1981-11-02 | 1986-03-14 | Pierre Payen | PROCESS FOR THE MANUFACTURE OF COATED ELASTANE THREAD |
US4614081A (en) * | 1984-10-11 | 1986-09-30 | Youngnam Textile Co., Ltd. | Method for manufacturing a cotton yarn |
FR2611749B1 (en) * | 1987-02-20 | 1989-05-26 | Schappe Sa | CONTINUOUS MULTIFILAMENT SEWING THREAD AND MANUFACTURING METHOD THEREOF |
US4914902A (en) * | 1989-03-14 | 1990-04-10 | E. I. Du Pont De Nemours And Company | High strength cored cords |
US4976096A (en) * | 1989-06-15 | 1990-12-11 | The United States Of America As Represented By The Secretary Of Agriculture | System for producing core/wrap yarn |
US5487941A (en) * | 1991-11-12 | 1996-01-30 | Pepin; John N. | Continuous/discontinuous filament yarn or tow |
DE69218565T2 (en) * | 1991-12-11 | 1997-08-07 | Nitto Boseki Co Ltd | Meltable adhesive yarn and process for its manufacture |
US5383331A (en) | 1992-06-11 | 1995-01-24 | Proctor; Charles W. | Composite comprising staple fiber and filament yarn |
JP3185393B2 (en) | 1992-08-28 | 2001-07-09 | 村田機械株式会社 | Spinning method |
EP0591827B1 (en) * | 1992-10-03 | 1999-08-25 | Hoechst Aktiengesellschaft | Core yarn comprising a core of high-strength polyester material and method of manufacturing the same |
US5768875A (en) | 1993-03-17 | 1998-06-23 | Rhone-Poulenc Viscosuisse S.A. | Filter fabric with core sheating thread, and a bag produced therefrom |
JPH07316919A (en) * | 1994-05-19 | 1995-12-05 | Shinkashiyou:Kk | Regenerated polyester resin and production of polyester molded article using the same as raw material |
US5749212A (en) * | 1995-06-06 | 1998-05-12 | Dixy Yarns, Inc. | Elastomeric core/staple fiber wrap yarn |
DE19605675C5 (en) | 1996-02-15 | 2010-06-17 | Oerlikon Heberlein Temco Wattwil Ag | Process for aerodynamic texturing and texturing nozzle |
US5958548A (en) * | 1996-08-14 | 1999-09-28 | Nyltec Inc. | Carpet tufted with bulked continuous filament carpet face yarns utilizing new sheathed core filaments and related selection techniques to produce cost savings |
US6250060B1 (en) | 1997-04-18 | 2001-06-26 | Wellman, Inc. | Method of producing improved knit fabrics from blended fibers |
US5950413A (en) | 1997-04-18 | 1999-09-14 | Wellman, Inc. | Spinning apparatus, method of producing yarns, and resulting yarns |
US6410140B1 (en) * | 1999-09-28 | 2002-06-25 | Basf Corporation | Fire resistant corespun yarn and fabric comprising same |
JP3552618B2 (en) | 1999-12-13 | 2004-08-11 | 村田機械株式会社 | Core yarn manufacturing method and apparatus |
US6405519B1 (en) | 2000-02-23 | 2002-06-18 | Burke Mills, Inc. | Composite, break-resistant sewing thread and method |
JP4062869B2 (en) | 2000-09-01 | 2008-03-19 | 村田機械株式会社 | Core yarn manufacturing apparatus and core yarn manufacturing method |
DE50104822D1 (en) | 2000-11-08 | 2005-01-20 | Rieter Ag Maschf | Control of spinning stations in a spinning machine |
JP2002173843A (en) * | 2000-12-07 | 2002-06-21 | Unitika Textiles Ltd | Double-layer structural spun yarn |
JP2002371442A (en) * | 2001-06-12 | 2002-12-26 | Toray Ind Inc | Regenerated polyester spun yarn for blanket and blanket produced by using the same |
-
2004
- 2004-07-12 WO PCT/US2004/022262 patent/WO2005007944A2/en active Application Filing
- 2004-07-12 CA CA2576139A patent/CA2576139C/en not_active Expired - Fee Related
- 2004-07-12 EP EP04778011.9A patent/EP1651804B8/en not_active Expired - Lifetime
- 2004-07-12 US US10/564,223 patent/US7841162B2/en active Active
- 2004-07-12 AU AU2004258170A patent/AU2004258170B2/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of EP1651804A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2025971A1 (en) * | 2006-06-02 | 2009-02-18 | Teijin Fibers Limited | Canvas for synchronous belt and synchronous belt with the same |
EP2025971A4 (en) * | 2006-06-02 | 2010-12-29 | Teijin Fibers Ltd | Canvas for synchronous belt and synchronous belt with the same |
EP2388360B1 (en) * | 2010-05-17 | 2014-03-26 | Amann & Söhne GmbH & Co. KG | Yarn for sewing or embroiding |
CN103290576A (en) * | 2013-05-13 | 2013-09-11 | 张家港攒鑫特种纤维有限公司 | Antibacterial high-strength coated silk |
EP3725923A1 (en) * | 2019-04-16 | 2020-10-21 | Calik Denim Tekstil San. Ve Tic. A.S. | Composite yarn, fabric comprising the composite yarn, method for producing a composite yarn and arrangement for producing a composite yarn |
WO2020211977A3 (en) * | 2019-04-16 | 2020-11-26 | Calik Denim Tekstil San. Ve Tic. A.S. | Composite yarn, fabric comprising the composite yarn, method for producing a composite yarn and arrangement for producing a composite yarn |
Also Published As
Publication number | Publication date |
---|---|
EP1651804B1 (en) | 2013-01-02 |
US7841162B2 (en) | 2010-11-30 |
EP1651804B8 (en) | 2013-04-17 |
AU2004258170B2 (en) | 2010-12-09 |
EP1651804A2 (en) | 2006-05-03 |
AU2004258170A1 (en) | 2005-01-27 |
CA2576139C (en) | 2012-05-29 |
WO2005007944A3 (en) | 2005-12-08 |
EP1651804A4 (en) | 2011-03-23 |
CA2576139A1 (en) | 2005-01-27 |
US20060185343A1 (en) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2004258170B2 (en) | Yarns, particularly yarns incorporating recycled material, and methods of making them | |
US6105224A (en) | Bulk yarns having improved elasticity and recovery, and processes for making same | |
US8276358B2 (en) | Process of manufacturing ultra-soft yarn and fabric thereof | |
JP7521741B2 (en) | Composite yarn having core fiber and sheath fiber | |
US20080299855A1 (en) | Core yarn and woven and knitted fabric | |
JP3500392B2 (en) | Yarn dyed yarn | |
EP2816146B1 (en) | Elastic composite twist yarn and process for producing same, and pile textile product obtained using said elastic composite twist yarn | |
WO2012100305A1 (en) | A multi-component yarn | |
US20060014016A1 (en) | Method of producing yarns and fabrics | |
WO2020021123A1 (en) | Yarn comprising a core and a sheath | |
US7905081B2 (en) | Sewing thread | |
US7866137B2 (en) | Recyclable chenille yarn | |
US12060661B2 (en) | Recycled separable multi-filament parallel yarns and woven fabric thereof | |
JP2004183191A (en) | Stretch spun yarn, woven or knitted fabric and method for producing the same | |
JPS6242059B2 (en) | ||
CA3187836A1 (en) | Twisted and heat-set bcf yarn comprising side-by-side bi-component filament, method for forming such yarn and a floor covering material comprising such yarn | |
JP7144168B2 (en) | Polyester mixed yarn, woven and knitted fabric, and method for producing polyester mixed yarn | |
Chatterjee | Continuous filament and texturized synthetic yarns | |
JP2002013034A (en) | Elastic composite yarn and elastic woven fabric | |
Wilson | The Production of Textured Yarns by Methods other than the False-Twist Technique | |
CN117716077A (en) | Staple yarn having multilayer structure, method for producing the same, greige cloth, and clothing | |
JP2004197231A (en) | Polyester combined filament yarn | |
JP2004332145A (en) | False twist yarn, plied yarn, woven and knitted fabric thereof | |
JPH10317241A (en) | Combined bulk yarn | |
JPH0849130A (en) | Thermoplastic synthetic fiber conjugated yarn and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006185343 Country of ref document: US Ref document number: 10564223 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004778011 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004258170 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2004258170 Country of ref document: AU Date of ref document: 20040712 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004258170 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004778011 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10564223 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2576139 Country of ref document: CA |